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Abstract

In this thesis, a highly viable framework solution is presented for both object recognition
and motion tracking. Based on a literature study and experience from the preliminary
project thesis, a revised solution is first proposed. This solution includes the multi-
modality LineMOD detector and a subsequent translation clustering for determining the
position of potential object matches. Combined with a unique strategy for finding the
correct object rotation, the detector solution is able to provide initial object poses with
increased precision. The revised solution furthermore proposes a novel state-of-the-art
region-based Gaussian tracker (RBGT) for estimating the pose of detected objects. De-
spite showing some very promising results, the RBGT still struggles in some cases due
to inadequate appearance models and contour ambiguity. Consequently, some additional
strategies are suggested in order to improve the overall performance of the framework.
This includes a sparse, yet efficient approach for utilizing depth image information, com-
plementing the color-only RBGT. In addition, a solution for drift detection and correction
is proposed, which further improves the robustness and precision of the tracker. The re-
sults of these additions are showcased in multiple experiments, demonstrating an overall
improvement in tracking performance.
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Contributions

All necessary equipment, including the lab setup was provided by SINTEF. The main
contributions by the author are listed below.

• A literature survey on existing methods for 6-DoF object detection and tracking.

• The implementation of a complete detection and 6-DoF pose estimation pipeline,
which combines existing methods with some novel techniques proposed by the au-
thor.

• A novel approach for integrating depth data utilization for the color-only Region-
Based Gaussian Tracker (RBGT).

• A unique uncertainty-driven evaluation scheme for finding the best initial pose can-
didates during detection.
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iii



Supplementary Material

Filename Type Description
1. depth mp4 Tracking run using depth information (figure 50).

2. noDepth mp4 Tracking run not using depth information (figure 51).
3. driftCorrection mp4 Challenging tracking run with drift correction (figure 54).

4. noDriftCorrection mp4 Challenging tracking run without drift correction (figure 54).
5. BothParts mp4 Tracking run including both the big and the small chair part.

6. projectThesis pdf The preliminary project thesis [29]

Abbreviations

ACCV Asian Conference on Computer Vision

ANN Approximate Nearest Neighbour

Assimp Open Asset Import library

DNN Deep Neural Network

DoF Degrees of Freedom

GLEW OpenGL Extension Wrangler Library

GLFW Graphics Library Framework

ICP Iterative Closest Point

IR Infrared

LiDAR Light Detection And Ranging

OpenCV Open Source Computer Vision Library

OpenGL Open Graphics Library

ORK Object Recognition Kitchen

RBGT Region Based Gaussian Tracker

RBOT Region Based Object Tracking

RGB Red, Green, Blue

RGB-D Red, Green, Blue and Depth

SDL Simple DirectMedia Layer
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List of symbols

LineMOD

D(x) Depth at image coordinate x

εD,εG Similarity measure for surface normals and color gradients

fm Similarity function

I Input image

J Binarized image of spread orientations

m Modality

n0 Number of quantized gradient orientations

Om Template image of modality m

ori(O, r) Gradient orientation for image O at location r

P List of pairs (r,m)

r Location of discriminant feature

R(r + c) Pixel neighbourhood with r + c as midpoint

Si Response map for orientation i

T Template

T Sampling step

τi Precomputed lookup table for orientation similarity

~v(xi) Vector along line of sight towards 3D point given by x

x Image coordinate

X Projected 3D point
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RBGT

αb,αf Learning rate for background and foreground model

C Camera reference frame

ci Center for correspondence line i

∆c+i Projected difference from correspondence line center c

∆c+si Scaled projected difference

∆c̃si Discretized projected difference

Di Color data along correspondence line i

fx, fy Focal lengths

hb,hf Smoothed step function for background and foreground

I Input color image

it Closest template view

λr,λt Regularization parameters for rotation and translation

M Model reference frame

mb,mf Background and foreground model

ncl Number of correspondence lines for a given template view

ni Normal vector for correspondence line i

n̄i Largest normal component

N i Contour of object in current image

pj(yi) Pixel-wise posterior for model j

px, py Principal point coordinates

π Pinhole camera model

R Rotation matrix ∈ SO(3)

r Distance from correspondence line center c

rs Scaled distance from correspondence line center c

s Number of pixels combined into discretized segment (scale)

sh Slope parameter for the smoothed step function

t Translation vector
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CTM Homogeneous transformation matrix from M to C

θ Full variation vector

θr Rotation variation

θt Translation variation

xcli(r) Function returning the rounded image coordinate given r

xi Image coordinate

Xi 3D model point

X̃i Homogeneous 3D model point

CX̃
+
i Variated model point in C caused by θ

yi RBG color values at image coordinate xi

RBGT Additions

Ei Depth data along correspondence line i

µEi Position of a detected depth discontinuity

rd Depth-to-color influence ratio for the combined likelihoods

σE Standard deviation for Gaussian edge likelihoods

T i Total of data along correspondence line i

tdd Lower threshold for depth discontinuities

tdrift Threshold for drift correction

tz Upper threshold for number of zeros (missing data) in Ei
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1 Introduction

Object recognition and 6-DoF pose estimation make up some of the most prominent
fields in computer vision and robotics today. With the arrival of more complex use cases
of robotic technology such as autonomous driving, or even medical robots performing
surgery procedures [14], the systems ability to accurately perceive their surroundings is
essential. Industrial assembly robots are examples of autonomous systems which require
information about their environment in order to interact with it. RGB cameras, IR depth
cameras and LiDAR are all examples of optical sensors that can provide the raw data
needed to obtain this information. By utilizing the techniques of object recognition and
pose estimation, these systems are able to discover and localize target objects or potential
obstacles. Industrial- and inspecting robots, modern visual surveillance [36], augmented
reality [64] and intelligent transportation [32] are just some of the applications relying on
the techniques of both object recognition and motion tracking.

This thesis will mainly focus on the industrial application of these techniques. As
we know, robots are widely used in manufacturing performing task such as pick and
place, assembly, packaging and painting. All of these tasks require an accurate identi-
fication and pose estimate of the object to be handled. Therefore, robotic vision has
great importance in automated industrial processes that otherwise would call for human
intervention. Reduced costs, increased production, improved consistency and safety are
some of the benefits from vision guided robotic systems [30, 47, 13]. However, recognition
and motion tracking still pose some notable challenges. For instance, varying lighting
conditions with shadows and glare, occlusion of objects and motion blur can all compli-
cate the tasks of object detection and 6-DoF pose estimation [33]. Furthermore, when
moving objects are added to the equation, an additional demand for real-time speed must
be taken into account. This demand illustrates a crucial challenge in pose estimation as
a trade-off between accuracy and computational cost is inevitable.

The problem to be solved in this thesis addresses to a chair manufacturing setting
and involves a UR10 robotic manipulator responsible for loading and unloading objects
off a hanger. The hanger, which is suspended from a roof mounted conveyor, is swinging
freely. This manufacturing setting is recreated in a lab setup as illustrated in figure 1. The
camera, an Azure Kinect DK, is mounted on the UR10 and provides both color and depth
(RGB-D) vision. In order to enable the use of the robotic manipulator it is important
to recognize and track the 3D object that we need the arm to interact with. Hence, a
flexible solution for 3D tracking of different objects is needed. Figure 2 illustrates the
chair parts that will be used for the object tracking. These objects have not undergone
any paint job at this point in the assembly process, and will consequently have a varying
surface texture.
The nature of this problem will be the basis for the literature study in section 2, where
the viability of relevant existing recognition and 6-DoF estimation techniques will be
discussed before proposing a feasible solution in section 3. Next, the theory behind each
method is described in section 4 before discussing the initial implementation in section 5.
After evaluating the implemented tracker in section 6, some solution improvements are
then proposed in section 7. Thereafter, experiments are performed for both the object
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detector and the tracker in section 8. Finally, some discussion and concluding remarks
are given on the implemented solution in section 9 and 10 respectively.

(a) (b)

Figure 1: Lab setup for problem description a) Side view of the robotic manipulator
UR10 and hanger. b) Closeup of robotic manipulator loading object onto hanger. The
Azure Kinect DK is mounted on top of the robotic arm.

Figure 2: Objects to track.
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2 Literature study

In this section we do a brief study of existing 6-DoF estimation methods, while also
discussing the suitability of these methods in relation to the problem given in section 1.
The study starts off by taking a look at feature based methods in 2.1, before discussing
template matching in 2.2, region based methods in 2.3, learning-based methods in 2.4,
and point cloud based methods in 2.5. This study, along with the experience from the
preliminary project thesis [29], will later be the basis for a revised framework proposal in
section 3.

2.1 Feature Based Methods

Feature based methods make up a variety of techniques utilizing local image descriptors to
match keypoints between the scene and textured target objects. Using either a monocular
RGB camera, or a multi-view stereo vision setup, the 2D key points in image coordinates
are back-projected to 3D before retrieving the 6-DoF pose of the object based on these
point-to-point correspondences. SIFT [26] and SURF [3] are both examples of feature
detection algorithms which describe and detect local features in images. In short, these
apply gradient magnitudes and orientations relative to the keypoint’s orientation, making
the descriptor invariant to rotation. The transition from n 2D-3D point correspondences
to a 6-DoF pose is defined as a Perspective-n-point (PnP) problem. Gordon and Lowe
[12] presented a 3D object pose estimation framework back in 2006, using SIFT corre-
spondences between the scene and a 3D model of the object, and thereafter solving the
following PnP problem. In order to prevent false matches the RANSAC algorithm [10]
is also implemented, which removes outliers from potential 2D-3D correspondences. For
further pose refinement the Levenberg-Marquardt algorithm [25] can also be applied, as
was done in [12], minimizing the geometric reprojection error. In total this framework
can provide a speedy 3D object detection and pose estimate for textured objects when
provided corresponding 3D object coordinates for each matching 2D scene point.
As a starting point of the preliminary project thesis [29] a similar framework was imple-
mented using ORB [43], an efficient alternative to SIFT or SURF, and solvePnPRansac
which combines RANSAC and a PnP-solver to give an estimated pose in 6-DoF. Both of
these are provided by the Open Source Computer Vision Library (OpenCV). The initial
tests were carried out using a planar flyer as tracking object, giving a simple translation
from image to 3D object coordinates. An illustration of the pose estimation result is
shown in figure 3. This testing was for research purposes only, and will not be discussed
in the remaining thesis. This solution did however illustrate the importance of explicit
features in order to find point correspondences. As for SIFT and SURF, ORB can also
be vulnerable to illumination changes such as shadows and glare. Consequently, the flyer
pose estimation solution was only able to track its pose correctly in a span of ±30 degrees
in roll, pitch and yaw.

As stated in the problem description in section 1, the target objects will have a varying
surface texture. Naturally, this does not make the ideal conditions for a local feature
descriptor as each sample object will give rise to different keyponts. Self induced shadows
and a general lack of explicit features would further degrate the performance of a feature
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Figure 3: 6-DoF pose estimation of a textured flyer. Each colored circle represent an
ORB keypoint available for matching.

based framework if applied to this problem.

2.2 Template Based Methods

Template matching is another common approach for object detection and pose estima-
tion. In contrast to the feature based methods that use local feature descriptors, this
approach uses object descriptors. An object descriptor encode the entire observed object
based on a given modality, such as color gradients. The similarity score between a scene
image and a set of templates will hence decide if an object is present or not. During
training, these template images are obtained through sampling from different viewpoints.
This way the object’s pose can also be determined based on the pose of the template
match with the highest similarity score. However, in order to achieve high resolution
pose estimates with this approach, a huge set of template images would be required. A
trade-off between pose resolution, memory consumption and search speed is inevitable.
As a result, pose refinement algorithms like Iterative Closest Point (ICP) [4] have been
used to improve the initial pose estimate. This method operates on point clouds and can
only be applied when depth images are available. More details on ICP will be given in
the subsection on point cloud based methods in 2.5. For pose estimation setups using
RGB images only, the minimization of photometric energy functions have been used to
refine the initial pose estimates, as was done in [54].
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2.2.1 LineMOD

LineMOD [19] is a well known method in template based pose estimation which uses
multiple modalities. The framework combines both RGB images and dense depth maps,
also known as RGB-D images, to give complimentary information on an object. As
demonstrated in [19], the combination of a color gradient descriptor and a surface normal
descriptor makes a robust template representation. An illustration of these modalities
is shown in figure 4. If the surface normals are omitted from the set of modalities, we
get the more generic LINE-2D [18] method. As the figure shows, the color gradients are

Figure 4: A rubber duck with with different modalities, m. (Source: [19])

mainly located on the contours, while the surface normals are located on the body of the
object. Unlike the local feature descriptors discussed in 2.1, this template representation
approach will also be able to detect texture-less 3D objects. The contours are naturally
also more robust to illumination changes and noise compared to local feature keypoint
found on the body. For our problem, described in section 1, a LineMOD based template
representation seems to be a viable option for obtaining a decent initial pose estimate.
As discussed, this solution would however still need a pose refinement step. Given that
this method already makes use of depth images, the ICP-required cloud points would be
easily accessible. Hence ICP could be implemented and return the final 6-DoF pose for
all detected objects.

Despite claiming real-time performance for multiple object detection and pose esti-
mation in [19], the efficiency of LineMOD has been discussed in various papers proposing
improvements on the pipeline. The exhaustive nearest neighbour search used for find-
ing the most similar template match is definetely not ideal. Shao et al. [46] recognize
this, but still proclaim this method to achieve real-time speed for single object pose es-
timation. They also discuss Approximate Nearest Neighbour (ANN) techniques such as
hashing-based and tree-based matching, while proposing a modified fuzzy decision forest
framework for improved matching efficiency. Although both hashing-based and tree-based
methods have sub-linear complexity for searching, these still have some drawbacks. For
one, the design of an efficient hash function is often not trivial [46]. Shao et al. also points
out the efficiency suffering related to the course of dimensionality due to backtracking
for the tree structure. Regardless, [23, 20] and [46, 41] all show improved efficiency on
the LineMOD ACCV12 dataset [19] by applying hashing-based and tree-based methods

5



respectively.

2.2.2 Template Generating

The task of generating a set of templates naturally applies to all 6-DoF object pose
estimation frameworks based on template matching. As mentioned, a large number of
template samples from different viewpoints are needed in order to recognize an object
and give a decent initial pose estimate. In [15] a total of 12960 templates are used per
object. These are rendered from 216 viewpoints uniformly distributed on a synthetic
sphere around the target object. For each viewpoint the camera is rotated around the
optical axis from −60◦ to +60◦ with a step of 10◦. Finally this is repeated for 5 different
spheres with varying radii with a step of 0.1m. A similar setup is used in [46], except they
only use the upper hemisphere for sampling as shown in figure 5. The general approach
to generate these sets of templates is to synthetically render a 3D mesh model of the
target object. These models can for instance be obtained by scanning the object. This
way we can obtain flexible template based frameworks for 6-DoF object pose estimation,
as a mesh model is the only requirement for tracking a new object.

Figure 5: A synthetic rendering sample of a bottle. This setup contains four different
hemispheres with varying radii. (Source: [46])

2.3 Region Based Methods

Region based methods, often using RGB images only, constitute a different subcategory
of pose estimation strategies. Simplified, these apply descriptors such as color histograms
to differentiate between the foreground, i.e. the object, and the background. Thereafter,
the pose which best fit the object contour is found through the optimization of some
kind of energy function. Just as for LineMOD, region based methods can be used for
estimating the pose of texture-less 3D objects. PWP3D [34] by Prisacariu and Reid is
maybe the most famous work among all region-based methods. It builds on [42, 45, 8]
along with the pixel-wise color histogram posterior membership approach presented by
Bibby et al. in [5]. The method, which uses a signed distance embedding function as
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energy function, was the first region based method capable of real-time performance.
Several enhancements have later been suggested to improve the efficiency and robustness
of the algorithm. Among these we find [53] and [16] which both perform better with
cluttered backgrounds. Inspired by [24], [16] achieves this by introducing local appearance
models that are better at capturing spatial variation. In addition, [53] reduced the overall
runtime by improving the optimization procedure. Based on the works of both [53] and
[16], Tjaden et al. present an improved approach in [54], using temporally consistent local
color histograms along the contours of the objects. An illustration of this technique is
shown in figure 6.

Figure 6: Projected contour of 3D object from a given template view. The local color
histogram regions are illustrated by colored circles. (Source: [54])

Zhong et al. propose a different method in [63] inspired by [62]. Using temporally
consistent polar-based region partitioning and edge-based occlusion detection this method
clearly outperforms [54] on the RBOT dataset [55]. Another method showing some very
interesting results is presented in [48]. The method was displayed at the Asian Conference
on Computer Vision (ACCV) in late November 2020 and is the most recent work included
in this literature study. While maintaining the global segmentation model of PWP3D,
Stoiber et al. introduce a highly efficient and sparse Gaussian approach to region-based
tracking. The method also performs better than [55], [63] and [54] on the RBOT dataset.
Some other works based on the concepts of PWP3D include [22] which adds a term based
on the ICP algorithm to the energy function in order to incorporate depth information,
and [35] which integrate orientation information from an inertial sensor. These methods
also introduce enhancements with respect to efficiency by suggesting a sparse calculation
of the energy function, and a Levenberg-Marquardt based optimization approach respec-
tively. [55] otherwise suggests a Gauss-Newton approach for speeding up the optimization.

If considering region based methods as a whole, it is not unreasonable to assume that
the general lack of complementary depth descriptors can make them more prone to false
matches and drifting. For instance, the pose optimization step, which might utilize some-
thing similar to a two-dimensional signed distance function as in PWP3D, will naturally
be less robust in terms of ambiguity compared to the ICP algorithm which operates on
3D cloud points. To put it strongly, the shape of the object will have no importance
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as long as the contours match the ones of a rendered template view. For object with
less distinct silhouettes than those from [54, 6] and figure 6, it is reasonable to expect a
somewhat impaired result in terms pose estimation. The intended objects to track from
figure 2 would also lose a lot of their characteristics if only considering their silhouettes.
Based on this brief assessment, no region based approaches were really considered during
the preliminary project thesis. However, for reasons to be discussed in 3.1, along with
the arrival of the very promising Region Based Gaussian Tracker (RGBT) [48], it seemed
fitting to take a closer look at some of these methods. Hence, a short rundown of [54]
and [48] is given in 2.3.1 and 2.3.2 respectively.

2.3.1 Temporally Consistent Local Color Histogram Pose Estimation

By incorporating the improved optimizing procedure presented in [53] and the local seg-
mentation idea from [16], this method offers a real-time pose tracking approach which
unlike the aforementioned region based methods also provides a solution for pose de-
tection. As the unique object descriptor is used for both template matching and pose
optimization, no initial object pose is required for starting the tracking process. Fur-
thermore, the temporally consistent, local color histograms (tclc-histograms) enable the
approach to recover from accidental tracking loss. Inspired by LINE-2D [18], posterior
response maps are also introduced to speed up the pose detection approach. The binary
overlap between this representation and the silhouette masks of the rendered templates
are applied in order to skip image regions that are less likely to contain the object. The
pose recovery detection after temporally tracking loss is especially favorable in scenes
with great clutter and occlusion as shown in figure 7.

Figure 7: Pose estimation results in a cluttered scene with significant occlusion. (Source:
[54])

8



A drawback of this method is that it requires background knowledge, and must hence
be trained in the intended scene to outperform the more generic LINE-2D approach. If
operating in known scenes, as suggested in the initial problem description, this could be
acceptable. However, Gaussian based methods like [6] and [48] still perform better on the
ACCV dataset [54] and the RBOT dataset respectively compared to their approach with
scene knowledge. Consequently, methods such as the RBGT [48] might seem like a more
viable option.

2.3.2 RBGT

The Region Based Gaussian Tracker (RBGT) from [48] is a highly efficient sparse tracker
that like most other region based methods only requires a monocular RGB camera and a
3D object model to start the tracking. The main novelty of the method is a probabilistic
model that considers pixel color information sparsely along correspondence lines as illus-
trated in figure 8.

Figure 8: Example of the optimization process while tracking the ape object from the
RBOT dataset. The leftmost image displays a rendered overlay before the optimization
while the rightmost image displays the same overlay updated with the optimized 6DoF
pose. The images in the middle visualize the pixel-wise posteriors describing the probabil-
ity of a pixel belonging to the background. White pixels indicate pb = 1 while black pixels
indicate pb = 0. The orange lines illustrate the correspondence lines converging towards
the final pose with decreasing scale s. Line segments with high contour probabilities are
illustrated in red. (Source: [48])

In addition to providing a discrete scale-space formulation for improved computational
efficiency, they derive a mathematical proof that shows that the proposed likelihood func-
tion follows a Gaussian distribution. Based on this information, robust approximations
for the derivatives of the log-likelihood are presented. Using a regularized Newton op-
timization this approach outperforms state-of-the-art region based methods in terms of
tracking success while also being about one order of magnitude faster [48]. Although
this approach does not provide object detection like [54], its performance and efficiency
still make it very appealing. Having the slight doubt for region based methods in mind,
it would be interesting to see how it handles challenges like contour ambiguity during
difficult rotations.
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2.4 Learning Based Methods

Learning based methods make up a different approach to 6-DoF pose estimation which
generalize better to variations in viewpoint and slight shape deformations. [41] from
2.2, which extended LineMOD by introducing an efficient tree-based search for template
matching, is an example of such a method, as the templates are learned in a discriminative
fashion. In general, learning based methods often evoke less false positives than nearest
neighbour approaches such as the exhaustive LineMOD search from [19]. However, as
stated in [46], their efficiency often depends on the quality of negative training samples.
If trained for one specific scene, the performance may not be transferable to others. This
should also be considered when being presented with results from a learning based meth-
ods. As with the temporally consistent local color histogram approach from [54], these
have often been trained on that particular dataset to achieve the best performance for
that scene.
Some of the latest and most prominent related works include PointNet [37], which di-
rectly uses point clouds for object classification and segmentation, and [56] which propose
a method for human pose estimation called DeepPose. Both are based on Deep Neural
Network (DNN) architecture. Gao et al. also present a method for 6-DoF object pose
estimation in [11] based on both PointNet and ICP for pose refinement. As for most
template and learning based methods, the trade-off between efficiency and accuracy may
hurt the performance of real-time systems with moving objects. For instance, [11] demon-
strate an average processing time of 0.41s for a single object image when running on a
Nvidea Titan X GPU. This naturally would not be sufficient for a real-time system unless
we were dealing with stationary objects. DOPE [57] and PoseCNN [60], both using DNN
architecture, also fail to meet the real-time requirements for dynamic tracking. However,
[57] present a novel synthetic data generation procedure which enables a more flexible
training setup with pre-labeled data. This way, the cumbersome process of image assem-
bling and labeling is avoided.

To summarize, learning based methods make up a variety of approaches. While typi-
cally generalizing better to variations such as shape deformations, their performance often
rely on scene specific training and the quality of negative training samples. Furthermore,
the popular DNN based architectures introduce high computational complexity, making
these methods unfit for the dynamic tracking problem described in section 1. On the
other side, approaches such as the tree-based LineMOD extension [46] can actually result
in increased efficiency.

2.5 Point Cloud Based Methods

The entering of low-cost 3D cameras in the market has resulted in increased focus on
approaches that operate directly on 3D point clouds. The 3D object classifier PointNet
[37] from 2.4, and the LineMOD surface normal descriptor from 2.2.1 both utilize 3D
point data, making these invariant to object texture and illumination changes. Meth-
ods employing depth data exclusively are mainly used for pose refinement or template
matching. The previously mentioned ICP algorithm [4] is an example of the former.
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2.5.1 ICP

ICP, or Iterative Closest Point, differs from most object pose estimation methods as it
does not detect the object. Instead, ICP uses an iterative scheme to align two cloud points.
This geometric optimization will hence find the translation and rotation that minimize
the distances between corresponding object points in 3D. However, a decent initial guess
or estimate of the objects pose is required. The algorithm is sensitive to both the initial
pose and sensor noise, which in turn can result in convergence to local optima. In order
to reduce sensor noise Ruotao He et al. [15] use a moving least squares algorithm [2] for
smoothing scene points before applying ICP. For template based 3D object detection and
pose estimation frameworks, such as [15, 19, 46, 23], ICP is often applied as the template
matching alone won’t give a sufficiently accurate object pose estimate.

2.5.2 Oriented Point Pairs

A different category of point cloud based approaches is presented by Drost et al. in [9].
Using oriented point pair features, they create global model descriptions of the objects,
which are later matched using a voting scheme. The features describe relative position
and orientation of two point normals, as illustrated in figure 9.

Figure 9: a) Point pair feature F of two oriented points. F1 is set to the distance between
the points, F2 and F3 equals the angle between the normals and the vector defined by
the two points. Finally, F4 is set to the angle between the two normals. b) The global
model description. Point pairs with similar vector F are stored in the same slot in the
hash table. (Source: [9])

By analysing point pair features from the object scene, this method can detect the tar-
get objects while simultaneously output probable poses in 6-DoF. For increased stability
Drost et al. also use pose clustering which removes isolated poses with low scores. Simi-
lar techniques are applied in template based methods such as [15]. Unlike this LineMOD
based approach however, [9] is not refined by methods such as ICP. Nevertheless, when
requesting high precision, this framework will pay the price in terms of high processing
time. For our intended real-time application this naturally won’t be desirable. On the
other hand, it offer a somewhat flexible solution, as a 3D model is the only thing required
for tracking a new object.

11



3 Proposed Method

In this section the experience from the preliminary thesis project [29] will be summarized
briefly in 3.1 before providing a revised framework proposal on the basis of this experience
and the preceding literature study in section 2.

3.1 Preliminary Proposal

For the preliminary thesis project [29] the LineMOD approach [19] was evaluated. This
template based method had been proven to work for texture-less objects while also being
robust to illumination changes due to the utilization of depth data. In addition, works like
[46] and [23] demonstrated that it can be made more efficient by proposing new template
matching strategies. Last but not least, the synthetic template generating approach from
2.2.2 also seemed practical, as it provides a flexible solution for multiple object track-
ing. Consequently, combining a LineMOD detector with template match clustering and
subsequent ICP pose refinement looked to make a reasonable object detection and pose
estimation pipeline. A rough sketch of this pipeline is shown in figure 10.

Figure 10: Rough sketch of the preliminary 6-DoF pose estimation pipeline. The template
generation and loading to detector, i.e. training, is done offline.

Overall, the LineMOD detector clearly showed some potential. The detector usually
found at least one approximate match for the target object, whilst not obtaining too
many false matches. However, as discussed in [29] it would be preferable to attain a
higher share of matches on the objects in order to make the validation step a bit simpler.
In addition, the precision of the pose estimates were often inadequate, as the rotations
did not match the ones of the true objects. It seemed like the shape of the object,
namely the big chair part from figure 2, made the detection more challenging as there are
no easily recognizable curved surfaces. The discontinuity of flat surfaces on the object
also seemed to make it more prone to false matches, primarily from flat surfaces in the
scene. As a consequence of the insufficient pose estimates from the LineMOD detector the
match evaluating ”Clustering” and pose refining ”ICP” modules were not implemented.
Judging from the results, the ICP would not be able to deliver proper pose estimates as
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these modules require a decent selection of approximate matches. If the pose estimation
pipeline from figure 10 should remain, modifications to the detector were considered
necessary. Another drawback of this object detection and pose estimation approach was
the computational time. Although hashing-based and tree-based methods can speed up
the matching process, the total would still be rather significant when including clustering
and ICP. This concern gave rise to the idea of combining the implemented detector with
a more efficient motion tracker, only requesting detections when initializing the tracker,
and for some occasional checkups. The RBGT [48] was thus mentioned as it seemed like
an interesting candidate if having to look for alternate solutions.

3.2 Revised Proposal

Some more modifications were done to the LineMOD detector at the beginning of this
thesis. Changing the sampling step and the number of template images seemed to im-
prove the performance slightly. However, the implementation of ICP demonstrated that
the initial pose estimates were very often inadequate as the algorithm was unable to con-
verge. As a result, focus was shifted to the aforementioned RBGT [48]. This tracker was
considered to be a good candidate as it has demonstrated some very promising results in
terms of both tracking performance and efficiency. Furthermore, the publicly available
source code [49] only requires a 3D model of the objects, and their maximum body di-
ameter in order to get the tracker up and running. As the Azure Kinect is already set
as the default camera model, there is no need to create a custom camera class either.
Naturally, as the RBGT does not provide any solution for object detection, initial poses
are required for all objects in order to start the tracking. Nevertheless, further testing
with clustering of LineMOD matches showed that the position of objects can be estimated
rather accurately by clustering in terms of translation, and ignoring the rotation of the
matches. Having some rough assumptions for the object rotations based on the use case
would hence simplify the pose detection task. This gave rise to an idea of combining the
clustered translation with a rough rotation estimate and the RBGT in order to find a
sufficient initial pose and start the tracking. This approach will be explained further in
7.2. A rough sketch of the new proposed pipeline is shown in figure 11.
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Figure 11: Rough sketch of the revised detection and 6-DoF pose estimation pipeline. The
template generation and loading to the detector, and the corresponding model generating
for the RBGT is done offline. Note that the RBGT [48] only utilizes the RGB images.

4 Theoretical Background

In this section a more detailed description of the proposed framework methods will be
provided. First, the LineMOD [19] descriptors and similarity measures are presented in
4.1, before additional information will be given on clustering and the ICP algorithm in 4.2
and 4.3 respectively. Finally, the main concepts of the RBGT method [48] are described
in 4.4. For easier referencing, the original notations are used for both the LineMOD
detector and the RBGT. Additional description for these notations can be found in the
list of symbols at the beginning of the thesis.

4.1 LineMOD

The following subsection is based on [19] and [17] by Hinterstoisser et al. Both papers
cover the LineMOD image representation and template matching strategy.

4.1.1 Similarity Measure

In order to find potential matching objects in an input image, a similarity measure is
required. The generalized LineMOD variant can be formalized as:
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ε(I, T , c) =
∑

(r,m)∈P

max
t∈R(c+r)

fm(Om(r), Im(t)), (1)

where I is the input image and T is a given template. This template is defined as
T = ({Om}m∈M ,P), where Om is the template image of modality m, and P is a list
of pairs (r,m), where r is the location of a discriminant feature of modality m. The
comparing between a scene image and a template is done through a sliding window
approach, where c is the location in I to be evaluated. By summarizing the similarity
scores over the discriminant features in P, through a similarity function fm, a total
similarity score is provided. A template is matched if the score is higher than an applied
threshold. Furthermore, the separate feature scores corresponding to (r,m) ∈ P are set
to equal the maximum similarity score in a neighbourhood R(c+ r) of size N ×N with
r+ c as the midpoint. This way the similarity measure in equation 1 archives robustness
to small translations and deformations.

4.1.2 Modalities

As previously mentioned, LineMOD combines the modalities of both color gradients and
surface normals. For the case of color gradients, these are obtained by in inspecting
each of the three color channels (R,G,B) separately. This naturally increases robustness as
the different channels provide a greater option of gradients than what would be the case in
grayscale images. Figure 12 also illustrates the difference in contour visibility using both
methods. In addition, this method considers only the orientation of the gradients and not
their norms, which increases robustness to contrast changes. For each image location the
gradient orientation of the channel C whose magnitude is largest will be selected. This
can be expressed as:

IG(x) = ori(Ĉ(x)), (2)

where IG(x) is the orientation of the most prominent color gradient:

Ĉ(x) = arg max
C∈{R,G,B}

∥∥∥∥∂C∂x
∥∥∥∥ , (3)

at location x ∈ R2 in the input image. As the normalized gradient map only considers the
gradients orientation, and not their direction, the orientation space of the map is divided
into no equal spacings as shown in figure 12. This will prevent the detection from being
affected if the background changes from bright to dark. The similarity measure for the
gradient orientation can accordingly be stated as:

εG(I, T , c) =
∑
r∈P

max
t∈R(c+r)

|cos(ori(O, r)− ori(I, t))|. (4)

In addition, to make the quantization of orientations more robust to noise, each location
will be assigned the quantized orientation which occurs most often in a 3 x 3 neighborhood.
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Figure 12: Upper Left: Quantization of the gradient orientations: The pink orientation
is closest to the second bin. Upper Right: A toy duck with a calibration pattern.
Lower Left: The gradient image computed on a grayscale image. Lower Right: The
gradient image computed using maximum magnitude from the separate color channels.
(Source: [17])

The second modality, surface normals, are computed from a dense depth field pro-
vided by the 3D camera. The method apply the first order Taylor expansion of the depth
function D(x):

D(x+ dx)−D(x) = dx>∇D + h.o.t. (5)

For each pixel location x, an optimal depth gradient estimate ∇̂D can be found given
some pixel offset vectors dx. This gradient can accordingly be expressed as a 3D plane
going through three points X1, X2 and X3 ∈ R3:

X1 = ~v(x)D(x), (6)

X2 = ~v(x+ [1, 0]>)(D(x) + [1, 0]∇̂D), (7)

X3 = ~v(x+ [0, 1]>)(D(x) + [0, 1]∇̂D), (8)

where ~v(x) is the vector along the line of sight pointing towards the 3D point given by pixel
x. This vector can be seen as a projective element provided by the internal parameters
of the depth sensor. Finally, the surface normal at the 3D point can be estimated as the
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normalized cross-product of X2 −X1 and X3 −X1. The similarity function for these
surface normals is defined as the dot product of the normalized surface normals. Hence,
the similarity measure for the depth image can be expressed as:

εD(I, T , c) =
∑
r∈P

max
t∈R(c+r)

OD(r)>ID(t), (9)

where OD(r) is the normalized surface normal at location r from the reference image, and
ID(t) is the normalized surface normal at location t in the input image. As for the color
gradients, the surface normals are also quantized into n0 bins. These are spread out in a
right circular cone as shown in figure 13. In order to reduce the quantization noise on the
surfaces, the pixels, or 3D points with substantial depth differences will be ignored. This
primarily increases robustness for areas with depth discontinuity. In addition, to further
increase the robustness to noise, each location in the normalized surface normal map will
be assigned the quantized orientation which occurs most often in a 5 x 5 neighborhood.

Figure 13: Upper Left: Quantization of the surface normals: The pink orientation
is closest to the precomputed normal v4. Upper Right: A person standing in an of-
fice. Lower Left: The corresponding depth image. Lower Right: Computed surface
normals. The background was removed for visibility reasons. (Source: [17])
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4.1.3 Precomputed Response Maps

For efficient computation of similarity scores, the method introduces a binary represen-
tation of spread orientations, and a lookup table for fast computation of the similarity
measures found in precomputed response maps. The spreading of orientations and its
simple representation prevents us from having to evaluate the max operator in equation
1. For each image location, a binary string indicates the presence of a quantized orienta-
tion by setting the corresponding bit to 1. Similar representation is used for the surface
normal modality. However, for simplicity, only the color gradient representation and re-
sponse map computation will be illustrated in this subsection. This representation, and
the process of orientation spreading is shown in figure 14. The encoding of this spreading
is performed by OR’ing the concerning binary strings resulting in the more robust gradi-
ent representaion, denoted by m.

Figure 14: Spreading the gradient orientations. Left: The n0 gradient orientations and
their binary code. a) The gradient orientations in the input image, shown in orange.
b) The gradient orientations are spread to a neighbourhood of size T, as shown in blue.
c) The binary representation of the spread orientations. For this figure T = 3 and n0 = 5.
In practice, the method uses T = 8 and n0 = 8. (Source: [17])

When assessing the similarity for each discriminant feature i of modality m in P, a pre-
computed lookup table τi is utilized, where the integer value of m is used as an index to
the corresponding similarity score:

τi,m[m] = max
l∈m
|fm(i, l)|. (10)

For the case of color gradients, i is the index of the quantized gradient orientation of
the template feature from P, while l is the individual gradient orientations in a location
as shown in figure 14 b). Accordingly, the similarity score between each discriminant
gradient feature i, and corresponding spread input image orientations  can be stated as:

τi[] = max
l∈
|cos(ori(i)− ori(l))|. (11)

As  in principle represent all gradient orientations present in a neighbourhood, the
method achieves robustness to small translations and deformations without having to
iterate through t ∈ R(c+ r), as done in equation 1 and 4. By defining J as an image of
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-pixels, the values of the response map Si can be precomputed as:

Si(c+ r) = τi[J (c+ r)]. (12)

Finally, the similarity measure from equation 4 becomes:

εG(I, T , c) =
∑
r∈P
Sori(O,r)(c+ r), (13)

where the different response map variants are chosen as specified by the orientation i
of the current reference image feature in location r. The process of precomputing the
response maps is illustrated in figure 15.

Figure 15: Precomputation of the response maps Si. Left: There is one response map for
each quantized orientation. These store the maximal similarity between this quantized
orientation, and the corresponding combinations of orientations i the input image. Right:
This process is done efficiently by using the binary representation in J as index to lookup
tables of maximum similarity. (Source: [17])

4.2 Clustering

Clustering or cluster analysis is the task of classifying objects into distinct groups or
classes based on their available data [27]. Objects with similar attributes will hence
be clustered together, while more dissimilar objects will be placed in different classes.
This multi-objective optimization problem can be solved by numerous different cluster-
ing methods, such as connectivity-based clustering, also known as hierarchical clustering,
distribution-based clustering and centroid-based clustering [28]. k-means clustering is an
example of the latter and is illustrated in figure 16. Given a fixed number of clusters k,
this method minimizes the total Euclidean distance between all objects and their nearest
cluster center by iteratively changing the centroid positions. The objective function can
be expressed as:

19



J =

k∑
j=1

nj∑
i=1

||xi,j − cj ||2, (14)

where k is the number of clusters, nj is the number of objects in cluster j and xi,j is object
of index i in cluster j. The center position of cluster j is given by cj . As the optimization
problem itself is NP-hard [58] the iterative approach will search for approximate solutions.
Lloyd’s algorithm [44], also known as k-means algorithm, does this by repeatedly assigning
each object to its nearest centroid cj before computing the new centroid positions as the
mean of these objects. The closest cluster center for a given object xi is found as:

argmin
j
||xi − cj ||2, (15)

while the the new centroid positions are calculated as:

cj =
1

nj

nj∑
i=1

xi,j . (16)

The algorithm stops when the object distribution converges, i.e. no objects are assigned
to new clusters.

Figure 16: Two dimensional k-means clustering for k = 3. The different colors illustrate
to which cluster the objects have been assigned. (Source: [7])
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4.3 ICP

Iterative Closest Point (ICP) [4] is an algorithm used to minimize the difference between
two clouds of points. As discussed in section 2.5.1, ICP is often applied when given
an approximate initial pose estimate from a template based framework. Through an
iterative scheme, the geometric distances are minimized, resulting in a translation and
rotation which aligns the two point clouds as illustrated in figure 17.

Figure 17: Alingning of point clouds using ICP. Left: Two clouds of points (blue and red)
given as input for the ICP algorithm. Right: The red point cloud has been translated
and rotated in order to minimize geometric difference to the blue point cloud. (Source:
[31])

In contrast to Kabsch algorithm [21] and other solutions, ICP needs no correspondences
between the two sets of points. Instead, for each iteration, every point in the source point
cloud will be matched with the closest point in the reference point cloud. These matches
will then be the basis for the subsequent geometric difference minimization, providing
the transformation applied in the next iteration. Zhang [61] also proposes a modified
k-d tree algorithm for efficient computation of the closest point matches. A statistical
method furthermore takes care of outliers and variations in the presence and absence of
corresponding object points.

4.4 RBGT

The following subsections are based on [48] by Stoiber et al. and give an introduction to
the basic mathematical concepts and notations in 4.4.1 before introducing the probabilis-
tic model in 4.4.2 - 4.4.4, and the discrete scale-space formulation in 4.4.5. In 4.4.6 the
Gaussian equivalence of the proposed likelihood function is demonstrated before the op-
timization method is presented in 4.4.7. Lastly, the gradient and Hessian approximations
are given in 4.4.8.

21



4.4.1 Preliminaries

For the remaining theory sections concerning the RBGT, the 3D model points are de-
fined by MXi = Xi = [Xi Yi Zi]

> ∈ R3, or the corresponding homogeneous form

MX̃i = X̃i = [Xi Yi Zi 1]>. The color images are denoted by I : Ω→ {0, ..., 255}3 ⊂ R2,
while the RGB values at image coordinate xi = [xi yi] ∈ R2 are expressed as yi = I(xi).
If given a 3D model point represented in the camera reference frame C, CXi is projected
into an undistorted image using the pinhole camera model π:

xi = π(CXi) =

[
Xi

Zi
fx + px

Yi

Zi
fy + py

]
, (17)

with fx and fy being the focal lengths, and px and py being the principal point coor-
dinates. In order to describe the relative translation t ∈ R3 and rotation R ∈ SO(3)
between the model reference frame M and the camera reference frame C, the homoge-
neous matrix CTM is used:

CX̃i = CTMMX̃i =

[
CRM CtM
0 1

]
MX̃i, (18)

where MX̃i is a 3D model point expressed in the model reference frame M , and CX̃i is
the same point expressed in the camera reference frame C.

For small rotations, the RBGT [48] uses the minimal angle-axis representation. By
neglecting the higher order terms of the exponential map series expansion:

R = exp([r]×) = I + [r]× +
1

2!
[r]2× +

1

3!
[r]3× + ..., (19)

where [r]× represent the skew-symmetric matrix of r, the linear variation of a 3D model
point represented in the camera reference frame C can be described as:

CX̃
+
i =

[
CRM CtM
0 1

] [
I + [θr]× θt

0 1

]
MX̃i, (20)

where θr ∈ R3 is the rotation variation, θt ∈ R3 is the translational variation and CX̃
+
i is

the variated model point. The plus operator symbol indicates that this variated variable
depends on the full variation vector θ> = [θr θt].

4.4.2 Appearance Models

Just as PWP3D [34], RBGT [48] also utilizes a pixel-wise color histogram posterior mem-
bership approach inspired by [5]. Using a color histogram representation, global appear-
ance models for the foreground p(y|mf ) and background p(y|mb) are created, which in
turn are used to calculate the pixel-wise posteriors:

pj(yi) =
p(yi|mj)

p(yi|mf ) + p(yi|mb)
, j ∈ {f, b}. (21)
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An illustration of such membership posteriors is given in figure 18. The color histograms,
which are discretized with 32 equidistant bins in each RGB dimension, are updated every
tracking iteration as the final pose is estimated. The affiliated probability distributions
p(y|mf ) and p(y|mb) are thus updated accordingly to account for a changing background
or variation in the foreground region due to a diverse surface or illumination changes.
When updating the color histograms, the correspondence lines, as displayed in figure 18a
are put to use. With an offset of two pixels at the center, the first 10 pixels are used
in both directions along the correspondence lines. Pixels along the inner segment are
assigned to the foreground model, while the pixels along the outer segment are assigned
to the background model.

(a) (b)

Figure 18: Sample of posterior membership probabilities given a RGB image and color
histogram models p(y|mf ) and p(y|mb). a) Pixel-wise posteriors describing the proba-
bility of a pixel belonging to the background. White pixels indicate pb = 1, while black
pixels indicate pb = 0. When updating the color histograms, the method uses RGB values
along the orange correspondence lines. The line segments with high contour probability
are indicated by red. b) Corresponding RGB input image.

Based on [5], the statistical models are adapted online using:

pt(y|mi) = αipt(y|mi) + (1− αi)pt−1(y|mi), j ∈ {f, b}, (22)

where αf = 0.1 and αb = 0.2 are the learning rates for the foreground and background,
respectively. When initializing the histograms, no previous models exist, and αf = αb = 1.

4.4.3 Correspondence Lines

As mentioned in 2.3.2, the sparse use of pixel color information along correspondence
lines is a key novelty of the RBGT approach [48]. Motivated by the term correspondence
points used in ICP, the correspondence lines are also defined before being the subject of
optimization. Described by a center ci = [cxi cyi]

> ∈ R2 and a normal vector ni = [nxi
nyi]

> ∈ R2, with ||ni||2 = 1, these are defined by projecting a 3D contour point Xi into
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the image along with an associated vector normal to the contour N i. Similar to [51], the
required information is precomputed and stored by rendering a 3D model of the associ-
ated object. A total of 2562 different viewpoints are used, each placed on the vertices
of a geodesic grid 0.8 m from the object center. For each of these template viewpoints
ncl = 200 points are randomly sampled from the object contour. The corresponding 3D
model points and normal vectors, i.e. correspondence lines, are thus stored in separate
data structures connected to their respective template view.

For each template view, the direction vector Mvi ∈ R3 pointing from the camera to
the model center is also stored. When provided the previous pose from the tracker, or
an initial pose from an object detection pipeline, the closest template view it is retrieved
using:

it = arg min
i∈{1,...,2562}

(Mv
>
i MRCCtM ), (23)

where CtM is a normalized translation vector given by the most recent pose update.
After finding the closest template view and associated correspondence lines, the pixels

on the lines are described by rounding as follows:

xcli(r) = bci + rni + 0.5c, (24)

where r ∈ R is the distance from the center ci and ni is the normal vector for correspon-
dence line i. As the correspondence lines remain fixed during the 6-DoF pose variation,
the projected difference ∆c+i from the center ci can be calculated as:

∆c+i = n>i (π(CX
+
i )− ci), (25)

where CX
+
i is the variated model point in the camera reference frame C. An illustration

of a correspondence line with a projected difference ∆c+i is shown in figure 19.

Figure 19: Correspondence line defined by a center ci and a normal vector ni, along
with evaluated pixels and the projected difference ∆c+i from ci to π(CX

+
i ). The color

intensity in red indicates the magnitude of the pixel-wise posterior pbi for each pixel.
(Source: [48])

In order to describe how well a variated model point CX
+
i or projected difference ∆c+i
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explains the pixel colors along a given correspondence line, the pixel-wise posteriors
from equation 21 must first be calculated for each correspondence line. Using yi(r) =
I(xcli(r)), the posterior probabilities now become:

pij(r) =
p(yi(r)|mj)

p(yi(r)|mf ) + p(yi(r)|mb)
, j ∈ {f, b}. (26)

4.4.4 Probabilistic Formulation

Inspired by PWP3D [34] the probabilistic formulation is finally stated as:

p(Di|θ) ∝
∏
r∈Ri

(hf (r −∆c+i )pfi(r) + hb(r −∆c+i )pbi(r)), (27)

where hf and hb are smoothed step functions for foreground and background used to
model uncertainty in the contour location. These will be specified in 4.4.6. The expres-
sion describes how well the pose dependent contour model explains the data Di for an
associated correspondence line. Ri is a set of distances r from the line center to pixel
centers that ensures that every pixel along the line appears exactly once. The full likeli-
hood, assuming ncl correspondence lines, can thus be calculated as:

p(D|θ) ∝
ncl∏
i=1

p(Di|θ). (28)

4.4.5 Discrete Scale-Space Formulation

In order to improve computational efficiency, a discrete scale-space formulation is pro-
vided. This allows multiple pixels to be combined into one segment, while also having
precomputed values for hf and hb available for each associated segment. These features
are illustrated in figure 20. Accordingly, real-numbered values such as r ∈ Ri are pro-
jected into a discrete space that is scaled as follows:

rs = (r −∆ri)
n̄i
s
, ∆c+si = (∆c+i −∆ri)

n̄i
s
, (29)

where rs and ∆c+si are the scaled versions of r and ∆c+i respectively, s ∈ N+ is the scale
describing the number of pixels combined into one segment, and n̄i = max(|nxi|, |nyi|)
is the largest normal component. n̄i is introduced as tilted correspondence lines in fact
are longer than those that are completely horizontal or vertical. Finally, ∆ri ∈ R is the
distance from the correspondence line center ci to the closest border of a segment. Using
the scaled values from equation 29, the likelihood function from equation 27 can thus be
stated as:

p(Di|∆c̃si) ∝
∏

rs∈Rs

(hf (rs −∆c̃si)psfi(rs) + hb(rs −∆c̃si)psbi(rs)), (30)
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where ∆c̃si is a discretized projected difference value ensuring that the segment-wise
posteriors psfi and psbi, marked by blue and yellow dots on the correspondence line in
figure 20, are aligned with the precomputed values of hf and hb. Rs is a set segment
distances making sure that every segment appears exactly once. By assuming pixel-wise
independence, which is a well-established approximation, the segment-wise posteriors are
defined as:

psij(rs) =

∏
r∈S(rs)

p(yi(r)|mj)∏
r∈S(rs)

p(yi(r)|mf ) +
∏

r∈S(rs)

p(yi(r)|mb)
, j ∈ {f, b}, (31)

where S is a function mapping rs to a set of values r that describe the s pixel centers
belonging to a segment.

Figure 20: Example of the relation between the unscaled space r along the correspondence
line, the scale space rs, and the smoothed step function hf given a ∆c̃si. The segments
are visualized by same color pixels, while the blue and yellow dots indicate segment
centers and precalculated values of hf . Dashed vertical lines connecting the dots are
simply emphasizing that ∆c̃si must be chosen such that the precalculated values of hf
are aligned with the segment centers. ∆ri was chosen such that the center rs = 0 lies on
a defined location between two segments. (Source: [48])

The distribution from equation 30 is calculated for 11 discrete values of ∆c̃si ∈ {−5,−4, ..., 5},
while a minimal ∆ri ensures that the distribution center at ∆c̃+si = 0 is closest to the
correspondence center ci. For the smoothed step functions, 10 precalculated values cor-
responding to x ∈ {−4.5,−3.5, ..., 4.5} are utilized. If using the hf and hb functions spec-
ified in 4.4.6, this means that the smallest considered value is hf (4.5) = hb(−4.5) = 0.03.
Smaller values are thus neglected, as they do not contribute significantly to the overall
distribution. As the likelihood function from equation 30 can only be calculated for a
limited number of discrete values ∆c̃si, an approximation is needed in order to evaluate
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the likelihood for arbitrary θ and corresponding ∆c+si. Using linear interpolation, the
approximation can be stated as:

p(Di|θ) ∝∼ (∆c̃+si −∆c+si)p(Di|∆c̃−si) + (∆c+si −∆c̃−si)p(Di|∆c̃+si), (32)

where ∆c̃+si and ∆c̃−si are the upper and lower neighboring discretized values.

4.4.6 Gaussian Equivalence

As Newton optimization in general produces fine results for Gaussian distributions, [48]
present smoothed step functions hf and hb that ensures that the likelihood function from
equation 30 follows a normal distribution. For practical reasons, only the main concepts
of the mathematical proof are reproduced in this section. A more detailed description
can be found in the supplementary material in [49]. By assuming a contour at the center
of the correspondence line, and a perfect segmentation, the simple unit step function for
pixel-wise posteriors, illustrated by pfi(r) in figure 21 is provided. Apart from that, hf
and hb are first of all restricted to be symmetric and sum to one. Accordingly, these are
defined as:

hf (x) = 0.5− f(x), hb(x) = 0.5 + f(x), (33)

where f(x) ∈ [−0.5, 0.5] is an odd function fulfilling lim
x→∞

f(x) = 0.5 and lim
x→−∞

f(x) =

−0.5.
By furthermore assuming infinitesimally small pixels, the likelihood from equation 27

Figure 21: Example demonstrating the relation between the smoothed step functions hf
and hb and the normal distribution of ∆c+i for sh = 1. The graph on the left shows perfect
posterior probabilities pfi for the foreground, i.e. a perfect segmentation, including the
smoothed step functions for a specific projected difference ∆ci. The graph on the right
displays the corresponding normal distribution for all values of ∆c+i . The probability
value for ∆ci and associated smoothed step functions from the left graph is marked in
red. (Source: [48])

can be stated in continuous form as:

p(Di|θ) ∝ exp
(∫ ∞

r=−∞
ln
(
hf (r −∆c+i )pfi(r) + hb(r −∆c+i )pbi(r))

)
dr
)
. (34)
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Using the assumption of perfect pixel-wise posteriors for pfi(r) and pbi(r), this is simpli-
fied into:

p(Di|θ) ∝ exp
(∫ −∆c+i

r=−∞
ln
(
hf (x)

)
dx+

∫ ∞
−∆c+i

ln
(
hb(x)

)
dx
)
. (35)

In order to get rid of constant scaling terms and the integral, the logarithm and Leibniz’s
rule for differentiation are applied to calculate the first order derivative with respect to
∆c+i :

∂ ln
(
p(Di|θ)

)
∂∆c+i

= − ln
(
hf (−∆c+i )

)
+ ln

(
hb(−∆c+i )

)
. (36)

By factorizing this expression using equation 33, this can be written as:

∂ ln
(
p(Di|θ)

)
∂∆c+i

= 2 tanh−1
(
2f(−∆c+i )

)
. (37)

Finally, the result in equation 37 is set equal to the first order derivative of ln
(
N (∆c+i |0, sh)

)
.

Knowing that this should give −s−1
h ∆c+i , the equality is solved for f using equation 33,

resulting in the following smoothed step functions:

hf (x) =
1

2
− 1

2
tanh

( x

2sh

)
, hb(x) =

1

2
+

1

2
tanh

( x

2sh

)
, (38)

where sh is the slope parameter for the smoothed step functions in addition to being the
variance of the associated likelihood function.

Given that the equality is enforced for the first order derivatives of the logarithms,
p(Di|θ) and N (∆c+i |0, sh) can only differ by a constant scaling factor. Accordingly, the
likelihood can be stated as:

p(Di|θ) ∝ N (∆c+i |0, sh). (39)

As visualized in figure 21, the derived smoothed step functions from equation 38 ensures
that the probabilistic model follows an approximate Gaussian distribution. Although
using assumptions, [48] claim to achieve excellent convergence for the regularized Newton
optimization.

4.4.7 Regularized Newton Optimization

As already mentioned, the RBGT [48] uses a regularized Newton approach in order to
maximize the likelihoods. Following the calculation of the distributions, the variation
vector θ> = [θrθt] is thus estimated using Newton optimization with Tikhonov regular-
ization as follows:

θ̂ =
(
−H +

[
λrI3 0
0 λtI3

])−1

g, (40)
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where g is the gradient vector, H is the Hessian matrix, and λr and λt are the regu-
larization parameters for rotation and translation, respectively. The gradient vector and
Hessian matrix are defined as:

g> =
∂

∂θ
ln
(
p(Di|θ)

)∣∣∣
θ=0

, H =
∂2

∂θ2 ln
(
p(Di|θ)

)∣∣∣
θ=0

, (41)

while λr = 5000 and λt = 5000000. The log-likelihood is utilized as this removes scaling
terms and turn products into summation, and thus simplifies the calculations of g and
H. After having estimated the variation vector, the pose is updated according to:

CTM = CTM

[
exp

(
[θ̂r]×

)
θ̂t

0 1

]
. (42)

By iteratively repeating the process of calculating the pose dependent gradient vector and
Hessian matrix, and updating the pose according to the estimated variation from equation
40, an optimal pose can be estimated based on the data D. The RBGT [48] performs
only 2 iteration of the regularized Newton method. However, after the 2 iterations of
optimization, an updated closest template view is retrieved based on the optimized pose.
This gives rise to new data D and a corresponding likelihood p(D|θ) to optimize. In order
to find the final pose, the process of calculating and optimizing the likelihood is repeated
7 times, each time starting with the retrieval of a new template view. While the first and
second iterations uses a scale of s = 5 and s = 2, respectively, all remaining iterations
have scales of s = 1. Consequently, larger areas with lower resolution are considered
initially, while short lines with high resolution are used as the pose estimate converges.
In total, no more than approximately 2 ms are required for completing all 7 iterations.

4.4.8 Gradient and Hessian Approximation

Using the chain rule, the gradient vector and Hessian matrix can be defined as:

g> =

ncl∑
i=1

∂ ln
(
p(Di|θ)

)
∂∆c+si

∂∆c+si
∂CX

+
i

∂CX
+
i

∂θ

∣∣∣∣
θ=0

, (43)

H ≈
ncl∑
i=1

∂2 ln
(
p(Di|θ)

)
∂∆c+si

2

(
∂∆c+si
∂CX

+
i

∂CX
+
i

∂θ

)>(
∂∆c+si
∂CX

+
i

∂CX
+
i

∂θ

)∣∣∣∣
θ=0

. (44)

where ncl is the total number of correspondence lines. The second order partial derivatives
for ∆c+si and CX

+
i are neglected as the first order partial derivatives of the log-likelihood

(equation 47) becomes zero when the optimization reaches the maximum. By omitting
the plus operator for variables evaluated at θ = 0 and using equation 20, 25, 29 and 32,
the following first order partial derivatives are obtained:

∂CX
+
i

∂θ

∣∣∣∣
θ=0

= CRM

[
− [MXi]×I

]
, (45)
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∂∆c+si
∂CX

+
i

∣∣∣∣
θ=0

=
n̄i
s

1

CZ2
i

[
nxifxCZi nyifyCZi − nxifxCXi − nyifyCYi

]
, (46)

∂ ln
(
p(Di|θ)

)
∂∆c+si

∣∣∣∣
θ=0

≈ p(Di|∆c̃+si)− p(Di|∆c̃−si)
(∆c̃+si −∆csi)p(Di|∆c̃−si) + (∆csi −∆c̃−si)p(Di|∆c̃+si)

. (47)

For the first order partial derivative of the log-likelihood, a different approximation is
used if the normalized values of p(Di|∆c̃+si) or p(Di|∆c̃−si) are below a given threshold.
If this is the case, the probabilities are regarded as unreliable and the derivatives of an
approximated normal distribution as illustrated in figure 22 are utilized instead:

∂ ln
(
p(Di|θ)

)
∂∆c+si

∣∣∣∣
θ=0

≈ − 1

σ∆c̃si
2

(∆csi − µ∆c̃si), (48)

where µ∆c̃si is the calculated mean for the distribution, while σ∆c̃si is the standard devi-
ation. [48] uses a threshold of 0.01. For the second order partial derivative, the approxi-
mation:

∂2 ln
(
p(Di|θ)

)
∂∆c+si

∣∣∣∣
θ=0

≈ − 1

σ∆c̃si
2

(49)

is always used. These approximations are employed in order to ensure that the partial
derivatives maintain a global view of the distribution, and increase the robustness in the
presence of image noise and inaccurate probability values.
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Figure 22: Example showing normalized values of a noisy discrete likelihood p(Di|∆c̃si)
and the normal distribution N (∆c̃si, µ∆c̃si , σ

2
∆c̃si

) that approximates the likelihood. The
red line indicates a lower threshold for the probability values. The normal distribution
in blue is used for calculating partial derivatives of the log-likelihood for all values below
the given threshold. (Source: [48])

5 Initial Implementation

This section will focus on the initial implementation of the proposed pipeline as described
in section 3.2. First, the implementation of the detector, including the template gener-
ation and clustering is described in 5.1. Thereafter, the initial implementation of the
RBGT [48], i.e. the tracker, is outlined in 5.2. All solutions and implementations are
written in C++ and tested on a personal laptop with an Intel Core i5-8265U CPU and 8
GB RAM.

5.1 Detector

The following subsections describe the implementation of the template generation in 5.1.1
before discussing the implementation of the LineMOD [19] detector and the clustering
approach in 5.1.2 and 5.1.3 respectively. Notice however that the template generation
and most parts of the LineMOD detector were already implemented as a part of the
preliminary project thesis.

5.1.1 Template Generation

In order to obtain the required set of template images for the LineMOD detector, a syn-
thetic image renderer was utilized. Similar to the approach described in section 2.2.2,
a 3D mesh model of the target object is given as input. The template images are then
acquired by visiting a number of uniformly distributed viewpoints on synthetic spheres of
different radii, while also rotating around the optical axis. The source code for this image
rendering was provided by the Object Recognition Kitchen (ORK) [38]. For 3D model
operations and scene creation, Open Asset Import library (Assimp) and Simple Direct-
Media Layer (SDL) functionality is employed. In addition, the Open Graphics Library
(OpenGL) yields the more elemental graphics operations.
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The implementation of this image renderer proved to be a rather demanding process.
Although the source code was easily accessible, integrating the different libraries was
quite challenging. For instance, not having the correct extension or version of different
software caused a lot of time-consuming troubleshooting. This was particularly the case
when trying to make use of some additional required OpenGL functions. Various OpenGL
extensions, such as GLFW, FreeGLUT and GLEXT were all tested before finally making
it work by directly adding the source code from OpenGL Extension Wrangler Library
(GLEW) into the project. Otherwise, the binary 64 bit versions of SDL 2.0 (SDL2) and
Assimp 4.1.0 were both installed before linking these to the project by adding their respec-
tive Dynamic-link library (DLL) files to the repository. The same was done for FreeImage
3.18.0, which provides image reading and converting functionality for the model module
in the 3D renderer implementation.

Seeing that a 3D mesh model is required for this template generating approach, mod-
els of the objects from figure 2 would be necessary for performing the intended object
detection. A 3D model of the large chair part was therefore created using the free and
open-source software FreeCAD [40]. An illustration of both the 3D model and the actual
object is shown in figure 23. By using this model, and the image renderer from ORK,
template images such as the ones from figure 24 were produced.

(a) (b)

Figure 23: 3D mesh model and real image of the object to track. a) 3D mesh model
created in FreeCAD by project supervisor Klaus Ening. b) Illustrative image of object.

As mentioned in section 2.2.1 on LineMOD, the color gradients for texture-less objects
will mainly be located on the contours of the object. Consequently, the 3D models require
no data concerning the object texture. The binary image representation, as illustrated
in figure 24a, will furthermore make the detection more robust to the varying surface
texture of target objects in the pre-paint stage as addressed in the problem description
in section 1.
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(a) (b)

Figure 24: Sample of produced template images. a) Template color image. b) Template
depth image. This image was edited in order to increase visibility.

5.1.2 LineMOD Detector

Given a set of template images, the work of producing efficient modality descriptors and
performing template matching still remains. As suggested by the revised detection and
6-DoF pose estimation pipeline in section 3.2, this is still done using a LineMOD detector.
This detector implementation was provided by OpenCV, or more precise, their additional
repository for unreleased modules called opencv contrib [1]. Despite having to do some
extra installs, and linking these to the repository, the process of applying this detector
was not too challenging. It did however require a rebuild of the original OpenCV reposi-
tory in order to add the extra module, rgbd. This build was executed using CMake GUI.

The offline template loading, i.e. the response map computation described in section
4.1.3, is performed for one template image pair at a time, as the 3D model is being ren-
dered. When the rendering is done and all templates have been added to the detector,
all information is written to an Extensible Markup Language (XML) file. In addition, an
XML file is created containing rendering parameters like the synthetic camera incintrics
and the rotation matrices associated with the id of the corresponding template instance.
This approach was inspired by [59]. After loading a given detector and the related pa-
rameters from the rendering, the approximate rotation of a target object can be found
through the id of the matched template. As explained in 3.1, these rotations showed to
be quite unreliable during the preliminary project thesis, and are thus ignored for the re-
vised detection framework. The implementation from the project thesis also included the
retrieval of 3D point maps for each potential match. As the ICP algorithm is no longer
a part of the detection pipeline, this is also omitted in the revised solution. Instead, only
the image coordinates, and the 3D point at the match center is utilized in the subsequent
clustering. The 3D point, or translation of the object, is found by first retrieving the
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depth Zi at the center of the matching frame. Using the pinhole camera model, and the
camera intrinsics, the translation at the surface ti,surface is calculated as:

ti,surface =
[
Xi Yi Zi

]>
=
[
(ui − px)Zi

fx
(vi − py)Zi

fz
Zi

]>
, (50)

where fx and fy are the focal lengths, px and py are the principal point coordinates, and
ui and vi are the image coordinates at the center of the matching frame for match i.
Examples of such matching frames are illustrated in figure 25. The final step of finding
the initial translation estimate ti is to add the distance from the object surface to the
object center di for the given template match. This distance is saved among the rendering
parameters and is added to the to the z-axis (camera depth) of the translation:

ti = ti,surface +
[
0 0 di

]>
. (51)

Although di is dependent on the rotation of the template, this distance still seem to im-
prove the translation accuracy, as related variations in rotation often have a very similar
di. If the detection is flipped the other way around for instance, the defined object center
ensures that the distance di is pretty much the same. Accordingly, an initial translation
estimate can be provided for all potential matches attaining a similarity score above a
given threshold.

Figure 25: Examples of matches attained from the LineMOD detector. The green rect-
angles illustrate the matching frame, while the yellow dots illustrate the modality feature
locations corresponding to the color gradient orientations.

The presented solution uses a total of 8250 templates, uniformly distributed on seven
spheres with radii between 0.4 m and 1.0 m. In addition the implementation utilizes two
different sampling steps, with T1 = 8 and T2 = 10, as this seemed to give the best results
during the project thesis. Using these settings, the detection can be completed in ap-
proximately 0.2 seconds. Furthermore, the initialization, i.e. the loading of the detector,
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only takes a few seconds.

For handling the RGB-D sensor data, Azure Kinect Sensor Software Development Kit
[50] is used. In order to reduce computational time, the lowest resolution (1280 x 720)
is utilized. This toolkit also provides functionality for aligning the depth image into the
format of the color camera image, which is required for the lineMOD detector approach.

5.1.3 Match Clustering

As described in 3.2, initial translation estimates are required for the RBGT to start
tracking an object. In order to eliminate false matches and pass on the nb best object
translations, clustering is applied to the LineMOD matches. Based on these translations,
the RBGT will later find approximate rotations for the true objects, using the approach
to be described in 7.2. The clustering itself is performed using a function called kmeans
from OpenCV. By utilizing the k-means algorithm, all matches are first clustered solely
based on their image coordinates (ui, vi). This initial clustering uses:

k1 =
⌈nmatches

2

⌉
(52)

cluster centers, where nmatches is the total number of matches. Next, the nb biggest
clusters are evaluated one by one. For each of these clusters, the match translations from
equation 50 and 51 are retrieved. By performing a second round of clustering, this time
based on the translations of the remaining matches, the single best translation is found
for each of the nb initial clusters:

tj = cj,biggest j ∈ {1, ..., nb}, (53)

where cj,biggest is the center of the biggest cluster among the matches from initial cluster
j. For the second round of clustering, the number of centers are calculated as:

k2,j =
⌈nmatches,j

2

⌉
j ∈ {1, ..., nb}, (54)

where nmatches,j is the number of matches in initial cluster j. Depending on nb and the
number of total matches, the clustering can be completed in approximately 0.1− 0.3s.

5.2 RBGT

In order to set up the Region-Based Gaussian Tracker (RBGT), the required dependencies
were first added to the project setup in Microsoft Visual Studio. Similar to the template
generation method for the LineMOD detector, the RBGT also uses graphical libraries
and extensions such as OpenGL, GLFW and GLEW. While version 3.1.2 or newer is re-
quired for the Graphics Library Framework (GLFW), version 2.1.0 of GLEW was linked
to the project without having to explicitly add the source code. Otherwise, version 4.0.0
or newer of OpenCV is required for vector operations and image processing, while version
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3.3.2 or newer of Eigen3 is required for various matrix decompositions and geometry fea-
tures. As mentioned in 3.2, the Azure Kinect is already set as the default camera in the
RBGT framework. Accordingly, no customization is necessary for tracking objects with
the provided camera. All camera functionality are thus obtained by simply adding k4a
(1.3.0) from the Azure Kinect Sensor Software Development Kit to the project. In order
to speed up the visualization features such as the rendering of object overlays (See figure
8), the utilization of a dedicated GPU was first considered. However, when running the
optimized solution in Microsoft Visual Studio, the updating of the viewer is completed
in just 11 − 13ms when tracking a single object. Although this is a fair amount of time
compared to the time spent calculating and optimizing the likelihoods, it does not impact
the real time performance of the tracker. Furthermore, as the visualization is not part of
the actual tracking, this can easily be disabled to reduce the computational costs of the
tracker in a real-time application.

Just as for the LineMOD detector, the RBGT tracker also requires 3D models of the
objects to track. The 3D mesh model, illustrated in figure 23, was thus imported as a
Wavefront .obj file as requested in the RBGT Github repository [49]. The repository also
provides instructions for how to set up the tracker and required objects. After adding the
path for the respective obj file and specifying the maximum body diameter, a model of
the object is generated for you. This model includes the 2562 template views, along with
200 data points, or correspondence lines, for each associated view. The generated model
is then saved for later use, before starting the tracker. [49] also includes code examples
demonstrating how to run the tracker on either a prerecorded sequence, or a real-time
camera sequence. As previously discussed, the tracker relies on being provided the initial
6-DoF poses for all objects to track. During the introductory testing, these were assigned
manually by keeping the starting pose unchanged, or by refining the initial pose on a
prerecorded sequence. The rendered object overlays were very helpful for this task.

6 RBGT Evaluation

In this section the first impressions of the RBGT method [48] will be presented in 6.1,
before discussing what seems to be the biggest challenges in relation to our pose estima-
tion problem in 6.2. These challenges will later be the basis for the presented solution
improvements in section 7.

6.1 Initial Conclusions

After having implemented the RBGT, the method immediately demonstrated some very
impressive results. Whether the tracker was running on live camera images, or prere-
corded sequences, it performed even better than expected. In particular, the efficiency
of the approach stood out, achieving a tracking frequency of 20Hz and 30Hz with and
without visualization respectively. Furthermore, the precision of the pose estimates, as
indicated by the object overlays, were often impeccable. One of the very first tracking
runs, using live camera images, is illustrated in figure 26. As shown in figure 26a - 26d,
the RBGT had no trouble keeping track of the moving objects. In addition, 26e and 26f
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demonstrate the method’s ability to handle occlusion. By rejecting occluded correspon-
dence lines, the approach avoids losing track, even when significant portions of the object
is no longer visible.

One of the natural limitation of the RBGT is that the frame to frame motion can not
exceed the area covered by the correspondence lines. If exposed to significant translations
perpendicular to the camera axis, the tracking is easily lost. In addition, notable rotations
between frames can result in incorrect pose estimates as the object contours of the new
frame no longer fit the correspondence lines associated with the previous pose. However,
the high frequency of the method ensures that this most likely will not be a problem.
For pure translations especially, the performance is very robust. As the object contour
remains very much the same, the set of correspondence lines is more likely to contain the
updated object contour. The object colors and the corresponding appearance models mf

and mb from 4.4.2 will furthermore remain fairly unchanged as the surfaces visible for the
camera will be the same. Other limitations such as contour ambiguity, insufficient color
dissimilarity between object and background, and pose dependent color variation will be
discussed in 6.2.

6.2 Challenges

As the RBGT is based on color values along correspondence lines and computed color his-
tograms, having a prominently and uniformly colored object would undoubtedly make the
tracking easier. During testing, incorrect likelihoods, illustrated by red segments along the
yellow correspondence lines, were often responsible for deviating pose estimates. Figure
27 demonstrate how a slightly incorrect initial pose, along with color similarity between
foreground and background can make the method lose track of the object. The dark
surface on the table is clearly preferred over the far side of the object as illustrated in
figure 27a and 27b. Finally, the incorrect pixel-wise posteriors and likelihoods cause the
RBGT to lose track of the object in figure 27c and 27d. Naturally, it would be preferable
if the tracker was able to recover from the incorrect pose estimate illustrated in figure 27a
as the statistical models pt(y|mi) are iteratively updated. For objects with more distinct
colors, such as the ape object from the RBOT dataset [55] (see figure 8), a corresponding
pose recovery would most likely not be a problem. Although actions such as changing the
background color would help, the tracker’s ability to correctly identify the object contour
could still be slightly better when exposed to less prominent object colors.

A somewhat similar case is illustrated in figure 28. While having a decent pose es-
timate initially, the deviation grows as the tracker is unable to produce correct contour
likelihoods during the rotation of the object. Just as for the example in figure 27, the
far side of the object seems to be rejected by the statistical foreground model. Pose
dependent color variation and glare on the surface can arguably complicate the task of
generating correct likelihoods. The pixel-wise posteriors in figure 28d also demonstrate
this, as the marginally darker far side is considered too dissimilar for being part of the
foreground. Again, the showcased tracking runs clearly do not present the ideal con-
ditions for the RBGT. A different background would probably solve this by increasing
the difference between p(yi|mf ) and p(yi|mb). One could also argue that the metallic
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(a) (b)

(c) (d)

(e) (f)

Figure 26: Images from a successful tracking run using live camera images. The precise
6-DoF pose estimates are visualized by the rendered object overlays. e) and f) also
demonstrate the method’s ability to handle occlusion.

object might not be the ideal target object for this tracker. However, as the RBGT still
demonstrates some very promising results, even for these non-ideal conditions, it would
be interesting to see how this approach can be modified to further improve the tracking
performance. Naturally, it would be preferable if the implemented tracker solution was
able to handle these sub-optimal conditions.

As discussed in 2.3 regarding region based methods in general, contour ambiguity can
also introduce some challenges for the RBGT. In short, this challenge concerns the track-
ers ability to correctly estimate the object’s pose when the contour likelihoods can be
explained by multiple pose variations. In particular, the rotation illustrated in figure 29
can cause incorrect pose estimates, as the opposed pose variations give rise to some rather
similar contour likelihoods. In contrast to the previously presented challenges, contour
ambiguity can still cause problems despite having decent statistical models for foreground
and background. However, having accurate likelihoods can undoubtedly reduce the prob-
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(a) (b)

(c) (d)

Figure 27: Example illustrating tracking loss. a) and c) on the left show how the tracking
is lost as their corresponding contour likelihoods in b) and d) don’t agree with the actual
object.

ability for experiencing this problem. Rotations prone to contour ambiguity, such as the
one illustrated in figure 29 become more challenging with increased rotation velocity. If
first exposed, the estimation can not be corrected by accurate likelihoods. Accordingly,
the pose estimate is likely to remain incorrect if the object rotation is not reversed to it’s
previous state.

A final, and natural limitation of the RBGT is that it requires a decent initial pose
estimate in order to start the tracking. This is required for computing the associated
correspondence lines and initializing the statistical models for the foreground and back-
ground. As discussed in 3.2, the detection part of the proposed pipeline is only capable
of providing the translation of the detected object, not the rotation. This is not sufficient
for the RBGT. Although small deviations can be tolerated, rotation knowledge is vital
for being able to track the object. By utilizing an assumption for initial rotation, and
the RBGT method itself, a solution for full pose detection is presented in section 7. In
addition, the integration of depth data is proposed in order to improve the performance of
the tracker. In particular, the use of depth data should help the tracker when exposed to
insufficient color dissimilarity between objects and their background. Finally, a solution
for detecting and correcting imprecise pose estimates, such as the ones in figure 28c and
29c is presented.
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(a) (b)

(c) (d)

Figure 28: Example demonstrating pose estimation drift as the tracking object rotates.
a) and c) show the estimated poses, while b) and d) show their corresponding pixel-
wise posteriors and contour likelihoods. The method clearly struggles to identify the true
object contour.
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(a) (b)

(c) (d)

Figure 29: Example illustrating the effect of pose ambiguity. The real pose variation from
a) to c) is misinterpreted as the real pose and the opposed estimated pose have quite
similar contours. b) and d) show that the tracking fails despite having decent contour
likelihoods.
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7 Solution Improvements

In this section several additions and improvements are proposed for the implemented so-
lution. First, the integration of depth data into the RBGT [48] is proposed in 7.1. Next,
a solution for deciding initial object poses is presented in 7.2, before finally suggesting an
approach for detecting and correcting inaccurate pose estimates in 7.3.

7.1 Integration of Depth Information

Following a general formulation of the depth based edge probabilities in 7.1.1, an approach
for processing the depth data is described in 7.1.2. A Gaussian approximation for the
edge probability is then proposed in 7.1.3, before discussing the combination of color
based contour probabilities and depth based edge probabilities in 7.1.4. Finally, a brief
evaluation of the modified RBGT is presented in 7.1.5.

7.1.1 General Formulation

Ren et. al [39] and Kehl et. al [22] both propose strategies for incorporating depth infor-
mation into region based tracking methods. While [39] adds pixel depth to the generative
model for deciding whether or not a pixel is part of the foreground, an ICP based term is
added to the energy function in [22]. Although both demonstrate improved performance
compared to their color-only counterpart, a different strategy would seem more fitting
for this solution. Hence, inspired by the sparse nature of RBGT [48], a strategy utilizing
depth data along the correspondence lines is proposed.

By analysing depth information along the correspondence lines, the idea is to find
distinct edge probability distributions derived from depth discontinuities. The discrete
scale-space formulation from 4.4.5 can thus be used to find p(Ei|∆c̃si) by varying the
distance between each depth evaluation according to scale s. Ei is defined as the depth
data along correspondence line i. The total probability for a correspondence line can
accordingly be stated as the normalised sum of p(Di|∆c̃si) and p(Ei|∆c̃si). Furthermore,
if assuming ncl correspondence lines, the full likelihood can roughly be calculated as:

p(T |θ) ∝
ncl∏
i=1

(
p(Di|θ) + p(Ei|θ)

)
. (55)

More details on how the probabilities are combined is provided in 7.1.4. In order to ap-
proximate the likelihood for arbitrary θ and corresponding ∆c̃si, the linear interpolation
from equation 32 is used. The concept of combining both depth and color information
along the same correspondence lines is illustrated in figure 30. The data along the corre-
spondence lines in 30a and 30b give rise to the probabilities shown in 30c.
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(a) (b)

(c) (d)

Figure 30: Example illustrating the concept of combining depth and color information.
a) Depth image with correspondence lines, along which 12 pixel values are evaluated.
b) Pixel-wise color posteriors with correspondence lines, along which 20-100 pixel values
are evaluated depending on scale s. c) The resulting combined likelihoods corresponding
to ∆c̃si ∈ {−5, ..., 5}. High probabilities are indicated by dark blue line segments. d)
Original color image.

7.1.2 Depth Data Processing

In order to derive the edge probability likelihoods p(Ei|∆c̃si), a data processing proce-
dure must first be decided. For this, a total of 12 depth image pixels are evaluated along
each correspondence line. The depth data from an arbitrary correspondence line in figure
30a is presented in figure 31a. Each depth measurement is connected to the discretized
projected difference value ∆c̃si ∈ {−5.5, ..., 5.5}, ranging from the innermost to the out-
ermost line tip.

43



(a) (b)

Figure 31: Example of depth data along an arbitrary correspondence line for ∆c̃si ∈
{−5.5, ..., 5.5}. a) Raw depth data. b) Edited depth data where the missing values have
been replaced by the neighboring measurement at the right hand side.

Figure 31a demonstrate a common limitation of depth sensing cameras. By casting mod-
ulated near-IR (NIR) illumination into the scene, the Azure Kinect DK indirectly mea-
sures depth by implementing the Time-of-Flight (ToF) principle. Missing depth data,
illustrated by zero depth, can thus emerge at surfaces distracting infrared light, or at
occluded surfaces due to the baseline between the NIR emitters and the depth camera.
Missing data caused by occlusion can be observed as ”shadow” on the right side of the
object in figure 30a. In addition, pixels at object edges are often invalidated as these
contain the mixed signal from foreground and background [52]. The missing depth data
from ∆c̃si = 1.5 in 31a is probably caused by the latter. Another limitation concerning
the use of depth images is the accuracy of image alignment. While assuming perfect
alignment between color and depth image, small deviation do occur. Consequently, some
additional uncertainty must be accounted for when utilizing the depth based edge likeli-
hoods p(Ei|∆c̃si).

In order to handle missing depth data along correspondence lines, these are set equal
to their neighboring measurement, one step further away from the object center. This
procedure is illustrated in figure 31b, where the value from ∆c̃si = 2.5 is asserted at
∆c̃si = 1.5. If depth data is missing on either far side of the correspondence line, all
depth information is neglected and p(T i|∆c̃si) = p(Di|∆c̃si). Testing shows that includ-
ing these data segments would only add noise to the likelihoods. Furthermore, having
zeros at the outermost depth measurements will hinder the zero-filling from figure 31.
The depth data Ei is also invalidated if the number of zeros exceeds a defined threshold
tz. For the implementation, tz = 4 as this seem to allow for an appropriate number of
reliable depth data lines. By including data lines with tz > 4, testing shows reduced
performance as less accurate edge probabilities will mislead the tracker. The remaining
selection of depth data is illustrated by blue correspondence lines in figure 32.
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Figure 32: Example showing the remaining selection of depth data lines (indicated by
blue correspondence lines) after neglecting those missing depth data at ∆c̃si = −5.5 or
∆c̃si = 5.5, and those missing a total of nz > tz = 4 depth values. Note that the
posteriors at this frame have not yet been properly initialized, as this is the first iteration
of the tracking run. However, the utilization of depth data clearly assist the initialization
by accurately pointing out the object contour.

In order to derive the associated edge likelihoods p(Ei|∆c̃si) for these correspondence
lines, the depth difference between each depth value is first calculated. This way, the 12
depth values for ∆c̃si ∈ {−5.5, ..., 5.5} are now turned into 11 depth differences ∆c̃si ∈
{−5, ..., 5}. If non of the calculated depth differences exceeds a given threshold tdd, the
depth data for this line is neglected. The calculated depth differences from figure 31 are
illustrated in figure 33, along with a depth difference threshold of tdd = 100 mm. By
utilizing this threshold, internal depth discontinuities on the object itself are ignored.
This threshold should naturally be adjusted according to the intended tracking object.
Although lower thresholds can be applied to capture smaller depth discontinuities for some
use cases, such as when tracking objects on flat surfaces, this can easily have an adverse
effect as local depth differences withing the object overshadow the depth differences at the
object contour. By making sure that no internal depth discontinuities are considered, an
additional tactic can ensure that depth differences in the background are also disregarded.
This second edge suppression is achieved by simply ignoring all depth differences on the
far side of the fist depth difference bigger than tdd. For the example in figure 33, an
even bigger discontinuity at ∆c̃si ∈ {2, 3, 4, 5} would accordingly not be evaluated. This
addition improved the tracking performance significantly when exposed to cluttered scenes
with notable depth variation in the background. As negative depth differences indicate
object occlusion rather than object contours, these are neglected entirely. The position of
the single remaining depth difference µEi ∈ {−5, ..., 5} is now the only value of interest.
The depth difference value has no influence on the likelihood p(Ei|∆c̃si).
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Figure 33: Example showing the depth differences corresponding to the depths in figure
31. If no depth differences exceed the depth difference threshold tdd, the affiliated depth
data line is neglected. Through second edge suppression, only the first ”edge” exceeding
tdd is used for designing the edge probabilities p(Ei|∆c̃si).

7.1.3 Gaussian Approximation

As pointed out in [48], Gaussian distributions are preferred when using a Newton-based
optimization scheme. Consequently, similar to the contour likelihood function p(Di|∆c̃si),
the edge likelihoods p(Ei|∆c̃si) should also have Gaussian characteristics. Rather than
using a binary probability distribution with p(Ei|µEi) = 1 as illustrated in figure 34a, the
probability for each discretized projected difference is calculated as:

p(Ei|∆c̃si) ∝ exp
(∆c̃si − µEi)2

2σE
, (56)

where µEi is the position of the respective depth discontinuity, and σE is the desired
standard deviation for the Gaussian approximation. Using the depth data example from
earlier, and σE = 0.2, the edge likelihood from figure 34b is attained.

For the implemented solution σE = 0.1 is utilized as this value seems to give the
best performance. For difficult rotations, which require very high accuracy in order to
deal with contour ambiguity, σE > 0.1 will make the likelihoods too imprecise. On the
other hand, standard deviations lower than 0.1 might be a hindrance to finding the global
optimum. However, testing shows that using a Gaussian approximation with σE < 0.1
still improves the tracking performance compared to the binary counterpart from figure
34a.
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(a) (b)

Figure 34: Example illustrating edge probability distributions. a) Binary representation
with p(Ei|µEi) = 1. b) Gaussian approximation based on the position of the depth
discontinuity µEi , and a predetermined standard deviation σE . Here µEi = 1 and σE = 0.2

7.1.4 Combining the Probabilities

When having computed the edge probability distributions p(Ei|∆c̃si), the total combined
likelihoods p(T i|∆c̃si) can be decided. The simple summation from equation 57 provides
a feasible solution by giving equal influence for both the color- and depth based distri-
butions. This strategy is illustrated in figure 35. By adding the two Gaussians from 35a
and 35b, the total probability distribution in 35c clearly preserve the essential qualities
of both likelihoods. Furthermore, the low variance edge likelihood has the ability to de-
termine the optimum of the total distribution, as p(Ei|µEi) > p(Di|µDi). Figure 35 also
demonstrate this, as the distribution optimum is shifted from ∆c̃si = 0 to ∆c̃si = 1 when
adding the depth based edge likelihood. For challenging tracking scenarios including low
foreground-background disparity and risk of contour ambiguity, this can be very beneficial
as the edge likelihoods appear to be more precise and sturdy. Due to this observation, an
increased edge probability impact was also applied for the total likelihood composition.
Using a depth ratio rd of 2.0 seems to result in the best tracking performance. The com-
bined probabilities are thus calculated as:

p(T |∆c̃si) ∝
ncl∏
i=1

(
p(Di|∆c̃si) + rdp(Ei|∆c̃si)

)
. (57)

If utilizing a lower depth ratio rd, conflict can easily occur between incorrect contour like-
lihoods and the more sturdy edge likelihoods. This is also the case for the failing tracking
run illustrated in figure 36. For the combined likelihoods, an equally divided influence
can cause the incorrect color probabilities to win, as some of the depth segments are
omitted due to noise. For the subsequent pose refining iteration with reduced scale, the
left contour from figure 36a is no longer part of the correspondence lines. Accordingly, no
depth data can recover the true pose. In contrast, rd = 2.0 can ensure that the validated
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depth segments are prioritized over conflicting color data, which again can evade drifting
of the histogram based appearance models. Conflicting contour- and edge likelihoods, as
illustrated in figure 37, are also the reason for why no single Gaussian can be derived for
the total probability distribution. As these offer some very different qualities, there are
no simple way of combining the two. By instead emphasising the validated depth data,
the robustness of the tracker is undoubtedly improved.

(a) (b)

(c)

Figure 35: Example illustrating the summation of contour- and edge likelihoods (rd = 1).
a) The contour probability distribution p(Di|∆c̃si). b) The edge probability distribution
p(Ei|∆c̃si) c) The total combined probability distribution p(T i|∆c̃si).

While higher depth ratios can be beneficial for some difficult rotations with contour
ambiguity, using rd > 2 will also make the tracker more prone to noisy and inaccurate
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(a) (b)

Figure 36: Example illustrating conflict between color and depth data when using rd = 1.
In order to recover the true pose, the depth based likelihoods must be given more influence
on the total likelihoods. a) An illustration of the calculated likelihoods at the initial and
largest scale. b) The corresponding estimated pose.

Figure 37: Example illustrating conflicting contour- and edge likelihoods. Naturally, no
joint Gaussian approximation would not be able to describe their distinct features.

depth measurements. Whether the inaccuracies are caused by missing data, or by in-
correct image alignment, these can still result in small deviations between the true and

49



estimated pose. The occurrence of imprecise depth based edge likelihoods is particularly
noticeable at lowest scale, where a pixel perfect edge location is requested. Due to the
binary nature of the edge data, these deviations are inevitable for the depth based likeli-
hoods. However, increasing the variance from σE to 2σE for the smallest scale appears to
increase performance slightly as the tracker account for reduced precision at pixel level.
Initially, it was considered to only utilize depth data at the largest scale. This was clearly
not good enough as potentially conflicting and incorrect contour likelihoods causes the
pose estimate to diverge during the remaining iterations. On the other hand, utilizing
depth data for all 7 iterations can lead to small pose estimate deviations due to the re-
duced precision at the lowest scale. This can furthermore result in incorrect rotation
estimates when having to deal with contour ambiguity. Consequently, the edge probabil-
ities p(Ei|∆c̃si) are calculated and utilized for the first 6 iterations, leaving the final low
scale iteration with color based likelihoods only. The idea is that the depth information
then has guided the final set of correspondence lines to the true contour of the object.

7.1.5 Evaluation

All in all, the implementation of depth information has improved the tracker greatly. By
utilizing the very sparse and effective depth data evaluation strategy, the modified RBGT
clearly outperforms the original tracker [48] while practically keeping the computational
costs unchanged. In fact, using the laptop described in the intro of section 5, all 7
iterations are still completed in just 2−3 ms. The few extra milliseconds spent collecting
the depth image from the camera capture is also negligible compared to the total, and
the previously mentioned tracking frequencies of 20Hz and 30Hz, with and without
visualization, are still attained. An example illustrating the great advantage of adding
the supplementary depth based likelihoods is shown in figure 38. As the color based
appearance models clearly disregard the leftmost part of the object, there would be no
way to keep track without the additional depth information.

Figure 39 and 40 furthermore demonstrate the difference in tracking performance be-
fore and after utilizing the described depth integration solution. Each row of images in
figure 39 illustrate a situation in which the original RBGT [48] fails to correctly estimate
the object pose. Like the presented cases in 6.2, these samples also portray faulty ap-
pearance models along with contour ambiguity when exposed to difficult rotations. The
faulty appearance models, and associated contour likelihoods, are particularly evident in
figure 39a - 39d. The corresponding tracking samples from figure 40a - 40d show great
improvement. Even though the appearance models still struggle to correctly define the
object contour, the low variance edge probabilities p(Ei|∆c̃si) manage to guide the tracker
towards the correct pose estimates. Finally, figure 40e and 40f show how the increased
precision from the depth based likelihoods can prevent incorrect pose estimates when
exposed to contour ambiguity.

Although additional testing should be done in the intended lab setup described in
section 1, there is no doubt that the modified tracker shows some excellent potential.
After applying features like the depth data filtering, along with a suitable depth difference
threshold, and second edge suppression, there has been no situations where the modified
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(a) (b)

Figure 38: Example demonstrating the impact of utilizing depth information. a) The
pixel-wise posteriors indicate pb ≈ 1 for the leftmost part of the object. However, the
depth based likelihoods make sure that the tracker maintains the correct pose estimate.
b) The resulting pose estimate.

solution performs worse than the original RBGT [48]. In fact, the main source for tracking
error with the modified solution appears to be missing depth data. Due to occlusion,
light distracting surfaces, and ambiguous depth measurements nearby edges, the number
of viable depth data segments might not always be sufficient for the most challenging
rotations.
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(a) (b)

(c) (d)

(e) (f)

Figure 39: Samples from a tracking run using the original RBGT method [48]. Incorrect
appearance models and corresponding posteriors causes the tracker to misinterpret the
object’s rotation in a) - d). In e) and f) the imprecise nature of the contour likelihoods
lead the tracker to pick out the opposed pose variation.
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(a) (b)

(c) (d)

(e) (f)

Figure 40: Tracking samples corresponding to those in figure 39 when using the modified
tracker solution with depth data utilization. All samples show great improvement as the
incorrect contour likelihoods are overcome in a) - d), and pose ambiguity is averted in
e) and f).
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7.2 Initial Pose Detection

In this subsection the motivation for developing a new pose detection solution is first
discussed in 7.2.1 before presenting the solution itself in 7.2.2. Finally, a brief evaluation
of the implemented solution is given in 7.2.3.

7.2.1 Motivation

As discussed in the revised pipeline proposal in 3.2, a solution for finding the object’s
pose is required for initializing the RBGT [48]. Rather than having to set these manually,
it would be better if all initial poses could be determined through an automated scheme.
For an actual real world application this is an essential quality. The pose estimation
pipeline should be able to operate in a changing environment with multiple tracking
objects. If considering an assembly process, a robotic manipulator should thus be able
to detect new objects as these arrive the workstation. For the preliminary manufacturing
setting described in section 1, this can for instance correspond to detecting chair parts
hanging from the roof mounted conveyor. In order to apply the modified RBGT to these
parts, a new strategy is required in order to convert the attained LineMOD matches into
initial object poses. While the rotations for the matches can be somewhat unreliable,
the translations in general seem a lot more trustworthy. Consequently, the clustered
translations should make a decent starting point for finding the initial 6-DoF poses.

7.2.2 Solution

As described in 5.1.3, the matches from the LineMOD [19] detector are first clustered
based on their image coordinates. The nb best clusters are then going through a sec-
ondary clustering process based on the translation of the matches. Here, the single most
promising cluster center is chosen as the translation candidate for each initial cluster. An
example illustrating the matches belonging to the nb = 3 biggest clusters is shown in
figure 41. For this example the final translation candidates become:[
−0.104 −0.039 0.700

]
,
[
−0.109 0.047 0693

]
,
[
−0.090 −0.044 0.715

]
, (58)

where the coordinates describe the position in meters relative to the camera. In order
to start the tracker, the initial object pose was first set equal to the translation of the
biggest cluster center, while using the default object rotation (see figure 42a).

As long as the initial rotation did not differ too much from the fixed configuration, the
RBGT seemingly had no trouble initializing the tracking process. However, the tracker
should be able to track objects with varying initial rotations. Furthermore, the pose
detection solution should also be able to disregard false detections. This gave rise to
an approach which involves carrying out trials for a selection of potential initial object
poses. Although the fixed-rotation strategy is a bit far fetched, it is not unreasonable to
have some assumptions regarding the rotation of the object. In particular, the frequently
displayed hanging scenario clearly restrict the variation in object rotation. Except for
variation about the up-down axis, the rotation remains more or less the same. As this
setting is quite similar to the intended hanger use case from the lab setup, this restricted
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Figure 41: Example illustrating the LineMOD matches belonging to the nb = 3 biggest
clusters.

rotation space arguably make a sensible assumption for the initial rotation. By utilizing
a performance measure for the different rotation candidates, the pose detection approach
ensures that the tracker is given the rotation which best fit the real initial pose. If non
of the candidates yield an acceptable score, their associated translation is neglected, and
the same procedure is repeated for the translation next in line. This approach further-
more allows for detection of multiple objects. However, this requires an additional step
checking whether or not the euclidean distances between objects are large enough. If not,
one object can give rise to multiple object detections.

In order to evaluate the selection of initial rotations, one single tracking cycle is
performed for each corresponding pose candidate. The average likelihood variance is then
summarised over all 7 pose correcting iterations. As the likelihood variance is already
calculated for the optimization, this can be done rather seamlessly. These variance scores
give a good indication regarding the suitability of the rotation. More accurate initial
poses will result in more accurate appearance models, as parts of the background will
not contribute to the foreground model, and vice versa. Accordingly, the variance will be
higher for incorrect rotation candidates. In addition, the low variance depth based edge
likelihoods will increase the variance of the total likelihood when diverging from the color
based contour likelihoods. An example illustrating this approach is shown in figure 42. By
utilizing an incremental step of 30◦ around the up-down axis, a total of 12 pose candidates
are tested. Half of these are shown in the figure. This example clearly demonstrate the
value of the variance evaluation, as the candidate from 42c is correctly chosen as the best
fit for the initialization. The efficiency of this approach is also a bonus, as 12 different
rotations can be evaluated in just 32 ms. The implemented pose detecting solution also
allows for angular variation along multiple axes. For a more extreme case, all axes could
have an incremental angle step of 45◦, giving 83 = 512 different rotation candidates.
However, it would take the pose detector approximately 1.1 s to evaluate all of them.
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(a) variance: 35.2 (b) variance: 33.9

(c) variance: 29.0 (d) variance: 39.1

(e) variance: 39.3 (f) variance: 36.6

Figure 42: Illustration of the pose detection approach used for finding the initial rotation
which best fit the true object. The total average variances, indicating the accuracy of the
suggested poses, are also disclosed for the displayed rotation candidates.

If this procedure furthermore has to be repeated for multiple translation candidates,
the computational time would naturally be far too high for achieving accurate tracking
initializations when dealing with moving objects. As the implemented LineMOD detector
and subsequent clustering alone spend approximately 0.4 s finding the best translation
candidates, the number of rotation candidates should not be kept higher than necessary.
Any justified assumptions reducing the potential rotation space are therefore of great
value. For the single-axis angle variation case, as illustrated in figure 42, an angle step of
30◦ appears to make a good fit.
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7.2.3 Evaluation

In general, the presented pose detection solution has showed some great results. The
testing of different initializations appears to give a good indication on the quality of
the respective pose candidates. If provided some viable potential translations from the
LineMOD detector and subsequent clustering, the pose detector should have no trouble
finding suitable object poses for the tracker initialization. The approach is also very
efficient, which furthermore enables the pose detector to evaluate 12 different rotation
candidates faster than the average frame duration of the tracker. Even though this
would not be possible without the very practical reduced rotation space assumption, the
presented use case arguably allow this simplification. By adding customised incremental
variation steps about multiple axes, the solution would however be able to correctly detect
additional object poses while still keeping the number of rotation candidates fairly low.
Another great aspect of this pose detecting solution is that it does not require accurate
LineMOD detections in order to produce satisfactory initial poses for the tracker.

(a) (b)

(c)

Figure 43: Example showcasing a successful tracking initialization. The clustered trans-
lations from c) give rise to all pose candidates evaluated by the pose detector. Just two
tracking iterations after correctly picking out the pose candidate from a), the refined pose
estimate from b) is obtained.
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(a) (b)

(c)

Figure 44: Another example showcasing a successful tracking initialization. The clustered
translations from c) give rise to all pose candidates evaluated by the pose detector. Just
two tracking iterations after correctly picking out the pose candidate from a), the refined
pose estimate from b) is obtained.

As discussed in 3.1, the quality of the attained LineMOD matches can be rather
inaccurate. The approach for calculating match translations in 5.1.2 do however provide
decent translation coordinates for each detection. Consequently, seemingly inadequate
LineMOD matches can still give rise to successful object initializations for the tracker.
This is also clearly demonstrated in figure 43 and 44. While the clustering result in 43c
and 44c show significant deviation from the true object, the correct pose is still found by
the implemented pose detector in 43a and 44a. In just two tracking iterations, the refined
pose estimates from 43b and 44b are obtained.
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7.3 Drift Detection and Correction

In this subsection the motivation for a drift detecting and correcting solution is first given
in 7.3.1. After presenting the implementation in 7.3.2, an evaluation of this solution is
provided in 7.3.3.

7.3.1 Motivation

Even though the implemented pipeline for object detection and pose estimation has
showed some very good results, tracking errors can still occur. Whether this is caused by
an incorrect initial object pose detection, or by a challenging rotation during tracking,
it would naturally be preferable if the tracker was able to recover the true object pose.
Consequently, the idea of an additional mechanism emerged, capable of detecting and cor-
recting faulty pose estimates, i.e. drifting. In the event of a tracking error, the rotation
of the pose estimate is almost exclusively at fault. While the translation estimate tend to
always follow some part of the object, imprecise appearance models and pose ambiguity,
along with high-speed rotations and missing depth data can result in deviating rotation
estimates. Accordingly, the implemented solution will only focus on finding the correct
rotation of the associated object, not its translation. If having to recover from a faulty
translation, a reinitialization using the approach described in 7.2.2, including LineMOD
matching and clustering would be required. For correcting rotational drift however, a
faster approach is preferable. By using the current translation estimate as the true trans-
lation candidate, the task of drift correction is reduced to finding the rotation candidate
which best fit the most recent RGB-D images.

7.3.2 Solution

In order to detect faulty rotation and pose estimates, the summarised average variances
from 7.2.2 are utilized. Just as for the initial pose candidates, this score can express
the uncertainty for a current pose estimate. For instance, similar low variance color and
depth based likelihoods will result in low scores, indicating accurate pose estimates. On
the other hand, inaccurate appearance models and conflicting contour and edge probabil-
ities will give rise to higher variance scores, indicating less accurate pose estimates. By
applying an upper threshold for the summarised average variance tupper, tracking itera-
tions with less accurate pose estimates are easily recognised. If the variance score remains
too high for n > tdrift consecutive tracking iterations, the drift correction is initialized.
The best rotation candidate is then found by performing a single tracking cycle for each
candidate, just as in 7.2.2. The respective object pose estimate is always updated accord-
ing to the lowest scoring rotation candidate. Some additional nreset iterations are also
added to tdrift, allowing the pose estimate to stabilize after performing a drift correction.
An example illustrating the result of this solution is presented in figure 45.

Several values for the upper variance threshold were tested. Naturally it is beneficial to
keep the threshold low in order to detect drifting as fast as possible. While some pose
estimates clearly deviate from the true object pose, the variance scores do not always
match the degree of inaccuracy for these estimates. This is particularly the case when
provided few trustworthy depth data segments, and when exposed to contour ambiguity.
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(a) (b) (c)

Figure 45: Three consecutive tracking iterations illustrating the solution for drift detection
and correction. Note that the utilization of depth data was disabled for this tracking run
in order to induce more incorrect pose estimates. a) The tracking iteration in which the
drift is finally detected. b) The lowest scoring rotation candidate is chosen as the updated
pose estimate. c) The refined pose estimate after an additional tracking cycle.

The lack of conflicting color and depth based likelihoods, along with barely noticeable
contour mismatches, keep the variance fairly low. Some examples of deviating pose esti-
mates with low variance scores are shown in figure 46.

Figure 46: Examples of inaccurate pose estimates with low variance scores due to contour
ambiguity and a lack of trustworthy depth based likelihoods.

Although reducing the variance threshold could enable the tracker to detect these inac-
curacies, this would not be good for the performance of the tracker during challenging
rotations. Due to high-speed rotations and imprecise color models, accurate pose esti-
mates can sometimes give rise to higher variance scores. If trying to detect all inaccurate
pose estimates from figure 46, this would cause the tracker to initialize numerous unnec-
essary drift corrections, instead of just keep tracking the object. In order to avoid this
problem, an additional drift property was added to the total average variance score. For
variance scores above a given threshold tlower, which includes the examples of figure 46,
the drift property is calculated. This value is also depending on the change in translation
and rotation summarised from all 7 pose correcting iterations during the tracking itera-
tion. The total variance score VT is calculated as follows:
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VT =

{
VSAV + 2×

(
VSAV −(tlower−2)

)
100×‖θ‖2+1 if VSAV > tlower

VSAV if VSAV ≤ tlower

, (59)

where VSAV is the summarised average variance, and θ is the summarised full variation
vector. The additional drift property justifies challenging rotations to a greater extent, as
increasing pose variation reduce the total variance score. If the tracker on the other hand
is stuck with an inaccurate pose estimate for a stationary object, a bigger drift property
should enable the tracker to detect these inaccuracies.

7.3.3 Evaluation

All in all, the solution for drift detection and correction seems to be a valuable extension
to the implemented tracker. When running the RBGT [48] without depth utilization,
the advantages are especially evident. As the lack of depth data in general result in
more deviations for the pose estimates, a frequent reevaluation of the current rotation
definitely increase the overall accuracy of the tracker. The modified tracker with depth
utilization also appears to benefit from the drift handling. However, it can be challenging
to find appropriate variance thresholds for the drift detection. Although the additional
drift property from equation 59 can help in cases such as those illustrated in figure 46, it
can still be difficult to avoid unnecessary drift corrections. Due to the additional depth
based likelihoods, the modified tracker is able to maintain accurate pose estimates despite
having imprecise appearance models. Hence, the high variance of the color based contour
likelihoods can cause the initialization of drift corrections while still having satisfactory
pose estimates. For these cases, the subsequent pose estimates are often worse as the
new appearance models and pose estimates need to be refined. Other approaches for drift
detection were also tested. This includes an assessment of the total number of approved
depth segments, indicating the presence of an edge along the respective correspondence
lines. For this case in particular, contour ambiguity made it difficult to detect incorrect
pose estimates. Consequently, the variance based detection approach from equation 59 is
still utilized despite showing some weaknesses when enabling depth data. Further testing
in the lab setup could however improve the drift detection by fine-tuning the variance
score calculation, and the drift thresholds.
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8 Experiments

In this section the complete solution for object recognition and motion tracking is tested
in the intended lab setup from section 1. Using the camera mounted on the robotic
manipulator, results from the object detection solution are first displayed in 8.1, before
results from the modified tracker are presented in 8.2.

8.1 Detection Results

In order to give a reasonable assessment of the object detection approach, the solution
was tested while having two exemplars of the big chair part attached on the hanger. A
representative selection of the attained results are presented in figure 47 and 48. As the
detection part of the pipeline only concerns the initial pose estimates, only the clustered
LineMOD matches and the final pose candidates are displayed. Consequently no refined
posed estimates from the tracker are included.

As illustrated in the aforementioned figures, the implemented solution delivers some
fairly good results for the object detection. For the three test runs showcased in figure
47, both target objects attain a fine amount of LineMOD matches. Accordingly, the
clustering procedure has no problem finding the nb = 3 best translation candidates. The
final pose candidates also demonstrate this, as the translation of the rendered overlays
clearly coincide with the true object translations. For the pose detections in figure 47b
and 47d, the rotations are also precisely determined by the variance-based approach from
7.2. Using these initial pose estimates, the tracker can smoothly start tracking the de-
tected objects. For the pose detection presented in figure 47f, this is not necessarily the
case. While the translation of the detections seem rather accurate, only one of the ob-
jects attain a decent rotation estimate. The rotation mismatch for the topmost object
is most likely caused by contour ambiguity, as the true object contour clearly resembles
the contour of the estimated object pose. As this initial pose estimate deviates quite a
bit from the true object, a drift correction would be necessary for achieving an accurate
pose estimate. However, the precise translation estimate would prevent tracking loss, as
the object would simply be tracked with a faulty rotation estimate.

The drift correction could also help in the pose detection case displayed in figure 48b.
While being provided with two very promising translation candidates from the clustered
LineMOD matches in figure 48a, the rotation is misinterpreted for the leftmost object.
The fact that both objects are recognised by the detector is nevertheless very positive as
it enables the tracker to initialize with both objects included. Figure 48d and 48f both
display a different scenario. Despite having clustered LineMOD matches on both target
objects in figure 48c, only one of the objects is passed on to the tracker, as illustrated
in figure 48d. Due to a slightly inaccurate clustered translation for the leftmost object,
non of the associated rotation candidates obtain a sufficiently low variance score, causing
the detector to discard the affiliated object. While the detection displayed in figure
48f is also missing the leftmost object, this exclusion is caused by a lack of clustered
LineMOD matches on the target object. With few to none true matches for an object,
the object is not likely to be included in the following tracking. Overall, this seem to
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(a) (b)

(c) (d)

(e) (f)

Figure 47: Detection results obtained from the implemented object detection solution.
Left: The clustered LineMOD matches giving rise to the nb best translation candidates.
Right: The associated final pose candidates being passed on to the tracker.

be the biggest issue for the implemented detection solution. Although this solution do
not demand very accurate initial pose estimates from the LineMOD detector, a lack of
matches can still cause problems. In an effort to improve the selection of object translation
candidates, lower matching thresholds and an increased number of clusters were tested
without appreciable results.
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(a) (b)

(c) (d)

(e) (f)

Figure 48: Detection results obtained from the implemented object detection solution.
Left: The clustered LineMOD matches giving rise to the nb best translation candidates.
Right: The associated final pose candidates being passed on to the tracker.

8.2 Tracking Results

In this subsection the modified tracker with depth data utilization is first evaluated in
8.2.1. Next, the solution for drift detection and correction is put to the test in 8.2.2.
Finally, some multi object tracking results are briefly presented in 8.2.3.
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8.2.1 Depth Data Utilization

For evaluating the modified tracker, a prerecorded image sequence from the lab is utilized.
This image sequence shows one object, the big chair part, being exposed to substantial
changes in rotation while attached on the hanger. When using the modified tracker, the
Euler angle estimates from figure 50 are obtained. For better readability, the values are
adjusted to exceed the defined limits of −π < ex ≤ π, with ex being the Euler angle
estimate for the x-axis in the object reference frame. When attached to the hanger, this
axis is pointing upwards throughout the object. As discussed previously, this axis will
exhibit most of the changes in object rotation for this hanging scenario. The remaining
Euler angle axes are defined as shown in figure 49.

Figure 49: Illustration of the object reference frame axes. The x-axis is displayed in red,
while the y-axis and z-axis are shown as green and blue lines respectively.

Using the original RBGT [48] on the same sequence of images, the Euler angles from
figure 51 are attained. In order to better compare the two trackers, no drift correction is
utilized.

While some variations between the trackers can be observed for both ey and ez,
the estimates for ex clearly differentiate the presented tracking runs. The differences for
these estimates are also demonstrated in figure 52 by directly comparing the ex value from
both tracking runs. As illustrated, the two estimates are more or less identical during the
first half of the tracking run. However, after approximately 155 tracking iterations, the
estimate from the color-only RBGT starts to deviate from the estimate provided by the
modified tracker. After producing some opposing Euler angle estimates, the respective
trackers once again obtain some very similar estimates after approximately 220 tracking
iterations. This continues for roughly 50 iterations, before another series of mismatching
ex estimates are produced for the remaining tracking run.
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Figure 50: Euler angle estimates for the modified RBGT.

Figure 51: Euler angle estimates for the original RBGT.

By making use of the pose estimate visualization for each of the presented track-
ing runs, information on the actual tracking performance is also provided. Accordingly,
samples from both tracking runs are showcased in figure 53. The rendered object over-
lays show that the modified tracker with depth data utilization clearly outperforms the
color-only RBGT during the intervals with mismatching pose estimates. The tracking
samples from figure 53 also suggest that the deviating pose estimates are caused by con-
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Figure 52: Side by side comparison of the original and the modified RBGT.

tour ambiguity, which is why the opposite ex estimates arise for ex ≈ 0 and ex ≈ −π.
Both tracking runs, with and without depth data utilization, can be found in the sup-
plementary material as video number 1 and 2 respectively. Despite showing some minor
deviations during the tracking run, the modified tracking solution arguably demonstrate
some very impressive results.

8.2.2 Drift Correction

For a different sequence of images, the tracking results are not as impressive for the mod-
ified tracker. As the aforementioned tracking case, this sequence of images also displays
the big chair part attached to a rotating hanger. In contrast to the already presented
tracking runs however, the beam of the hanger, along with contour ambiguity, causes
the modified RBGT to track the object with incorrect rotation estimates. Despite pro-
ducing some vastly inaccurate angle estimates for multiple object axes, the translation
estimates seem to remain fairly accurate. The proposed solution for drift detection and
correction can thus be utilized. The rather descriptive ex estimates for this tracking case
are presented in figure 54, comparing the tracking performance with and without drift
correction. Just as for the previous tracking runs, the values of ex have been adjusted to
exceed the defined limits of −π < ex ≤ π.

Note that due to lab access difficulties, no ground truth was attained for any of the pre-
sented tracking runs. Accordingly, the dotted grey lines in figure 54 only showcase an
estimated correct rotation when the tracking estimates seem to deviate from the true
object pose. Anyhow, judging by the rendered overlays, the initial pose detection clearly
succeeds in picking out the correct translation and rotation of the object. However, the
ex estimates reveal how the rotation starts to deviate from the presumed true object
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(a) Iteration: 160 (b) Iteration: 160

(c) Iteration: 210 (d) Iteration: 210

(e) Iteration: 275 (f) Iteration: 275

Figure 53: Tracking samples from the modified and the original RBGT during the intervals
with mismatching pose estimates. Left: Pose estimates obtained by the modified RBGT.
Right: Pose estimates obtained by the original RBGT.
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Figure 54: Side by side comparison of the modified RBGT with and without drift cor-
rection. The dotted orange lines illustrate drift corrections while the dotted grey lines
represent the presumed true rotation estimates.

pose after approximately 30 tracking iterations. From this point, the tracker with no
drift correction struggles to recover the correct rotation estimate. In contrast, the tracker
with drift correction overall demonstrate a clearly improved tracking result. When the
Euler angle estimates start to drift after approximately 30 iterations, this is quickly de-
tected and corrected using the approach from 7.3. Having retrieved the correct rotation,
the tracker can continue to produce accurate pose estimates. For the next challenging
rotation, with ex ≈ 0 and the hanger itself misleading the contour likelihoods, the ro-
tation estimates start to diverge once again. The drift detector immediately sees this
and initialize another drift correction. However, this time contour ambiguity leads the
tracker to select an incorrect rotation candidate. As illustrated in figure 54, the object
is thereafter tracked with an incorrect rotation estimate for approximately 25 tracking
iterations, or 1.0 seconds, before yet another drift correction successfully recovers the true
object pose. For the remaining tracking run the object pose estimates appear to be very
precise. Although the drift correction fails to recover the correct rotation candidate after
roughly 80 tracking iterations, the tracker with drift correction still clearly outperforms
the tracker with no drift correction. Both tracking runs presented in figure 54 can be
found as video number 3 and 4 in the supplementary material.

8.2.3 Multiple Objects

In addition to the aforementioned single object tracking runs, the supplementary material
also include a fifth tracking run with both the big and the small chair part, illustrating
the methods ability to track multiple different objects simultaneously. A sample of this
tracking run is shown in figure 55. Note that the modeled occlusion functionality was
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not enabled during this sequence. As both objects have more or less identical foreground
models, the unmodeled occlusion is not able to disregard those correspondence lines oc-
cluded by the other object. Nevertheless, the tracker still produces some very impressive
pose estimates throughout the tracking run.

Figure 55

9 Discussion

In this section the main challenges of the implemented detection and tracking solutions are
first discussed in 9.1 and 9.2 respectively, before the suitability of the complete framework
is discussed in 9.3.

9.1 Detection Challenges

Starting with the LineMOD detector, the occasional lack of positive template matches is
an obvious obstacle for the detection solution. As discussed in the preliminary project
thesis [29], there is no guarantee that all objects are detected. The presented result in 8.1
also verify this. If provided close to none LineMOD matches for an object, these matches
are not likely to survive the clustering. This is especially the case if there is a high to-
tal number of matches in the scene. Having a simple and uniform background seems to
improve the clustered result by reducing the number of false matches and making the
object contour more explicit. However, the quality of the matches is still far from perfect.
Naturally, lowering the matching threshold and increasing the number of clusters can be
helpful in some cases by providing more translation candidates for the rotation deciding
pose detection. Having said that, the quality of the LineMOD detector still appears to
be an underlying issue for the implemented detection solution. As discussed in the pre-
liminary project thesis, the shape of the object, i.e. the big chair part, might not be ideal
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for this type of detector due to the general lack of easily recognizable curved surfaces
on the object. Luckily, the detector is still capable of attaining LineMOD matches with
fairly precise image coordinates for most target object. As the subsequent pose detection
only requests the translation of these objects, no further information is required from
the LineMOD detector to initialize the tracking of these objects. This way, the imple-
mented detection approach makes up for some of the limitations of the LineMOD detector.

As discussed previously, the rotation deciding pose detection works fairly good con-
sidering the quality of most LineMOD matches. However, pose ambiguity and imprecise
translation candidates can still cause the detector to fail, by either picking out an incorrect
rotation candidate, or by failing to find a suitable low scoring candidate all together. The
latter does not appear to occur very often. If provided an approximate object translation,
this object is typically always accepted by the pose detection step. However, as shown in
8.1, the estimated rotation can sometimes be incorrect. Although a faulty initial estimate
is likely to be corrected later, it would still be beneficial to start off the tracking with the
correct rotations. Another minor drawback of the implemented detection approach is the
need for a rotation assumption. Just as for the drift correction, the initial pose detection
also depends on this assumption in order to control the number of rotation candidates.
If considering angular variation along all reference frame axes, while keeping a decent
rotation resolution, the computational cost would be far too great for a real-time applica-
tion. For the presented object recognition and pose estimating case, the utilized rotation
assumption has been rather unproblematic. For other use-cases however, corresponding
restrictions might not be applicable.

9.2 Tracking Challenges

As described in 2.3, contour ambiguity was thought to be the biggest challenge for the
RBGT [48]. Despite showing some excellent results for a great number of tracking runs,
contour ambiguity can still cause problems for the implemented tracker solution. Al-
though the adding of depth based edge likelihoods undoubtedly helped out, the shape of
the big chair part, along with missing depth data continue to complicate the pose estima-
tion in some cases when exposed to contour ambiguity. As illustrated in 7.1.2, a significant
portion of all depth data segments are rejected for having too many invalid measurements.
If provided higher quality depth images with less invalid measurements, the additional
edge likelihoods would surely improve the overall performance of the tracker. A potential
fix could be to add a second camera for noise removal. If not, the utilization of a depth
image filter might also give some viable results. Another approach for avoiding incorrect
pose estimates when facing pose ambiguity could be to incorporate motion prediction to
the RBGT. By making use of prior information on angular velocities, multiple cases of
drifting rotation estimates could probably be averted.

In addition to contour ambiguity, the hanger beam also seems to cause some occa-
sional difficulties for the tracker. When close to the object, the color based likelihoods
can sometimes confuse the hanger with the object contour. Furthermore, the depth based
likelihoods can be steered away from the true contour if the beam pass in front of the
object. For this to happen however, the hanger would have to be rotated all the way
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around. Under normal circumstances this should not be an issue. Moreover, the utiliza-
tion of depth data appears to counterbalance the color based beam confusion. Although
the drift correction in a way works as a safety net for the aforementioned tracking chal-
lenges, the drift correction also has some challenges. As presented in 8.2.2, the approach
does not always find the correct object rotation. In addition, it can be hard to find
a suitable drifting measure and threshold providing rapid drift detections for difficult
cases with contour ambiguity, without initializing excessive corrections. Having a simpler
background definitively helped by provoking less false drift detections. Nevertheless, the
drift property from equation 59 is still unable to expose the most challenging cases of
contour ambiguity. Just as for the general performance of the tracker, the detection of
drifting would probably also benefit from having more reliable depth data. Otherwise, a
periodically checkup could help for cases where a stationary object is being tracked with
an incorrect rotation.

9.3 Suitability of Implemented Framework

All things considered, the implemented object recognition and motion tracking system
has shown some great results for both detection and tracking. Despite having to deal with
some rather imprecise LineMOD matches, the detector solution is still able to find and
initialize most target objects by applying translation clustering and testing different ro-
tation candidates. Furthermore, the system almost never loses track. By maintaining an
adequate translation estimate, a faulty rotation estimate can normally be corrected with-
out difficulties. The adding of depth based likelihoods to the RBGT has also improved
the general performance of the tracker. Under normal circumstances for the intended use
case, without substantial changes in rotation, contour ambiguity would also be far less of
a problem than what has been the case for the experiments in section 8. For differently
shaped objects, such as the small chair part, the problems with contour ambiguity can
even be avoided entirely.

The solution’s efficiency is also a great advantage. While the object detection and
tracker initialization can be completed in less than 0.5 seconds, tracking frequencies above
30Hz can be achieved even when tracking multiple object. As the setup only requires a 3D
model and a rotation assumption for detection and tracking, the solution moreover makes
a very flexible framework. For the presented manufacturing setting, a new chair part can
accordingly be added to the production line without having to make any customised
changes. Although the demand for a rotation assumption might seem inhibitory, this has
showed to be a convenient solution when dealing with the roof mounted hanger. Naturally,
these assumptions can also be changed to deal with different use cases. Another essential
quality of the implemented framework is that it requires no prior information regarding
texture or color. By using the object shape as the only basis for the initial detection, no
color information is utilized before the initialization of the RBGT color histograms. This
way, objects with varying surface texture should obtain the same level of performance for
both detection and motion tracking. The online learning of appearance models also adds
to this by continuously updating the color histograms as the visible parts of the objects
changes. Naturally, the depth based edge likelihoods can provide further robustness in
these cases by precisely picking out the location of the object contour. This combination

72



of online learning and depth data utilization can be particularly advantageous for tracking
objects while for instance undergoing a paint job.

10 Concluding Remarks

In this work, a feasible solution for both object recognition and motion tracking is
proposed. This solution is primarily based on the combination of the multi-modality
LineMOD detector and RBGT, a novel region-based 6-DoF object tracker. Starting off
with these, several additions have been introduced in order to improve the overall perfor-
mance of both the object detection and the tracker. These include translation clustering
for the attained LineMOD matches, along with a subsequent rotation candidate evalua-
tion scheme used for finding the most promising initial object poses. Furthermore, the
RBGT has been modified to utilize depth information using a very sparse, yet efficient
approach. Along with a presented solution for drift detection and correction, the use of
depth data has unquestionably added precision and robustness to the original RBGT. All
in all, the total system has proven itself to be a good fit for the intended recognition and
motion tracking problem.

In order to further improve the implemented solution, it would be interesting to see
if additions such as motion prediction could increase precision when exposed to difficult
cases of contour ambiguity. In addition, future work could also include experimenting with
depth image filtering. If provided higher quality depth data, with less invalid measure-
ments, their corresponding edge likelihoods would probably boost the tracker’s general
performance. Finally, it might also be interesting to check out different object detectors.
Although the LineMOD detector is capable of detecting most objects under the right
circumstances, it would still be preferable if the detector could correctly estimate their
rotation. If not, a 2D detector might also replace it, as the current implementation only
requires the image coordinates for the associated matches.
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