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Abstract

Inspired by the growing field of application of unmanned aerial vehicles (UAVs), this
thesis investigates robust and gain scheduled flight control of fixed-wing UAVs in wind
and icing conditions. The motivation for this work is to generate a set of controllers that
overcomes the difficulties related to plant uncertainties, atmospheric in-flight icing and
wind disturbances.

The main objective is to develop controllers that mitigate the aerodynamic effects of wind
and icing on the UAV. However, several intermediate steps are completed to create and
test these controllers. Specifically, a simulation software package in Python is developed
to perform system analysis, controller tuning and numerical simulations. A thorough dy-
namic mode analysis is made to compare the icing-induced changes of the dynamic system
to the basic clean UAV. An asymmetric aircraft model is deduced from symmetrical data
to perform lifelike simulations related to de-icing. At last, the controller is implemented
using a systematic loop-shaping procedure and tested in the simulation environment.

The controller methods are based on H∞ control approach and using a systematic loop-
shaping design procedure for tuning. The control methods were tested through numerical
simulations using the developed software package. From these simulations, it is concluded
that both the single robust controller and the gain scheduled controller gives satisfactory
results in terms of stability, robustness and performance. However, by comparing the
results from the performance test runs for the two controllers, the control performance
of the gain-scheduled control approach gives better results. This result proves that one
can improve the controller performance while fulfilling the closed-loop robustness and
stability requirements by including knowledge of icing.

In-flight de-icing is performed using the single robust controller for different levels of
airspeed. The tendency is clear; higher airspeed within the tested range of reasonable
UAV airspeeds minimizes the disturbance related to instantaneous removal of ice.
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Sammendrag

Inspirert av de stadig voksende bruksområdene for droner, fokuserer denne oppgaven på
robust og "gain scheduled" regulering av fastvingedroner i vind- og isforhold. Hovedmålet
for dette arbeidet er å generere et sett med regulatorer som løser vanskeligheter knyttet
til modellusikkerhet, atmosfærisk ising og vindforstyrrelser. Flere mellomtrinn utført i
denne prosessen. En programvarepakke i Python er utviklet for å utføre systemanalyse,
regulator tuning og numeriske simuleringer. En grundig egenverdianalyse er utført for å
sammenligne de isdannede endringene i det dynamiske systemet med den ordinære dronen
uten is. I tillegg er en asymmetrisk flymodell utledet fra symmetriske data for å utføre
virkelighetsreelle simuleringer relatert til avisning. Til slutt er regulatorene utviklet og
testet i simulatoren.

Regulatormetodene er basert på H∞ regulering, og bruker en systematisk tune-prosedyre
for tuning. Regulatorene ble testet gjennom numeriske simuleringer ved hjelp av den
nevnte programvaren. Fra denne simuleringen kan det konkluderes med at både den enkle
robuste regulatoren og "gain scheduled" regulatoren gir tilfredsstillende resultater når det
gjelder stabilitet, robusthet og ytelse. Ved å sammenligne resultatene fra ytelsestestene
for de to regulatorene, gir regulatorytelsen til "gain scheduled" regulatoren de beste res-
ultatene. Dette viser at man kan forbedre regulatorens ytelse mens man følger definerte
lukket sløyfe robusthets- og stabilitetskrav ved å inkludere kunnskap om isingsnivået.

En avisingsprosess er simulert for den enkle robuste regulatoren ved forskjellige vind-
hastigheter. Her er tendensen klar; høyere vindhastighet minimerer forstyrrelsene relatert
til momentan avising.

ii
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Chapter 1
Introduction

The application areas for Unmanned aerial vehicles (UAVs) have extensively increased
throughout the past decades. UAVs have already proven helpful in military-, scientific-
and civil applications. The increasing use has led to higher requirements when it comes to
tolerance of flying UAVs in rough conditions. This thesis focuses on control of UAVs in
icing and wind conditions.

In aviation, icing conditions are potentially dangerous and has been an essential factor in
numerous accidents. Icing may occur when an aircraft is on the ground or airborne. For
airborne aircraft, in-flight air-frame icing, also known as atmospheric icing, occurs when
super-cooled water droplets in clouds freeze on impact with the aircraft surface. This is
the type of icing considered throughout this thesis.

There are primarily two approaches to avoid/limit icing conditions, namely preventive
anti-icing and corrective de-icing. According to Thomas et al. [2], these two approaches
can be divided into three groups, freezing point depressants, thermal melting and surface
deformation. When looking at avoiding and limiting icing conditions, there is a distinction
between large aircraft and smaller UAVs. UAVs has significantly higher requirements
when it comes to energy consumption and loading weight. This can make some de-icing
and anti-icing techniques less convenient for UAVs.

When de-icing in-flight, it is likely that the amount of ice on each wing is considerably
different for a small amount of time. Having a partly defect de-icing system, where it only
works on one of the wings is also a possible scenario. This motivates for extending the
symmetric model in [3] into an asymmetric model.

In order to fly an aircraft, the flight control system is normally divided into two levels [4]; a
low-level control system that stabilizes the airframe using available sensor measurements
and actuators and a higher-level outer guidance control loop. Since this thesis focuses on
the stability and performance affection of wind and icing conditions, only the inner-loop

3



4 Introduction

controller is considered.

1.1 Previous Work
Not surprisingly, UAV and aircraft control is well covered in the literature. Linear control
methods are commonly used in textbooks that covers UAV control [5–7]. Here, a linear-
ized approximation of the system dynamics is used to obtain controllers from state-space
control design methods. Several control methods, e.g. linear quadratic regulator (LQR)
and H∞-optimal control are proposed by Lavretsky and Wise [6]. Beard and Mclain [5]
use a simple PID-autopilot design for both guidance and control.

The specific UAV used in this thesis is the Skywalker X8. The previous modelling work
done by Gryte et al. [8] and Winter [3] makes a model-based controller design approach
convenient. This motivates developing a simulation environment where it is possible to
perform comprehensive system analysis.

Icing effects on aircraft performance has also been a subject of research throughout the
last decades ([9–15]). Generally, icing affects the smooth flow of air, increases the drag
force and weight and decreases the ability of the airfoil to lift. A study performed by Hann
[16], also showed that these performance penalties caused by icing conditions is greater
on UAVs than on larger manned aircraft.

Controlling aircraft with asymmetry is caused by wing damage or actuator failure is done
by Chowdhary et al. [17]. Here, both model reference adaptive control (MRAC) and
a linear proportional-integral– derivative (PID)-type attitude controller is used for inner-
loop control.

1.2 Contributions
The thesis aims to develop controllers to achieve robust stability and performance in icing
and wind conditions. Based on this, the following contributions are made;

• Flight Control Analysis Toolbox (FCAT) [18], which is a software package in py-
thon made for simulating and analyzing flying rigid bodies.

• Dynamic mode analysis on the effects of icing conditions.

• Deducing an asymmetric aircraft model from only symmetric model data.

• Systematic loop-shaping design procedure for H∞-optimal controller. The loop-
shaping design procedure is based tuning methods used in the pre-master project
[1].

1.3 Structure of Thesis
The thesis is divided into three parts;



1.3. Structure of Thesis 5

• Part one consists of two chapters, namely introduction and theoretical framework.
The theoretical framework chapter presents the theory used in the subsequent chapters.
This includes UAV modelling concepts, wind gusts model and control techniques.

• Part 2 consists of chapter 3, 4, 5 and 6. Chapter 3 describes the simulation soft-
ware, chapter 4 introduces the specific Skywalker X8 model, chapter 5 presents the
controller tuning process and chapter 6 describes the simulation scenarios.

• Part 3 consists of chapter 7, 8 and 9. The results are presented in chapter 7. Chapter
8 and 9 are the discussion and conclusion chapters.



Chapter 2
Theoretical Framework

This chapter provides basic theory and background information needed to comprehend the
material introduced throughout this thesis. This includes modelling an aircraft, the Dryden
wind turbulence model,H∞ robust control and gain-scheduled control.

2.1 Modelling the UAV
This section will give the outlines of the derivation of the mathematical model used in
simulations. More detailed derivations can be found in most flight dynamics textbook [5,
6, 19].

2.1.1 Reference Frames
Different frames of reference are used in order to describe the motion of the UAV. A space-
fixed reference frame is suitable for long term guidance, where the equations of motion are
most easily expressed in a body-fixed reference frame. The different frames of reference
used here are the world reference frame, the body frame and the wind frame.

The world reference frame denoted F i uses the North, East, Down (NED)-convention.
The origin is located at a fixed point on Earth. The x-axis points north, the y-axis points
east, and the z-axis points down into the Earth’s centre.

The body frame denoted Fb has its origin at the centre of mass (COM) of the UAV. Here,
the x-axis points out of the aircraft’s nose, the y-axis points along with the right-wing, and
the z-axis points out of the aircraft’s belly. The orientation of the body frame with respect
to the aircraft is visualized in figure 2.2. Note that the origin is, as mentioned, located in
the COM.

The wind frame denoted Fw has its origin at the COM of the aircraft, and the axes are
oriented based on the aircraft’s motion relative to the surrounding wind. This frame can

6



2.1. Modelling the UAV 7

be obtained by rotating the body frame by the rotation described by figure 2.1. The wind
frame is obtained by first rotating the xb and zb axes the angle of attack, α, about the
yb-axis followed by rotating the yb-axis and new x-axis the angle of sideslip about the zw-
axis. This rotation is described by the rotation matrix in equation A.2. Now, the xw-axis
points in the direction of the airspeed, Va.

α

β

BodyWind xb

zb

yb
yw

zw

xw

Figure 2.1: Rotations from body frame to wind frame.

2.1.2 Aircraft Flight Dynamics Equations of Motion
As mentioned in section 2.1.1, the equations of motion are most easily expressed in a body
frame. These dynamics can be obtained by using Newton’s second law of motion. The
motion of the UAV (treated as a rigid body) is comprised of three translational and three
rotational degrees of freedom.

The transnational motion can be described by the velocity vector, V = [u, v, w], where
u, v and w hare the forward, lateral and vertical velocities given in the body frame. The
rotational motion can be described by the angular rates vector, ω = [p, q, r], where p, q
and r are the body roll, body pitch and body yaw rates. Now, by representing the sum
of all external forces acting on the rigid body as F, and the sum of all external moments
about the centre of mass as M, we get the following equations;

m(V̇ + ω × V ) = F

Iω̇ + ω × Iω = M
(2.1)

Where I is the inertia matrix. F and M are primarily from three sources, namely grav-
itation, propulsion and aerodynamic [5]. This is mathematically expressed in equation
2.2.

F = Fa + Fg + Fp

M = Ma + Mp + Mg

(2.2)

Where subscript g, p and a denotes gravitational, propulsion and aerodynamic forces re-
spectively. These forces and moments are described in sections 2.1.3, 2.1.4 and 2.1.5.



8 Theoretical Framework

The Euler angles are denoted as Θ = [φ, θ, ψ]. Here, φ is the roll angle, θ is the pitch angle,
and ψ is the yaw angle. These angles give the inertial angular rotation of the aircraft. The
kinematic relation in equation 2.3 describes the dynamics of the Euler angles as a function
of the angular rates in body frame [6].

Θ̇ =

1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)sec(θ) cos(φ)sec(θ)

ω (2.3)

The inertial position, P = [pn, pe, pd], is the north, east and altitude coordinates are given
in the world reference frame. Note that pd = −h, where h is the height above ground.
The relation between the inertial velocities, Ṗ and the body frame velocity V are given by
equation 2.4, which in essence are rotating the body-fixed velocity vector from the body
frame to world reference frame.

Ṗ = Ri
b(φ, θ, ψ)V (2.4)

Where Ri
b(φ, θ, ψ) is the rotational matrix from body to inertial frame, given by equation

A.1. By combining the equations of motion in equation 2.1 with the relations in equations
2.3 and 2.4, a twelve state model with state vector x = [pn, pe, pd, φ, θ, ψ, u, v, w, p, q, r]
is obtained.

2.1.3 Aerodynamic Forces and Moments
The aerodynamic forces consist of drag-, side- and lift forces, and are denoted FD, FS
and FL respectively. These forces most easily modeled in the wind frame, and need to be
rotated into body frame before they are applied in equation 2.2. The aerodynamic forces
in body frame are given by equation 2.5.

F a =

FxFy
Fz

 = Rb
w(α, β)

−FDFS
−FL

 (2.5)

Where Rb
w(α, β) is the rotation matrix from wind frame to body frame and can be found

by taking the transpose of the rotation matrix from body frame to wind frame in equation
A.2. The drag and lift forces act along the negative zw and xw axes, which explains the
negative signs.

The aerodynamic forces and moments are typically modelled as dimensionless functions.
A common simplification is to separate the aerodynamic functions into longitudinal (xb-
zb plane) and lateral direction (xb-yb- plane) [5]. l, m, n are the aerodynamic moments
about body-frame x,y and z axes. Then, by denoting Va as the airspeed of the aircraft, S
as the area of the wing, b as the wingspan of the aircraft and c as the mean chord of the
wing, the aerodynamic forces and moments in the longitudinal direction can be written as
in equation 2.6.
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FDFL
m

 =
1

2
ρV 2

a S

CD(α, q, δe)
CL(α, q, δe)
cCm(α, q, δe)

 (2.6)

The lateral direction aerodynamic forces and moments can be expressed as in equation
2.7.

FSl
n

 =
1

2
ρV 2

a S

CY (β, p, r, δa, δr)
bCl(β, p, r, δa, δr)
bCn(β, p, r, δa, δr)

 (2.7)

Where CD, CY and CL, are non-dimensional drag-, side- and lift force functions, and
Cl, Cm and Cn are non-dimensional are rolling-, pitching- and yawing moment functions.
The differential aileron angle δa, the elevator angle δe and the rudder angle δr are the
primary control surfaces, and are used to control roll-, pitch- and yaw motion respectively.
By combining equations 2.5, 2.6 and 2.7, the aerodynamic forces and moments can be
summarized as;

F a =

FxFy
Fz

 = Rb
w(α, β)

1

2
ρV 2

a S

 −CD(α, q, δe)
CY (β, p, r, δa, δr)
−CL(α, q, δe)


Ma =

 lm
n

 =
1

2
ρV 2

a S

bCl(β, p, r, δa, δr)
cCm(α, q, δe)

bCn(β, p, r, δa, δr)

 (2.8)

2.1.4 Gravitational Forces and Moments
For a rigid symmetric aircraft, the gravitational moment about the center of mass is 0.
This implies that Mg = 0. The gravitational force acting on the aircraft can be written as
F i
g = [0, 0,mg] in the world reference frame, where m is the mass of the aircraft and g is

the acceleration of gravity. The gravitational force in body frame is therefore written as;

F g = Rb
iF

i
g (2.9)

Where Rb
i is found by taking the transpose of the rotation matrix Ri

b in equation A.1.

2.1.5 Propulsion Forces and Moments
A non-complex model for propulsion can be obtained by applying Bernoulli’s equation to
the air in front of and behind the propeller [5]. By making the assumptions that the thrust
force generated is directly along the x-axis of the body frame, the relation between throttle
to exit velocity is linear and that the propeller efficiency is constant, the thrust force is
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given in equation 2.10.

Fp =
1

2
ρSpropCprop

(kmotorδt)
2 − V 2

a

0
0

 (2.10)

Where Sprop is the area swept out by the propeller, Cprop is an efficiency factor and kmotor
is the motor constant.

2.1.6 Asymmetric Aircraft Model
In this section, an asymmetric aircraft model is deduced from symmetric data. All forces
in equation 2.8 are acting through the aircraft centre of mass. Similarly, all moments
are acting about the aircraft centre of mass. An asymmetric aircraft model is obtained
by dividing the aircraft into two parts, a left side and a right side. This thesis is only
considering asymmetry in aerodynamic forces and moments, but the same principles can,
in theory, be applied for gravitational and propulsion forces and moments as well. Figure
2.2 illustrates this division and shows new decoupled aerodynamic forces. The forces
acting on the right-wing are denoted F k,r, where k can be D, S or L for drag-, side- and
lift force, respectively. The forces acting on the left-wing are denoted F k,l. The distance
vector from the centre of mass to the point of attack on the right-wing is denoted rk. By
using the right-wing drag force, FD,r as an example, the distance vector from the centre
of mass to the point of attack is denoted rD. Similarly, the distance vector from the centre
of mass to a force acting on the left wing is denoted lk.

The drag-, side- and lift forces acting through the aircraft centre of mass described in
section 2.1.3 is now given by a sum of the two corresponding forces on each wing, as
shown in equation 2.11.

F k = F k,r + F k,l (2.11)

A similar relation can be written for the for the moments. The aerodynamic moment is
now given by equation 2.12.

Ma,asym = Ma,0 +
∑
k

(rk × F k,r + lk × F k,l) for F k,r,F k,l 6∈Ma,0 (2.12)

Where Ma,0 is the symmetric moment vector from equation 2.8. The second term is
caused by asymmetry in corresponding aerodynamic forces on the left and right wing.
Note that in order to avoid counting the force contribution twice, the last term is only
added if they are not already taken into account as a part of the symmetric case.

2.2 Modelling Wind Gusts
Wind gust models are used for simulating the UAV in more realistic environments. Two of
the most common continuous wind gust models are the Dryden model and the Von Karman
model. The Dryden model, which will be used in this thesis, is an approximation of the
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COM

Figure 2.2: Asymmetric forces aircraft model

von Karmen model and is briefly described in Beard and McLain [5]. The Dryden model
is a stochastic process described by six coloring filters; Hu, Hv and Hw is describing the
wind effect on translational velocity u, v and w, and Hp, Hq and Hr describing the wind
effect on rotational wind velocities p, q and r. By using the mathematical representation
given by the military specification MIL-F-8785C in [20], these filters are given by equation
2.13 [21].

Hu(s) = σu

√
2Lu
πVa

1

1 + Lu
Va
s

Hv(s) = σv

√
Lv
πVa

1 +
√
3Lv
Va

s

(1 + Lv
Va
s)2

Hw(s) = σw

√
Lw
πVa

1 +
√
3Lw
Va

s

(1 + Lw
Va
s)2

Hp(s) = σw

√
0.8

Va

( π4b )
1
6

L
1
3
w(1 + 4b

πVa
s)

Hq(s) =
− s
Va

(1 + 4b
πVa

s)
Hw(s)

Hr(s) =
s
Va

(1 + 3b
πVa

s)
Hv(s)

(2.13)

Here, σu, σv and σw are the turbulence intensities, Lu, Lv and Lw are the turbulence scale
lengths, b is the wingspan and Va is the airspeed. Wind gusts are then obtained by passing



12 Theoretical Framework

white noise through these filters. The parameter values in equation 2.13 for altitudes below
1000 feets are given by [20], and shown in 2.14.

σw = 0.1V20

σu = σv =
1

(0.177 + 0.000823h)0.4

Lu = Lv =
h

(0.177 + 0.000823h)1.2

Lw = h

(2.14)

V20 is the wind speed at 20 feet dependant on intensity. Typical values for low, moderate
and severe intensities are 15, 30 and 45 knots [20].

2.3 H∞ Optimal Control
H∞ optimal controller can be found by formulating the control problem as a mathematical
optimization problem. This section gives the outlines regarding problem formulation and
tuning process used inH∞ optimal control. More detailed descriptions are given in [6, 22,
23].

2.3.1 Problem Formulation
The standard problem formulation commonly used forH∞ control are shown in figure 2.3
[23]. Here, u is the control variables, y is the measured variables, z is the weighted error
signals which are to be minimized, and w is the exogenous inputs, including disturbances,
sensor noise and reference signals. P is the general plant and C is the feedback controller.

u

w z

y

C

P

Figure 2.3: General Control Configuration

The state-space equations for a general linearized process with system states, x, is written
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in equation 2.15.

ẋ = Ax + Bu + Ew (2.15)
z = C1x + D2u + D1w

y = C2x + D4u + D3w

The transfer function of this process, P (s) in figure 2.3, is given by equation 2.16.

P(s) =

[
D1 D2

D3 D4

]
+

[
C1

C2

]
(sI −A)−1

[
E B

]
(2.16)

=

[
P11 P12

P21 P22

]

For a linear controller, C(s), connected from y to u, as shown in figure 2.3, the closed loop
transfer function from exogenous inputs to the weighted error signal is given by equation
2.17 [24].

z

w
(s) = F(P,C)(s) = P11 + P12C(I−P22C)−1P21 (2.17)

The H∞ optimized controller seeks to minimize the worst case effects of the exogenous
inputs w on the weighted error signal z. This is done by minimizing the infinity norm of
the transfer function F(P,C)(s). By denoting the maximum singular value as σ̄(·), the
infinity norm is given by the expression in equation 2.18.

||F(P,C)(s)||∞ = sup
ω
σ̄(F(P,C)(jω)) (2.18)

2.3.2 Controller Tuning
The tuning parameters of the H∞ controller are the weighting filters used on the error
signals z. By denoting the model plant as G(s), the sensitivity function S(s) and comple-
mentary sensitivity function T (s) are defined as;

S(s) = (I + L(s))−1

T (s) = L(I + L(s))−1
(2.19)

Where L(s) = G(s)C(s) is the open loop transfer function, and I is the identity matrix
of the same order as L(s).

Figure 2.4 shows a block diagram of the system with weighting filters, whereWS ,WC and
WT are weighting filters and z1, z2 and z3 are the weighted sensitivity, control activity and
complementary sensitivity. The transfer function from reference r to the error e(s) and
measured output y(s) is given by equation 2.20.
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e(s) = S(s)r(s)

y(s) = T (s)r(s)
(2.20)

The error-signals z1 and z3 are the weighted sensitivity and complementary sensitivity,
and z2 is the weighted control activity. To ensure good reference tracking, it is desirable
to have a high complementary sensitivity gain and low sensitivity gain at low frequencies.
At high frequencies, it is desirable to have a low complementary sensitivity gain to ensure
good noise attenuation and robustness.

There are multiple methods to design weighting filters. The two most common methods
are the signal-based approach used in Doyle et al. [25] and loop-shaping. The signal-
based approach is a very general method that evaluates the response to sinusoidal signals.
This method is more appropriate for multi-variable problems in which several objectives
need to be taken into account simultaneously [23]. For this reason, this thesis is using a
loop-shaping approach, which is thoroughly described in Lavretsky et al. [6]. Here, the
weighting filters are used to shape the desired sensitivity and complementary sensitivity
frequency responses. In order to avoid unnecessary complex controllers, the weighting
filters should be chosen of the lowest order that meets the desired requirements [6]. The
transfer functions are limited by the inverse of its corresponding filter. By using the sensit-
ivity function as an example, Ws should be the inverse of the desired shape of S(s), such
that when the infinity norm of the error signal, here z1 = ||WSS||∞, is minimized, it will
shape the desired S(s).

z2

-
er

C(S)

WS

z1

WC

G(S)
u y

z3
WT

Figure 2.4: Closed-loop block diagram with weighted error signals.

2.3.3 γ-iteration
γ-iteration is a bisection algorithm used to find H∞ optimized controller. The γ-iteration
method starts with high, γmax, and low, γmin, estimates of γ and iterates on γ-values to
find the H∞ optimal controller. There are numerical methods used for solving the H∞-
problem. For the Riccati-based method used in Lavertsky et al. [6], this algorithm com-
putes the smallest γ-value, γopt, within the γ-range for which the stabilizing non-negative
definite Riccati-solutions exists. Now, γopt is the controller performance level, and the
following relation is met;

||F(P,C)(s)||∞ < γopt (2.21)
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2.4 Robust Stability
This section provides the techniques used to investigate robust stability for single-input
single-output (SISO) systems.

2.4.1 Vinnicombe Distance
The Vinnicombe metric, denoted as ν-gap metric, is a distance measure between two linear
time-invariant (LTI) systems. A detailed description of the ν-gap metric can be found in
[22, 26, 27]. Aircraft in icing condition can be handled as a nominal plant with plant
uncertainty. Hence the ν-gap metric can be used as an uncertainty measure between the
nominal plant and the plant at a given icing level.

The winding number condition for two scalar LTI systems, P1 and P2, is given by equation
2.22.

(1 + P ∗2 P1) 6= 0∀ω (2.22a)
wno(1 + P ∗2 P1) + η(P1)− η(P2)− η0(P2) = 0 (2.22b)

Where the winding number, wno, is evaluated along the standard Nyquist contour, η(·)
denotes the number of unstable poles, η0(·) is the number of poles on the imaginary axis
and P ∗i is the conjugated plant Pi (takes Pi(s) to Pi(−s)). By denoting the set of all LTI
system pairs, (P1, P2), that fullfills the condition in equation 2.22 as S , the Vinnicombe
distance is defined by equation 2.23.

δv(P1, P2) =

{
supω

|P1−P2|√
(1+P1P∗

1 )(1+P2P∗
2 )

, if(P1, P2) ∈ S

1, otherwise
(2.23)

Since the LTI systems considered in this thesis are all scalar systems, equations 2.22 and
2.23 are simplified to yield scalar functions.

2.4.2 Gap Metric Stability Margin
The gap metric stability margin, also known as normalized coprime stability margin, is an
indication of robustness to plant uncertainty. Given a plant P and a stabilizing controller
C, this margin is given by equation 2.24.

bP,C =

∣∣∣∣∣∣∣∣ [PI
]

(1− CP )−1
[
−C I

] ∣∣∣∣∣∣∣∣−1
∞

(2.24)

Here, bP,C ∈ [0, 1], where higher stability margin indicates increased robustness to plant
perturbations. A stability margin of 0 indicates internal instability. Strong robustness
results are related to the ν-gap metric described in section 2.4.1 and the gap metric stability
margin. That is, given a plant P and a stabilizing controller C, the controller will stabilize
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all plants in the set B, where B is given by equation 2.25 [28].

B = {P ∗|bP,C > δv(P, P
∗)} (2.25)

Hence, the gap metric stability margin can be used as a stability requirement for aircraft in
icing condition. Given a nominal plant at a given icing level, P , and a stabilizing controller,
C, the controller stabilizes the plant, P ∗ ∈ B, for any icing level where this condition is
true.

2.5 Gain-Scheduled Control
A gain-scheduled controller consists of several controllers, each designed for different op-
erating points in the operational area. Then, a switch is used to select the appropriate
controller given the system state. Here, it is vital to have a switching mechanism that
does not introduce undesirable transients. Gain-scheduling allows the use of simple linear
control methods to control non-linear systems where the process gain is changing consid-
erably at different operating points [29]. In other words, this approach can be used when a
single linear controller does not provide the desired performance and stability for all oper-
ating points. For this method to be feasible, the states/variables that change the operating
point needs to be measurable.
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Chapter 3
Flight Control Analysis Toolbox

As previously mentioned, Flight Control Analysis Toolbox (FCAT) [18] is a software
package in python made for simulating and analyzing flying rigid bodies. FCAT’s ar-
chitecture is based on the separation of concern (SoC) principle, where functionality is
separated into independent building blocks. FCAT is configured with continuous integra-
tion pipeline, enforcing automation in building and testing. Figure 3.1 shows the program
flow chart. The red blocks are configured from user input, the blue blocks are internal
functions, and the green blocks are system output.

Aricraft properties

Aircraft dynamics

Solver

Wind model

Controller

Post processing

System response

Visualization

Actuator

Figure 3.1: Software flow chart

Python Control Systems Library [30] is used to construct a simulation model. Figure 3.2

19
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shows a block diagram of the final interconnected system, where each of the blocks is
input/output system sub-classes. Here, r is the reference signal, uc is the commanded
control signal and ua is the actual control signal. These input/output systems are built and
connected based on the user inputs. Any of the blocks can easily be removed or replaced
by more complicated algorithms. This design makes it easy to extend the application.

Controller Actuator
dynamics

Aircraft
dynamics

Measured output signal

uc uar

Figure 3.2: Simulation block diagram

Physical actuators have both static and dynamic limitations. The static constraints are
handled by the controller block using minimum/maximum saturation on the control sig-
nals. The dynamic limitations are handled by having an actuator dynamics block. Here, it
is implemented using a simple first order model as shown in equation 3.1.

ua
uc

=
1
τ

1 + 1
τ s

(3.1)

Here, τ is the actuator time constant, given by the inverse of the rate limit.

The aircraft dynamics block is implemented as a non-linear input/output system and is
realizing the twelve-state model from section 2.1. It is worth noticing that this model uses
the Euler angles and not quaternions. The drawback here is the singularity problem that
arises if the pitch-angle is π

2 . The advantage is that one can use out of the box linear-
ization tools to linearize the actual simulation model when performing system analysis.
The aircraft dynamics block is built based on the FCAT classes AircraftProperties and
WindModel as shown in figure 3.1.

AircraftProperties is implemented as an abstract class, which are collecting fluid mechan-
ical coefficients needed to describe the dynamics of a rigid body in equation 2.8. Aircraft-
Properties represent a rigid flying body where the control inputs are fixed. Thus, concrete
implementations of this class should return the fluid mechanical coefficients when the
control variables are given. This way, any rigid flying body can be implemented. This
is very convenient when it comes to code testing of the aircraft dynamics block. In this
regard, concrete implementations of a frictionless ball, a simple aircraft without aerody-
namic forces and a simple aircraft without aerodynamic moments are implemented and
tested against analytical solutions. The concrete implementation of the Skywalker X8
based on section 4 is implemented for later system analysis. An asymmetric extension of
this model based on the principles in section 2.1.6 is also implemented.

The WindModel class is an abstract class that represents the general wind model. Two
concrete implementations are made. Those are ConstantWind and DrydenGust. The latter
is based on the description in section 2.2.
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The solver block is simply an ordinary differential equation (ODE) solver that can be
chosen appropriate to an ODE problem. The post-processing and visualization are separate
output modules. At this point, the system input/output responses are analysed.



Chapter 4
Skywalker X8 Simulation Model

The UAV used for analysis in this thesis is Skywalker X8. This chapter describes how a
complete simulation model for Skywalker X8 is obtained by using the theory from section
2.1.

4.1 Flying Wing
The skywalker X8 belongs to a class of aircraft called flying-wing. Figure 2.2 shows
the shape of the aircraft. A flying wing aircraft has no rudder, and the remaining two
aerodynamic control surfaces, namely ailerons and elevators, are combined into a pair
of elevons. By denoting the left and right elevon deflection as δel and δer respectively,
the mathematical conversion between elevon deflection to aileron-elevator deflections are
given by equation 4.1 [5]. [

δe
δa

]
=

1

2

[
1 1
−1 1

] [
δer
δel

]
(4.1)

Therefore, the mathematical model for forces and torques for flying wing aircraft can still
be expressed in terms of standard aileron-elevator deflections notation as in equation 2.8.

4.2 Aerodynamic Functions
This subsection will present the structure of the simulation model and how the model is
extended to include icing conditions.

4.2.1 General Aircraft Model without Ice
The aircraft lift force-, drag force-, side force-, pitching moment-, rolling moment- and
yawing moment functions in equation 2.8 are generally non-linear equations of the system
states. These functions can be simplified by acceptable accuracy using linear approxima-

22
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tions [5]. The simplified functions using first-order Taylor series expansions are shown in
equation 4.2.


CD(α, q, δe)
CY (β, p, r, δa)
CL(α, q, δe)
Cl(β, p, r, δa)
Cm(α, q, δe)
Cn(β, p, r, δa)

 =



CD(α) + c
2Va

CDqq + CDδe δe
CY (β) + b

2Va
CYpp+ b

2Va
CYrr + CYδa δa

CL(α) + c
2Va

CLqq + CLδe δe
Cl(β) + b

2Va
Clpp+ b

2Va
Clqq + Clδa δa

Cm(α) + c
2Va

Cmqq + Cmδe δe
Cn(β) + b

2Va
Cnpp+ b

2Va
Cnrr + Cnδa δa


(4.2)

Here, the partial derivative of a state is denoted with subtext. That is, Cix is the partial
derivative of Ci with respect to x. c

2Va
and b

2Va
are standard factors used to keep the func-

tions dimensionlessness. Another change made in 4.2 is δr is removed from the equation
set. This is due to Skywalker X8 does not have a rudder, as addressed in section 4.1. Due
to the non-linear nature of CD, CL and Cm in the angle of attack, α, and CY , Cl and Cn
in the angle of sideslip, β, these coefficients are kept as a non-linear function to give more
accuracy to the simulation model.

4.2.2 Icing Model
The extension of the aircraft model to include icing conditions is done based on the work
in Winter et al. [31]. By denoting the icing level variable as ζ ∈ [0, 1], describing the
level of icing, where ζ = 0 indicates no ice (referred to as clean) and ζ = 1 indicates the
worst-case level of ice (referred to as iced). Icing level ζ = 1 correspond to the worst-case
icing configuration, which is called mixed-ice and is a mixture of glaze ice and rime ice
[3]. The model is extended to include icing effects by using linear interpolation between
the clean and iced case for each coefficient in the Taylor series expansion in equation 4.2.
This includes all the partial derivatives and the non-linear coefficients depending on the
angle of sideslip or angle of attack. The general coefficient Ck given as a function of the
icing level ζ is shown in equation 4.3.

Ck(ζ) = Ck,0 + ζ(Ck,1 − Ck,0) (4.3)

Here, Ck,0 is the coefficient value for the clean case and Ck,1 is the value for the iced case.

4.2.3 Physical Measures
The Skywalker X8 physical measures are given in appendix B.2. The moments- and
products of inertia are shown in table B.3. These values are based on experimental data
from Gryte [32].

In the asymmetric model described in section 2.1.6, the point of attack for the aerodynamic
forces acting on the Skywalker X8 must be specified. It is not possible to state these exact
points based on the data available. Hence, the points used in later simulations are based
on qualified guessing. Note that the purpose of simulating an asymmetric icing condition
in this thesis is to capture the asymmetric effects rather than giving an exact reproduction
of a real system.
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The UAV is shown in figure 2.2. For simplicity, all points of attacks are assumed to lie on
the±y - axis. This assumption is reasonable, because the largest asymmetric moment con-
tributions, which is from drag force to yaw moment and from lift force to roll moment are
retained. Another assumption made is that icing level does not effect the points of attacks
y-coordinate. By combining these assumptions, the relation between distance vector from
the centre of mass to the left wing center of pressure, li, and right-wing center of pressure,
ri, for i ∈ {D,S, L} is given in equation 4.4.

li = −ri =⇒

 0
yi,l
0

 = −

 0
yi,r
0

 (4.4)

Where yi,l and yi,r is the y coordinate of the centre of pressure for left -and right-wing in
body frame.

The wingspan is 2.1 meters (m), which means that the distance from the centre of mass
to the tip of one wing is 1.05 m. By intuition, the fuselage will give a larger contribution
to the drag force than the wings. Hence the point of attack for the aircraft drag force will
have to lie somewhere between the centre of mass and the middle of the wing. yD,r is
therefore chosen to be 0.25 m. The lift force is intuitively largest at the part of the wing
closest to the fuselage and decreases along the wing. Hence yL,r is chosen to be 0.4 m.
For the side force, the main contributions are from the fuselage and the winglets on the tip
of the wing. yS,r is chosen to be 0.2 m. The side force is typically smaller in magnitude
than the lift and drag forces. In addition, having the point of attack on the ±y - axis will
make the asymmetric moment contribution from the side force small.

4.2.4 Aerodynamic Coefficient Values
The model coefficients in equation 4.2 for this specific UAV are found through wind tun-
nel experiments in the aerodynamic modelling work done by Gryte et al. [8]. The icing
level extension is based on the analysis of the results from Computational Fluid Dynam-
ics (CFD) simulations done by Winter [3]. As emphasized by Winter et al. in [31], the
atmospheric icing will primarily affect the leading edge of the aircraft. Hence, the control
derivatives, namely CDδe , CYδa , CLδe , Clδa , Cmδe and Cnδa , are assumed to be independ-
ent of icing level. The aerodynamic coefficient values used in later simulations are given
in table B.1 in appendix B.

The aerodynamic functions of angle of attack (AOA) and angle of sideslip (AOS) is shown
in figure 4.1a and 4.1b respectively. In 4.1a, AOS≈ 0.00 deg is kept constant while AOA
sweeps from -5 to 16 degrees. In 4.1b. AOA≈ 2.11 deg is kept constant while AOS
sweeps from −10 to 10. The green curves are showing icing level ζ = 1, the blue curves
are showing icing level ζ = 0 and the red curves are showing the asymmetric case with
icing levels ζ = 0 and ζ = 1 on the left- and right-wing respectively. Figure 4.1 illustrates
the general effects of icing. It is clear that the drag force is increased, and the lift force
is decreased with icing. These effects increase with the angle of attack. It is also worth
noticing that the roll-off in the lift coefficient starts at a lower angle of attack when ice is
present. As a consequence, the angle where the lift coefficient exceeds the value which
creates maximum lift, also known as stall angle, is lower for the iced case. Figure 4.1
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illustrates that the effect of icing on the lift coefficient at low AOA is small. Since the
largest effects of icing conditions are on the drag -and lift force in the symmetric case, it
is clear that the effects of symmetric icing are primarily in the longitudinal direction.

The effects of asymmetric icing are also illustrated in figure 4.1. For all force functions,
the result of asymmetry is simply the average of the icing levels on each wing. Hence,
the asymmetric curves for the force function are here equivalent to the symmetric case
with icing level ζ = 0.5. Due to the selected points of attacks in section 4.2.3, there are
no additional contributions to the pitching moment function from asymmetry. Hence this
function is simply the average of the icing levels on left and right-wing as well.

The asymmetric effects for the lateral aerodynamic functions are more significant. As
illustrated in 4.1a, these functions are very dependant on the drag and lift forces. This lead
to increased cross-coupling between the lateral and longitudinal dynamics.

4.3 System Analysis
This section describes the methods used for linear analysis, including dynamic mode ana-
lysis on the effects of icing conditions to determine static stability properties. The methods
presented in this section are also used in the linear controller synthesis.

4.3.1 Linearization
Analyzing the behaviour of a control process and developing linear controllers is done us-
ing linear approximation at a given operating point. The Python Control Systems Library
function [30] linearize is used to linearize the dynamic system. In general, the linearized
system can be written as in equation 4.5.

∆ẋ =
df

dx
∆x +

df

du
∆u (4.5)

Here, dfdx and df
du are the jacobian matrices of f with respect to the state vector x and control

input vector u respectively. f for a system with n states is defined as in equation 4.6.

f =


ẋ1
ẋ2
...
ẋn

 =


f1
f2
...
fn

 (4.6)

The linearize function uses a finite difference method to calculate the linearized system.
This method is summarized by equiation 4.7.

dfi
∂xj

=
fi(x + ej∆x)− f(x)

∆x
(4.7)

Here, ej is a vector of the same length as x, where the jth element is 1, and all other
elements are 0. ∆x is generally a small value. Here the default value of 10−6 is used.
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4.3.2 Trim Condition
It is common to use a trim point as the operating point when studying the aircraft behaviour
at level-fight. Mathematically, trim conditions can be found by solving a set of non-linear
algebraic equations. This is explained in detail in Beard and McLain [5]. In this thesis,
the Python Control Systems Library [30] function find_eqpt is used to calculate the trim
conditions. This function starts from a given initial point and then uses a root-finding
algorithm to find the nearest trim point of the dynamical system.
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Figure 4.1: Aerodynamic Functions



Chapter 5
Controllers

This chapter will describe the tuning process of the inner loop controllers. The task of
the low-level inner loop control system is to stabilize the body-frame states using meas-
urements and actuators. In other words, the inner loop keeps the aircraft flying, where
the tasks of the higher level outer loop control is to implement guidance. The inner loop
control objective is to stabilize the dynamics. That is, tracking desired roll, pitch and
airspeed.

5.1 Systematic loop-shaping design procedure
The control objective is to have controllers that fulfil closed-loop requirements regarding
performance, robustness and stability. In this thesis, a robust controller is obtained by
tuning weighting filters using the output feedback H∞ method as described in section 2.3.
This section will describe the loop-shaping procedure. As mentioned in the introduction,
this tuning method is based on the same ideas that is presented in the pre-master project
[1]. However, this is a different dynamic system. In addition, the tuning method from the
pre-master project [1] has also been improved to get even better disturbance rejection.

5.1.1 Closed-loop Requirements
This particular control problem has several important factors to take into account. It is
desirable that the controller stabilizes a set of perturbed plants for different levels of ice.
A stability requirement for guaranteed stability for a set of perturbed plants can be es-
tablished using the theory in section 2.4. By having a nominal plant P0 at a icing level
ζ ∈ [0, 1], worst-case iced plant Pice at icing level ζ = 1 and plant with no ice Pclean, the
stability requirement can be stated as in equation 5.1.

bP0,C > max(δν(P0, Pice), δν(P0, Pclean)) (5.1)

28
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Where bP0,C is the gap metric stability margin and δν is the ν-gap metric. Furthermore,
assuming that the ν-gap distance between two plants is increasing when the difference in
icing level is increasing, the stability criterion implies that the controller stabilizes plants
for all icing levels. The assumption is mathematically shown in equation 5.2.

δν(P (ζ0), P (ζ1)) < δν(P (ζ0), P (ζ2)) for

{
ζ0 < ζ1 < ζ2

ζ2 < ζ1 < ζ0
(5.2)

This assumption is reasonable since the icing model is found by linear interpolation between
the iced and clean case.

As seen while modelling the Skywalker X8, any model of a physical system will never be
a true representation of that system. Hence, requirements for general margins from control
theory, such as gain-, phase- and stability margins, should also be of sufficient magnitude
for robustness to unmodeled dynamics. According to Astrom and Murray [29], reasonable
closed-loop robustness requirements are;

• Minimum phase margin φm = 30◦

• Minimum gain margin gm = 2

• Minimum stability margin sm = 0.5− 0.8

These margins are used as lower thresholds in this thesis.

The performance can be measured in terms of maximum closed-loop overshoot and set-
tling time when the system is subject to a step in the reference signal. Acceptable values
of settling time and overshoot are dependant on the controlled variable. Hence, these spe-
cifications will be mentioned in each specific simulation. Since the controller goal is to
have satisfactory performance for different levels of ice, there will be a trade-off between
performances for different plants.

5.1.2 Weighting Filters
The weighting filters should, in general, be selected to be of minimum order in order to
avoid adding unnecessary complexity to the controller [6]. Higher-order weighting filters
results in higher-order controllers. The general loop-shaping principles on the desired
shapes of complementary sensitivity- and sensitivity functions described in section 2.3.2
is the foundation of the tuning process. These principles set the general shapes of the
filters, as seen in equation 5.3.

WS =
s/M + 1

s+ ω0A
(5.3a)

WC = Constant (5.3b)

WT =
s+ ω0/M

As+ ω0
(5.3c)
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Here, ω0 is the desired controller bandwidth, M is limiting the maximum sensitivity peak
and A limits the low-frequency gains. Control activity is limited by the |WC |−1. By
choosing WC as a constant, all control activity is penalized equally at all frequencies. Too
low penalty on the control signal may lead to oscillatory responses. Too high penalty on the
control signal may limit the closed-loop bandwidth, which in turn gives worse reference
tracking. As mentioned in chapter 2.3.2, WT are usually formed to get sufficient noise
attenuation and robustness to uncertain high-frequency dynamics. High-frequency noise
is not implemented in this model. Hence,WT is chosen as a first-order high pass filter with
the same crossover frequency as WS , as shown in equation 5.3. However, it is important
to keep in mind that unrealistic high bandwidths will give poor results for real systems.

There are cases where it is necessary to use higher-order filters. For instance, one can
increase the controller integral action by increasing the order of the tuning filters. The
general equation for a second-order sensitivity filter is given by equation 5.4.

WS =
(s/M

1
2 + ω0)2

(s+ ω0A
1
2 )2

(5.4)

By choosing M = 2, A = 10−5 and ω0 = 6.8, the frequency response for the first and
second order sensitivity filters are shown in figure 5.1.

Second order filter

Frequency (rad/sec)

First order filter

M
ag

ni
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Figure 5.1: Frequency plot of first- and second order filter

This will generally give better disturbance rejection. However, it tends to degrade the con-
troller performance in the form of increasing the step-overshoot. Figure 5.2 illustrates the
effect of lacking integral action. This shows the time responses using the sensitivity filters
in 5.1. Figures 5.1b and 5.1d shows the time responses for a step in input and a constant
disturbance at t = 5 seconds, respectively. Figure 5.1a shows the control signal for a step
in reference, and figure 5.1c shows the control signal for the constant disturbance case.
The disturbance response is very good using a second-order filter, whereas the tracking
response has a quite large overshoot. For the first-order filter, the step response gives no
overshoot. However, the disturbance response is very poor because the integral action us-
ing the first-order filter is low. Hence, the response will move slowly towards the reference
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value when subjected to disturbance.

Second order filter First order filter Reference signal

a) b)

c) d)

Figure 5.2: a) and b) time response of a step in reference. c) and d) time response constant disturb-
ance.

5.1.3 Controller Tuning Process
The loop-shaping tuning process can be summarized in the following steps.

• Finding the icing level for the nominal plant that minimizes the maximum ν-gap dis-
tance to the extreme cases. The plant at this icing level is used for the controller syn-
thesis. In other words, the nominal plant is chosen to be at the midpoint of the worst-
case plants. This choice will give the most relaxed stability requirement, as the right
term in equation 5.1 will be minimized. This choice is also performance-related.
Typically, increasing and decreasing the icing level will give opposite closed-loop
performance effects. Either give a more rapid response with a higher overshoot or a
slower response and a lower overshoot. Hence, choosing a midpoint nominal plant
will minimize the qualitative differences in closed-loop responses from nominal to
worst-case plants.

• Select the desired range of sufficient bandwidth frequencies. Here, the elements of
noise attenuation and fundamental limitations like right half plane zeros and time
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delays should be taken into account when choosing the upper threshold. The lower
threshold should be chosen based on minimum performance requirements related to
reference tracking.

• Finding filter parameter values in equation 5.3 based on an iterative process. A is
chosen such that the low-frequency disturbance rejection is sufficient. For SISO
systems, the stability margin is given by the maximum peak of the sensitivity trans-
fer function. Hence M is chosen based on the stability margin requirement. ω0 is
chosen to be the minimum frequency in the frequency range chosen in step 2. Then
WC is adjusted such that the system response is non-oscillatory. The robustness-,
stability- and performance requirements are then checked for both the worst-case
and nominal plants. As long as all the requirements are met, ω0 is increased, and
this step is repeated. The idea is to get as high as possible bandwidth within the
target frequency range to achieve good performance while robustness and stability
requirements are met.

• If the final controller does not have sufficient disturbance rejection, increase the filter
order on the sensitivity function as shown in equation 5.4, and repeat the last step.

5.2 Longitudinal and Lateral Decoupling
The controller designs are based on separating the longitudinal and lateral dynamics and
synthesizing in-dependant control systems. This is a common method for linear aircraft
control designs, and it is used by Beard and McLain [5] and Lavretsky and Wise [6]. This
type of decoupling is only suitable for gentle manoeuvring and not in cases where there is
a high degree of lateral-longitudinal cross-coupling nor for aggressive manoeuvres. Even
if Skywalker X8 is a flying wing, and the aileron and elevator are combined into a pair
of elevons, this separation is still doable using the relationship in equation 4.1. Note that
the simulation model itself has been simplified to be separated into the longitudinal -and
lateral direction (see section 2.1.3). Hence, these controllers may be more vulnerable to
aggressive manoeuvres in real life than in this simulator.

5.2.1 Longitudinal Control
The inner-loop longitudinal controller sets the desired elevator deflection based on the
commanded pitch angle and desired throttle based on commanded airspeed. A longitudinal
state vector can be extracted from the linearized system in equation 4.5. The longitudinal
state vector and inputs are defined as in equation 5.5

xlon =


u
w
q
θ

 (5.5a)

ulon =

[
δe
δt

]
(5.5b)
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The longitudinal state space model can then be written as in equation 5.6.

∆ẋlon =
dflon

dxlon
∆xlon +

dflon

dulon
∆ulon (5.6)

The longitudinal open-loop dynamics includes the short period modes and the phugoid
modes. The airspeed and pitch angle are two coupled states that are controlled by two
control variables. Thrust, δt, is the primary airspeed control variable and elevator de-
flection, δe, is the primary pitch control variable. This control problem is approached by
having two SISO controllers and introduce a state-machine with modes that are used to de-
cide how commanded thrust and commanded pitch are calculated. Typical state-machine
modes of operation are Descend mode, Climb mode and Level flight mode. This approach
is described in Beard and McLain [5]. As previously mentioned, this thesis handles inner-
loop control, and how the desired pitch is calculated is not in this scope. Generally, when
controlling two coupled states with decoupled controllers, states may be driven away from
their equilibrium point. For instance, if airspeed is being kept constant by the throttle con-
troller, the altitude responds rapidly to even small changes in aircraft pitch. The controller
from commanded pitch, θc, to elevator deflection, δe, is an H∞ - controller. The airspeed
controller is implemented as a simple PI controller.

Airspeed Control

As seen in section 4.2.4, one of the main effects of icing is increased drag. This means that
the throttle needed to maintain the airspeed is increased. Consequently, this will also lower
the maximum airspeed possible to achieve for the UAV. For considering in-flight airspeed
control well below the maximum achievable airspeed, a single PI airspeed controller with
an anti-windup scheme is found and used for all cases in the simulation. The output of the
airspeed controller is given by equation 5.7.

δt = δ̃t + (Kp +
Ki

s
)(V ca − Va) (5.7)

Where δ̃t is the calculated trim-value, and Kp and Ki are tuning parameters. Here, it is
important to not have too aggressive gains since this may lead the throttle to cut and surge.
Therefore, the controller is tuned for an acceptable error, and then the integral term closes
the error gap. The tuning parameters used in this thesis is based on trial-error tuning,
where kp = 0.068 and ki = 0.057 is found suitable. Figure 5.3 shows the step-response in
airspeed for the iced and clean case. Here, it is clear that the required throttle to maintain
airspeed is higher in icing conditions. This is a direct result of the increased drag force.

Pitch Control

The iterative tuning process described in section 5.1.3, is performed for the pitch-controller.
Here, γ∗lon is the achieved controller performance value described in section 2.3.3. For the
performance requirements, the acceptable overshoot is chosen to be 10 %. The frequency
range is chosen to be ω0 ∈ [1, 13.8]. The maximum frequency is chosen based on Lavret-
sky and Wise [6]. Note that even the aircraft in Lavretsky and Wise [6] differs from the
Skywalker X8, the noise attenuation requirements are comparable. The pitch controller
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CleanIced Airspeed reference

Figure 5.3: Airspeed step response for iced and clean case.

used here are using first order tuning filters. As previously discussed, this gives more
precise reference tracking in terms of lower overshoots to changes in input. On the other
hand, this may lead to low integral action, which again can lead to steady state errors when
subject to low frequency disturbances. As seen, symmetric icing does primarily affect the
longitudinal dynamics, and icing can be classified as a low frequency disturbance. This
mean that steady state error in pitch is expected when the UAV is subject to icing condi-
tions. The main argumentation for still using first order filters for longitudinal direction is
that as long as this steady state error is small enough and the disturbance response is not
too slow, this error can be corrected for by an higher-level outer loop controller. The robust
pitch controller parameters are summarized in table 5.1. The icing level for nominal plant
uses for the pitch controller synthesis was found to be ζ = 0.3. This lead to an ν-gap of
less than 0.31 to the worst case plants.

Table 5.1: Longitudinal Robust Controller Summary

Performance parameter Value
γ∗lon 1.9617
Filter parameter Value
ω0 6.2 rad/s
M 2
A 0.001
WC 1

A similar approach is made for the gain-scheduled case. Here, the icing-level resolution is
chosen to be 0.2. I.e. a controller is selected if the icing level is within±0.1 of its nominal
plant. The icing-levels chosen is then ζnominal = {0.1, 0.3, 0.5, 0.7, 0.9}. By using this
tuning approach for gain-scheduling, the stability criterion is significantly relax, since the
worst case icing-levels are now defined ζnominal ± 0.1. The gain scheduled controllers are
summarized in table 5.2. It is worth noticing that it is the frequency range that terminates
the iterative process for all gain-scheduled pitch controllers. The gain-scheduled controller
is only implemented with a simple switch, meaning when the icing level changes from the
area of one controller to another, the controller is switched instantaneously. As briefly
mentioned in chapter 2, this may lead to undesired transients. Hence, the gain-scheduled
controller is used to investigate the performance improvement within the icing-area of one
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controller, rather than scenarios related to de-icing and ice accretion.

Table 5.2: Longitudinal gain scheduled controllers with icing level value ζ

Performance parameter ζ = 0.1 ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 0.9

γ∗lat 3.6298 3.5165 3.3971 3.2827 3.1956

Filter parameters

ωb (rad/s) 13.8 13.8 13.8 13.8 13.8
M 2 2 2 2 2
A 0.001 0.001 0.001 0.001 0.001
WC 1.0 1.0 1.0 1.0 1.0

5.2.2 Lateral Control
The lateral controller sets the desired aileron deflection based on the commanded roll
angle. The lateral state vector and inputs are defined as in equation 5.8.

xlat =


v
p
r
φ

 (5.8a)

ulat = δa (5.8b)

Similarly as for the longitudinal case, the lateral state equations are extracted from the
linearized model in equation 4.5. This gives the following lateral state space equations;

∆ẋlat =
dflat

dxlat
∆xlat +

dflat

dulat
∆ulat (5.9)

.

The lateral open-loop dynamics of the UAV includes the roll rate damping mode, a spiral
mode and the dutch roll mode. The implementation of the lateral controller will be de-
scribed in greater detail in section 5.1.

Roll Control

As seen in section 2.1.6, the lateral dynamics is sensitive to asymmetric disturbances.
Since one of the main objectives of the controllers in this thesis is disturbance rejection,
and coping with asymmetric conditions, the lateral controller is using a second-order sens-
itivity filter to increase the controller integral action. The steady state errors for the lateral
controller in the asymmetric case were too large for the controller using first order tuning
filter. The same iterative tuning process is performed for the lateral controller. Here, the
performance requirements for overshoot is chosen to be 30 %. It is important to notice
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that high integral action may lead to oscillatory responses. One way to avoid this type
of unwanted behaviour is to tighten the closed-loop robustness requirements. Here, the
stability margin sm = 0.7 is used. This is still within the area given by Astrom and Mur-
ray [29]. The frequency range is chosen to be ω0 ∈ [1.0, 10.0]. The lateral controller
parameters are shown in table 5.3. The icing level for nominal plant uses for the lateral
controller synthesis was found to be ζ = 0.3. This lead to an ν-gap of less than 0.1 to the
worst case plants. This gap is considerably lower than in the longitudinal case, which is a
consequence of symmetric icing conditions having its primarily effects on the longitudinal
direction.

Table 5.3: Lateral robust controller summary

Performance parameter Value
γ∗lon 1.9199
Filter parameter Value
ω0 2.1 rad/s
M 2
A 0.0002
WC 1

The same approach is repeated for the gain-scheduled controller. Here, the icing-level
resolution is chosen to be the same as for the longitudinal case, 0.2. I.e. a controller is
selected of the icing level is within ±0.1 if its nominal plant. The icing-levels chosen is
then ζnominal = {0.1, 0.3, 0.5, 0.7, 0.9}. The lateral gain scheduled controllers are summar-
ized in table 5.4. The switching mechanism for the lateral controller is similar to the one
described for the pitch controller.

Table 5.4: Lateral gain scheduled controllers with icing level value ζ

Performance parameter ζ = 0.1 ζ = 0.3 ζ = 0.5 ζ = 0.7 ζ = 0.9

γ∗lat 2.1699 2.2860 2.3216 2.2860 2.3128

Filter parameters

ωb (rad/s) 2.9 3.2 3.3 3.2 3.2
M 2 2 2 2 2
A 0.002 0.002 0.002 0.002 0.002
WC 1.0 1.0 1.0 1.0 1.0



Chapter 6
Simulation Cases

This chapter presents the simulation cases used to evaluate the the controllers from chapter
5.

6.1 Controller Performance Tests
The controller performance tests are the tests that compare the single robust- and gain-
scheduled controller performances. These tests are separated into two test runs to evaluate
the longitudinal and lateral controllers. Here, it is especially roll and pitch controllers that
are of interest, while the airspeed controller is only used for keeping the desired airspeed
during the test runs. The manoeuvring capability is tested from a pre-defined sequence
of commanded pitch angles in the longitudinal case and roll angles in the lateral case.
These are all tested for icing levels ζ = {0, 0.3, 1.0}. These levels are referred to as
"clean", "some ice", and "iced". Two types of inputs are considered in these tests, namely
ramp and step inputs of different magnitudes. These inputs are used to get the basic flight
manoeuvres as climb, turn and descents.

The longitudinal test run is chosen to illustrate how the UAV controller handles basic flight
manoeuvres climb and level-flight. By defining high pitch angle as θ = 20◦, medium pitch
angle as θ = 10◦ and low pitch angle as θ = 0◦, the longitudinal test run is defined by the
following sequence;

• Initial value at low pitch angle.

• Input ramp to high pitch angle with the slow rate (2◦/sec), followed by constant
input angle for 10 seconds.

• Input ramp back to low pitch angle with the slow rate (2◦/sec), followed by constant
input angle for 10 seconds.

37
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• Input ramp to medium pitch angle with the fast rate (10◦/sec), followed by constant
input angle for 10 seconds.

• Input ramp to low pitch angle with the fast rate (10◦/sec), followed by constant input
angle for 10 seconds

• Step input to medium pitch angle, followed by constant input for 15 seconds.

• Consecutive input steps between low and medium pitch angles, with constant input
angle for 2 seconds in between each step.

The lateral test run is chosen to illustrate how the UAV controller handles the basic flight
manoeuvres turning and level-flight. By defining high roll angles as φ = ±40◦, medium
roll angles as φ = ±20◦ and low roll angle to φ = 0◦, the lateral test run given by the
following sequence;

• Initial value at low roll angle.

• Input ramp to high positive roll angle with the slow rate (4◦/sec), followed by con-
stant input angle for 10 seconds.

• Input ramp to negative high roll angle with the fast rate (10◦/sec), followed by con-
stant input angle for 10 seconds.

• Input step to low roll angle, followed by constant input angle for 10 seconds.

• Input step to medium positive roll, followed by constant input angle for 15 sec.

• Consecutive input steps between negative medium roll angle and positive medium
roll angle followed constant input angle for 2 seconds between each step.

6.2 Wind Conditions
A short performance test is simulated to verify the controllers’ ability to track references in
life-like wind conditions. Compensation for constant winds is commonly handled within
the higher-level guidance controller rather than in the low level stabilizing inner-loop con-
trollers. Therefore, this simulation is only looking at the wind gusts using the Dryden gust
model from section 2.2. The simulation sequence used in wind conditions is;

• Initial value at low pitch and roll angles.

• Step input to medium pitch angle, followed by constant input for 10 seconds.

• Step input to low pitch angle and a simultaneous step input to positive medium roll
angle, followed by constant input for 10 seconds.

• Step input to negative medium roll angle, followed by constant input for 10 seconds.

This input sequence is simulated with Dryden wind gusts of moderate intensity.
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6.3 Icing Conditions
As briefly mentioned in the discussion, there are several aspects to icing conditions. Two
icing test runs are simulated. The first test run is illustrating the effects of instantaneous
de-icing, and simulation results are compared for different airspeeds.

• Commanded pitch, airspeed and roll are constant at trim conditions.

• Initial icing vale ζ = 1.

• Sudden symmetric ice removal from ζ = 1 to ζ = 0 after 3 seconds.

• Sudden symmetric change in icing level to ζ = 1 after 10 seconds.

• Piecewise asymmetric ice removal after 20 seconds. I.e. the rate at which ice is
removed differs from left to right-wing. This simulates that ice flakes are suddenly
falling of during ice removal. Here the icing on the left wing is ζleft = 0 and icing
level on the right-wing is ζright = 0.5 for 10 seconds, followed by the right-wing
icing goes to ζright = 0.0.

The second test run is looking at the scenario with a defect de-icing system on one of the
wing;

• Commanded pitch, airspeed and roll are initially constant at trim conditions. Here,
the airspeed is 21.4 m/s, the pitch angle is 2.4 degrees, and the roll angle is 0.0
degrees.

• Initial icing level ζ = 1 on both wings.

• Initial step input to medium pitch angle (10 degrees), followed by constant pitch
input for 10 seconds.

• Sudden asymmetric ice removal from ζleft = 1 to ζleft = 0 on the left wing after 3
seconds.

• Step input to low pitch angle (0 degrees), followed by constant input for 10 seconds.

• Step input to positive medium roll angle (20 degrees), followed by constant input
for 10 seconds.

• Step input to low roll angle (0 degrees), followed by constant input for 10 seconds.
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Chapter 7
Results

This chapter presents the results of the system analysis. The results include a section on
how icing affects the dynamic modes of the Skywalker X8, as well as performance results
using the controller design from chapter 5.

7.1 Dynamic Modes Analysis
When comparing icing-induced changes of the dynamic system to the basic clean case
UAV, it is suitable to analyze the characteristics of the dynamic modes. By linearizing the
non-linear aircraft dynamics at a given operating point, the eigenvalues can be found and
used to determine the aircraft stability properties at this operating condition. This analysis
is performed at trim points for low (α ≈ 2.14 deg) and high (α ≈ 7.5 deg) angles of
attack. The airspeed is approximately 21 m/s for the low angle of attack and 13 m/s for the
high angle of attack. As previously mentioned, the longitudinal dynamic modes consist
of the short period -and phugoid modes and the lateral dynamic modes consist of rolling-,
spiral -and dutch roll modes. Figures 7.1a and 7.1b shows how the lateral and longitudinal
eigenvalues are affected at the trim point for a low angle of attack. Here, the filled circle
denotes the eigenvalue in the clean case, and the cross denotes the eigenvalue in the iced
case. The line shows the intermediate eigenvalues with a measurement resolution of 0.1.

The qualitative development of the eigenvalues as a function of ice is similar in the case
of high and low angles of attacks. That is, the spiral mode moves from the left half-plane
to the right half-plane, the other negative non-complex eigenvalues stays negative non-
complex, and the negative complex-eigenvalues stays negative complex for all levels of
ice at both low and high angles of attack. The longitudinal eigenvalues for the clean and
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Figure 7.1: a): the lateral dynamic modes in icing conditions. b): longitudinal dynamic modes in
icing conditions

iced case at high and low angles of attack are given by equation 7.1.

EVlon(α ≈ 7.52◦, iced) =

{
−5.482± 8.043i

−0.364± 0.672i

EVlon(α ≈ 7.45◦, clean) =

{
−5.892± 9.645i

−0.255± 0.483i

(7.1a)

EVlon(α ≈ 2.14◦, iced) =

{
−9.235± 4.565i

−0.544± 0.277i

EVlon(α ≈ 2.14◦, clean) =

{
−10.745± 17.245i

−0.459± 0.345i

(7.1b)

The largest change here is that for the low angle of attacks, the short period mode is
considerably less damped in the clean case than in the iced case. The same effect on a
much lower scale can be seen for high angles of attack. The phugoid mode in the iced
case moves away further into the left half-plane from the clean case for both high and low
angle of attacks. The phugoid damping ratio is increased with both an increase in angle
of attack and ice. This may be explained by fact that the phugoid mode is dependant on
the drag-to-lift ratio [13]. This ratio is generally changed in icing conditions, primarily
due to the significant drag increase. Due to different arispeeds, it is also changed for trim
conditions at different angles of attack.

The lateral eigenvalues for the clean and iced case at high and low angles of attack are
given by equations 7.2. In the iced case, the spiral mode moves from the left to the right
half-plane. In other words, icing destabilizes the spiral mode. Due to the spiral mode giv-
ing rise to very slow dynamic behaviour, it is not too critical to handling. Other than this,
the effects of icing are quite small for the lateral dynamics. The Dutch roll mode becomes
more damped. This can be attributed to the increased drag during icing conditions, which
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in turn leads to increased local drag differences on the wings during a yawing motion. Con-
sequently, the yawing damping is increased. The rolling mode gets slightly slower in icing
condition and moves towards the origin, which indicates higher aerodynamic damping of
the rolling motion.

EVlat(α ≈ 7.52◦, iced) =


−15.959 + 0.000i

−0.890± 3.562i

0.109 + 0.000i

EVlat(α ≈ 7.45◦, clean) =


−15.090 + 0.000i

−0.518± 2.908i

−0.045 + 0.000i

(7.2a)

EVlat(α ≈ 2.14◦, iced) =


−26.231 + 0.000i

−1.305± 5.530i

0.034 + 0.000i

EVlat(α ≈ 2.14◦, clean) =


−26.562 + 0.000i

−0.791± 4.552i

−0.067 + 0.000i

(7.2b)

7.2 Simulation Results
This section presents the simulation results for the test runs presented in chapter 6. This
includes simulation results for both the single robust -and gain-scheduled controller per-
formance test and a comparison between the two controllers. It also includes different
simulation results from scenarios involving de-icing and wind conditions. Overshoot and
settling time is used as measures for controller performance. When considering the set-
tling time of a step response, an error band with the size of acceptable steady-state error
needs to be defined. For a low-level inner-loop controller, this threshold error needs to be
chosen small enough such that the error can easily be corrected by the outer-loop guidance
controller. Here, the settling time is the time from step input until the controlled vari-
able stays within the acceptable error band of the final step reference value. The variables
shown for the longitudinal and lateral test runs are the controlled variables roll angle, pitch
angle and airspeed together with their corresponding control variables aileron deflection,
elevator deflection and throttle. In addition, the angle of attack is shown for completeness.

7.2.1 Single Robust Controller
This subsection presents the simulation results from the performance test of the single
robust controller. A detailed description of this test run can be found in section 6.1. The
longitudinal test run is shown in figure 7.2.

Figures 7.2a and 7.2b shows the pitch angles and the elevator deflections, which are the
primary testing variables for this test run. For all types of input signals (ramp with slow/fast
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Figure 7.2: Single robust controller longitudinal test run.

rates and step), there is a small overshoot at all tested icing levels. This overshoot tends
to decrease when the icing level increases. By looking at the step-input after 62 seconds,
which is the step response showed in the zoomed plot in figure 7.2a, the overshoots are
10.0 %, 9.0 % and 5.7 % for icing levels ζ = 0, ζ = 0.3 and ζ = 1.0 respectively. By
using an acceptable error band of ±3 %, the settling times measured from the step at 62
seconds also tend to decrease as the icing level increases. The settling times are 8.11,
7.74 and 6.31 seconds for icing levels ζ = 0, ζ = 0.3 and ζ = 1.0 respectively. The
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spikes in elevator deflections correspond to the commanded pitch. Here, it is clear that the
control effort is very dependant on the rate of the commanded change. The step responses
have considerable larger spikes than the ramp inputs. Also, the spike on the fast is a lot
larger than for the slow rate ramp input. Figure 7.2c shows the angle of attack during this
simulation. Rapid changes in pitch angle lead to spikes in the angle of attack. This effect
seems to be largest for positive step inputs.

Figure 7.2d and 7.2e shows the roll angle and aileron deflection, respectively. For all cases
of ice, the roll angle tends to drift slowly away from the reference signal. This effect
decreases with rising icing level. However, this is on a very low scale. For all cases, this
error is less than 0.002 degrees for a simulation time greater than 80 seconds. Hence, this
is negligible and can easily be corrected by a higher-level guidance control loop. Other
than this, the lateral directional variables do not depend on the longitudinal control, which
is a direct result of the longitudinal/lateral decoupling assumption made in the modelling
section 2.1.

Figures 7.2f and 7.2g show the airspeeds and throttle inputs. The airspeed varies between
19.5 and 20.5 seconds. As previously mentioned, the airspeed and pitch angle is strongly
coupled, and hence the change in pitch angle is easily viewed on the changes in airspeed.
As for the spikes in elevator deflection, a more rapid change in pitch angle gives a greater
impact on the airspeed. When the pitch increases, the airspeed decrease and when pitch
decreases, the airspeed increases. The airspeed controller tries to keep a constant airspeed
at 20 m/s. This explains the shape of the throttle signal. In addition, increased ice leads to
increased drag which requires a higher throttle signal to maintain airspeed. This explains
why the throttle increases in magnitude when the icing level increases.

Figure 7.3 shows the lateral test run. Figures 7.3a and 7.3b show the roll angle and aileron,
which are the primary variables for this test run. For all types of input signals, there is an
overshoot at all tested icing levels. As opposed to the longitudinal case, the overshoots at
clean and some ice cases are quite similar, and the overshoot at the iced case is larger. By
looking at the step-input after 50 seconds (the step response in the zoomed plot in figure
7.3a), the overshoots are 22.9 %, 21.7 % and 25.9 % for icing levels ζ = 0, ζ = 0.3 and
ζ = 1.0 respectively. Here, the second-order filter with a maximum acceptable overshoot
of 30 % was used in the tuning process from chapter 5. Hence, a quite large overshoot is
as expected. A high rate of change in roll angles leads to spikes in the aileron deflection.
This is the same behaviour as seen for the pitch angle in the longitudinal case. By using
acceptable error band of 3 %, the settling times are found to be 2.90, 2.93 and 3.03 seconds
for icing levels ζ = 0, ζ = 0.3 and ζ = 1.0.

7.3c shows the angle of attack. This varies between 2.4 and 4.1 degrees during the test run.
When the aircraft goes from a level flight in trim conditions to turning, the absolute value
of the velocity component along the body frame z-direction will increase, which can be
observed as an increase in the angle of attack. As expected, the direction of turn does not
matter on the changes in the angle of attack. The variations increase when the icing level
increases. Figures 7.3d and 7.3e show the pitch angle and elevator deflection. The pitch
angle is between 0 and 4 degrees for the whole test run. The commanded pitch angle is
constant at 2.14 degrees, which is at trim conditions for the given airspeed. However, the
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variations in pitch angle need to be looked at in combination with the airspeed and throttle
in figures 7.3f and 7.3g. Change in roll angle leads to change in airspeed. Note that these
changes are quite small (±0.06 m/s).
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Figure 7.3: Single robust controller lateral performance test run.
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7.2.2 Gain-scheduled Controller
The simulations are repeated using the gain scheduled controllers summarized in tables
5.1 and 5.3. The simulation results for the longitudinal test run is shown in figure 7.4.
Figures 7.4a and 7.4b show the pitch angles and the elevator deflections. As for the single
robust controller there is a small overshoot at all tested icing levels. The tendency of
lower overshoot when the icing level increases can also be observed for the gain-scheduled
controllers. By looking at the step-input after 62 seconds (this is the step response showed
in the zoomed plot in figure 7.4a), the overshoots are 8.0 %, 6.6 % and 4.3 % for icing
levels ζ = 0, ζ = 0.3 and ζ = 1.0 respectively. Then, by using acceptable error band of
±3%, the settling times (measured from the step at 62 s) are found to be 7.38, 7.00 and
5.26 seconds for icing levels ζ = 0, ζ = 0.3 and ζ = 1.0.

Figures 7.2d and 7.2e show the roll angle and aileron deflection, respectively. The slow
drift from the constant reference signal in roll angle is slightly smaller in the gain-scheduled
case than it was in the single robust controller case. This effect still tends to decrease with
rising icing level. However, this is on a very low scale. For all cases, this error is less
than 0.02 degrees for a simulation time greater than 80 seconds. This drift also seems to
decay as time goes and go towards a constant steady-state deviation. Figures 7.2f and 7.2g
show the airspeeds and throttle inputs. The airspeeds and throttle are almost identical to
the single robust controller case.

Figure 7.5 shows the lateral test run with gain-shceduled controllers. Figures 7.5a and 7.5b
show the roll angle and aileron. As for the single controller case, there is an overshoot for
all icing levels. Here, the overshoot for all icing levels is quite similar. By looking at the
step-input after 50 seconds, which is the step response in the zoomed area in figure a, the
overshoots are 28.1 %, 28.0 % and 28.5 % for icing levels ζ = 0, ζ = 0.3 and ζ = 1.0
respectively. By again using an acceptable error band 3 %, the settling times are found to
be 2.63, 2.30 and 2.28 seconds for icing levels ζ = 0, ζ = 0.3 and ζ = 1.0.

Figure 7.5c shows the angle of attack, figure 7.5d shows the pitch angle, figure 7.5e shows
elevator deflection, figure 7.3f shows airspeed and figure 7.3g shows throttle input. All
these responses are quite similar to the single robust controller case. However, it is clear
that the lateral controller gives more aggressive manoeuvres, leading to a higher degree of
dependency between longitudinal and lateral directions. Hence, the spikes in pitch angles
are slightly larger in the gain-scheduled case.

7.2.3 Controller Comparison
The performance results on the step responses for gain-scheduled and single robust con-
trollers are summarized in figure 7.6. Here, the two performance measurements, percent-
age overshoot and settling time, are plotted in a scatter plot. The points marked with filled
triangles are from the single robust controller, and the points marked with filled circles
are from the gain-scheduled controller. The colour codes show the icing level, where blue
is clean, green is partial iced and red is iced. For the longitudinal controllers, both the
settling times and overshoot improved by using gain-scheduling for all icing levels. It is
worth noticing that the largest difference in settling time is at icing level ζ = 1.0, and is
less than 1.5 seconds. The largest difference overshoot is at icing level ζ = 0.3 and is less



50 Results

A
ir

sp
ee

d(
m

/s
)

R
ol

l (
de

g)
E

le
va

to
r 

(d
eg

)
P

it
ch

 (
de

g)

A
O

A
 (

de
g)

A
il

er
on

 (
de

g)
T

hr
ot

tl
e

Clean

Some Ice

Iced

Reference signal

a)

b) c)

d)

e)

f) g)

Time(s) Time(s)

Figure 7.4: Gain-scheduled controller longitudinal test run.

than 2.5 %. In the lateral case, the overshoot is considerably higher for the gain-scheduled
case. However, accepted overshoot is a controller design choice. The high accepted over-
shoot is here made to lower the settling time and increase the ability to reject disturbances.
The largest difference in settling time between gain-scheduled and single robust controller
is at icing level ζ = 1.0 and is at 2.64 seconds. The largest difference in overshoot is at
icing level ζ = 0.0 and is 7.3 %.
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Figure 7.5: Gain-scheduled controller lateral test run.

7.2.4 Wind Conditions
The wind condition simulation case is simulated for both gain-scheduled and single robust
controller. Figure 7.7 shows the simulation results for icing level ζ = 1.0. Figures 7.7a and
7.7b show the controlled variables roll and pitch, with their corresponding control signals
in figure 7.7c and 7.7d. The angle of attack is shown in figure 7.7c. Airspeed and throttle
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are shown in figures 7.7f and 7.7g. As seen here, both controllers have a quite similar
disturbance response. In order to quantify the ability to reject wind gust disturbances, the
integral of the absolute value of the error is introduced. Mathematically, this is written as
in equation 7.3.

ie =

∫ t

t0

|e(t)|dt (7.3)

This quantity is used for comparing the disturbance rejection between the two controllers.
For the longitudinal case, the integral errors are 42.31 and 25.28 for the gain-scheduled and
single robust controller, respectively. In other words, the disturbance rejection is slightly
better for the single robust longitudinal controller than for the gain-scheduled longitudinal
controller. For the lateral case, the integral errors are 105.72 and 109.28 for the gain-
scheduled and single robust controller, respectively.

7.2.5 Icing Conditions
Due to certain difficulties related to instant changes in the scheduling variable for gain-
scheduled controllers using classical switching mechanisms, the icing condition simula-
tion cases are only simulated for the single robust controller. These problems are addressed
in chapter 8. Figure 7.8 shows roll- and pitch angle for the first test run described in section
6.3 simulated at trim conditions with airspeed at 21.4 m/s. The aircraft illustrations on the
top line of figure shows the icing level of the aircraft at each case. Case 1 is iced on both
wings (ζleft = 1 and ζright = 1), case 2 is clean on both wings (ζleft = 0 and ζright = 0),
case 3 is iced on both wings (ζleft = 1 and ζright = 1), case 4 is clean on left wing and
partially iced on right wing (ζleft = 0 and ζright = 0.5) and finally case 5 is clean on both
wings (ζleft = 0 and ζright = 0). All transitions between cases happens instantaneously.

As expected, the roll angle is not noticeably affected by the symmetric change in ice after
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Figure 7.7: Gain-scheduled and single robust controller wind condition test run.

3 seconds. The roll angle is, however, very sensitive to the asymmetric icing disturbances
after 20 and 30 seconds. This gives a disturbance response with a deflection at 10 degrees
and a slightly oscillatory decay back to the reference value within 4 seconds. The pitch
angle is highly dependant both symmetrical and asymmetrical change of icing level. The
disturbance response of the pitch angle is slower. The maximum error deflection occurs
when the icing level goes from clean to worst-case mixed ice at 20 seconds. This error
peak is at approximately 2 degrees. The disturbance response goes slowly back to the
reference value within 10 seconds. The steady-state error is less than 0.3 degrees.

The first test run is simulated at trim conditions at different airspeed. Figure 7.9 shows the
deflection angle for the transitions between the cases defined in figure 7.8 as a function
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Figure 7.8: De-icing test run

of airspeed. The simulations performed with airspeed at 14, 16, 18, 21 and 24 m/s. The
purpose here is to look at how the de-icing procedure is affected by airspeed. Hence, the ice
accretion case transition between case 2 and 3 is excluded from this figure. The tendency
is quite clear; the disturbance deflection for both pitch angle and roll angles tend to decay
when the airspeed rises. This rate of this decay gets smaller for higher airspeeds. For
the lateral case in asymmetric icing, the deflection seems to go towards a constant when
airspeed gets large, while for the longitudinal case, the deflection seems to go towards 0.

Figure 7.9: Comparison of de-icing deflections at different airspeed

Figure 7.10 shows the second test run described in section 6.3. This test run simulates
a short performance test while the aircraft is in asymmetric condition. As expected, the
cross-coupling between longitudinal and lateral direction is increased with asymmetric
icing. This can be seen in how the aerodynamic coefficients in the lateral direction depend
on drag and lift force in figure 4.1. By looking at the roll angle when a step is applied to
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the pitch angle, e.g. after 10 seconds, the cross-coupling between longitudinal and lateral
direction is increased from the symmetric performance test. The pitch does also depend
on the roll angle, but to a lower degree. This can be seen by looking at the pitch angle
in figure 7.10b when a step is applied to the roll angle. Figures 7.10c and 7.10d show
the icing level on the left and right-wing respectively. Figures 7.10e and 7.10f show the
aileron and elevator deflection. When subject to asymmetric icing, a significant aileron
control effort is needed to keep the aircraft on a level flight. Given the flight configuration
in this test run, the aileron deflection required to maintain level flight is about 10 degrees.
Hence, asymmetric icing limits the ability to perform aggressive lateral manoeuvring and
can easily cause saturation of the control signal. The saturation limit of the control signal
will also give an upper threshold to the degree of asymmetry that can be handled by the
UAV. Figures 7.10g and 7.10h show the airspeed and throttle.
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Chapter 8
Discussion

This chapter will discuss the results presented in chapter 7, and look at some of the chal-
lenges related to the controller designs.

8.1 Tuning Approach
As mentioned in chapter 5, there are several trade-offs related to this particular control
problem. The controller needs to take the performance and robustness of different plants
at different icing levels into account, which makes the tuning problem quite complex. In
addition to the general trade-off between performance and robustness for a single plant,
there is also a trade-off between performances of plants for different levels of icing, ζ ∈
[0, 1]. Any mathematical model of a physical system will never be a true representation
of a system, and hence all the plants should have a minimum level of robustness. There
are several factors that are not included in the icing model [3]. This includes the surface
quality of the wings, thermal conductivity, the structural composition of the wing, etc. This
emphasizes the importance of robustness to model uncertainties. The tuning approach that
was used in this thesis was to define an absolute lower limit of closed-loop robustness and
stabilization requirements, and then the performance of the plants of clean and worst-case
ice was improved through an iterative process by increasing the closed-loop bandwidth.
The robustness requirements were chosen based on the literature and not compared to the
magnificence of unmodeled dynamics in this specific model.

8.2 Longitudinal and Lateral Decoupling
The controller method implemented is based on a linearized model where the longitud-
inal and lateral dynamics are decoupled. The simulation results show that there is a weak
coupling, which is illustrated by investigating the roll angle in the longitudinal test run
and the pitch angle in the lateral test run. The results indicate that this coupling increases
for more aggressive manoeuvres. The simulation model itself is based on a degree of lon-
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gitudinal/lateral decoupling. Hence, the cross-coupling between longitudinal and lateral
direction will probably be larger in real life than it is in this simulator.

8.3 Gain-scheduling Challenges
Based on the comparison, the gain-scheduled controller undoubtedly improves the per-
formance compared to the single robust controller for all cases of ice. During the simula-
tions, the icing level is assumed known. One of the drawbacks of this controller is that it
requires a method to measure the level and type of ice. In general, this is a quite difficult
quantity to measure. In addition, classical gain-scheduling methods usually suit best on
slow varying variables. This allows switching mechanisms that do not include additional
transients to the system. For instance, a switching method can be based on interpolating
between controllers. This method would solve the problems for ice accretion, but for the
de-icing scenario, where the icing levels instantaneous changes. However, there are more
modern scheduling techniques that solve problems related to rapidly varying quantities
[33], but these are not implemented and tested in this thesis.

8.4 Dynamic Mode Analysis
The dynamic mode analysis performed in this thesis is based on system analysis from the
thoroughly tested FCAT software. These results do not match the eigenvalue analysis done
by Winter in [3]. The most alarming difference is that the phugoid mode becomes unstable
at both high (α = 8◦) and low (α = 2◦) for mixed ice in the analysis done by Winter. This
is a fundamental difference from what is seen here. However, the qualitative icing influ-
ence on the phugoid mode seen in this thesis seems to be a result of the characteristic
change in drag-to-lift ratio. This is similar to observations made in the eigenvalue analysis
for larger aircraft [15]. It should be emphasized that the icing model for the Skywalker
X8 used in this thesis is based on linear interpolation between the worst-case mixed ice
configuration and the base clean aircraft. Hence, aircraft data on different icing configura-
tions than the worst case mixed ice and the base clean aircraft is not available. Therefore,
analysis on intermediate icing levels using linear interpolation may give inaccurate results.

8.5 De-icing
From the simulation results on in-flight de-icing, the disturbance effects from de-icing on
the aircraft decays with increasing airspeeds. This is consistent with the icing influence
on the aircraft aerodynamics seen in section 4.2.4. The simulations are performed at trim
conditions at different airspeeds. Generally, higher airspeed at level-flight leads to a lower
angle of attack. The deflection angles caused by the icing disturbance is reduced when the
difference in aerodynamic moment coefficients between the two cases is lower.

The difference in pitch moment coefficients between clean and iced icing configuration is
at its lowest point for low angles of attack in the area of about 0 degrees. For one angle
of attack, the pitch moment coefficient is equal for the clean and iced case. This explains
why the angular disturbance deflection goes towards 0 degrees when airspeed gets large.

The difference in roll moment coefficients between clean and iced icing configuration



8.5. De-icing 59

decreases for low angles of attack. However, the difference is at its lowest for negative
angles of attack. Hence, when the angle of attack goes towards zero as airspeed gets large,
the deflection angles for the roll motion when de-icing will go towards a constant and not
zero.



Chapter 9
Conclusion

The main goal of this thesis was to develop inner-loop controllers for a fixed-wing UAV
with robust performance. A software package was developed to analyze the aircraft sys-
tem, tune controllers and perform simulations. Successful simulation tests demonstrated
both the feasibility and the performance of the controller in wind and icing conditions.

Two types of inner-loop controllers based on H∞ optimal control were implemented and
tested; a single robust controller and a gain-scheduled controller. In order to mitigate
the effects of icing, both controllers fulfilled closed-loop requirements to ensure stability
and robustness to model uncertainty. The simulation results showed that both controller
types gave satisfactory results in terms of robustness, stability and performance. From the
performance comparison of the two controller types, one can conclude that by increasing
the information available and assuming that the level of icing is known, the performance
in terms of settling time and overshoot is improved by using a gain scheduled controller.

The influence of icing on dynamic aircraft modes was analyzed. How the Skywalker X8
dynamics is affected by icing conditions was investigated based on a simulation model
where icing is modelled using linear interpolation between base aircraft without ice and
the worst-case mixed ice configuration. Due to limited available data for different icing
configurations of the Skywalker X8, it is not possible to make a general conclusion of
the influence of different icing configurations on the dynamic modes based on analysis in
this thesis. Nevertheless, the typical change of aerodynamic behaviour in icing conditions,
such as increased drag, can be seen as changes in particular dynamic modes characteristics.

In-flight de-icing was performed using the single robust controller for different levels of
airspeed. The tendency was clear; higher airspeed within the tested range of reasonable
UAV airspeeds minimizes the disturbance related to instantaneous removal of ice.
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9.1 Future Work
An important step in the further development of the control system for the Skywalker
X8 in icing condition is to improve the accuracy of the mathematical model of icing for
the Skywalker X8. This can, for instance, be done by performing Computational fluid
dynamics (CFD) simulations for different icing configurations. Then, a dynamic mode
analysis for intermediate icing configurations could give a more conclusive analysis than
the one shown in this thesis.

The same principle yields in the asymmetric icing case. While the model deduction per-
formed in this thesis illustrates the effect of asymmetric flight, it is based on several as-
sumptions which may lead to inaccuracies compared to real flight. Hence, performing a
CFD analysis on isolated wings with different icing configurations and identify the new
aerodynamic coefficients would improve the model accuracy.

As discussed, it would also be interesting to implement appropriate switching mechanisms
for the gain-scheduled controllers and verify if it is possible to improve the disturbance
response when subject to de-icing. The systematic tuning methods proposed in this thesis
proved to be well functioning in the simulator. Future work should include testing the
inner-loop controllers in combination with an outer guidance loop in real life flight test
experiments.
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Appendix A
Rotation Matrices

This appendix lists the relevant rotation matrices used in chapter 2.

A.1 Body to Inertial

Ri
b(φ, θ, ψ) =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (A.1)

Here, sin(x) and cos(x) are written on a compact form sx and cx.

A.2 Body to Wind

Rw
b (α, β) =

 cos(β)cos(α) −sin(β)cos(α) −sin(α)
sin(β) cos(β) −sin(β)sin(α)

−cos(β)sin(α) 0 cos(α)

 (A.2)

Here, α is the angle of attack, and β is the angle of sideslip.
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Appendix B
Skywalker X8 Simulation
Parameters

B.1 Aerodynamic Coefficients

Table B.1: Skywalker X8 aerodynamic coefficients

Parameter Clean Iced

CDδe 0.8461 0.8461
CYδa −0.0696 −0.0696
CLδe 0.5872 0.5872
Clδa 0.2987 0.2987
Cmδe −0.4857 −0.4857
Cnδa 0.0076 0.0076
CYp −0.185 −0.034
CYr 0.005 0.002
CLq 4.63 −3.41
CDq 0 0
Clr 0.039 0.158
Cnp −0.027 −0.017
Clp −0.409 −0.407
Cmq −1.99 −2.09
Cnr −0.022 −0.049
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B.2 Physical Measures

Table B.2: Skywalker X8 physical measures

Parameter Symbol Value

Wing span b 2.1 m
Mean aerodynamic chord cM 0.3571 m
Wing area Sw 0.75 m2

Area swept by propeller Sp 0.1018 m2

Motor constant km 40
Motor efficiency factor Cprop 1

Table B.3: Skywalker X8 mass, moments of inertia and products of inertia, based on experimental
data from [32]

Parameter Value

m 3.3650 kg
Ixx 0.340 kgm2

Iyy 0.165 kgm2

Izz 0.400 kgm2

Ixy 0.000 kgm2

Ixz −0.031 kgm2

Iyz 0.000 kgm2
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