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Abstract

The tyres of a racing car are one of it’s most important parts. As all forces that accelerate
the car have to be induced in the tyre contact patch, extensive knowledge of the tyre’s
performance is key to maximise performance. Models for tyre performance have been
extensively researched, and are able to accurately describe the tyre behaviour. The prop-
erties of a tyre, used in tyre models, are highly dependent on external factors like the road
surface, tyre and tarmac temperature, tyre compound, weather conditions and tyre wear.
These parameters vary from day to day, and can even change over the course of a race.
Therefor, an online estimation scheme for the tyre parameters was developed.

The equations of motion for the race car are derived, and were used to implement a Kalman
Filter. The Kalman Filter estimates the longitudinal and lateral tyre forces using measure-
ments from the motor encoders and INS. The longitudinal tyre force estimates are then
used to estimate the parameters for two tyre models. The chosen tyre models are the brush
tyre model and the magic formula tyre model. They have different amount of parameters,
and are based on different simplifications. In order to ensure that the estimation scheme
was excited enough, an online data selection algorithm was designed.

The results show that both tyre models were able to identify the friction coefficient, with
the magic formula being the most accurate, during straight line acceleration and braking.
The friction coefficient was underestimated during experiments where combined tyre be-
haviour is present, as the implemented tyre models only model pure longitudinal forces.
The online estimator proved to be able to accurately identify the full tyre models when run
during a straight line acceleration experiment.
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Sammendrag

Dekkene til en racerbil er en av dens viktigste deler. Siden alle kreftene som akselererer
bilen virker i dekkets kontaktflate med asfalten, er kunnskap om dekkets ytelse essentiell
for å maskimere bilens ytelse. Modeller for dekk-krefter har blitt mye forsket på, og er
egnet til å nøyaktig beskrive dekkets oppførsel. Dekkets parametere, som inngår i model-
lene, er avhengig av eksterne faktorer som veioverflaten, temperatur på asfalten og dekket,
dekkets sammenstilling værforhold og dekkslitasje. Disse parametere kan variere fra dag
til dag, og kan til og med endre seg under en Formula Student konkurranse. Derfor har en
online estimator for dekkparametere blitt utviklet.

Bevegelseslikningnene for en racerbil har blitt brukt for implementasjonen av et Kalman
Filter. Filteret estimerer både longitudinelle og laterale krefter fra dekket, ved hjelp av
målinger fra motorens enkodere og INS’en. Estimerte longitudinale krefter er så brukt til
å estimere parametere for to rent longitudinelle dekkmodeller. De valgte dekkmodeller er
en brush modell og en magic formula modell, som har forskjellige forenklinger og antall
parametere. For å forsikre seg om at estimatoren blir ekstitert tilstrekkelig har en online
dataseleksjonsalgoritme blitt utviklet.

Resultatene viser at begge dekkmodellene klarer å identifisere friksjonskoeffisienten, der
magic formula modellen presterer best, under et eksperiment der bilen akselererer og
bremser i en rett linje. I scenarioer der bilen opplever kombinerte longitudinelle og laterale
krefter i dekkene blir friksjonskoeffisienten underestimert fordi modellene kun inklud-
erer longitudinell oppførsel. I tillegg viser resultatene at den online estimatoren klarer å
nøyaktig identifisere parametere for en full longitudinell dekkmodel under kjøring på rette
strekker.
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Chapter 1
Introduction

1.1 Background
This thesis is written in cooperation with Revolve NTNU, a Formula Student team. Every
year, a new prototype single-seater race car is designed, manufactured, assembled, tested,
and raced against student teams from universities around the world. Revolve NTNU’s
vision is to educate world class engineers, by developing high performance race cars.

The tyres of a race car are one of the most important systems on the car. The tyres are
the only interaction between the car and the track, that can accelerate the car. All of the
available acceleration forces have to go through the tyres, therefore extensive knowledge
about the tyre behaviour is key to a high performing race car.

Figure 1.1: NOVA, the 2019 Revolve NTNU race car, used for simulations in this thesis
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1.2 Motivation

Revolve NTNU’s race cars are equipped with an electrical powertrain, consisting of four
hub-mounted motors. The individual control of the motor output on each wheel opened
the door for implementation of a Torque Vectoring (TV) control system. The controller
aims to utilize all available tyre grip for each wheel. The latest generation of TV has used
tyre models supplied from the tyre manufacturer, to estimate the available grip and optimal
motor output. These tyre models are modeled from test data on tyre testing machines, often
called flat track test-beds. This season Revolve NTNU seeks to improve the performance
of the next race car by switching to a new tyre. The switch to a new tyre will require a new
approach to the estimation of available tyre grip, as there is no tyre model available. Using
a simplified version of the semi-empirical Magic Formula (MF) tyre model, we want to
estimate the model parameters online, using the sensors available on the 2021 race car.
By switching from a pre-fitted tyre model, to a model that is estimated online, we want to
allow the car to better react to changing road surfaces. The interaction between the tyre
compound and the road varies on several factors that pre-fitted models are unable to adapt
to. These factors include, but are not limited to:

• Road surface roughness and temperature

• Tyre temperature and wear

• Ambient temperature

• Weather conditions and precipitation

• Suspension setup

Figure 1.2: The Continental tyres used by Revolve NTNU, and their replacement Hoosier tyre
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1.3 Thesis outline

This thesis consists of 9 chapters. The first chapter give a short introduction to the motiva-
tion behind the thesis, the state of the art and the status of the task after the work performed
in the project thesis preceding this thesis. Chapter 2 contains relevant theory for the thesis,
while Chapters 3, 4 and 5 cover the design and implementation of the Kalman filter and
estimation scheme. The testing and simulation setup is explained in Chapter 6. The results
of the Kalman filter are presented and discussed in Chapter 7, while the online parameter
estimation results are presented and discussed in Chapter 8. A final conclusion is presented
in Chapter 9, along with suggestions for future work.

1.4 System overview

The estimation scheme that will be developed for this thesis aims to improve the per-
formance of the torque vectoring control system in Revolve NTNU. This is an already
complex system, that finds optimal motor setpoints that attempt to utilize the available
tyre grip and provide the driver with a predictable vehicle behaviour. This section will
introduce the systems closest to the torque vectoring to provide context.

1.4.1 Race car

Revolve NTNU’s race cars are built to compete in the Formula Student competitions. The
race car used as a basis for the simulations in this thesis was built in the 2019 season, called
NOVA. It weighs 162.5 kg, features a full aerodynamic package. Both the aerodynamics,
suspension arms, rims and chassis are made of carbon fiber to reduce weight. Every wheel
is equipped with a planetary gearbox with a gear ratio of igear = 14.38 and a hub mounted
motor, driven by four in-house developed inverters. The control system that provide the
setpoints for the inverters is a torque vectoring algorithm. The data flow, from sensors
to motor output is shown in Figure 1.3. A short introduction to the state estimation and
torque distribution modules is given in this section

Figure 1.3: System overview
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1.4.2 Torque vectoring
The four hub-mounted motors are controlled by the torque vectoring algorithm. The goal
of the TV algorithm is to find the optimal torque setpoints for each motor to achieve
the acceleration requested by the driver, and maintain a neutrally steered behaviour. The
control system consists of two modules: State estimation and torque distribution.

1.4.2.1 State estimation

The state estimation module uses the available sensor measurements to estimate the condi-
tions the tyres are experiencing. As the motors output act on the ground through the tyres,
it is important to understand the state the tyres are in to set the optimal motor output. There
are three parameters that are especially important, tyre load and longitudinal and lateral
tyre slip. These are used by the torque vectoring system to find optimal setpoints.

Tyre load

The maximum force a racing tyre can exert on the ground is limited by the normal load on
the tyre. The tyre load is dependent on the vehicle acceleration, velocity and mass due to
load transfer, aerodynamics and gravity respectively.

Tyre slip

The rubber compound of the tyre is stretched and compressed during driving. This is the
source of the force exerted by the tyres. The stretching is quantified by the state estimation
module, and is referred to as tyre slip. For longitudinal forces, the slip is called the slip-
ratio, while lateral forces are generated by the tyre slip angle.

1.4.2.2 Torque distribution

The output of the state estimation module is used to find the optimal torque setpoints for
the motors. This is done with a Quadratic Programming (QP) optimisation problem. The
driver input from the steering wheel and pedals are used to generate references for the
vehicle behaviour. The pedal input is used to determine the total force in the longitudinal
direction, while the steering wheel input is used to determine the request moment around
the vehicle z-axis.

Tyre limit constraints

The QP problem has linear constraints that are related to the estimated tyre state. The
estimated tyre load, combined with the friction coefficient between the tyre and the road
surface make up the maximum force possible to be generated by the tyre. In order to pre-
vent overloading the tyre, the torque cannot lead to a force above the limit. The tyre-road
friction coefficient is dependent on the tyre and track conditions, and can vary from day
to day or even over the course of a race. Therefor this thesis aims to estimate the friction
coefficient online, to ensure the TV algorithm always can operate at peak performance.
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1.4.3 Racing track
Revolve NTNU designs race cars that will compete in Formula Student competitions. The
tracks are marked with cones on either side of the road, and are laid out on open tarmac
areas. This makes for tight, twisty tracks, with lots of corners and few straight sections.
The average track width is around three meters, meaning that even small errors can cause
cones to be hit. Hitting a cones will be punished with a 2 second penalty, which rules out
a top position immediately.

Figure 1.4: Track layout at Formula Student Germany

1.4.3.1 Tarmac conditions

The tracks can be laid out on everything from empty parking lots to actual racetrack sec-
tions meaning that the track surface varies a lot throughout the season. The tyre-road
friction will vary between all tracks, based on track temperature, tarmac roughness, rub-
ber from cars that have driven over it and precipitation. If not found online, the friction
coefficient used to find the tyre limits needs to be adjusted to each track, taking valuable
time.

1.5 Goal and scope

This thesis has one primary goal, and a secondary goal. The primary goal is to design and
implement an online estimation scheme that can estimate the friction coefficient between
the tyre and road surface during racing conditions. The friction estimate is important for
the TV control system, as it is a constraint for the motor output, that prevents wheel-spin.

The secondary goal is a system identification goal for the tyre itself. Tyre models are an
important tool when designing a race car, and an accurate tyre model is very useful for the
design of future Revolve NTNU race cars. So in addition to the estimate of the friction
coefficient, the remaining tyre model parameters will also be estimated.

The state estimation of tyre loads and slips are not a part of this thesis. Previously imple-
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Figure 1.5: Estimated vs. true model from Project Thesis [12]

mented schemes for the estimation of these states have been developed by Revolve NTNU,
and they are used for results presented in Chapter 7. Their limitations will be explained in
Chapter 5, to give an insight in their performance and how that can influence the results
for this thesis.

1.6 Literature review

This thesis is a continuation of the work presented in the Project Thesis [12]. A gradient
descent method was implemented, that aimed to minimise the difference between INS
measurements of lateral and longitudinal acceleration and a theoretical sum of forces,
expressed with a simplified tyre model. The presented results failed to give an accurate
estimate of the tyre-road friction, in addition to a poor estimate of the tyre model. A lack
of model excitation, and a gradient with a high complexity were identified as two causes
for the inaccuracy. The estimated tyre model, and the true model are shown in Figure
1.5. None of the two goals were achieved with great success. The friction coefficient was
overestimated with a factor of 2, while the final model shape also failed to match the actual
tyremodel.

Even though the goal is to identify the friction coefficient and model parameters for the
longitudinal tyre forces, the approach taken in the project thesis[12] required an estimation
scheme for the lateral forces as well, because the full vehicle dynamics were incorporated
into the cost function. Since the vehicle dynamics are known, these could be used to sim-
plify the optimisation problem, and focus fully on the longitudinal dynamics. An approach
where the dynamics are used to design a Kalman Filter is presented by Choi et. al [8]. The
method was applied to a FWD vehicle, and estimated the longitudinal tyre forces for each
wheel with great success. The method will need to be adjusted to account for the 4WD
properties of the Revolve NTNU race car. The Kalman Filter will provide an estimate of
the longitudinal tyre forces, meaning that these can be used directly in the simplified cost
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function of the optimisation problem: (Fx − F̂x(θ))2.

Another issues discovered in the project thesis was the lack of system excitation during
regular driving. Most existing friction estimation schemes described in the literature use
a predefined sequence to ensure the model is excited enough. [8], [13] As the goal of this
thesis is to develop a scheme that can be used during a race, where the track mandates the
driver input, a solution that ensures excitation has to be designed.

There are several approaches to solving the optimisation problem. Midtskogen[10] and the
project thesis[12] both utilised a gradient descent method. This is a rather simple solver,
which has no stability or convergence guarantees. However, the non-linear nature of the
problem, combined with it’s highly non-convex cost function landscape means there are no
simple estimation schemes that can ensure convergence. Choi et. al presented the use of a
linearised recursive least squares solver[8]. An attempt to implement this solver was made
for this thesis, but was discarded as it proved to be hard to get parameter convergence. As
the gradient descent method proved to be able to converge, given that it is tuned carefully,
this solver will be used for this thesis as well.
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Chapter 2
Theory

2.1 Notation
The vehicle described in this thesis has two axles, with two tyres each. To increase read-
ability, these are abbreviated to two letter combinations. The abbreviations are shown in
Table 2.1.

Axle/Tyre Abbreviation
Front axle f
Rear axle r
Front left tyre FL
Front right tyre FR
Rear left tyre RL
Rear right tyre RR

Table 2.1: Axle and tyre abbreviations

When specific forces, slips or angles are referred to for a single tyre, they will use the
format specified in Equation 2.1, using the longitudinal tyre force for the rear left tyre as
an example.

FxRL (2.1)

2.2 Vehicle Dynamics Fundamentals
The Kalman Filter designed in this thesis and the tyre estimator have been developed using
equations from Vehicle Dynamics. This field of study aims to describe the dynamics of
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cars. This ranges everything from aerodynamic forces acting on the vehicle, to forces
generated by tyres and rotational dynamics of entire vehicles. The following section will
give a short introduction to the parts of vehicle dynamics that are relevant for this thesis.

2.2.1 Load transfer
This section is adapted from project thesis

During operation, a race car experiences longitudinal and lateral acceleration. These de-
velop reactionary forces in the form of a centrifugal force in the lateral direction and iner-
tial force in the longitudinal direction. This changes the distribution of the vehicle weight
over the four tyres causing the Fz of each tyre to change [2, Chapter 18].

2.2.1.1 Lateral load transfer

In a steady-state turn, the outer wheels get an increased load. We can derive the equation
for load transfer by taking the moments around the outer wheel’s contact patch. For sim-
plification, we assume a 50/50 weight balance, meaning we can merge the four wheels to
one axle as seen in Figure 2.1. The centrifugal force F is defined as m · ay .

CG
ayF=may

mg

t/2

t
WRL

WRR

h

FyRL FyRR

Figure 2.1: Free body diagram in steady state cornering, seen from the rear.

Taking the moments about the inner wheel, in this case the right, we get Equation 2.2.[2,
Chapter 18]

WRL · t = mg · t
2

+may · h (2.2a)

WRL =
mg

2
+
may · h

t
(2.2b)

∆WRL =
may · h

t
(2.2c)

Where h is the height of the center of gravity, and t is the vehicle’s track width.
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2.2.1.2 Longitudinal load transfer

In a steady-state acceleration, the rear wheels get an increased load. Using the diagram in
Figure 2.2, the equation for load transfer is derived by taking the moments around the front
wheel’s contact patch. For simplification, we assume a 50/50 weight balance, meaning we
can use half the wheelbase in our calculations, l

2 = lf = lr. The force F , causing the
load transfer is defined as m · ax, giving us Equation 2.3 for steady-state longitudinal load
transfer [2, Chapter 18]. In a braking scenario, the same equation can be used, with a
negative sign on ax. In this case, the load on the front tyres will increase.

CG
axF=max

mg

WRL

WFL

h

lflr

Figure 2.2: Free body diagram in steady state longitudinal acceleration, seen from the side.

Taking the moments about the front wheel, we get Equation 2.3 [2, Chapter 18].

WRL · l = mg · l
2

+max · h (2.3a)

WRL =
mg

2
+
max · h

l
(2.3b)

∆WRL =
max · h

l
(2.3c)

Where h is the height of the center of gravity, and l is the vehicle’s wheelbase.

2.2.2 Aerodynamics
This section is adapted from project thesis

The race car is equipped with an aerodynamic package. This is a combination of aerofoils
and flow-manipulating devices that manipulate the air flowing over the vehicle body and
around the tyres to generate as much downforce as possible, with as little drag as possible.
The aerodynamic force is decomposed into drag and downforce. The drag is an unwanted
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effect generated by the chassis, wheels and aerodynamics disturb the flow around the ve-
hicle, slowing down the car. The downforce is generated by a pressure difference between
the top and bottom surface of the wind elements, pressing the car into the road. This ad-
ditional normal load on the car is distributed between the 4 wheels by the aerodynamic
balance. This balance is highly sensitive to the vehicle motion and changes with velocity
and orientation. This is due to how the airflow interacts with the foils and the ground effect
under the vehicle. The decomposed aerodynamic forces are defined in Equations 2.4 and
2.5. In the vehicle model, they are assumed to be working in one point, on the center axis
of the race car.

Fd =
1

2
CdArefρv

2
x (2.4)

Fl =
1

2
ClArefρv

2
x (2.5)

2.2.3 Single track vehicle model
The single track model, also referred to as the bicycle model, is a simplified model of a
race car. The two wheels on each axle have been approximated with one wheel, where
only the front wheel can be steered. Figure 2.3 shows the simplified vehicle model. As
only the front wheels can be turned, the rear longitudinal forces have no moment around
the center of mass, causing no contribution to the rotational dynamics of the vehicle. The
lateral forces still have an arm in the wheelbase of the vehicle.

2.2.3.1 Longitudinal dynamics

As the front wheel can be steered, both the lateral and longitudinal tyre force will con-
tribute to the longitudinal dynamics. On the rear wheel, only the longitudinal tyre force
will contribute. This gives the equation of motion in Equation 2.6.

∑
Fx = m · ax = Fxf cos δf − Fyf sin δf + Fxr (2.6)

2.2.3.2 Lateral dynamics

Just like for the longitudinal dynamics, the front wheel will contribute with both tyre
forces, while the rear wheel only contributes with the lateral force. This gives the lateral
equation of motion in Equation 2.7.

∑
Fy = m · ay = Fxf sin δf + Fyf cos δf + Fyr (2.7)

2.2.3.3 Yaw dynamics

The yaw dynamics of the single-track model are given in Equation 2.8, as the equation of
motion around the z-axis of the vehicle.
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Figure 2.3: Single track vehicle model, with front wheel steering and two driven wheels

∑
τz = Iz · ṙ = lf · (Fxf sin δf + Fyf cos δf ) + lr · Fyr (2.8)

2.2.4 Double track vehicle model

The dynamics of a 4WD vehicle can be modelled using a double track vehicle model,
shown in Figure 2.4. This model takes into account the aerodynamic drag, front-wheel
steering, and 4 driven wheels. The front wheels have an Ackermann-steering geometry,
meaning the wheel angle is not identical for both wheels when they are turned.

Using the balance equations for forces and torques, a mapping from translational and
rotational acceleration to tyre forces can be derived in the form of the equations of motion.

2.2.4.1 Longitudinal dynamics

All four tyres contribute with a force in the longitudinal direction of the race car. The rear
wheels, directly contribute to the x-direction of the vehicle. The front tyres can be turned,
meaning both the x- and y-directional force in the contact patch will contribute. Equation
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Figure 2.4: Vehicle model with front wheel steering and 4 driven wheels

2.9 shows the equations for the balance of forces in the x-direction.∑
Fx = m · ax = FxFL · cos δFL + FxFR · cos δFR + FxRL + FxRR

−FyFL · sin δFL − FyFR · sin δFR − Fd
(2.9)

Simplifying with force vectors gives the expression in Equation 2.10, representing the
equation of motion in the x-direction.

m · ax + Fd = Fx ·


cos δFL
cos δFR

1
1

− Fy ·


sin δFL
sin δFR

0
0

 (2.10)
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2.2.4.2 Lateral dynamics

All four tyres contribute with a force in the lateral direction of the race car. Even though
the rear wheels cannot be turned, they will still have a slip angle as the car is turning. The
front tyres can be rotated around their z-axis, and when rotated, both the longitudinal and
lateral forces generated in the tyre contact patch will contribute to the lateral acceleration
off the vehicle.∑

Fy = m · ay = FyFL · cos δFL + FyFR · cos δFR + FyRL + FyRR

+FxFL · sin δFL − FxFR · sin δFR
(2.11)

Simplifying with force vectors gives the equation of motion in Equation 2.12, which will
be used for the Kalman Filter design in Chapter 3.

m · ay = Fx ·


sin δFL
− sin δFR

0
0

+ Fy ·


cos δFL
cos δFR

1
1

 (2.12)

2.2.4.3 Yaw dynamics

All lateral and longitudinal tyre forces contribute to a moment around the z-axis of the
vehicle. The balance equation for the moments around the z-axis can be used to describe
the acceleration of the yaw angle of the vehicle.

Equation 2.13 shows the moment of each tyre force around the z-axis.

∑
τz = Iz ṙ = FxFL(− tf

2
cos δFL + lf sin δFL) + FxFR(

tf
2

cos δFR + lf sin δFR)

+
tr
2
· (−FxRL + FxRR)

+FyFL(lf cos δFL +
tf
2

sin δFL) + FyFL(lf cos δFR −
tf
2

sin δFR)

−lr · (FyRL + FyRR)

(2.13)

This equation can also be simplified using force vectors for the lateral and longitudinal
tyre forces, giving the equation of motion in Equation 2.14.

Iz ṙ = Fx


(− tf2 cos δFL + lf sin δFL)

(
tf
2 cos δFR + lf sin δFR)

− tr2
tr
2

+ Fy


(lf cos δFL +

tf
2 sin δFL)

(lf cos δFR − tf
2 sin δFR)

−lr
−lr

 (2.14)
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2.3 Tyre fundamentals

Besides aerodynamic elements, the four tyres are the only parts of the vehicle that can
exert a force on the surrounding. All acceleration, both longitudinal and lateral come from
forces generated in the tyre contact patch, the area where the tyre is in contact with the
road surface. There are different standards in use regarding the coordinate system for the
tyres. This thesis uses the ISO 8855 standard, which defines the axes as shown in Figure
2.5 [18]. The forces in the contact patch do not act exactly in the center of the contact
patch, however this assumption has been made for this thesis to reduce model complexity.

αV

x

y

-Fy

Fx

vx

vy

(a) Top-down view of the tyre.

Rloaded

Fx

� vx

x

z

Fz

(b) Side view of the tyre.

Figure 2.5: Tyre coordinate system used in thesis.

2.3.1 Tyre slip
As the tyres are operating, they experience compression and stretching of the tyre com-
pound. The manipulation of the rubber generates tyre slip, which is the source of the
contact patch forces. Slip can occur both longitudinal, through the application of a motor
or braking torque on the wheel, and lateral through steering input.

2.3.1.1 Longitudinal slip

The longitudinal slip is referred to as the slip ratio of a tyre. Like the tyre coordinate
system, there is no universally agreed-upon definition, and multiple definitions are used
in the automotive industry. In this thesis, the SAE J670 definition is used. The slip ratio
can be described as the ratio between the slip velocity, and the angular velocity of a free-
rolling wheel with the same longitudinal translation velocity. The slip velocity is defined
as Ω − Ω0, where Ω is the driver wheel’s angular velocity and Ω0 the angular velocity
of a free-rolling wheel. A free-rolling wheel is a wheel without driving- and/or braking
torque applied to it. [2, Chapter 2] The free-rolling angular velocity of a tyre is defined in
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Equation 2.15, where v is the translational velocity of the tyre and α the tyre slip angle.
The slip angle will be discussed in detail in Section 2.3.1.2. [3, Chapter 1]

Ω0 =
v cosα

Reff
(2.15)

The effective radius of a tyre, denoted as Reff , is the radius required for the translational
velocity and angular velocity for a free-rolling tyre to match. The difference in loaded tyre
radius and effective tyre radius originates from the deformation of the tyre in the contact
patch. The effective rolling radius lies between the loaded and unloaded radius, as shown
in Figure 2.6 [3, Chapter 1].

Rloaded

Runloaded

Reffective

Figure 2.6: Loaded, effective and unloaded tyre radius

The tyre slip ratio is defined as the ratio between the slip velocity and the free-rolling ve-
locity, as in Equation 2.16. Substituting in Equation 2.15 gives us the SAE J670 definition
for slip ratio.

κ =
Ω− Ω0

Ω0
(2.16a)

κ =
Ω

Ω0
− 1 (2.16b)

κ =
ΩReff
v cosα

− 1 (2.16c)

For a free-rolling tyre, Ω is equal to Ω0, and κ will be zero. For a situation where the
wheel is locked during braking, Ω is zero, and κ will be -1. For a tyre that is in full spin,
the slip ratio will be 1. [2, Chapter 2].

2.3.1.2 Lateral slip

The lateral slip of a tyre is referred to as the slip angle. Unlike the definition of slip ratio,
the slip angle is more intuitive to understand. Simply explained, the slip angle is the angle
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between the tyre heading and tyre velocity vector. This is shown is Figure 2.5 as α. The
slip angle is defined in Equation 2.17 [2, Chapter 2].

tan (α) =
vy
vx

(2.17)

2.3.2 Tyre forces
There are three main tyre forces acting in the tyre contact patch. The tyre load, origi-
nated from the vehicle weight and aerodynamic downforce, and the longitudinal and lat-
eral forces from the tyre slip ratio and angle respectively. These three forces are closely
related, and are limited by the magnitudes of each other.

2.3.2.1 Tyre load

The vertical force on the tyre is referred to as Fz , or tyre load. The tyre load limits the
total magnitude of the combined longitudinal and lateral forces, as they are both frictional
forces. The maximum tyre force, also referred to as grip, is defined in Equation 2.18. [2,
Chapter 2]. µ is the friction coefficient between the tyre and the road surface. The tyre load
is a dynamic load. In addition to the mass of the vehicle and driver, the tyre load is affected
aerodynamic forces pressing the race car down and longitudinal and lateral acceleration as
described in Sections 2.2.2 and 2.2.1.

Fmax = µFz (2.18)

2.3.2.2 Longitudinal and lateral forces

The longitudinal and lateral forces are bound by the constraint from Equation 2.18. A
tyre that is exerting a lateral force, will have a lower maximum longitudinal force, and
vice-versa. This is commonly illustrated with a friction ellipse [2], [3]. A friction ellipse
is shown in Figure 2.7. The friction ellipse illustrates that the maximum force F , defined
as F =

√
F 2
x + F 2

y is bounded. It is important to note that the maximum lateral force
does not have to be identical to the maximum longitudinal force. This is tyre-dependent,
but most tyres have a different friction coefficient in the x- and y-direction.[3]

2.3.3 Rotational dynamics
The wheels are subject to torques from motors, brakes, tyre rolling resistance and the
longitudinal tyre forces. Figure 2.8 show the different torques/forces and their respective
arms. The rotational dynamics of the wheel are given in Equation 2.19.

Iωω̇ = Mm −Mb −RlFx −MR (2.19)

The motor torque can be both positive and negative. As the Revolve NTNU race car is
equipped with electric motors, kinetic energy recovery is achieved by applying a negative
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motor torque. The braking torque only includes the torque from the hydraulic braking
system. The reactionary force of the longitudinal tyre force generates a negative torque.

The compression and stretching of the rubber in the contact patch causes a rolling resis-
tance. This torque is defined as µRFz , where µR is the rolling friction coefficient. This is
a small, tyre dependent coefficient, usually of magnitude 10−2.

2.3.4 Tyre models
Tyre models have been extensively researched throughout the years, not only for racing
purposes but also for safety features for trucks and road cars. There are several models,
varying from simplified static models, semi-empirical models and full transient models. In
this thesis, the brush tyre model, and a simplified semi-empirical model will be used. The
most simple tyre models are defined using only the tyre stiffness and slip[3, Chapter 1].
This is shown in Equation 2.20, and is valid for small slip angles, where the tyre is not
sliding. As the goal is to find a longitudinal tyre model online, only pure longitudinal
models are presented.

Fx = Cxκ (2.20)

2.3.4.1 Brush Model

The brush model is derived by Pacejka in [3, Chapter 3], but a short introduction will be
given here. The brush tyre model uses small brushes, with a stiffness cpx, to model the
behaviour of the rubber as it traverses the contact patch. Figure 2.9 shows the concept,
where the tyre carcass has been drawn as brushes. The tyre creates a pressure distribution
qz on the road surface, under the contact patch. The contact patch has a length of 2a and
the tyre load is given as Fz . When the tyre is driven, the brushes stretch, resulting in a
longitudinal force in the contact patch.

The definition of slip, σx, used in the brush model differs from the definition introduces in
2.3.1.1. They are however compatible using Equation 2.21.

σx =
κ

1 + κ
(2.21)

An expression for the longitudinal force can be derived taking the integral of the deforma-
tion, defined as u = (a − x)σx, where x is the distance along the contact patch, over the
contact patch is taken, shown in Equation 2.22.

Fx = cpx

∫ a

−a
udx = 2cpxa

2κ (2.22)

Comparing 2.22 and 2.20 we can derive the longitudinal stiffness as in Equation 2.23.

Cx = 2cpxa
2 (2.23)
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Figure 2.9: Illustration of the brush tyre model

Further, the maximum longitudinal force can be expressed using a friction coefficient µ
and the pressure distribution qz , originating from the stretching of the brushes, as shown
in Equation 2.24.

Fxmax = µqz (2.24)

The stiffness and friction parameters have now been introduced, and the rest of the deriva-
tion of the brush model is explained in detail in [3, Chapter 3]. The final expression for
the longitudinal tyre force is given in Equation 2.25.

f(Cx, κ) = Cx
κ

1 + κ
(2.25)

Fx(κ,Cx, Fz) = min(µFz, f(Cx, κ)− f2(Cx, κ)

3µFz
+
f3(Cx, κ)

27µ2F 2
z

) (2.26)

The brush model simplifies the effects of sliding, and instead of a drop in longitudinal force
for excessive slip ratios it stays level at µFz . This means that the model is less accurate
for high slip ratios than for example the semi-empirical Magic Formula model.

2.3.4.2 Magic Formula Models

This section is adapted from project thesis

As rubber tyre behaviour is hard to model accurately theoretically, semi-empirical models
have been developed over the years. A commonly used family of tyre models is the Magic
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Figure 2.10: Example of a MF tyre model for longitudinal tyre forces

Formula family [3]. Each version tries to model more of the tyre dynamics including load
sensitivity, camber angle and temperature[11]. The most basic form of a MF is defined in
Equation 2.27 [3]. Figure 2.10 shows an example of the force-slip curve of a MF model.

F (κ) = D · sin (C · arctan (Bκ− E ·Bκ− arctan (Bκ))) (2.27)

The MF models can be used to model several of the forces and moments in a tyre. In this
thesis, it will be used to model the longitudinal tyre forces. The coefficients B, C, D and
E are fitted to tyre data, often from a flat-track testing session. These four coefficients
can be further broken down into sub-equations, with more parameters. This is how more
detailed models are designed. As these models are semi-empirical, the coefficients are not
directly transferable to physical properties. However, each coefficient controls a different
section of the curve, which can be summarized as follows:

• B: Stiffness coefficient

• C: Shape coefficient

• D: Scaling coefficient

• E: Peak coefficient

A commonly used Magic Formula variant is the Magic Formula 5.2. This model includes
load sensitivity and camber effects and is shown in Appendix A. One common drawback
of the Magic Formula family of tyre models, is the high number of parameters, often
causing complex cost function landscapes when used for parameter estimation [4], [13].
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To approximate the effects of tyre load sensitivity, the B, D and E parameters can be
defined as linear or quadratic dependencies of Fz , as shown in Equations 2.28 [1], where
Fz0 is a design parameter to scale the Fz steps. The effects of lateral tyre slip and tyre
inclination angle are neglected in order to reduce the amount of parameters.

fz =
Fz
Fz0

(2.28a)

C = Ca (2.28b)

D = Da +Dbfz (2.28c)

B =
Ba +Bbfz

CD
(2.28d)

E = Ea + Ebfz + Ecf
2
z (2.28e)

2.4 Discrete Kalman Filter
The Kalman filter is a recursive filter, able to estimate the state of linear dynamic sys-
tems based on noisy measurements. With the use of a Kalman filter, both measured and
unmeasured states can be estimated. The filter can be expressed for discrete-time and
continuous-time systems.[5, Chapter 11]

2.4.1 State space
In this thesis, a discrete-time Kalman filter was designed for the estimation problem. The
discrete-time Kalman filter is defined as a discrete linear time-varying state space model,
as shown in Equation 2.29. The A and B matrices model the system behaviour, while
the C matrix maps the measurements y to the system states x. In addition to the mea-
surements and modelled dynamics, process and measurement noise are also accounted for
in the model. The noise is denoted as w and v for the process and measurement noise
respectively.

xk+1 = Ad(k)xk +Bd(k)uk + wk (2.29)
yk = Cd(k)xk + vk

The process noise w is assumed to be a zero-mean Gaussian white noise process, with a
covariance matrixQ. The measurement noise v is also assumed to be zero-mean Gaussian
white noise process, with the covariance given inR. Both matrices are given in Equations
2.30

Q = QT > 0 (2.30a)

R = RT > 0 (2.30b)
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2.4.2 Kalman filter algorithm
The Kalman filter has two design matrices, given in Equations 2.30. In most cases these
are kept constant [5]. The initial conditions of the filter are defined in Equations 2.31.

x̄(0) = x0 (2.31a)

P̄ (0) = P0 (2.31b)

The first step is updating the Kalman gain matrix Kk, state estimate x̂, and error co-
variance P̂ . This is done using the prediction from the previous time-step and the new
measurement. The new measurement is used to correct the prediction. These steps are
given in Equations 2.32.

K(k) = P̄ (k)CT
d (k)[Cd(k)P̄ (k)CT

d (k) +R(k)]−1 (2.32a)

x̂(k) = x̄(k) +K(k)[y(k)−Cd(k)x̄(k)] (2.32b)

P̂ (k) = [I−K(k)Cd(k)]P̄ (k)[I−K(k)Cd(k)]T +K(k)R(k)KT (k) (2.32c)

The Kalman gain, calculated in Equation 2.32a, serves as a weighting matrix for the pre-
diction and the new measurement. By manipulating Equation 2.32b, which updates the
state estimate this can be made clear. Equation 2.33 shows how the Kalman gain works as
a weighting matrix.

x̂(k) = [I−K(k)Cd(k)]x̄(k) +K(k)y(k) (2.33)

As the state estimates and error covariance is updated, the predictions x̄ and P̄ are updated
for the next step. This is shown in Equation 2.34

x̄(k + 1) = Ad(k)x̂(k) +Bd(k)u(k) (2.34a)

P̄ (k + 1) = Ad(k)P̂ (k)AT
d (k) +Q (2.34b)

2.4.3 Observability
The key assumption when designing a Kalman filter is that the system model is observ-
able[5, Chapter 11]. Observability is necessary in order to obtain convergence of the
estimated state x̂ and it allows to recursively reconstruct the state with the measurement
vector y and input vector u from 2.29.

Observability can be interpreted as a measure of how well the internal states of a system
can be inferred with the knowledge available from external outputs u and y. This means
that the behaviour of the system can be determined using only the information provided
by the external outputs of the system. If a system is not observable, the value of some
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or all states cannot be determined by the controller, and it will be unable to meet the
requirements set for it.[9]

For linear time-invariant systems, with state and output matrices A and H , the system is
observable if the observability matrix is of full column rank. The observability matrix is
defined in 2.35.

O =
[
CT | ATCT | . . . | (AT )n−1CT

]
(2.35)

For time-varying systems, there are no simple checks available for the observability of
the system. There have been developed techniques to determine the observability of such
systems, like uniform observability [9] or the use of an instantaneous observability matrix
[19].

2.4.4 Euler discretisation
As finding the exact discretisation of a system involves complex calculations, the Euler
method is used. The Euler method approximates the discretised system, using the equa-
tions given in Equation 2.36, whereA andB are the continuous system matrices and ∆T
is the discrete time-step. [7].

Ad = I + ∆TA (2.36a)

Bd = ∆TB (2.36b)

2.5 System identification
System identification uses a reference model and available measurements to identify the
properties of a system or plant. There are various methods that can be used to achieve this.
For this thesis, an online parameter estimation scheme is developed, that identifies tyre
model parameters, θ using a cost function and minimization algorithm. [6]

2.5.1 Gradient method
The gradient method, or ”Method of steepest descent” is a method used to solve the un-
constrained minimization problem, described in Equation 2.37. The method is one of the
most basic solvers and is an iterative solver, computing the gradient of the cost function J
at each time step. [6]

min J(θ) (2.37)
s.t θ ∈ Rn

The gradient method starts with an initial estimate, θ0. The gradient is then used to tra-
verse the cost function landscape to find the minimum solution θ∗. By using the negative
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gradient, the steps are taken in the steepest direction, towards a local minimum using linear
search dk where

dk = −λ∇J(θk) (2.38)

and

∇J(θ) =


∂J
∂θ1
∂J
∂θ2
...
∂J
∂θn

 (2.39)

Here, λ ∈ R is the step size of the method, which is a design parameter. The step size along
the gradient can additionally be scaled with another design parameter Γ. Γ is a positive
definite, diagonal matrix, and is defined as Γ = Γ1ΓT1 , where Γ1 is a n × n non-singular
matrix. Γ allows for a different step size for each of the n parameters in θ. Adding the
scaling factor gives us the final update law for the gradient method, defined in Equation
2.40 [6][20].

θk+1 = θk − λΓ∇J(θk) (2.40)

2.5.2 Convergence
The gradient method requires the cost function to be a convex function for a global mini-
mum to be found. As the method traverses down the steepest direction at each time step, it
has no opportunity to climb smaller hills in the landscape to approach a global minimum.
This is illustrated in Figure 2.11a. With tuning of initial estimates, illustrated in Figure
2.11b or running several solvers in parallel and choosing the solver with the lowest value
for J , a more optimal solution can be found, but not guaranteed.[20]

(a) Gradient method caught in a
local minimum

(b) Initial estimate can guide the
method to a local (red) or global
(green) minimum

(c) Big step-sizes can prevent
convergence to the minimum

The design parameters for the step size of the method also affect the convergence. Figure
2.11c illustrates how the step size can hinder convergence by stepping hovering over the
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optimal solution. A smaller step size can increase accuracy, but also decrease how fast the
solution can converge. For very steep gradients, a large step size can even step over local
or global minimums. [20].

The estimation scheme in this thesis has a cost function that is time-varying. In order for
the solver to converge to a solution, there has to be a θk that minimises the cost function
J(θ, t) for any time t. If there is no such θk, the method will not converge, and the
parameter estimation will not succeed.

2.5.3 Excitation
In order for a system identification scheme to successfully identify the reference model
parameters, it needs to acquire information about the behaviour of the plant. If not enough
information of the behaviour of the plant is fed to the scheme, it can converge to parameter
values that do not fit the entire operating range of the plant.[6] It is therefore important to
provide sufficient information to the estimation scheme, for example through the use of
specific experiments.

2.6 Error metrics
The accuracy of the estimates can be analyzed using error metrics. For this thesis, two
error metrics are used.

2.6.1 Root-mean-square error
The root-mean-square-error is useful to identify is an estimator has big outliers. As the
error is squared before division, big outliers are weighted heavier than small errors. The
error metric is defined in Equation 2.41.

RMSE =

√
ΣTt=1(ŷt − yt)2

T
(2.41)

2.6.2 Mean absolute error
The mean absolute error is defined in Equation 2.42. The main difference between the
MAE and RMSE is that the MAE weights all errors equally, meaning that outliers are not
dominating the final outcome.

MAE =
ΣTt=1|ŷt − yt|

T
(2.42)
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Chapter 3
Kalman Filter Design

As there are no sensors mounted on the racecar that can measure the forces acting on the
road surface, an estimator is required. With the use of the vehicle models described in
Sections 2.2.3 and 2.2.4 and the rotational dynamics of tyres presented in Section 2.3.3, a
discrete-time Kalman filter was designed. The Kalman filter is the first step of the system
designed in this thesis. Based on equations of motion, measurements from the INS and
motor encoders and states estimated in the initial state estimation, an estimate of the tyre
forces is obtained.

Figure 3.1: The Kalman filter is the second step in the tyre parameter estimation scheme

3.1 Discrete-time Kalman Filter
The discrete-time Kalman filter designed for the estimation of tyre forces uses measure-
ments from the on-board INS and the wheel encoders located in the motors. Measurements
for longitudinal and lateral acceleration and yaw rate are gathered from the INS, while
motor RPM data is gathered from the encoders. The RPM measurements are converted to
rotational velocity in rad/s using ωi = RPMi

30π
GearRatio . The states and measurement
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vectors are defined in Equation 3.1.

x =
[
FxFL FxFR FxRL FxRR Fyf Fyr ωFL ωFR ωRL ωRR r

]T
(3.1)

y =
[
(m · ax + Fdrag) (m · ay) ωFL ωFR ωRL ωRR r

]T
Besides the tyre forces, the remaining states are measured directly and have dynamics. The
tyre forces are not measures, and no equations describing their dynamics exist. Instead, the
equations of motion from Chapter 2 are used to map the INS measurements to the states.
It is important to note that the lateral forces on each axle have been combined to one force.
This is discussed more in detail in Section 3.2.

3.1.1 State Space model
The above described system can be implemented as a linear time-varying system, on the
state space form described in Section 2.4, Equation 2.29.

As seen in Equation 3.1, the INS measurements are multiplied with the vehicle mass to
get the overall equations on the form of Newtons second law

∑
Fx = m · ax. As the

drag experienced by the vehicle is not part of the states, this force is subtracted from the
measurement of ax. The drag force is estimated by the TV state estimation module.

3.1.1.1 Dynamics

The system matrixA is presented in Equation 3.2 and input matrixB in Equation 3.3. As
mentioned, the dynamics for the tyre forces are unknown, and set to zero. For the rotational
dynamics of the tyre, Equation 2.19 is used for each individual tyre. The longitudinal tyre
forces have an arm of Rl, and are included inA. The motor- and brake torque and rolling
resistance are included in B. The yaw dynamics are included in the final row of A, using
a combination of Equation 2.14 and Equation 2.8.

A =

011×6
−RLFL
Iω

0 0 0 0 0

0
−RLFR
Iω

0 0 0 0

0 0
−RLRL
Iω

0 0 0 05×5

0 0 0
−RLRR
Iω

0 0
−t cos δL+lf sin δL

Iz

t cos δR+lf sin δR
Iz

−t
Iz

t
Iz

lf cos
δL+δR

2

Iz
−lr
Iz


(3.2)

B =
[
01×6 BωFL BωFR BωRL BωRR 0

]T
(3.3a)
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Bωi =
(τmi − τbi −RliFziµR)

Iω
(3.3b)

The input vector u is a constant in the state space, defined in Equation 3.4.

u = 1 (3.4)

3.1.1.2 Measurements

The output matrix C, mapping measurements to the states is given in Equation 3.5. The
first row includes the longitudinal equation of motion, from Equation 2.10. Row two
contains the lateral equations of motion, from Equation 2.12. The remaining states are
measured directly, meaning that their C components are equal to 1.

C =

cos δL cos δR 1 1 − sin δL+δR
2 0 0 0 0 0 0

sin δL sin δR 0 0 cos δL+δR2 1 0 0 0 0 0
05×6 I5×5

 (3.5)

3.2 Observability
As the system in not a LTI, the usual approach to checking the observability of a system
through the observability matrix is not feasible. Looking at the equations of motion used
for the state space model, it can be seen that the lateral forces on the same axle have
the same arm and sign. For readability, the Fy terms for longitudinal, lateral and yaw
dynamics are shown in Equations 3.6, 3.7 and 3.8 respectively.

− Fy ·


sin δl
sin δr

0
0

 (3.6) Fy ·


cos δl
cos δr

1
1

 (3.7)

Fy


(lf cos δL +

tf
2 sin δL)

(lf cos δR − tf
2 sin δR)

−lr
−lr

 (3.8)

The rear lateral tyre forces always have the same arm and direction. This means that there
is no way for the Kalman filter to determine the individual magnitude of each. For the front
tyres, the arm and magnitude are affected by the wheel angle δ. As long as the two wheel
angles are sufficiently different, the front lateral forces could be observable. The racecar
is equipped with an Ackermann steering geometry. This means that the two wheels do
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not turn equal amounts when the steering wheel is turned. The wheel angles, for the entire
steering wheel range is shown in Figure 3.2. For steering angles around−30 to 30 degrees,
the wheel angles are identical. Beyond this, they diverge.
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Figure 3.2: Wheel angles for steering wheel range

The steering wheel input from the Formula Student Germany competition in 2019 is shown
in Figure 3.3. It shows that the steering input is mostly between −60 and 60, with some
occasional spikes that go higher. Comparing the two wheel angles for this range shows
that the difference in wheel angle is quite small.

Figure 3.3: Wheel angles for steering wheel range
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In order to improve the observability of the system, the lateral tyre forces on each axle are
combined, as in Equation 3.9. The average wheel angle is used to model the lateral forces
using the single track vehicle model described in Section 2.2.3. With the lateral forces
combined for each axle, the singularity is primarily limited to the situation where the
vehicle travels in a straight line. In this case, the front and rear axle contribute equally to
the lateral acceleration as cos (δ) will be 1, and against each other in the yaw acceleration
as the front and rear wheelbase is identical. This will make the lateral force estimates
unreliable, but since the longitudinal forces are the priority this will not be improved.

Fyf = FyFL + FyFR (3.9)
Fyr = FyRL + FyRR (3.10)

3.3 Co-variance matrices
The Kalman filter uses the co-variance matrices for the process noise and measurement
noise in the update law. These are design parameters that can be seen as weighting param-
eters for the model and measurements. For example, a measurement with measurement
noise with a high variance should be trusted less than the prediction with a low variance
process noise. The variance of the measurement noise can be found from experimental
data, gathered with the sensor in a known static position.

Figure 3.4: Sensor measurements and matching normal distribution
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Measurement Variance
ax 3.625 · 10−4

ay 2.398 · 10−4

r 3.463 · 10−7

Table 3.1: Sensor measurement variance

Figure 3.4 shows a histogram of the INS measurements with the racecar standing still.
On top of the histograms, a normal distribution with the same variance is presented. The
variance values are given in Table 3.1.

The rotational velocity of the wheels are measured with a digital sensor, meaning that an
experimental approach to identifying the noise characteristics is unfeasible. Instead, the
variance values need to be tuned experimentally on the racecar.

Using Matlab, the full covariance matrix for the data-set is found. The matrix R is given
below, in Equation 3.11, where Rωi has to be found experimentally. The process noise is
included in the Kalman equations via the Q matrix. This is a design variable that models
the disturbances in the model. The filter used in this thesis has no model for the tyre
forces, meaning that the model cannot be trusted. The values for the tyre forces in Q
should therefor be large. The tyre rotational velocity and vehicle yaw rate dynamics are
however modeled, therefor the corresponding values forQ can be small.

R =



3.625 · 10−4 1.282 · 10−5 0 0 0 0 2.046 · 10−7

1.281 · 10−5 2.398 · 10−4 0 0 0 0 0
0 0 RωFL 0 0 0 0
0 0 0 RωFR 0 0 0
0 0 0 0 RωRL 0 0
0 0 0 0 0 RωRR 0

2.397 · 10−7 2.046 · 10−7 0 0 0 0 3.463 · 10−7


(3.11)
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Chapter 4
Online Parameter Estimation

As different racetracks have different road surface properties, an online estimation scheme
has been designed to update the tyre parameters during operation. This is achieved us-
ing the gradient descent method, using a simplified tyre model as reference model. The
estimated tyre forces from the Kalman filter in Chapter 3 are used to identify the tyre pa-
rameters. This chapter will cover the design of the estimation scheme, and how data is
selected for use in the update law.

Figure 4.1: The tyre parameter estimator uses the output from the Kalman filter

4.1 Model excitation

As the race car will be driving in different conditions, like hard braking, cornering and
acceleration, the model will experience various operating conditions. As an iterative solver
is used to solve the optimisation problem, it is important to ensure that data from the entire
operating range is used to update θ.
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Figure 4.2: Tyre loads for the front left and rear right tyre

4.1.1 Operating conditions

The tyre model is dependent on two vehicle states, namely the tyre load and slip ratio. The
slip ratio range used by race cars is ±0.15, while the tyre load varies based on the vehicle
type. To determine the range of Fz Revolve NTNU’s race cars experience, data gathered
in earlier seasons was analysed.

The loads on the front left and rear right tyre of the 2019 race car is shown in Figure 4.2.
The tyres experience loads between 300N and 1300N , with some rare peaks going as high
as 1600N .

4.1.2 Online data selection

To ensure the parameters are not over-fitted to the last conditions the race car has experi-
enced, θ is updated using an average gradient for a set of datapoints. The goal is to include
datapoints from the entirety of the operational range of the race car. This is done by creat-
ing a grid, with Fz on the y-axis, and κ on the x-axis. Whenever a new state is estimated
four new datapoints are available, one for each tyre. These are then inserted into the corre-
sponding bin. Each bin corresponds to an Fz and κ range, and can hold up to 2 datapoints.
If a bin is full, the oldest data-point is discarded. Using Figure 4.2, we can see that the
tyres is most often loaded with a force in the range of 300 − 500 N or 1000 − 1200 N.
This, combined with general knowledge of slick racing tyres reaching peak performance
in the range 0.04− 0.1, was used to design the grid, shown in Figure 4.3.

As each datapoint contains a slip ratio, longitudinal tyre force and a tyre load, the amount
of floats needing to be processed by the micro-controller is given in Equation 4.1.
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Figure 4.3: Grid showing the chosen borders. Each slot can hold 2 datapoints
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Nfloats = 3 ·Nbins ·Npointsperbin (4.1)

The final grid design includes 180 bins, with two datapoints per bin. This means that the
maximum number of floats needing to be handled by the micro-controller per iteration is
1080. In most situation, the true amount of computation required is a lot less, as some
of the extreme bins, especially for high tyre loads, are not filled during regular driving
condition. These bins exist in order to reduce implementation complexity.

4.2 Cost function

The online parameter estimation scheme aims to minimise the value of a cost function,
which is a function of the estimated tyre functions and θ. Calculating the gradient of the
cost function allows for the use of the steepest descent method to find a local minimum.
The cost function used is given in Equation 4.2. F̂x, Fz and κ are obtained from the
Kalman Filter and the state estimation module of the TV system. f(θ, Fz, κ) represents
the implemented tyre models, described in Sections 2.3.4.1 and 2.3.4.2, where θ are the
model coefficients.

Jk(θk, Fz, κ, F̂x) = (F̂x − f(θk, Fz, κ))2 (4.2)

The gradient is then computed by differentiating J with respect to θ, as shown in Equation
4.3.

∇Jk(θk, Fz, κ, F̂x) =


∂Jk(θk,Fz,κ,F̂x)

∂θ1
∂Jk(θk,Fz,κ,F̂x)

∂θ2
...

∂Jk(θk,Fz,κ,F̂x)
∂θn


T

(4.3)

4.2.1 Tyre model
Two tyre models are tested for the parameter estimation. The brush model is the simplest,
only using four parameters while the magic formula model has eight. Both tyre models
are on the form used in Equation 4.2, referred to as f(θ, Fz, κ)). This gives two different
θs, one for each model.

4.2.1.1 Brush tyre model

The brush tyre model, described in Section 2.3.4.1 is dependent on two parameters that are
unknown and tyre dependent. These are the friction coefficient and the longitudinal tyre
stiffness. These are to be estimated online. In order to improve the model, both parameters
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are expanded to be dependent on tyre load. This is done in a similar manner as other semi-
empirical tyre models, and is shown in Equation 4.4, where Fz0 is a design parameter, set
to 800N

fz =
Fz − Fz0
Fz0

(4.4)

Cx = Cxa + Cxb · fz (4.5)
µ = µa + µb · fz (4.6)

This gives the final set of parameters for the brush model, denoted as θ for the estimation
problem in Equation 4.7.

θbrush =
[
Cxa Cxb µa µb

]T
(4.7)

4.2.1.2 Magic Formula tyre model

The eight parameters of the magic formula are divided into four main parameters. Ba and
Bb mode the load sensitive tyre stiffness, C models the overall curve shape, Da and Db

model the load sensitive friction coefficient, just like the the brush model. The parameters
Ea, Eb andEc model the tyre drop-off, and is the only second order polynomial in the two
tyre models. The θ used for the magic formula model estimator is given in Equation 4.8.

θmf =
[
Ba Bb C Da Db Ea Eb Ec

]T
(4.8)

4.2.2 Normalisation
In order to get all parameters on the same order of magnitude, they are scaled before being
used in the tyre model. This is to weight all parameters equally in the update law, and
to prevent extreme steep gradients in single dimensions. Tables 4.1a and 4.1b show the
scaling for each parameter.

Parameter Scaling factor
Cxa 104

Cxb 105

µa 1
µb 1

(a) Brush model scaling factors

Parameter Scaling factor
Ba 102

Bb 101

C 1
Da 1
Db 1
Ea 10−1

Eb 10−1

Ec 10−2

(b) Magic Formula scaling factors

Table 4.1: Scaling factors for the normalisation of both model’s parameters
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4.3 Estimation update law
The data-set collected by the online data selection algorithm is then used to define the up-
date law for the estimation scheme. The gradient, described in Section 4.1.2 is calculated
for each valid datapoint in the bins. This results in a vector of gradients. The average of
each column in the gradient vector is used to update θ̂. The full update law, for a data-set
containing M datapoints, and a θ with N parameters is given in Equations 4.9 and 4.10,
where Γ is a design parameter that control the step size in each dimension.

Jk(θ̂k,Fzk ,κk, F̂xk) =


∇J1(θ̂k, Fz1 , κ1, F̂x1

)

∇J2(θ̂k, Fz2 , κ2, F̂x2
)

...
∇JM (θ̂k, FzM , κM ,

ˆFxM )

 =


∇J1θ1 . . . ∇J1θN
∇J2θ1 . . . ∇J2θN

...
∇JMθ1

. . . ∇JMθN


(4.9)

Javgk =
1

M

[
M∑
i=1

∇Jiθ1
M∑
i=1

∇Jiθ2 . . .
M∑
i=1

∇JiθN

]

θk+1 = θk − ΓJavgk (4.10)

4.3.1 Stability
The parameters are updated every time step, using the latest data-set. The design parameter
Γ is used to determine the step size for each dimension along the final gradient. Tuning Γ
is important for the rate of convergence, and for stability. The gradient descent method is
only guaranteed to converge to a global minimum if the optimisation problem is linear and
convex. In this case however, the problem is neither linear or convex. The complexity of
the entire system makes a Lyapunov analysis of the estimation scheme infeasible. Instead,
careful tuning of the initial estimate and step size Γ through experiments is required.
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Chapter 5
Implementation

The kalman filter and tyre estimator have been implmeneted in the TV Simulink model.
Both use input from the sensor bus and the initial state estimation. As the target hardware
has a 32-bit architecture, as much as possible is implemented using single floating points.
The only part of the system where doubles are used is the Kalman filter, as the block inputs
require this.

5.1 Kalman filter

For each time-step, the system matrices have to be calculated. The various model inputs
are gathered from the state estimation output and sensor readings to assemble the system
matrices. As we are using a discrete-time Kalman filter, the system matrices are discretised
using Euler discretisation, described in Section 2.4.4.

The system matrices are used as input to the Kalman Filter Simulink Block [15]. As the
filter is discrete, rate transition blocks [17] are used to ensure the data is processed at the
same rate. The state estimates output from the Kalman Filter are then broken down into
Fx, Fy and vectors before being used by the Tyre Estimator. The subsystem is shown in
Figure 5.1.

5.2 Online parameter estimation

The online parameter estimator uses the Kalman filter states and tyre load and slip ratio
from the initial state estimation module. Both the brush and magic formula models are
implemented in parallel, and use the same data-set for their iteration.
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Figure 5.1: Kalman filter subsystem in Matlab Simulink

5.2.1 Data selection algorithm
For each time-step, the Kalman filter states and tyre load and slip ratio are evaluated.
Datapoints outside the limits of the grid are discarded. The correct bin index is found
using the tyre load and slip ratio. The oldest point is then replaced with the new datapoint.
Each datapoint consists of an Fx, Fz and a κ. All empty bins are set to zero, and as the
tyre load bins start at 200N , this can be used to find the data-set size.

5.2.2 Gradient
The gradient is found using the Matlab Symbolic Toolbox[21]. The tyre models are im-
plemented so that the input can be vectors with several datapoints. Using symbolic ex-
pressions and the tyre models, the cost function is defined. A function for calculating
the gradient for a set of datapoints is then code generated, with the use of the Symbolic
Toolbox.

5.2.3 Update law
The update law is implemented in a Matlab Function block, where θ is a persistent variable.
For each time-step, the data-set size is checked, and once over the threshold the update law
is evaluated. The gradient is calculated for all datapoints in the data-set, and the average
gradient for each parameter is used to update θ.
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Chapter 6
Simulation environment

6.1 Simulation environment
As the racecar is not finished before the middle of the 2021 summer, the results in this
thesis are gathered in a simulation environment. Through the Formula Student program of
IPG Automotive, access to their simulation environment IPG Carmaker was granted. IPG
Carmaker allows for custom vehicle models and tyre models, and can run the system even
with a human driver behind the wheel and running the control systems and estimators on
the designated hardware.

6.1.1 Vehicle Model
A simplified vehicle model, based on the 2019 Revolve NTNU racecar is implemented in
IPG Carmaker. The model includes a powertrain matching the 4WD electric powertrain of
the real-life car, a fully modelled suspension, aerodynamics and a tyre model. This is to get
a realistic as possible result for our simulations. There are however some limitations to the
model that need to be considered. The mathematical models implemented in the simulation
environment are highly simplified, meaning that the result are expected to be a lot better in
the simulation than in the real world. Furthermore, the driver implementation is a limiting
factor in pushing the vehicle limits. The complexity of the simulation environment also
means that it can be seen as a black box, with limited knowledge of the internal workings.
Results therefor need to be verified in real-life, through extensive track testing.

6.1.2 Tyres
The racecar in the simulation environment is equipped with a tyremodel provided by the
tyre manufacturer of the Continental Formula Student tyres. These tyres have been used
by Revolve NTNU since 2017, and we have adjusted the model using data gathered during
the testing seasons. As we have no tyremodel for the new Hoosier tyres, the system is
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simulated and tested on a vehicle with the Continental model. The tyremodel for the
Hoosier tyres that is estimated during the summer of 2021 can then be imported into the
simulation environment for the next seasons, in addition to being used online for traction
estimation.

6.1.3 Data acquisition
IPG Carmaker gives access to all vehicle stats during a simulation. These represent the
ground truth of the state value. In addition to logging the data for comparison with the
estimator, it is also used as input to the system during simulation in the form of sensor
measurements. To increase the realism of the simulation environment, Gaussian noise is
added to all data before it is used by the TV system. The variance of the noise is determined
like described in Section 3.3, based on data gathered in previous racing seasons.

6.2 Hardware-in-the-loop testing

As the control systems and state estimators are designed for use on a racecar, they need
to be able to run on the on-board VCU. In order to eliminate issues with the software-
hardware compatibility, HIL testing has been performed. The Matlab Simulink diagram is
used to generate embedded C code, that can be executed on the racecar hardware.

6.2.1 Hardware
The Vehicle Control Unit is a in-house developed PCB, featuring a Xilinx’s Zynq-7000
series System On Chip [14]. It includes a dual-core micro-controller on which the estima-
tor will run. The TV systems, including the tyre parameter estimator run on the secondary
core, while the vehicles state machine, data acquisition and safety monitoring tasks are
performed on the primary core. The restriction of one core is one of the reasons that the
optimisation problem in the online tyre parameter estimator is not running asynchronous
of the rest of the TV systems. The VCU is designed by Sivaranjith Sivarasa from the
Embedded Electronics group in Revolve NTNU and is shown in Figure 6.1.

6.2.2 Driver-in-the-loop testing
As the simulation-driver targets to operate the vehicle optimally, no information will be
available to the estimation scheme of tyre behaviour outside the optimal range. In addition
to this, the simulation driver also behaves very different from a human driver. Therefor
Driver-in-the-loop testing has been used to gather more accurate driving data. Using a
commercially available steering wheel and pedals, a human driver was given control of
the vehicle in the IPG Carmaker simulation environment.

One downside of the use of a human driver is the inconsistency. Even though the driver got
a few hours of practice driving, the runs were not as consistent as the simulation driver.
This meant that more time had to be spent on the simulations to gather representative
results.
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Figure 6.1: Render of the 2021 Vehicle Control Unit

6.2.3 Communication
All PCBs on the racecar are connected on a CAN network. This way the Sensor broadcast-
ing systems can relay the sensor measurements to the VCU. In addition to communication
between systems on the vehicle, the CAN network is also broadcast live to the crew mon-
itoring and tuning the vehicle in real-time. Through this wireless link, the TV systems
and state estimators can be tuned without having to reprogram the micro-controllers. For
every iteration of the state estimator, the results are broadcast allowing for efficient tuning
on track. During HIL testing, the flexibility of scoping signals in Simulink is lost, meaning
all data that is interesting need to be extracted over the CAN bus.

The testing setup is shown in Figure 6.2, including the steering wheel, VCU and two
computers. One for running the IPG Carmaker simulations and one for communication
with the CAN bus that the VCU outputs the data too.

6.3 Track layout
Different track layouts, using elements as described in the Formula Student rules[16], were
used for the simulations in this thesis. In addition to a simple straight track, a skidpad and
a full circuit were used. A skidpad track is defined as a figure of eight, with a center-line
radius of 18.25m. A skidpad procedure first takes two turns in the right circle, and then
two turns in the left circle.

The full circuit layout can be seen on Figure 6.3. It features a lot of tight curves, two
hard braking zones at the end of the straights, and corners with a variety of radii. It is
worth noting that the track is driven in a clockwise direction, meaning that there will be
an overweight of right corners. This will affect the magnitude of the generated tyre forces
on the left and right side of the racecar due to the affects of load transfer in cornering,
described in Section 2.2.1.
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Figure 6.2: Testing setup, with hardware and driver controls

Figure 6.3: Simulation track layout
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Chapter 7
Results and Discussion - Kalman
Filter

The Kalman Filter designed in Chapter 3 is the first step of the tyre-road friction estima-
tion scheme. The longitudinal tyre forces estimated by the filter will be the basis of the
tyre estimation. Therefor, the estimate of the longitudinal tyre force is the most crucial to
get accurate. Results for the lateral forces will also be presented in this section. To judge
the performance of the Kalman filter, three cases will be studied: straight line accelera-
tion, steady state cornering and a full circuit. Straight line acceleration consists of several
acceleration phases up to top speed, followed by a hard braking. Steady state cornering is
performed on a skidpad track, made up of two 360 deg turns, one to the left, and one to
the right. The full circuit is described in Section 6.3.

7.1 Tuning
The covariance matrices were tuned experimentally using the estimated covariance pre-
sented in Section 3.3 as a starting point for R. The RPM measurement noise was tuned
experimentally. All R values should be recalculated using sensor readings once the 2021
race car is ready for testing. The finalR matrix used for the simulations is given in Equa-
tion 7.1. The final Q matrix is presented in Equation 7.2. As there are no dynamics
modeled for the tyre forces, the respective Q values were set high. The rotational dy-
namics for the wheel and yaw dynamics are modeled, so these values were set low. The
final values were achieved by running several simulations and looking at transient and
steady-state accuracy.
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R =

3.83 · 10−4 0 0 0 0 0 0
0 1.89 · 10−4 0 0 0 0 0
0 0 5 · 10−8 0 0 0 0
0 0 0 5 · 10−8 0 0 0
0 0 0 0 5 · 10−8 0 0
0 0 0 0 0 5 · 10−8 0
0 0 0 0 0 0 3.23 · 10−7


(7.1)

Q = Diagonal(
[
1001×4 350 350 2 · 10−51×4 1 · 10−4

]
) (7.2)

7.2 Straight line acceleration
The straight line study is performed on a straight piece of road. During this experiment,
there will be close to zero lateral forces on the vehicle, meaning that only the longitudinal
dynamics of the vehicle model will contribute significantly to the states. The velocity pro-
file for the described experiment is shown in Figure 7.1, which contains three acceleration
zones, and three braking zones.
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Figure 7.1: Velocity profile for straight line acceleration

7.2.1 Longitudinal forces
The actual longitudinal tyre forces for all four corners, and the Kalman Filter estimates
are shown in Figure 7.2. The estimated longitudinal forces follow the true values closely.
This is true for steady state acceleration while the transient between the acceleration and
braking zones appears to have a small overshoot. It can be seen that the rear tyres have a
small dip at the end of the braking zones, most likely caused by the simplified tyre load
estimator that does not include transient behaviour.

The error metrics for the experiment are shown in Table 7.1. The results are very similar
for tyres on the same axle, while the rear axle has a slightly higher error compared to
the front axle. Figure 7.3 show the estimation error for the front left and rear right tyre.
Both a stationary deviation is visible, as well as an increased error during braking and the
transient dynamics. The stationary deviation is over twice as large for the rear tyre during
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Figure 7.2: Actual vs. estimated longitudinal tyre forces
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State RMSE MAE
Fx FL 21.7294 14.6695
Fx FR 21.8306 14.971
Fx RL 25.9837 22.2783
Fx RR 25.8237 22.1058
Total Fx 23.9309 18.5062

Table 7.1: Fx error metrics for each corner. [N]
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Figure 7.3: Estimation error of Fx for FL/RR diagonal - Straight line acceleration

acceleration, while the front error during braking is almost thrice that of the rear. During
acceleration, the rear tyres have a higher tyre load, due to load transfer, while the front
tyres experience a higher tyre load during braking. This might explain the different is
absolute error in the two scenarios. The deviation around t = 2.75s occurs with a similar
Fx of around 500N . As the resistance from rolling and aerodynamic drag are estimated
online, these are not perfect, meaning that the sum of forces will not be accurate. This
explains the small deviation for all tyres.

As the estimation error is relatively small, the straight line acceleration should be a feasible
experiment for identification of parameters for a longitudinal tyre model. As there are no
cornering forces involved, only a pure longitudinal tyre model should be considered.
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Figure 7.4: Actual vs. estimated lateral tyre forces - Straight line acceleration

7.2.2 Lateral forces
As this experiment does not involve any cornering, the actual lateral tyre forces are very
small. Figure 7.4 shows the estimated lateral forces together with the actual forces for
each axle. Even though the main dynamics are captured by the estimator, there are a lot
of spikes with high amplitude that ruin the accuracy. This will be more closely discussed
in Section 7.3.1 as the lateral dynamics are more dominant in the steady-state cornering
experiment.

7.3 Steady state cornering
Steady state cornering is tested using a figure eight track. Each circle is driven twice, first
two to the right, followed by two to the left. The lateral and rotational dynamics of the
race car will be the dominant dynamics in this experiment, while the longitudinal dynamics
contribute little.

7.3.1 Lateral forces
The actual and estimated lateral forces for the front and rear axle are shown in Figure
7.5. The estimated forces contain a lot of spikes, with high amplitudes. Even though
the estimated force follows the main dynamics of the actual force, the spikes cause the
estimated force to be unreliable.
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State RMSE MAE
Fy front 349.2626 320.6796
Fy rear 366.8641 334.7578
Fy combined 277.4829 85.9255
Total Fy 358.1716 327.7187

Table 7.2: Fy error metrics. [N]

The error metrics for the lateral tyre forces are presented in Table 7.2. The large difference
between the RMSE and MAE metrics, especially when combining the two axles, confirms
that the estimate contains big overshoots. As the lateral forces are estimated per axle, in-
stead of per tyre, a direct comparison with the longitudinal estimates in Table 7.1 is not
possible, nonetheless it is safe to say that the lateral estimates are worse than the longitu-
dinal estimates, and are unsuitable for identification of lateral tyre parameters before this
has been improved.
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Figure 7.5: Actual vs. estimated lateral tyre forces - Steady state cornering

It is not trivial to pinpoint the cause of the poor estimates. The simplification of combining
the two wheels on each axle will cause some of the estimation error, however the main
contribution is thought to be the observability of the system. As the lateral tyre forces
act with the same sign and arm on the available measurements, and the wheel angles are
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Figure 7.6: Total lateral force and estimation error - Steady state cornering

similar per axle, a singularity can occur causing a loss of observability. It can be seen from
the graphs in Figure 7.5 that both the front and rear estimates have big spikes at the same
time. This might indicate that the Kalman Filter is struggling observing the states.

The stationary deviation for the front and rear axle have different signs. This also indicates
issues with the observability. The results shown in Figure 7.6 present the actual and esti-
mated total lateral force, as well as the total error. It can be seen that the total lateral force
is much more accurate than the two individual forces. Ignoring the spikes, we see that the
stationary deviation is reduced significantly, indicating that the filter is unable to correctly
distribute the lateral force between the two axles.

7.3.2 Longitudinal forces
As the lateral dynamics dominate the race car behaviour during the steady-state cornering,
the longitudinal forces small. Figure 7.7 shows the estimated and actual forces during the
experiment. The estimated values are accurate for most of the experiment. It can however
be seen that the spikes found in the lateral forces also have propagated to the longitudinal
estimates. The lateral estimates had big spikes in the time-frame between t = 8s and
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Figure 7.7: Estimated vs. actual longitudinal forces - Steady state cornering

t = 12s. These spikes can also be seen in the longitudinal estimates, although they are
less extreme.
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7.4 Full Circuit

The full circuit experiment tests the combination of all dynamics of the Kalman Filter.
During the lap, the race car experiences various corner types, straight, trail braking and
straight braking zones, meaning all dynamics will play an important role for the state
estimation. The velocity profile of the circuit is shown in Figure 7.8. The experiment was
carried out over several laps, where the second to last lap is used for the results in this
section. The track layout is as described in 6.3.
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Figure 7.8: Velocity profile for the full circuit

7.4.1 Longitudinal forces

The estimated longitudinal forces for each tyre are shown in Figure 7.9. The results are
very similar to the ones presented in Section 7.2.1. The estimated forces follow the true
value closely. The error metrics are presented in Table 7.3. There is a small increase in
both metrics compared to the straight line acceleration results. Looking at the rear tyres,
it can be seen that the tyre behaviour during braking is less smooth. This is due to the
load transfer unloading the rear tyres during braking. As braking on a full circuit usually
happens into a corner, the tyre capacity is lower than in a straight line due to the friction
circle. The slip angle from turning into the corner generates a lateral tyre force that uses
tyre capacity. There are also some small spikes visible on the rear tyres at the end of each
braking zone.
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Figure 7.9: Actual vs. estimated longitudinal tyre forces
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State RMSE MAE
Fx FL 25.2721 15.5521
Fx FR 22.777 13.7675
Fx RL 26.7065 17.8886
Fx RR 27.6674 14.6271
Total Fx 25.6719 15.4588

Table 7.3: Fx error metrics for each corner. [N]

7.4.2 Lateral forces
The estimated lateral forces are presented in Figure 7.10. A visual comparison with the
results from the steady state cornering experiment show an improvement in the lateral
estimates. The amount of spikes has been reduced significantly. The full circuit experiment
has all dynamics present, meaning that there is more information available to the filter. In
addition to the yaw and lateral acceleration, the longitudinal acceleration can now also be
used to estimate the lateral tyre forces. There are still some spikes present, with extreme
high amplitudes.
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Figure 7.10: Actual vs. estimated lateral tyre forces - Full circuit

The error metrics for the lateral tyre forces are presented in Table 7.4. A comparison
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State RMSE MAE
Fy front 252.748 222.7022
Fy rear 264.8218 233.3897
Fy combined 128.5651 39.201
Total Fy 258.8553 228.046

Table 7.4: Fy error metrics. [N]
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Figure 7.11: Total lateral force and estimation error - Full circuit

with Table 7.2 confirms that the lateral estimates have improved. The estimation error
for the front and rear axle follow the same pattern as during the steady state cornering,
where the front and rear are under- and overestimated respectively. Figure 7.11 shows the
combined lateral force from both axles, and the estimation error. Just like in the steady
state cornering experiment, the total lateral force follows the true value closely, besides the
spikes occurring at certain intervals. The estimated lateral forces can not be used directly
for tyre model estimation, as the spikes will have to be handled first.
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Chapter 8
Results and Discussion - Parameter
estimation

The results of the online tyre parameter estimation is presented in this chapter. This in-
cludes the results from the data-selection algorithm and the parameter estimation for both
the brush tyre model and the magic formula tyre model. The parameter estimation will
be evaluated for the accuracy of the tyre-road friction estimate, and the overall tyre model
accuracy. First, the results of a straight line acceleration experiment will be presented, as
the pure longitudinal nature of this experiment makes it the most suitable for the estima-
tion of parameters for a pure longitudinal tyre model. The last sections of this chapter will
present and discuss the results of a full circuit experiment, where an increase in friction is
simulated, using the straight line acceleration results as an initial guess. This simulates the
events of a competition, and can give insight into the online grip estimation.

8.1 Data selection algorithm

The goal of the data selection algorithm is to ensure that the estimation scheme has suffi-
cient knowledge of the tyre behaviour to reliably estimate the tyre parameters. Figure 8.1
shows the distribution of the final data-set of a straight line acceleration experiment. Over
the course of the experiment, the selection algorithm has managed to find datapoints for
most of the bins. As expected, the high tyre load bins are empty for negative slip ratios,
as there is to much grip at high tyre loads to lock the wheels. The final bin distribution is
able to capture datapoints for most of the vehicles operating conditions.
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Figure 8.1: Final distribution of training data after simulated straight line accelerations

In order to help prevent the solver from converging to a sub-optimal solution due to a lack
of excitation, a minimum amount of datapoints need to be collected before the solver is
started. Figure 8.2 shows the accumulation of datapoints, and the velocity of the vehicle
during the simulation. The results in this chapter used a threshold of 100 datapoints, which
is reached at t = 12.75s. The threshold needs to be balanced, in such a way that it is
reached relatively quickly without converging to a sub-optimal solution. A high threshold
might mean that it won’t be reached, while a low threshold can lock the solver in an early
local minimum that does not match with later encountered tyre behaviour. During the
simulation not all bins were filled, and the last new bin was filled at t = 42.9s. The
simulation ended with 153 datapoints in the data-set.

8.2 Tuning

There are two parameters that can be tuned for the gradient method solver. The step-size
Γ and the initial estimate θ0. The tuning was done experimentally, looking at convergence
rate and stability. Just as in the project thesis, the gradients are very steep, meaning that a
very small step-size was requires. The final Γ values, for both the brush and magic formula
are given in Equations 8.1 and 8.2.
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Figure 8.2: Data-set size and vehicle velocity.

Γbrush = 2 · 10−7


1 0 0 0
0 0.4 0 0
0 0 0.4 0
0 0 0 0.4

 (8.1)

Γmf = 9 · 10−7



2 0 0 0 0 0 0 0
0 7 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 1.7 0 0 0 0
0 0 0 0 120 0 0 0
0 0 0 0 0 200 0 0
0 0 0 0 0 0 100 0
0 0 0 0 0 0 0 4000


(8.2)

The initial estimate of the normalised parameters are given in Equation 8.3. These should
be changed throughout the racing season, as the estimator has identified the values for a
given road/tyre combination. The final estimates after testing days should be saved and
labeled with track conditions and tyre type. They can then be used as good initial guesses
when the conditions are similar at a later stage.

θ0brush =
[
5 2 1.5 −1

]T
(8.3)

θ0mf =
[
1 1 1 2 −0.2 4 0 0

]T
(8.4)
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8.3 Tyre-road friction estimate

Achieving an accurate estimate of the tyre-road friction coefficient is the primary goal of
this thesis. In this section, the parameter development and convergence will be presented,
in addition to an evaluation of the accuracy of the final friction estimates. The same load
dependency friction model, shown in Equation 8.5 is used in both models. For the brush
tyre-model, the parameters are referred to as µa and µb, while for the magic formula they
areDa andDb. The simulation environment uses an identical friction model, and is shown
with coefficient values in Equation 8.6. Fz0 is chosen to be

fz =
Fz − Fz0
Fz0

µx(Fz) = µa + µb · fz (8.5)
µx,true(Fz) = 1.9297− 0.2397 · fz (8.6)

8.3.1 Convergence

Before evaluating the final friction estimate, the parameter development over the course of
the experiment will be presented. Both models were given the same data-set, and were ran
in parallel. In addition to the parameter development, the true value is shown as reference.

8.3.1.1 Brush tyre model

The parameter development for the brush-model is presented in Figure 8.3. As the data-set
size threshold is reached, the parameters quickly develop towards the final value. How-
ever, the first steps do overshoot. As the data-set increases in size, the parameters converge
to their final value around t = 34.5s. Looking at the velocity profile and training set size
in Figure 8.2, we see that this coincides with the last big jump in new training points. Af-
ter this event, the parameters stabilize at their final values. The biggest change before the
stabilization occurred in the µb parameter, which changed sign. As this parameter controls
the tyre-load sensitivity of the tyre model, this can be explained with the braking manoeu-
vre that is performed at this time. This is the first hard braking from top speed all the
way down to 5m/s. This provides the model with low tyre load data for the rear wheels,
as the load transfer releases the rear tyre load and the low speed reduces the aerodynamic
downforce. After this braking event, the parameters have converged, and are unaffected by
the final acceleration zones that follow, indicating that a local minimum has been found.
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Figure 8.3: Friction parameter development for the brush tyre model

8.3.1.2 Magic formula tyre model

Compared to the parameter development of the brush tyre model, the magic formula fric-
tion parameters are less stable. The parameter development is presented in Figure 8.4.
Like the brush model, the magic formula model also made a large step after the final hard
braking event. Before this, only the Da parameter showed signs of stability. This is an-
other indication of lacking variety in Fz in the data-set. Unlike the brush model, that
stabilized after the after t = 34.5s, the following accelerations still have an effect on the
parameters. As the magic formula model has a higher amount of parameters, a lack of
convergence for the remaining parameters can be the cause of this. This will be discussed
in Section 8.4.2.1.
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Figure 8.4: Friction parameter development for the magic formula tyre model

8.3.2 Final friction estimate

µx,brush = 1.8602− 0.1872 · fz (8.7)
µx,MF = 1.9121− 0.2246 · fz (8.8)

The final estimated friction models are given in Equation 8.7. Figures 8.3 and 8.4 showed
that neither of the models found the perfect solution. The estimated models, together with
the true friction coefficient are shown in Figure 8.5. In addition to the friction coefficient,
the total time spent at a given Fz for a race on a full circuit lasting 76 seconds is shown.
The purpose of the estimated friction coefficient is to provide the TV control system with
an accurate force constraint for each wheel. This works as the traction control of the vehi-
cle, aiming to maximise longitudinal tyre force, without excessive wheel-spin. Maximum
available grip is given by Fxmax = µFz . Underestimating the friction coefficient will
make the controller less aggressive than possible, meaning performance is lost due to not
utilising all available grip. An overestimated friction coefficient will lose performance
from two phenomenon. Firstly, the longitudinal tyre force is smaller than at peak perfor-
mance, and secondly performance is lost as the tyre goes from rolling to sliding. This
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Figure 8.5: Estimated tyre-road friction coefficient vs. actual friction coefficient

causes extensive tyre wear and requires the driver to lift off the throttle to regain control.
With this in mind, it might be favourable to have a slightly underestimated friction coeffi-
cient opposed to a slight overestimated. This safety factor should however be implemented
in the control system, not in the parameter estimation scheme.

Figure 8.5 shows that both estimated models underestimate the friction coefficient. The
magic formula is the closest to the true friction value, while the brush model lacks accuracy
both in terms of scale and load sensitivity. For the lowest Fz values, the brush models
underestimates with over 5%. The tyres experience tyre loads in the range 1200N to
1600N for the majority of the race. In this range, both models are pretty accurate, with
the brush model underestimating the most. In addition to being constraint by the available
grip for each tyre, there are other constraints like available motor force and the overall
power limit from the accumulator that limit the vehicle performance. The grip is usually
the limiting factor for lower Fz ranges. It is in this area that the brush model performs the
worst, making the magic formula the favourable model with regards to friction estimation.
This is to be expected, due to the simplifications in the brush model making it unable to
capture the drop-off as the slip-ratio surpasses the peak value. Instead of bending down, the
brush model stays level from peak slip and outwards. This means that datapoints gathered
for slips beyond peak slip will contribute to the reduction of the friction coefficient in
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order the minimize the least squares error for all datapoints. The magic formula is capable
of dropping off after peak slip, meaning that the friction coefficient isn’t required to be
lowered.

8.4 Full tyre model accuracy

The secondary goal of this thesis is to acquire a longitudinal tyre model for the new Hoosier
tyres. Besides the friction coefficient discussed earlier, the models contain parameters for
tyre stiffness and the overall shape of the Fx curves. These will be evaluated in this section.

8.4.1 Brush tyre model

As the brush tyre model only consists of four parameters, it is expected to converge better
than the magic formula tyre model. The four parameters consist of two pairs, one for
the tyre friction coefficient, and one for the tyre stiffness. Both are affected by different
slip ranges, meaning that in order for the model to converge, data from the range around
zero slip ratio, and from the range around peak performance needs to be acquired. Since
there is no capability to model the drop-off with the brush model, data from excessive slip
conditions is less valuable and might even reduce the accuracy, as discussed in Section
8.3.2.

8.4.1.1 Convergence

The stiffness parameter of the brush tyre model has the same tyre load dependent model,
shown in Equation 8.9 as the friction coefficient. The stiffness of the tyre mainly affects the
linear section of the tyre model, around zero slip ratio. As the tyre model in the simulation
environment is much more complex, no true value for the parameters could be extracted.

fz =
Fz − Fz0
Fz0

Cx(Fz) = Cxa + Cxb · fz (8.9)

The development of the stiffness parameters Cxa and Cxb is presented in Figure 8.6. Just
like the friction parameters, a big jump towards the final value is made right as the data-set
threshold is reached. As data around zero slip ratio is readily available, and not dependent
on specific braking manoeuvres, the parameters converge faster than the friction param-
eters. Despite this, there is a small amount of drift left in the parameters. This can be
because of the many simplification of the tyre model, meaning there is no constant value
for these parameters to capture all dynamics it is encountering. The final value for θ̂mf is
presented in Table 8.1.
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Tyre parameter Final estimate
Cxa 8.0548
Cxb 0.9449
µa 1.8602
µb -0.1872

Table 8.1: Final parameter values for brush tyre model
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Figure 8.6: Brush tyre model stiffness convergence

8.4.1.2 Final tyre model

The final estimated brush tyre model, for a selection of tyre loads is presented in Figure
8.7. At first glance, the model’s accuracy is a lot better than the results from the project
thesis [12]. The lack of drop-off is visible, especially for positive slip ratios. The stiffness
around zero slip ratio is matching well. Zooming in on the low and high slip area allows
for better view of the model performance. Figure 8.8a shows the low slip range of the
model. The estimated model matches the true model for the entire Fz range. The high
slip range, both positive and negative, are shown in Figure 8.8b. A difference between
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the positive and negative side is visible, with the model performing better under braking.
This is because of the asymmetrical tyre model in the simulation environment. As the
brush model is symmetrical, the friction coefficient will try to adjust for both braking and
acceleration, and end up somewhere in between.
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Figure 8.7: Final estimated Brush tyre model
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Figure 8.8: Brush tyre model - Zoomed in on high and low slip ranges
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8.4.2 Magic formula tyre model
The simplified magic formula used for the parameter estimation has the capability to cap-
ture the drop-off effects at higher slip that the brush model is not. It does however use twice
as many parameters, that will increase the required amount of excitation to converge. The
friction coefficient has already been discussed in Section 8.3.1.2. In this section, the full
model convergence and accuracy will be discussed.

8.4.2.1 Convergence

Besides the friction parameters, there are six parameters included in the simplified magic
formula tyre model. The B parameters are similar to the stiffness parameters of the brush
model, and control the shape near zero slip ratio. The C and E parameters control the
shape of the Fx curves, allowing for tyre drop-off. Figure 8.9 shows the parameter devel-
opment for these six parameters.

Figure 8.9: Tyre model parameter convergence - magic formula

Compared to the parameter development of the brush tyre model, these parameters are
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Tyre parameter Final estimate
Ba 0.8217
Bb 3.4496
C 1.4240
Da 1.9121
Db -0.2246
Ea 0.1287
Eb 1.2696
Ec 8.7195

Table 8.2: Final parameter values for magic formula tyre model

taking longer to converge. The E parameters seem to struggle the most. One of the
simplifications made to the MF 5.2 model was the removal of asymmetrical curves. As the
drop-off for positive and negative slip ratios is different, the model won’t be able to find
a perfect solution, meaning it will struggle to converge. The only two parameter that, in
addition to the friction parameters, have truly stabilized are Ba and C. The final value for
θ̂mf is presented in Table 8.2.

8.4.2.2 Final tyre model

The final estimated model is presented in Figure 8.10. Overall, the model has a good
accuracy. The drop-off is captured, although not perfectly. Positive high slip is more
accurate than braking, which is as expected, as there are no high negative slip datapoints
in the data-set. The estimated stiffness is a little higher than the actual stiffness, especially
for higher tyre loads.
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Figure 8.10: Final estimated magic formula tyre model
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The low and high slip ranges are focused in Figures 8.11a and 8.11b. As stated earlier,
the stiffness is overestimated slightly. The positive high slip range is a lot more accurate
than the brush tyre model was able to achieve. The negative range is however a lot worse,
especially for the high negative slip ratios. The lack of asymmetrical capability of the sim-
plified model is the cause of this inaccuracy. As the drop-off is modeled as a second order
polynomial including tyre load, and there are no high tyre load datapoints for negative slip,
the positive high slip ratios will dictate the shape of the curve.
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Figure 8.11: Magic formula tyre model - Zoomed in on high and low slip ranges

8.5 Full circuit
As a tyre model has been found online, it needs to be tested during a race as well. As
straight line accelerations are limited to pure longitudinal dynamics, it does not test the
system in action on a full circuit. Therefor another experiment was carried out, using the
fitted tyre models from Sections 8.4.1.2 and 8.4.2.2 as the initial guess. The road friction
was increased by 10%, so that the online estimator has to adjust based on data gathered
during the race. Two approaches were tested. The estimator using the brush tyre model
was allowed to iterate on all parameters, both for stiffness and friction. The magic formula
tyre model was only allowed to iterate on the friction parameters, using the assumption
that the other parameters are unaffected by the changing track conditions.

8.5.1 Data selection algorithm
The operating conditions of a racecar are very different during a full circuit event or a
straight line acceleration. The final data-set from the full circuit event is given in Figure
8.12. It shows that the bins for positive high slips are empty. The high negative slip bins
have datapoints for low tyre loads. The estimation schemes have a lot less information
available, especially for the positive slip range. The threshold for this simulation was set
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to 100 datapoints. This was reached after 32.8s. The final data-set contains 124 datapoints,
with the last new bin filled after 188.3s. The velocity profile and growth of the data-set is
shown in Figure 8.13.
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Figure 8.12: Final data-set for full circuit event
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Figure 8.13: Velocity profile and data-set size for full circuit event

8.5.2 Full brush model iteration
The brush model used the same Γ as in Section 8.4.1 in the parameter update law. Using
the results from the straight line acceleration experiment, the friction coefficient was only
off by 10% as the simulation is started. The results are judged on convergence of the
parameters and the accuracy of online estimated grip, which is defined in Equation 2.18,
where the later is the most important.
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8.5.2.1 Convergence

The development of the model parameters is presented in Figure 8.14. None of the four
parameters are converging to a final value, and all are increasing and decreasing over time.
The friction parameters are diverging from the true values. Instead of increasing the overall
friction parameter, µa to capture the increased friction, the load sensitivity parameter µb
is increased. The stiffness parameters should not be affected much by the change in road
friction, but are also varying throughout the simulation.

0 50 100 150 200

Time [s]

7

8

9 Cx
a

0 50 100 150 200

Time [s]

0.8

0.9

1 Cx
b

0 50 100 150 200

Time [s]

1.8

2 a

0 50 100 150 200

Time [s]

-0.2
0

0.2
0.4

b

Figure 8.14: Parameter development for brush model parameters

There are two explanations for the lack of parameter convergence, a lack of excitation and
the interference from the tyre slip angle. As there is no information about high slip at
high tyre loads available for the estimation scheme, the model is over-fitted to fit low tyre
loads. By changing the sign of µb, the friction coefficient is increased for lower tyre loads.
Information about tyre behaviour for entire Fz range is crucial to get the load sensitivity
parameters Cxb and µb correct.

Over the course of a full circuit, the vehicle has to go through numerous corners. As the
car turns, a slip angle in all four tyres is formed. This means that the tyre’s longitudinal
capacity is decreased due to the lateral force induced in the contact patch. This lowers
the longitudinal force for a give slip ratio and tyre load. Higher slip angles decrease the
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longitudinal force more than low slip angles. As the data selection algorithm does not take
slip angles into account, the magnitude of Fx data gathered can vary drastically within the
same bin. This phenomenon is especially in effect around zero slip ratio, as the corners
with most slip angle are taken without any throttle input from the driver but is present
every time the vehicle is turning.

8.5.2.2 Online friction estimate

The estimated parameters are used to give an online estimated of the grip for each tyre.
This is calculated as shown in Equation 8.10.

Fxmax = (µa + µb · fz)Fz (8.10)

Before the training threshold is reached, the initial guess is used to estimate the grip.
Figure 8.15 shows that the estimated grip is underestimated for all four tyres. The increase
is friction compared to the straight line track is clearly visible in the estimated grip.
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Figure 8.15: Estimated grip - Initial guess brush tyre model

74



As the estimation scheme reaches the data-set threshold, the online estimated grip is cal-
culated with the latest available tyre model. The result of the online estimated grip after
the estimation scheme has had some time to adjust is shown in Figure 8.16. A small im-
provement for lower grip conditions is visible, but the results are dominated by huge over-
estimation of grip for high tyre load conditions. This confirms that the estimation scheme
failed to get the load-sensitivity parameters accurate. The initial estimate outperforms the
online estimated grip for higher load scenarios.
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Figure 8.16: Estimated grip - Online estimated brush tyre model

8.5.3 Magic formula friction iteration

The nature of the magic formula, with the D parameter as a factor outside of the main
sine function, allows for the assumption that all parameters besides the D parameter are
unaffected by the tyre-road friction. The step-size for all parameters besides Da and Db

were set to 0, and the initial guess for Da and Db was set to the final estimate from the
straight line acceleration.
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8.5.3.1 Convergence

The development of Da and Db over the course of the simulation is shown in Figure 8.17.
As Da decreases, the load sensitive parameter Db increases. This is the main difference
compared to the brush model development. Besides that, the overall behaviour of the
magic formula model is very similar to that of the brush model. A lack of knowledge of
tyre behaviour for high tyre loads means that the load sensitivity is estimated poorly and
the effect of the lateral force using tyre capacity causes a lot of fluctuation, in the form of
sharp steps, in the estimates as tyre forces for given bins vary over the course of the event.
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Figure 8.17: Parameter development for magic formula friction model parameters

8.5.4 Online friction estimate

Figure 8.18 shows the estimated grip using the initial estimate, and the grip is underesti-
mated for all four tyres. Just like with the brush model, the increased grip on the track
surface is clearly visible
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Figure 8.18: Estimated grip - Initial guess magic formula tyre model

As the estimation scheme reaches the data-set threshold, the friction parameters are up-
dated online. The result of the same time-frame as shown for the brush model is presented
in Figure 8.19. Here the online estimator has had time time adjust to the new track con-
ditions. Just as for the brush model, we see an improvement for low grip conditions. The
estimate for high grip conditions is hugely overestimated, caused by the inaccuracy of the
load-sensitivity parameter.
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Figure 8.19: Estimated grip - Online estimated magic formula tyre model

8.5.5 Comparison of online estimated grip

The two approaches have achieved similar results. Both models failed to achieve converg-
ing parameters, even though the initial estimate only was off by 10%. Both results seemed
to perform better for low tyre loads. Figure 8.20 shows the error in estimated grip against
the tyre load. All four tyres are included. The error is defined in Equation 8.11, where a
positive error is an overestimated grip.

εgrip = F̂xmax − Fxmax (8.11)
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Figure 8.20: Grip estimate error vs. Fz

The results show that both estimators are performing a lot better for tyre loads up to 1000N
than for higher tyre loads. The magic formula model slightly outperforms the brush model.
Both models underestimate the available grip in this range, most likely due to neglecting
the effects of slip angle in the friction model used for the reference. Figure 8.21 show
the slip angles for the time period where the estimators have adjusted their parameters,
showing the presence of a slip angle almost the entire period. This reduces the available
grip.
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Figure 8.21: Slip angle for all tyres

One final aspect to take into consideration while looking at the online estimated grip is the
maximum longitudinal tyre force that can be generated. As the only source of positive Fx
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Figure 8.22: Estimated grip for front right tyre and motor limit

is the electric motor, it’s output is the limiting factor. The maximum longitudinal force
generated by the motor is given in Equation 8.12. As Re varies during driving, 1800N is
used as reference. As the friction of the road surface was increased for this experiment,
less tyre load is required to handle the maximum motor output than when the initial guess
was estimated.

Fmotormax =
Mmotormax · igear

Re
< 1800N (8.12)

Figure 8.22 shows the motor limit together with the estimated grip for the front right tyre.
Is is visible that the estimated grip is slightly underestimated when the tyre is the limiting
factor, while the grip is overestimated when the motor is the limiting factor of the system.
This also explains why there is no data available for high slip and high tyre loads, as the
motor is not powerful enough to use all available grip.

8.6 Hardware-in-the-loop testing
The system developed in this thesis will be running on the 2021 Revolve NTNU racecar. In
order to increase reliability, the system is tested on the target hardware before the vehicle
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is tested on track.

8.6.1 CPU load
The primary concern regarding the target hardware is overloading the CPU core dedicated
to the TV control system. Gradient calculation and the data selection algorithm requires a
lot of floating point calculation, scaling with the data-set size gathered. Figure 8.23a shows
the CPU load for an experiment with 1 datapoint per bin, and one with two datapoints.
Until t = 20, the data selection threshold has not been reached yet, meaning that the
gradient descent solver is not running yet. Until this point, both experiments require about
50% CPU load. As both experiments reach their data selection thresholds, the CPU usage
increases. The gradient method with twice as many datapoints uses around 85% of the
CPU capacity, while the smaller data-set experiment uses around 80%. Both solvers seem
to have an upwards trend in CPU usage, even after the threshold is reached.

A longer experiment was conducted, where a data-set with a single datapoint per bin is
used for the estimation. The CPU load for this simulation, together with the amount of
datapoints gathered in the data-set is presented in Figure 8.23b. Again, the moment the
gradient method is activated as the threshold is reached is clearly visible in the CPU load.
As the size of the data-set keeps increasing, so does the CPU load. Once the data selec-
tion algorithm stops filling new bins, and only switches out old datapoints, the CPU load
stabilizes as well.
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Figure 8.23: CPU loads for different scenarios

81



82



Chapter 9
Conclusion and Future work

9.1 Conclusion
Two goals were set out before the start of this thesis. The primary goal was to identify the
friction coefficient between the tyre and road online. The secondary goal was to find a full
longitudinal tyre model for the new Hoosier tyres, that Revolve NTNU is switching to this
year.

In order to achieve the first goal, the complexity of the cost function was reduced by
removing the race car dynamics, and using a Kalman filter for the tyre force estimation
instead. The Kalman filter proved to be capable of estimating the longitudinal tyre forces
accurately, despite no direct measurements of the tyre behaviour being available. The
lateral forces were less accurate, as the estimates contained big spikes most likely caused
by a lack of observability of these states.

The decreased complexity of the cost function, together with the developed online data
selection algorithm to ensure excitation, increased the performance of the tyre friction
estimation. For straight line acceleration events, both the brush and magic formula tyre
model was able to identify the tyre-road friction coefficient. Simplifications in the brush
model meant that it underestimated the friction coefficient by 5%, while the magic formula
model was able to accurately estimate the friction coefficient for almost the entire tyre
load range. Both models required approximately equal amounts of information about the
system to converge, despite the magic formula containing twice as many parameters.

The results of the full circuit event, using the estimated θ from the straight line experiment
as an initial guess showed that the simplification of using pure longitudinal tyre models
causes the models to not converge. As the lateral forces generated by the slip angle reduce
the longitudinal capacity of the tyre, Fx estimates for similar tyre load and slip can vary.
This is not modeled, and the parameters therefor are unable to converge. This gives an
inaccurate online estimate of the friction coefficient, underestimating the available grip in
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situations where the tyre is the limiting factor.

The secondary goal of acquiring a full tyre model was achieved during the straight line ac-
celeration experiment. As the models used in this thesis are pure longitudinal tyre model.
Ensuring that enough model excitation is achieved is important, as the models can con-
verge to false parameter values if not excited sufficiently. The models acquired in the
simulation are shown in Figure 9.1.
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Figure 9.1: The estimated tyre models from straight line accelerations

9.2 Future work
There are both short term and long term continuations of the work performed in this thesis.
The deployment of the system on the 2021 race car, and tuning and operating the system is
the first step. After the season, post processing and improvement of the solver, estimation
scheme and it’s inputs should be prioritised by the next Revolve NTNU team.

9.2.1 Deploy system on race car
The results in this thesis were achieved in a simulation environment described in Chapter
6. The new Revolve NTNU race car, Luna, which is shown in Figure 9.2 is due to be com-
pleted before the end of June 2021. When the initial shakedown of Luna is completed, the
system developed in this thesis will be activated. The design matrices Q and R will need
to be tuned for the real life system. When the Kalman filter has been tuned sufficiently, the
step-size for both online estimators will have to be tuned. After the tuning of the design
parameters for the estimation scheme has been performed, the straight line acceleration
experiment should be repeated in real life.

9.2.2 Post processing
Over the course of the 2021 summer, Luna will be tested extensively and used in com-
petition. After the season, longitudinal tyre force estimates will be available for a wide
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Figure 9.2: Render of the 2021 Revolve NTNU race car - Luna

range of car setups and track conditions. The estimated forces from the Kalman filter can
therefor be used to fit a more complex tyre model offline. This model can then include car
setup parameters like tyre pressure and inclination angle, for example with the use of the
full Magic Formula 5.2 tyre model.

9.2.3 Improvement of online tyre parameter estimation scheme
The gradient descent method used in this thesis was chosen due to it’s previous success
from earlier works in Revolve NTNU, meaning that the used tyre models and system
excitation were the limiting factor of the estimation scheme’s success. The solver is not
the most efficient, as a lot of data is processed at each time-step. To improve this, linearized
recursive solvers should be investigated.

The results from the full circuit experiment showed that the pure longitudinal tyre models
used in this thesis perform poorly when combined behaviour is present. Therefor, the next
step for this estimation scheme is to upgrade the tyre models to a combined longitudi-
nal/lateral tyre models. A good candidate for is the combined brush tyre model, derived in
[3, Chapter 3]. This can improve both the online estimated grip, and increase the knowl-
edge of tyre models in Revolve NTNU.

9.2.4 Improvement of estimator inputs
The input to the estimation scheme originates from the existing state estimation module
developed in Revolve NTNU. Especially the estimated slip ratio and tyre loads should be
improved, by looking into the use of the system dynamics instead of using raw measure-
ments and definitions, for example through the use of an Extended Kalman Filter.
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Appendix A
Magic Formula 5.2 Equations

Normalized normal load increment:

dfz =
Fz − F′z0

F′z0
(A.1)

F′z0 = Fz0 · λFz0 (A.2)

A.1 Pure lateral

A.1.1 Base Magic Formula

Fy = Fy0 (α, γ,Fz) (A.3)
Fy0 = Dy sin [Cy arctan {Byαy − Ey (Byαy − arctan (Byαy))}] + SVy (A.4)
αy = α+ SHy (A.5)
γy = γ · λγy (A.6)

A.1.2 Coefficients

By =
Ky

(CyDy)
(A.7)

Cy = pCy1 · λCy (A.8)
Dy = µy · Fz (A.9)

Ey = (pEy1 + pEy2 dfz) · {1− (pEy3 + pEy4γy) sgn (αy)} · λEy(≤ 1) (A.10)
SHy = (PHy1 + PHy2dfz) · λHy + PHy3γy (A.11)
SVy = Fz · {(pVy1 + pVy2 dfz) · λVy + (pVy3 + pvy4 · dfz) · γy} · λµy (A.12)
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Ky =pKy1 Fz0 sin [2 arctan {Fz/ (pky2 Fz0λF20)}] · (1− pKy3 |γy|) · λF20 · λKy

(A.13)

µy = (pDy1 + pDy2dfz) ·
(
1− pDy3γ

2
y

)
· λµy (A.14)

A.2 Pure longitudinal

A.2.1 Base Magic Formula

Fx = Fx0 (κ,Fz) (A.15)
Fx0 = Dx sin [Cx arctan {Bxκx − Ex (Bxκx − arctan (Bxκx))}] + SVx (A.16)
κx = κ+ SHx (A.17)
γx = γ · λγx (A.18)

A.2.2 Coefficients

Bx =
Kx

(CxDx)
(A.19)

Cx = pCx1 · λCx (A.20)
Dx = µx · Fz (A.21)

Ex =
(
pEx1 + pEx2dfz + pEx3df2z

)
· {1− pEx4 sgn (kx)} · λEx(≤ 1)

)
(A.22)

SHx = (pHx1 + pHx2 · dfz)λHx (A.23)
SVx = Fz · (pVx1 + pVx2dfz) · λVx · λµx (A.24)

Kx = Fz · (pKx1 + pKx2df2) · exp (pKx3df2) · λKx (A.25)

µx = (pDx1 + pDx2dfz) ·
(
1− pDx3 · γ2x

)
λµx (A.26)
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