
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Herman Kolstad Jakobsen

Reinforcement learning for robotic
soft-body interaction

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl
Co-supervisor: Andreas Østvik and Akhil S. Anand

June 2021

M
as

te
r’s

 th
es

is





Herman Kolstad Jakobsen

Reinforcement learning for robotic
soft-body interaction

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl
Co-supervisor: Andreas Østvik and Akhil S. Anand
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Abstract

It is deemed challenging to integrate robotic systems into medical procedures due
to the complex scene involved. The variations between patients, combined with
the handling of moving objects and soft materials, has proven to be an obstacle for
robot-assisted procedures. Research within reinforcement learning has facilitated
the design of new robot controllers, making it possible for robot manipulators to
learn from experience. Data is limited, but realistic simulators have shown to be
a viable source for acquiring the necessary training material and experience for
robot manipulators to adapt to a real-life scenario. Employing sophisticated robotic
systems could significantly benefit medical procedures and possibly help reduce the
increasing workload in the health sector.

In this thesis, a simulation framework was used to investigate how deep reinforce-
ment learning can be used as robot control for soft body interaction tasks. Three
different models were trained to complete an interaction task of sweeping a probe
across the surface of a soft body, while exerting a desired contact force and keeping
a desired velocity. The baseline model outputs a desired wrench and was used as a
reference to quantify the sampling efficiency and performance increase of using an
appropriate low-level controller. The two other models were used to examine how
a variable impedance control law would perform at the interaction task, where the
manipulator has to compensate for the motion and deformation of the body dynam-
ically. The action space of the models consisted of proportional gains, making it
possible to vary the impedance along the execution of the task. The action space
of one model was extended with an additional parameter, allowing control of the
end-effector movement in the 𝑧-direction directly. In the test episode, the baseline
model showed promising results before yielding unstable behavior. The variable
impedance models tracked the pose and velocity in a satisfactorily manner. How-
ever, the models struggled to track the desired force, especially where frequent spike
noise characterized the applied force in the simulator measurements. Suggestions
on how to overcome this limitation is presented.

Combining reinforcement learning with impedance control looks promising for
solving complex interaction tasks with high uncertainty. However, a vast amount of
work and further development are needed to fully exploit the potential and transfer
the technology into clinical applications.
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Sammendrag

Innen klinisk medisin ansees det som utfordrende å benytte autonome robotsyste-
mer. Håndtering av bevegelige objekter og myke materialer, samt variasjon mellom
pasienter, har vist seg å være en hindring for robotassisterte inngrep. Forskning in-
nen reinforcement learning har lagt til rette for utformingen av nye robotkontrollere,
noe som gjør det mulig for robotmanipulatorer å lære av erfaring. Datatilgangen
er begrenset, men realistiske simulatorer har vist seg som en mulig kilde for nød-
vendig opplæringsmateriell og erfaring slik at robotmanipulatorer kan tilpasse seg
virkelige scenario. Å benytte sofistikerte robotsystemer kan gi en betydelig fordel
innen klinisk medisin og muligens bidra til å redusere den økende arbeidsmengden i
helsesektoren.

I denne masteroppgaven ble et simuleringsrammeverk brukt for å undersøke hvor-
dan deep reinforcement learning kan brukes som robotkontroll for myke kroppsinter-
aksjonsoppgaver. Tre forskjellige modeller ble trent for å fullføre interaksjonsopp-
gaven. Referansemodellen gir en ønsket kraft og dreiemoment, og ble brukt for å
kvantifisere prøvetakingseffektiviteten og ytelsesøkningen ved å bruke en passende
lavnivåkontroller. De to andre modellene ble brukt til å undersøke hvordan vari-
abel impedanskontroll ville håndtere interaksjonsoppgaven, der manipulatoren må
kunne dynamisk kompensere for kroppens bevegelse og deformasjon. Handlingsom-
rådet til modellene besto av justerbare forsterkningsgrader, noe som gjorde det mulig
å variere impedansen under utførelsen av oppgaven. Handlingsområdet til en mod-
ell ble utvidet med en tilleggsparameter som tillot direkte kontroll av bevegelsen
i 𝑧-retningen. Iløpet av testepisoden viste referansemodellen lovende resultater før
den ga ustabil oppførsel. De variable impedansmodellene fulgte ønsket positur og
hastighet på en tilfredsstillende måte. Generelt slet modellene med å utøve ønsket
kontaktkraft, hvor den påførte kraften var svært støyete. Forslag for å overkomme
denne begrensningen ble presentert.

Å kombinere reinforcement learning med impedanskontroll ser lovende ut for
å løse komplekse interaksjonsoppgaver med høy usikkerhet. Imidlertid er det be-
hov for mye arbeid og videreutvikling for å utnytte potensialet fullt ut og overføre
teknologien til kliniske applikasjoner.
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Chapter 1

Introduction

Robotic and automated systems are rapidly incorporated into society, where they
can perform time-consuming and repetitive tasks previously performed by humans.
Robotic assistants were first used in medicine in the mid-1980s [1], and they have
since developed into becoming a well-established part of clinical procedures. Robotic
systems have enormous potential in the healthcare sector, where they can perform
precision-demanding tasks with high repeatability. Further, robots have greater
durability compared to humans, allowing them to meet the ever-increasing demand
for treatments and medical procedures. Generally, the cost of industry-standard
robot manipulators is decreasing, ultimately making them more accessible. In terms
of cost, robotic systems can prove economically beneficial and a viable alternative
to current solutions.

That being said, automation of tasks using robot manipulators, such as ultra-
sound imaging, has not been widely implemented in the healthcare sector. One rea-
son is that modern robot systems are still incapable of proficiently handling moving
objects and soft materials [2]. This makes interaction with moving and shifting body
parts and organs difficult, not only because the patient does not always lie entirely
still, but also because of breathing motion and pulsation. In addition, as part of the
medical procedure, the body will be manipulated, introducing further interaction
uncertainties.

While conventional control methods, such as PID regulators, are proficient at
following references and trajectories in free space [3], they offer restricted adaptive
behavior. Mainly, these methods show limited performance in applications that
require contact between the robot and its environment. Identifying and modeling
contact interaction is complex, making it demanding to achieve adaptable yet ro-
bust robot control with the use of conventional methods [4]. Conventional control
methods also lack the ability to generalize their behavior, meaning that all possible
system behavior must be considered during their design phase.

Reinforcement learning methods could potentially solve these challenges, where
they are capable of yielding robot controllers that both generalize well and can han-

1



1.1. GOAL OF THE THESIS CHAPTER 1. INTRODUCTION

dle uncertain environments [5]. By learning from experience, reinforcement learning
methods unlock a whole new range of possibilities within robot control. These meth-
ods, however, often require large quantities of data to produce adequate results, and
how to effectively collect such large amounts of data remains an unresolved problem.
Using simulators to replicate the physical world has proved to be a viable approach,
where the robot learns from simulated experiences.

1.1 Goal of the thesis
The work done in this master’s thesis utilizes the simulation framework created and
designed by the author in autumn 2020. The overarching goal is to investigate the
use of deep reinforcement learning and robot control for robotic soft body interac-
tions. This includes examining how the combination of deep reinforcement learning
and different low-level controllers affects the performance, as the robot arm dynam-
ically compensates for uncertainties such as object’s motion and deformation. More
precisely, the goal is to make a robot manipulator, with an ultrasound probe at-
tached as its end-effector, learn how to perform a sweeping motion across the surface
of a soft body, while both exerting a desired contact force and keeping a desired
velocity. Lastly, the work aspires to facilitate further research and development on
the use of reinforcement learning for robotic soft body interaction tasks.

1.2 Contributions
This thesis examines how reinforcement learning can be used for soft body interac-
tion robot control, where the robot manipulator has to dynamically compensate for
the deformation and motion of a soft body. The contributions of this thesis are

• Quantification of how reinforcement learning, combined with variable impedance
control, perform at a soft body interaction task.

• A tunable and modular reward function for learning pose, force and velocity
tracking.

• Investigation of how the learning efficiency is affected by the choice of obser-
vation space.

• Sample-efficiency and performance comparisons of combining a reinforcement
learning algorithm with different low-level controllers and action spaces.

• A simulation framework facilitating training of reinforcement learning models
for soft body interaction tasks.

2
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1.3 Outline
This master’s thesis is organized into seven chapters, excluding appendices. The
following outlines the remaining chapters.

Chapter 2 - Background. Gives an overview of the theoretical prerequisites. This
chapter should give the reader a fundamental understanding of the theory needed to
apprehend the task at hand, and also the ability to comprehend the work presented
in the following chapters.

Chapter 3 - Methodology. Describes the methods used to make the robot ma-
nipulator able to learn a sweeping motion across a soft body. This includes details
regarding the choice of reinforcement learning algorithm, the design of the reward
function and observation space, and the implementation of low-level controllers.
Modifications done to the simulation framework are also mentioned.

Chapter 4 - Experimental Setup. Explains the setup used for conducting the
experiments. The chapter summarizes the parameters chosen for configuring the al-
gorithm and the controller. The organization of the reinforcement learning training
process is also presented.

Chapter 5 - Results. Presents the results from the reinforcement learning models.

Chapter 6 - Discussion. Discusses the results presented in the previous section,
and how the models performed. Considering the overall framework, suggestions for
future work will be presented.

Chapter 7 - Conclusion. Concludes the thesis with closing remarks.

3



Chapter 2

Background

In the beginning of this chapter, a brief overview of robot dynamics in operational
space is presented . This section is followed by the introduction of three compliant
control methods. Fundamental reinforcement learning theory is then presented, to-
gether with an overview of a popular reinforcement learning algorithm. The chapter
is concluded with a an overview over some related work.

2.1 Robot Dynamics

2.1.1 Jacobian
For a manipulator with 𝑛-joints in three dimensions, the Jacobian J ∈ ℝ6×𝑛 is a
mapping between the spatial velocity 𝝂 and the joint velocities q̇. The relationship
is given by

𝝂 = J(q)q̇, (2.1)

where 𝝂 consists of the linear velocity ṗ and the angular velocity 𝝎, i.e. 𝝂 = [ṗ 𝝎]𝑇
.

It is worth noting that the Jacobian is dependent on the joint configuration q. Gen-
erally, the Jacobian is computed using the forward kinematics of the manipulator.

2.1.2 Operational Space Dynamics
When planning and executing robotic manipulation tasks, it is often advantageous
to define the dynamics of the manipulator in the operational space. Not only is
this formulation more intuitive for the user, but it also simplifies the handling of
end-effector constraints.

From [6], the dynamic model in operational space for a rigid manipulator with
6 degrees of freedom can be stated as

𝜦(𝝃) ̈𝝃 +𝜞 (𝝃, ̇𝝃) ̇𝝃 +𝜼(𝝃) = h𝑐 −h𝑒, (2.2)

where 𝜉 is a six-dimensional vector representing the position and orientation of

4



CHAPTER 2. BACKGROUND 2.2. COMPLIANT ROBOT CONTROL

the end-effector. Specifically, 𝝃 = [p 𝝓]𝑇
, where p is the position and 𝝓 is a set

of Euler angles describing the orientation. Hence, the relationship ̇𝝃 = 𝝂 can be
established. Further, h𝑐 is the controller output and h𝑒 is the external wrench. The
cartesian inertia matrix is denoted 𝜦(𝝃) ∈ ℝ6×6, while 𝜞 (𝝃, ̇𝝃) ∈ ℝ6×6 is the wrench
caused by centrifugal and Coriolis effects. The wrench due to gravitational effects
is represented by 𝜼(𝝃) ∈ ℝ6×1.

The inertia matrix is computed as

𝜦(𝝃) = (JH(q)−1J𝑇 )−1. (2.3)

Here, H(q) ∈ ℝ𝑛×𝑛 is the symmetric and positive-definite joint space inertia matrix
which represents the mass distribution of the manipulator in joint space. Naturally,
this matrix is highly dependent on the joint configuration. Further, the wrench
caused by centrifugal and Coriolis effects is calculated as

𝜞 (𝝃, ̇𝝃) = J−𝑇 (C(q, q̇)−H(q)J−1J̇)J−1, (2.4)

where C(q, q̇) is the centrifugal and Coriolis effects given in the joint space. The
wrench due to gravitational effects is given by a simple mapping from joint space to
operational space:

𝜼(𝝃) = J−𝑇 g(q), (2.5)

where g(q) are gravitational effects given in the joint space.

2.2 Compliant Robot Control

2.2.1 Stiffness Control
Stiffness control can be regarded as the corner stone of indirect force control [7].
Indirect force control methods achieves force control through control of the manip-
ulator’s motion. That is, the manipulator will change its reference position in order
to achieve a compliant interaction with the environment.

Consider the following motion control law, consisting of a PD controller and
gravity compensation, given in the operational space

h𝑐 = A−𝑇 (𝝓)K𝑃 Δ𝝃 −K𝐷𝝂 +𝜼(𝝃). (2.6)

Here, the pose error between the current end-effector pose and a reference pose
is denoted Δ𝝃. The matrices K𝑃 and K𝐷 are symmetric and positive 6 × 6 gain
matrices. The A matrix maps velocity from the joint space to the operational space,
and is defined as

A(𝝓) = [I 0
0 T(𝝓)], (2.7)

5



2.2. COMPLIANT ROBOT CONTROL CHAPTER 2. BACKGROUND

where I is the 3 × 3 identity matrix, 0 is a 3 × 3 null matrix, and T is the 3 × 3
matrix of the mapping 𝝎 = T(𝝓) ̇𝝓. The T matrix is dependent on the particular
choice of Euler angles.

Utilizing Lyapunov stability theory [8] in the absence of interaction with the
environment (i.e. h𝑒 = 0), it can be shown that the asymptotically stable equilibrium
for the closed-loop system is given by Δ𝝃 = 0 and 𝝂 = 0. In the presence of a
constant wrench h𝑒, Lyapunov stability theory yields the following asymptotically
stable equilibrium

h𝑒 = A−𝑇 (𝝓)K𝑃 Δ𝝃. (2.8)

According to (2.8), the end-effector will in the steady-state behave as a six-degree-of-
freedom spring in respect of the external wrench h𝑒. The K𝑃 matrix will therefore
act as an active stiffness, where the elements of the matrix specify the elastic be-
havior of the end-effector during interaction with the environment. A higher active
stiffness value will yield higher accuracy of the position control at the cost of higher
interaction forces, while lower values will allow discrepancies in position to ensure
low interaction forces. Designing this static relationship between the deviation in
the end-effector pose and the force exerted on the environment, is known as stiffness
control.

To summarize, by designing an appropriate stiffness matrix, stiffness control
allows to limit the interaction force at the expense of end-effector pose deviations.
However, choosing the stiffness parameters is difficult and the appropriate values is
highly dependent of the task at hand. In addition, the control method struggles to
handle uncertain environments and disturbances. In such cases, low active stiffness
values may produce large and unwanted deviations in the end-effector pose [9].

2.2.2 Impedance Control
Another type of indirect force control is impedance control. Impedance control is
a unified control scheme used to simultaneously control both the motion of a ma-
nipulator and the contact force, by adjusting the impedance [10]. Here, impedance
refers to the dynamic relationship between the motion variables of the manipula-
tor and the contact force, as opposed to the static relationship utilized in stiffness
control. Impedance control is suitable for dealing with mechanical interaction tasks
where contacts between objects are present, and is often used in manipulation tasks
where it is desired to control the position of an end-effector while simultaneously
maintaining the contact force in a preset safety range. The use of impedance control
makes it possible to overcome position uncertainties and subsequently large impact
forces, since manipulators are controlled to modulate their motion or compliance
according to force perceptions.

When impedance first was introduced in mechanical manipulation, it referred to
the ratio between an output effort and an input flow [11]. The input flow represents

6



CHAPTER 2. BACKGROUND 2.2. COMPLIANT ROBOT CONTROL

the velocity of the manipulator, while the output effort is the contact force resulted
from the interaction motion between the manipulator and the environment. In the
frequency domain, the impedance 𝑍(𝑠) can be defined as the ratio of the Laplace
transformed effort 𝐹(𝑠) to the Laplace transformed flow �̇�(𝑠),

𝑍(𝑠) = 𝐹(𝑠)
�̇�(𝑠). (2.9)

Substituting 𝑠𝑋(𝑠) for �̇�(𝑠), (2.9) can be rewritten into

𝐹(𝑠) = 𝑠𝑍(𝑠) ⋅𝑋(𝑠) (2.10)

For manipulation tasks it is desirable to control both the contact force 𝐹(𝑠) and
the motion of the manipulator 𝑋(𝑠) accurately. Due to the coupling 𝑠𝑍(𝑠) between
the states, it is, however, not possible to control 𝐹(𝑠) and 𝑋(𝑠) independently.
As a compromise, impedance control works by directly controlling 𝑋(𝑠). Then,
by designing a desired impedance 𝑍(𝑠), the contact force 𝐹(𝑠) can be indirectly
regulated by (2.10). The impedance controller commonly resembles a virtual spring-
damper system between the environment and robot end-effector

Z(𝑠) = 𝜦𝑠+B+ K
𝑠 , (2.11)

where the coefficient matrices 𝜦, B and K represent the desired inertia, damping and
stiffness of the system, respectively. Choosing the impedance controller to resemble
a virtual spring allows for the manipulator to interact with the environment in a
safe and energy-efficient way.

Correspondingly, in the time domain, the desired impedance can be expressed
by a differential equation

𝜦𝑑( ̈𝝃 − ̈𝝃𝑑)+B𝑑( ̇𝝃 − ̇𝝃𝑑)+K𝑑(𝝃 −𝝃𝑑) = F(𝑡), (2.12)

where the matrices 𝜦𝑑, B𝑑 and K𝑑 represent the desired inertia, damping and
stiffness, respectively. The desired damping and stiffness are usually referred to
as 𝑘𝑣 gains and 𝑘𝑝 gains, respectively. The actual contact force is denoted F(𝑡),
which corresponds to a controller’s calculated input 𝑢. The actual pose of the end-
effector is denoted 𝝃 and 𝝃𝑑 is the desired trajectory pose of the end-effector, in the
operational space.

The conventional procedure of implementing an impedance control law is to sub-
stitute the designed target impedance into the actual dynamics of the manipulator,
where the desired impedance is usually defined as a second-order dynamic equation

𝜦𝑑( ̈𝝃 − ̈𝝃𝑑)+B𝑑( ̇𝝃 − ̇𝝃𝑑)+K𝑑(𝝃 −𝝃𝑑) = −h𝑒. (2.13)

The controller is then able to impose impedance-defined dynamics on the original,
and more complicated, end-effector dynamics.

7



2.2. COMPLIANT ROBOT CONTROL CHAPTER 2. BACKGROUND

Without loss of generality, assume that we have a six degrees of freedom robotic
manipulator, meaning the dynamics of the manipulator in the operational space is
given by (2.2). The control law is then obtained by inserting (2.13) into (2.2):

𝝉 = J𝑇 F (2.14a)

F = h𝑒 +𝜞 ̇𝝃 +𝜼 +𝜦{ ̈𝝃𝑑 −𝜦−1
𝑑 [B𝑑( ̇𝝃 −𝝃𝑑)+K𝑑(𝝃 −𝝃𝑑)+h𝑒]} (2.14b)

The manipulator driven by the control torque 𝝉 obtained from (2.14), will follow
the dynamics defined by the impedance in (2.13).

2.2.3 Variable Impedance Control
Robots need to vary their impedance along the execution of certain tasks [12]. For
instance, robots in unstructured and uncertain environments may need to interact
with objects of varying physical properties. Such tasks demand the use of different
control forces according to the different mass, friction forces and other physical traits
of the objects. In such scenarios, measured forces give valuable information regarding
the control forces needed to perform the tasks, which again can be governed through
stiffness and damping variations.

In order to state the Variable Impedance Controller (VIC), it is first needed to
slightly modify (2.13) into

𝜦𝑑( ̈𝝃 − ̈𝝃𝑑)+B𝑑(𝑡)( ̇𝝃 − ̇𝝃𝑑)+K𝑑(𝑡)(𝝃 −𝝃𝑑) = −h𝑒, (2.15)

where B(𝑡) and K(𝑡) are same the quantities as defined in (2.12). The only dif-
ference is that the quantities are now time-varying. For a six degrees of freedom
manipulator, the VIC can be obtained by inserting (2.15) into (2.2), essentially
yielding the same control law as (2.14), only now with time-varying damping and
stiffness matrices.

There exists numerous methods to update the stiffness and damping matrices
of the variable impedance controller. One of the simplest methods is to update the
joint stiffness online using a primitive adaption rule

k𝑡 = k0 +𝛼e2
𝑡 (2.16)

where 𝑡 = 1,2,⋯,𝑇 are time-steps, k𝑡 = diag(K𝑡) = [𝑘1,𝑡 ⋯ 𝑘𝐽,𝑡]
𝑇

are the joint

stiffness and 𝐽 is the number of joints. The vector k0 = [𝑘1,0 ⋯ 𝑘𝐽,0]𝑇
is a small

stiffness used to prevent unsafe interaction, e𝑡 is the joint trajectory error and 𝛼 is
a positive gain. In practice, the update rule (2.16) increases the joint stiffness when
the trajectory error is high, making the robot able to track the desired trajectory
more accurately.

8
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Recently, robot learning algorithms have gained great interest for learning, repro-
ducing and adapting variable impedance parameters. These types of algorithms are
collectively called for Variable Impedance Learning (VIL), and they utilize methods
such as imitation learning, iterative learning and reinforcement learning. Generally,
VIL methods learn a nonlinear mapping 𝝓(⋅) in the form

K𝑑,𝑡 = 𝝓𝒦(x𝑡, ẋ𝑡, f𝑒
𝑡 ,𝜽𝒦) (2.17a)

B𝑑,𝑡 = 𝝓ℬ(x𝑡, ẋ𝑡, f𝑒
𝑡 ,𝜽ℬ), (2.17b)

where the learning algorithm uses 𝑁 demonstrations in the form {{x𝑡,𝑛.ẋ𝑡,𝑛, f𝑒
𝑡}𝑇

𝑡=1}𝑁
𝑛=1

and a set of parameters 𝜽 to learn parameterized impedance gains. At run time,
the learned model in (2.17) is used to retrieve the desired impedance gains from the
measurements. The techniques used to approximate the nonlinear mappings 𝝓𝒦

and 𝝓ℬ distinguish the different VIL approaches. Some VIL methods also performs
inertia shaping where a desired inertia matrix 𝜦𝑑,𝑡 is estimated.

Variable Impedance Learning Control (VILC) is categorized as methods that
erase the boundary between the learning algorithm and the controller design. As
with VIL, VILC uses training data to learn both parameterized impedance gains
The key difference between VIL and VILC is that, in VILC, the data collection
process itself depends on the underlying control structure. Hence, VILC methods
also learn a parameterized reference trajectory. Compared to VIL, VILC approaches
adopt more complex impedance learning strategies requiring iterative updates and
robot self-exploration. Utilizing reinforcement learning, variable impedance can be
adopted as a parameterized policy

𝜋𝜃,𝑡 = K𝜃,𝑡(𝝃𝑑,𝜃,𝑡 −𝝃𝑡)+B𝜃,𝑡( ̇𝝃𝑑,𝜃,𝑡 − ̇𝝃)+ f𝑒
𝑡 (2.18)

where 𝜋𝜃,𝑡 is a control policy depending on a set of learnable parameters 𝜃. The
parameters define the desired trajectory, 𝝃𝑑,𝜃,𝑡 and ̇𝝃𝑑,𝜃,𝑡, as well as the desired
impedance behaviour, K𝜃,𝑡 and B𝜃,𝑡. As stated, methods from reinforcement learn-
ing can be used to find good values for these parameters.

2.3 Reinforcement Learning

2.3.1 Overview
Reinforcement learning is a type of machine learning, and it aims at achieving a goal
by learning from interaction and experience [13]. The learner, also known as the
decision-maker, is called the agent. The agent interacts with its surroundings, which
is called the environment. The agent and environment interact continually with each
other, where the agent selects actions and the environment responds to these actions
by presenting new situations, or observations, to the agent. The interaction between
the agent and the environment is illustrated in Fig. 2.1. In addition, the environment

9
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Agent

Environment

ActionObservation,

Reward

Figure 2.1: Interaction between the agent and the environment in reinforcement learning.
The agent selects an action, and the environment responds by presenting new observations
to the agent. The agent also receives a reward depending on how good the selected action
was for achieving the overarching goal.

outputs reward signals represented as scalar values that the agent tries to maximize
over time. To summarize, the goal of the agent is to maximize the total amount
of reward it achieves over the long run by choosing actions given the situation the
agent is in.

More precisely, assuming a discrete scenario, the agent and the environment
interact at each discrete time step 𝑡 = 0,1,2,3, .... At each time step 𝑡, the agent
receives a representation of the environment’s state 𝑆𝑡 ∈ 𝒮, where 𝒮 is the set of
all possible states. A state can simply be interpreted as environmental information
available to the agent, such as sensory data. Based on the given state, the agent
then selects an action 𝐴𝑡 ∈ 𝒜(𝑆𝑡), where 𝒜(𝑆𝑡) is the set of actions available in state
𝑆𝑡. One time step later, the agent will find itself in a new state 𝑆𝑡+1 and receive
a numerical reward 𝑅𝑡+1 ∈ ℛ ⊂ ℝ, both based on its chosen action. Hence, the
reward 𝑅𝑡+1 and the new state 𝑆𝑡+1 are jointly determined by the previous state 𝑆𝑡
and the chosen action 𝐴𝑡.

In order to determine an action at each time step 𝑡, the agent needs to implement
a mapping from states to probabilities of selecting each possible action in that state.
This mapping is called the agent’s policy and is denoted 𝜋𝑡. The probability of
choosing action 𝐴𝑡 = 𝑎 when the agent is in state 𝑆𝑡 = 𝑠 is denoted 𝜋(𝑎|𝑠). In
essence, reinforcement learning methods specify how the agent changes its policy as
a result of its experience.

In many cases, the interaction between the agent and the environment can be
naturally broken into subsequences, which are called episodes. Examples of this are
games like chess and checkers or manipulation tasks for robots. Each episode have
a final time step 𝑇 and ends in a distinct state called the terminal state, followed
by a reset to a starting state. The starting state can either be chosen as a standard
or sampled from a standard distribution of starting states. Tasks with episodes of
this kind are called episodic tasks.

10
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2.3.2 Returns
As stated, the goal of the agent is to maximize the cumulative reward it receives in
the long run. More generally speaking, the agent aims to maximize the expected re-
turn, where the return 𝐺𝑡 is defined as some specific function of the reward sequence.
Denoting the sequence of received rewards after time step 𝑡 as 𝑅𝑡+1,𝑅𝑡+2,𝑅𝑡+3, ...,
the return can in the simplest case be defined as the sum of the rewards:

𝐺𝑡 = 𝑅𝑡+1 +𝑅𝑡+2 +𝑅𝑡+3 +⋯+𝑅𝑇 , (2.19)

where 𝑇 is the final time step.
The return formulation (2.19) is problematic for non-episodic tasks. That is,

tasks that go on continually without a limit and have a final time step of 𝑇 = ∞.
Such tasks could for instance be applications for robots with long life spans or
continual control tasks. In these cases, the return that the agent wishes to maximize
could itself be infinite.

The problem of infinite returns can be solved by introducing the concept of
discounting. Instead of maximizing the sum of all future rewards, the agent should
try to select actions so that the sum of the discounted rewards it receives over the
future is maximized. Specifically, the agent chooses 𝐴𝑡 to maximize the expected
discounted return:

𝐺𝑡 = 𝑅𝑡+1 +𝛾𝑅𝑡+2 +𝛾2𝑅𝑡+3 +⋯ =
∞

∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1, (2.20)

where 0 ≤ 𝛾 ≤ 1 is the discount rate.
The discount rate decides the present value of future returns, where a return

received 𝑘 time steps in the future is only worth 𝛾𝑘−1 times what it would be worth
if it was to be received immediately. Choosing 𝛾 < 1, the infinite sum has a finite
value as long as the reward sequence 𝑅𝑘 is bounded. Setting 𝛾 = 0 will make the
agent concerned with only maximizing the immediate rewards. That is, the agent
will learn how to choose 𝐴𝑡 to maximize 𝑅𝑡+1. Hence, the discount rate 𝛾 is a
measure on how farsighted the agent will be. As 𝛾 approaches 1, the agent takes
future rewards more strongly into account.

2.3.3 Markov Decision Processes
A reinforcement learning task that satisfies the Markov property is called a Markov
decision process (MDP). That is, the response of the task’s environment at time
𝑡+1 depends only on the state and action representations at time 𝑡. More formally,
assuming there exists a finite number of states and reward signals, the environment’s
dynamics of a task that satisfies the Markov property is specified by

𝑝(𝑠′, 𝑟|𝑠,𝑎) = Pr{𝑆𝑡+1 = 𝑠′,𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎}, (2.21)

11
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for all 𝑟, 𝑠′, 𝑆𝑡 and 𝐴𝑡. If the state and action spaces are finite, the task is called a
finite Markov decision process (finite MDP).

Given the dynamics defined in (2.21), it is possible to compute the expected
reward for state-action pairs,

𝑟(𝑠,𝑎) = 𝔼[𝑅𝑡+1|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] = ∑
𝑟∈ℛ

𝑟 ∑
𝑠′∈𝒮

𝑝(𝑠′, 𝑟|𝑠,𝑎), (2.22)

the state-transition probabilities

𝑝(𝑠′|𝑠,𝑎) = Pr{𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎} = ∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟|𝑠,𝑎), (2.23)

and the expected rewards for state-action-next-state triples,

𝑟(𝑠,𝑎,𝑠′) = 𝔼[𝑅𝑡+1|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎,𝑆𝑡+1 = 𝑠′] =
∑𝑟∈ℛ 𝑟𝑝(𝑠′, 𝑟|𝑠,𝑎)

𝑝(𝑠′|𝑠,𝑎) . (2.24)

2.3.4 Value Functions
Value functions are functions of states (or action-state pairs) that estimate how
good it is for the agent to be in the given state (or perform a given action in the
given state). Usually, the expected return is used as a measurement of ”goodness”.
Generally, reinforcement learning algorithms involve estimating value functions.

As stated, an agent’s expected return is dependent on what actions the agent
will take. Hence, value functions are defined with respect to certain policies. The
value of a state 𝑠 under a policy 𝜋, denoted 𝑣𝜋(𝑠), is the expected return when
starting in 𝑠 and following 𝜋 thereafter. The function 𝑣𝜋 is called the state-value for
policy 𝜋. More formally, 𝑣𝜋(𝑠) can be defined for MDPs as

𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝔼𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠], (2.25)

where 𝔼𝜋[⋅] indicates the expected value of a random variable given that the agent
follows policy 𝜋, and the value 𝑡 is an arbitrary time step. It is worth noting that
the value of a terminal state is always zero.

Likewise, the value of taking an action 𝑎 in state 𝑠 under a policy 𝜋, denoted
𝑞𝜋(𝑠,𝑎), can be defined as the expected return starting from 𝑠, taking the action 𝑎,
and following policy 𝜋 thereafter

𝑞𝜋 = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] = 𝔼𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]. (2.26)

The function 𝑞𝜋 is called the action-value function for policy 𝜋.

12
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Value functions satisfy useful recursive relationships that are commonly utilized
in reinforcement learning. For any policy 𝜋 and any state 𝑠, the following holds,

𝑣𝜋(𝑠) = 𝔼𝜋 [𝐺𝑡|𝑆𝑡 = 𝑠]

= 𝔼𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠]

= 𝔼𝜋 [𝑅𝑡+1 +𝛾
∞

∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+2|𝑆𝑡 = 𝑠]

= ∑
𝑎

𝜋(𝑎|𝑠)
′

∑
𝑠

∑
𝑟

𝑝(𝑠′, 𝑟|𝑠,𝑎)[𝑟 +𝛾𝔼𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+2|𝑆𝑡+1 = 𝑠′]]. (2.27)

Using (2.22), the recursive property of the value functions can be shown by further
simplifying (2.27):

𝑣𝜋 = ∑
𝑎

𝜋(𝑎,𝑠)∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠,𝑎) [𝑟 +𝛾𝑣𝜋(𝑠′)] . (2.28)

Equation (2.28) is the Bellman equation for 𝑣𝜋, and it states a relationship between
the value of a state and the value of its successor states.

2.3.5 Optimal Value Functions
In essence, solving a reinforcement task means finding a policy that maximizes the
expected return. A policy 𝜋 is defined to be better than or equal to a policy 𝜋′ if its
expected return is greater than or equal to that of 𝜋′ for all states. More formally,
𝜋 ≥ 𝜋′ if and only if 𝑣𝜋(𝑠) ≥ 𝑣𝜋′ for all 𝑠 ∈ 𝒮. It always exists at least one policy
that is equal to or better than all other policies. This is an optimal policy and is
denoted 𝜋∗. All the optimal policies share the same optimal state-value function 𝑣∗
defined as

𝑣∗(𝑠) = max
𝜋

𝑣𝜋(𝑠), (2.29)

for all 𝑠 ∈ 𝒮
The optimal action-value function 𝑞∗ is also shared between the optimal policies,

and is defined as
𝑞∗(𝑠,𝑎) = max

𝜋
𝑞𝜋(𝑠,𝑎), (2.30)

for all 𝑠 ∈ 𝒮 and 𝑎 ∈ 𝒜. For the state-action pair (𝑠,𝑎), the optimal action-value
function gives the expected return for performing action 𝑎 in state 𝑠, and then
following an optimal policy thereafter. Hence, the following relationship between 𝑞∗
and 𝑣∗ can be derived:

𝑞∗(𝑠,𝑎) = 𝔼[𝑅𝑡+1 +𝛾𝑣∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]. (2.31)
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Since 𝑣∗ is an optimal value function, the Bellman equation for 𝑣∗ is called the
Bellman optimality equation. This equation states that the value of a state under
an optimal policy must equal the expected return for the best action for that state,

𝑣∗(𝑠) = max
𝑎∈𝒜

𝑞𝜋∗
(𝑠,𝑎)

= max
𝑎

𝔼𝜋∗
[𝐺𝑡|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= max
𝑎

𝔼𝜋∗
[

∞
∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= max
𝑎

𝔼𝜋∗
[𝑅𝑡+1 +𝛾

∞
∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+2|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= max
𝑎

𝔼[𝑅𝑡+1 +𝛾𝑣∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= max
𝑎∈𝒜(𝑠)

∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠,𝑎) [𝑟 +𝛾𝑣∗(𝑠′)]]. (2.32)

The Bellman optimality equation for 𝑞∗ is

𝑞∗(𝑠,𝑎) = 𝔼[𝑅𝑡+1 +𝛾 max
𝑎′

𝑞∗(𝑆𝑡+1,𝑎′)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

=∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠,𝑎)[𝑟 +𝛾 max
𝑎′

𝑞∗(𝑠′,𝑎′)] . (2.33)

For finite MDPs, if the dynamics of the environment 𝑝(𝑠′, 𝑟|𝑠,𝑎) is known, it is in
principle possible to find a unique solution of (2.32). In other scenarios, (2.32) can
be approximately solved using different methods.

Once 𝑣∗ is obtained, the actions that appear to be best after a one-step search
will be optimal actions. In other words, any policy that is greedy with respect to the
optimal value function 𝑣∗ is an optimal policy. The optimal value function 𝑣∗ takes
into account the reward consequences of all possible future behaviour, effectively
turning the optimal expected long-term return into a quantity that is locally and
immediately available for each state. With 𝑞∗, the agent can simply choose the
action that maximizes 𝑞∗(𝑠,𝑎) for any state 𝑠, in order to determine an optimal
policy.

2.3.6 Policy Gradient Methods
For tasks with small number of states and actions, estimates of the value functions
are usually represented as a table with one entry for each state (or state-action pair).
However, in many of the tasks where it is desirable to apply reinforcement learning,
most of the encountered states will never have been experienced before. To learn
on these tasks, it is necessary to generalize from previously experienced states to
unseen ones.
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Function approximation is a wide-spread generalization method which takes sam-
ples from a desired function (e.g. value function) and attempts to generalize from
them to construct an approximation of the entire function. The standard way of
approximating the value function and then determine a policy from it has, however,
shown to be theoretically unmanageable. For instance, small changes in the value
function can lead to large, and potentially breaking, changes in the resulting policy.

Instead of approximating a value function and then use that to compute a de-
terministic policy, policy gradient methods approximate a stochastic policy directly
using an independent function approximator with its own parameters [14]. Usually,
a policy is represented by a neural network whose input is a representation of the
state and the output is action selection probabilities. The network weights will then
work as the policy parameters. Letting 𝜃 be the the vector of the policy parameters
and 𝜌 the performance of the corresponding policy (e.g. average reward per step),
the policy parameters are updated approximately proportional to the gradient

Δ𝜃 ≈ 𝛼𝜕𝜌
𝜕𝜃 , (2.34)

where 𝛼 is a positive-definite step size. As a contrast to the value-function approach,
small changes in 𝜃 will cause only small changes in the policy and in the state-
visitation distribution. If the update rule (2.34) is achieved, then 𝜃 can usually be
assured to converge to a locally optimal policy in the performance measure 𝜌.

2.3.7 Actor-Critic Methods
Actor-critic methods are types of Temporal Difference (TD) methods which aim at
learning a policy 𝜋 by estimating a value function 𝑣 [15]. The estimation is usually
done through the use of policy gradient methods. Especially for TD methods, the
agent learns directly from raw experience without any knowledge of the environ-
ment’s dynamics - an approach which is often called for model-free learning. TD
methods also utilizes bootstrapping, where the methods update estimates based on
previously calculated estimates. The estimates are updated online, meaning the
observed reward and value function at the next time step, 𝑅𝑡+1 and 𝑉 (𝑆𝑡+1), are
used to update the estimates. In this way, TD methods do not have to wait for an
episode to end before updating its value function estimates as compared to offline
methods.

Actor-critic methods are recognized by their characteristic architecture shown in
Fig. 2.2. The policy structure is called for the actor, as it is deciding which action
to perform. The estimated value function is known as the critic, because it judges
the actions made by the actor. Usually, the critic is a state-value function. All the
learning is on-policy, which means the critic learns about and critiques whatever
policy currently being followed by the actor. The critique is a scalar error signal
which facilitates all the learning in both the actor and the critic. After an action is
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selected, the critic evaluates the new state in order to decide whether the selected
action lead to a better or worse state than expected. The evaluation is defined as
the error

𝛿𝑡 = 𝑅𝑡+1 +𝛾𝑉𝑡(𝑆𝑡+1)−𝑉 (𝑆𝑡). (2.35)

Here, 𝑉𝑡 is the value function implemented by the critic at time 𝑡. A positive error
encourages to increase the chance of choosing action 𝐴𝑡 when in state 𝑆𝑡, while a
negative error suggests a decrease in the chance of choosing this action being in state
𝑆𝑡.

State

Policy

Error

Value

Function

Actor

Critic

Action

Environment

Reward

Figure 2.2: Architecture for actor-critic methods. Based on the current state, the actor
chooses an action resulting in the environment presenting a new state to the actor and
the critic. Using the corresponding reward for choosing this action, the critic calculates
an error that is used to update both the policy and the value function estimate.

Inspired by: [13]

2.3.8 Domain Randomization
Domain randomization is a method used to improve the generalization capabilities
of reinforcement learning models, where the simulation environment is randomized
during training to expose the model to a wide range of environment variants. This
method is proven to effectively reduce the reality gap [16]. The reality gap is a
collective term used to describe discrepancies between physics simulators and the
real world, such as unmodeled physics and low-fidelity simulated sensors. A large
reality gap makes it difficult to transfer behaviors from simulation into the real
world, ultimately forming a barrier to use simulated data on real robots. However,
if the variability in the training environment is sufficiently large, models trained
in simulation are capable of transferring to the real world with limited additional
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training. In such cases, the real world may appear to the model as just another
variation.

2.4 Proximal Policy Optimization
Proximal Policy Optimization (PPO) [17] is a reinforcement learning algorithm that
has gained great popularity in the recent years. The algorithm is based on an actor-
critic structure, combined with trust region methods, to achieve performance that
is comparable or better than state-of-the-art approaches, while being much simpler
to implement. In short, trust region methods work by first defining a region around
the current policy and then confine the updated policy to lie within this region. In
this way, PPO is able to yield robust policy updates in both continuous and discrete
action spaces.

In order to estimate the value function, PPO aims at maximizing the following
objective function:

𝐿𝐶𝐿𝐼𝑃 (𝜃) = �̂�𝑡 [min(𝑟𝑡(𝜃) ̂𝐴𝑡,clip(𝑟𝑡(𝜃),1−𝜖,1+𝜖) ̂𝐴𝑡)] , (2.36)

where the expectation �̂�𝑡[...] at timestep 𝑡 specifies the empirical average over a finite
batch of samples, as the algorithm alternates between sampling and optimization.
The probability ratio between the new and the old policy is denoted 𝑟𝑡(𝜃). That is,

𝑟𝑡(𝜃) = 𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃old

(𝑎𝑡|𝑠𝑡)
, (2.37)

where 𝑟(𝜃old) = 1. The estimator of the advantage function is denoted ̂𝐴𝑡 and serves
the same purpose as (2.35). The estimator is defined as

̂𝐴𝑡 = 𝛿𝑡 +𝛾𝛿𝑡+1 +⋯+𝛾𝑇 −𝑡+1𝛿𝑇 −1, (2.38)

where 𝛿𝑡 is given by (2.35). The second term clip(𝑟𝑡(𝜃),1 − 𝜖,1 + 𝜖) ̂𝐴𝑡) clips the
probability ratio and is used to remove the incentive for moving 𝑟𝑡 outside of the
interval [1−𝜖,1+𝜖] where 𝜖 is a hyperparameter usually chosen to 𝜖 = 2. By taking
the minimum of the clipped and the unclipped objective 𝑟𝑡(𝜃) ̂𝐴𝑡, the final objective
works as a lower bound on the unclipped objective. Hence, the change in probability
ratio is ignored when it would make the objective improve, and included when it
makes the objective worse. It is also possible to further modify the objective function
by adding a penalty on KL divergence [18]. Both the clipped objective and KL
divergence contribute to PPO making robust policy updates.

An implementation of the PPO algorithm, taken from [17], is shown in Algorithm
1. It is worth noting that PPO facilitates multiprocessing, as it is possible to run
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several actors at once.
Algorithm 1: PPO, Actor-Critic Style

for iteration = 1, 2, ... do
for actor = 1, 2, ..., N do

Run policy 𝜋𝜃old
in environment for 𝑇 timesteps

Compute advantage estimates ̂𝐴1, ..., ̂𝐴𝑇
end
Optimize objective function 𝐿 wrt. 𝜃, with 𝐾 epochs and minibatch size
𝑀 < 𝑁𝑇

𝜃old ← 𝜃
end

2.5 Related Work
Considerable research has been done on combining reinforcement learning with
contact-rich manipulation tasks in unstructured and uncertain environments. These
tasks often require haptic and visual feedback to yield robust control. An approach
of using self-supervision learning to combine multisensory information is proposed
in [19]. To combat the sample complexity of high-dimensional continuous state-
action spaces, [20] divides the task into free and contact-rich sub-tasks. To handle
the contact-rich sub-tasks, the dynamic movement primitive framework [21] is ex-
tended by a coupling term that provides active compliance under contact with the
environment. Another approach to increase the training efficiency is to learn the
environment dynamics with Gaussian Process while training the policy, and utilize
the learned dynamic model to improve target value estimation [22].

Previous work has demonstrated the importance of having force control when
learning interaction tasks. Force control can be learned explicitly [23], where the
policy is initialized from a user-provided kinetic demonstration and a reinforcement
learning algorithm is later used to optimize the policy through trial and error. A
more modern approach is to learn force control by learning a desired wrench [24].
The technique combines reinforcement learning with force and torque information by
incorporating a hybrid operational space motion/force controller. The reinforcement
learning algorithm is configured to learn a desired wrench on the end-effector, which
is then sent to the controller. Through the choice of the desired wrench, the hybrid
controller implicitly achieves adaptive impedance behavior. To process the noisy
force and torque readings from the sensors, a novel neural network architecture was
introduced where the force/torque information is concatenated in the second last
layer of the network.

Learning impedance schemes in the task space can significantly improve the
learning speed of manipulation tasks [25]. The operational space formulation used
in this work shows the advantage of abstracting the robot kinematics for contact-rich
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tasks. However, this may lead to a drawback of fixing the redundancy resolution
scheme, limiting the range of potential behaviors. Furthermore, results show that
the best choice for a task-space may vary across and within tasks [26].

A policy directly outputting joint torques should in theory be able to solve
any task. In practice, however, it is seen that reinforcement learning algorithms
struggle to robustly solve delicate tasks without any organization of the action space.
How the choice of action space can give robust performance in tasks with contact
uncertainties is investigated in [27]. The authors propose a policy giving output
impedance and desired position in joint space.

Most state-of-the-art work in robotic manipulation focuses on handling rigid bod-
ies. However, deformable object manipulation has many relevant real-world appli-
cations, such as surgery [28]. Because of the large configuration space of deformable
objects, solutions using traditional modelling approaches requires extensive engi-
neering work. Using deep reinforcement learning algorithms, [29] solves the problem
of manipulating a deformable cloth. The solution utilizes RGB images to derive the
position of the cloth, and by exposing the agent for domain randomization while
training in simulation, the agent is successfully deployed in the real world.

Ultrasound imaging is progressively becoming more automated. Recently, a ma-
chine learning based robot-assisted system that automatically scans tissue was pro-
posed [30]. The ultrasound image feedback system automatically adjusts the probe
contact force based on the image quality. The images’ correlation, compression and
noise characteristics are fed into a support vector machine classifier, and the robot
arm adjusts the scanning force based on the classifiers output. Another approach
of automating ultrasound scans is to determine the scan range and scan path after
finding a 3-D contour of the skin surface [31]. The 3-D contour is found by adopting
a depth camera to capture a point cloud of the skin surface. A normal-vector-based
method is then used to determine the pose of the ultrasound probe corresponding
to each scan point along the scan path. For fine-tuning of the pose, contact force
feedback from two force sensors was implemented.
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Chapter 3

Methodology

The work done in the project thesis [32], which includes the creation of a simula-
tion environment for robot-assisted medical procedures, was used as a foundation
for further development. Utilizing the simulation framework, it was now possible
to explore the potential of learning soft contact interaction tasks with the use of
reinforcement learning.

3.1 Simulation Framework
As mentioned, the work in this thesis builds on the simulation framework created
in [32]. An overview of the framework architecture, which uses the robosuite frame-
work [33] as foundation, is shown in Fig. 3.1. A simulation model is instantiated by
the MuJoCo engine to make a simulation runtime, referred to as an environment.
The policy sends a set of actions to the low-level controller, and the controller uses
these actions to compute a set of torques. Based on the torques, the MuJoCo en-
gine performs internal calculations to determine the next state of the simulation.
The sensors retrieve information from the new simulation state and generate cor-
responding observations, which are then sent back to the policy. The data flow
during the training of a reinforcement learning model is represented by the dashed
lines. Compared to the framework in [32], the environment has been extended with
a trajectory generator. A trajectory is created by the environment at initialization
and a desired position and orientation is sent to the controller at each timestep.

The simulation environment is defined by the simulation model which contains
definitions of the robot and object models. Using robosuite’s modelling APIs, it
is possible to create an environment containing relevant objects and robots with
customized end-effectors. The simulation environment created in [32] is shown in
Fig. 3.2. The environment consists of a robot manipulator, a soft body and a table.
Note that the shape of the soft body has been changed into a box shape, compared
to the cylindrical shaped soft body used in [32]. An ultrasound probe is attached as
the robot manipulator’s end-effector. The environment provides support for both
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Figure 3.1: Framework architecture. Actions are sent from the policy to the robot’s
controller and converted into low-level torque commands. The MuJoCo engine uses the
torque commands to calculate a new simulation state. The sensors interprets the new
simulation state and converts them into observations, which are sent back to the policy.
A desired trajectory pose is fed to the controller at each timestep. The training loop is
illustrated by the dashed lines.

Inspired by: [32]

the Panda [34] and the UR5e [35] robot manipulator.
The soft body object is a central component of the simulation environment, and

is shown in Fig. 3.3. The soft object consists of several, smaller rigid bodies placed
in a grid. Each rigid body has a joint to the grid center, making it possible for each
body to be displaced. Simultaneous displacements of the rigid bodies will make the
object compress or expand, ultimately replicating the physical properties of a soft
body. It is further possible to specify the weight, quantity, spacing and size of the
rigid bodies, together with the stiffness and damping of the joints, allowing for full
customization of the soft object’s physical properties. A visualization of the soft
body’s physical properties is shown in Fig. 3.4.

3.2 Low-level Controller
As stated, the goal of this thesis is to explore the capabilities of making a robot
manipulator learn to handle soft contacts using reinforcement learning. The trained
policy outputs a set of actions that are sent to a low-level controller, as shown in
Fig. 3.1. Hence, a good choice of low-level controller is crucial in laying a foundation
for the agent to be successful. In order to handle the uncertainties of an environment
containing a soft body, the controller should be able to vary its impedance along
the execution of the task.

As mentioned, [25] presents a variable impedance controller in the end-effector
space (VICES). The controller has shown itself advantageous for constrained and
contact-rich tasks, a trait that can prove itself beneficial when interacting with soft

21



3.2. LOW-LEVEL CONTROLLER CHAPTER 3. METHODOLOGY

(a) Front view.

(b) Side view.

Figure 3.2: Simulation environment. The environment contains a robot manipulator
(i.e. Panda robot) with a probe as its end-effector, a soft body and a table.

objects. The controller builds on the operational space controller (OSC) formulation
[36], where the torques applied to the robot joints are given by

𝜏 = 𝑢+𝜏𝑔𝑟𝑎𝑣𝑖𝑡𝑦 +𝜏𝑛𝑢𝑙𝑙. (3.1)

Here, 𝜏𝑔𝑟𝑎𝑣𝑖𝑡𝑦 are torque compensations due to gravity and Coriolis forces, and 𝜏𝑛𝑢𝑙𝑙
are the nullspace torques. The VICES control law 𝑢 is defined as

𝑢 =𝐽𝑇
𝑝𝑜𝑠 [Λ𝑝𝑜𝑠 [𝑘𝑝𝑜𝑠

𝑝 (𝑝𝑑𝑒𝑠 −𝑝)−𝑘𝑝𝑜𝑠
𝑣 𝑣]]+

𝐽𝑇
𝑜𝑟𝑖 [Λ𝑜𝑟𝑖 [𝑘𝑜𝑟𝑖

𝑝 (𝑅𝑑𝑒𝑠 ⊖𝑅)−𝑘𝑜𝑟𝑖
𝑣 𝜔]] , (3.2)

where Λ ∈ ℝ6×6 is the inertial matrix in the end-effector frame that decouples the
end-effector motion. The quantities Λ𝑝𝑜𝑠 and Λ𝑜𝑟𝑖 are the parts of the inertial ma-
trix that corresponds to position and orientation, respectively. The position and
orientation parts of the end-effector Jacobian is denoted 𝐽𝑝𝑜𝑠 and 𝐽𝑜𝑟𝑖, respectively.
The symbol ⊖ represents subtraction in 𝕊𝕆(3). The desired position 𝑝𝑑𝑒𝑠 and ori-
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Figure 3.3: Soft body object. The soft body consists of several rigid bodies placed in
a grid. Each rigid body has a joint connected to the center, allowing each body to be
displaced. The displacements of the rigid bodies replicates the physical properties of a
soft body. Note that the soft body is default covered by a skin mesh, which is effectively
concealing the rigid bodies.

Figure 3.4: Visualization of the soft body’s physical properties. The ultrasound probe
applies a contact force on the soft body, making the body compress. The probe, robot
manipulator and tabletop have been made transparent to enhance visibility.

entation 𝑅𝑑𝑒𝑠 are given by the trajectory. In essence, (3.2) is a PD controller in
end-effector space.

Choosing the controller gains, 𝑘𝑝𝑜𝑠
𝑝 , 𝑘𝑝𝑜𝑠

𝑣 , 𝑘𝑜𝑟𝑖
𝑝 and 𝑘𝑜𝑟𝑖

𝑣 , as the action space
allows the agent to get full control of the probe’s compliant behavior. Changing
the gains while following a trajectory will allow the probe to effectively adjust to its
environment, where, for instance, the z-component of 𝑘𝑝𝑜𝑠

𝑝 and 𝑘𝑝𝑜𝑠
𝑣 can be reduced

to allow displacements from the trajectory in the z-position. This is a useful attribute
for interactions with soft bodies, as the probe may need to adjust its compliance
depending on the exerted force and physical properties of the body. Hence, the
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policy action space 𝒜 for the first model was chosen to be

𝒜 = {𝑘𝑝𝑜𝑠
𝑝 ,𝑘𝑜𝑟𝑖

𝑝 }, (3.3)

This action space consists of a total of six values. The three first values 𝑘𝑝𝑜𝑠
𝑝 corre-

sponds to the proportional gain for the position tracking, while the three next values
𝑘𝑜𝑟𝑖

𝑝 corresponds to the proportional gain for the orientation tracking. Note that in
(3.2), the orientation error is described by a set of axis-angles. The velocity gains
were chosen such that critical damping was obtained. That is,

𝑘𝑝𝑜𝑠
𝑣 = 2√𝑘𝑝𝑜𝑠

𝑝 (3.4a)

𝑘𝑜𝑟𝑖
𝑣 = 2√𝑘𝑜𝑟𝑖𝑣 . (3.4b)

To make the probe’s behavior in the 𝑧-direction fully independent, practically
separating it from the desired trajectory 𝑧-position, a second policy with an extended
action space was created. The extended action space 𝒜𝑧 was chosen as the following:

𝒜𝑧 = {𝑘𝑝𝑜𝑠
𝑝 ,𝑘𝑜𝑟𝑖

𝑝 ,Δ𝑧}, (3.5)

where Δ𝑧 is a relative displacement in 𝑧-position. Instead of only being able to
control the compliance in the 𝑧-direction, the controller is now able to control the
𝑧-position of the end-effector directly. Ultimately, this gives more freedom in con-
trolling the movement in 𝑧-direction. It was believed that this extended action
space would make it easier for the manipulator to exert a desired contact force. As
a consequence of introducing Δ𝑧, the desired position was modified to

𝑝𝑑𝑒𝑠 = [𝑥𝑑𝑒𝑠 𝑦𝑑𝑒𝑠 𝑧𝑑𝑒𝑠 +Δ𝑧], (3.6)

where 𝑥𝑑𝑒𝑠 , 𝑦𝑑𝑒𝑠 and 𝑧𝑑𝑒𝑠 are the desired positions given by the trajectory in the
𝑥-, 𝑦- and 𝑧-direction, respectively. The velocity gains of the controller were sat
according to (3.4).

A baseline policy was also generated in order to quantify the sample efficiency and
enhanced performance of using an appropriate low-level controller. Instead of having
the controller gains as its action space, the baseline policy outputs a desired wrench.
That is, the policy outputs the desired force 𝑓𝑑𝑒𝑠 and desired torque 𝜏𝑑𝑒𝑠 that should
be applied to the probe directly, effectively removing the low-level controller layer.
More specifically, the control law is modified to be

𝑢𝑏𝑙 = 𝐽𝑇 Λ[𝑓𝑑𝑒𝑠
𝜏𝑑𝑒𝑠

], (3.7)

where 𝐽 is the Jacobian. The action space 𝒜𝑏𝑙 of the baseline policy was then chosen
as

𝒜𝑏𝑙 = {𝑓𝑑𝑒𝑠, 𝜏𝑑𝑒𝑠}. (3.8)
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3.3 Reward Function

A critical part of making an agent capable of learning a task using reinforcement
learning is the design of the reward function. As stated, rewards are used as mea-
surements on the ”goodness” of a selected action. This reward is then used to update
the current policy, meaning the reward function is implicitly defining the learned
behaviour of the agent. Therefore, the overarching goal of a task is defined by an
environment’s reward function. For instance, if a robot manipulator is to learn how
to lift up a box, the manipulator should get rewards to incentive such a behaviour.
This could include rewards for performing actions such as the manipulator moving
its end-effector closer to the box, coming in contact with the box and actually lifting
up the box.

The design of the reward function is inspired by [37]. As known, the goal of
the ultrasound task is to make a robot manipulator, with an attached ultrasound
probe as its end-effector, learn how to perform a sweeping motion on the surface of
a soft body. More precisely, the manipulator’s end-effector should learn to follow
a reference trajectory going along the surface of a soft body, while both exerting
a reference contact force and keeping a reference mean velocity throughout the
episode. Since the task consists of different components, it is natural to also divide
the reward function into corresponding reward components. With a modular form
for the reward function, it is possible to weight the components based on their
importance.

The reward function contains terms which encourage following the reference tra-
jectory, exerting a desired force and keeping a desired mean velocity throughout the
episode. The trajectory term is further divided into two parts; one part encouraging
minimization of the probe’s position error and one part encouraging minimization
of the probe’s orientation error. The same is done for the force term; one part
encourages minimization of the force deviation while the other part encourages min-
imization of change in the exerted force. The reward function 𝑟tot can be summarized
as

𝑟tot = 𝑤𝑝𝑟𝑝 +𝑤𝑜𝑟𝑜 +𝑤𝑓𝑟𝑓 +𝑤𝑑𝑟𝑑 +𝑤𝑣𝑟𝑣, (3.9)

where 𝑟𝑝 is the positional reward, 𝑟𝑜 is the orientation reward, 𝑟𝑓 is the force reward,
𝑟𝑑 is the derivative force reward and 𝑟𝑣 is the velocity reward. The weights 𝑤𝑝 = 5,
𝑤𝑜 = 1, 𝑤𝑓 = 3, 𝑤𝑑 = 2 and 𝑤𝑣 = 1 are the corresponding reward weights, where 𝑤𝑝
weights the position reward, 𝑤𝑜 weights the orientation reward, 𝑤𝑓 weights the force
reward, 𝑤𝑑 weights the derivative force and 𝑤𝑣 weights the velocity reward. The
weights were chosen manually based on their importance for completing the task.
The most central part of the task is to learn the manipulator to follow a trajectory
while exerting a desired contact force. Thus, the trajectory term and the force term
were given the largest weights.
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Generally, each reward term takes the following form

𝑟 = exp(−𝑒), (3.10)

where 𝑟 is a reward term and 𝑒 is an error corresponding to that reward term. Due
to the nature of the exponential function, all the reward terms are scaled such that
they lie in the interval [0,1]. The magnitude of the reward term can therefore be
decided by multiplying the term with an appropriate weight. It is also possible to
specify the sensitivity of the reward term by scaling the error. Hence, by designing
each reward term according to (3.10), it is possible to decide both the sensitivity and
magnitude of each term. As an effect, the reward function in (3.9) can be shaped
to fit various requirements.

The position error 𝑒𝑝, which denotes the norm of the squared difference between
the probe position and the reference trajectory in the xy-plane, is defined as

𝑒𝑝 = ∥[𝑐𝑝(p𝑡 −pgoal,𝑡)]
2∥ , (3.11)

where p𝑡 is the x and y position of the probe, and pgoal,𝑡 is the x and y position of
the reference trajectory at timestep 𝑡. The error coefficient was set to 𝑐𝑝 = 90.

The orientation error 𝑒𝑜, which denotes the difference between the current ori-
entation of the probe and the desired orientation, is defined as

𝑒𝑜 = 𝑐𝑜 ⋅ 𝑑(q𝑡,qgoal,𝑡). (3.12)

Here, 𝑐0 = 0.2. The quaternions q𝑡 and qgoal,𝑡 represent the current orientation of
the probe and the goal orientation where the probe is kept at an upright position,
respectively. The quaternions are defined as q = 𝑣 + u ∈ 𝑆3, where 𝑆3 is a unit
sphere in ℝ4, 𝑣 ∈ ℝ, u ∈ ℝ3. The distance metric between two quaternions 𝑑(⋅) is a
scalar value, and it is given by [38]

𝑑(q1,q2) = {2𝜋, q1 ∗ q̄2 = −1+[0,0,0]𝑇
2‖log(q1 ∗ q̄2)‖ , otherwise

, (3.13)

where the quaternion logarithm is given by

log(q) = log(𝑣 +u) = {arccos(𝑣) u
‖u‖ , u ≠ 0

[0,0,0]𝑇 , otherwise
. (3.14)

The force error 𝑒𝑓 , denoting the squared difference between the running mean of
the probe contact force in 𝑧-direction and the goal contact force, can be expressed
as

𝑒𝑓 = [𝑐𝑓( ̄𝑓𝑡 −𝑓goal,𝑡)]
2 , (3.15)

where 𝑐𝑓 = 0.7. Due to noisy contact force measurements, a running mean was used
as a filter to smooth out the measurements. The running mean ̄𝑓𝑡 was chosen as an
exponential moving average [39] such that

̄𝑓𝑡 = 𝛼𝑓𝑡 +(1−𝛼) ̄𝑓𝑡−1, 0 < 𝛼 ≤ 1. (3.16)
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The probe contact force measurement in 𝑧-direction at timestep 𝑡 is denoted 𝑓𝑡,
while 𝛼 is a smoothing factor chosen as 𝛼 = 0.1.

The derivative force error 𝑒𝑑, denoting the squared difference between the deriva-
tive of the contact force in the 𝑧-direction and a goal derivative force, is defined as

𝑒𝑑 = [𝑐𝑑(𝑓 ′
𝑡 −𝑓 ′

goal,𝑡)]
2 , (3.17)

where 𝑐𝑑 = 0.01. The derivative of the force was calculated as

𝑓 ′
𝑡 = 𝑓𝑡 −𝑓𝑡−1

𝑇𝑐
. (3.18)

Here, 𝑇𝑐 is the timestep of the controller.
The velocity error 𝑒𝑣, defined as the squared difference between the running

mean of the probe velocity and the goal mean velocity, can be written as

𝑒𝑣 = [𝑐𝑣( ̄𝑣𝑡 −𝑣goal,𝑡)]
2 , (3.19)

where 𝑐𝑣 = 45. In order to ensure that the average velocity throughout the episode
is kept at a desired value, a running mean was used instead of the raw velocity
measurement. By choosing the running mean ̄𝑣probe, t as a single moving average
[40], all the measurements would be weighted equally throughout the episode. More
specifically

̄𝑣𝑡 = ̄𝑣𝑡−1 + ‖v𝑡−1‖− ̄𝑣𝑡−1
𝑁 , (3.20)

where v𝑡 is the probe velocity at timestep 𝑡, and 𝑁 is the number of timesteps taken
in the episode (i.e. number of previous data points). Equation (3.20) is based on
Welford’s online algorithm [41].

Overall, the error multipliers were chosen empirically, such that each error
showed reasonable sensitivity. That is, the error should not be too sensitive nor
too unresponsive, as that would make it difficult for the agent to learn.

3.4 Observation Space
To achieve efficient training and good performance, it is important to represent the
environment state in a satisfactory manner. That is, the observations should be
rich and contain useful information the agent might need to learn a well performing
policy. However, the observation space should also be minimalistic, as unuseful or
redundant observations could potentially make the reinforcement algorithm learn
slower. The trade-off between including more observations that might be helpful
for the agent to learn and keeping the observation space minimalistic, is something
worth taking into consideration when designing the observation space.

The chosen observation space consists of the following observations:

• End-effector contact force.
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• End-effector torque.

• End-effector velocity.

• End-effector pose difference, i.e. deviation between trajectory and end-effector
pose.

• Difference between the derivative of the contact force and a goal derivative
contact force.

• Difference between running mean contact force and goal contact force.

• Difference between running mean velocity and goal velocity.

The first five observations were deemed necessary for the agent to learn a good
performing policy, as they contain essential information. The last two observations,
however, were added to investigate if they would accelerate the learning process.
Specifically, the information contained in the last two observations can be deduced
by combining the information given by the other observations and the reward func-
tion. Hence, it can be argued that the two last observations are redundant. It is
also common to add joint measurements, like joint positions and joint velocities.
These observations were judged unnecessary as the control law already contains this
information through the implemented forward kinematics of the manipulator.

3.5 Algorithm
Due to its sample efficiency, stability, ease-of-use and multi-processing capabilities,
the stable-baselines [42] PPO algorithm implementation was chosen as the preferred
reinforcement learning algorithm. The neural network architecture for the actor and
the critic in the PPO algorithm is shown in Fig. 3.5. The actor and the critic both
have their own independent network mainly consisting of two fully connected layers.
The first layer consists of 256 neurons, while the second layer consists 128 neurons.
The activation function used after each layer is tanh. Both networks also have a
third fully connected layer, which is used to map the output features of the previous
layer into appropriate dimensions for the actor and the critic, respectively.

3.6 Reinforcement Learning Techniques

3.6.1 Domain Randomization
In order to generalize the agent’s capabilities of interacting with the soft body sur-
face, trajectory randomization was implemented. A visualization of the trajectory
randomization is shown in Fig. 3.6, where a grid of data points was created in the
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Figure 3.5: Neural network architecture for the actor and the critic in the PPO algorithm.
The scalar values represent the number of input features and output features (i.e. neurons)
for each fully connected layer.

𝑥𝑦-plane of the torso. The 𝑧-position for all the data points in the grid was fixed
to the same value. At the start of each episode during training, the start point and
end point of the trajectory were randomly selected from the grid. To allow the agent
to fully explore each trajectory, the end-effector was initialized at a random point
along the trajectory. Gaussian noise was also added to the initial position of the
probe to introduce further trajectory variability.

Exposing the agent to randomized trajectories facilitates exploration of the soft
body surface. Through exploration, the agent will discover new states and will be
forced to act upon them. By continuously exposing the agent to new states it will
learn how to generalize its behavior, as opposed to only exposing the agent to a
set of deterministic trajectories. If an agent is left to just learn from deterministic
trajectories, it will often converge to a local minimum where it will only learn to
handle states given by the trajectories in the training set.

To introduce further environment variability during training, the physical prop-
erties of the torso were randomized between episodes. In [32], a value range for
both the stiffness and damping of the torso were acquired through the execution
of a calibration task. During training, the soft torso was initialized with a random
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stiffness and damping chosen from their respective value ranges.

y

x

Figure 3.6: Trajectory randomization. A grid of data points was created in the 𝑥𝑦-plane
of the torso. During training, a start point and end point for the trajectory are randomly
chosen from the grid at the start of each episode. Note that that the granularity of the
grid in the figure does not match the granularity of the implemented grid.

3.6.2 Normalization
After weight initialization and before training, the actor neural network will gener-
ally output values in a small range around zero. In order for the low-level controller
to have an acceptable performance, the 𝑘𝑝 values should be in the range of hun-
dreds. For the neural network to output values of this magnitude, the weights have
to undergo large changes. This is time consuming as the updating process is based
on computational demanding simulation data. The wide output value range also
makes it hard for the algorithm to efficiently explore the whole action space. Ul-
timately, the training process is slowed down and the performance of the trained
agent is reduced.

To combat these issues, it is important to normalize both the inputs and the
outputs of the neural network. The input observations are easily normalized by
wrapping the environment with a normalization wrapper provided by the stable-
baselines framework. Likewise, the output values were normalized to values close to
zero. This was done for all the three action spaces.
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Chapter 4

Experimental Setup

This chapter presents the setup and hyperparameters used to conduct the experi-
ments. The configurations of the reinforcement learning algorithm and the low-level
controller are first described, before presenting the organization of the training pro-
cess. To summarize, Section 4.4 gives an overview of the different models.

4.1 Algorithm Hyperparameters
Reinforcement learning algorithms usually have numerous tunable hyperparameters.
For the PPO algorithm, the hyperparameters encompass, among others, the batch
size for each update and the KL divergence limit. It is also possible to decide the
learning rate of the update rule, where support for adaptive learning rates depending
on the current remaining training progress is included. The hyperparameters were
chosen as the default values specified in the stable-baselines3 implementation [43],
since these values have empirically shown to yield good results for a variety of
environments.

4.2 Controller Configuration
Like the PPO algorithm, the OSC has a range of configurations. Both the policy
output actions and the controller output torques were sent at a frequency of 500 Hz.
Practically, this means that a new policy output was sent to the controller at every
timestep. Since the policy and controller were running at the same frequency, it was
not necessary to interpolate the policy commands. The desired trajectory pose was
updated at the same frequency as the controller.

The range for the 𝑘𝑝 values was set to [0,500], with an initial value of 𝑘𝑝 = 300.
Since the PPO actor neural network initially outputs values in the range [−1,1], the
controller’s 𝑘𝑝 input range was modified to [0,1]. Here, an input of 0 corresponds to
𝑘𝑝 = 0 and an input of 1 corresponds to 𝑘𝑝 = 500. The same type of scaling was also
done for Δ𝑧, 𝑓𝑑𝑒𝑠 and 𝜏𝑑𝑒𝑠. The input limits were set to [−1,1], while the output
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range for Δ𝑧 was set to [−0.05,0.05] and the output range for 𝑓𝑑𝑒𝑠 and 𝜏𝑑𝑒𝑠 was set
to [−10,10]. The input/output mapping is summarized in Table 4.1.

Table 4.1: Input/output mapping for the controller. The actor network gives values
in the range specified by the input values. The input values are then scaled to be in the
interval specified by the 𝑜𝑢𝑡𝑝𝑢𝑡 values, before they are used in the controller computations.

min max
𝑘𝑝 input 0 1
𝑘𝑝 output 0 500
Δ𝑧 input -1 1
Δ𝑧 output -0.05 0.05
𝑓𝑑𝑒𝑠 input -1 1
𝑓𝑑𝑒𝑠 output -10 10
𝜏𝑑𝑒𝑠 input -1 1
𝜏𝑑𝑒𝑠 output -10 10

The remainder of the control configurations were set to their default values as spec-
ified in the robosuite implementation [44].

4.3 Training Configuration
The horizon of each episode (i.e. the episode length) was set to 1000 timesteps. To
improve the learning speed and hinder the model from using experience from irrel-
evant states when training, several early termination conditions were implemented.
The episode would terminate early if:

• The joint limit of the robot was reached.

• The probe deviated significantly from the desired trajectory position. More
precisely, terminate if:

𝑒𝑝 > 1.0 (4.1)

• The orientation of the probe deviated significantly from the desired goal ori-
entation while in contact with the torso. More specifically, terminate if:

𝑒𝑜 > 0.10 and probe is in contact with torso (4.2)

• The probe loses contact with the torso.

For the trajectory randomization shown in Fig. 3.6, a 50×50 grid of data points
was created. Note that the following position coordinates are given in the de-
fault world frame defined in robosuite. The center of the soft body was located
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at [0,0,0.857]. The z-position of all the data points was set to 𝑧𝑔𝑟𝑖𝑑 = 0.896, which
corresponds to a z-position moderately below the surface of the body. The grid was
defined over the ranges 𝑥 = [−0.12,0.15] and 𝑦 = [−0.09,0.09]. The noise applied to
the initial 𝑧-position of the probe was sampled from a Gaussian distribution with
𝜇 = 0 and 𝜎 = 0.015, while the noise applied to the x- and y-positions was sampled
from the same type of distribution with 𝜎 = 0.00375.

The stiffness and damping parameters used to randomize the physical properties
of the torso were from the prior work [32]. For the stiffness parameter, the values
were chosen from the interval [1300,1600], while the damping parameter was picked
from the interval [17,41].

As stated in the reward function, several goal values need to be chosen. The
trajectory goal position is extracted from the trajectory generator at each timestep,
while the goal orientation quaternion was set to

q𝑔𝑜𝑎𝑙 = (−0.692,0.722,−0.005,−0.11). (4.3)

This orientation corresponds to an upright probe position. Note that the quaternion
is given on the (𝑥,𝑦,𝑧,𝑤) form. Through empirical testing, the goal contact force in
the 𝑧-direction was chosen as

𝑓𝑔𝑜𝑎𝑙 = 5N. (4.4)

Since it is desirable to keep a constant contact force (i.e. no change in the force),
the goal derivative contact force was set to

𝑓 ′
𝑔𝑜𝑎𝑙 = 0N/s. (4.5)

The goal mean velocity was chosen as

𝑣𝑔𝑜𝑎𝑙 = 0.04m/s. (4.6)

All training was done on an AMD Ryzen Threadripper 3970X processor with
a NVIDIA GeForce RTX 3090 and 128 GB RAM. Each model was trained until
sufficient convergence was obtained. Essentially, each model was trained for 40
million timesteps, which would correspond to 40 000 episodes if none of the episodes
terminated early. On average, it took 32 hours to train each model.

4.4 Model Overview
To summarize, a total of three different models were trained; a baseline model, a
variable impedance model and an extended variable impedance model. The variable
impedance models share the same control law 𝑢. The action space 𝒜 is different
for all three models, and the torques applied to the manipulator joints are given by
(3.1).
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As stated, the baseline model has no low-level control layer and outputs a desired
force and a desired torque that is directly applied to the end-effector. The control
law is given by (3.7) and the model’s action space is defined in (3.8).

The variable impedance model uses the VICES as its low-level controller, making
(3.2) the control law. The policy outputs the 𝑘𝑝 gains used in the control law, and
the model’s action space is therefore given by (3.3).

The extended variable impedance model uses the same low-level controller as the
previous model, where the control law is given by (3.2). The action space, however,
is extended with an additional parameter Δ𝑧 in (3.5).
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Chapter 5

Results

This chapter presents the results from each of the three models, before they are quan-
titatively summarized in the last section. Each model was set to follow a predeter-
mined linear trajectory with the following start point pstart = (0.062,−0.052,0.896)
and end point pend = (−0.032,−0.075,0.896). This corresponds to a trajectory that
goes on a diagonal across the soft body. The code used to produce the results is
found by following the link given in Appendix A.

5.1 Reinforcement learning
The training curves for the three models are shown in Fig. 5.1. The mean episodic
reward of the three models are plotted against each other to allow comparison of
sample-efficiency and performance.
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Figure 5.1: Training curve for each of the three models. The curves show how the models
learn as they are being exposed to more simulation data. The baseline model is used as a
reference to quantify the effect of using an appropriate low-level controller.
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Further, the variable impedance model was trained with both a full observation space
and a reduced observation space, as presented in Section 3.4. More specifically, the
reduced observation space does not include the difference between the running mean
contact force and goal force, and the difference between the running mean velocity
and goal velocity. The training curves resulting from changing the observation space
are shown in Fig. 5.2.
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Figure 5.2: Training curves for the variable impedance model with full observation space
and reduced observation space.

5.2 Baseline Model
As stated, the baseline model outputs a desired wrench, effectively ignoring the low-
level controller layer. More specifically, the model’s low-level control law is given by
(3.7) and the model’s action space is given by (3.8). The position tracking is shown
in Fig. 5.3, and the orientation distance metric is shown in Fig. 5.4. The force
tracking is displayed in Fig. 5.5, while the velocity tracking is shown in Fig. 5.6.
The rewards are shown in Fig. 5.7 and the actions are shown in Fig. 5.8. Note
that the behavior of the manipulator becomes unstable when approximately 60% of
the episode is complete. The end-effector loses contact with the soft object, before
slamming into it with an exaggerated force. A video showcasing the baseline model
in action is uploaded to YouTube 1.

1https://youtu.be/ntPEN4VkD3g
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(a) 𝑥-position tracking.

0 20 40 60 80 100
Completed episode (%)

−0.25

−0.20

−0.15

−0.10

−0.05

m

y-position

y

ygoal

(b) 𝑦-position tracking.
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(c) 𝑧-position.
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(d) Zoomed in 𝑧-position.

Figure 5.3: Position tracking for the baseline model. The goal position is marked by a
dotted-line, while the end-effector position is represented by a fully drawn line. Note that
there is no reward for tracking in the 𝑧-direction.
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Figure 5.4: Quaternion distance between the end-effector orientation and the goal ori-
entation for the baseline model.

0 20 40 60 80 100
Completed episode (%)

0

20

40

60

80

N

Contact force z-direction

f

fgoal

f̄

(a) Tracking of contact force in 𝑧-direction. Note that the tracking is based on the running mean
̄𝑓 of the force.
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(b) Zoomed in plot of the force tracking.

0 20 40 60 80 100
Completed episode (%)

−10000

−5000

0

5000

10000

15000

20000

25000

N
/s

Derivative of contact force z-direction

f ′

f ′

goal

(c) Tracking of the derivative of the contact force in 𝑧-direction.
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(d) Zoomed in plot of the derivative force tracking.

Figure 5.5: Force tracking for the baseline model. The goal force is marked by a dotted-
line, while the end-effector measurements are represented by a fully drawn line.
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Figure 5.6: Velocity tracking for the baseline model. Note that the mean ̄𝑣 is used for
the tracking.
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Figure 5.7: Rewards for the baseline model. The position graph corresponds to 𝑤𝑝𝑟𝑝,
the orientation chart corresponds to 𝑤𝑜𝑝𝑜, the force and derivative of the force graphs
correspond to 𝑤𝑓𝑟𝑓 and 𝑤𝑑𝑟𝑑 respectively, while the velocity graph corresponds to 𝑤𝑣𝑟𝑣.
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Figure 5.8: Actions chosen by the baseline model. The action space consists of a desired
force and a desired torque in the 𝑥-, 𝑦− and 𝑧-direction, respectively.
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5.3 Variable Impedance Model

Recall that the model’s low-level control law is given by (3.2) and the model’s
action space is defined in (3.3). The position tracking is shown in Fig. 5.9, while
the quaternion distance metric used in (3.12) is displayed in Fig. 5.10. The force
tracking is shown in Fig. 5.11, and the velocity tracking is presented in Fig. 5.12.
The rewards are displayed in Fig. 5.13, and the actions chosen by the policy is shown
in Fig. 5.14. A video of the model is uploaded to YouTube2.
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(a) 𝑥-position tracking.

2https://youtu.be/YRhWgWNj-pY
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(b) 𝑦-position tracking.

0 20 40 60 80 100
Completed episode (%)

0.8975

0.9000

0.9025

0.9050

0.9075

0.9100

0.9125

m

z-position

z

ztraj

(c) 𝑧-position.

Figure 5.9: Position tracking for the variable impedance model. The goal position is
marked by a dotted-line, while the end-effector position is represented by a fully drawn
line. Note that there is no reward for tracking in the 𝑧-direction.
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Figure 5.10: Quaternion distance between the end-effector orientation and the goal
orientation for the variable impedance model.
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(a) Tracking of contact force in 𝑧-direction. Note that the tracking is based on the running mean
̄𝑓 of the force.
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(b) Tracking of the derivative of the contact force in 𝑧-direction.

Figure 5.11: Force tracking for the variable impedance model. The goal force is marked
by a dotted-line, while the end-effector measurements are represented by a fully drawn
line.
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Figure 5.12: Velocity tracking for the variable impedance model. Note that the mean ̄𝑣
is used for the tracking.
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Figure 5.14: Actions chosen by the variable impedance model. The action space consists
of six proportional gains. The first three actions corresponds to position tracking, while the
last three actions correspond to orientation tracking. Note that the orientation tracking
error is described by a set of axis-angles.
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Figure 5.13: Rewards for the variable impedance model. The position graph corresponds
to 𝑤𝑝𝑟𝑝, the orientation chart corresponds to 𝑤𝑜𝑝𝑜, the force and derivative of the force
graphs correspond to 𝑤𝑓𝑟𝑓 and 𝑤𝑑𝑟𝑑 respectively, while the velocity graph corresponds to
𝑤𝑣𝑟𝑣.

5.4 Extended Variable Impedance Model

As stated, the extended variable impedance model uses the same control law as the
variable impedance model, given by (3.2). The action space, however, is augmented
with a relative displacement in 𝑧-direction, and is defined in (3.5). Tracking of the
position is shown in Fig. 5.15, and the quaternion distance between the end-effector
orientation and the goal orientation is presented in Fig. 5.16. The force tracking is
shown in Fig. 5.17, while the velocity tracking is displayed in Fig. 5.18. The rewards
are shown in Fig. 5.19, and the chosen actions are shown in Fig. 5.20. A video of
the model is available on YouTube3.

3https://youtu.be/8ad9QNuLBdI
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(a) 𝑥-position tracking.
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(b) 𝑦-position tracking.

Figure 5.15: Position tracking for the extended variable impedance model. The goal
position is marked by a dotted-line, while the end-effector position is represented by a
fully drawn line. Note that there is no reward for tracking in the 𝑧-direction.
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(c) 𝑧-position.

Figure 5.15: Position tracking for the extended variable impedance model. The goal
position is marked by a dotted-line, while the end-effector position is represented by a
fully drawn line. Note that there is no reward for tracking in the 𝑧-direction.
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Figure 5.16: Quaternion distance between the end-effector orientation and the goal
orientation for the extended variable impedance model.
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(a) Tracking of contact force in 𝑧-direction. Note that the tracking is based on the running mean
̄𝑓 of the force.
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(b) Tracking of the derivative of the contact force in 𝑧-direction.

Figure 5.17: Force tracking for the extended variable impedance model. The goal force
is marked by a dotted-line, while the end-effector measurements are represented by a fully
drawn line.
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Figure 5.18: Velocity tracking for the extended variable impedance model. Note that
the mean ̄𝑣 is used for the tracking.
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Figure 5.19: Rewards for the extended variable impedance model. The position graph
corresponds to 𝑤𝑝𝑟𝑝, the orientation chart corresponds to 𝑤𝑜𝑝𝑜, the force and derivative
of the force graphs correspond to 𝑤𝑓𝑟𝑓 and 𝑤𝑑𝑟𝑑 respectively, while the velocity graph
corresponds to 𝑤𝑣𝑟𝑣.
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(a) Proportional gain actions.
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Figure 5.20: Actions chosen by the extended variable impedance model. The action space
consists of six proportional gains and a parameter representing relative displacement in
𝑧-position. The first three proportional gains corresponds to position tracking, while the
last three proportional gains correspond to orientation tracking. Note that the orientation
tracking error is described by a set of axis-angles.
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5.5 Summary Metrics
This section aims to quantify the results presented in the previous sections. The
tracking errors, defined as the mean square error between the measurements and
their corresponding goal values, are summarized in Table 5.1. The mean rewards
for a timestep for each model is presented in Table 5.2. Recall that the maximum
achievable reward for a timestep is 10.

Table 5.1: Tracking errors for all the three models; baseline (BL), variable impedance
(VI) and extended variable impedance (EVI). The error is calculated as the mean square
error between the measurements and their corresponding goal values. The orientation
error, however, is calculated as the mean of the quaternion distance.

𝑥-pos 𝑦-pos Orientation Force Derivative Force Velocity
BL 3.73e−3 5.91e−3 0.73 439.63 1.50e6 1.80e−2
VI 4.30e−5 2.86e−5 5.10e−2 1.33 5.87e5 7.15e−5
EVI 4.09e−5 1.77e−5 2.63e−2 1.04 1.11e6 1.13e−4

Table 5.2: Mean rewards for a timestep for all the three models; baseline (BL), variable
impedance (VI) and extended variable impedance (EVI). The maximum total achievable
reward is 10.

Position Orientation Force Derivative Force Velocity Total
BL 2.84 0.88 1.48 0.24 2.18e−2 5.46
VI 3.34 0.99 2.31 0.71 0.89 8.24
EVI 3.53 0.99 2.12 0.80 0.81 8.25

56



Chapter 6

Discussion and further work

This chapter is dedicated to discuss the performance of the reinforcement learning
models. This includes comparing the models’ training curves and tracking capabil-
ities. The comparisons are done to investigate possible reasons behind the different
model performances. Suggestions for improving the performances are also presented.
Proposals for further development concludes the chapter.

6.1 Reinforcement learning
The increased performance gained by using a low-level controller is clearly shown in
Fig. 5.1. The baseline model is only capable of achieving an episodic mean reward
of 3500, slightly more than half of the episodic mean reward achieved by the models
using a low-level controller. The models using a low-level controller also show better
sample-efficiency, where they learn faster than the baseline model. During the first
million training steps the models have a reward increase of approximately 3500. In
contrast, the baseline model has a reward increase of only 1500 in the same training
period.

A low-level controller introduces a simplified relationship between the action
space and the robot dynamics, ultimately making it easier for the agent to learn.
For instance, the controller used by the variable impedance models is in essence a
PD-controller which tracks a reference position and orientation. For all the values in
the action space, except 𝑘𝑝 = 0, the controller automatically implements trajectory
tracking. Hence, the agent does not need to learn the dynamics of trajectory track-
ing, it only needs to learn to find good 𝑘𝑝 values for making the tracking optimal.
The baseline model, however, has no low-level controller. In this case, the agent
has to learn the force and torques needed to obtain the trajectory tracking, which
is a far more complicated task compared to only learning gain values. Note that
care should be taken when choosing a low-level controller and action space, as the
performance and sample-efficiency of the agent is highly dependent on the mapping
between the action space and the robot dynamics. The choice of action space and
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controller is further discussed in [25] and [27].
Further inspecting Fig. 5.1, it can be seen that the variable impedance model

and the extended variable impedance model converges to roughly the same episodic
mean reward. Hence, the models have a similar performance. Note that it takes
longer for the extended variable impedance model to converge. This is due to the
extended action space, where the agent has an additional parameter to optimize.
This showcases the importance of keeping the action space at a minimum. Adding
parameters to the action space could potentially give the reinforcement learning
algorithm more freedom in finding a better policy, but this comes at a cost of
increased complexity. Ultimately, an action space with redundant or unnecessary
parameters can lead to a decrease in sampling efficiency while not improving the
agent’s performance.

How the choice of the observation space affects the sample efficiency and perfor-
mance of the variable impedance model, is shown in Fig. 5.2. It can be seen that
the reduced observation space model consistently obtains lower rewards compared
to the full observation space model, up until two million training steps are passed.
After that, the models converge to approximately the same reward. Therefore, it
can be concluded that adding observations which encompass the difference between
the measurements and goal values can improve the learning speed, but not the over-
all performance of the model. Essentially, these observations are redundant as the
information they convey can be deduced by combining information given by the
other observations and the reward function. However, by including these observa-
tions, the training is simplified for the reinforcement learning algorithm. Instead
of using computational power to learn intricate relationships between observations
and reward functions, the algorithm can utilize this information directly through
the added observations. As a result, the agent learns faster.

6.2 Position Tracking
Comparing Fig. 5.9 and Fig. 5.15, the position tracking for the extended variable
impedance model and the variable impedance model is similar. Both models are
capable of tracking the desired position in a satisfactory manner. However, both
models also have a steady-state error, which is a consequence of the low-level con-
troller choice. Recall that the controller for these two models is a PD-controller,
and as as known, P- and PD-controllers are prone to steady-state deviations. The
steady-state error could probably be reduced by increasing the maximum allowed
𝑘𝑝 values, or removed completely by extending (3.2) with an integral term.

The compliant behavior of the controller is shown in Fig. 5.9c and Fig. 5.15c. As
the probe sweeps across the soft object surface, the controller varies the 𝑧-position
of the probe to dynamically compensate for the object’s deformation. By closer
inspection, the 𝑧-position of the extended variable impedance model in Fig. 5.15c
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is slightly noisier than the 𝑧-position of the variable impedance model. This is due
to the extended model being able to explicitly control the 𝑧-position through the
parameter Δ𝑧. Rapid movements in the 𝑧-position, however, can prove itself disad-
vantageous when controlling the contact force, as the applied force is proportional
to the acceleration of the probe.

As known, the baseline model has no low-level controller. The model outputs a
desired wrench which is directly applied to the end-effector. Hence, the policy can
be said to be in total control of the end-effector. As an effect, the position tracking
has no steady-state error, which is shown in the first parts of Fig. 5.3. The 𝑧-position
is also smoother compared to the variable impedance models, which can be seen in
Fig. 5.3d. Potentially, this can yield better force tracking.

Unfortunately, the baseline model outputs actions resulting in unstable behavior
after completing approximately 60% of the episode. Looking at Fig. 5.3, the cho-
sen actions yield large deviations in both 𝑥- and 𝑦-position tracking. It also causes
the end-effector to lose contact with the soft body. This shows one of the greatest
disadvantages of not having a low-level controller. Since the policy is practically in
full control of the end-effector, it is simple for the policy to give actions resulting
in instability. A low-level controller and a carefully designed action space, on the
other hand, will work as a protective layer between the policy and the manipula-
tor, essentially ensuring stability. For instance, it is not possible for the variable
impedance model to make the manipulator unstable when the policy only outputs
𝑘𝑝 values in a range where the PD-controller is ensured to yield stability.

6.3 Orientation Tracking
Comparing Fig. 5.4 and Fig. 5.10, before the baseline model becomes unstable,
the baseline model and the variable impedance model track the orientation fairly
well and have similar orientation errors. This shows that it is possible to achieve
orientation tracking without the need of a low-level controller. As seen in Fig. 5.16,
the extended variable impedance model’s orientation tracking is moderately better
compared to that of the regular variable impedance model. A clear reason for the
superior performance is unknown.

6.4 Force Tracking
As with the position tracking, the force tracking for the variable impedance model
and for the extended variable impedance model, shown in Fig. 5.11 and Fig. 5.17
respectively, are closely resembled. Generally, both models are able to keep the mean
force in a tight interval around the desired force. Unfortunately, both models are
also prone to noisy force measurements, characterized by large spikes in Fig. 5.11a
and Fig. 5.17a. The occurrences of the force spikes corresponds well with spikes in
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the force derivatives shown in Fig. 5.11b and Fig. 5.17b, as expected.
Note that the force tracking of the extended variable impedance model has

sparse, but larger force spikes compared to the force tracking of the regular variable
impedance model. The increased magnitude of the spikes can be a direct conse-
quence of the more rapid movements in 𝑧-direction resulting from the model being
able to control the 𝑧-movement directly with the action Δ𝑧. Smoothening out the
𝑧-direction movement for both models could therefore potentially reduce the force
noise. Reducing the maximum allowed 𝑘𝑝 value in 𝑧-direction can be a possible way
to achieve smoother movements. Lower 𝑘𝑝 values generally yields longer response
times for controllers, ultimately making the movement slower, but smoother.

Before the unstable behavior, the baseline model achieves superior force tracking
compared to the other two models. As seen in Fig. 5.5b, the noisy spikes has a
smaller magnitude and the mean force is in a tighter interval around the desired
force. Recall that the movement in 𝑧-direction was much smoother for this model,
strengthening the hypothesis that the rapid movements in 𝑧-direction is the cause
for the noisy force measurements.

6.5 Velocity Tracking
Again, the performance of the variable impedance model and of the extended model
share similarities. Both the models yield a mean velocity that lies over the desired
velocity, as seen in Fig. 5.12 and Fig. 5.18. However, it should be noted that the
variable impedance model stabilizes at a velocity closer to the goal, compared to
the extended model. The extended model also has more variance in its velocity
measurements, which could be related to the rapid movements in the 𝑧-direction.
Similarly to the other two models, the baseline model also stabilizes at a velocity
above the desired velocity, before yielding unstable behavior, as shown in Fig. 5.6.

Attention should be brought to the unwanted coupling between the end-effector
velocity and the desired pose given by the trajectory generator. At each timestep,
the controller gets a new desired position and orientation from the trajectory gen-
erator. However, if the end-effector is able to reach the desired position during the
simulation timestep, the maximum velocity of the end-effector is implicitly given by
the trajectory. Phrased differently, if the agent wants to achieve optimal position
tracking, the desired velocity of the end-effector is defined by the distance between
the current trajectory point and the next trajectory point, divided by the timestep.
Possibly, the consequence of this is seen in Fig. 5.12, Fig. 5.18 and Fig. 5.6, where
the velocity stabilizes at a velocity different from the goal velocity. To quantify how
the coupling effects the velocity of the end-effector, the model could be trained with
and without the velocity reward term. If the agent’s resulting velocity is indepen-
dent of being trained with a velocity reward term, the velocity is most likely decided
by the desired pose coupling.
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6.6 Reward Function
As stated, the reward function weights and error multipliers were empirically chosen.
The weights were chosen based on how important each term was for the completion
of the task, while the error multipliers should be chosen such that the reward terms
were neither too sensitive nor too unresponsive. A reward term that is too sensitive
or too unresponsive will make it difficult for the agent to learn. Since the reward
function design was empirical, it potentially exists a better choice of weights and
error multipliers. Hence, it is fair to assume that the reward function is suboptimal.
Finding a better reward function design could potentially increase the performance
of the models.

Looking at Fig. 5.7, Fig. 5.13 and Fig. 5.19, the reward function performs fairly
well. Excluding the force derivative, the reward terms are smooth and corresponds
satisfactorily with the scale of the errors. Large errors yield small rewards and vice
versa. The performance of the reward function is also illustrated by the training
curves in Fig. 5.1, where the agents are able to learn quite effectively.

As mentioned, the derivative force reward term is noisy, which is unwanted as
it makes it complicated for the agent to learn. It is difficult to make this graph
smooth, since the derivative force measurement itself is extremely noisy. To smooth
out the graph, it could be beneficial to decrease the error multiplier 𝑐𝑑. Then, the
error term (3.17) would be less sensitive to changes in the force derivative. Another
possibility is to redesign the force reward term. For instance, by stating that no force
reward should be given if the force measurement is outside a small interval around
the desired force, the agent might learn to apply a smoother contact force without
spikes. In this case, the derivative force term would probably be obsolete. The decay
factor in (3.16) can also be tuned. By increasing this factor, more weight will be
put on the previous force measurement, ultimately reducing the smoothening effect
of the mean. The mean will in this way capture more of the force spikes, and the
agent would need to smoothen out the force measurement in order to get rewards.

6.7 Policy Actions
Generally, policy actions are somewhat noisy due to the exploratory nature of re-
inforcement learning algorithms, where the algorithms wishes to search the whole
action space to find a good policy. In addition, the algorithms often contain stochas-
tic components, resulting in non-deterministic actions.

The 𝑘𝑝 gains output by the variable impedance model in Fig. 5.14 and Fig. 5.20a
are generally quite noisy. Both the models output high gains in 𝑥- and 𝑦-direction,
which is necessary to achieve position tracking. The gain in 𝑧-direction, however,
is mostly zero with some occasional spikes. For the variable impedance model,
these spikes correspond to movement in 𝑧-direction. Looking at the 90% completed
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episode mark in Fig. 5.14 and Fig. 5.9c, it can be seen that the 𝑧-position moves
towards the trajectory position as the gain value spikes. This is expected as a higher
gain will lead to a low-level controller input which reduces the error between the
current position and the reference position. For the extended model, the 𝑧-position
movement is a combination of the gain value and the Δ𝑧 action in Fig. 5.20b.

Similarly, the force and torque output from the baseline model is also noisy, as
shown in Fig. 5.8. Looking at the 𝑓𝑧 component, it is easy to see the relationship
between the force and the movement of the end-effector. When the 𝑧-force is nega-
tive, the end-effector moves higher up (i.e. larger 𝑧-position value). The same type
of relationship applies for the movement in 𝑥- and 𝑦-direction as well. The torques,
on the other hand, control the orientation of the end-effector. Inspecting Fig. 5.8
more closely, a jump in the action values can be seen as the manipulator behavior
becomes unstable. As to why the policy chooses actions that results in instability,
is a combination of the reward function, observation space and training setup.

6.8 Summary Metrics
Table 5.1 summarizes the results presented in Chapter 5. From the training curves
in Fig. 5.1, it was expected that the variable impedance models would perform
better than the baseline. In Table 5.1, it is shown that the variable impedance
models achieve significantly smaller tracking errors compared to the baseline model.
Overall, the extended variable impedance model can be said to perform best, where
it is only beaten by the regular impedance model for derivative force tracking and
velocity tracking.

The mean rewards presented in Table 5.2 corresponds well with the errors in
Table 5.1, where smaller errors result in larger rewards. The only discrepancies are
for the force tracking and the force deriavtive tracking. Here, the extended variable
impedance model achieves the smallest tracking error, but receives less reward than
the regular variable impedance model. This is due to the design of the reward
function, and the choice of error multiplier specifically. Comparing Fig. 5.11a and
Fig. 5.17a, the mean force for the variable impedance model generally lies closer to
the desired force with larger spikes occurring sporadically. The spikes in the mean
will result in a higher tracking error, but since the mean generally lies close to the
desired force, the model will accumulate more rewards.

The variable impedance model and the extended variable impedance model
achieves the same total mean reward for a timestep, as seen in Table 5.2. As the
extended model has an additional action space parameter, one might think that
this would enhance the performance. According to Table 5.2, this is not case. Even
though the additional action space parameter gives the agent more freedom in finding
a better policy, the extended model’s overall performance is not improved compared
to the regular variable impedance model. This might be due to the coupling between
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the additional action space parameter Δ𝑧 and the 𝑘𝑝 gain in 𝑧-direction, where both
parameters control the movement in 𝑧-direction. By choosing the 𝑘𝑝 gain, the model
might already have sufficient control of the movement in 𝑧-direction, and adding the
Δ𝑧 parameter could therefore be redundant.

It should be noted that the performance of the models are dependent on the
chosen trajectory. Due to how the grid of rigid bodies are defined for the soft
object, there are some part of the object that are behaving softer than others. At
these parts, the models will often need to push the end-effector further into the soft
body to apply a sufficiently large force. When the models then try to simultaneously
track the trajectory position by across the surface, the probe will often get stuck on
the soft body. This phenomenon can probably be reduced by tuning the physical
properties of the body, or reduce the friction between the body and the probe.

6.9 Related work
Similarly to results achieved in related work, superior performance is obtained when
learning variable impedance in task space. Compared to directly applying a desired
wrench in task space, the variable impedance controller proposed in [25] gives ro-
bust performance, safe exploration of the environment and sample efficiency when
training a policy. It should be noted that the baseline model showed better track-
ing capabilities before yielding instability, illustrating some of the behavior limiting
disadvantages of using the variable impedance controller. Inspired by [26, 27], it
would be interesting to quantify the model behavior of other action space and con-
troller combinations and see how the choice of the action-space-controller pair affects
performance.

Overall, the models struggle to track the desired contact force, where the applied
contact force is noisy. This might be due to the lack of explicitly implemented
force control. In the framework, force control is implicitly achieved by varying
the impedance. In order to improve the force tracking capabilities, it might be
worthwhile to adopt some of the techniques proposed in [24]. Concatenating the
force/torque information in the second last layer of the actor’s neural network was
said to mitigate random motions, as opposed to directly treat the force/torque
readings as an input to the first layer of the network. This could potentially smooth
out the movement in 𝑧-direction, yielding a less noisy applied contact force. It could
also be beneficial to introduce direct force control, by implementing the proposed
hybrid motion/force controller.

6.10 Further Work
The previous sections discussed the model’s tracking capabilities, and also included
some suggestions on how to improve their performance. The following subsections
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are restricted to present feasible extensions and improvements to the overall frame-
work and simulation environment.

6.10.1 Closing the reality gap
As mentioned, reducing the reality gap is important for making the transfer from
simulation to reality as effective as possible. In the project thesis [32], a set of
stiffness and damping parameters from a real-life phantom torso were quantified
through a calibration task. However, the physical properties of the soft body object
in the simulation environment is dependent on more than only these parameters.
The behavior of the soft body is also decided by the constraint impedance of the
joints connecting the rigid bodies to the center, and the amount, size, spacing and
mass of the rigid bodies themselves. Quantifying these additional parameters is
important in order to make the behavior of the simulated soft body resemble that
of a real life body.

To minimize the reality gap, it is also important to improve the realism of the
interaction between the end-effector probe and the soft body. The interaction and
contact forces between a probe sweeping across the surface of a soft body is highly
dependent on the friction forces between the two objects. In real life, the probe
is often coated with a lubricant to reduce the friction. Thus, the friction model
and parameters used in the simulation environment should be chosen such that this
property is preserved.

In [32], the implementation of breathing motion is also presented. If the simula-
tion environment is to be used to train models for clinical applications, it is essential
that the soft body deformation resembles that of a real person’s torso. Breathing
motion is a primary part of how the human body behaves, and is, as mentioned, also
one of the factors making it difficult for robot manipulators to interact with human
bodies. A breathing motion for the soft body could therefore be implemented to
increase the realism of the simulation environment. In practice, the motion can be
implemented by applying an outwards force on the rigid bodies making up the soft
body. Applying the force periodically will cause the soft body to repeatedly expand
and regress, ultimately simulating a breathing motion.

6.10.2 Framework Extensions
After a model shows satisfactory performance in the simulation environment, a
natural next step is to test the model performance with a real life manipulator. To
test the model with a manipulator, there are several things things that need to be in
place. Naturally, the operational space controller in (3.1), together with the model’s
control law 𝑢, must be implemented for the manipulator. Further, the model needs
access to the observation space. That is, measurements from the manipulator such
as the contact force, the end-effector’s pose error and end-effector velocity must
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be made available to the model. Often, these measurements are easily extracted
from in-built sensors. Lastly, communication between the model and the robot
manipulator must be established. The interfaces will be equal to Fig. 3.1, where
the ”Environment” and ”MuJoCo Engine” block will be substituted for a real life
manipulator.

As of now, the position of the soft body is directly extracted from the physics
engine. To remove this dependency and automate the position extraction, computer
vision can be integrated into the framework by setting up cameras around the scene.
Different techniques can be applied to the extracted images in order to derive the
position of the body, comparable to what is done in [29]. Images can also provide
other types of valuable information, such as body deformation. It could therefore
be beneficial to extend the observation space with image information when training
a model.

The choice of the desired orientation qgoal was empirical and primitive. More
specifically, the goal orientation was chosen such that the probe would be held at
an upright position, pointing straight down on the torso regardless of the surface
curvature. To make the desired orientation choice more adaptive, a similar approach
to that proposed in [31] could be implemented. Before the execution of the sweep,
a depth camera can be used to create a 3-D contour of the soft body’s surface. For
each point along the trajectory, a desired probe orientation could be determined
based on the surface contour. Instead of being a constant value, the desired probe
orientation would then vary along the trajectory. This could result in better contact
with the soft body surface, and ease the contact force tracking.

The proficiency at simultaneously tracking contact forces and end-effector veloc-
ity while interacting with soft objects has the potential to be used in several medical
applications, for instance automatic ultrasound scans. Often, ultrasound scans are
performed by free-hand, and the quality of the scan can potentially be deteriorated
by involuntary motion [45]. The acquisition of ultrasound images is affected by the
acoustic contact between the probe and the patient, and the variable velocity of the
probe. As a first step of being able to train a model capable of conducting auto-
matic ultrasound imaging, ultrasound images can be implemented as a part of the
reinforcement learning training loop. As the probe slides across the body, real-life
ultrasound images could be displayed according to the probe’s position relative to
the body. Then, the sequence of the obtained images could work as a measurement
of how well the ultrasound procedure is being executed, similarly to the feedback in
[30].
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Chapter 7

Conclusion

The work done in this thesis builds on the simulation framework created as a part of
the project thesis. The overall goal of this thesis was to explore how deep reinforce-
ment learning could be used as robot control for soft body interaction tasks. More
specifically, the goal was to make a robot manipulator slide an ultrasound probe
across the surface of a soft body, while both applying a desired contact force and
keeping a desired velocity.

A total of three reinforcement learning models were trained to complete the
interaction task. A baseline model, outputting a desired wrench, was used as a
reference to quantify the sampling efficiency and performance gain of using an ap-
propriate low-level controller. The remaining two models were used to investigate
how a variable impedance control law would perform at the interaction task. Both
models had an action space consisting of proportional gains, making it possible to
vary the impedance along the execution of the task. One of the models had an
additional action space parameter, allowing control of the end-effector movement in
the 𝑧-direction directly.

The baseline model showed promising results before yielding unstable behav-
ior. The variable impedance models showed equally good performances, meaning
the effect of adding the additional action space parameter is negligible. For each
simulation timestep, it was possible to achieve a total reward of 10. The base-
line model achieved a mean reward of 5.46 per timestep, while the simple variable
impedance model obtained a mean reward of 8.24. The model with extended action
space achieved a mean reward of 8.25. Generally, the models struggled to track the
desired contact force, where noise characterized the applied force.

Overall, the framework looks promising. Together with ways to improve the
model performances, several extensions for further development and improvement
have been introduced. After minimizing the simulation-to-reality gap, a natural
next step is to test trained models with a real-life manipulator. By introducing
computer vision and ultrasound image feedback, the trained models could facilitate
automatic ultrasound scans.
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Appendix A

Digital appendix

The link below gives access to the code for the simulation framework. The code is
used to produce the results given in Chapter 5.

Simulation framework: https://github.com/hermanjakobsen/robotic-ultrasound-imaging

Please do not hesitate to ask if there are any problems or questions. I can be reached
on my email address hermankjakobsen@gmail.com.
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