
Resilient Satellite- and

Phased-Array-Radio-Based UAV Navigation

H̊akon V̊agsether

December 22, 2020

Abstract

GNSS-aided INS Kalman Filters are often vital for Unmanned Aerial
Vehicle operations. Even though the technology has been around for
decades, GNSS receivers are still vulnerable to electromagnetic in-
terference, largely due to the minuscule power of the received signal.
An alternative using Phased Array Radio System measurements is
presented and implemented. The implementation uses ECEF coor-
dinates and an error-state Multiplicative Extended Kalman Filter.
Test data from a fixed-wing flight on the Trøndelag coast is used to
validate the implementation, and artificial spoofing is added to the
GNSS signal in order to test the spoofing detection.

Samandrag

GNSS-hjulpne INS-baserte Kalman Filter er ofte essensielle for ube-
manna fartøy. Teknologien har vore i bruk i fleire ti̊ar, men GNSS-
mottakarar er framleis s̊arbare for elektromagnetisk interferens. Det-
te skuldast i stor grad krafta til det mottekne signalet, som er særs
svakt. I denne rapporten blir ei løysing med fasestyrte radioar ut-
vikla og implementert. Implementasjonen nyttar kartesiske ECEF-
koordinatar og eit Multiplicative Extended Kalman Filter (MEKF).
Data fr̊a ei testflyging p̊a trøndelagskysten blir nytta til å validere
filteret, og kunstig drift er lagt til GNSS-signalet for å teste ei detek-
sjonsalgoritme for spoofing.

Contents

1 Introduction 8
1.1 Main contributions . 9
1.2 Outline of the report . 9

2 Background and Preliminaries 10
2.1 Attitude and quaternions . 10
2.2 Notation . 13
2.3 Reference frames . 14
2.4 IMU . 18
2.5 GNSS . 19
2.6 GNSS vulnerabilities . 20
2.7 Phased Array Radio Systems . 22
2.8 Change detection . 25

3 Implementation 27
3.1 Error-state filtering . 27
3.2 INS update . 31
3.3 GNSS/PARS update . 33
3.4 Spoofing detection . 34

4 Results 36
4.1 Spoofing disabled . 38
4.2 Spoofing enabled . 49

5 Conclusion and Further Work 52

A Kalman Filter Derivation 54

B Code 57
B.1 mekf split.m . 57

1

B.2 gravity.m . 72
B.3 van Loan.m . 72

2

List of Tables

2.1 Reserved symbols and operators. 13

3.1 MEKF steps and equations. 28

4.1 Qc, Rgnss, R
s
pars elements . 37

4.2 Initial covariance matrix (P0) elements 37
4.3 PARS-aided position error statistics. 48
4.4 PARS-aided attitude error statistics. 48

A.1 Standard Kalman filter steps and equations. 56

3

List of Figures

2.1 Body-centered reference frames. 14
2.2 The ECEF frame. 15
2.3 A phased array antenna. 22

3.1 The entire filter, with equation references. 30

4.1 Raw GNSS measurements with horizontal position estimates. . . 39
4.2 Raw PARS measurements with horizontal position estimates. . . 39
4.3 Estimated orientation, relative to NED. 40
4.4 Bias estimates. 41
4.5 GNSS-aided position error states with 3σ bounds. 41
4.6 PARS-aided position error states with 3σ bounds. 42
4.7 Velocity estimates. 43
4.8 Height estimates with raw PARS data. 44
4.9 Position estimates in three dimensions. 44
4.10 Roll, pitch and yaw estimates with incorrect initial attitude. . . . 46
4.11 Zoomed yaw angle estimates with incorrect initial attitude. . . . 46
4.12 The GNSS-aided bias estimates with incorrect initial attitude. . . 47
4.13 Improved roll, pitch and yaw estimates. 47
4.14 No spoofing, but false positive. 49
4.15 No spoofing, no false positive. 50
4.16 Spoofing activated and detected. Same parameters as Figure 4.15. 50
4.17 Position estimates with added 1 m/s GNSS drift. 51

4

Listings

code/mekf split.m . 57
code/gravity.m . 72
code/van Loan.m . 72

5

Acronyms

AGC Automatic Gain Control. 20

ARS Angular Rate Sensor. 11, 13, 18, 41

CUSUM CUmulative SUM. 9, 25, 34, 51, 52

ECEF Earth-Centered Earth-Fixed. 1, 4, 9, 13, 15, 16, 20, 23, 31, 36, 41, 42,
48

ECI Earth-Centered Inertial. 14, 16

EKF Extended Kalman Filter. 27

ENU East-North-Up. 15

ESA European Space Agency. 19

FOC Full Operating Capability. 19

FPV First Person View. 36

GNSS Global Navigation Satellite System. 1, 4, 8, 9, 18–21, 25, 34, 36, 38, 41,
42, 44, 47, 49, 51–53

GPS Global Positioning System. 8, 19, 20

IMU Inertial Measurement Unit. 14, 15, 18, 31, 34, 36, 41, 47, 52

INS Inertial Navigation System. 1, 9, 25

MAE Mean Average Error. 48

ME Mean Error. 48

6

MEKF Multiplicative Extended Kalman Filter. 1, 3, 8, 9, 27, 34, 52

MRP Modified Rodrigues Parameters. 11

MSS Marine Systems Simulator. 17

NED North-East-Down. 9, 10, 14–16, 23

PARS Phased Array Radio System. 1, 3, 4, 8, 9, 13, 14, 22, 23, 25, 34, 36, 38,
41–44, 48, 49, 51–53

RMSE Root Mean Squared Error. 48

RTK Real-Time Kinematic. 48

RTT Round-trip time. 23

UAV Unmanned Aerial Vehicle. 1, 8, 9, 14, 23, 36, 38, 45, 49, 52, 53

WGS84 World Geodetic System 1984. 16

7

Chapter 1
Introduction

As its name suggests, Global Navigation Satellite System (GNSS) is an Earth-
wide tool for positioning and navigation, and it is used in countless applications
across the globe. The last few decades have seen this kind of technology be-
come ubiquitous in our modern society, with good reason. Today, it is used for
everything from mobile games to landing systems for aircraft. The technology
makes it possible for a boundless number of users to use the service simultane-
ously, and the accuracy is more than good enough for most everyday use cases.
However, its ubiquity does not guarantee accuracy, and several of its properties
make it susceptible to both intentional and unintentional interference. (Arienzo
2010) Jamming is a simple way of disrupting the service, and it can be done in
ways that target specific users. Other activities, such as spoofing or meaconing,
are more complicated but also more versatile in terms of what can be achieved.
With the rise of Unmanned Aerial Vehicles and other autonomous devices, ro-
bust navigation becomes increasingly important, and launching an expensive
drone without a backup navigation system is associated with high risk.

An auxiliary navigation system can be based on many different technologies,
such as elecro-optical, acoustic and electromagnetic sensors. Phased Array Ra-
dio System (PARS) is proving to be a viable alternative. Although the precision
of such systems is worse than GNSS, it is precise enough to be in contention
for navigation systems where satellite-based positioning does not work. This
includes indoor environments as well as areas where GNSS is being jammed or
questions are being raised about its integrity. This project aims to investigate
PARS’ utility in such environments, and evaluate whether the difference be-
tween a GPS-aided and a PARS-aided Multiplicative Extended Kalman Filter
can be used to discover active spoofing.

Some reports have been published on this subject recently, most notably Kristof-

8

fer Gryte’s doctoral thesis (Gryte 2020), which shares a data set with this report.
The main difference between Gryte’s MEKF implementation and the implemen-
tation used in this report is the reference frame in which the estimates are stored.
This report uses ECEF, while Gryte uses NED. A similar representation is used
in Sollie et al. (2019), but with the purpose of pose estimation using multiple re-
ceivers. Other related works include Albrektsen et al. (2018a), where nonlinear
observers are used for motion and attitude estimation.

1.1 Main contributions

This report has two main focuses, PARS-aided navigation and spoofing detec-
tion. The following contributions are made:

• A GNSS-aided INS for UAV navigation is developed and implemented.

• The INS is adapted for PARS aiding.

• A variant of the CUSUM algorithm is implemented as a residual monitor-
ing technique.

1.2 Outline of the report

Chapter 2 contains an overview over some theoretical concepts, such as reference
frames, Global Navigation Satellite System (GNSS) and Phased Array Radio
System (PARS). Section 2.2 lists the symbols and operators used in this docu-
ment. Chapter 3 discusses the implementation of an error-state Multiplicative
Extended Kalman Filter (MEKF) and a spoofing detection algorithm. The im-
plementation’s performance on a pre-recorded data set is presented in Chapter
4, and Chapter 5 recapitulates details from the results and states some ideas on
further work to be done on the subject.

9

Chapter 2
Background and Preliminaries

2.1 Attitude and quaternions

Every time a door knob is turned, a rotation is performed. The world is full of
things that spin and roll, but the theory behind rotations can be quite elusive.
Some rotations can be described in a single dimension (around a fixed axis),
and these are simple to work with. However, we are often required to describe
the rotation of a physical object in global context, and this requires us to use
all 3 dimensions. These rotations are more difficult to represent. The group of
all 3D rotations is called SO(3). Members of SO(3) can be described using 3x3
rotation matrices. These matrices are not particularly intuitive or compact as
a form of representation, but they have a few properties that make them easier
to work with than arbitrary matrices. The most prominent ones are:

RT = R−1 (2.1a)

RTR = RRT = I3 (2.1b)

detR = 1 (2.1c)

More compact representations are often used, such as Euler angles or the angle-
axis representation. Euler angles are used in this report mainly to describe
rotation relative to the North-East-Down (NED) reference frame, following the
ZYX convention. This representation involves the roll, pitch and yaw angles
(see Figure 2.1b), and are converted to a rotation matrix using the following
formula:

R(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ) (2.2)

10

with φ, θ, ψ being the roll, pitch and yaw angles, respectively. The rotation
matrix subscript indicates which axis the rotation is performed around. This
is an intuitive representation, but it comes at a cost, such as the added risk
of gimbal lock and singularities. It is also not particularly straightforward to
determine the difference (or shortest ”distance”) between two rotations, and
this is where quaternions come in. Quaternions have taken the world of spatial
rotations by storm, despite their reputation of being difficult to understand. A
quaternion is a complex number with three imaginary components:

Q = a+ bi+ cj + dk (2.3)

with coefficients {a, b, c, d} ∈ R and imaginary unit numbers {i, j, k}. The latter
3 coefficients are often grouped together in a vector qv = (b, c, d). The remaining
coefficient, a, is typically denoted qw. These two components are combined to
form a 4-element vector q:

q =

[
qw
qv

]
=

qw
qx
qy
qz

 (2.4)

The concept of multiplication exists for quaternions, associated with the ⊗
operator:

q ⊗ r =

[
qwrw − qTv rTv

qwrv + rwqv + qv × rv

]
(2.5)

In order to describe 3D rotations with quaternions, we have to constrain the
norm:

|q| = q2
w + q2

x + q2
y + q2

z = 1 (2.6)

This is called a unit quaternion, and all quaternions discussed in this report
fall under this category. Differences between unit quaternions can be calculated
in several ways, some listed in Markley (2003). In this report the 4xModified
Rodrigues Parameters (MRP) method, derived in Gryte (2020) Appendix B, will
be used exclusively. Differences can be injected into quaternions, not through
the use of addition, but multiplication:

q = r ⊗ δq (2.7)

where δq is the error between the quaternions q and r. The error quaternion is
calculated using the 4xMRP method given in Markley (2003):

δq(δθ) =
1

16 + δθT δθ

[
16− δθT δθ

8δθ

]
(2.8)

The following formula from Solà (2017) is used to calculate the incremental
rotation quaternion from the Angular Rate Sensor (ARS):

11

q(ω, Tf) =

 cos
(
|Tfω|

2

)
ω
|ω| sin

(
|Tfω|

2

) (2.9)

Finally, a rotation matrix can be computed from a quaternion through the
following formula (Fossen 2011):

R(q) = I3 + 2qwS(qv) + 2S(qv)
2 (2.10)

with S(·) denoting the skew symmetric matrix operator:

S

xy
z

 =

 0 −z y
z 0 −x
−y x 0

 (2.11)

12

2.2 Notation

Table 2.1: Reserved symbols and operators.

Symbol Explanation

ff , Tf Filter rate and period, ff = 1
Tf

pabc The vector from b to c, decomposed in the {a} frame.
Used to express positions.

vabc The velocity of c relative b, decomposed in the {a}
frame.

qabc A quaternion representation of the rotation of c relative
b, decomposed in the {a} frame. qabc,w is the real/scalar
part, qabc,v is the imaginary/vector part.

fabc The acceleration of c relative b, decomposed in the {a}
frame.

ge Gravity vector, decomposed in ECEF.
ωabc The angular rate of c relative b, decomposed in the {a}

frame.
baacc, b

a
ars Accelerometer and Angular Rate Sensor biases, decom-

posed in the {a} frame.
A,B,C Kalman filter system, input and output matrix.
Q,R,P Process noise, measurement noise and estimate covari-

ance matrix.
P−, P+ A priori and a posteriori (before and after correction)

estimate covariance matrix.
Ψ, α PARS azimuth and elevation.
φ, θ, ψ Roll, pitch, yaw angles.
φ, λ, h Latitude, longitude, height (WGS84).
ẋ The first time derivative of x. Two dots indicate the

second time derivative, and so on.
x̂ An estimate or prediction of x.
x A vector.
X A matrix.
x̄ The average of x.
Ren A rotation matrix, such that peeb = Renp

n
eb.

pi The ith element of the p vector.
Pij The element corresponding to the ith row, jth column

of the matrix P .
ln(·), e· The natural logarithm and exponential operator.
µ, σ, σ2 Mean, standard deviation and variance.
⊗ Quaternion product
S(·) Skew-symmetric matrix operator
E[·] Expectation operator
δ· Error state.
ε Zero-mean Gaussian noise.

13

(a) An IMU with the m frame drawn
in. (Leo Rover Docs 2020)

(b) A fighter jet model with its body
axes drawn in. (CH Robotics 2020)

Figure 2.1: Body-centered reference frames.

2.3 Reference frames

The use of reference frames is vital when developing navigation systems. The
application is of great importance, and while a spacecraft might need to use
an advanced coordinate system such as ECI, an agricultural robot can do with
a simple base station-centered NED-based frame. Vectors and angles can be
decomposed in different frames, expressed by the superscript notation. The
following frames are used in this report:

Measurement frame

The {m} (measurement) frame is the frame corresponding to the IMU’s raw
measurements. Details about the {m} frame can be found in the IMU’s data
sheet, and its relationship to the body frame depends on how and where the
unit is mounted. The {m} frame is illustrated in Figure 2.1a.

Body frame

The {b} (body) frame’s origin coincides with the {m} frame, but its axes are
rotated such that the x axis points towards the front of the vehicle and the z
axis points downwards. The {b} frame is equal to the NED frame in the event
of 0 deg roll, pitch and yaw, shown in Figure 2.1b. Two different body frames
will be used, the {b} frame (for the UAV) and the {r} frame (for the PARS base
station). The term ”body frame” and ”{b} frame” will be used interchangeably
throughout this report, and both refer to the UAV-centered reference frame
unless another device is specified.

14

Figure 2.2: The ECEF frame. (Wikipedia 2020)

ECEF frame

The {e} (Earth-Centered Earth-Fixed) frame is centered at the Earth’s core
and rotates with the Earth. The x-axis points towards the point where the
equator meets the prime meridian, and the z-axis points upwards through the
geographic North Pole. The y-axis is perpendicular to these axes, such that the
cross product of the x-axis and the y-axis is the z-axis (following the right hand
rule). The ECEF frame is shown in Figure 2.2.

NED frame

The {n} (North-East-Down) frame is centered at the IMU, but its x, y and z
axes are always pointing towards North, East and Down, respectively. Some
sources refer to the ENU frame. (Wei et al. 2019); (Giorgi et al. 2010) This is
just a flipped version of the NED frame, and they serve the same purpose for
all applications.

Geodetic frame

In contrast to the other frames, the geodetic frame is spherical, not Cartesian.
Like the ECEF frame, this frame is Earth-Centered and Earth-Fixed, and the
zero latitude, zero longitude axis coincides with ECEF’s x-axis. The latitude-
longitude-height convention is commonly used, due to its readability for humans.
However, it is only used as a middle ground between ECEF and NED in this
report. The position vector is specified in Cartesian ECEF coordinates.

15

ECI frame

The Earth-Centered Inertial (ECI) frame ({i} frame) is nearly identical to the
ECEF frame, but it does not rotate with the Earth. Instead, the x-axis is fixed
in the direction of the vernal equinox. It is useful for satellites and spacecraft,
and it will not be used in this report.

Conversions

The use of several reference frames requires the knowledge of how to translate
between them. This report uses the WGS84 standard, and a few conversions
are recounted below, taken from Fossen (2011). Conversion from NED to ECEF
is simple, and only requires a rotation matrix:

Ren(φ, λ) =

− sinφ cosλ − sinλ − cosφ cosλ
− sinφ sinλ cosλ − cosφ sinλ

cosφ 0 − sinφ

 (2.12)

Where φ is the latitude, λ is the longitude of the NED frame’s origin. The inverse
operation can be carried out by simply transposing the matrix. Conversion
between ECEF and geodetic coordinates are not as simple. The steps are found
in Fossen (2011), and are revisited below. The ECEF coordinates corresponding
to a geodetic position can be calculated directly:

x← (N + h) cos(φ) cos(λ) (2.13a)

y ← (N + h) cos(φ) sin(λ) (2.13b)

z ←

(
r2
p

r2
e

N + h

)
sin(φ) (2.13c)

with re = 6378137 m and rp = 6356752.314245 m being the WGS84 ellipsoid’s
semimajor and semiminor axis, respectively. N is calculated as a function of
these values and the latitude:

N ← r2
e√

r2
e cos(φ)2 + r2

p sin(φ)2
(2.14)

The reverse operation is done using an iterative scheme. The first three steps

16

are done only once:

λ← arctan
(y
x

)
(2.15a)

p←
√
x2 + y2 (2.15b)

e←
√

1− (rp/re)2 (2.15c)

In addition, a preliminary value for the latitude is found:

φ← arctan

(
z

p(1− e2)

)
(2.16)

The rest is the iterative part, and the following steps are reiterated until η
is lower than some error tolerance limit. This project’s implementation uses
the Marine Systems Simulator (MSS) (cybergalactic/Fossen 2020) MATLAB
library, where this tolerance limit is set to 1e-10.

N ← r2
e√

r2
e cos(φ)2 + r2

p sin(φ)2
(2.17a)

h← p

cos(φ)
−N (2.17b)

φ0 ← φ (2.17c)

φ← arctan

(
z

p(1− e2N/(N + h))

)
(2.17d)

η ← |φ− φ0| (2.17e)

17

2.4 IMU

An Inertial Measurement Unit (IMU) is often used for navigational purposes, as
it supplies information on the sensor’s movement in the inertial frame. Mount-
ing the sensor on a vehicle means that the sensor will move and rotate with the
vehicle, and as such we can use the sensor to inform us about the vehicle’s move-
ment. This is called strapdown navigation. IMUs consist of an accelerometer
and an Angular Rate Sensor (ARS), the former measuring the sensor’s linear
specific force and the latter measuring the sensor’s angular velocity. Integrating
these measurements enables us to get an estimate of the sensor’s position, but
it is trivial to see that this position will be local, or relative to the initial posi-
tion. These IMU-based position estimates are subject to drift due to the bias
and noise properties of the sensors, and an additional system, such as GNSS, is
often employed to mitigate this. GNSS can not be considered a replacement for
IMUs, as IMUs are high rate sensors with a different role.

Accelerometers measure linear specific force, which is a measure of acceleration
in relation to free fall. This means that an accelerometer at rest will measure
about 9.81 m/s2 due to the force exerted by the ground. This leads to the
addition of the gravity vector in Chapter 3. The accelerometer measurements
are

f b = f bnb + bbacc + εbacc (2.18)

such that εbacc is zero mean Gaussian noise and bbacc is bias term, treated as a
Gauss-Markov model with time constant Tacc = TaccI3. Angular Rate Sensors
measure the sensor’s angular motion in rad/s, and the measurements follow a
corresponding model

ωb = ωbnb + bbars + εbars (2.19)

with corresponding bias and error terms and bias time constant Tars = TarsI3.
(Gryte 2020)

18

2.5 GNSS

Global Navigation Satellite System (GNSS) is a type of system that utilizes
satellites in known orbits around the Earth in order to provide navigation ser-
vices. Its most famous variant, GPS, has been in service for 25 years (Full
Operating Capability (FOC) declared on 17 July 1995 (Subirana et al. 2013))
and is still being developed and improved, with the Block III satellites scheduled
to be put into orbit by the end of 2023. While GPS is an American invention,
its Russian and Chinese counterparts, GLONASS and BeiDou, have been in de-
velopment for several decades. In addition, the European Space Agency (ESA)
is developing a fourth system called Galileo. Each system also includes a ground
segment, a set of ground stations tasked with monitoring and ensuring that the
satellites are functioning correctly.

The basic principle of GNSS is the transmission of a carrier wave from each of the
satellites. This carrier is modulated with a repeating sequence, like a code or a
message, such that the receiver can lock on to the signal and retrieve data from
the message. The message contains a timestamp from the satellite’s internal
clock, and it allows the receiver to tell when the message was sent. The pseudo-
range is a term reserved for the estimated geometric distance from the satellite
to the receiver, based on the estimated time of flight. The pseudorange equation
can be found in Misra & Enge (2011) and has several components:

ρ = r + c(δtu − δts) + Iρ + Tρ + ερ (2.20)

Where

• ρ is the pseudorange

• r is the true geometric range

• c is the speed of light

• δtu is the receiver’s clock error

• δts is the satellite’s clock error

• Iρ is the ionospheric delay

• Tρ is the troposheric delay

• ερ is reserved for other error sources, such as multipath and receiver noise

A GNSS receiver can use pseudoranges from four satellites to estimate its own
position through trilateration. This means that the satellite and the receiver has
a one-way type of communication, and the number of users that can be served by
a group of satellites at a given point in time is theoretically limitless. This also
means that the receiver does not need transmission capabilities, which leads to
low complexity, power consumption and cost. The global coverage of the space

19

segment (satellite network) of today’s GNSS systems makes the use of receivers
convenient, easy and fairly accurate outside of the extreme latitudes. (Swaszek
et al. 2018) GNSS yields the receiver’s position in ECEF, (or geodetic after
converting from ECEF) and as a result of this, the measurement does not need
conversion when used with an ECEF-based navigation system.

2.6 GNSS vulnerabilities

GNSS’ convenience and ease of use comes at a price. The low receiver signal at
the receiver makes it an easy target for intentional destructive interference such
as jamming, spoofing and meaconing. Jamming is the most simple form, and
it can be done in several ways. The topic of jamming GPS receivers is nothing
new (Pinker & Smith 1999), while other systems currently lack research on this
area. The effectiveness depends on the receiver, and some receivers are reported
to be quite resilient against some types of jamming. Jamming leads to loss of
lock, and the receiver typically will not be able to get a fix until the jamming
ends or the receiver exits the jamming equipment’s effective area.

Spoofing is a more sophisticated strategy, but it is very complicated compared to
jamming. A successful spoofing attack involves capturing the victim receiver’s
lock and fooling it to generate false position estimates. Pulling off such an
attack requires large computing power, and there are several reasons for an
attempt to fail, as listed in Schmidt et al. (2016). A few of the major points are
recounted:

• The receiver’s Automatic Gain Control (AGC) may notice an abrupt in-
crease in the received signal power. This could cause loss of lock and alert
the receiver about the existence of a malicious signal source. The spoofing
signal’s received power must be estimated and controlled, and this requires
knowledge about the victim’s position.

• The spoofer might not be able to tell whether the victim receiver has locked
on to the spoofing signal or not, and it is possible for the receiver to lock
on to the legitimate signal while the spoofing signal is being transmitted.

• Many vehicles have compasses as an auxiliary heading sensor, and a dif-
ference between the compass and the satellite-aided navigation computer
might alert a human operator to the possibility of spoofing. A human
operator might also notice that the movement on the map does not match
the movement outside the windows, but this is not as likely for vehicles at
high altitude or at sea. In any case, these considerations are less critical
in unmanned applications.

• The navigation message relayed by the GNSS signal contains information
about the satellites’ orbital parameters, and this enables the receiver to
calculate each satellite’s approximate position several hours ahead in time.

20

Depending on the receiver’s complexity, a spoofer might have to simulate
the entire constellation in order so as not to send a fake signal from a
satellite that is not really in sight from the victim. The spoofer can gener-
ate its own virtual constellation and transmit a fake navigation message,
but this will also require simulation.

Meaconing is a third alternative, and in a sense, it is a simple form of spoofing.
Meaconing is the capture and retransmission of GNSS signals, and this results in
the victim believing to be in the same position as the meaconer. This happens
because the meaconer retransmits the signals exactly as they were received, and
since they are now all coming from the same source, the relative arrival times
will be unchanged when they arrive at the victim receiver. This method is thus
significantly simpler, but less useful than other forms of spoofing. However, a
successful spoofing operation on an unknowing victim remains little short of
herculean, and Schmidt’s survey describes GNSS spoofing as a future (i.e. not
a current) threat.

Radio interference will typically lead to a drop in the receiver’s carrier-to-noise
ratio (C/N0), and this can be used to detect an active malicious agent. There are
ways to protect a receiver from interference such that it is able to obtain a valid
fix while the interference source is active. One way is to couple the receiver with
a navigation system, much like what is done in this report. Another approach is
spatial filtering. An aircraft can use phased-array antennas to attenuate signals
coming from below, making it harder for a jammer to capture the lock of the
aircraft’s receiver. (Gao et al. 2016)

21

Figure 2.3: A phased array antenna, illustrating its beamsteering capabili-
ties. (Everything RF 2020)

2.7 Phased Array Radio Systems

A Phased Array Radio System is a type of radio system utilizing multiple anten-
nas in order to achieve directionality. The basic principle is that electromagnetic
waves travel at the speed of light, and two receivers will receive the signal at
different times given that there is a distance between them. With an appropri-
ate and known signal frequency and distance between the receivers, the signal’s
originating direction can be determined. The delay will present itself as a phase
offset, and the principle can be reversed to ”steer” the signal, achieving spa-
tial directionality without using directional antenna elements. This notion of
steering is often referred to as beamsteering. This eliminates the need for me-
chanically steered parabolic antennas, and thus eliminates the need for motor
maintenance. A phased array system can stay in contact with several units in
different directions without losing directional gain, which is another advantage
over traditional mechanically steered directional antennas. The use of PARS
has a few drawbacks, like increased cost and complexity. Also, a phased ar-
ray is designed to work on a specific frequency, since the distance between the
elements depend on the wavelength. As such, a PARS system must stay in
its intended (and fairly limited) frequency range in order to function correctly.
(Herd & Conway 2015)

The estimated direction can be utilized together with an estimate of the dis-

22

tance, obtained through methods such as the Round-trip time (RTT). These
three values form a spherical coordinate system and are enough to construct
an estimate of a remote device’s position relative to a base station. Radionor
Communications’ PARS devices output the distance, elevation and azimuth an-
gle from the base station to the remote device. Hence, for this system to be used
for positioning, the base station’s position and orientation needs to be known
in order to compute the absolute position. For this project the base’s roll angle
is assumed to be zero, . The vector from the base to the UAV (decomposed in
the {r} frame) is

prrb = d

cos(Ψ) cos(α)
sin(Ψ) cos(α)
− sin(α)

 (2.21)

with the distance d, the azimuth angle Ψ and the elevation angle α. The {r}
frame will typically be rotated away from the base station’s NED frame. As-
suming an angle of 0 deg for roll, the vector from the base to the UAV (now
decomposed in the base station’s NED frame) is

pnrb = d

cos(Ψ + Ψr) cos(α+ αr)
sin(Ψ + Ψr) cos(α+ αr)

− sin(α+ αr)

 (2.22)

where αr, Ψr denote the base station’s elevation and azimuth, respectively. A
non-zero roll angle requires the use of a rotation matrix:

pnrb = Rnr(Φr, αr,Ψr)p
r
rb (2.23)

Which relates to the UAV’s position:

peeb = peer +Ren(φr, λr)p
n
rb (2.24)

Note that the base station’s position is used when computingRen, not the UAV.
Also, the assumption that the base station is level (zero roll angle) is made.
This is a reasonable assumption, since there is nothing to gain from having a
non-zero roll angle. However, non-zero roll angle may not always be avoidable.
The assumption is only valid for stationary antennas, and a vehicle-mounted
base station will have to take the roll angle into account. In addition, the
measurement covariance matrix Rpars must be mapped to ECEF coordinates
from the spherical measurements. The procedure for this is given in Gryte
(2020). Adapted to the ECEF case, the similarity transform is

Re
pars = Ren(φr, λr)M(α,Ψ, d)RparsM

T (α,Ψ, d)Rne(φr, λr) (2.25)

23

such that

M =

cos(Ψ) cos(α) −d sin(Ψ) cos(α) −d cos(Ψ) sin(α)
sin(Ψ) cos(α) d cos(Ψ) cos(α) −d sin(Ψ) sin(α)
− sin(α) 0 −d cos(α)

 (2.26)

24

2.8 Change detection

It is often useful to have some kind of metric by which to decide whether an event
has occurred or not. This typically falls under the field of Change Detection, and
several algorithms (Gustafsson 2001) are available for our application. We would
like to decide whether the GNSS receiver is being spoofed or not. Jamming
detection would be vastly simpler, since the ultimate goal is loss of lock, but
a successful spoofing attack would have the GNSS position and true position
drifting apart slowly. Thus, a two-part filter is proposed, with the first part
aided by GNSS and the other aided by PARS. A change detection algorithm is
applied to the difference between the two filters. In this report, the CUSUM
algorithm will be used. A Kalman filter based supervisor module is implemented
in Albrektsen et al. (2018b) with promising results. The INS in that report is
based on separate angular and translational motion observers. Using a Kalman
filter instead yields linear motion and attitude estimates without direct attitude
sensors from a single module. The spoofing is generated similarly and the same
data set is used, so the results from that report will be compared to ours in
Chapter 4.

We have a signal (a stochastic process) x, which is generated from a distribution
θ0. We postulate two hypotheses, H0 (x is generated from θ0) and H1 (x is
generated from θ1). For each sample x[k] we calculate

s[k] = ln
p(x[k], θ1)

p(x[k], θ0)
(2.27)

which, trivially, will be negative if H0 is true, since the fraction will be less than
1. Conversely, we see that s[k] will be positive if H1 is true. We keep track of
the cumulative sum of s in a separate variable:

S[k] =

k∑
i=0

s[i] (2.28)

This process will typically be monotonically decreasing, as long as H0 is true.
We keep track of the current minimum of S, its purpose will be apparent very
soon:

n̂c = arg min
k

S (2.29)

Every new sample of S will be the new minimum since S is monotonically
decreasing. Hence, n̂c will only stop changing once we start generating x from
the alternative distribution θ1. This will cause the decision function G[k], which
previously has been fairly still around 0, to start rising:

G[k] = S[k]− S[n̂c] (2.30)

25

Once G (now increasing) crosses a certain threshold h, we decide that a change
has happened and H1 is now true. n̂c gives an estimate for when the change
happened, hence the hat. We set nd = k when G crosses h to indicate the time
when the change has been detected.

26

Chapter 3
Implementation

3.1 Error-state filtering

A top-level view of the algorithm is shown in Figure 3.1, and this chapter will
reveal the details of its implementation. The standard Kalman Filter presented
in Appendix A is designed for linear systems. In the event of a nonlinear system,
an Extended Kalman Filter (EKF) can be used instead. The nominal state
propagation equation is altered:

x̂k ← f(x̂k−1) (3.1)

As previously stated, quaternions do not have the same rules as other at-
titude representations, and the ”residual” between two quaternions is calcu-
lated through multiplication, not subtraction. Note that an alternative addi-
tive scheme exists (Markley 2004). A Multiplicative Extended Kalman Filter
(MEKF), also known as an error-state Kalman Filter, is often better suited
than a standard EKF when dealing with quaternions, due to these properties.
The steps of an MEKF are similar to an EKF, but the attitude gets special
treatment. The measurement update step also estimates the error states, which
are then injected into the nominal states, as shown in Table 3.1. The function
f() includes a quaternion product:

q̂k ← q̂k−1 ⊗ q′k (3.2)

where q′k denotes the change in attitude calculated using (2.9).

27

Table 3.1: The Multiplicative Extended Kalman Filter steps and their equations
(autonomous systems).

Step Equations

Time update x̂k ← f(x̂k−1)
Pk ← AdPk−1A

T
d +Qd

Measurement update Kk ← PkC
T (CPkC

T +Rk)−1

Pk ← (In −KkC)Pk(In −CTKT
k) +KkRkK

T
k

δx̂k ←Kk(yk −Cx̂k)
x̂k ← g(x̂k, δx̂k)
Pk ← GkPkG

T
k

Similarly, the function g() includes:

q̂k ← q̂k ⊗ δq̂k (3.3)

where δq̂k is the error quaternion calculated from the error state vector δx̂k,
using (2.8). It is found in Gryte (2020) that the error states propagate with the
following linearized dynamics:

δ ˙̂x = Acδx̂+Bcε (3.4)

where we have the error state vector and the zero mean Gaussian noise compo-
nents

δx̂ =

δp̂eeb
δv̂eeb
δθ̂

δb̂bacc
δb̂bars

 (3.5a)

δε =

εbacc
εbars
εbb,acc
εbb,ars

 (3.5b)

28

with δθ corresponding to the vehicle’s error state attitude, not the error state
pitch angle. The equations are given:

δṗeeb = δveeb (3.6a)

δv̇eeb = −RebS(f bnb)δθ −Rebδb
b
acc −Rebε

b
acc (3.6b)

δθ̇ = −S(ωbnb)δθ − I3δb
b
ars − εbars (3.6c)

δḃbacc = −T−1
accδb

b
acc + I3ε

b
b,acc (3.6d)

δḃbars = −T−1
arsδb

b
ars + I3ε

b
b,ars (3.6e)

Corresponding to the following matrices:

Ac =

03 I3 03 03 03

03 03 −RebS(f bnb) −Reb 03

03 03 −S(ωbnb) 03 −I3

03 03 03 −T−1
acc 03

03 03 03 03 −T−1
ars

 (3.7a)

Bc =

03 03 03 03

−Reb 03 03 03

03 −I3 03 03

03 03 I3 03

03 03 03 I3

 (3.7b)

29

Wait for
next run

Average and
rotate new

IMU readings
(3.8),(3.10)

Propagate
nominal states
(3.11)-(3.15)

Propagate P
using van Loan

(3.7),(3.17),
(3.18),(3.16)

New
GNSS or

PARS
measure-
ments?

Calculate error
states and

propagate P
(3.21)

Inject error
states into

nominal states
(3.23)-(3.25)

Reset error
states and P

(3.26)

Yes

No

INS updateG/P update

Figure 3.1: The entire filter, with equation references, summarized in a
flowchart. ”G/P” is short for ”GNSS/PARS”. The ”Wait for next run” block
is painted pink because it is a natural starting point for the algorithm.

30

3.2 INS update

On arrival of a new IMU measurement, we have two inputs, the raw gyroscope
and accelerometer measurements. The IMU rate might be higher than the filter
rate, in which case the measurements that have arrived since last run are simply
averaged:

[
f̄mnb
ω̄mnb

]
=

1

n

n∑
i=1

[
fmnb
ωmnb

]
i

(3.8)

Note that this is a simplification, an optimal system would perform compensa-
tion for coning, sculling and scrolling motion. (Brouk 2019) Using the theory
from Section 2.4, an estimate of the vehicle’s motion can be calculated. The
measurements are decomposed in the {m} frame, and must be converted to the
body frame before anything else is done:

f bnb = Rbmf
m
nb (3.9a)

ωbnb = Rbmω
m
nb (3.9b)

WhereRbm is the rotation matrix from the m-frame to body frame. This matrix
depends entirely on the orientation and position of the IMU on the vehicle. In
practice, the bias must be subtracted:

f̂ bnb ← Rbm fmnb − b̂bacc (3.10a)

ω̂bnb ← Rbm ω̂mnb − b̂gars (3.10b)

Calculate acceleration in ECEF frame:

f̂enb ← Reb(q̂
e
eb)f̂

b
nb + ge (3.11)

The gravity vector ge is calculated as a function of the ECEF position. The
formula is found in Groves (2008) and reiterated below. Note that the notation
has been altered to match this report.

γeeb = − µ

|peeb|3

peeb +
3

2
J2

R2
0

|peeb|2

(1− 5(peeb,z/|peeb|)2)peeb,x
(1− 5(peeb,z/|peeb|)2)peeb,y
(1− 5(peeb,z/|peeb|)2)peeb,z

 (3.12a)

ge = γeeb + ω2
ie

1 0 0
0 1 0
0 0 0

peeb (3.12b)

31

with R0 = 6378137 m, µ = 3.986004418e14 m3s−2, J2 = 1.082627e-3 m3s−2

and ωie = 7.292115e-5 rad/s denoting the WGS84 equatorial radius, Earth’s
first and second gravitational constant and rotation rate, respectively. Next,
the estimates are updated:

p̂eeb ← peeb + Tf v̂
e
eb +

T 2
f

2
f̂enb (3.13a)

v̂eeb ← v̂eeb + Tf f̂
e
nb (3.13b)

We insert the estimated angular rate into (2.9):

q̂eeb ← q̂eeb ⊗

 cos
(
|Tf ω̂

b
nb|

2

)
ω̂b

nb

|ω̂b
nb|

sin
(
|Tf ω̂

b
nb|

2

) (3.14)

The bias estimates are updated using a first order approximation:

b̂bacc ← (I3 − TfT−1
acc)b̂

b
acc (3.15a)

b̂bars ← (I3 − TfT−1
gyro)b̂

b
ars (3.15b)

Now that we have propagated the nominal states, we have to update P :

P− ← AdP
+AT

d +Qd (3.16)

Neither Ad nor Qd are defined yet, they must be obtained by discretizing their
continuous counterparts. There are several ways to do this, and van Loan’s
method (Loan 1978) is a popular alternative for time-varying systems. We begin
by inserting the matrices Ac and Bc from (3.7) into a matrix F . Additionally,
the predefined process noise matrix Qc is needed:

F ←
[
−Ac BcQcB

T
c

0 AT
c

]
Tf (3.17)

Next, eF is approximated through the use of Taylor expansion:

eF ← I + F +
F 2

2!
+
F 3

3!
+ ... (3.18)

Third order approximation is deemed precise enough for this application. The
result contains the following submatrices:

eF =

[
· A−1

d Qd

0 AT
d

]
(3.19)

32

Ad is extracted from the result, and Qd is recovered as such:

Qd ← AdA
−1
d Qd (3.20)

3.3 GNSS/PARS update

Update Kalman gain, error state and covariance matrix:

K = P−CT (CP−CT +R)−1 (3.21a)

δx̂ = K(yeeb − p̂eeb) (3.21b)

P+ = (In −KC)P−(In −KC)T +KRKT (3.21c)

Where R is equal to Rgnss or Rpars, depending on which sensor the measure-
ment originates from. Note that Rpars will have to be calculated each time it is
used, given by (2.25). At this point, δx̂ is a 15-vector consisting of the following
3-vectors:

δx̂ =

δp̂eeb
δv̂eeb
δθ̂

δb̂bacc
δb̂bars

 (3.22)

Update nominal position and velocity estimate:

p̂eeb ← p̂eeb + δp̂eeb (3.23a)

v̂eeb ← v̂eeb + δv̂eeb (3.23b)

The attitude estimate is corrected, using (2.8):

δq̂eeb(δθ̂) =
1

16 + δθ̂T δθ̂

[
16− δθ̂T δθ̂

8δθ̂

]
(3.24a)

q̂eeb ← q̂eeb ⊗ δq̂eeb(δθ̂) (3.24b)

Note that the error quaternion δq̂eib will have to be replaced by its shadow set
(multiplied by -1) if the attitude error exceeds 180 degrees. This condition

corresponds to the norm of δθ̂ exceeding 4. Next, we update the bias esti-
mates:

bbacc ← bbacc + δbbacc (3.25a)

bbars ← bbars + δbbars (3.25b)

33

The error state vector and covariance matrix are reset:

δx̂← 0 (3.26a)

P+ ← G(δq̂eeb)P
+GT (δq̂eeb) (3.26b)

Where G is a 15x15 matrix (Solà 2017):

G =

I3 03 03 03 03

03 I3 03 03 03

03 03 δq̂eeb,wI3 − S(δq̂eeb,v) 03 03

03 03 03 I3 03

03 03 03 03 I3

 (3.27)

This concludes the measurement update step of the (error state) Multiplicative
Extended Kalman Filter (MEKF).

3.4 Spoofing detection

In order to detect spoofing, two instances of the filter are run in parallel. One is
GNSS-aided, the other PARS-aided. The IMU readings are fed to both filters,
and the distance (norm) between the GNSS-aided and the PARS-aided position
estimate is calculated. In the event of spoofing, this distance will increase, and
this can be detected in a variety of ways. A simple distance threshold is deemed
too primitive, and we’ve opted for a recursive one-sided flavor of the CUSUM
algorithm. (Granjon 2013) The CUSUM algorithm requires the following design
parameters:

• H0 - The null hypothesis, i.e. the distribution from which we expect our
signal x to be drawn.

• H1 - The alternative hypothesis, i.e. the distribution from which we expect
our signal to be drawn once the change happens.

• h - The decision threshold.

The decision threshold has great significance for the sensitivity of the algorithm.
A small h will quickly respond to changes, but is more likely to report false
positives. A large h will be less likely to report false positives, but will have a
longer delay from the change to the decision and it will be prone to overlook
intermittent changes. The implementation used in this report assumes that the
change happens in the form of a step in the mean, and thus we are left with the
following parameters:

• σ̂ - The guessed standard deviation of the norm. (Part of the null hypoth-
esis)

34

• µ̂ - The guessed mean of the norm. (Part of the null hypothesis)

• δ - The new mean after the change has happened. (Part of the alternative
hypothesis)

• h - The decision threshold.

The following calculations are made each time step:

s =
δ

σ̂2
(x− µ̂− δ

2
) (3.28a)

S[k] = S[k − 1] + s (3.28b)

G[k] = max(G[k − 1] + s, 0) (3.28c)

n̂c = arg min
k

S (3.28d)

where x is the distance between the estimates, assumed to be from a Gaussian
distribution with mean µ̂ and variance σ̂2. δ represents the mean of the alterna-
tive distribution, and thus functions as a kind of threshold parameter. Spoofing
is detected once G[k] exceeds h, which is also a threshold parameter. δ decides
how far away from zero the measurement can be before it is deemed suspicious,
and h controls how long the algorithm will accept suspicious measurements
before sounding the alarm.

35

Chapter 4
Results

The test set was captured during a 40 minute flight in Vassbygda in Trøndelag,
Norway. The PARS data was generated using a CRE2-189 ground antenna and
a CRE2-144 onboard the UAV, both designed and manufactured by Radionor
Communications AS. The CRE2-189 is a directional antenna, and the UAV
was outside the antenna’s sector for large portions of the first 500 seconds.
Consequently, the PARS data from this period has been discarded and replaced
by GNSS measurements. The UAV also exits the sector at the end of the flight,
so the data is cut off at exactly 35 minutes. The flight was performed using a
Skywalker X8 (Skywalker 2020), a fixed wing First Person View (FPV) drone.
It was controlled by a Pixhawk 1/ArduPlane (Pixhawk 2020) autopilot with a
separate GNSS receiver. The remaining sensors were a u-blox m8t-neo u-blox
(2020) GNSS receiver and a Sensonor STIM300 (Sensonor 2020) IMU. Some of
the tuning parameters, such as the Qc matrix, will be equal to the ones found
in Gryte (2020), while other parameters, such as the R matrices and P are
found through tuning. The GNSS measurements are decomposed in ECEF, as
mentioned in Section 2.5. This also means that the GNSS measurement noise
matrix is constant, in contrast to the PARS noise matrix, which needs to be
recalculated for each measurement. Statistics pertaining to their performance
will be presented at the end of Section 4.1. The values of the process and
measurement noise matrices are shown in Table 4.1, and the values of the initial
covariance matrix P0 are shown in Table 4.2. Note that two separate filters are
run in parallel, one receives corrections only from GNSS, the other only from
PARS. The matrices are given:

Qc =

σ2
acc 0 0 0
0 σ2

ars 0 0
0 0 σ2

b,acc 0

0 0 0 σ2
b,ars

 (4.1a)

36

Table 4.1: Qc, Rgnss, R
s
pars elements

Parameter Value

σacc 2.57e-2 m/s/
√

s
σars 9.59e-4 rad/

√
s

σb,acc 2.55e-4 m/s5/2

σb,ars 6.29e-8 rad/s3/2

Parameter Value

σd 10 m
σα 0.1 deg
σΨ 0.1 deg
σgnss 1 m

Table 4.2: Initial covariance matrix (P0) elements

Parameter Value

Pp 100 m2

Pv 4 m2/s2

Pa 0.03 rad2

Pb,acc 1 m2/s4

Pb,ars 3e-6 rad2/s2

Rgnss =

σ2
gnss 0 0
0 σ2

gnss 0
0 0 σ2

gnss

 (4.1b)

Rs
pars =

σ2
d 0 0

0 σ2
α 0

0 0 σ2
Ψ

 (4.1c)

P0 =

PpI3 03 03 03 03

03 PvI3 03 03 03

03 03 PaI3 03 03

03 03 03 Pb,accI3 03

03 03 03 03 Pb,arsI3

 (4.1d)

37

4.1 Spoofing disabled

Figure 4.1 shows the horizontal geodetic position of the GNSS aided estimates
and raw GNSS measurements, and we can see that the estimates follow the
measurements well. This is expected, since there is little noise in the GNSS
measurements. Figure 4.2 is more indicative of the filter’s performance, showing
the noisy nature of the PARS measurements. The estimates still follow the path,
with some small deviations. Some of the measured positions are far away from
the path, and would likely be rejected by an outlier rejection mechanism. The
filter is reluctant to transition from the loop to the straight line path at the
western end of the trajectory, causing it to display a longer turn. The eastern
end of the figure also shows the edges of the base station’s sensor, forming a
90 degree angle. As mentioned, the PARS measurements from this part of the
run is replaced with GNSS data. Moving on to the attitude, Figure 4.3 shows
the roll, pitch and yaw estimates (described in Section 2.1) for both the GNSS
and PARS aided filters. The reference is sampled from the UAV’s Pixhawk
autopilot software, and both filters seem to follow the GNSS measurements and
Pixhawk attitude estimates well, especially considering the fact that none of the
measurements include direct information about the vehicle’s attitude.

38

9.5 9.52 9.54 9.56 9.58 9.6

Longitude [deg]

63.59

63.595

63.6

63.605

63.61

63.615

63.62

63.625

63.63

63.635
L
a
ti
tu

d
e
 [
d
e
g
]

Raw GNSS
GNSS-aided

Figure 4.1: Raw GNSS measurements with horizontal position estimates.

9.5 9.52 9.54 9.56 9.58 9.6

Longitude [deg]

63.59

63.595

63.6

63.605

63.61

63.615

63.62

63.625

63.63

63.635

L
a
ti
tu

d
e
 [
d
e
g
]

Raw PARS
PARS-aided

Figure 4.2: Raw PARS measurements with horizontal position estimates.

39

0 5 10 15 20 25 30 35 40

t [min]

-100

0

100

[d
e
g
]

Roll gnss

pars

ref

0 5 10 15 20 25 30 35 40

t [min]

-20

0

20

40

[d
e
g
]

Pitch

gnss

pars

ref

0 5 10 15 20 25 30 35 40

t [min]

-200

0

200

[d
e
g
]

Yaw

gnss

pars

ref

Figure 4.3: Estimated orientation, relative to NED.

40

Figure 4.4 shows the IMU bias estimates. Their initial values are all zero, and
they all move quickly away from the origin before settling down on a slowly
moving value. The initial spike is expected, and the fact that they converge
to a slowly moving value is a good sign. It means that the filter has found a
series of states where each new measurement corresponds well to the prediction.
Figure 4.5 shows the error states, i.e. the 9 first elements of the δx̂ vector, for
the GNSS-aided filter. In addition, the standard deviation (computed from the
P matrix) multiplied by a factor of three has been drawn in to illustrate the
consistency of the filter. The error lies well within the bounds at all times, as
is to be expected.

0 5 10 15 20 25 30 35 40

t [min]

-1

-0.5

0

0.5

[m
/s

2
]

bb
acc

 (GNSS-aided)

x

y

z

0 5 10 15 20 25 30 35 40

t [min]

-2

0

2

4

[r
a

d
]

10
-3 bb

ars
 (GNSS-aided)

x

y

z

(a) GNSS-aided accelerometer and ARS
bias estimates.

0 5 10 15 20 25 30 35 40

t [min]

-1

-0.8

-0.6

-0.4

-0.2

0

[m
/s

2
]

bb
acc

 (PARS-aided)

x

y

z

0 5 10 15 20 25 30 35 40

t [min]

-1

0

1

2

3

[r
a

d
]

10
-3 bb

ars
 (PARS-aided)

x

y

z

(b) PARS-aided accelerometer and ARS
bias estimates.

Figure 4.4: Bias estimates.

Figure 4.5: GNSS-aided position error states with 3σ bounds. p and v are both
decomposed in ECEF, while the attitude is given in the body frame.

41

Figure 4.6 shows the error states for the PARS-aided filter, and it is simple
to see that the estimation errors and uncertainty estimates are higher. These
calculations are done at each measurement update, before the error state vector
is injected into the nominal estimates. The filter still keeps the errors inside
the bounds, save for a few spikes. We can also see the point where the PARS
data starts and the GNSS data ends, at 10 minutes. The error bounds widen
immediately.

Figure 4.6: PARS-aided position error states with 3σ bounds. p and v are both
decomposed in ECEF, while the attitude is given in the body frame.

42

The results seem reasonable so far, with the filter producing consistent esti-
mates and the two estimated paths looking similar. However, the erraticity and
slight positive offset of the PARS-based velocity, shown in Figure 4.7, suggest
that there might be a larger discrepancy between the estimates than what has
been shown so far. There is one dimension that has not been shown yet: the
height. The position estimates so far have shown the 2D positions in latitude
and longitude, but the height has been omitted for clarity. Looking at Figure
4.8, large errors in the PARS measurements are presented. These lead to er-
rors in the estimates, and the fact that the PARS-aided velocity estimates are
too high now makes sense. Figure 4.9 shows how the full PARS-aided track is
affected by erroneous measurements. These erroneous measurements has great
effect on the filter, and this is reflected in the position and velocity estimates.
Since the problems appear to be isolated to the elevation angle (and partially
to the distance measurement), it is possible to discard that value entirely and
replace it with a height sensor, such as a barometer. This transforms the PARS
measurements from spherical coordinates to cylindrical coordinates, but the two
other dimensions (azimuth, distance) can be kept. Gryte (2020) uses an out-
lier rejection algorithm, and this would likely improve the estimates without
adding another sensor. Some of the PARS measurements are several hundred
meters off, and these errors would be rejected by lenient rejection mechanisms.
A dangerous side effect from introducing outlier rejection is that the mechanism
does not inherently know which measurements are outliers and which are not.
Therefore care must be taken so that the algorithm does not reject ”correct”
values.

0 500 1000 1500 2000 2500

t [s]

0

5

10

15

20

25

30

35

40

U
 [
m

/s
]

Velocity

GNSS-aided

PARS aided

Figure 4.7: Velocity estimates.

43

0 5 10 15 20 25 30 35 40

t [min]

-1500

-1000

-500

0

500

1000

1500

h
 [
m

]

PARS raw

GNSS-aided

PARS-aided

Figure 4.8: Height estimates with raw PARS data.

Figure 4.9: Position estimates in three dimensions (ECEF). Seen from the west
to illustrate the PARS-aided estimates’ (red) deviations from the GNSS-aided
estimates (blue).

44

Before the statistics are presented, the initial states are discussed. So far, an ap-

proximately correct unit quaternion (qeeb,0 =
[
0.30 −0.36 −0.88 −0.03

]T
)

has been used as the initial attitude for both filters. Setting this to a wildly

incorrect value, such as
[
1 0 0 0

]T
, results in the filters believing that the

UAV is flying upside down (± 180 deg roll angle), shown in Figure 4.10. The
yaw estimates are also moving in the opposite direction of the Pixhawk refer-
ence (Figure 4.11), and this makes sense given that the estimates are upside
down. The reason for this is difficult to ascertain, but the error dynamics are
linearized around an attitude error of zero, and an upside down initial state is
close to the greatest attitude error possible. This has implications for the valid-
ity of the modelled dynamics, but one would think that the estimates should be
perturbed in the direction of the true states at some point. The fact that the
estimate stays upside down during the entire run means that the accelerometer
z axis bias estimate has converged to a large value and gotten stuck in some
false equilibrium. This value must be large enough to cancel (and in fact, di-
rectly contradict) gravity’s effects on the accelerometer. Figure 4.12 confirms
this theory, with bbacc,z ≈ −20 m/s2. This figure also shows that the bias jumps
to −15 m/s2 almost instantly, hinting that lowering the initial accelerometer
bias covariance (Pbb

acc,0
) might fix the problem. This means raising the confi-

dence in the initial bias estimates, which are all set to zero initially. Figure 4.13
illustrates the attitude estimates after setting Pbb

acc,0
= 0.01I3, i.e. a reduction

by a factor of 100, which resolves the issue.

45

0 5 10 15 20 25 30 35 40

t [min]

-200

0

200

[d
e
g
]

Roll

gnss

pars

ref

0 5 10 15 20 25 30 35 40

t [min]

-100

0

100

[d
e
g
]

Pitch

gnss

pars

ref

0 5 10 15 20 25 30 35 40

t [min]

-200

0

200

[d
e
g
]

Yaw

gnss

pars

ref

Figure 4.10: Roll, pitch and yaw estimates with incorrect initial attitude. The
estimates are upside down and the yaw angle is drifting aimlessly.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t [min]

-150

-100

-50

0

50

100

150

[d
e
g
]

Yaw

gnss

pars

ref

Figure 4.11: Yaw angle estimates with incorrect initial attitude, zoomed in on
the first two minutes.

46

0 5 10 15 20 25 30 35 40

t [min]

-30

-20

-10

0

10

[m
/s

2
]

b
acc

 (GNSS-aided)

x

y

z

0 5 10 15 20 25 30 35 40

t [min]

-0.05

0

0.05

0.1

0.15

[r
a

d
]

b
ars

 (GNSS-aided)

x

y

z

Figure 4.12: The GNSS-aided IMU bias estimates with incorrect initial attitude.
The (absolute value of the) z-component is too large (-20), effectively corrupting
the IMU readings.

0 5 10 15 20 25 30 35 40

t [min]

-200

0

200

[d
e
g

]

Roll

gnss

pars

ref

0 5 10 15 20 25 30 35 40

t [min]

0

50

100

[d
e

g
]

Pitch

gnss

pars

ref

0 5 10 15 20 25 30 35 40

t [min]

-200

0

200

[d
e
g

]

Yaw

gnss

pars

ref

Figure 4.13: Improved roll, pitch and yaw estimates after Pb,acc has been re-
duced from 1 to 0.01 m2/s4.

47

Finally, statistics are presented. Tables 4.3 and 4.4 show the Mean Error (ME),
Mean Average Error (MAE) and Root Mean Squared Error (RMSE) for the
PARS-aided position and attitude, respectively. The errors from which the
statistics are calculated are gathered at the arrival of each PARS measurement,
where the attitude and position estimates before the error-state injections are
compared to the RTK position and attitude from the Pixhawk reference. Com-
pared to Gryte (2020), the errors are larger, especially the position. This is likely
due to how the PARS measurements are treated before being fed to the filter.
Gryte’s implementation includes an outlier rejection mechanism and PARS’ el-
evation measurements are discarded in favor of a separate altitude reading. The
Cartesian error is also dominated by the z-component and (to a lesser extent)
the x-component, which is no surprise. Figure 4.8 shows that some of the PARS
measurements lie significantly below the true trajectory, and this is reflected in
the error statistics since the negative Down vector at these latitudes corresponds
to a z-dominated ECEF vector. As mentioned previously, an alternative alti-
tude sensor such as a barometer is believed to greatly improve these estimates.
An alternative solution would be to implement some form of outlier rejection, as
done in Gryte (2020). However, this requires careful design, as the results could
be catastrophic if the algorithm should start rejecting the correct measurements
in favor of readings that are based on reflections, for example.

Table 4.3: PARS-aided position error statistics.

Metric x [m] y [m] z [m] Norm [m]

ME -9.66 -1.54 -28.39 30.04
MAE 15.21 11.44 34.96 39.81
RMSE 23.24 18.06 52.55 60.23

Table 4.4: PARS-aided attitude error statistics.

Metric Roll [deg] Pitch [deg] Yaw [deg] Norm [deg]

ME 0.96 -0.35 6.68 6.76
MAE 1.58 0.95 10.53 10.69
RMSE 2.01 1.45 14.14 14.36

48

4.2 Spoofing enabled

The spoofing detection mechanism in Section 3.4 is utilized to detect spoofing.
The spoofing is simulated by generating a displacement term to the GNSS mea-
surements, increasing by 10 cm in positive x direction each time update. This
corresponds to a displacement of 1 m/s. Note that this displacement is not
introduced until after the UAV has entered the PARS station’s sector, i.e. 800
seconds or 13 minutes and 20 seconds. To begin with, the values h = 1000000,
δ = 200, σ̂ = 10, µ̂ = 0 are chosen. This does not work well, because we get a
false positive (shown in Figure 4.14) at about 20 minutes. Increasing σ̂ to 25
is sufficient to get the algorithm working with this data set, but it is preferable
with a method that adapts to the application. In order to correct this, the
following values are chosen:

σ̂ = µ̂ = |diag(Pp,gnss)|+ |diag(Pp,pars)| (4.2a)

δ = 2µ̂ (4.2b)

h = 1000000 (unchanged) (4.2c)

(4.2d)

0 5 10 15 20 25 30 35 40

t [min]

0

100

200

[m
]

Distance from GNSS-aided position to PARS-aided position

0 5 10 15 20 25 30 35 40
-200

0

200
s

0 5 10 15 20 25 30 35 40
-2

-1

0
107 S

0 5 10 15 20 25 30 35 40
0

5

10
104 G

Figure 4.14: No spoofing, but false positive. δ = 200, σ = 10,
µ̂ = 0

49

0 5 10 15 20 25 30 35 40

t [min]

0

100

200

[m
]

Distance from GNSS-aided position to PARS-aided position

0 5 10 15 20 25 30 35 40

0

5

10
s

0 5 10 15 20 25 30 35 40
-10

-5

0

5
104 S

0 5 10 15 20 25 30 35 40
0

5

10
104 G

Figure 4.15: No spoofing, no false positive. δ = 2σ̂, σ̂ = µ̂, µ̂ = |diag(Pp,gnss)|+
|diag(Pp,pars)|

0 5 10 15 20 25 30 35 40

t [min]

0

500

1000

[m
]

Distance from GNSS-aided position to PARS-aided position

0 5 10 15 20 25 30 35 40

0

5

10
s

0 5 10 15 20 25 30 35 40

0

5

10
104 S

0 5 10 15 20 25 30 35 40
0

5

10
104 G

Figure 4.16: Spoofing activated and detected. Same parameters as Figure 4.15.

50

The results are shown in Figure 4.15. We can see that the G function stays
below the limit, and no false positives are reported. Activating the spoofing,
we see that the spoofing is discovered fairly quickly, 1 minute and 57 seconds
after the spoofing starts. At this point, the GNSS-aided estimate is displaced
by 117 meters. This is significantly slower than the Kalman filter implemented
in Albrektsen et al. (2018b), which detected the spoofing after a displacement
of 36 m (at the same displacement rate). That implementation also used a
separate altitude sensor in order to discard the elevation angle measurement,
yielding smaller PARS errors. The CUSUM implementation should be tested
with a similar setup in order to compare the two methods properly. It is likely
that a slightly tighter limit (smaller δ, σ̂, µ̂, h) would be possible for this data
set, but it is not advisable given the large elevation angle errors in the PARS
measurements and the lack of outlier rejection. There is a trade-off between
false positive risk and detection speed, a tight limit is quicker to react and
more sensitive, but higher sensitivity also increases the risk of overreaction from
the detection mechanism. To give a clearer picture of the results, Figure 4.17
shows the successful spoofing detection in geodetic coordinates. As mentioned
in Section 2.6, residual monitoring is only one of the ways to detect spoofing,
and several more signal-focused methods exist.

9.5 9.52 9.54 9.56 9.58 9.6

Longitude [deg]

63.59

63.595

63.6

63.605

63.61

63.615

63.62

63.625

63.63

63.635

L
a

ti
tu

d
e

 [
d

e
g

]

GNSS-aided
PARS-aided
spoof detected
spoof started

Figure 4.17: Position estimates with added 1 m/s GNSS drift after 800 seconds.
The spoofing is detected after 117 seconds.

51

Chapter 5
Conclusion and Further Work

In this report, the viability of a PARS-aided MEKF is evaluated. The pur-
pose of such a navigation system is as a stand-in for GNSS during long-range
UAV flights. PARS requires precise setup and calibration, but the results are
promising. The system is able to produce a reasonable estimate of the position,
velocity and attitude, together with the IMU biases. This is done even without
any prior knowledge about the vehicle’s attitude. However, this is sensitive to
moderate increases in the initial P0 matrix’s accelerometer bias elements. The
PARS measurements have a fair bit of noise, mostly because of errors in the re-
ported elevation angle. This has great effect on the estimates, but the azimuth
measurements remain acceptable. The error statistics are a little larger than
in Gryte (2020), but this is likely due to the lack of outlier rejection. Gryte
also uses a separate altitude sensor, effectively discarding the PARS elevation
measurement.

A simple implementation of the CUSUM algorithm is implemented, and applied
to the residual between the GNSS-aided and PARS-aided position estimates.
The tuning parameters are chosen as a function of the P matrices, resulting in
an implementation that adapts to the filter’s error characteristics. The spoofing
detection algorithm is demonstrated, with both appropriate and inappropriate
parameters. The algorithm detects a spoofing displacement of 1 m/s within
two minutes. A tighter limit could likely be placed on the algorithm, but the
number and magnitude of elevation errors in the PARS measurements make it
difficult to lower the bounds without introducing false positives. Conclusively,
the use of PARS as an alternative to GNSS in GNSS-denied environments is a
promising future solution for enabling long-range UAV flights. For areas where
GNSS is available, a simple CUSUM-based change detection mechanism can be
employed to monitor the integrity of the GNSS fix. The following ideas are

52

suggested for further work on this topic:

• An altitude sensor such as a barometer can be added to the UAV, giving
the opportunity to correct (or discard) the PARS elevation measurements.

• The vehicle’s initial attitude is unknown, but it can be estimated using
the global position if we assume that the vehicle is flat and at rest. Since
we know the global gravity vector ge, we can find an initial attitude that
corresponds to zero roll and pitch at this point on the Earth. The yaw
angle, however, is still undetermined.

• Other sensors, such as a magnetometer, can be added to provide heading
measurements. This can be especially useful in conditions where the filter
is started abruptly and in transit, and we do not have time to let the
filter settle. It is also possible to utilize multiple GNSS antennas to find
the UAV’s heading. Other sensors, such as cameras, can also be used to
validate the filter’s estimates, but this depends on the application, and a
camera will be of limited utility in homogeneous environments such as at
sea.

• Given that this is meant for online use, it is necessary to test it out on a real
UAV. This requires rigorous testing, and it can be very risky, depending
on how it is done. Temporarily disabling the autopilot’s GNSS receiver
and using the filter as input instead is reasonably simple, but one must
make every effort to ensure that the filter behaves as expected under the
takeover phase, yielding a smooth transition. A rough transition can lead
to some dramatic control inputs from the autopilot, possibly resulting in
a stall or a crash. The spoofing detection is significantly harder to test,
mainly because its illegality makes setting up an experiment challenging,
but also because successfully spoofing a GNSS receiver is difficult.

53

Appendix A
Kalman Filter Derivation

Consider the following discrete autonomous system:

xk+1 = Adxk + vk (A.1a)

yk = Cxk +wk (A.1b)

with x denoting the state vector v and w being zero mean Gaussian noise. We
will use x̂−k as the a priori state estimate, x̂k as the a posteriori state estimate
and xk as the true state at time k. We define the error in the estimate:

ek = xk − x̂k (A.2)

Next, we define the process noise and measurement noise covariance matri-
ces:

Qk = E[vkv
T
k] (A.3a)

Rk = E[wkw
T
k] (A.3b)

Similarly, we define the total error covariance matrix:

Pk = E[eke
T
k] (A.4a)

Pk = E[(xk − x̂k)(xk − x̂k)T] (A.4b)

We define the measurement update equation, which is a scaled error term (Kk

being the scaling factor) added to the a priori estimate:

54

x̂k = x̂−k +Kk(yk −Cx̂−k) (A.5)

Inserting (A.1b):

x̂k = x̂−k +KkCxk +Kkwk −KkCx̂
−
k (A.6)

This is inserted into (A.4b):

Γ = xk − x̂−k −KkCxk −Kkwk +KkCx̂
−
k (A.7a)

Pk = E[Γ ΓT] (A.7b)

Pk = E[((In −KkC)(xk − x̂k) +Kkwk)((In −KkC)(xk − x̂k) +Kkwk)T]

Pk = (In −KkC)E[(xk − x̂k)(xk − x̂k)T](In −KkC)T +KkE[wkw
T
k]KT

k

We recognize the expression for Pk (A.4b) and Rk (A.3b):

Pk = (In −KkC)P−k (In −CTKT
k) +KkRkK

T
k (A.8)

This is one of the equations we will be using. We differentiate the trace of Pk
with respect to Kk and set it equal to zero:

Pk = P−k − P
−
k C

TKT
k −KkCP

−
k +Kk(CP−k C

T +Rk)KT
k (A.9a)

∂ tr[Pk]

∂Kk
= − tr[P−k C

T]− tr[CP−k] + 2 tr[Kk(CP−k C
T +Rk)] (A.9b)

0 = −2 tr[P−k C
T] + 2 tr[Kk(CP−k C

T +Rk)] (A.9c)

2P−k C
T = 2Kk(CP−k C

T +Rk) (A.9d)

We arrive at an expression for Kk:

Kk = P−k C
T (CP−k C

T +Rk)−1 (A.10)

This is the second equation that we will use. The remaining equations are the
state estimate propagation steps:

x̂k ← Adx̂k−1 (A.11a)

x̂k ← x̂k +Kk(yk −Cx̂k) (A.11b)

and finally, a step that propagates the P matrix and adds the process noise.

Pk ← AdPk−1A
T
d +Qd (A.12)

The Kalman Filter equations are summarized and sorted in Table A.1.

55

Table A.1: The standard Kalman Filter steps and their equations (autonomous
systems).

Step Equations

Time update x̂k ← Adx̂k−1

Pk ← AdPk−1A
T
d +Qd

Measurement update Kk ← PkC
T (CPkC

T +Rk)−1

Pk ← (In −KkC)Pk(In −CTKT
k) +KkRkK

T
k

x̂k ← x̂k +Kk(yk −Cx̂k)

56

Appendix B
Code

B.1 mekf split.m

1 %%

2

3 % This file depends on Thor Inge Fossen ’s MSS library

4 % (https :// github.com/cybergalactic/MSS)

5

6 clear all;

7

8

9

10 colors = [0 0.4470 0.7410;

11 0.8500 0.3250 0.0980;

12 0.9290 0.6940 0.1250;

13 0.4940 0.1840 0.5560;

14 0.4660 0.6740 0.1880;

15 0.3010 0.7450 0.9330;

16 0.6350 0.0780 0.1840];

17

18

19 % Load datasets

20 load(’rtk.mat’);

21 load(’stim.mat’);

22 load(’cre.mat’);

23

24 base = [2802320.917 473559.8638 5690836.707] ’;

25 base_yaw = deg2rad (-73.5);

26 base_pitch = deg2rad (0);

27

28 Vpars = @(pitch , yaw , dist) dist*[cos(yaw + base_yaw)*cos(pitch +

base_pitch) sin(yaw + base_yaw)*cos(pitch + base_pitch) -sin(

pitch + base_pitch)]’;

29

30 M = @(pitch , yaw , dist) [cos(yaw)*cos(pitch) -dist*sin(yaw)*cos(

pitch) -dist*cos(yaw)*sin(pitch);

57

31 sin(yaw)*cos(pitch) dist*cos(yaw)*cos(

pitch) -dist*sin(yaw)*sin(pitch);

32 -sin(pitch) 0 -dist*cos(pitch)];

33

34 R_p = diag ([10^2 , deg2rad (0.1^2) , deg2rad (0.1^2)]);

35

36 load(’pixhawk.mat’);

37

38

39 % Set up pixhawk data

40 timestamp_sec = double(pixhawk.AHR2_TimeUS)*1e-6;

41 timestamp_sec_gps = double(pixhawk.GPS_TimeUS)*1e-6;

42 tow_sec_gps = double(pixhawk.GPS_GMS)*1e-3;

43

44 tow_sec = interp1(timestamp_sec_gps , tow_sec_gps , timestamp_sec , ’

linear ’ ,’extrap ’);

45 pixhawk = [tow_sec ’ pixhawk.AHR2_Roll ’ pixhawk.AHR2_Pitch ’ pixhawk

.AHR2_Yaw ’];

46

47

48 % Set up measurements

49 gps = [rtklib.gpst ’ rtklib.latitude ’ rtklib.longitude ’ rtklib.

height ’];

50 pars = [tow ’ ang_y ’ ang_x ’ dist ’];

51 accl_ = [stim.tov_gnss ’ stim.accl_x ’ stim.accl_y ’ stim.accl_z ’];

52 accl_ (: ,2:4) = accl_ (: ,2:4) *500;

53 gyro_ = [stim.tov_gnss ’ stim.gyro_x ’ stim.gyro_y ’ stim.gyro_z ’];

54 gyro_ (: ,2:4) = gyro_ (: ,2:4) *500* deg2rad (1);

55 imu = [gyro_ accl_ (: ,2:4)];

56

57 % Measure frame to body rotation matrix , will be used inside the

loop

58 R_bm = [-1 0 0; 0 1 0; 0 0 -1];

59 R_skew = Rzyx(deg2rad (0.76) , deg2rad (-4), 0) ’;

60 R_bm = R_skew*R_bm;

61

62 % NED to ECEF rotation matrix

63 R_en = @(lat , lon) [-sin(lat)*cos(lon), -sin(lon), -cos(lat)*cos(

lon);

64 -sin(lat)*sin(lon), cos(lon), -cos(lat)*sin(lon)

;

65 cos(lat), 0, -sin(lat)];

66

67 O3 = zeros (3,3);

68 I3 = eye(3,3);

69

70 % Set filter constants

71 C = zeros (3,15);

72 C(1:3 ,1:3) = eye (3);

73

74 R = eye (3);

75

76

77 q_acc = 2.57*10^(-2);

78 q_gyro = 9.59*10^(-4);

79 q_bacc = 2.55*10^(-4);

80 q_bgyro = 6.29*10^(-8);

58

81

82 Q = [q_acc ^2*I3 O3 O3 O3;

83 O3 q_gyro ^2*I3 O3 O3;

84 O3 O3 q_bacc ^2*I3 O3;

85 O3 O3 O3 q_bgyro ^2*I3];

86

87 Tacc = 3600;

88 Tgyro = 3600;

89

90 sec = 60*35; % How many secs to run for (60* minutes)

91 filter_rate = 100; % Hz

92 N = sec * filter_rate +100; % How many steps in total

93

94 %% Set up GPS -aided states

95

96 states_gps = struct;

97 states_gps.P = diag ([100 100 100 4 4 4 0.030 0.030 0.030 0.01 0.01

0.01 3*10^ -6 3*10^ -6 3*10^ -6]);

98 states_gps.position = zeros(N,3); % ECEF

99 states_gps.position_geo = zeros(N,3); % geodetic position

100 states_gps.velocity = zeros(N,3); % ECEF

101 states_gps.velocity_norm = zeros(N,1); % ECEF

102 states_gps.attitude = [1, 0, 0, 0]’; % Initial attitude

103 states_gps.error_states = nan(N, 3);

104 states_gps.error_bounds = nan(N, 3);

105 states_gps.errors = nan(N, 8);

106

107 % Approx. correct initial orientation

108 states_gps.attitude = [0.30;

109 -0.36;

110 -0.88;

111 -0.03];

112

113 % % Incorrect initial orientation

114 % states_gps.attitude = [-0.0604242 ,

115 % -0.971721 ,

116 % 0.193174 ,

117 % -0.121616];

118

119 states_gps.attitude = states_gps.attitude / norm(states_gps.

attitude);

120

121 states_gps.bias_acc = zeros(N,3);

122 states_gps.bias_gyro = zeros(N,3);

123 states_gps.rpy = zeros(N,3);

124 states_gps.rpy(1,:) = nan(1,3);

125

126 rpy_ref = zeros(N,3);

127 rpy_ref (1,:) = nan(1,3);

128 pixhawk (1,2:end) = nan(1,3);

129

130 % Set initial position

131 [x,y,z] = llh2ecef(deg2rad (9.5919) , deg2rad (63.6157) , 39.2846);

132

133 states_gps.position (1,:) = [x y z];

134 [lon lat height] = ecef2llh(states_gps.position (1,1), states_gps.

position (1,2), states_gps.position (1,3));

59

135 states_gps.position_geo (1 ,1:3) = [rad2deg(lat) rad2deg(lon) height

];

136

137 states_pars = states_gps;

138

139 pars_t = zeros (19148 ,1);

140 pars_t_i = 1;

141

142 IMU_dt = 1/ filter_rate;

143

144 GNSS_dt = 1/10;

145 PARS_dt = 1/10;

146

147 first_sec = 383964 + 155;

148

149 % Which sample to start with , just to make sure the sensors start

150 % at the same point in time.

151 i_imu = 77616;

152 i_gps = 1493;

153 i_pars = 2914;

154 i_pixhawk = 626;

155

156

157 i_pos = 1;

158

159 pars_raw_geo = nan(N,3);

160

161 pos_diff = nan(N,1);

162 spoof_displacement = [0 0 0]’;

163

164 s_ = nan(N,1);

165 s_(1) = 0;

166 S_ = nan(N,1);

167 S_(1) = 0;

168 G_ = nan(N,1);

169 G_(1) = 0;

170

171 h = 100000;

172

173 n_d = nan;

174 n_c = 0;

175

176 detection_pos = nan;

177 spoof_pos = nan;

178 nc_pos = nan;

179

180 %% Filter (100 Hz)

181 for t = first_sec :1/ filter_rate:first_sec + sec

182 % IMU/Time update

183 if t > imu(i_imu ,1)

184 % We have 500 Hz data , but the filter

185 % runs at 100 Hz. Take the mean of the last 5 samples

186 imu_mean = [0 0 0 0 0 0];

187 imu_mean_count = 0;

188 while t > imu(i_imu ,1)

189 i_imu = i_imu + 1;

190 imu_mean = imu_mean + imu(i_imu ,2: end);

60

191 imu_mean_count = imu_mean_count + 1;

192 end

193 imu_mean = (imu_mean ./ imu_mean_count);

194

195 % GNSS estimate

196 % Rotate to body frame

197 gyro = R_bm * imu_mean (1:3)’ - states_gps.bias_gyro(i_pos

-1,:) ’;

198 gyro = gyro * IMU_dt;

199 gyro_norm = norm(gyro);

200 accl = R_bm * imu_mean (4:6)’ - states_gps.bias_acc(i_pos

-1,:) ’;

201

202 % f_e = R_eb f_b + g_e

203 accl_ecef = Rquat(states_gps.attitude)*accl + gravity(

states_gps.position(i_pos -1,:) ’);

204

205 states_gps.position(i_pos ,:) = states_gps.position(i_pos

-1,:) + IMU_dt * states_gps.velocity(i_pos -1,:) + IMU_dt *

IMU_dt * accl_ecef ’ / 2;

206

207 states_gps.velocity(i_pos ,:) = states_gps.velocity(i_pos

-1,:) + IMU_dt*accl_ecef ’;

208

209 if gyro_norm > 10^(-8)

210 d_attitude = states_gps.attitude;

211 d_attitude (1) = cos(gyro_norm /2);

212 d_attitude (2:4) = (gyro / gyro_norm) *sin(gyro_norm /2);

213 states_gps.attitude = quatprod(states_gps.attitude ,

d_attitude);

214 end

215

216 states_gps.bias_acc(i_pos , :) = states_gps.bias_acc(i_pos

-1, :) + IMU_dt * (inv(Tacc*eye(3)) * states_gps.bias_acc(i_pos

-1, :) ’)’;

217 states_gps.bias_gyro(i_pos , :) = states_gps.bias_gyro(i_pos

-1, :) + IMU_dt * (inv(Tgyro*eye(3)) * states_gps.bias_gyro(

i_pos -1, :) ’)’;

218

219 A = [O3 I3 O3 O3

O3

220 O3 O3 -Rquat(states_gps.attitude)*Smtrx(accl) -

Rquat(states_gps.attitude) O3

221 O3 O3 -Smtrx(gyro/IMU_dt) O3

-I3

222 O3 O3 O3 -(1/Tacc)*I3

O3

223 O3 O3 O3 O3

-(1/ Tgyro)*I3];

224

225

226 G = [O3 O3 O3 O3;

227 -Rquat(states_gps.attitude) O3 O3 O3;

228 O3 -I3 O3 O3;

229 O3 O3 I3 O3;

230 O3 O3 O3 I3];

231

61

232 [Ad , Qd] = van_Loan(A, G, Q, IMU_dt , 3);

233

234 states_gps.P = Ad*states_gps.P*Ad’ + Qd;

235

236 % PARS estimate

237 % Rotate to body frame

238 gyro = R_bm * imu_mean (1:3)’ - states_pars.bias_gyro(i_pos

-1,:) ’;

239 gyro = gyro * IMU_dt;

240 gyro_norm = norm(gyro);

241 accl = R_bm * imu_mean (4:6)’ - states_pars.bias_acc(i_pos

-1,:) ’;

242

243 % f_e = R_eb f_b + g_e

244 accl_ecef = Rquat(states_pars.attitude)*accl + gravity(

states_pars.position(i_pos -1,:) ’);

245

246 states_pars.position(i_pos ,:) = states_pars.position(i_pos

-1,:) + IMU_dt * states_pars.velocity(i_pos -1,:) + IMU_dt *

IMU_dt * accl_ecef ’ / 2;

247

248 states_pars.velocity(i_pos ,:) = states_pars.velocity(i_pos

-1,:) + IMU_dt*accl_ecef ’;

249

250 if gyro_norm > 10^(-8)

251 d_attitude = states_pars.attitude;

252 d_attitude (1) = cos(gyro_norm /2);

253 d_attitude (2:4) = (gyro / gyro_norm) *sin(gyro_norm /2);

254 states_pars.attitude = quatprod(states_pars.attitude ,

d_attitude);

255 end

256

257 states_pars.bias_acc(i_pos , :) = states_pars.bias_acc(i_pos

-1, :) + IMU_dt * (-inv(Tacc*eye(3)) * states_pars.bias_acc(

i_pos -1, :) ’)’;

258 states_pars.bias_gyro(i_pos , :) = states_pars.bias_gyro(

i_pos -1, :) + IMU_dt * (-inv(Tgyro*eye(3)) * states_pars.

bias_gyro(i_pos -1, :) ’) ’;

259

260 A = [O3 I3 O3 O3

O3

261 O3 O3 -Rquat(states_pars.attitude)*Smtrx(accl) -

Rquat(states_pars.attitude) O3

262 O3 O3 -Smtrx(gyro/IMU_dt) O3

-I3

263 O3 O3 O3 -(1/Tacc)*I3

O3

264 O3 O3 O3 O3

-(1/ Tgyro)*I3];

265

266 G = [O3 O3 O3 O3;

267 -Rquat(states_pars.attitude) O3 O3 O3;

268 O3 -I3 O3 O3;

269 O3 O3 I3 O3;

270 O3 O3 O3 I3];

271

272 [Ad , Qd] = calc_Ad_and_Qd_using_van_Loan(A, G, Q, IMU_dt ,

62

3);

273

274 states_pars.P = Ad*states_pars.P*Ad’ + Qd;

275 else

276 if i_pos ~= 1

277 disp("No IMU data !")

278

279 states_gps.position(i_pos ,:) = states_gps.position(

i_pos -1,:);

280 states_gps.velocity(i_pos ,:) = states_gps.velocity(

i_pos -1,:);

281 states_gps.bias_acc(i_pos , :) = states_gps.bias_acc(

i_pos -1, :);

282 states_gps.bias_gyro(i_pos , :) = states_gps.bias_gyro(

i_pos -1, :);

283

284 states_pars.position(i_pos ,:) = states_pars.position(

i_pos -1,:);

285 states_pars.velocity(i_pos ,:) = states_pars.velocity(

i_pos -1,:);

286 states_pars.bias_acc(i_pos , :) = states_pars.bias_acc(

i_pos -1, :);

287 states_pars.bias_gyro(i_pos , :) = states_pars.bias_gyro

(i_pos -1, :);

288 end

289 end

290

291 % GNSS update

292 if t > gps(i_gps ,1)

293 K = states_gps.P*C’*inv(C*states_gps.P*C’ + R);

294 [x_ , y_ , z_] = llh2ecef(deg2rad(gps(i_gps ,3)), deg2rad(gps(

i_gps ,2)), gps(i_gps ,4));

295 error = [x_ y_ z_]’ + spoof_displacement - states_gps.

position(i_pos ,:) ’;

296

297 R_nb = R_en(deg2rad(states_gps.position_geo(i_pos -1,1)),

deg2rad(states_gps.position_geo(i_pos -1,2))) ’*Rquat(states_gps.

attitude);

298 ypr = rotm2eul(R_nb , ’ZYX’);

299 oo = [ypr(3) ypr (2) ypr (1)];

300 oo = rad2deg(oo);

301

302 states_gps.errors(i_pos ,1:3) = error ’;

303 states_gps.errors(i_pos ,4:6) = ssa(pixhawk(i_pixhawk ,2:end)

- oo, ’deg’) ’;

304 states_gps.errors(i_pos ,7) = norm(error);

305 states_gps.errors(i_pos ,8) = norm(states_gps.errors(i_pos

,4:6));

306

307

308 dx = K*error;

309 states_gps.error_states(i_gps ,1) = sqrt(sum(dx(1:3) .* dx

(1:3)));

310 states_gps.error_states(i_gps ,2) = sqrt(sum(dx(3:6) .* dx

(3:6)));

311 states_gps.error_states(i_gps ,3) = sqrt(sum(dx(6:9) .* dx

(6:9)));

63

312

313 states_gps.P = (eye (15) - K*C) * states_gps.P * (eye (15) -

K*C)’ + K*R*K’;

314

315 states_gps.error_bounds(i_gps ,1) = 3*sqrt(sum(diag(

states_gps.P(1:3 ,1:3)))) ’;

316 states_gps.error_bounds(i_gps ,2) = 3*sqrt(sum(diag(

states_gps.P(3:6 ,3:6)))) ’;

317 states_gps.error_bounds(i_gps ,3) = 3*sqrt(sum(diag(

states_gps.P(6:9 ,6:9)))) ’;

318

319 states_gps.position(i_pos ,:) = (states_gps.position(i_pos

,:) + dx(1:3) ’);

320 states_gps.velocity(i_pos ,:) = (states_gps.velocity(i_pos

,:) + dx(4:6) ’);

321

322 da = dx(7:9);

323

324 delta_q_hat = (1/(16 + da ’*da)) * [16 - da ’*da; 8*da];

325

326 if norm(da) > 4

327 delta_q_hat = -delta_q_hat;

328 end

329

330 states_gps.attitude = quatprod(states_gps.attitude ,

delta_q_hat);

331 states_gps.attitude = states_gps.attitude / norm(states_gps

.attitude);

332 states_gps.bias_acc(i_pos ,:) = (states_gps.bias_acc(i_pos

,:) + dx (10:12) ’);

333 states_gps.bias_gyro(i_pos ,:) = (states_gps.bias_gyro(i_pos

,:) + dx (13:15) ’);

334

335

336 G = [eye(3) zeros (3) zeros (3) zeros (3) zeros (3);

337 zeros (3) eye(3) zeros (3) zeros (3) zeros (3);

338 zeros (3) zeros (3) delta_q_hat (1)*eye(3)-Smtrx(

delta_q_hat (2:4)) zeros (3) zeros (3);

339 zeros (3) zeros (3) zeros (3) eye(3) zeros (3);

340 zeros (3) zeros (3) zeros (3) zeros (3) eye (3)];

341

342 states_gps.P = G*states_gps.P*G’;

343 i_gps = i_gps + 1;

344 end

345

346 % PARS update

347 if t > pars(i_pars ,1)

348 pars_t(pars_t_i) = t;

349 pars_t_i = pars_t_i + 1;

350

351 M_ = M(deg2rad(pars(i_pars ,2)), deg2rad(pars(i_pars ,3)),

pars(i_pars ,4));

352 R_pars = R_en(deg2rad (63.51559) , deg2rad (9.59171)) * M_ *

R_p * M_ ’ * R_en(deg2rad (63.51559) , deg2rad (9.59171))’;

353 K = states_pars.P*C’*inv(C*states_pars.P*C’ + R_pars);

354

355 pp = (base + R_en(deg2rad (63.51559) , deg2rad (9.59171))*

64

Vpars(deg2rad(pars(i_pars ,2)), deg2rad(pars(i_pars ,3)), pars(

i_pars ,4)))’;

356

357 x_ = pp(1);

358 y_ = pp(2);

359 z_ = pp(3);

360 [lon , lat , height] =ecef2llh(x_ , y_ , z_);

361 pars_raw_geo(i_pos ,:) = [rad2deg(lat) rad2deg(lon) height];

362 if t < first_sec + 600

363 [x_ , y_ , z_] = llh2ecef(deg2rad(gps(i_gps ,3)), deg2rad(

gps(i_gps ,2)), gps(i_gps ,4));

364 end

365

366 error = [x_ y_ z_]’ - states_pars.position(i_pos ,:) ’;

367

368 [x_ , y_ , z_] = llh2ecef(deg2rad(gps(i_gps ,3)), deg2rad(gps(

i_gps ,2)), gps(i_gps ,4));

369 error_g = states_pars.position(i_pos ,:)’ - [x_ y_ z_]’;

370

371 R_nb = R_en(deg2rad(states_pars.position_geo(i_pos -1,1)),

deg2rad(states_pars.position_geo(i_pos -1,2)))’*Rquat(

states_pars.attitude);

372 ypr = rotm2eul(R_nb , ’ZYX’);

373 rpy_ = [ypr(3) ypr(2) ypr (1)];

374 rpy_ = rad2deg(rpy_);

375

376 states_pars.errors(i_pos ,1:3) = error_g ’;

377 states_pars.errors(i_pos ,4:6) = ssa(rpy_ - pixhawk(

i_pixhawk ,2:end), ’deg’) ’;

378 states_pars.errors(i_pos ,7) = norm(error_g);

379 states_pars.errors(i_pos ,8) = norm(states_pars.errors(i_pos

,4:6));

380

381 dx = K*error;

382 states_pars.error_states(i_pars ,1) = sqrt(sum(dx(1:3) .* dx

(1:3)));

383 states_pars.error_states(i_pars ,2) = sqrt(sum(dx(3:6) .* dx

(3:6)));

384 states_pars.error_states(i_pars ,3) = sqrt(sum(dx(6:9) .* dx

(6:9)));

385

386 states_pars.P = (eye (15) - K*C) * states_pars.P * (eye (15)

- K*C)’ + K*R_pars*K’;

387

388 states_pars.error_bounds(i_pars ,1) = 3*sqrt(sum(diag(

states_pars.P(1:3 ,1:3))))’;

389 states_pars.error_bounds(i_pars ,2) = 3*sqrt(sum(diag(

states_pars.P(3:6 ,3:6))))’;

390 states_pars.error_bounds(i_pars ,3) = 3*sqrt(sum(diag(

states_pars.P(6:9 ,6:9))))’;

391

392 states_pars.position(i_pos ,:) = (states_pars.position(i_pos

,:) + dx(1:3) ’);

393 states_pars.velocity(i_pos ,:) = (states_pars.velocity(i_pos

,:) + dx(4:6) ’);

394

395 da = dx(7:9);

65

396

397 delta_q_hat = (1/(16 + da ’*da)) * [16 - da ’*da; 8*da];

398

399 if norm(da) > 4

400 delta_q_hat = -delta_q_hat;

401 end

402

403

404 states_pars.attitude = quatprod(states_pars.attitude ,

delta_q_hat);

405 states_pars.attitude = states_pars.attitude / norm(

states_pars.attitude);

406 states_pars.bias_acc(i_pos ,:) = (states_pars.bias_acc(i_pos

,:) + dx (10:12) ’);

407 states_pars.bias_gyro(i_pos ,:) = (states_pars.bias_gyro(

i_pos ,:) + dx (13:15) ’);

408

409

410 G = [eye(3) zeros (3) zeros (3) zeros (3) zeros (3);

411 zeros (3) eye(3) zeros (3) zeros (3) zeros (3);

412 zeros (3) zeros (3) delta_q_hat (1)*eye(3)-Smtrx(

delta_q_hat (2:4)) zeros (3) zeros (3);

413 zeros (3) zeros (3) zeros (3) eye(3) zeros (3);

414 zeros (3) zeros (3) zeros (3) zeros (3) eye (3)];

415

416 states_pars.P = G*states_pars.P*G’;

417 i_pars = i_pars + 1;

418 end

419

420

421

422 % Convert ECEF to geodetic

423 % For plotting and for R_en generation

424 [states_gps.position_geo(i_pos ,2), states_gps.position_geo(

i_pos ,1), states_gps.position_geo(i_pos ,3)] = ecef2llh(

states_gps.position(i_pos ,1), states_gps.position(i_pos ,2),

states_gps.position(i_pos ,3));

425 states_gps.position_geo(i_pos ,1:2) = rad2deg(states_gps.

position_geo(i_pos ,1:2));

426

427 [states_pars.position_geo(i_pos ,2), states_pars.position_geo(

i_pos ,1), states_pars.position_geo(i_pos ,3)] = ecef2llh(

states_pars.position(i_pos ,1), states_pars.position(i_pos ,2),

states_pars.position(i_pos ,3));

428 states_pars.position_geo(i_pos ,1:2) = rad2deg(states_pars.

position_geo(i_pos ,1:2));

429

430

431 % Log position difference

432 pos_diff(i_pos) = norm(states_gps.position(i_pos ,:) -

states_pars.position(i_pos ,:));

433

434 if t > first_sec + 800

435 if isnan(spoof_pos)

436 spoof_pos = states_gps.position_geo(i_pos ,:);

437 end

438 %spoof_displacement = spoof_displacement + [0.01 0 0]’;

66

439 end

440

441 % Log roll , pitch & yaw

442 % GPS

443 R_nb = R_en(deg2rad(states_gps.position_geo(i_pos ,1)), deg2rad(

states_gps.position_geo(i_pos ,2)))’*Rquat(states_gps.attitude);

444 ypr = rotm2eul(R_nb , ’ZYX’);

445 states_gps.rpy(i_pos ,:) = [ypr(3) ypr(2) ypr (1)];

446 states_gps.rpy(i_pos ,:) = rad2deg(states_gps.rpy(i_pos ,:));

447

448 if (states_gps.rpy(i_pos ,3) > 170 && states_gps.rpy(i_pos +1,3)

< -170) || (states_gps.rpy(i_pos ,3) < -170 && states_gps.rpy(

i_pos +1,3) > 170)

449 states_gps.rpy(i_pos ,3) = NaN;

450 end

451

452

453 % PARS

454 R_nb = R_en(deg2rad(states_pars.position_geo(i_pos ,1)), deg2rad

(states_pars.position_geo(i_pos ,2)))’*Rquat(states_pars.

attitude);

455 ypr = rotm2eul(R_nb , ’ZYX’);

456 states_pars.rpy(i_pos ,:) = [ypr (3) ypr(2) ypr(1)];

457 states_pars.rpy(i_pos ,:) = rad2deg(states_pars.rpy(i_pos ,:));

458

459 if (states_pars.rpy(i_pos ,3) > 170 && states_pars.rpy(i_pos

+1,3) < -170) || (states_pars.rpy(i_pos ,3) < -170 &&

states_pars.rpy(i_pos +1,3) > 170)

460 states_pars.rpy(i_pos ,3) = NaN;

461 end

462

463

464 % Log roll , pitch & yaw ground truth

465 if t > pixhawk(i_pixhawk ,1)

466 i_pixhawk = i_pixhawk + 1;

467 end

468 rpy_ref(i_pos ,:) = wrapTo180(pixhawk(i_pixhawk ,2: end));

469

470 sigma_guess = norm(diag(states_gps.P(1:3 ,1:3))) + norm(diag(

states_pars.P(1:3 ,1:3)));

471 delta = sigma_guess *2;

472 mu_guess = sigma_guess;

473

474 % Spoofing detection

475 if isnan(n_d)

476 s_(i_pos +1) = ((delta)/(sigma_guess ^2)) * (pos_diff(i_pos)

- mu_guess - delta /2);

477 S_(i_pos +1) = S_(i_pos) + s_(i_pos +1);

478 G_(i_pos +1) = max(G_(i_pos) + s_(i_pos +1), 0);

479 [o_ , nc] = min(S_);

480 nc_pos = states_gps.position_geo(nc ,:);

481 if G_(i_pos +1) > h

482 n_d = t;

483 detection_pos = states_gps.position_geo(i_pos ,:);

484 end

485 end

486

67

487

488

489 i_pos = i_pos + 1;

490 end

491

492 %% PLOTTING

493 close all;

494

495 states_gps.position_geo(states_gps.position_geo == [0 0 0]) = NaN;

496 states_pars.position_geo(states_pars.position_geo == [0 0 0]) = NaN

;

497

498 % Get rid of the vertical lines/jumps

499 % GPS

500 for i = 1:size(states_gps.rpy ,1) -1

501 if (states_gps.rpy(i,3) > 170 && states_gps.rpy(i+1,3) < -170)

|| (states_gps.rpy(i,3) < -170 && states_gps.rpy(i+1,3) > 170)

502 states_gps.rpy(i,3) = NaN;

503 end

504 end

505

506

507 % PARS

508 for i = 1:size(states_pars.rpy ,1) -1

509 if (states_pars.rpy(i,3) > 170 && states_pars.rpy(i+1,3) <

-170) || (states_pars.rpy(i,3) < -170 && states_pars.rpy(i+1,3)

> 170)

510 states_pars.rpy(i,3) = NaN;

511 end

512 end

513

514

515 % Pixhawk

516 for i = 1:size(rpy_ref ,1) -1

517 if (rpy_ref(i,3) > 170 && rpy_ref(i+1,3) < -170) || (rpy_ref(i

,3) < -170 && rpy_ref(i+1,3) > 170)

518 rpy_ref(i,3) = NaN;

519 end

520 end

521

522 states_pars.errors = rmmissing(states_pars.errors);

523 states_gps.errors = rmmissing(states_gps.errors);

524

525 p_m_roll = mean(states_pars.errors (:,4));

526 p_r_roll = sqrt(mean(states_pars.errors (:,4) .^2));

527 p_mae_roll = mean(abs(states_pars.errors (:,4)));

528

529 p_m_pitch = mean(states_pars.errors (:,5));

530 p_r_pitch = sqrt(mean(states_pars.errors (:,5) .^2));

531 p_mae_pitch = mean(abs(states_pars.errors (:,5)));

532

533 p_m_yaw = mean(states_pars.errors (:,6));

534 p_r_yaw = sqrt(mean(states_pars.errors (:,6) .^2));

535 p_mae_yaw = mean(abs(states_pars.errors (:,6)));

536

537 p_m_a = norm([p_m_roll p_m_pitch p_m_yaw]);

538 p_r_a = norm([p_r_roll p_r_pitch p_r_yaw]);

68

539 p_mae_a = norm([p_mae_roll p_mae_pitch p_mae_yaw]);

540

541 p_m_x = mean(states_pars.errors (:,1));

542 p_r_x = sqrt(mean(states_pars.errors (:,1) .^2));

543 p_mae_x = mean(abs(states_pars.errors (:,1)));

544

545 p_m_y = mean(states_pars.errors (:,2));

546 p_r_y = sqrt(mean(states_pars.errors (:,2) .^2));

547 p_mae_y = mean(abs(states_pars.errors (:,2)));

548

549 p_m_z = mean(states_pars.errors (:,3));

550 p_r_z = sqrt(mean(states_pars.errors (:,3) .^2));

551 p_mae_z = mean(abs(states_pars.errors (:,3)));

552

553 p_m_p = norm([p_m_x p_m_y p_m_z]);

554 p_r_p = norm([p_r_x p_r_y p_r_z]);

555 p_mae_p = norm([p_mae_x p_mae_y p_mae_z]);

556

557 % Plot CUSUM

558 figure ()

559 subplot (4,1,1);

560 plot ((1:1/ filter_rate :1.99+ sec)/60, pos_diff , ’color ’, colors (1,:))

;

561 grid on;

562 hold on;

563 xlabel(’t [min]’)

564 ylabel(’[m]’)

565 title(’Distance from GPS -aided position to PARS -aided position ’)

566 subplot (4,1,2);

567 subplot (4,1,2)

568 plot ((1:1/ filter_rate :1.99+ sec)/60, s_ , ’color’, colors (1,:))

569 grid on;

570 title(’s’)

571 xlim ([0 40])

572 subplot (4,1,3)

573 plot ((1:1/ filter_rate :1.99+ sec)/60, S_ , ’color’, colors (1,:))

574 grid on;

575 title(’S’)

576 xlim ([0 40])

577 subplot (4,1,4)

578 plot ((1:1/ filter_rate :1.99+ sec)/60, G_ , ’color’, colors (1,:))

579 grid on;

580 title(’G’)

581 hold on;

582 yline(h);

583 ylim ([0 h+100])

584 xlim ([0 40])

585

586 % Plot RPY

587 figure ()

588 subplot(3, 1, 1);

589 plot ((1:1/ filter_rate :1+ sec)/60, states_gps.rpy(1:i_pos -1,1), ’

color’, colors (1,:));

590 hold on;

591 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.rpy(1:i_pos -1,1), ’

color’, colors (2,:));

592 plot ((1:1/ filter_rate :1+ sec)/60, rpy_ref (1:i_pos -1,1), ’color ’,

69

colors (3,:));

593 legend(’gps’, ’pars’, ’ref’);

594 title(’Roll’);

595 ylabel(’[deg]’);

596 xlabel(’t [min]’);

597 grid on;

598 subplot(3, 1, 2);

599 plot ((1:1/ filter_rate :1+ sec)/60, states_gps.rpy(1:i_pos -1,2), ’

color’, colors (1,:));

600 hold on;

601 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.rpy(1:i_pos -1,2), ’

color’, colors (2,:));

602 plot ((1:1/ filter_rate :1+ sec)/60, rpy_ref (1:i_pos -1,2), ’color ’,

colors (3,:));

603 legend(’gps’, ’pars’, ’ref’);

604 title(’Pitch’);

605 ylabel(’[deg]’);

606 xlabel(’t [min]’);

607 grid on;

608 subplot(3, 1, 3);

609 plot ((1:1/ filter_rate :1+ sec)/60, states_gps.rpy(1:i_pos -1,3), ’

color’, colors (1,:));

610 hold on;

611 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.rpy(1:i_pos -1,3), ’

color’, colors (2,:));

612 plot ((1:1/ filter_rate :1+ sec)/60, rpy_ref (1:i_pos -1,3), ’color ’,

colors (3,:));

613 legend(’gps’, ’pars’, ’ref’);

614 title(’Yaw’);

615 ylabel(’[deg]’);

616 xlabel(’t [min]’);

617 grid on;

618

619 % 3D ECEF position

620 figure ()

621 plot3(states_gps.position (1:end -100 ,1), states_gps.position (1:end

-100 ,2), states_gps.position (1:end -100 ,3))

622 grid on; hold on

623 plot3(states_pars.position (1:end -100 ,1), states_pars.position (1:end

-100 ,2), states_pars.position (1:end -100 ,3))

624 xlabel(’x [m]’)

625 ylabel(’y [m]’)

626 zlabel(’z [m]’)

627

628 % GNSS Bias estimates

629 figure ()

630 subplot(2, 1, 1);

631 hold on;

632 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_acc (1:i_pos -1,1),

’color’, colors (1,:));

633 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_acc (1:i_pos -1,2),

’color’, colors (2,:));

634 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_acc (1:i_pos -1,3),

’color’, colors (3,:));

635 title(’b^b_{acc} (GNSS -aided)’);

636 legend(’x’, ’y’, ’z’);

637 ylabel(’[m/s^2]’)

70

638 xlabel(’t [min]’)

639 grid on;

640 subplot(2, 1, 2);

641 hold on;

642 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_gyro (1:i_pos -1,1)

, ’color’, colors (1,:));

643 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_gyro (1:i_pos -1,2)

, ’color’, colors (2,:));

644 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_gyro (1:i_pos -1,3)

, ’color’, colors (3,:));

645 title(’b^b_{ars} (GNSS -aided)’);

646 ylabel(’[rad]’)

647 xlabel(’t [min]’)

648 legend(’x’, ’y’, ’z’);

649 grid on;

650

651 % PARS Bias estimates

652 figure ()

653 subplot(2, 1, 1);

654 hold on;

655 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_acc (1:i_pos -1,1),

’color’, colors (1,:));

656 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_acc (1:i_pos -1,2),

’color’, colors (2,:));

657 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_acc (1:i_pos -1,3),

’color’, colors (3,:));

658 title(’b^b_{acc} (PARS -aided)’);

659 legend(’x’, ’y’, ’z’);

660 ylabel(’[m/s^2]’)

661 xlabel(’t [min]’)

662 grid on;

663 subplot(2, 1, 2);

664 hold on;

665 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_gyro (1:i_pos -1,1)

, ’color’, colors (1,:));

666 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_gyro (1:i_pos -1,2)

, ’color’, colors (2,:));

667 plot ((1:1/ filter_rate :1+ sec)/60, states_pars.bias_gyro (1:i_pos -1,3)

, ’color’, colors (3,:));

668 title(’b^b_{ars} (PARS -aided)’);

669 ylabel(’[rad]’)

670 xlabel(’t [min]’)

671 legend(’x’, ’y’, ’z’);

672 grid on;

673

674 % Geodetic (horizontal) position

675 figure ()

676 grid on;

677 hold on;

678 %plot(gps(1:i_gps ,3), gps(1:i_gps ,2), ’color ’, colors (1,:), ’marker

’, ’.’, ’linestyle ’, ’none ’); % all GPS points

679 %plot(gps (10:10: i_gps ,3), gps (10:10: i_gps ,2), ’color ’, colors (1,:),

’marker ’, ’.’, ’linestyle ’, ’none ’); % only the ones we ’re

using

680 %plot(pars_raw_geo (:,2), pars_raw_geo (:,1), ’color ’, colors (1,:), ’

marker ’, ’.’, ’linestyle ’, ’none ’);

681 plot(states_gps.position_geo (:,2), states_gps.position_geo (:,1), ’

71

color’, colors (1,:)); % GPS

682 plot(states_pars.position_geo (:,2), states_pars.position_geo (:,1),

’color’, colors (2,:)); % PARS

683 axis ([9.49 9.60 63.586 63.635]);

684 xlabel(’Longitude [deg]’)

685 ylabel(’Latitude [deg]’)

686 legend(’GNSSS -aided’, ’PARS -aided’)

B.2 gravity.m

1 function g_b_e = gravity(p_eb_e)

2 %p_eb_e2GRAVITY_ECEF - Calculates the gravity vector g_b^e of the

ECEF frame

3 %

4 % Input: p_eb_e Cartesian position decomposed in the ECEF frame

5 % Output: g_b_e Gravity vector g_b^e decomposed in the ECEF

frame

6 %

7 % Calculation based on Groves (2008) , Principles of GNSS , Inertial ,

and

8 % Multisensor Integrated Navigation Systems , Artech House

9

10 % Parameters

11 a = 6378137; % WGS84 equatorial radius in meters

12 mu = 3.986004418 e14; % WGS84 Earth gravitational constant

(m^3 s^-2)

13 J_2 = 1.082627e-3; % WGS84 Earth ’s second gravitational

constant

14 omega_ie = 7.292115e-5; % Earth ’s rotation rate (rad/s)

15

16 % Distance from the Earth ’s center

17 mag_r = norm(p_eb_e);

18 if mag_r > 0

19 z_scale = 5 * (p_eb_e (3) / mag_r)^2;

20 gamma = -mu / mag_r ^3 *(....

21 p_eb_e + 1.5 * J_2 * (a / mag_r)^2 *....

22 [.....

23 (1 - z_scale) * p_eb_e (1) ;...

24 (1 - z_scale) * p_eb_e (2) ;...

25 (3 - z_scale) * p_eb_e (3) ;....

26]);

27

28 g_b_e (1:2 ,1) = gamma (1:2) + omega_ie ^2 * p_eb_e (1:2);

29 g_b_e (3) = gamma (3);

30 else

31 g_b_e = [0;0;0];

32 end

B.3 van Loan.m

1 function [Phid , Qd] = van_Loan(F, G, Q, Ts, approx_order)

2 %CALC_PHId_AND_Qd_USING_VAN_LOAN Calulated the transition matirx

PHId and the discrete

3 %time process noise covariance Qd such that the covariance can be

4 %propagated using P[k] = Phid[k]*P[k-1]*Phid ’[k] + Qd[k]

72

5

6 dim_sys = size(F,1);

7 A = [-F G*Q*G’;

8 zeros(dim_sys) F’;

9]*Ts;

10 if nargin < 5

11 B = expm(A);

12 else

13 B = A^0;

14 for k = 1: approx_order

15 B = B + A^k/factorial(k);

16 end

17 end

18

19 dim_A = size(A,1);

20 range_Phid = dim_sys +1: dim_A;

21 range_Qd = 1: dim_sys;

22

23 Phid = B(range_Phid , range_Phid)’;

24 Qd = Phid*B(range_Qd , range_Phid);

25 end

73

Bibliography

Albrektsen, S. M., Bryne, T. H. & Johansen, T. A. (2018a), Phased array radio
system aided inertial navigation for unmanned aerial vehicles, in ‘2018 IEEE
Aerospace Conference’, pp. 1–11.

Albrektsen, S. M., Bryne, T. H. & Johansen, T. A. (2018b), Robust and se-
cure uav navigation using gnss, phased-array radio system and inertial sensor
fusion, in ‘2018 IEEE Conference on Control Technology and Applications
(CCTA)’, IEEE, pp. 1338–1345.

Arienzo, L. (2010), ‘Rf interference vulnerability assessment for gnss receivers’,
JRC Scientific and Technical Reports pp. 5–21.

Brouk, J. D. A. (2019), ‘Propagation of uncertainty through coning, sculling,
and scrolling corrections for inertial navigation’.

CH Robotics (2020), ‘Understanding euler angles’. [Online; accessed November
30, 2020].
URL: http://www.chrobotics.com/library/understanding-euler-angles

cybergalactic/Fossen (2020), ‘cybergalactic/mss: Marine systems simulator
(mss) - github’. [Online; accessed December 16, 2020].
URL: https://github.com/cybergalactic/MSS

Everything RF (2020), ‘What is a phased array antenna?’. [Online; accessed
November 30, 2020].
URL: https://cdn.everythingrf.com/live/
1593618423194 637292152227868404.png

Fossen, T. (2011), Handbook of Marine Craft Hydrodynamics and Motion Con-
trol.

Gao, G. X., Sgammini, M., Lu, M. & Kubo, N. (2016), ‘Protecting gnss receivers
from jamming and interference’, Proceedings of the IEEE 104(6), 1327–1338.

Giorgi, G., Teunissen, P. J., Verhagen, S. & Buist, P. J. (2010), ‘Testing a new

74

multivariate gnss carrier phase attitude determination method for remote
sensing platforms’, Advances in Space Research 46(2), 118 – 129. GNSS
Remote Sensing-1.
URL: http://www.sciencedirect.com/science/article/pii/S0273117710001419

Granjon, P. (2013), ‘The cusum algorithm - a small review’.

Groves, P. D. (2008), Principles of GNSS, Inertial, and Multi-sensor Integrated
Navigation Systems, Artech House, Inc.

Gryte, K. (2020), ‘Precision control of fixed-wing uav and robust navigation in
gnss-denied environments’.

Gustafsson, F. (2001), Adaptive Filtering and Change Detection, Wiley.

Herd, J. S. & Conway, M. D. (2015), ‘The evolution to modern phased array
architectures’, Proceedings of the IEEE 104(3), 519–529.

Leo Rover Docs (2020), ‘Accelerometer and gyroscope axes’. [Online; accessed
November 30, 2020].
URL: https://docs.leorover.tech/integrations/imu-module

Loan, C. (1978), ‘Computing integrals involving the matrix exponential’, Auto-
matic Control, IEEE Transactions on 23, 395 – 404.

Markley, L. (2003), ‘Attitude error representations for kalman filtering’, Journal
of Guidance Control and Dynamics - J GUID CONTROL DYNAM 26, 311–
317.

Markley, L. (2004), ‘Multiplicative vs. additive filtering for spacecraft attitude
determination’.

Misra, P. & Enge, P. (2011), Global Positioning System: Signals, Measurements,
and Performance, Ganga-Jamuna Press.
URL: https://books.google.no/books?id=5WJOywAACAAJ

Pinker, A. & Smith, C. (1999), ‘Vulnerability of the gps signal to jamming’,
GPS Solutions 3(2), 19–27.

Pixhawk (2020), ‘Pixhawk — the hardware standard for open-source autopilots’.
[Online; accessed December 17, 2020].
URL: https://pixhawk.org/

Schmidt, D., Radke, K., Camtepe, S., Foo, E. & Ren, M. (2016), ‘A survey and
analysis of the gnss spoofing threat and countermeasures’, ACM Computing
Surveys 48, 1–31.

Sensonor (2020), ‘Stim300’. [Online; accessed December 10, 2020].
URL: https://www.sensonor.com/products/inertial-measurement-
units/stim300/

Skywalker (2020), ‘Skywalker x8’. [Online; accessed December 10, 2020].
URL: http://skywalkermodel.com/en/76.html

75

Solà, J. (2017), ‘Quaternion kinematics for the error-state kalman filter’, CoRR
abs/1711.02508.
URL: http://arxiv.org/abs/1711.02508

Sollie, M., Bryne, T. & Johansen, T. (2019), Pose estimation of uavs based on
ins aided by two independent low-cost gnss receivers, pp. 1425–1435.

Subirana, J., Zornoza, J., Hernández-Pajares, M., Agency, E. S. & Fletcher, K.
(2013), GNSS Data Processing, number v. 1 in ‘ESA TM’, ESA Communica-
tions.
URL: https://books.google.no/books?id=RO8xngEACAAJ

Swaszek, P., Hartnett, R., Seals, K., Siciliano, J. & Swaszek, R. (2018), Limits
on gnss performance at high latitudes, pp. 160–176.

u-blox (2020), ‘Neo/lea-m8t series’. [Online; accessed December 17, 2020].
URL: https://www.u-blox.com/en/product/neolea-m8t-series

Wei, Y., Hong, T., Khelloufi, A., Ning, H. & Xiong, Q. (2019), ‘An application
research of kalman filter based algorithms in ecef coordinate system for
motion models of sensors’, Procedia Computer Science 147, 574 – 580. 2018
International Conference on Identification, Information and Knowledge in
the Internet of Things.
URL: http://www.sciencedirect.com/science/article/pii/S1877050919302339

Wikipedia (2020), ‘Earth-centered inertial’. [Online; accessed December 5,
2020].
URL: https://upload.wikimedia.org/wikipedia/commons/3/32
/Earth Centered Inertial Coordinate System.png

76

	Introduction
	Main contributions
	Outline of the report

	Background and Preliminaries
	Attitude and quaternions
	Notation
	Reference frames
	IMU
	GNSS
	GNSS vulnerabilities
	Phased Array Radio Systems
	Change detection
	Implementation
	Error-state filtering
	INS update
	GNSS/PARS update
	Spoofing detection

	Results
	Spoofing disabled
	Spoofing enabled

	Conclusion and Further Work

	Kalman Filter Derivation
	Code
	mekf_split.m
	gravity.m
	van_Loan.m

