
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Iver O
sborg M

yklebust
Explainable AI m

ethods for Cyber-Physical system
s

Iver Osborg Myklebust

Explainable AI methods for Cyber-
Physical systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas
Co-supervisor: Sindre B. Remman

June 2021

M
as

te
r’s

 th
es

is

Iver Osborg Myklebust

Explainable AI methods for Cyber-
Physical systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas
Co-supervisor: Sindre B. Remman
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface
This thesis serves as the final work on mymaster’s degree in Cybernetics and Robotics at
the Norwegian University of Science and Technology (NTNU). The work was conducted
under the supervision of Anastasios Lekkas, during the spring of 2021.

The goal of this project is to develop and implement Explainable Artificial Intel-
ligence (XAI) methods capable of extracting information from deep neural networks
trained via reinforcement learning. Two of the most frequently used model-agnostic
XAI-methods today, Local Interpretable Model-Agnostic Explanation (LIME) and SHap-
ley Additive exPlanations (SHAP), have been used in experiments across two different
simulated robotic environments, Cartpole from OpenAI Gym and a Robotic Manipulator
from Robotis [1][2]. These have been used to provide local and global explanations
on both environments. In addition, the two gradient methods Integrated Gradients
(IG) and Saliency, from the XAI-subfield of Neural Network interpretations, have been
implemented to compare the global explanations.

The implementation is done within an Anaconda environment in Jupyter Notebook,
based on the machine learning library Pytorch [3]. The Github libraries of SHAP, LIME
and Captum are used to provide the interpretations [4][5][6]. The research has been
implemented on a workstation provided by NTNU.

The master project is a continuation of the author’s pre-project done in the fall of
2020 [7]. Some of the theory and experiments overlap throughout this report and have
been either reused or rewritten. This is clarified at the start of the sections where it
applies. The report is written in a way that does not require any background knowledge
about XAI. Therefore, the methods and theory are thoroughly explained. However, it
is assumed that the reader has a basic understanding of machine learning and math-
ematics. All figures have been created by the author with draw.io unless otherwise stated.

This project is a part of the EXAIGON project at NTNU, which aims to meet society’s
and industry’s standards for deployment of trustworthy AI systems [8].

i

Acknowledgement
A huge thanks go to Anastasios Lekkas for his encouraging support and supervision
throughout the semester. Also, a big thank you to PhD-student Sindre B. Remman for
his insights and help with understanding the XAI libraries. His master’s thesis, Robotic
manipulation using Deep Reinforcement Learning, has served as a basis for some parts
of this project [9]. The robotic manipulator is used as one of the experiments, and the
SHAP implementation is extended into more methods. Lastly, a special thank you goes
to my friends and family in a tough semester characterized by Covid-19 restrictions and
a demanding workload.

Iver Osborg Myklebust
June 6, 2021

ii

Abstract
The advancements in Artificial Intelligence (AI) in the last decade have paved the way
for an innovative and more digitalized society. To this date, AI solutions are present
in many situations we encounter in our everyday life. Based on this evolution, more
research is now being done into Reinforcement Learning (RL). For robotics, this could
be a game-changer since RL makes systems able to learn from experience, which can
take future robots into an even higher degree of autonomy. The biggest break-through is
present in the field of Deep Reinforcement Learning (DRL), where RL is combined with
Artificial Neural Networks (ANN).

However, the introduction of neural networks into reinforcement learning comes
at a cost. The systems behave like black boxes that do not provide any explanations or
justifications for their predictions. In robotics, where mistakes could lead to catastrophic
consequences, these systems must be made more transparent and trustworthy before
they can be deployed. The aim for Explainable Artificial Intelligence (XAI) is to interpret
an agent’s decision-making to obtain insight into the black-box systems.

In this project, four XAI-methods have been used to interpret the decisions made by
DRL-agents across two robotic environments of different complexity. Four procedures
have been implemented to investigate how these models predict local situations, globally
across an entire episode, within the training phase, and with data adaptions, including
feature space reduction and forced initializations. A "real-time" example is also included
to demonstrate how such an explainer model can interact with an audience.

The research shows that much information can be collected from the XAI-experiments,
both to confirm pre-existing human intuition about the models and discover new trends.
However, unexpected interpretations, together with assumptions and weaknesses present
in the methods, can put the explanations under a critical view. Although XAI could im-
prove final decision-making, it is vital to keep the limitations within the explainers in
mind. This especially yields for complex environments, where highly correlated features
can cause problems. Feature removals were a great way to reduce some of these challenges,
but much research remains before this could be seen in real-life robotic DRL-development.

iii

Sammendrag
Fremskrittene i kunstig intelligens (AI) det siste tiåret har banet vei for et innovativt
og mer digitalisert samfunn. Til dags dato er AI-løsninger til stede i mange situasjoner
vi møter hver dag. Basert på denne evolusjonen blir det nå gjort mer forskning på
forsterket læring (RL). For robotikk kan dette være en game changer, siden RL gjør
systemer i stand til å lære basert på erfaring, noe som kan øke graden av autonomi i
fremtidens roboter. Det største gjennombruddet er til stede i feltet dyp forsterkende
læring (DRL), der RL kombineres med kunstige nevrale nettverk (ANN).

Imidlertid kommer innføringen av nevrale nettverk i RL med en ulempe. Systemene
oppfører seg som en svart boks, og gir sjelden noen forklaringer eller begrunnelser
for deres prediksjoner. I robotikk, der feil kan føre til katastrofale konsekvenser, må
disse systemene gjøres mer transparente og pålitelige. Målet for forklarende kunstig
intelligens (XAI) er å tolke beslutningene til en agent for å få mer innsikt og forståelse
om systemene.

I dette prosjektet har fire XAI-metoder blitt brukt til å tolke beslutningene tatt av
DRL-agenter i to robotmiljøer av ulik kompleksitet. Fire prosedyrer har blitt imple-
mentert for å undersøke hvordan disse modellene oppfører seg i lokale situasjoner,
globalt over en hel episode, innen trenings-fasen, og med data-tilpasninger, inkludert
reduksjon av tilstander og tvangsinitialisering. Et "sanntids"-eksempel er også inkludert
for å vise hvordan en slik forklaringsmodell kan samhandle med et publikum.

Forskningen viser at mye informasjon kan samles fra XAI-eksperimenter, både for
å bekrefte eksisterende menneskelig intuisjon om modellene og oppdage nye trender.
Imidlertid kan uventede tolkninger, sammen med antakelser og svakheter i metodene,
sette forklaringene under et kritisk syn. Selv om XAI kan forbedre den endelige beslut-
ningstaking, er det viktig å ha begrensningene i bakhodet. Dette gjelder spesielt for
komplekse miljøer, der sterkt korrelerte funksjoner kan forårsake problemer. Å redusere
tilstandsrommet var en effektiv måte å løse noen av utfordringene, men mye forskning
gjenstår før dette kan sees i avansert robotutvikling.

iv

Contents

Preface i

Acknowledgement ii

Abstract iii

Sammendrag iv

List of tables viii

List of figures xi

Acronyms xii

1 Introduction 1
1.1 Background and motivation . 1
1.2 Objectives and research questions . 5
1.3 Contributions . 6
1.4 Outline of the report . 7

2 Theory 9
2.1 Machine Learning . 10
2.2 Reinforcement Learning . 10
2.3 Deep Learning . 12
2.4 Algorithms . 15

2.4.1 Monte Carlo Policy Gradient (REINFORCE) 16

v

2.4.2 Deep Deterministic Policy Gradient (DDPG) 16
2.5 XAI Theory . 18

2.5.1 Surrogate models and local explainability 19
2.6 LIME . 20
2.7 SHAP . 22
2.8 Neural Network Interpretation . 27

2.8.1 Saliency Maps . 27
2.8.2 Integrated Gradients . 27

3 Methodology and experiments 31
3.1 Software . 32
3.2 Environments . 33
3.3 Methodology and XAI implementations 37

4 Results and Discussion 43
4.1 XAI method comparison . 44

4.1.1 Results . 44
4.1.2 Discussion . 54

4.2 Data adaptions . 61
4.2.1 Results . 61
4.2.2 Discussion . 66

4.3 Training analysis . 68
4.3.1 Results . 68
4.3.2 Discussion . 70

4.4 Real time XAI . 71
4.4.1 Results . 72
4.4.2 Discussion . 80

5 Conclusion 83
5.1 Answering the research questions . 83
5.2 Further work . 86

References 87

vi

List of Tables

2.1 XAI methods characteristics summarized 29

3.1 State space Cartpole-v1 . 34

vii

viii

List of Figures

1.1 The black box problem . 2
1.2 DARPA’s three waves of AI, from [14] 2

2.1 Reinforcement Learning process . 11
2.2 Artificial Neural Network example taken from [28] 14
2.3 Model-Agnostic methods . 20
2.4 LIME function from [39] . 21
2.5 Explaining individual flu predictions with LIME [38] 22
2.6 Shapley Values feature effects, from [42] 24
2.7 Neural Networks consist of many simple components, from [40] 26
2.8 Integrated Gradients region of interest, from [46] 28

3.1 Cartpole schematic drawing . 33
3.2 Robotic Manipulator scheme, from [9] 36
3.3 Robotic Manipulator Lever model, as seen in the Pybullet simulator . . 36
3.4 Example of a Force plot . 38
3.5 Example of an Episode plot . 39

4.1 Cartpole: Schematic figure for Situation 1 with feature values 45
4.2 Cartpole: LIME Local explanations for Situation 1 45
4.3 Cartpole: SHAP Local Force plot for Situation 1 46
4.4 Cartpole: SHAP Global Summary plot over 10 episodes 47
4.5 Cartpole: Captum Global methods attributions 48
4.6 Robotic Manipulator: Local Situation 49
4.7 Robotic Manipulator: LIME Local explanations Joints 3 and 4 50

ix

4.8 Robotic Manipulator: SHAP Local explanations Joints 3 and 4 50
4.9 Robotic Manipulator: SHAP Global Summary plot 51
4.10 Robotic Manipulator: SHAP Global Force plot 52
4.11 Robotic Manipulator: Global Captum attributions top 10 features . . . 53
4.12 Robotic Manipulator: Global Captum attributions remaining features . 54
4.13 Cartpole: Correlation . 56
4.14 Robotic Manipulator: Correlation most influential features 57
4.15 Forced initializations for Cart Position and Cart Velocity 63
4.16 Forced initializations for Pole Angle and Pole Tip Velocity 64
4.17 Robotic Manipulator: SHAP Global summary plot reduced model . . . 65
4.18 Robotic Manipulator reduced model: SHAP Force plot 65
4.19 Robotic Manipulator: Captum attributions reduced model 66
4.20 Training plots: Cart Position and Cart Velocity 69
4.21 Training plots: Pole Angle and Pole Tip Velocity 70
4.22 Cartpole: Episode plots Lime . 73
4.23 Cartpole: Episode plots SHAP . 75
4.24 Episode plots Robotic Manipulator . 77
4.25 Episode plots RM for all 4 actions across the lever angles 78
4.26 Cartpole: Simulation example . 80

x

Acronyms

AI Artificial Intelligence. iii, iv, ix, 1, 2, 10, 12, 18

ANN Artificial Neural Networks. iii, iv, 13–16

DDPG Deep Deterministic Policy Gradient. 12, 16, 34

DL Deep Learning. 2, 12

DRL Deep Reinforcement Learning. iii, iv, 4–7, 9, 13, 15, 16, 18, 37, 43, 54, 68, 71, 80,
84–86

GDPR General Data Protection Regulation. 1, 85

GUI Graphical User Interface. 76

HER Hindsight Experience Replay. 17

IG Integrated Gradients. i, 19, 27–29, 40, 44, 47, 53, 54, 59–64, 66, 68–71

LIME Local Interpretable Model-Agnostic Explanation. i, 19, 20, 22, 31, 37, 39, 40, 44,
46, 48, 54, 55, 58, 72–74, 76, 81

MDP Markov Decision Process. 10–12

RL Reinforcement Learning. iii, iv, 1, 2, 6, 10–13, 15, 17, 32

xi

SHAP SHapley Additive exPlanations. i, ii, 19, 24, 25, 31, 37–39, 44, 46–49, 51, 53–56,
58, 60–64, 66–74, 76, 79, 81, 83

XAI Explainable Artificial Intelligence. i–iv, 2–7, 9, 15, 18, 19, 31, 37, 39–41, 43, 44,
54–56, 59, 61, 62, 64, 67, 68, 70, 71, 80, 83–86

xii

Chapter 1

Introduction

1.1 Background and motivation

With the progress in intelligent systems research in the last decade, Reinforcement
Learning (RL) has become a widely-used technique for training agents to solve some
of the challenges within autonomy. Human-machine interaction is now a part of our
everyday life, with successful implementations in, for example, robotics, autonomous
driving, and other safety-critical applications [10]. Unfortunately, when working in
such domains, the black box nature (Fig 1.1) of RL-models can lead to legal and ethical
concerns [11]. In many situations, like life-changing decisions in hospitals or on the
roads, the need for trusting these systems is crucial. The EU’s General Data Protection
Regulation (GDPR) came into effect in 2018. They aimed to ensure "a right to explana-
tion", meaning these implementations must increase their consideration towards more
transparent decision-making and human-machine interaction [12][13].

According to DARPA, the evolution of AI has seen three waves (Fig 1.2) [14]. In the
first wave, sets of logic rules were created to represent knowledge in limited domains.
This enabled reasoning over narrowly defined problems, but the algorithms had no
learning capability and did not handle uncertainty well. With the progress in machine
learning, statistical models are created for specific problem domains and trained on big
data. Learning is introduced in the second wave, where supervised and unsupervised

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The black box problem

learning are driven by tasks and data. These are typically used to solve classification
tasks in defined environments. Reinforcement Learning differs by aiming to solve prob-
lems through experience, and error handling [10].

Figure 1.2: DARPA’s three waves of AI, from [14]

As shown in Fig 1.2, introducing learning abilities into these systems leads to
increased prediction probabilities. However, because of the enormous amounts of
parameters in the statistical models that do not correspond to intuitive variables, it also
meant less transparency. Thus, the incentives behind the development of Explainable
Artificial Intelligence (XAI) are the transition into a third wave, where statistical learning
meets transparency and reasoning abilities.

How to open up the black box?

The problem of model transparency has been well known in the AI/ML community with
the introduction of Deep Learning (DL). Artificial Intelligence has made tremendous
progress recently by combining statistical learning and neural network classifiers. The

1.1. BACKGROUND AND MOTIVATION 3

effectiveness of the neural networks is achieved by passing the input through many
hidden layers with millions of parameters and different activation functions [15]. In
many ways, neural networks are spreadsheets on steroids. By stretching and squash-
ing each layer many times, a complex space can be represented in lower-dimensional
structures. This has opened up for a considerable number of practical applications to
emerge, such as systems that can do everything from facial recognition to beat humans
in video games [10][14].

However, because of the complex nature of deep neural networks, it lacks trans-
parency, which makes it difficult to get insight into the mechanisms that produce the
output [10]. Recently, the research into XAI, where the goal is to understand the inner
workings of black box models, has increased [16]. XAI-methods have mainly been used
in financial and medical applications with labeled data, which means the explanations
more efficiently can be verified. An example in supervised XAI could be to explain
a financial loan rejection, where the user wants to get a reason from the automated
banking system. Often the reason behind such decisions can be trivial, for example the
customer got rejected because of a too low income.

The goal of this project is to use these XAI-methods to explore robotic environments.
If a robotic failure occurs, many factors play a role since uncertainty and intuition
must also be considered. Therefore, explanations in these environments will often be
compared directly to the intuition of a human controller or by designing answerable
human-machine interaction agents.

Even though XAI could be used as a tool to getting information from the black box,
there exist several goals and types of transparency. Before presenting the objectives for
this project, these will be defined.

The ideal human-machine interaction

Even though the number of papers published about XAI has increased heavily in the
last decade, the terms transparency, interpretability, and explainability are often used
equivalently. Lipton [17] defines transparency as the opposite of a black-box-ness; it
gives an understanding of how the model works. Interpretability refers to which extent

4 CHAPTER 1. INTRODUCTION

a learned model makes sense to a user, while explanations are a way to clarify how the
learned model works. The rest of the report follows this terminology.

In the concluding remarks from the author’s project thesis, the main factor to con-
sider when choosing between XAI-methods was the given use case. For a developer,
it is essential to understand how the system works to be able to debug or improve it.
Typical things to consider are time limitations, expertise level, and the need for local
or global explanations. From the user’s perspective, it is more important to get a sense
of trust in the technology, to get comfortable with the predictions [18]. The common
factor is to define a target audience and ask why, for who, and how the model could get
more interpretable. Depending on the use case, this could be data scientists, managers,
or the end-user. Still, the need for increased model understanding and future regulatory
compliance are often goals that exist through all the target audiences.

When it comes to cyber-physical systems, in addition to inspiring trust, transparency
and interpretability can help a lot when something has gone wrong. They make it possi-
ble to go to the logged data, investigate what went wrong, and engineer a better solution
to avoid a similar phenomenon in the future. Explainable methods can be embedded
directly into the neural network model or applied as an external post hoc algorithm. In
this project, different types of post-hoc methods will be compared with each other and
explored throughout environments of different complexity. The motivation of this thesis
is, therefore, to investigate how methods from XAI can improve the understanding and
make robotic systems trained with Deep Reinforcement Learning more trustworthy.

1.2. OBJECTIVES AND RESEARCH QUESTIONS 5

1.2 Objectives and research questions

The main goal of this thesis is to answer the following research questions:

• How do state-of-the-artmethods fromExplainable Artificial Intelligence
(XAI) performon simulated robotic systems? What are the crucial factors
to consider when choosing between these XAI-frameworks?

• Can these XAI-explanations be used to engage with end-users, and how
does this affect the trust of the DRL-models used to control robotic sys-
tems?

To answer these questions, the semester was divided into a series of objectives to
track the project progress:

1. Continuation from the pre-project with a literature review recap. Start exploring
which XAI-methods that can fit into the Cartpole environment from OpenAIGym
[1].

2. Implement Integrated Gradients, described in Section 2.8.2, on the Cartpole en-
vironment. Compare globally with SHAP-explanations from the pre-project [7].
From the Captum package of Pytorch [6], Saliency, and weight analysis were also
included.

3. Transfer all the XAI-methods onto a more complex environment, the Robotic
Manipulator lever model from [9].

4. Implement training procedures, feature removals, initialization- and normalization
techniques throughout both environments to learn more about the agents.

5. Implement episode plots for local explanations (SHAP/LIME), and find ways
to visualize it in a real-time manner for both environments. Transfer it into a
possible simulation procedure. Compare the methods, search for good situations
and visualizations throughout the procedures to highlight the trends observed.

6 CHAPTER 1. INTRODUCTION

1.3 Contributions

• Two pre-trained reinforcement learning environments, described in Chapter 3,
are used to show how some of the most promising XAI-methods can interpret
the decisions of a DRL agent. This project combines two state-of-the-art fields of
study that still are primarily in the development phase. DRL for robotic problems
is getting increased attention, and XAI methods have started to be explored in
supervised machine learning problems. The thesis shows that XAI methods can
give some interpretations in robotic environments that are in line with human
intuition. Such insight can increase or decrease the trust of using these DRL-
models in real-life robotic problems. However, with increased dimensionality,
some challenges are discovered regarding correlation and keeping control over
all the different features.

• The project contributes with four XAI-implementation procedures, each contain-
ing two robotic environments and in total four XAI-methods. In the first part,
these XAI-methods get compared across local and global explanations. The ex-
plainers usually agree on the most influential features in both environments, but
challenges with both the perturbation and gradient methods are observed. The
assumptions being made in these methods and how this can be deployed when
trying to interpret RL-agents with no clear answers is discussed in connection
with this part.

• This forms as a motivation for the next parts, where some of the methods are put
under "pressure" with forced initializations and by collecting explanations within
the training procedure. After seeing how few of the manipulator features con-
tribute significantly according to the XAI-methods, the state-space is reduced to
explain the same agent, but with fewer active states. In the last part, episode plots
and a "real-time" simulation are shown as examples of using these explanations to
engage with an end user. Although probably still being early in the developments
of transparent, explainable robotic models, this project will hopefully show some
of the possibilities and challenges from today’s available methods. In the end, the
conclusion is to keep the human side of the equation in mind. XAI methods can
be used as a tool to interpret results in DRL environments, but the limitations of
the methods on robotic systems should put the explanations under a critical view.

1.4. OUTLINE OF THE REPORT 7

1.4 Outline of the report

The rest of the report is divided into five chapters:

• Chapter 2: Theory
- This chapter introduces terminology and theory that is important for the rest of
the thesis. It starts with an overview of the DRL methods used to train the agents
before explaining the theoretical foundation behind the XAI methods. In the end,
the characteristics of each method are compared in table 2.1.

• Chapter 3: Methodology and experiments
- An overview of the main software used in this thesis is provided. The two
environments are presented along with the implementation of the XAI-methods.

• Chapter 4: Results and Discussion
- This chapter is divided into four parts where results from the two environments
are presented.

– Method Comparison - Local and global explanations across four different
methods for both environments.

– Data adaptions - Forced initialization in the Cartpole environment and
feature removal within the Robotic Manipulator environment.

– Training analysis - Global explanations collected throughout the training
phase in the Cartpole environment.

– Real-time simulations - Episode plots for both environments with an attached
example of using these explanations to engage with a human operator.

After each part, the results are discussed in regards to the research questions of
the project.

• Chapter 5: Conclusion
- A conclusion to the thesis is given. The research questions are answered, and in
the end, the possible extensions to future work are described.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Theory

As this thesis is a continuation of the specialization project done in Fall 2020, the required
theory is mostly similar. This means that the theory chapter is an updated version of
the author’s earlier work [7], with additional XAI-methods presented in Section 2.8.

The theory chapter will introduce the background theory used in this thesis. Since
the project implements XAI methods on models trained with deep reinforcement learn-
ing, the theory behind DRL-algorithms will first be described. The algorithms used in
this project are based on the respective policy gradient methods:

• Cartpole - Monte Carlo policy gradient (REINFORCE), described in Section 2.4.1.

• Robotic Manipulator - Deep determinstic policy gradient (DDPG) with Hind-
sight experience replay (HER), described in Section 2.4.2.

In contrast to traditionally more common control methods, reinforcement learning
makes the robots learn from experience. The learning procedure helps tackle uncertainty,
but today it comes at the cost of less knowledge about the robots’ decisions. The theory
chapter is therefore divided into two parts, where the XAI methods that are used to
derive interpretations from the neural networks are presented from Section 2.5.

9

10 CHAPTER 2. THEORY

2.1 Machine Learning

Oxford dictionary defines Artificial Intelligence as "the theory and development of com-
puter systems able to perform tasks normally requiring human intelligence" [19]. Machine
learning is a branch of AI which allows models to improve performance based on pro-
cessed data. In other words, algorithms learn from experience. There are three main
types of machine learning [20][21]:

• Supervised learning - The model learns by using labeled output data as guidance.

• Unsupervised learning - The model learns by finding patterns in unlabeled data
without any guidance.

• Reinforcement learning - The model learns by interacting with the environment.
In many ways more similar to how humans learn. An agent learns how to behave
in an environment, and the goal is to maximize the feedback reward signal in the
long run. In this work RL will be the focus since it can enable robots to improve
their performance gradually.

2.2 Reinforcement Learning

A lot of literature exists on reinforcement learning, and depending on the problem,
different approaches can be relevant. This thesis will mostly focus on the literature
behind the algorithms used to solve the environments in this project. Similarly to how
the human brain learns, RL employs positive and negative feedback to learn how to
perform various tasks. This can be compared with closed-loop problems where the
goal is to maximize the reward. The environment defines the task that is going to be
solved. It is modeled as a Markov Decision Process (MDP), and RL is a way to solve
problems described by MDPs. An agent observes and acts on the environment based
on the goal to maximize reward. To control the agent, a decision process needs to be
defined, inspired by [22] and [23].

• A Markov Decision Process (MDP) is defined as a tuple ⟨𝑆,𝐴,𝑇 , 𝑅⟩, where 𝑆 is a
set of states that forms the state space, and the set of actions 𝐴 forms the action
space. 𝑇 is the transition function when applying an action 𝑎 going from a state 𝑠

2.2. REINFORCEMENT LEARNING 11

to a new state 𝑠 ′, while the reward function 𝑅 is used to give direction for which
way the system (MDP) should be controlled. MDPs have three different optimality
criteria: finite horizon, discounted infinite horizon, and average reward.

• Policies - Determines which action an agent should take based on the environment
state. Can be deterministic (direct mapping) or stochastic (maps over a probability
distribution). Defined by 𝜋 : 𝑆 → 𝐴.

• RL Process - In a basic RL operation, the agent receives a state from the environ-
ment, performs an action, and receives a reward continuously. This is illustrated
in Fig 2.1

Figure 2.1: Reinforcement Learning process

Exploration and exploitation

When dealing with reinforcement learning algorithms, it is crucial to understand the
trade-off between exploration and exploitation. This is what decides the agent’s ability
to discover new strategies, balancing between exploiting the best actions and exploring
the environment by trying new strategies [20]. The most common exploration strategies
are

• 𝜖-greedy exploration - The agent chooses the greedy (exploiting the best action)
with probability 𝜖 , or a random action with probability 1 − 𝜖 .

12 CHAPTER 2. THEORY

• Exploration noise - To get the agent to discover new strategies along with using
the learned knowledge from the environment, noise can be added to the greedy
action. This demands a continuous action space, which is usually present in
robotic problems.

Solving an MDP-problem

Two of the most common methods when solving a Markov Decision Process are Value
iteration and Policy iteration. Policy iteration focuses on evaluating and improving the
policy at every step. In contrast, value iteration focuses purely on estimating the value
function, and after it has converged towards 𝑉 ∗, the policy is computed. However,
these techniques, called model-based RL, demands that the probability or/and transition
matrix are known.

In Reinforcement Learning, a perfect model is often not defined since the probability,
and transition matrices are unknown. When this is the case, statistical knowledge about
the model needs to be gathered through MDP-sampling. This is called model-free RL,
and there are two ways to sample the MDP [9][22]:

• Actor - Learn the Policy directly with a function approximation. The Value
function is ignored.

• Critic - Learn Value function with a function approximation, and the policy gets
derived implicitly by, for example, an exploration strategy.

The REINFORCE algorithm used in this thesis is an Actor-Only method, meaning it
only samples the policy. DDPG is an Actor-Critic method; it learns both a policy and the
value function. These algorithms use neural networks in their MDP-sampling, so before
presenting the methods, some terms from Deep Learning (DL) need to be defined.

2.3 Deep Learning

Machine learning is a branch of Artificial Intelligence that provides systems the ability
to learn from experience. Deep learning is a branch of machine learning that uses neural
networks to solve complex problems. By using higher-level learned features defined

2.3. DEEP LEARNING 13

in terms of lower-level features, deep learning seeks to exploit unknown structures in
the input distribution to discover good representations [24]. One of the Google Brain
Project leaders, Andrew Ng, has compared deep learning with a rocket engine. With
enormous amounts of fuel (data), the rocket needs powerful engines (deep learning
models) to lift off the ground [25].

Before introducing the neural network that is used in deep reinforcement learning,
some terms used in this section will be defined [26].

• Perceptron - A neuron in the human brain is a cell that transmits and processes
information. Perceptrons are in many ways simplified versions of human brain
cells that take several inputs and weigh them up to produce a single output. This
was the first type of artificial neuron, but it is not so commonly used today.

• Activation function - To calculate the weighted neuron, an activation function is
used. It calculates a weighted sum of inputs, adds bias, and from this information,
it decides what should be fired to the next neuron. The most popular functions
used today are Tanh, Softmax, and ReLU.

• Gradient descent - An algorithm to find the local minimum of a function. By
guiding the solution in the direction of the steepest descent, it can be used to
update the model’s parameters.

• Backpropagation - Algorithm used to calculate the gradient descent. The goal
is to minimize the error between the input and output, and backpropagation is
used to train the neural network to an acceptable error margin.

Artificial Neural Networks

In the last decade, multiple types of neural networks have emerged, with different
application features. For example, Convolutional Neural Networks (CNN) are often
used in image processing, while Recurrent Neural Networks (RNN) have great ability
in speech recognition. They are all a part of the broader family of Artificial Neural
Networks (ANN). In this section ANNs will be defined, before the next section will
introduce Deep Reinforcement Learning (DRL) by combining RL with the modelling

14 CHAPTER 2. THEORY

power of ANNs.

ANNs consist of artificial neurons, and have five main components: inputs 𝑥 , outputs
𝑦, weights𝑤 , biases 𝑏, and an activation function 𝑓 (...). The relationship between these
are given by

𝑦 = 𝑓 (𝑤𝑇𝑥 + 𝑏) (2.1)

If this relationship gives 0 or 1 depending on the sign of the neural network, it is called
a perceptron. However, since this means a slight change in the function’s weights
and biases can radically change the output, it is not commonly used. Other activation
functions where small changes lead to a small output change are preferred.

When putting the artificial neurons into a network, this network is able to compute
complex functions. Every ANN has at least one input and output layer and can also
have multiple hidden layers. Hyperparameters are parameters where the value is set
before the learning starts, and the number of neurons in each layer (width) and the
number of layers (depth) are such hyperparameters. The main advantage with ANNs is
the ability to reproduce and model nonlinear processes [27]. An example is shown in
Fig 2.2.

Figure 2.2: Artificial Neural Network example taken from [28]

2.4. ALGORITHMS 15

Deep Reinforcement Learning

Robotic systems often have multiple joints, which means a high-dimensional state space.
This is a challenge in reinforcement learning because the volume of the space increases
so fast, hence the available data becomes sparse. The problem is called the curse of
dimensionality, and it would take an enormous amount of computations, memory, and
time to explore.

However, by combining RL with ANNs, a successful approach to this problem was
discovered. The idea is to use a nonlinear function approximator to map state and
action to a value. A Deep-Q-Network was first created by DeepMind in 2013 [29].
Deep-Q-Network is based on the Q-learning algorithm and learned control policies
directly from a high-dimensional sensory input by using neural networks. To stabilize
the training, a replay buffer and a target network were used.

• Replay buffer - By storing every transition between the explored samples in a
replay buffer and sample a minibatch randomly in every update, the samples
are independent of each other. This improves the generalization of the neural
network.

• Target network - Instead of using a target that changes with every timestep, a
network is used to minimize the target correlation. This makes the training easier.

2.4 Algorithms

Two DRL algorithms are used to train the different environments in this thesis. The
trained model of each environment is used when implementing XAI-methods. Both
algorithms presented below are temporal difference algorithms, meaning they are used
to predict a measure of the total amount of reward expected over the future. Q-learning
is often referred to as the most known model-free temporal difference DRL-algorithm
[22]. Q-learning estimates the quality of an action that is taken to move to a state. It is
a tabular method, which means that the learned Q-values are inserted into a state- and
action space table, denoted by |𝑆 |𝑥 |𝐴|. The update rule for the Q-learning algorithm is
given by

16 CHAPTER 2. THEORY

𝑄 (𝑠, 𝑎) := 𝑄 (𝑠, 𝑎) + 𝛼
(
𝑟 + 𝛾 max

𝑎′∈𝐴(𝑠′)
𝑄 (𝑠 ′, 𝑎′) −𝑄 (𝑠, 𝑎)

)
(2.2)

where 𝛼 is the learning rate, 𝑟 the reward and 𝛾 the discount factor. The algorithm is
exploration insensitive under the assumption that a state-action can be visited infinite
times so 𝛼 can be decreased. This means it will converge to the optimal policy while
following some exploration policy 𝜋 [22].

2.4.1 Monte Carlo Policy Gradient (REINFORCE)

The REINFORCE algorithm, also called Monte Carlo Policy gradient, select actions based
on a learned parameterized policy. It maximizes performance by updating a stochastic
gradient ascent based on the policy gradient theorem. The actor parameter 𝜃 is updated
using 𝐺𝑡 =

∑𝑇
𝑘=𝑡

𝛾𝑘−𝑡𝑅𝑘+1 as an unbiased sample of 𝑄𝜋 (𝑆𝑡 , 𝐴𝑡) [30].

△ 𝜃 = 𝛼 ∗ 𝛾𝑡 ∗ ▽𝜃 log𝜋 (𝑆𝑡 , 𝐴𝑡 , 𝜃) ∗𝐺𝑡 (2.3)

Because the algorithm relies on an estimated return by Monte Carlo methods, it
plays out the whole episode to compute the total rewards. This means an entire episode
is required before starting to train, which can be a challenge in many environments.
For Cartpole, however, this is achievable and fast with a small state space. Another
drawback is high gradient variance, which means lucky episodes can significantly affect
the results, but this can be reduced by choosing an appropriate baseline. REINFORCE is
an on-policy method, which means it updates the policy (Q-value) by using the next
state and the current policy’s action [31][32].

2.4.2 Deep Deterministic Policy Gradient (DDPG)

DDPG is an off-policy actor-critic DRL-algorithm. By being off-policy, it updates the
Q-value using the next state along with a greedy action. Hence it can use samples
generated from any time during training to optimize. Since DDPG is actor-critic, it
trains two ANNs. An actor-network and a critic-network that approximates the policy
and Q-value, respectively. The critic’s role is to evaluate the performance of the actor,
and DDPG is a suitable algorithm for robotics since it considers continuous states and
actions. Two components are crucial for the success of this algorithm, a target network

2.4. ALGORITHMS 17

and experience replay. The target network decreases the correlation with the target,
which improves the training stability and slowly track the critic and actor networks by
[9]

𝜃𝑄
′ ←− 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′ (2.4)

𝜃 𝜇
′ ←− 𝜏𝜃 𝜇 + (1 − 𝜏)𝜃 𝜇′ (2.5)

where 𝜏 ∈ ℜ : 𝜏 ∈ (0, 1), 𝜏 ≪ 1

The replay buffer ensures that all the transitions are independent of each other
and that previous transitions can be used multiple times. This is one of the benefits of
off-policy algorithms. In [9], the novel technique Hindsight Experience Replay (HER) is
used. It enables the RL-agent to learn from sparse rewards by the idea of substituting
the actual goals with virtual goals. When using HER, the state-space is divided into two
parts, one set of observation states and one for the goal states. In the Robotic Manip-
ulator lever model, the "future" strategy of HER is used, meaning for every transition
stored in the experience replay, k new versions of the transition are also stored. In
these transitions, the goal states are substituted with randomly selected achieved goal
states that were observed after the transition, and that came from from the same episode
[32][9].

Pseudocodes of REINFORCE, DDPG and HER can be found here [30][33][34].

18 CHAPTER 2. THEORY

2.5 XAI Theory

The introduction of deep learning has opened up a new world in predictive modeling
by making efficient decision-making following the works of the human brain. When
these methods work well, it could be tempting just to trust the model and ignore why a
particular decision was made. Until now, this has mostly been the case. Although major
break troughs in complex machine learning, the models have been treated as black boxes.

However, knowing the ’why’ can help learn more about the problem, the features
and be helpful in possible error handling. In simple linear regression models, the number
of parameters made it possible to explain the decisions made. With neural networks,
this is much harder because of the enormous amount of connections. Even a narrow
and shallow network can have tens of thousands of connections [9].

Explainable Artificial Intelligence (XAI) is a collective name for increasing trans-
parency in AI-models. It can be divided into four different sub-fields [35]:

• Interpretable models - Linear/logistic regression and decision tree are com-
monly used interpretable models. From these decisions, rules can be extracted to
say something about the feature importance.

• Example-Based explanations - Explain a model by selecting instances of the
dataset and aim to represent them in a human-friendly way. They search for
structures and more information within the data, which works well for images
and text. Unfortunately, they are more challenging on tabular data where it is
hard to represent it in a meaningful way.

The two sub-fields above have many promising results within parts of the XAI-
community [35]. Unfortunately, due to their limitations with tabular data from
Deep Reinforcement Learning-models, they are not a part of this project.

• Model-Agnostic methods - Instead of selecting instances of a dataset, model-
agnostic methods aim at creating summaries of features. This is done by manipu-
lating perturbations of the neighborhood of data points. Moreover, by separating
the explanations from the machine learning model, they offer great flexibility for

2.5. XAI THEORY 19

the developers. The theory behind model-agnostic methods will be presented
below, and the methods LIME and SHAP are explained in the following sections.

• Neural Network interpretation - The amount of new deep neural network
architectures in the last decade has exploded, and the trend is continuing towards
even deeper networks with an increasing amount of weight parameters. Humans
cannot follow themapping from input to predictionwhenmillions ofmathematical
operations must be considered. One way to do that is from the "outside," as with
model-agnostic methods, but there are also benefits of using the neural network
to increase transparency. First, uncovering features and weights directly from
the hidden layers can theoretically improve the network. Secondly, by utilizing
the gradient inside the neural network, it can be done in a more computationally
efficient way than the model-agnostic approach [35]. The theory will be presented
in Section 2.8, together with the methods Integrated Gradients and Saliency.

2.5.1 Surrogate models and local explainability

The idea behind Explainable Artificial Intelligence is to open up the black box by using
some of the tools from simpler regression models. In such models, 𝐵𝑒𝑡𝑎 coefficients
are used to explain the prediction for all data points. This is called global fidelity;
when a variable value increases by 1, prediction increases by 𝐵𝑒𝑡𝑎 for every data point.
Nevertheless, this does not explain the effect of individual data points; in other words,
why the impact from one user’s variable change could be different from another. This is
called local fidelity, and local function explanations often have the property of linear
and monotonic local regions. LIME and SHAP provide interpretability to black box
models by exploring and use the property of local explainability. This is used to build
surrogate models, which tweaks the input slightly and test how the prediction changes
[36]. If the model prediction changes much by tweaking a variable value, that variable
for that particular data point may be an essential predictor and vice versa.

Surrogate models still treat the system as a black box, which is called model agnostic
methods since they are separating the explanations from the model (Fig 2.3) [37]. By
exploring these local regions, the black box can be opened, and the difference between
LIME and SHAP is how they build these surrogate models to make an interpretable data

20 CHAPTER 2. THEORY

representation. The following two sections will take a deeper look into both methods.

Figure 2.3: Model-Agnostic methods

2.6 LIME

The research paper "Why Should I Trust You" by Marco Ribeiro et al was one of the first
to propose a technique to explain the black boxes of machine learning. It defines Local
Interpretable Model-Agnostic Explanation (LIME) as an algorithm that can explain the
predictions of any classifier or regressor faithfully by approximating it locally with an
interpretable model [38].

Explaining a prediction means presenting artifacts, textual or visual, that improves
the understanding between features (words, pixels, or robotic joints) and the model’s
prediction. Interpretable explanations need to present interpretations that are under-
standable by humans. While the classifier may represent more complex features, LIME
uses a binary vector 𝑥 ′ ∈ {0, 1}𝑑′ to represent an instance, where 𝑥 ∈ R𝑑 . The objective
is to minimize the difference in prediction response between the instance 𝑥 and its
neighbor.

An explanation model 𝑔 ∈ 𝐺 is defined as a class of potentially interpretable models,
for example linear models (Fig 2.4) or decision trees, with the domain 𝑔 ∈ {0, 1}𝑑′ . Ω(𝑔)
is the measure of complexity of the explanation 𝑔 ∈ 𝐺 as not every model is simple
alone to be interpretable. Examples of the complexity, Ω(𝑔), can be the depth of the

2.6. LIME 21

three or the number of non-zero weights.

The model being explained is denoted 𝑓 : R𝑑 → R, and 𝑓 (𝑥) is the probability that
𝑥 belongs to a certain class. To define locality around 𝑥 , 𝜋𝑥 (𝑧) is defined as a proximity
measure between an instance 𝑧 to 𝑥 . The fidelity function 𝐿(𝑓 , 𝑔, 𝜋𝑥) is a measurement
of how unfaithful 𝑔 is in approximating 𝑓 in the locality defined by 𝜋𝑥 . This means 𝐿
must be minimized while Ω(𝑔) must be low enough to be interpretable by humans. The
LIME explanation is defined by

𝜉 (𝑥) = 𝑎𝑟𝑔min
𝑔∈𝐺

𝐿(𝑓 , 𝑔, 𝜋𝑥) + Ω(𝑔) (2.6)

and this formulation can be used formultiple explanationmodels𝐺 , fidelity functions
𝐿, and complexities Ω [38].

Figure 2.4: LIME localises a complex problem and defines a simpler linear model to
explain a local prediction. Image taken from [39]

22 CHAPTER 2. THEORY

Lime Tabular

The LIME package is made for different datatypes. In this thesis, the environments
generate matrix data, so the tabular method is used. The function explains predictions
on numerical features from the training data. This is done by perturbing them, hence
sampling from a normal (0, 1), and doing the inverse operation of mean-centering and
scaling. From this, neighborhood data is generated by randomly perturbing features,
and a locally weighted linear model can be generated from a learned classifier. The
models can be used to explain each of the classes in an interpretable way.

Figure 2.5: Explaining individual flu predictions with LIME [38]

2.7 SHAP

In the paper A unified approach to interpreting model predictions Scott M. Lundberg et
al. proposed a new explanation method based on Shapley additive feature attribution
methods [40]. This is also an approximation of the neural network when the model is
too complex to be understood by humans. The algorithm used in this thesis is called
DeepSHAP. This algorithm is based on two foundations, the DeepLift algorithm, and
Shapley values, which will be presented first.

Shapley Values

As with LIME, the original prediction model is denoted by 𝑓 and the explanation model
by 𝑔. Simplified inputs, denoted by 𝑥 ′, map to the original inputs using a mapping
function 𝑥 = ℎ𝑥 (𝑥 ′). The goal of local methods is to make 𝑔(𝑧 ′) ≈ 𝑓 (ℎ𝑥 (𝑧 ′)) given that
𝑧 ′ ≈ 𝑥 ′. This means an additive feature attribution can be defined

2.7. SHAP 23

𝑔(𝑧 ′) = 𝜙0 +
𝑀∑
𝑡=1

𝜙𝑡𝑧
′
𝑡 (2.7)

where 𝑧 ′ is a vector of binary variables with size𝑀 ,𝑀 is the number of simplified
input features, and 𝜙𝑡 ∈ R is an effect that is assigned to each feature [40].

The method of finding the effect values 𝜙 is based on game theory. The Shapley
value is a solution concept in traditional cooperative game theory to make a game "fair"
according to the founder Lloyd Shapley [41]. To generate a total surplus of all players,
four conditions must be met:

• The total reward should equal the sum of what everyone receives.

• The same amount of reward should be received from two people contributing the
same value.

• No value contribution means nothing received.

• When playing two games, the individual’s reward from both games should equal
the reward sum from both the first and second games.

This can be transferred into three properties in Shapley value estimation:

• Property 1 (Local accuracy)

𝑓 (𝑥) = 𝑔(𝑥 ′) = 𝜙0 +
𝑀∑
𝑡=1

𝜙𝑖𝑥
′
𝑡 (2.8)

This means the explanation model 𝑔(𝑥 ′) matches the original model 𝑓 (𝑥) when
𝑥 = ℎ𝑥 (𝑥 ′)

• Property 2 (Missingness)

𝑥 ′𝑡 = 0→ 𝜙𝑡 = 0 (2.9)

Features missing in the original input have no impact.

24 CHAPTER 2. THEORY

• Property 3 (Consistency)
If 𝑓 ′(ℎ𝑥 (𝑧 ′)) − 𝑓 ′(ℎ𝑥 (𝑧 ′𝑡 = 0)) ≥ 𝑓 (ℎ𝑥 (𝑧 ′)) − 𝑓 (ℎ𝑥 (𝑧 ′𝑡 = 0),∀𝑧 ′{0, 1}𝑀 , then
𝜙𝑡 (𝑓 ′, 𝑥) ≥ 𝜙𝑡 (𝑓 , 𝑥).
This means that if a model changes so a simplified input’s contribution increases,
that input’s attribution should not decrease.

Only one explanation model 𝑔 follows definition 2.7 and the three properties above:

𝜙𝑡 (𝑓 , 𝑥) =
∑
𝑧′⊆𝑥 ′

|𝑧 ′ |!(𝑀 − |𝑧 ′ | − 1)!
𝑀!

[𝑓 (ℎ𝑥 (𝑧 ′)) − 𝑓 (ℎ𝑥 (𝑧 ′𝑡 = 0))] (2.10)

where |𝑧 ′ | is the number of non-zero entries in 𝑧 ′ and 𝑧 ′ ⊆ 𝑥 ′ represents all 𝑧 ′

vectors where the non-zero entries are a subset of the non-zero entries in 𝑥 ′. Equation
2.10 gives the solution of the SHAP values, where each value indicates how much a
given state contributes to the magnitude of a given output (Fig 2.6) [40].

Figure 2.6: Shapley Values explain the output of a function 𝑓 as a sum of the effects 𝜙 of
each feature. Image taken from [42]

DeepLIFT

DeepLIFT is a recursive prediction explanation method for deep learning. With some
modifications, this is an additive feature attribution method that converts binary values
into the original inputs, 𝑥 = ℎ𝑥 (𝑥 ′). This binary value is decided by the effect of setting
the input to the original value or a reference value that is decided by the user. This
is denoted by 𝐶Δ𝑥𝑡Δ𝑦 , when 𝑦 = 𝑓 (𝑥) is the model output. DeepLIFT uses this in a
"summation-to-delta" property

𝑛∑
𝑡=1

𝐶Δ𝑥𝑡Δ𝑦 = Δ𝑦 (2.11)

2.7. SHAP 25

where Δ𝑦 = 𝑓 (𝑥) − 𝑓 (𝑟), Δ𝑥𝑡 = 𝑥𝑡 − 𝑟𝑡 and 𝑟 the reference input. This matches
equation 2.7 if we let 𝜙𝑡 = 𝐶Δ𝑥𝑡Δ𝑦 and 𝜙0 = 𝑓 (𝑟).

DeepExplain

It is challenging to compute exact SHAP values, but they can be approximated by
combining insights from additive feature attribution methods. By assuming model
linearity, the mapping can be approximated:

𝑓 (ℎ𝑥 (𝑧 ′)) ≈ 𝑓 ([𝑧𝑆 , 𝐸 [𝑧𝑧]] (2.12)

where 𝑆 is the set of non-zero indexes in 𝑧 ′ and 𝐸 the base value.

DeepExplain uses the connection between the DeepLIFT algorithm and the linear
model approximation of Shapley values. By combining the two equations, and let the
reference value from equation 2.11 represent 𝐸 [𝑥] in equation 2.12, DeepLIFT approxi-
mates SHAP values.

This is equivalent to linearize the non-linear components of a neural network
through backpropagation rules for each component. Furthermore, since DeepLift can be
modified as an additive feature attribution method, it satisfies the properties of Shapley
values. Thus, it motivates adapting a technique to approximate SHAP values for whole
networks.

This method is called DeepExplain and combines SHAP values computed for smaller
network components by recursively passing DeepLIFT’s multipliers backward through
the network (the composition rule). Fig 2.7 shows a simple component of a neural
network, where the DeepLIFT approximation is given by

𝑚𝑥 𝑗
𝑓3 =

𝜙𝑖 (𝑓3, 𝑥)
𝑥 𝑗 − 𝐸 [𝑥 𝑗]

(2.13)

𝑚𝑦𝑖 𝑓𝑗 =
𝜙𝑖 (𝑓𝑗), 𝑦
𝑦𝑖 − 𝐸 [𝑦𝑖]

∀𝑗 ∈ {1, 2} (2.14)

26 CHAPTER 2. THEORY

Figure 2.7: Neural Networks consist of many simple components, from [40]

𝑚𝑦𝑖 𝑓3 =

2∑
𝑗=1

𝑚𝑦𝑖 𝑓𝑗𝑚𝑥 𝑗
𝑓3 chain rule (2.15)

𝜙𝑖 (𝑓3, 𝑦) ≈𝑚𝑦𝑖 𝑓3 (𝑦𝑖 − 𝐸 [𝑦𝑖]) linear approximation (2.16)

Since such simple network components can be solved efficiently if they are linear
and a deep neural network consists of many simple components, the composition rule
enables a fast approximation for the full model. This makes it possible to explain deep
neural networks efficiently [40].

2.8. NEURAL NETWORK INTERPRETATION 27

2.8 Neural Network Interpretation

An attribution method assigns scores for each input feature, so it attributes input data
based on predictions from the neural network. This means such a method can generate
a score for each part of the input and say something about what part the scores played
within a prediction [43].

2.8.1 Saliency Maps

Saliency Maps, also called Vanilla Gradients, was introduced in the paper "Image-Specific
Class Saliency" in 2013 [44]. In simple terms, it calculates the gradient of the loss function
for the score of interest with respect to the input. The size of the input features is then
represented as a map that tells how much the prediction score would change with a
slight increase in a highlighted prediction area [6].

The approach can be divided into three steps:

1. Perform a forward pass of the input

2. Compute the gradient of the class score of interest with respect to the input pixels

𝐸𝑔𝑟𝑎𝑑 (𝐼0) =
𝜕𝑆𝑐

𝜕𝐼
|𝐼=𝐼0 (2.17)

3. The gradients can be visualized as absolute values or positive/negative contribu-
tions.

In many ways, Saliency maps are a simplified approach compared to Integrated
Gradients (IG). However, one of its weaknesses is a saturation problem when the input
gets capped at zero, and Integrated Gradients (IG) approach of capturing gradient
information more globally makes them better at reflecting the importance of edges.

2.8.2 Integrated Gradients

The authors behind Integrated Gradients (IG) identified a shortcoming when attributing
the prediction of a deep network to its input features in these attribution methods
[45]. It was hard to separate errors from model misbehavior versus mistakes that stem

28 CHAPTER 2. THEORY

from the attribution method. Therefore, Integrated Gradients is based on an axiomatic
approach, meaning it is based on desirable characteristics which increase the trust when
attributing the correct scores to the right features. This also means Integrated Gradients
can be computed independently of the network, using a few calls directly to the gradient
operation.

In a simplified manner, Integrated Gradients is equal to multiplying the feature
with the gradient. As explained in 2.4, during backpropagation in a neural network, a
gradient tells the neural network how much a certain weight in the network should be
changed. Therefore, each gradient associated with the input and output features can
extract information about feature importance and hence more transparency into the
network.

However, to avoid noisy gradients when the slope is zero, a baseline is often needed.
This is especially important in object classification to avoid black images, but it will also
make a big difference when working with tabular data. How to choose the baseline has
been discussed and tested in multiple papers [43][45], where the findings indicated that
a random baseline could be beneficial. When setting such a baseline, the focus should
be on the interesting gradients shown in Fig 2.8:

Figure 2.8: Integrated Gradients region of interest, from [46]

To understand Integrated Gradients, two axioms need to be described firstly.

• Sensitivity - A non-zero attribution should be given to every input or baseline
that differs in one feature but have different predictions. This connects with the

2.8. NEURAL NETWORK INTERPRETATION 29

idea of defining a baseline. When a function has a range between 0 and 1, and
the input is bigger than 1, Integrated Gradients returns a non-zero attribution (1)
instead of giving all differing features zero.

• Implementation Invariance - Two networks are functionally equivalent if all
outputs are equal for all inputs. Attribution methods should satisfy implementa-
tion invariance; attributions are always identical for two functional equivalent
networks, despite being implemented differently.

Integrated Gradients combines the axioms of Implementation Invariance and Sen-
sitivity to produce explanations. A deep network can be represented by a function
𝐹 : 𝑅𝑛 −→ [0, 1] The input is defined as 𝑥 ∈ 𝑅𝑛 while 𝑥 ′ ∈ 𝑅𝑛 is the baseline input.

By computing the gradients at all points along the straight-line path in 𝑅𝑛 from the
baseline to the input, IG can be obtained by finding the path integral of these gradients.
Along the 𝑖𝑡ℎ dimension, it is defined as

𝐼𝐺 (𝑥) := (𝑥𝑖 − 𝑥 ′𝑖) ×
∫ 1

𝛼=0

𝜕𝐹 (𝑥 ′ + 𝛼 × (𝑥 − 𝑥 ′))
𝜕𝑥𝑖

𝑑𝛼 (2.18)

where 𝜕𝐹 (𝑥)
𝜕𝑥𝑖

is the gradient of 𝐹 (𝑥) along the 𝑖𝑡ℎ dimension.

XAI methods’ properties

All of the explainable methods used in this project are summed up below, together with
their most essential characteristics.

Method XAI field Type Scope Package
LIME Model-Agnostic Perturbation Local LIME [5]
SHAP Model-Agnostic Perturbation Local/Global SHAP [4]

Integrated Gradients NN Interpretation Gradient Global Captum [6]
Saliency NN Interpretation Gradient Global Captum [6]

Table 2.1: XAI methods characteristics summarized

30 CHAPTER 2. THEORY

Chapter 3

Methodology and experiments

A total of four methods have been used to explore Explainable Artificial Intelligence on
robotic systems. Both LIME and SHAP are relatively recent methods that have mainly
been used to explore datasets and images. These were also compared in the author’s
pre-project, where three environments differed in state space, degree of explaining
difficulty, and the amount of intuitive interpretation. They were provided to give local
and global explanations for pre-trained solved agents to find possible indications of the
approximations and assumptions done by these methods. Two of these environments
are also included in this thesis, the least complex one (Cartpole) and a new version of
the most complex one (Robotic Manipulator) with a lever task. In addition, another type
of gradient method, Integrated Gradients, has been added to explore the global interpre-
tations of the environments. Pytorch’s explainability package, Captum AI, was used
to implement the method. This package enabled further implementations of another
gradient method, Saliency, and also some additional weight analysis.

In this chapter, the two environments will be presented together with the software
used in the implementation. Towards the end, an overview of how the XAI methods
were implemented will also be presented. The functions and different plot types will be
reviewed to give a more straightforward interpretation of the results in the next chapter.

31

32 CHAPTER 3. METHODOLOGY AND EXPERIMENTS

3.1 Software

PyTorch

PyTorch is a Python library for deep learning. It supports multiple features such as
GPU for parallel computing, intuitive setups for standard neural network techniques,
and effective debugging procedures. In addition, PyTorch’s ability to support dynamic
computation graphs makes it convenient and flexible to use compared to other deep
learning frameworks such as Tensorflow, which uses static computation graphs [3].

Anaconda

Anaconda is an open-source distribution of Python for scientific computing that simpli-
fies package management, and distribution [47]. Anaconda is used together with Jupyter
Notebook, an open-source web application that contains live code and visualizations.
This is useful when dealing with multiple environments and libraries where depen-
dencies can arise, and it also makes it easier to explore explainability in pre-trained
agents.

OpenAI Gym

OpenAI Gym is an open-source toolkit for developing and comparing reinforcement
learning algorithms. It aims to provide an easy to set up and standardized environment
so that published research becomes more easily reproducible [1][48]. This also means
that RL algorithms can easily be adapted between environments. The environment used
in this project is CartPole-v1 from the classic control package, which consists of classic
RL literature control theory problems. The main functions that need to be defined for
Gym environments are [1]:

• make(environment_name) - Sets up a new instance of the environment and returns
an object of the class.

• step(action) - Applies a step to the environment on the action used as the argu-
ment. Returns an observation of the environment, the transition reward, possible
terminal state, and a dictionary of diagnostic information specific to the environ-
ment.

3.2. ENVIRONMENTS 33

• reset() - Resets and then returns the first observation of the reset environment.

• render() - Visualizes the environment by rendering at each step. Used in the
simulator implementation in Section 4.4 together with a Bar Chart Race package
[49].

PyBullet

Robotic models trained with reinforcement learning is one of the main use cases for
the PyBullet simulator [50]. PyBullet has several features that make it well suited for
the Robotic Manipulator, as explained in Sindre Remman’s master’s thesis [9]. It has
a built-in step function, which moves one time-step forward in the simulation when
called. This functionality is well suited for reinforcement learning since the assumption
is that the environment does not change without the agent performing an action. It is
also a high-speed simulator compared to many of the alternatives, for example, Gazebo
[51].

3.2 Environments

Cartpole-v1

Figure 3.1: Cartpole schematic drawing

34 CHAPTER 3. METHODOLOGY AND EXPERIMENTS

The Cartpole-v1 environment is similar to an inverted pendulum with a gravity
center above its pivot point. An un-actuated joint attaches the pole in Fig 3.1 to a cart,
which moves along a frictionless track. The goal is to prevent the pendulum from falling
over, defined as more than 15 degrees from the starting upright position. It is also
not allowed to move the cart more than 2.4 units from the center [1]. A +1 reward is
awarded for every time-step the pole remains upward (non-terminal step), and the pole
is controlled by applying a discrete action, a force pushing the cart to the left or right
(-1 or +1). The state-space for the Cartpole is given by

Nr State Min Max
0 Cart position -4.8 4.8
1 Cart velocity -Inf Inf
2 Pole angle −24◦ 24◦

3 Pole velocity at tip -Inf Inf

Table 3.1: State space Cartpole-v1

Cartpole is defined as solved when getting an average reward of 195.0 over 100
consecutive trials. In this project, the environment is solved using the REINFORCE-
algorithm from [52]. This is a policy gradient method that solves the problem at around
500 episodes. The solution is stored in a checkpoint file that is used when implementing
the XAI methods.

Robotic Manipulator

The second environment used in this project is a continuation from Sindre Remman’s
master’s thesis where a robotic manipulator (OpenMANIPULATOR-X by Robotis [2])
is trained using deep reinforcement learning [9]. The manipulator has four revolute
joints and a lever, which means the total number of degrees of freedom is five. In one of
the tasks, lever manipulation using DDPG, the goal is to move the lever to a randomly
selected goal angle.

If |𝜃𝑙𝑒𝑣𝑒𝑟 − 𝜃𝑔𝑜𝑎𝑙 < 0.025|, it is classified as a success and a sparse reward is given. To
make training faster and because the angle is trivial to find, the agent is restricted from
not moving the first joint. This means the action space consists of the desired relative

3.2. ENVIRONMENTS 35

angles of the three remaining joints and the choice of opening the gripper, a total action
space of dimension four. The lever was created by Sindre in [9], using the open-source
3D graphics software Blender. This was transferred into the Pybullet simulator together
with the manipulator by creating a mesh for the lever as a Unified Robot Description
Format (URDF) model. The manipulator with and without the lever is shown in Fig 3.2
and Fig 3.3.

The manipulator consists of 19 observation states from the environment. These are
angles and velocities from joints, Cartesian positions of the lever’s base relative to the
manipulator’s base, the relative distance between the end-effector and the lever’s base,
and the current angle of the lever. In addition to this, the desired lever angle is defined
as the goal state and is divided accordingly to the HER-procedure described in 2.4.2.
This means the total state-space is of dimension 20. In the later stages of the project,
the state-space was cut in two based on explaining the most influential features and
trained in a new model with less complexity. These are described in the result part Data
Adaptions in Section 4.2.

The explainable methods are run from a dataset that consists of 25 test episodes
after the training procedure is completed.

36 CHAPTER 3. METHODOLOGY AND EXPERIMENTS

Figure 3.2: Robotic Manipulator scheme, from [9]

Figure 3.3: Robotic Manipulator Lever model, as seen in the Pybullet simulator

3.3. METHODOLOGY AND XAI IMPLEMENTATIONS 37

3.3 Methodology and XAI implementations

This project’s scope is to implement XAI methods across the two environments pre-
sented above to investigate if these methods can produce plausible interpretations in
robotic environments.

The research structure is built upon an Anaconda environment with all necessary
libraries activated, and the implementation is done in Jupyter Notebook with Python
3.8 and Pytorch. After training the environments with DRL-algorithms, checkpoint-
files, or datasets are saved, which has been beneficial so they can be used directly
in further developments. A user-defined number of solved episodes are used in the
XAI-methods. The explanations are also saved with checkpoints to be interpreted across
multiple states locally or during the training phase and visualized in different procedures.

The framework for this research was set up based on being as flexible as possible.
One of the reasons for this was the uncertainty from the Covid-19 pandemic, meaning it
was beneficial to be able to work from home. Also, with the perturbation and gradient
approaches in the XAI-methods used, the explanation methods do not have a direct
influence on the DRL-algorithms. This means the setup is extendable to other problems,
and one change can be transferred between the environments.

An overview of the XAI-implementation is presented below, including functions
and helpful plot descriptions used from the libraries.

SHAP implementation

The SHAP DeepExplain function is used to get an explainer object. The function takes
a neural net model from Pytorch together with a background dataset from the trained
episodes. The explainer object is used in the ShapValues function together with the test
state to approximate the SHAP values for the deep learning model. This can be done
locally with one state or over multiple episodes.

Two plot types from SHAP are used in this project in addition to an episode plot
made from the SHAP and LIME explanations.

• Summary plot - Shows a summary of the feature importance, how much impact

38 CHAPTER 3. METHODOLOGY AND EXPERIMENTS

each feature has on the model output across the different actions. The parameters
are the SHAP values, a NumPy array of the features, and a parameter for how
many included features. Summary plots are shown throughout the result chapter,
for example in Fig 4.4.

• Local Force plot (Fig 3.4) - The force plot visualizes the predictions in an additive
way. The function takes in a reference (base) value that the feature contributions
start from, and "arrows" are used to show if the predicted value is pushed higher or
lower. The bold number on the number line shows the predicted value. The base
value is the average model output over the training period. Features contributing
to pushing the prediction higher are shown in red. Features pushing it lower
appear in blue. The SHAP values and the test state are inputs here as well. The
logit operator is used to convert the output values from log-odds to probabilities.

Figure 3.4: Example of a Force plot

• Global Force plot - The global force plot is a merging between the summary plot
and the local force plot. It shows the most influential features across a full episode
for one specific action, where the x-axis shows the state number and the y-axis
the SHAP-magnitude. As with the local force plot, the blue color indicates not
choosing that action, while a red feature color will take that action. The higher

3.3. METHODOLOGY AND XAI IMPLEMENTATIONS 39

the feature height, the more influence across that specific state and also across
the episode globally. Two global force plots is included in the result section, Fig
4.10 and Fig 4.18.

• Episode plots (Fig 3.5) - This plot type is also included in this section, although
it is used to produce both SHAP and LIME-explanations in the last result part
section when implementing "real-time" analysis. The idea behind this episode
plot is to visualize each feature throughout a full episode. The feature value is
plotted as a light blue line while scatter points are plotted above each state. The
color of the scatter point indicates a positive (red) or a negative (blue) influence
from the XAI-explainer of that specific feature. The intensity of the points can be
transferred to the magnitude of the SHAP or LIME values, meaning a sharp red
scatter point has a high magnitude while a grey scatter point has no significant
influence. An example done with SHAP-values for two of the features in the
Cartpole environment is shown below in Fig 3.5

Figure 3.5: Example of an Episode plot

40 CHAPTER 3. METHODOLOGY AND EXPERIMENTS

LIME implementation

The LimeTabular function has been used from the LIME package, and the function
takes a background training dataset to produce a LIME explainer object. This function
also has some hyperparameter adjustments available. The kernel width adjusts the
exponential kernel of the neighborhood sampling. In this project, the author has used
the standard value,

√
𝑐𝑜𝑙𝑛𝑟 ∗ 0.75. It is also possible to test different discretize options. It

was decided to use quartiles, as it gave the most stable and plausible results. This means
all non-categorical features will be discretized into quartiles [53].

The explain instance function is used to generate explanations for a local prediction
by using the explainer object. This function generates neighborhood data by randomly
perturbing features from the test state, one of the parameters. This is used to learn
locally weighted linear models on this neighborhood data to explain each class in an
interpretable way. The function uses a prediction function that outputs prediction
probabilities for a given state. Defining the prediction function across two different
environments was one of the challenges encountered in this project. An explanation
object is returned with the corresponding explanations and can be visualized, showing
prediction probabilities and feature importance for the local prediction.

Captum implementation

Captum is a new model interpretability toolbox for Pytorch [6]. It supports most types
of Pytorch models, meaning the agents in this project can be modified to fit the methods
in the library. As an open-source library for interpretability research, it includes several
XAI-methods, mostly attribution methods that predict the importance of input features
to Neural models. Integrated Gradients, Saliency, and also some weight analysis have
been implemented from the Captum package in this project.

A wrapper function was made to fit the agents from the two robotic environments
into the Captum methods. This wrapper function changes the shapes of the network
correctly, so the gradient methods fit with the correct dimensions. It is mostly just a
workaround to connect an advanced Pytorch agent with the Captum library, so multiple
methods can be run directly by just calling the function. For Integrated Gradients (IG),

3.3. METHODOLOGY AND XAI IMPLEMENTATIONS 41

multiple baseline choices exist, and four different ones were tried. These were mean-,
zero-, one- and random-base, where the last one was used. This was both because it
was an advisable suggestion from the original authors in [45], and the observed results
looked most promising when comparing the different baselines. However, there are also
disadvantages of choosing this baseline, which will be discussed in the next chapter.
Saliency has no baseline choices so it can be implemented directly using the respective
Captum Saliency function together with the wrapper function. The learned model
weights can be extracted from the Pytorch agent by using the linear.weight function.
The Captum plots included in this thesis are standardized bar plots comparing the
feature attribution across different XAI-methods.

42 CHAPTER 3. METHODOLOGY AND EXPERIMENTS

Chapter 4

Results and Discussion

The result section is divided into four parts. The two environments, Cartpole and
Robotic Manipulator are included throughout these sections. Each part starts by de-
scribing the problems to be addressed in connection with the research questions of this
project. It also presents an outline of the section so that the reader can navigate the
different situations and plots, followed by a discussion about the results in the end. The
implementation procedures are presented in Chapter 3 together with an explanation on
how to interpret the visualizations from the XAI-methods.

A big challenge with DRL-models is that no simple answers about the model’s
decision exist. In many ways, it is comparable to human reasoning, and interpretation
is based on intuition. When implementing XAI-methods in such environments, it can
be hard to separate between the performance of the agent versus the correctness of
the explainer. The goal is to trust both of them, meaning more transparency instead
of a black box architecture, to see if these results can increase trust instead of more
uncertainty.

The goal of this section is to increase the trust of the DRL-agents by looking for
trends throughout multiple robotic scenarios and XAI-methods. The advantage of this is
that a great selection will hopefully lead to a better understanding of how the methods
and models work. A possible disadvantage is the need for many different plot types in

43

44 CHAPTER 4. RESULTS AND DISCUSSION

this section, where each method has its way to present the data where a large amount
of information can be extracted. The author would like to emphasize that all of this info
will not be commented on in the result section. It will mainly be used to form a basis
for answering the research questions.

4.1 XAI method comparison

In the author’s project thesis, the model-specific XAI-methods LIME and SHAP were
implemented to produce local and global explanations. The method comparison section
is an extension of this project, adding two more methods (Integrated Gradients and
Saliency) from another XAI-subfield called neural network interpretation. These are
global methods so that they will be compared against the global SHAP-analysis. In
addition to this, the weights of the model’s neural network have also been included.

The section is divided into local and global explanations for both environments.
Explanations from the Cartpole environment, with four states and two actions, will be
presented firstly, followed by the more complex manipulator explanations.

4.1.1 Results

Local explanations Cartpole

One local state, from now on called situation is used to visualize local explanations,
shown in Fig 4.1. The key for Cartpole is using inertia and acceleration to balance
the pole. In this example, the Cartpole has a negative (left) pole tip velocity, meaning
the intuitive action can be to push the cart to the left to stabilize the pole in the other
direction. However, the cart velocity is also negative, meaning to slow the cart down by
pushing right could also be considered. LIME explanations are shown in Fig 4.2. The
LIME output consists of prediction probabilities, explanations comparing actions, and
the feature values in the example state.

The local SHAP explanations are illustrated by a Force plot (Fig 4.3). In the Force
plot, the red "arrows" illustrate a push to the right, and the blue "arrows" illustrate a

4.1. XAI METHOD COMPARISON 45

Figure 4.1: Cartpole: Schematic figure for Situation 1 with feature values

Figure 4.2: Cartpole: LIME Local explanations for Situation 1

46 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.3: Cartpole: SHAP local Force plot situation 1. Baseline 0.45, Red "arrow": push
in the right direction, blue: push in the left direction

push to the left. DeepSHAP uses the model instead of a prediction function, which
means the explanations are presented in SHAP-value magnitude. However, here the
logic operator is used to transfer these values from log-odds into probabilities. The base
value in the SHAP plot is 0.45, which is the expected value of choosing to push the cart
to the right overall, based on the training episodes. In this case, ten solved episodes
have been used for training.

As seen in Fig 4.3, SHAP proposes the action of pushing the cart to the left, but the
value of 0.59 (1−0.41 = 0.59) is lower than LIME’s 0.66 in Fig 4.2. Both methods highlight
the same features in the same directions, which also makes sense when looking at the
feature values of the example state. The difference in the prediction probability can
be because LIME emphasizes the pole tip velocity value bigger than SHAP. This could
be because of the approximations in DeepSHAP or the neighborhood sampling of the
LIME method and will be discussed more thoroughly below. The common pattern when
testing these two methods in the Cartpole environment was mostly similar predictions,
but SHAP tending to be a bit more conservative in the estimations.

Global explanations Cartpole

To produce global SHAP explanations, data was collected from ten solved episodes.
This means 2000 states are used when training the explainers. Calculating global SHAP
values took 2-3 minutes on the school computer while calculating the gradient methods
was done within a couple of seconds.

4.1. XAI METHOD COMPARISON 47

The global explanations highlight the most important features over these solved
episodes. The Summary plot of SHAP (Fig 4.4) shows how much the different features
contribute to the magnitude of the different actions.

Figure 4.4: Cartpole: SHAP Global Summary plot over 10 episodes

Integrated Gradients is shown as the pink bar chart in Fig 4.5. It only shows the
magnitude of each feature independently of which action to choose. Both SHAP and
IG highlight pole tip velocity as the dominant feature and cart position as the one with
the least impact. However, the methods disagree between pole angle and cart velocity.
This pattern was discussed in the pre-project, where the pole angle had a much higher
relative value in a Morris analysis [7]. Integrated Gradients reflects the indication that
SHAP possibly underestimates the magnitude of the pole angle because of small feature
changes in the training episodes. One theory is that the perturbations of the model-
specific method would not pick this up while the gradient discovers this phenomenon.
The pattern is interesting and will be further analyzed in the discussion of the Data
Adaption part in Section 4.2.2.

The Captum plot in Fig 4.5 also includes the methods of Saliency and weight analysis.
The attributions of IG and Saliency are primarily similar for all features, with Saliency
having, in general, an overall higher magnitude. However, some interesting notes from
the weight plotting are that some of the least influential features, according to the
explainers, have a certain weight attribution.

48 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.5: Cartpole: Captum Global methods attributions

Local explanations Robotic Manipulator

In the author’s pre-project, local SHAP and LIME explanations were used to interpret
results on a Robotic Manipulator reacher task with 15 states and four actions. These
explanations have been extended to a lever manipulation task with 20 states and four
actions in this project. In the situation used, the agent is just a single step away from
the goal state (Illustrated in Fig 4.6) in the test episode, with four training episodes
used to train the explainers. Local explanations for two of the joints (Joints 3 and 4)
are included in this section, where the LIME explanations are shown in Fig 4.7. SHAP
explanations are shown as Force plots in Fig 4.8.

The features of the lever angle have the most significant impact from both explainers,
which can be explained in regards to the manipulator being only one step away from
the goal. However, there are some disagreements between the methods about the other
features, and none of them give a clear interpretation of this specific situation nor which
action to choose. Only two of the four actions have been included here, but the same
trend is present for the remaining actions and throughout other test episodes.

4.1. XAI METHOD COMPARISON 49

Figure 4.6: Robotic Manipulator: Illustration of Robotic Manipulator being close to
finishing the episode. Picture taken from Pybullet simulator

Global explanations Robotic Manipulator

The global explanations of the lever model are obtained using 25 solved episodes. For
the SHAP-explanations, 24 episodes were used to generate the explanation model, and
the remaining episode explained. This means 1200 states are used for training. For the
Captum methods, the explanation model is also generated using the same episodes. The
data for these explanations are generated from a normalized dataset from the real-world
manipulator.

The global explanations from SHAP are visualized in two ways. One Summary
plot in Fig 4.9 shows all SHAP magnitudes of the features across the four actions. As
with the local explanations, the goal lever angle and current lever angle are the most
influential features according to the explainers. The agent aims to move the current
lever angle towards the goal lever angle, so this is trustworthy. These angles are used as
an explanation both for and against doing the specific action. For example, the position
of the current lever angle is an argument for moving Joint 3 while the goal lever angle

50 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.7: Robotic Manipulator: LIME Local explanations Joints 3 and 4

Figure 4.8: Robotic Manipulator: SHAP Local explanations Joints 3 and 4

4.1. XAI METHOD COMPARISON 51

pushes in the opposite direction. It can also be observed that moving Joint 2 has a more
significant impact than the other actions. However, this varied depending on the choice
of the test episode. If one action has an unexpectedly significant impact, it can indicate
a place to start looking for a failed operation. On the other hand, considerable changes
between different test episodes can also suggest that too few training episodes are used
when training the explainer, which could be observed in the local explanations where
only five training episodes were used.

Figure 4.9: Robotic Manipulator: SHAP Global Summary plot

The Summary plot shows that under half of the features have a significant impact
on the explainer. This was the motivation behind using these global plots to reduce the
model to fewer trained features and see how this affects the interpretations. The results
from these operations are presented below in Section 4.2.1.

The Force-plot of SHAP can also be used to show the features of the highest mag-
nitude throughout the test episode. As seen in Fig 4.10, it confirms the lever angle
importance. Without these two features, accomplishing the episode’s goal for the agent

52 CHAPTER 4. RESULTS AND DISCUSSION

will be virtually impossible, so this is a positive sign. A reason behind the explainer not
proposing the current lever angle action (blue color) early in the episode to proposing it
(red color) towards the end is that the manipulator is getting a grip of the lever. Then
these two states would try to equalize each other.

The magnitude of the relative 𝑧 and 𝑥 distances is also one of the more influential
features across these two plots. This makes sense since, combined with the current lever
angle, these two states can be used to calculate where the end-effector is relative to
the lever. On the other hand, it would be expected that the angles of the manipulator’s
joints contribute more towards the actions.

Figure 4.10: Robotic Manipulator: SHAP global Force plot action 1 (Moving joint 2).
SHAP-values on the Y-axis vs State number on the X-axis.

4.1. XAI METHOD COMPARISON 53

Many of the same observations can be seen from Integrated Gradients in the Captum
plot in Fig 4.11. The lever angles have feature importances much higher than the rest.
Most of the features also have no significant impact, which further amplifies reducing
the state space. It can be noted that IG has, on average, pretty similar attribution values
compared to SHAP. Because of the big state-space, the Captum plots comparing the
gradient methods are divided in two (Fig 4.11 and Fig 4.12). Saliency and Integrated Gra-
dients follow the same trends here as well, but as opposed to the Cartpole environment,
Saliency does, in general, have a lower overall magnitude contribution. The weights
from the relative objective positions are influential in these two plots. However, the
phenomena regarding the small influence from the joint angles are also present across
the gradient methods.

Figure 4.11: Robotic Manipulator: Global Captum attributions top 10 features

54 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.12: Robotic Manipulator: Global Captum attributions remaining features

4.1.2 Discussion

In the author’s pre-project, the explanations from the model-specific methods SHAP and
LIME was discussed. With the addition of the Captum package, this has been extended
with global explanations from Integrated Gradients and Saliency. Two DRL-models
have been used to explore the performance of these XAI-methods on robotic environ-
ments. The results in Section 4.1 above show that the methods produce quite similar
explanations across both environments. From the author’s perspective, the Cartpole
environment results often coincide with the predictions a human would have made in
the same situation.

When increasing the dimensionality, a complex state space and multiple actions
make it difficult to get a clear sense of the specific situation. Working with the Cartpole
environment, the simpler state-space gives room for better human-machine interaction
with the interpretations. Some trends about the Robotic Manipulator can be discovered
locally and possibly say something about a possible failure. It is still possible to detect
some of the main characteristics of the agent, and the most influential features and
their change across an episode are often in line with the expectations in advance, which
means the trust of the model increases. On the other hand, it could also lead to an even

4.1. XAI METHOD COMPARISON 55

higher degree of confusion about the black box. This was one of the main concerns
in the pre-project and one of the motivations for exploring feature minimization and
real-time analysis in the following sections.

Multiple issues with the XAI methods used in this project could also amplify the
agents’ disconcerting factors when the problems just as well could arise in the explainers.
This is the motivation behind comparing these XAI-methods, focusing on what their
characteristics and theoretical foundation mean for the explanations observed above.
This will be based on the models and literature available [35][54][55][56][57].

SHAP

• The SHAP framework is based on solid theory. The properties from game theory
give the algorithm a good foundation, and the efficiency axiom makes the differ-
ence between the prediction and average prediction fairly distributed among the
feature values. This could emphasize the fact that SHAP results were more stable
throughout these experiments. However, SHAP-values can be misinterpreted
since it explains the contribution of a feature value to the difference between the
actual prediction and mean prediction. This could make it more challenging to
compare directly with other methods.

• SHAP is able to produce both local and global explanations. This is a huge benefit
when analyzing deep learning models, and both local and global insights could
be beneficial. Producing global explanations takes some time, though, especially
with many training episodes. The weighting when getting the SHAP values for
local explanations could be affected by the approximation in DeepSHAP. Even
though it fulfills the Shapley value properties, it could miss some of the actual
behavior of the model in the local neighborhood. When using the model to make
these predictions, the XAI-method becomes by definition model-specific instead
of model-agnostic where the neural network is decoupled. This means the agent
is used directly to produce the explanations in a post-hoc matter, but it also makes
it prone to adversarial attacks when making these approximations as shown in
[58]. This could explain some of the differences between SHAP and LIME’s local

56 CHAPTER 4. RESULTS AND DISCUSSION

explanations in the previous section.

• The assumption of feature independence is the elephant in the room of this project.
Shapley value methods suffer from the inclusion of unrealistic data instances
when features are correlated. Marginalizing the features is fine as long as the
features are independent. When they are dependent, feature values that do not
make sense might be sampled. Fig 4.13 shows the correlation over ten episodes in
the Cartpole environment, while Fig 4.14 does the same over 25 episodes for the
Robotic Manipulator. The findings from the pre-project were that even though
the correlation between some of the features is high in the Cartpole environment,
the explanations are still plausible. In the complex manipulator environment, this
is still a challenge. From the values in Fig 4.14, this could also explain why the
lever angles have such a significant impact because it correlates highly across
all the other influential features across the training episodes. With a complex
feature space, perturbations or highly correlated feature pairs could influence the
predictions from the SHAP-explainer.

Figure 4.13: Cartpole: Correlation. Values closer to ±1 are more connected (high
correlation), and no feature pairs have values above ±0.6

Overall, this is still a drawback when applying XAI-methods to robotic problems
since the features are naturally correlated. Some solutions to this problem were

4.1. XAI METHOD COMPARISON 57

Figure 4.14: Robotic Manipulator: Correlation most influential features. Values closer to
±1 are more connected (high correlation), and many feature pairs have values near ±1

58 CHAPTER 4. RESULTS AND DISCUSSION

proposed after the pre-project, such as permuting correlated features together,
but this could violate the symmetry axiom in the Shapley estimation. Therefore,
the proposal was to reduce the state space for the manipulator to only include
the most influential features and look more into the initialization and training
phase for the simpler Cartpole agent. It would not remove the challenge of feature
independence, but it would hopefully lead to a greater understanding of how
this affects the explanations. In many ways, this becomes an amplified SHAP-
procedure since the interpretation perspective for the method is to probe feature
correlations by removing features according to the game-theoretic framework.

LIME

• LIME is easy to implement and use across different models and works for multiple
data types. The interpretations given are easy to understand. It gives precise
prediction probabilities together with feature importance. It does not say anything
about magnitudes or full attributions but gives straightforward human-friendly
explanations. LIME can only make local predictions, but it calculates these very
fast. In this project, all of the explanations, even the more complex ones, were
predicted within a few seconds. The visualization of the LIME-predictions was
easy to follow in both environments.

• As with SHAP, the correlation between features is ignored since sampling is
from a Gaussian distribution. Another problem being observed with LIME is the
instability of the explanations, suddenly changing between similar situations. This
could be because the correct definition of the neighborhood is a huge, unsolved
problem when using LIME. This is especially important with the environments
that use tabular data. Samples near the point of interest are weighted more
heavily than samples far away, and when using discretization, it is impossible
to differentiate within the discretized bins. The way sampling is done in LIME
can lead to unrealistic data points, and the local interpretation can be biased
towards those data points. This makes the LIME-method even more vulnerable
for adversarial attacks than SHAP, where [58] found ways to fool these post-
hoc explanation techniques with discriminatory behavior. The instability and
vulnerability of LIME were observed throughout the testing period, where a small

4.1. XAI METHOD COMPARISON 59

situation change could lead to significant explanation differences. This is not a
good sign when explaining robotic models and makes it more challenging to trust
the explanations.

Gradient approaches

As these methods are very similar in their building blocks, the characteristics will be
presented together. In many ways, Saliency maps are a simplified approach compared to
Integrated Gradients (IG). Therefore, the main focus will be on presenting the character-
istics of Integrated Gradients, with supplements of the Saliency approach towards the
end. Attribution methods are hard to evaluate because it is challenging to distinguish
explanation errors from the gradient method versus errors of the agent. The idea is to
use the observed project explanations together with papers evaluating the methods.

Ïntegrated Gradients and Saliency

• By going directly into the gradient, this method is by definition also model-
specific. However, the framework is simpler and much faster to compute than the
perturbation methods. It is easy to only relate to the magnitude of each feature.
However, on the other hand, it is limited how much information that can be
extracted from only the feature magnitude without taking the different actions
into account.

• With only the feature magnitudes from a global perspective, it is not easy to
know whether an explanation is correct when it primarily gives a qualitative
evaluation. Multiple papers have also shown that these gradient methods can
be fragile for adversarial attacks and unreliable [59][60][61]. An investigation
regarding insensitivity revealed that some types of gradient methods primarily
focus on small changes instead of using the actual training data. This is an
ongoing discussion within the XAI-field, and more research on how to evaluate
these methods more thoroughly will hopefully be available soon. The overall
observation from the results in this project showed that at least IG mainly was in
line with the other perturbation predictions. The insensitivity theory is probably
an important factor for the observed differences with the pole angle feature in the
Cartpole environment.

60 CHAPTER 4. RESULTS AND DISCUSSION

• The idea behind Integrated Gradients is to compute the average gradient while
the input varies along a line path depending on a baseline. The developer chooses
this baseline, and multiple alternatives exist. In this project, a random baseline has
been used because the authors of IG suggested that using a random distribution is
advisable [45]. However, the approach has two main drawbacks; it could change
at every run because of random sampling and also introduce patterns that cause
biased attributions [62]. On the other hand, compared to other baselines (zero,
one, and mean-base), the results with the random baseline were very close to the
author’s expectations. The similarities between the SHAP- and IG-results could
be further amplified by the close connection between the gradient method and
the DeepLift algorithm used in SHAP. DeepLift could actually be used as a good
approximation of Integrated Gradients since it approximates an average partial
derivative at each non-linearity where IG computes this gradient in regards to a
baseline, both while varying the input. Overall, the similarity between the IG and
SHAP explanations increase the trust in both methods.

• The main use case for the Saliency method has been primarily images trained
with Convolutional Neural Networks. Saliency takes the absolute value directly
of the gradient, indicating which feature that can be perturbed the least to change
the output the most. However, choosing the absolute value directly instead of
using a baseline can limit the detection quite significantly [44]. Overall, Saliency
also performs well across both these environments, but it seems to either be over-
estimating or underestimating each feature. When having the better alternative of
using IG, both theoretically and from the observed explanations, this will be the
chosen gradient method for the procedures in the following sections. In addition,
the magnitudes of learned model weights tell us about the correlations between
the dependent variable and each independent variable. Zero weight means no
correlation, whereas positive weights indicate positive correlations and negatives
the opposite. This could explain some of the discoveries regarding the pole angle
disagreements between the perturbation and gradient approaches in the Cartpole
environment and will be further investigated in the next section.

4.2. DATA ADAPTIONS 61

4.2 Data adaptions

The comparison between the XAI-methods above often confirms the human intuition
in regards to the influence from some of the features. Especially in the Cartpole envi-
ronment, XAI can increase the understanding of the agent. Some interpretations from
the Robotic Manipulator can also be collected through different methods. However,
regarding the research question, the XAI-methods struggle more when the state space
increases in complexity.

This forms a basis for the underlying motivation of the data adaption procedures.
For the Cartpole environment, where it is simpler to follow the development from a
human perspective, forced implementations were implemented. This would hopefully
give an increased understanding of how the model performs when putting it under
pressure from the start of the episode. It could possibly also explain some of the observed
differences between SHAP and IG regarding the pole angle feature.

For the robotic manipulator, the big and complex state space creates challenges both
for the XAI methods and the interpretations from the author’s side. A reduced model
with the nine most influential states active in the method comparison was therefore
made and trained with the same goals. Suppose the XAI-methods can be used firstly to
interpret a complex model, reduce the trained state space without a significant decrease
in performance, and learn even more about the reduced agent. In that case, this could
be a beneficial area to investigate further.

4.2.1 Results

Forced initializations Cartpole

To produce the initialization plots in the Cartpole environment, ten solved episodes
have been used. A test episode is used to produce the explanations, and for every test,
the model gets initialized with a feature change from the start. This gets done for all
of the four features, ten data points each time. For example, the cart velocity feature
gets varied from starting at zero velocity to a maximum of 2.5 through 10 steps, where
each step gets increased by 0.25. The maximum boundary is decided by trial-and-error

62 CHAPTER 4. RESULTS AND DISCUSSION

to see how much change is needed for the episode to fail. In addition, a performance
threshold is included for each feature, which reflects where the model starts to cross
the boundary of not solving the episode (score under 195) a majority of the time.

The total magnitude of the specific feature is compared against the initialization
change for the same feature. It should be noticed that a zero change reflects the same
magnitude value as the method comparison above. Hence for a zero change, both
XAI-methods produce the same magnitudes as above, meaning each of the feature
magnitudes starts at a level well above zero. All of the features and the corresponding
magnitude changes are included to form a total of four subplots. The expectation from
the author is that an initialization change for a specific feature will increase the impor-
tance of the explanation model. This is because the agent needs to compensate when
the forced initialization gets more extensive with actions that stabilize the given feature
in the other direction.

In Fig 4.15, initializations are included for the two first features, Cart Position and
Cart Velocity. Both feature magnitudes increase dramatically when the change gets
bigger. Some fluctuations are expected and also present in these two subplots. Still, both
features follow the same upwards trend in SHAP-magnitudes, with a big increase after
the performance threshold. IG also goes a bit upwards in magnitude, but not nearly as
much as SHAP. More specific comments about the numbers are included under each
subplot in Fig 4.15(a) and Fig 4.15(b).

In Fig 4.16, the remaining two features are presented using the same initialization
procedures as above. The pole tip velocity in Fig 4.16(b) follows the same trend, with
an almost exponential increase when passing the performance threshold. It should
be noted that the magnitude is already pretty high from the start, as this is the most
influential feature. IG follows SHAP more closely here after the threshold compared to
the other features.

The most significant difference in these plots is the pole angle feature. The dis-
agreements between the gradient and model-specific methods observed in the previous
section appear even stronger here. It is hard to say if it is an underestimation from SHAP

4.2. DATA ADAPTIONS 63

(a) Position
SHAP starts at 0.1, with small fluctuations to-
wards the performance threshold. After passing,
the magnitudes get much bigger with 0.3 in mag-
nitude when the position gets initialized to the
right. IG varies much less, only ranging from 0.05
to 0.1 in the end.

(b) Velocity
SHAP starts at 0.4, and the magnitudes gets much
bigger also here after passing the threshold, going
above 1. IG starts a bit under with less variation,
but an increase can be observed towards the end
going over 0.6

Figure 4.15: Forced initializations for Cart Position and Cart Velocity

or an overestimation from IG, probably somewhere in between. A strange phenomenon
is also that both methods are very stable even after the threshold. Even though the
change is minor here compared to the other features, an increase will be expected
when the pole angle initializes away from zero to compensate. The question is if the
SHAP-perturbations account for the other features to cover this start angle or if the
perturbations from the training episodes only account for tiny changes in the pole angle.

64 CHAPTER 4. RESULTS AND DISCUSSION

(a) Pole Angle
SHAP starts at 0.2, and finishes only slightly
above, even after passing the performance thresh-
old. IG also has less variation compared to the
other features, but starts and finishes at a much
higher lever, around 1.

(b) Pole tip velocity
Both SHAP and IG starts in the interval 1.5 − 2,
moves steadily towards the performance thresh-
old, followed by a big increase for both methods.

Figure 4.16: Forced initializations for Pole Angle and Pole Tip Velocity

Feature space reduction Robotic Manipulator

When interpreting the Robotic Manipulator explanations above, some frustration about
keeping control over 20 different features in a complex model could probably be read
through the lines. The motivation to reduce the model complexity to see how this
affects both the agent performance and the XAI-methods was also discussed above.
In this section, the state space of the agent has been reduced considerably to 9 states.
The same plots from SHAP, IG and Saliency are presented in Fig 4.17, Fig 4.18 and Fig 4.19.

The explanations in these plots are pretty similar to the ones with all features
included. The lever angles are still dominant, but especially from the SHAP-analysis, it
can be observed that more features have a significant impact on the model. The same
yields for the gradient methods, however the increase is not as significant. Other trends
to notice are that all of the actions are more involved in each feature’s magnitudes, but
this also varies slightly depending on how the agent reaches the goal in that specific
episode. It shows that very many of the same properties are transferred from the original
to the reduced model, benefiting the user of explaining under half of the state space.

4.2. DATA ADAPTIONS 65

Figure 4.17: Robotic Manipulator: Shap Global Summary plot reduced model. Note that
the colors for each action has changed from the Summary plot with all features

Figure 4.18: Robotic Manipulator reduced model: Shap Global Force plot action 1
(moving joint 2). SHAP-values on the Y-axis vs State number on the X-axis.

66 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.19: Robotic Manipulator: Captum attributions reduced model

4.2.2 Discussion

The trends from the data adaption procedures are primarily described above. Therefore,
the goal of the discussion regarding this part is to connect the characteristics from the
comparison above with the observations in this section.

For the Cartpole initializations, the primary trend to note is that the SHAP-explanations
are more influenced by a more challenging start position for all the features. In regards
to the biased "fooling" experiments in [58], this shows that small changes affect the
perturbation approach much more than the gradient. On the other hand, from a human
intuition, the influence of a feature should increase when it is put under pressure from the
start. IG shows a slight increase across the features, but not nearly as evident as SHAP. If,
for example, the position feature starts in a wrong position, this could maybe be easier to
spot right away from the SHAP-plots, where the magnitude increases more dramatically.

The trend regarding the pole angle feature is somewhat disconcerting and has been a
focus area across multiple result parts. The point on insensitivity could explain why IG
rates this feature important constantly across the increased starting points. Even though
it gets initialized with an increased angle, the gradient is still perturbed to produce

4.2. DATA ADAPTIONS 67

changes within a similar range. These changes are probably much more significant than
the neighborhood perturbation sampling done in SHAP, which is based on the actual
values across the training episodes. Therefore, it could be argued that the pole angle
feature, which has a significant impact if it varies, amplifies the differences between
these approaches.

The idea behind reducing the Robotic Manipulator state space is to make the expla-
nations from a complex model easier to interpret. An increase in feature impact from
the XAI-method output is expected since fewer features contribute towards the agent’s
actions. This is most present in the SHAP-explanations while the gradient methods
do not increase significantly. This is probably an effect of the perturbation sampling,
where each feature will be more affected with fewer features.

Overall, using the entire model to produce explanations leads to discovering the
most influential states. Using these explanations to reduce the model, and keeping the
same performance with under half of the features, increases the trust of both the agent
and the XAI-methods. The same trends regarding the most influential features are still
present in the reduced model, which is very favorable, and it shows an exciting area of
use for complex robotic XAI-research.

68 CHAPTER 4. RESULTS AND DISCUSSION

4.3 Training analysis

In the explanations above, the XAI-methods have been applied to environments where
the agent already has been trained to solve the episode. This leads to information
about how the agent emphasizes the different features to guide the Cartpole or Robotic
Manipulator to a particular goal point. This is useful when learning more about the
basis for the agents’ decisions. Still, it is also interesting to learn more about how the
DRL-algorithms train the agent to be able to solve the environment. When working
with robotic environments, one of the main motivations with XAI is to be able to spot
critical errors at an early stage. To do this, the black box needs more transparency, but
how about opening up the box before it develops into a black box architecture?

The methods used in this project are post-hoc, and they are not coupled directly
to the DRL-algorithm, meaning they cannot influence the training procedure. More
on the potential for doing this in the discussion, but since SHAP and IG cannot affect
the agents’ decisions, a creative solution had to be implemented. This was done in the
Cartpole-environment, where the REINFORCE DRL-algorithm needs approximately
500 episodes to solve the OpenAI environment. The training procedure was divided
into steps of 50 episodes, where the XAI-methods use 1000 states in each step to train
the explainer. These states can be everything from 5 solved episodes in the end to 50
unsolved episodes in the start when the agent struggles. SHAP uses the last episode to
produce global explanations, while Integrated Gradients sets a baseline for those 1000
states to find the feature magnitudes. Overall, this increases the computation time of
the training procedure, especially the SHAP-explanations take some time to compute
after each 50 episode step. The faster gradient approach could be beneficial if time is
limited, since it does not significantly delay the training procedure.

4.3.1 Results

The expectations regarding this procedure are not necessarily straightforward in ad-
vance. From the start, when each episode only contains a few states until the Cartpole
loses balance, the magnitudes of all features are probably at a low level. This would
increase towards the solved episode explanations above when the agent gets better.

4.3. TRAINING ANALYSIS 69

(a) Position:
IG starts at zero and increases towards a mag-
nitude of 0.4 after 350 episodes, and has a mag-
nitude around 0.2 at the 500 mark with some
decrease in the end.
SHAP has a big magnitude (1) between episode
300 and 400, before decreasing towards almost
the same level as IG in the end.

(b) Velocity
IG increases slowly from zero to a bit under 0.5.
In this feature, SHAP varies very much up and
down, from zero to almost 2 in magnitude, before
ending at the same level around 0.5 in magnitude.
Interestingly, the feature also starts a bit over zero,
indicating that the velocity features contribute
more to the failed episodes from the start.

Figure 4.20: Training plots: Cart Position and Cart Velocity

However, the agent could also encounter problems under- or over-estimating one or
multiple features in the middle of the training process where the episodes vary in length.
The expectation is that this will stabilize when reaching the threshold of solving the
environment, around the 500 episode mark.

In Fig 4.20 the position and velocity features are plotted against their respective mag-
nitude. Both features follow the same pattern with small magnitudes from the start that
increases when the number of episodes gets larger. Some over-estimations compared
to the solved episodes are also observed, especially around the halfway mark. As with
the forced initializations, SHAP varies much more than Integrated Gradients, with big
ups and downs. Especially the velocity feature reaches almost two in SHAP-magnitude
closely before the end, which can be a sign regarding the instability of the perturbations.
Integrated Gradients are much more stable throughout both features.

This is not the case for the two remaining features in Fig 4.21. Here, the magnitude
of Integrate Gradients increases while the agent gets better. This is the case both for the
pole angle and pole tip velocity. For the latter feature, SHAP follows the same trend, and

70 CHAPTER 4. RESULTS AND DISCUSSION

(a) Angle:
IG increases from zero magnitude in the start to-
wards 1.2 when the agent solves the environment
after 500 episodes.
SHAP has much lower magnitude through all
episodes, also beginning from zero, but ending
only at 0.1

(b) Pole tip velocity:
Both methods follows the same trend here, in-
creasing from zero towards an magnitude be-
tween 1.5 and 1.75. Also with this velocity fea-
ture, SHAP, initialize a bit over zero (0.1) from
the start.

Figure 4.21: Training plots: Pole Angle and Pole Tip Velocity

this is also the feature with the highest magnitude in the end, as seen in the sections
above. The big difference between the two methods for the pole angle is also present
here. However, in these two states, the SHAP-explanations do not fluctuate so much up
and down as seen above. A theory can be that when the magnitude of the pole tip velocity
gets big enough, together with stabilizing the magnitudes of the position and velocity,
the agent also stabilizes enough to solve the environment. However, the differences
between the methods with the pole angle feature could decrease this hypothesis, as
many more factors probably play a role in keeping the Cartpole stable. The discussion
below will cover more about this theory and evaluate how these plots can decrease or
increase the trust of the agent’s learning period.

4.3.2 Discussion

The expectations about how the XAI-methods develop throughout the training proce-
dure have already been covered above. In summary, three of the four features follow
the same trends, and the same observations regarding the initialization procedures are
visible. SHAP varies much more, and there are still significant disagreements about the

4.4. REAL TIME XAI 71

pole angle feature. A sign of strength for IG is that this feature increases in magnitude
while training, meaning the changes are directly dependent on the trained agent. This
could be a sign that it is the SHAP-explainer that is most off about the interpretations
of this specific feature, which is backed up by the importance with other analysis of the
Cartpole environment [63]. The faster computation time of IG is also very useful in these
implementations, especially when only observing the changes in feature magnitude
over the training phase.

Even though these training plots show explanations across the agent’s training
phase, the limitation of the post-hoc approach becomes more visible. The reason model-
agnostic and gradient methods have been used in this project is that they are decoupled
from influencing the underlying machine learning model. This makes them easier to
implement across multiple environments and gives explanation and representation
flexibility. Because of these scaling abilities, they are expected to be a dominant factor
in the XAI-field [64].

When seeing the underlying basis on how these post-hoc methods can extract
information from the training phase, an even more exciting direction would be to
see the performance of intrinsic XAI-methods that are directly coupled to the DRL-
model in these environments. Unfortunately, the author did not manage to find any
promising XAI-methods that are intrinsic, and at the same time, able to explain robotic
environments. In the future, this could make it possible to use the interpretations
to influence the agent while learning. Hopefully, this could improve the final results
without developing the system into a black box, eventually leading to the third wave
described by DARPA [14].

4.4 Real time XAI

The third research question in this project investigates how an audience can engage
with robotic models. In the sections above, the plots interpret the agent with explana-
tions produced after the episode has finished. Can this be visualized in a way that’s
more related to a real-time analysis, where a human operator can engage with the
explanations?

72 CHAPTER 4. RESULTS AND DISCUSSION

The idea behind this last result section is to use local explanations to interpret all
of the features in one episode and visualize it in a way that could be beneficial for a
human operator. The goal is to transfer the attempts into a simulation using an OpenAI
rendering video of the Cartpole. The model-agnostic methods of SHAP and LIME have
been used in this task because they produce local explanations and also say something
specific about prediction values and feature magnitude in each state.

As discussed in the method comparison section, one of the benefits of LIME is
that local explanations are produced very fast. However, when producing 200 local
explanations in a row, SHAP has the benefit that it can use a global training procedure
and then use these explanations locally. This means that the SHAP-explainer turned
out to be the choice when applying these interpretations in a simulated environment.
There are still some challenges with the methods being post-hoc in this case, so it is not
really real-time in theory. However, the computation time for SHAP is hopefully fast
enough to produce explanations rapidly after the episode.

However, before testing in the simulator, episode plots were produced for both
SHAP and LIME in the Anaconda environment.

4.4.1 Results

The episode plots visualize how each feature changes locally across a complete episode,
and an example of how to interpret the plot type is shown in Section 3.3. The state values
are shown as a blue line with scatter points in red/blue, where the intensity indicates
the magnitude of a push in one of the directions. This can, for example, reveal some of
the critical states where the Cartpole or Robotic Manipulator struggles. Cartpole’s two
actions are easy to control, while the Robotic Manipulator proposes some challenges
since the action space increases. The plots have been made by looping over an entire
episode and calling the explainer at each state. In the end, the explanations are linearly
normalized between data points to better reflect each feature in context with each other.

4.4. REAL TIME XAI 73

Episode plots Cartpole

The episode plots for the Cartpole environment are shown in Fig 4.22 (LIME) and in Fig
4.23 (SHAP). As seen in the situation from the local explanation in Section 4.1.1, the
pole tip velocity feature is dominant in both explainers. This can be recognized by more
intensive red/blue data points. When the pole tip velocity is positive, both explainers
indicate a push in the right direction to stabilize the pole. The opposite happens when
the feature is negative, which makes sense according to balancing the Cartpole.

There are not too many indications from the other features, but some intensive dots
can be spotted when the feature is well above or below zero. The most concerning
feature is maybe cart velocity, showing some red dots when being positive, which does
not make much sense. The intuitive action with a positive (right) velocity will be a
push to the left (blue dot), but the SHAP-plot does not always reflect this action. Some
comments about all the features are presented below.

Figure 4.22: Cartpole: Episode plots Lime

74 CHAPTER 4. RESULTS AND DISCUSSION

• Cart Position: The position feature varies from 0 to 0.4, so the Cartpole moves a
bit to the right and back during the episode, well within the environment bound-
aries. Both SHAP and LIME explanations have a grey tone in almost all states,
which indicates that this feature does not have a big influence on any of the local
explanations.

• Cart Velocity: This feature varies much more up and down, but the scatter points
still have little intensity. Some red or blue tones can maybe be spotted in the
outliers for the SHAP-explanations, commented above as a disconcerting factor.
However, overall in this episode, the velocity feature nor does have any special
impact.

• Pole Angle: The angle starts with a positive value (tipping right) before switch-
ing in a negative direction after 75 states. Throughout the episode, this feature
does not contribute significantly to the explanations either.

• Pole Tip Velocity: The dominant feature where the explainer proposes a right
push when the feature is positive and a left push when the feature is negative. As
it is a velocity feature, this feature also varies a lot.

Episode plots Robotic Manipulator

The reduced manipulator model is used in this section, but it still has four actions, mean-
ing an episode plot above does not contribute as much as in the Cartpole environment.
One way to visualize this is to show each action, where blue/red indicates the intensity
of choosing this action or not for that specific feature. Another way is to choose the
features with the greatest influence, in this case, the lever angles, and plot them across
all four actions. Both procedures have been done with SHAP and LIME. These are
presented across two figures in Fig 4.24 and Fig 4.25. Note that these plots are of good
quality, so it is possible to zoom in to visualize better.

4.4. REAL TIME XAI 75

Figure 4.23: Cartpole: Episode plots SHAP

76 CHAPTER 4. RESULTS AND DISCUSSION

In Fig 4.24 all features are shown across the first action, which is to move joint 2.
As with the global plots, this is done by training the explainers with 24 episodes (1200
states) and then running it across a test episode with 50 transitions. The primary trend
to spot across these two methods is that the lever angles take a huge portion of the total
magnitude. As with the Cartpole, SHAP has in general higher magnitudes, which can
be seen by more intensive color points. LIME has a bit more even distribution across
the nine features, while SHAP gives the dominant impact to the lever angles.

From the lever angle plots in Fig 4.25 it can be implied that the SHAP-explanations
give a more stable interpretation across the episode. Before the current lever angle
changes, both angles push in the same direction for every action. Afterward, they push
in the opposite direction, which is expected since the angle is in the correct place. LIME
however, has some outlier points that suddenly push in another direction, and the same
trends are not so obvious to spot. These observations can be seen in direction with the
method comparison discussion in Section 4.1.2, where one of LIME’s disadvantages was
unstable values because of adversarial perturbations.

Even though some trends can be spotted across the two episode plots above, having
nine features and four actions make it difficult and unnecessary to focus on all the
information. Using the original model with 20 features would have been even worse.
Arguably, these explanations do not add a significant amount of information compared
to the global force plots above, where SHAP provides a good visualization technique to
discover the essential features.

Simulation example

In the Cartpole environment, the episode plots were much more helpful since all four
features contribute to keeping the pole upright. It is also much simpler to keep track
of only four features and two actions. At the end of this project, the episode plot from
SHAP was used to make a simulation example from the OpenAI render environment.
This was mostly done because of an underlying motivation to show how a human
operator could interpret these results regarding the second research question, which
will be discussed below. There are multiple ways to implement such a solution, and
one way could be to make an Graphical User Interface (GUI), another is to generate a

4.4. REAL TIME XAI 77

(a) LIME Explanations

(b) SHAP Explanations

Figure 4.24: Episode plots Robotic Manipulator for action 1 (Moving joint 2). Plot is of
good quality, the author recommends to zoom to see details

78 CHAPTER 4. RESULTS AND DISCUSSION

(a) LIME Explanations

(b) SHAP Explanations

Figure 4.25: Episode plots RM for all 4 actions across the lever angles. Plot is of good
quality, the author recommends to zoom to see details

4.4. REAL TIME XAI 79

video file in real-time. A simplified version of the last one was implemented. Since the
SHAP-method used is post-hoc, the simulation is not "real-time" by definition, but it is
still a way to follow the process, either in a testing environment or during training.

The implementation was done by making a GIF from the OpenAI render feature of
one solved episode, playing in 2 frames per second with the given feature values and
state number. The SHAP-explanations from the episode plots were inserted into a pack-
age called barchartrace, which varies each feature represented for every frame according
to its value [49]. This was done for both actions. A screenshot from the simulation, a
thought scenario of a human operator’s eyes, is shown in 4.26. Here, state 67 is shown,
and as with the local SHAP-explanations, a negative pole tip velocity pushes for a left
action, while a positive pole angle does the opposite. Keep in mind that this interface was
mainly done at the end of the project to show a possible use case for these episode plots
and that a proper video with better labels and smoother graphics is a task for future work.

One interesting note when implementing this simulation was the author’s observa-
tion on how the agent chooses its actions to keep the pole upright during the episode.
This was very easy to spot when playing it as a bar chart race but was not discovered
before with "traditional" plots. During this specific episode, and also the other ones
that were tested, it could be argued that the feature pole tip velocity "controls" the
agent. Every time it becomes positive, the SHAP-value increases from 0 to around 1.
The agent suggests an action of pushing in the right direction as long as there are no
significant values from the other features, which makes the pole tip velocity decrease
back to 0. During the episode’s 200 states, this happens back and forth. If the other
features have a significant impact, leading the agent to take action in contrast to the pole
tip velocity-proposal, the SHAP-value of this feature will increase to 2, and the agent
must consider it in the next step.

In conjunction with the summary plot in Fig 4.4, these values make sense. Overall,
such interactive explanations are likely a better way to spot trends and characteristics
of the agent from an operator’s eyes. The discussion below will move into the possible
use-cases, pitfalls to be aware of, and how to get audience engagements across these
two environments of different complexity.

80 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.26: Cartpole: Simulation example

4.4.2 Discussion

The last part of this project is closely connected with the second research question.
To address the possibilities of audience engagement with XAI-explanations, real-time
interaction will probably play a big part in the future. The post-hoc methods used in
this project make the direct engagement a bit limited for such attempts, but the part
above shows that it is still possible to create visualizations and simulations that could
increase interaction between the DRL-model and a human operator.

As with the previous result sections, a simpler environment makes it easier to follow
the explanations across such an episode plot. For the Cartpole environment, it was a
useful way to visualize the local explanations over a full period. It also made it possible
to learn more about the agent, for example, by discovering the trend on how the pole tip
velocity in practice "controls" the agent’s decisions. Such an analysis makes room for
multiple extra attributes that could be useful from an operator’s perspective. Examples
can be an alert system for outlier states, mysterious explanation values, or within critical
phases.

4.4. REAL TIME XAI 81

The same patterns could also, to a certain extent, be found in the episode plots
for the Robotic Manipulator. Even though this is the reduced model with a smaller
feature space, four actions make it more challenging to visualize in such a manner. In
the Cartpole environment, the intensity specifies the action one way or the other, while
the intensity in the Manipulator plots indicates if this specific action should be chosen
or not. When having four actions in total, it is difficult to separate each feature. The
use case for the lever angle plots could be more beneficial for a human operator to see
if it changes when the manipulator reaches the lever. However, the global Force plot
shown in Fig 4.18 covers a lot of this information already. Therefore, other "real-time"
visualization techniques should probably be investigated further to see if it is possible
to plot one action against the remaining three over an entire episode.

Both SHAP and LIME have been used to produce these episode plots. In the com-
parison above, the characteristics of each method have been presented, and one of the
advantages with LIME was the fast computational time. However, when looping all
local explanations, the total time for LIME suddenly becomes pretty extensive, while
SHAP benefits over collecting global SHAP-values directly. Therefore, the simpler
LIME approach is not so valuable for these settings. With the extra factor that SHAP
explanations produce more consistent explanations, it was preferred for the simulation
part.

The simulation model presented in Fig 4.26 is mainly included to show how the
operator from a control station can follow this. It is easier to understand the model when
seeing both the features and explanation values changing throughout a rendered episode
of the environment. A natural next step for this project is to improve this example to an
actual video or graphical user interface and run test episodes for a selection of users.
For instance, multiple attributes can be added, such as warning lights, coloring the pole
features, and improving the bar chart variations. Both the author’s supervisors and
fellow students agreed that a form for a bar chart race could be a good visualization
idea to follow the interpretations, so it would be interesting to test this further.

82 CHAPTER 4. RESULTS AND DISCUSSION

Chapter 5

Conclusion

5.1 Answering the research questions

Howdo state-of-the-artmethods fromExplainable Artificial Intelligence (XAI)
performon simulated robotic systems? What are the crucial factors to consider
when choosing between these XAI-frameworks?

Much information can be collected about the environments from running these
XAI-methods across four different procedures. It has been interesting to confirm the
pre-existing human intuition about the models and use these explanations to discover
new trends. The impression throughout these attempts is that a lot of the explanations
make sense, but on the other hand, it is almost always possible to find unexpected pre-
dictions. The assumptions and weaknesses of the methods presented in the comparison
section also put the explainers under an extra critical view. It is sometimes challenging
to know whether to trust the agent or the XAI-explanations, and this means that in the
worst case, the black box gets even more confusing.

When going through the results in this project, it is interesting to compare it to
other user studies done in the XAI-field. For example, one study indicated that SHAP-
explanations are consistent with human explanations [56]. On the other side, recent
studies argued that SHAP, albeit good in generating explanations, does not improve final

83

84 CHAPTER 5. CONCLUSION

decision-making [65][66]. The author will argue that it could improve final decision-
making, but it is vital to keep the limitations in mind with a critical interpretation
viewpoint. A lot of new XAI-methods are being developed at the moment. However,
in addition, it would be great to increase the focus on existing methods for several
use cases and possible improvements. For example, a review of how to evaluate these
methods against each other in different settings would be beneficial.

When choosing a framework, the main points to consider are the given use case,
time limitations, and how knowledgeable the audience is. Gradient methods have the
benefit of being faster and possibly less influenced by the correlation problem. The
model-agnostic methods give a broader explanation model with more information, but
it could come at the cost of perturbations errors. The author’s proposal is to use the
benefits of both types of methods as insurance to increase the trust of the explainers as
well as the agents.

The overall results in this project show that promising XAI techniques could help
interpret the black-boxes in DRL and give explanations that make sense from a human
perspective. In simple environments (Cartpole) where the features are not too correlated,
this can be used as support to understand the model, both in a local and global scope.
This shows that XAI could enlighten insight about the deployment of everyday problems
in the RL community. However, when the environments get more complex with highly
correlated features, some of the challenges by using XAI methods in DRL are more
prominent. Feature removals were an effective way to reduce some of the challenges in
complex environments. However, much research remains before this could be seen in
real-life robotic DRL-development.

Can these XAI-explanations be used to engage with end-users, and how
does this affect the trust of the DRL-models used to control robotic systems?

The simulation examples and "real-time" analysis done in the latter parts of this
project could possibly increase audience engagement with the DRL-agents. It makes
it easier to discover trends from the models and more straightforward to spot outlier
explanations. However, more user studies across different end-users could investigate

5.1. ANSWERING THE RESEARCH QUESTIONS 85

how these explanations can engage with diverse target audiences. These studies could
also include better visualization and simulation techniques, which would make the
development phase easier and could convey the results in a better way. Assessing how
XAI techniques can understand models beyond classification tasks is starting to get more
attention, and a new subfield in Explainable Reinforcement learning (XRL) is emerging
[67]. The most crucial thing in XRL is to keep the human side of the equation in mind
[64]. No clear answers make interpretations more complicated, and explainability should
possibly be used as a tool instead of a solution.

The goal with XAI methods is to open up the black box problem to interpret decisions
made by the agents. One of the drawbacks of robotic reinforcement learning is that
mistakes in such systems could lead to dramatic consequences. Therefore the amount
of transparency must increase before it gets more adapted in the industry. The methods
used in this thesis show that XAI could help increase the trust about simulated robotic
problems trained with DRL. It can give information about the agent’s predictions and
important features, both locally and globally. The problem is that these predictions
do not have any clear basis for comparison, in contrast to machine learning problems
where it is possible to classify a correct prediction. This makes the XAI methods more
challenging to visualize and convey, and it depends a lot more on human intuition.
However, human intuition is almost a black box itself. When GDPR starts to considerate
"a right to explanation", a part of the project development could be to set some trans-
parency boundaries, which both makes the system easier to explain and the end-user
more prepared on how to interpret different explanations.

86 CHAPTER 5. CONCLUSION

5.2 Further work

The natural next step in this project would be to improve the simulated Cartpole-
environment explanations by making a graphical user interface or video. This could
include multiple extra features and a smoother explanation interface, as discussed in
the last section of the result chapter. It could be customized to being flexible to include
all the XAI-methods tested in this project. This interface could also be transferred to
the more complex Robotic Manipulator by, for example, using the Pybullet simulator.

After working one year with post-hoc XAI-methods, the desire for seeing the ex-
planations from an intrinsic method that are directly coupled to the DRL-agent has
increased more and more. It would be interesting to see how such a method interprets
these agents compared to the methods used in this project. According to the answer
to the research questions above, this is probably an essential factor to consider when
developing methods for the new subfield XRL. Unfortunately, this is a field where it has
been hard to find methods, so more research is needed.

This project has been a part of the EXAIGON project at NTNU, which aims to meet
society’s and industry’s standards for the deployment of trustworthy AI systems in
social environments and business-critical applications. This will be done by developing
methods to understand how black-box models make their predictions and what their
limitations are. Hopefully, the foundation from testing XAI in simulated environments
assist in producing knowledge and understanding of how best to make use of these
methods in different applications. Gradually, several use cases and data from industry
players in the EXAIGON project will be available. This can be used to test the methods
more thoroughly in relevant environments. Several platforms can be used for testing,
including robotic arms, drones, and marine vessels, so the possible applications are huge.

References

[1] OpenAI, Gym, https://gym.openai.com/, [Online; accessed 11-May-2021],
2021.

[2] emanual.robotis.com, Openmanipulator, http://emanual.robotis.com/docs/
en/platform/openmanipulator_x/overview/, [Online; accessed 25-March-
2021], 2019.

[3] Pytorch, From research to production, https://pytorch.org/, [Online; accessed
10-February-2021], 2021.

[4] S. Lundberg, Shap, https://github.com/slundberg/shap, [Online; accessed
1-April-2021], 2021.

[5] M. Ribeiro, Lime, https://github.com/marcotcr/lime, [Online; accessed
20-April-2021], 2021.

[6] Captum, Algorithm descriptions, https://captum.ai/docs/algorithms, [On-
line; accessed 02-April-2021], 2021.

[7] I. O. Myklebust, “Explainable ai (xai) methods for deep reinforcement learning,”
NTNU Project Thesis, unpublished, 2020.

[8] A. Lekkas et al, Exaigon, https://www.ntnu.edu/exaigon, [Online; accessed
07-May-2021], 2021.

87

https://gym.openai.com/
http://emanual.robotis.com/docs/en/platform/openmanipulator_ x/overview/
http://emanual.robotis.com/docs/en/platform/openmanipulator_ x/overview/
https://pytorch.org/
https://github.com/slundberg/shap
https://github.com/marcotcr/lime
https://captum.ai/docs/algorithms
https://www.ntnu.edu/exaigon

88 REFERENCES

[9] S. B. Remman, “Robotic manipulation using deep reinforcement learning,” NTNU
Master Thesis, 2020.

[10] A. Adadi and M. Berada, “Peeking inside the black-box: A survey on explainable
artificial intelligence (xai),” IEEE Access, vol. 6, no. 1, pp. 52 138–52 160, 2018.

[11] A. Mishra, U. Soni, J. Huang, and C. Bryan, Why? why not? when? visual ex-
planations of agent behavior in reinforcement learning, 2021. arXiv: 2104.02818
[cs.HC].

[12] W. Samek and K.-R. Müller, “Towards explainable artificial intelligence,” Lecture
Notes in Computer Science, pp. 5–22, 2019.

[13] E. Puiutta and E. M. Veith, Explainable reinforcement learning: A survey, 2020.
arXiv: 2005.06247 [cs.LG].

[14] D. Gunning, Explainable artificial intelligence, Program Update Darpa, 2017.

[15] P.-J. Kindermans, K. T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim, and S.
Dähne, Learning how to explain neural networks: Patternnet and patternattribution,
2017. arXiv: 1705.05598 [stat.ML].

[16] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (xai): Toward
medical xai,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21,
2020.

[17] Z. C. Lipton, The mythos of model interpretability, 2016. arXiv: 1606 . 03490
[cs.LG].

[18] A. Weller, Transparency: Motivations and challenges, 2017. arXiv: 1708.01870
[cs.CY].

[19] O. Dictionary, Artificial intelligence, https://www.oxfordreference.com/
view / 10 . 1093 / oi / authority . 20110803095426960, [Online; accessed 01-
February-2021], 2020.

https://arxiv.org/abs/2104.02818
https://arxiv.org/abs/2104.02818
https://arxiv.org/abs/2005.06247
https://arxiv.org/abs/1705.05598
https://arxiv.org/abs/1606.03490
https://arxiv.org/abs/1606.03490
https://arxiv.org/abs/1708.01870
https://arxiv.org/abs/1708.01870
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095426960
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095426960

REFERENCES 89

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA, USA: A Bradford Book, The MIT Press, 2018.

[21] D. Fumo, Types of machine learning algorithms you should know, https : / /
towardsdatascience.com/types-of-machine-learning-algorithms-you-

should-know-953a08248861, [Online; accessed 03-March-2021], 2017.

[22] A. Lekkas, Lecture notes in ttk23 introduction to autonomous robotics systems for
industry 4.0, https://www.itk.ntnu.no/emner/fordypning/TTK23, October-
November 2021.

[23] M. Wiering and M. v. Otterlo, Reinforcement Learning: State of the art. Springer-
Verlag Berlin Heidelberg, 2012.

[24] Y. Bengio, G. Guyon, V. Dror, G. Lemaire, D. Taylor, and D. Silver, “Deep learning
of representations for unsupervised and transfer learning,” vol. 7, Jan. 2011.

[25] A. Ng, Deep learning, https://on- demand.gputechconf.com/gtc/2015/
presentation/S5818-Keynote-Andrew-Ng.pdf, [Online; accessed 10-March-
2021], 2015.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[27] M. A. Nielsen,Neural networks and deep learning, http://neuralnetworksanddeeplearning.
com/, [Online; accessed 10-March-2021], 2018.

[28] Claire, 4 simple steps to powerful artificial neural networks in python, https://
www.artificiallyintelligentclaire.com/artificial-neural-networks-

python/, [Online; accessed 20-April-2021], 2020.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller, Playing atari with deep reinforcement learning, 2013. arXiv: 1312.5602
[cs.LG].

https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://www.itk.ntnu.no/emner/fordypning/TTK23
https://on-demand.gputechconf.com/gtc/2015/presentation/S5818-Keynote-Andrew-Ng.pdf
https://on-demand.gputechconf.com/gtc/2015/presentation/S5818-Keynote-Andrew-Ng.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://www.artificiallyintelligentclaire.com/artificial-neural-networks-python/
https://www.artificiallyintelligentclaire.com/artificial-neural-networks-python/
https://www.artificiallyintelligentclaire.com/artificial-neural-networks-python/
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602

90 REFERENCES

[30] L.Weng,A (long) peek into reinforcement learning, https://lilianweng.github.
io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning,
[Online; accessed 12-May-2021], 2018.

[31] J. Hui, Rl - policy gradient explained, https://jonathan-hui.medium.com/
rl-policy-gradients-explained-9b13b688b146, [Online; accessed 07-May-
2021], 2018.

[32] A. Rao, Policy gradient algorithms, https://web.stanford.edu/class/cme241/
lecture_slides/PolicyGradient.pdf, [Online; accessed 07-May-2021], 2021.

[33] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, Continuous control with deep reinforcement learning, 2019. arXiv:
1509.02971 [cs.LG].

[34] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P.Welinder, B. McGrew,
J. Tobin, P. Abbeel, and W. Zaremba, Hindsight experience replay, 2018. arXiv:
1707.01495 [cs.LG].

[35] C. Molnar, Interpretable machine learning - a guide for making black box models
explainable, https://christophm.github.io/interpretable- ml- book/
index.html, [Online; accessed 02-May-2021], 2021.

[36] A. Nayak, Idea behind lime and shap, https://towardsdatascience.com/idea-
behind-lime-and-shap-b603d35d34eb, [Online; accessed 20-April-2021], 2019.

[37] H. D. Harder, Model-agnostic methods for interpreting any machine learning
model, https://towardsdatascience.com/model-agnostic-methods-for-
interpreting-any-machine-learning-model-4f10787ef504, [Online; ac-
cessed 20-April-2021], 2020.

[38] M. T. Ribeiro, S. Singh, and C. Guestrin, "why should i trust you?": Explaining the
predictions of any classifier, 2016. arXiv: 1602.04938 [cs.LG].

https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning
https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning
https://jonathan-hui.medium.com/rl-policy-gradients-explained-9b13b688b146
https://jonathan-hui.medium.com/rl-policy-gradients-explained-9b13b688b146
https://web.stanford.edu/class/cme241/lecture_slides/PolicyGradient.pdf
https://web.stanford.edu/class/cme241/lecture_slides/PolicyGradient.pdf
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1707.01495
https://christophm.github.io/interpretable-ml-book/index.html
https://christophm.github.io/interpretable-ml-book/index.html
https://towardsdatascience.com/idea-behind-lime-and-shap-b603d35d34eb
https://towardsdatascience.com/idea-behind-lime-and-shap-b603d35d34eb
https://towardsdatascience.com/model-agnostic-methods-for-interpreting-any-machine-learning-model-4f10787ef504
https://towardsdatascience.com/model-agnostic-methods-for-interpreting-any-machine-learning-model-4f10787ef504
https://arxiv.org/abs/1602.04938

REFERENCES 91

[39] J. Manu, Interpretability part 3: Opening the black box with lime and shap, https://
www.kdnuggets.com/2019/12/interpretability-part-3-lime-shap.html,
[Online; accessed 15-May-2021], 2019.

[40] S. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions,
2017. arXiv: 1705.07874 [cs.AI].

[41] R. Cubitt, “The shapley value: Essays in honor of lloyd s. shapley,” The Economic
Journal, vol. 101, no. 406, pp. 644–646, 1991.

[42] S. M. Lundberg and S.-I. Lee, Consistent feature attribution for tree ensembles, 2018.
arXiv: 1706.06060 [cs.AI].

[43] R. Khandelwal, Understanding deep learning models with integrated gradients,
https://towardsdatascience.com/understanding-deep-learning-models-

with-integrated-gradients-24ddce643dbf, [Online; accessed 02-May-2021],
2020.

[44] K. Simonyan, A. Vedaldi, and A. Zisserman, Deep inside convolutional networks:
Visualising image classification models and saliency maps, 2014. arXiv: 1312.6034
[cs.CV].

[45] M. Sundararajan, A. Taly, and Q. Yan, Axiomatic attribution for deep networks,
2017. arXiv: 1703.01365 [cs.LG].

[46] K. Bhardwaj, Integrated gradients for deep neural networks, https://medium.
com/@kartikeyabhardwaj98/integrated- gradients- for- deep- neural-

networks-c114e3968eae, [Online; accessed 29-April-2021], 2019.

[47] Anaconda software distribution, https://docs.anaconda.com/, version Vers.
2-2.4.0, 2020.

[48] Unknown, Openai, https://en.wikipedia.org/wiki/OpenAI, [Online; ac-
cessed 11-April-2021], 2021.

https://www.kdnuggets.com/2019/12/interpretability-part-3-lime-shap.html
https://www.kdnuggets.com/2019/12/interpretability-part-3-lime-shap.html
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1706.06060
https://towardsdatascience.com/understanding-deep-learning-models-with-integrated-gradients-24ddce643dbf
https://towardsdatascience.com/understanding-deep-learning-models-with-integrated-gradients-24ddce643dbf
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1703.01365
https://medium.com/@kartikeyabhardwaj98/integrated-gradients-for-deep-neural-networks-c114e3968eae
https://medium.com/@kartikeyabhardwaj98/integrated-gradients-for-deep-neural-networks-c114e3968eae
https://medium.com/@kartikeyabhardwaj98/integrated-gradients-for-deep-neural-networks-c114e3968eae
https://docs.anaconda.com/
https://en.wikipedia.org/wiki/OpenAI

92 REFERENCES

[49] Dexplo, Explainability in deep reinforcement learning, https://github.com/
dexplo/bar_chart_race, [Online; accessed 10-May-2021], 2020.

[50] E. Coumans and Y. Bai, Pybullet, a python module for physics simulation for games,
robotics and machine learning, http.//pybullet.org, [Online; accessed 01-May-
2021], 2016-2021.

[51] A. Howard andN. Koenig,Gazebo - robot simulationmade easy, http://gazebosim.
org/, [Online; accessed 01-June-2021], 2019.

[52] prabodhhere, Solving cartpole-v0 using reinforce, https://www.kaggle.com/
prabodhhere/solving-cartpole-v0-using-reinfor, [Online; accessed 07-
April-2021], 2018.

[53] M. Ribeiro, Lime documentation, https://lime- ml.readthedocs.io/en/
latest/index.html, [Online; accessed 20-April-2021], 2021.

[54] J. Mak, Introduction to model interpretability, http://web.stanford.edu/class/
cs224u / materials / cs224u - 2020 - model - explainability . pdf, [Online;
accessed 14-May-2021], 2020.

[55] T. Sigma, Interpretability methods in machine learning: A brief survey, https:
//www.twosigma.com/articles/interpretability-methods-in-machine-

learning-a-brief-survey/, [Online; accessed 02-May-2021], 2020.

[56] A. Das and P. Rad, Opportunities and challenges in explainable artificial intelligence
(xai): A survey, 2020. arXiv: 2006.11371 [cs.CV].

[57] A. Alqaraawi, M. Schuessler, P. Weiß, E. Costanza, and N. Berthouze, Evaluating
saliency map explanations for convolutional neural networks: A user study, 2020.
arXiv: 2002.00772 [cs.HC].

[58] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, Fooling lime and shap:
Adversarial attacks on post hoc explanation methods, 2020. arXiv: 1911.02508
[cs.LG].

https://github.com/dexplo/bar_chart_race
https://github.com/dexplo/bar_chart_race
http.//pybullet.org
http://gazebosim.org/
http://gazebosim.org/
https://www.kaggle.com/prabodhhere/solving-cartpole-v0-using-reinfor
https://www.kaggle.com/prabodhhere/solving-cartpole-v0-using-reinfor
https://lime-ml.readthedocs.io/en/latest/index.html
https://lime-ml.readthedocs.io/en/latest/index.html
http://web.stanford.edu/class/cs224u/materials/cs224u-2020-model-explainability.pdf
http://web.stanford.edu/class/cs224u/materials/cs224u-2020-model-explainability.pdf
https://www.twosigma.com/articles/interpretability-methods-in-machine-learning-a-brief-survey/
https://www.twosigma.com/articles/interpretability-methods-in-machine-learning-a-brief-survey/
https://www.twosigma.com/articles/interpretability-methods-in-machine-learning-a-brief-survey/
https://arxiv.org/abs/2006.11371
https://arxiv.org/abs/2002.00772
https://arxiv.org/abs/1911.02508
https://arxiv.org/abs/1911.02508

REFERENCES 93

[59] A. Ghorbani, A. Abid, and J. Zou, Interpretation of neural networks is fragile, 2018.
arXiv: 1710.10547 [stat.ML].

[60] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan,
and B. Kim, The (un)reliability of saliency methods, 2017. arXiv: 1711.00867
[stat.ML].

[61] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, Sanity
checks for saliency maps, 2020. arXiv: 1810.03292 [cs.CV].

[62] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, Towards better understanding
of gradient-based attribution methods for deep neural networks, 2018. arXiv: 1711.
06104 [cs.LG].

[63] G. Liu, O. Schulte, W. Zhu, and Q. Li, Toward interpretable deep reinforcement
learning with linear model u-trees, https://arxiv.org/pdf/1807.05887.pdf,
[Online; accessed 15-February-2021], 2018.

[64] F. C. Alexandre Heuillet and N. Díaz-Rodríguez, Explainability in deep reinforce-
ment learning, http : / / web . stanford . edu / class / cs224u / materials /
cs224u-2020-model-explainability.pdf, [Online; accessed 29-April-2021],
2020.

[65] S. Mohseni, J. E. Block, and E. D. Ragan, A human-grounded evaluation benchmark
for local explanations of machine learning, 2020. arXiv: 1801.05075 [cs.HC].

[66] H. J. P. Weerts, W. van Ipenburg, and M. Pechenizkiy, A human-grounded evalua-
tion of shap for alert processing, 2019. arXiv: 1907.03324 [cs.LG].

[67] E. Puiutta and E. M. Veith, Explainable reinforcement learning: A survey, https:
//arxiv.org/pdf/2005.06247.pdf, [Online; accessed 20-April-2021], 2020.

https://arxiv.org/abs/1710.10547
https://arxiv.org/abs/1711.00867
https://arxiv.org/abs/1711.00867
https://arxiv.org/abs/1810.03292
https://arxiv.org/abs/1711.06104
https://arxiv.org/abs/1711.06104
https://arxiv.org/pdf/1807.05887.pdf
http://web.stanford.edu/class/cs224u/materials/cs224u-2020-model-explainability.pdf
http://web.stanford.edu/class/cs224u/materials/cs224u-2020-model-explainability.pdf
https://arxiv.org/abs/1801.05075
https://arxiv.org/abs/1907.03324
https://arxiv.org/pdf/2005.06247.pdf
https://arxiv.org/pdf/2005.06247.pdf

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Iver O
sborg M

yklebust
Explainable AI m

ethods for Cyber-Physical system
s

Iver Osborg Myklebust

Explainable AI methods for Cyber-
Physical systems

Master’s thesis in Cybernetics and Robotics
Supervisor: Anastasios Lekkas
Co-supervisor: Sindre B. Remman

June 2021

M
as

te
r’s

 th
es

is

	Preface
	Acknowledgement
	Abstract
	Sammendrag
	List of tables
	List of figures
	Acronyms
	Introduction
	Background and motivation
	Objectives and research questions
	Contributions
	Outline of the report

	Theory
	Machine Learning
	Reinforcement Learning
	Deep Learning
	Algorithms
	Monte Carlo Policy Gradient (REINFORCE)
	Deep Deterministic Policy Gradient (DDPG)

	XAI Theory
	Surrogate models and local explainability

	LIME
	SHAP
	Neural Network Interpretation
	Saliency Maps
	Integrated Gradients

	Methodology and experiments
	Software
	Environments
	Methodology and XAI implementations

	Results and Discussion
	XAI method comparison
	Results
	Discussion

	Data adaptions
	Results
	Discussion

	Training analysis
	Results
	Discussion

	Real time XAI
	Results
	Discussion

	Conclusion
	Answering the research questions
	Further work

	References

