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Summary
This Master’s thesis discusses the challenges of Unmanned Aerial Vehicle (UAV)
navigation in areaswhere jamming andother forms of radio frequency interference
may occur. Although the last few decades has seen several newGlobal Navigation
Satellite System flavors enter the realm of satellite navigation, the risk of operation
disruption due to interference is still considerable, and this motivates the inves-
tigation of alternative solutions. Many UAV operations are performed within a
predefined smaller area, and thus a system using relative positioning based on
Phased Array Radio System (PARS) devices is considered.

Positioning, however, only solves half the problem, as the vehicle’s orientation
must also be known. The orientation can be represented in several ways, and the
unit quaternion is chosen for this application. The vehicle’s pose is represented rel-
ative to the Earth-Centered Earth-Fixed (ECEF) frame, and an estimation method
using a Multiplicative Extended Kalman Filter (MEKF) is presented and imple-
mented. This method is tested on several existing datasets, and a new dataset is
generated during a field test at Breivika in May 2021. Some augmentations are
used, such as PARS measurement outlier rejection and cylindrical coordinates. A
height correction method for cylindrical coordinates is also developed and tested.
The filter is shown to work well with good data, and it is also shown that it can
produce good estimates despite short periods of aiding measurement downtime.
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Samandrag
Denne masteroppgåva diskuterer utfordringar ved bruk av ubemanna luftfartøy
(UAV) i områder med risiko for jamming og andre former for radiofrekvens-
forstyrringar. Sjølv omfleire nye satellittnavigasjonssystemhar entradenoperative
fasen er det framleis vanskeleg å sikre seg mot slike angrep, og dette motiverer
undersøkinga av alternative løysingar. Mange UAV-operasjonar gjerast innanfor
eit førehandsdefinert område, og derfor tek denne oppgåva føre seg eit system
som bruker relativ posisjonering basert på målingar frå fasestyrt radioutstyr.

Posisjonering løyser berrehalvpartenavproblemet, ettersomretninga til køyretøyet
òg må vere kjend. Retninga kan representerast på fleire måtar, og einingssk-
vaternionen er valgt for denne applikasjonen. Køyretøyet er representert i Earth-
Centered Earth-Fixed (ECEF)-ramma, og ein estimeringsmetode ved bruk av et
multiplikativt utvida Kalman-filter (MEKF) presenterast og implementerast som
del av denne oppgåva. Denne metoden er testa på fleire eksisterande datasett,
og eit nytt datassett er generert ved ein felttest ved Breivika i mai 2021. Eit par
forbetringar blir brukte, som avviksavvising av radiomålingane og sylindriske
koordinatar. Ein korrigeringsmetode for høgdemålingar er òg utvikla og testa.
Filteret viser seg å fungere bra med gode datasett, og det er vist at det kan gi gode
estimat til tross for korte periodar med nedetid for radiomålingane.
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1Introduction
Global Navigation Satellite System (GNSS) is a positioning and navigation system
with global coverage. Its properties make it possible for virtually unlimited users
to receive uninterrupted service, but these properties also leave the users vulner-
able to electromagnetic interference, such as jamming, spoofing and meaconing.
Newer GNSS receivers are able to filter out some forms of interference, but this
is dependent on the make and model of the receiver. The rise of autonomous
vehicles leads to an increasing demand for resilient and reliable navigation solu-
tions, and this demand forms the motivation for this thesis. The jamming threat
is becoming increasingly problematic, and as an example, the last few years have
seen Norwegian medical helicopters being disturbed by jammers on several occa-
sions. (Adresseavisen, 2021), (Aftenposten, 2019)

Systems such as Global Positioning System (GPS) and Global Navigation Satellite
System (GLONASS) are expensive, and some properties such as global coverage
are difficult, if not impossible, to reproduce without creating yet another Global
Navigation Satellite System. Therefore, resources are being spent on investigating
ways to achieve reliable navigation and positioningwithout relying on GNSS. This
thesis focuses on the use of Phased Array Radio System devices’ range and angle
estimates to produce an alternative position measurement, and its viability as an
auxiliary sensor in case of GNSS outages.

Position estimation can be achieved with several different methods and technolo-
gies. Cameras (Mourikis and Roumeliotis, 2007) are a viable solution, and key
features in the surrounding terrain can be tracked in order to estimate the UAV’s
movement. The initial position must be given to the system, but such a system
requires no further information from a base station, which is very desirable. How-
ever, there are many factors that can impact the performance of such navigation
solutions, like lighting conditions and visual terrain properties. For example, some
areas have very few terrain features that stand out, such as flat sand dunes. Other
areas, like the ocean, may have features such as waves or sea spray, but these are
moving and might distort the navigation system’s conception of movement. Elec-
tromagnetic waves are popular for wireless communication, and Ultra-Wideband
(UWB)-based systems (Mahfouz et al., 2008) can be used for positioning with high
accuracy. Systems of this type are typically used for indoor positioning and other
short-range applications, and are not well suited for UAV flights due to their short
range.

PARS-based positioning has several merits compared to the other technologies
mentioned above. It is independent of lighting conditions, and can operate at
long ranges. It requires constant connection to a base station, and the use of radio

1



2 CHAPTER 1. INTRODUCTION

waves make it susceptible to jamming (albeit less so than GNSS). It could also
be argued that PARS devices’ primary function, which is communication, make
up for this to some extent by eliminating the need for a separate communication
system. PARS-based positioning is thus quite convenient. That said, there are still
a few challenges related to PARS-based positioning, such as the susceptibility to
reflections, which is prominent when flying over water or near large buildings.
It also requires radio line-of-sight, which means that the base stations must be
appropriately placed. (Gryte et al., 2019)

This subject has been a focus area recently, with Kristoffer Gryte’s doctoral thesis
(Gryte, 2020) being the most notable example. It also includes the implementation
and testing of an Multiplicative Extended Kalman Filter (MEKF), and some of the
data sets used in this project have originally been recorded by Gryte. Sollie et al.
(2019) includes an Earth-Centered Earth-Fixed (ECEF)-based MEKF implementa-
tion, just like this report. However, the focus of that thesis is more towards pose
estimation using multiple receivers. ECEF is chosen because it coincides with the
output of GNSS receivers and is not inherently affected by the roundness of the
Earth. Albrektsen et al. (2018) should also be mentioned, where position and at-
titude estimation is achieved using separate nonlinear observers for translational
and angularmotion. This thesis uses anMEKF, because it couples the position and
orientation such that the heading can be estimated without a dedicated heading
sensor. Note that this comes at a cost, namely increased computational footprint
and the lack of proven stability conditions. (Gryte, 2020)

1.1 Main contributions

This thesis builds on my specialization project (Vågsether, 2020). The following
contributions are made:

• The navigation system from Vågsether (2020) is implemented in DUNE and
modified to suit live flight operations. Various improvements such as Angu-
lar Rate Sensor (ARS) calibration and PARS measurement outlier rejection is
added.

• The navigation system is tested with prerecorded data from flights at Raud-
stein, Orkland municipality and Udduvoll, Melhus/Trondheim municipal-
ity.

• A flight test is performed at Breivika, Orkland municipality, and the naviga-
tion system is tested with data from that flight.

• A height error compensation method for barometer-aided cylindrical PARS
positioning over long distances is developed and evaluated using data from
the Raudstein flight.
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1.2 Outline of this thesis

Chapter 2 consists of the theoretical background for this thesis, from the proper-
ties of quaternions to the vulnerabilities of GNSS to electromagnetic interference.
Section 2.2 gives an overview of important symbols and characters. Chapter 3
sets the theory in perspective, explaining how it is used to form the basis of a
Multiplicative Extended Kalman Filter (MEKF). The implementation is run and
evaluated in Chapter 4, and Chapter 5 recounts the most important results and
gives suggestions on further steps. Finally, Appendix A contains a brief derivation
of a standard Kalman filter.

Parts of this thesis are based on my specialization project (Vågsether, 2020), and
the beginnings and ends of these parts will be marked with the symbols † and ††,
respectively.

†The following text is based on (Vågsether, 2020)
††The above text is based on (Vågsether, 2020)





2Background and Preliminaries
2.1 Attitude and quaternions

The term "Navigation" can be defined as "The process or activity of accurately
ascertaining one’s position and planning and following a route". (lexico.com,
2021) This is a good definition, but it fails to highlight that many applications
require determining one’s orientation too. Airborne vehicles consume a great deal
of energy just to stay in the air, and they are fully responsible for controlling their
own orientation. Cars or ships on the other hand are to some extent restricted
by the surrounding terrain or water. Orientation is described as the rotation
relative to some reference point, and it can be in one or several dimensions. The
rotation of a physical object in a global context requires the use of 3 dimensions,
which can be complicated. There are severalways to represent a three-dimensional
rotation, eachwithdifferent properties. Someof these representations have glaring
disadvantages, which complicate their use further. † The group of all 3D rotations
is called SO(3). Members of SO(3) can be described using 3x3 rotation matrices.
Thesematrices are not particularly intuitive or compact as a formof representation,
but they have a few properties that make them easier to work with than arbitrary
matrices. The most important ones are:

X) = X−1 (2.1a)
X)X = XX) = O3 (2.1b)

detX = 1 (2.1c)

More compact representations are often used, such as Euler angles or the angle-
axis representation. Euler angles are used in this reportmainly to describe rotation
relative to the North-East-Down (NED) reference frame, following the ZYX con-
vention. This representation involves the roll, pitch and yaw angles (see Figure
2.1), and are converted to a rotation matrix using the following formula (Fossen,
2011):

X(), �,#) = XI(#)XH(�)XG()) (2.2)

with ), �, # being the rotation about the x, y and z axis, respectively. The
rotation matrix subscript indicates which axis the rotation is performed around.
This is an intuitive representation, but it comes at a cost, such as the added risk
of gimbal lock and singularities. It is also not particularly straightforward to
determine the difference between two rotations, and this is where quaternions
come in. Quaternions havemade quite an impact on the world of spatial rotations,
despite their reputation of being difficult to understand. A quaternion is a complex

†The following text is based on (Vågsether, 2020)
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6 CHAPTER 2. BACKGROUND AND PRELIMINARIES

number with one real and three imaginary components:

& = 0 + 18 + 2 9 + 3: (2.3)

with coefficients {0, 1, 2, 3} ∈ R and imaginary unit numbers {8 , 9 , :}. The latter
3 coefficients are often grouped together in a vector qE = (1, 2, 3). The remaining
coefficient, 0, is typically denoted @F . These two components are combined to
form a 4-element vector q:

q =

[
@F
qE

]
=


@F
@G
@H
@I

 (2.4)

The concept of multiplication exists for quaternions, associated with the ⊗ opera-
tor (Solà, 2017):

q ⊗ r =

[
@FAF − q)E rE

@FrE + AFqE + qE × rE

]
(2.5)

This can also be written in matrix form:

q ⊗ r = [q]!r = (@FO +
[

0 −q)E
qE Y(qE)

]
)r (2.6)

q ⊗ r = [r]'q = (AFO +
[

0 −r)E
rE −Y(rE)

]
)q (2.7)

In order to describe 3D rotations with quaternions, we have to constrain the norm:

|q | = @2
F + @2

G + @2
H + @2

I = 1 (2.8)

This is called a unit quaternion, and all quaternions discussed in this report fall
under this category. The conjugate of a quaternion is defined (Solà, 2017):

(q)∗ =
[
@F
−qE

]
=


@F
−@G
−@H
−@I

 (2.9)

For unit quaternions, the following relationships hold:

(q ⊗ r)∗ = r∗ ⊗ q∗ (2.10)

(q)∗ ⊗ q =

[
1
03

]
(2.11)[

1
03

]
⊗ q = q (2.12)

We also have the following relationship for the time derivative of a quaternion:
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¤q = 1
2q ⊗

[
0
8

]
(2.13)

where 8 is the the angular rate vector in the local frame defined by q. (Solà,
2017) Differences between unit quaternions can be calculated in several ways,
some listed in Markley (2003). In this report the four times Modified Rodrigues
Parameters (MRP) method will be used exclusively. Differences can be injected
into quaternions, not through the use of addition, but multiplication:

q = r ⊗ �q (2.14)

where �q is the error between the quaternions q and r . The error quaternion is
calculated using the four times MRP method given in Markley (2003):

�q(�)) = 1
16 + �))�)

[
16 − �))�)

8�)

]
(2.15)

The following formula fromSolà (2017) is used to calculate the incremental rotation
quaternion from the Angular Rate Sensor (ARS) using the angular rate 8 and the
sample period )B :

q(8, )B) =


cos
(
)B |8 |

2

)
8
|8 | sin

(
)B |8 |

2

) (2.16)

Aquaternion canbe rotatedwith this angular rate by taking thequaternionproduct
of the original quaternion and q(8, )B). Finally, a rotationmatrix can be computed
from a quaternion through the following formula (Fossen, 2011):

X(q) = O3 + 2@FY(qE) + 2Y(qE)2 (2.17)

with Y(·) denoting the skew symmetric matrix operator:

(
©­«

G

H

I

ª®¬ =


0 −I H

I 0 −G
−H G 0

 (2.18)

†† The skew symmetricmatrix operator has a fewuseful properties, such as Y(v)E =
0. This is shown below:

Y
©­«

G

H

I

ª®¬

G

H

I

 =


0 −I H

I 0 −G
−H G 0



G

H

I

 =

HI − HI
GI − GI
GH − GH

 =

0
0
0

 (2.19)

Also, the product Y(a)b can be written as S(b)a, as shown below:

††The above text is based on (Vågsether, 2020)
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Y
©­«

01
02
03

ª®¬

11
12
13

 =


0 −03 02
03 0 −01
−02 01 0



11
12
13

 =

−0312 + 0213
0311 − 0113
−0211 + 0112

 (2.20a)

−Y ©­«

11
12
13

ª®¬

01
02
03

 = −


0 −13 12
13 0 −11
−12 11 0



01
02
03

 =

−0312 + 0213
0311 − 0113
−0211 + 0112

 (2.20b)



2.2. NOTATION 9

2.2 Notation
†Table 2.1 describes symbols and operator used in this thesis.

Table 2.1: Reserved symbols and operators.

Symbol Explanation
p0
12

The vector from 1 to 2, decomposed in the {0} frame.
Used to express positions.

v0
12

The velocity of 2 relative 1, decomposed in the {0} frame.
q0
12

A quaternion representation of the rotation of 2 relative
1, decomposed in the {0} frame. @0

12,F
is the real/scalar

part, q0
12,E

is the imaginary/vector part.
f 0
12
, a0

12
The specific force and acceleration of 2 relative 1, decom-
posed in the {0} frame.

g 4 Gravitational acceleration vector, decomposed in ECEF.
80
12

The angular rate of 2 relative 1, decomposed in the {0}
frame.

b0022 , b00AB Accelerometer and Angular Rate Sensor biases, decom-
posed in the {0} frame.

W ,X,V Process noise, measurement noise and estimate covari-
ance matrix.

V−, V+ A priori and a posteriori (before and after correction) es-
timate covariance matrix.

Ψ, 
 PARS azimuth and elevation.
), �, # Roll, pitch, yaw angles.
), �, ℎ Latitude, longitude, height (WGS84).
¤G Thefirst timederivative of G. Twodots indicate the second

time derivative, and so on.
Ĝ An estimate or prediction of G.
x A vector.
^ A matrix.
X4= A rotation matrix, such that p4

41
= X4=p=41 .

?8 The 8th element of the p vector.
%8 9 The element corresponding to the 8th row, 9th column of

the matrix V.
ln(·), 4 · The natural logarithm and exponential operator.
�, �, �2 Mean, standard deviation and variance.
⊗ Quaternion product
Y(·) Skew-symmetric matrix operator
E[·] Expectation operator
�· Error state.
� Zero-mean Gaussian noise.

†The text below is based on (Vågsether, 2020)



10 CHAPTER 2. BACKGROUND AND PRELIMINARIES

2.3 Reference frames

The use of reference frames is vital when developing navigation systems. The
application is of great importance, and while a spacecraft might need to use an
advanced coordinate system such asECI, an agricultural robot candowith a simple
base station-centered NED-based frame. Vectors and angles can be decomposed
in different frames, expressed by the superscript notation. The following frames
are used in this report:

Body frame

The {1} (body) frame is centered at the UAV’s center of gravity andmoves with the
origin coincides with the {<} frame, but its axes are rotated such that the G axis
points towards the front of the vehicle and the I axis points downwards. The {1}
frame is equal to the NED frame in the event of 0 ◦ roll, pitch and yaw, shown in
Figure 2.1. The terms "body frame" and "{1} frame" will be used interchangeably
throughout this report, and both refer to the UAV-centered reference frame unless
another device is specified. The {8} frame will also be used, which is the inertial
frame.

Radio (base station) frame

Two different body frames will be used, the {1} frame (for the UAV) and the {A}
frame (for the PARS base station). The {A} frame is similarly defined, with the G
axis pointing out of the front of the base station antenna, coinciding with the 0 ◦
elevation and azimuth axis.

Figure 2.1: An aircraft model with its body axes drawn in. (NASA, 2006)
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Z

Y

X

North

East
Down

ecef

ecef

ecef

)

�
Equator

Figure 2.2: The ECEF (blue) and NED (green) frames.

Measurement frame

The {<} (measurement) frame is the frame in which the vehicle’s movement is
measured. The {<} frame is centered at the body frame’s origin, but rotated such
that the vector w1 = X1<w< . The measurement frame in this project will be set
to match the frame of the Inertial Measurement Unit (IMU), and thus the rotation
matrix X1< depends on how the IMU is mounted on the vehicle.

ECEF frame

The {4} (Earth-Centered Earth-Fixed) frame is centered at the Earth’s core and
rotates with the Earth. The G axis points towards the point where the equator
meets the prime meridian, and the I axis points upwards through the geographic
North Pole. The H axis is perpendicular to these axes, such that the cross product
of the G axis and the H axis is the I axis (following the right hand rule). The ECEF
frame is shown in blue in Figure 2.2.

ECI frame

The Earth-Centered Inertial (ECI) frame is nearly identical to the ECEF frame, but
it does not rotate with the Earth. Instead, the G axis is fixed in the direction of the
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vernal equinox. It is useful for satellites and spacecraft, and it will not be used in
this report.

NED frame

The {=} (North-East-Down) frame is centered at the UAV, but its G, H and I axes
are always pointing towards North, East and Down, respectively. Some sources
refer to the ENU frame. (Wei et al., 2019); (Giorgi et al., 2010) This is just a flipped
version of the NED frame, and they serve the same purpose for all applications.
The NED frame is shown in green in Figure 2.2.

Geodetic representation

In contrast to the other frames, the geodetic "frame" is not quite a frame, but a
spherical coordinate system given in relation to the Cartesian ECEF frame. The
height component is given in relation to the ellipsoid model. The zero latitude,
zero longitude axis coincides with ECEF’s G axis. The latitude-longitude-height
convention is commonly used, due to its readability for humans. However, it is
only used as amiddle ground between ECEF andNED in this report. The position
vector is specified in Cartesian ECEF coordinates. (Misra and Enge, 2011)

Conversions

The use of several reference frames requires the knowledge of how to translate
between them. This report uses the WGS84 standard, and a few conversions are
recounted below, taken from Fossen (2011). Conversion from NED to ECEF is
simple, and only requires a rotation matrix:

X4=(),�) =

− sin) cos� − sin� − cos) cos�
− sin) sin� cos� − cos) sin�

cos) 0 − sin)

 (2.21)

Where ) is the latitude, � is the longitude of the NED frame’s origin. The inverse
operation canbe carriedout by simply transposing thematrix. Conversionbetween
ECEF and geodetic representation are not as simple. The steps are given in Fossen
(2011), and are revisited below. The ECEF coordinates corresponding to a geodetic
position can be calculated directly:

G ← (# + ℎ) cos()) cos(�) (2.22a)
H ← (# + ℎ) cos()) sin(�) (2.22b)

I ←
(
A2
?

A2
4

# + ℎ
)

sin()) (2.22c)
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with A4 = 6378137 m and A? = 6356752.314245 m being the WGS84 ellipsoid’s
semimajor and semiminor axis, respectively. # is calculated as a function of these
values and the latitude:

# ← A2
4√

A2
4 cos())2 + A2

? sin())2
(2.23)

The reverse operation is done using an iterative scheme. The first three steps are
done only once:

�← arctan
( H
G

)
(2.24a)

? ←
√
G2 + H2 (2.24b)

4 ←
√

1 − (A?/A4)2 (2.24c)

In addition, a preliminary value for the latitude is found:

)← arctan
(

I

?(1 − 42)

)
(2.25)

The rest is the iterative part, and the following steps are reiterated until � is lower
than some error tolerance limit. This project’s implementation uses the Marine
Systems Simulator (MSS) (cybergalactic/Fossen, 2020) MATLAB library, where
this tolerance limit is set to 1e-10.

# ← A2
4√

A2
4 cos())2 + A2

? sin())2
(2.26a)

ℎ ←
?

cos()) − # (2.26b)

)0 ← ) (2.26c)

)← arctan
(

I

?(1 − 42#/(# + ℎ))

)
(2.26d)

�← |) − )0 | (2.26e)
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2.4 IMU

An Inertial Measurement Unit (IMU) is often used for navigational purposes, as it
supplies information on the sensor’s movement relative to the inertial frame (ECI).
Mounting the sensor on a vehicle means that the sensor will move and rotate with
the vehicle, and as such we can use the sensor to inform us about the vehicle’s
movement. This is called strapdown navigation. IMUs consist of an accelerome-
ter and an Angular Rate Sensor (ARS), the former measuring the sensor’s linear
specific force and the latter measuring the sensor’s angular velocity. Integrating
these measurements enables us to get an estimate of the sensor’s position, but it is
trivial to see that this position will be local, or relative to the initial position. These
IMU-based position estimates are subject to drift due to the bias and noise proper-
ties of the sensors, and an additional system, such as GNSS, is often employed to
mitigate this. GNSS can not be considered a replacement for IMUs, as IMUs are
high rate sensors with a different role.

Accelerometers measure linear specific force, which is a measure of acceleration
in relation to free fall. This means that an accelerometer at rest will measure about
9.81 m/s2 due to the force exerted on the vehicle by the ground. The accelerometer
measurements are

f < = f <
81
+ b<022 + 9<022 (2.27)

such that 91022 is zero mean Gaussian noise and b1022 is bias term, treated as a
first-order Gauss-Markov model:

¤b1022 = −Z−1
022b

1
022 +w (2.28)

where Z022 = )022O3 is a time constant and w is a white noise process. (J. Rus-
sell Carpenter, 2018) Angular Rate Sensors measure the sensor’s angular motion
in rad/s, and the measurements follow a corresponding model

8< = 8<
81
+ b<0AB + 9<0AB (2.29)

with corresponding error term and bias

¤b10AB = −)−1
0ABb

1
0AB +w (2.30)

with bias time constant Z0AB = )0ABO3. (Gryte, 2020)
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2.5 Barometers

A barometer is a device that measures the ambient air pressure. The ambient
air pressure decreases with increasing distance from Earth’s surface, and thus
a barometer can be used to estimate one’s height. The ambient air pressure is
impacted by other atmospheric conditions, and thus a barometer is often calibrated
against a reference station on the ground. The following model is used to find the
height ℎ1 as a function of the instantaneous air pressure ?1 :

ℎ1(?1) =
)B

:)


(
?1

?B

)− ' )60
− 1

 + ℎB (2.31)

where ?B and )B represent the surface pressure and temperature at the geodetic
height ℎB . The other constants, ', 60 and :) are the gas constant (287.1 Jkg−1K−1),
the average surface acceleration (9.80665 ms−2) and the atmospheric temperature
gradient (6.5e-3 Km−1), respectively. (Groves, 2008)

2.6 GNSS

GlobalNavigation Satellite System (GNSS) is a type of system that utilizes satellites
in known orbits around the Earth in order to provide navigation services. Its most
famous variant, GPS, has been in service for 25 years (Full Operating Capability
(FOC) declared on 17 July 1995 (Subirana et al., 2013)) and is still being developed
and improved, with the Block III satellites scheduled to be put into orbit by the end
of 2023. While GPS is an American invention, its Russian and Chinese counter-
parts, GLONASS and BeiDou, have been in development for several decades. In
addition, the European Space Agency (ESA) is developing a fourth system called
Galileo. Each system also includes a ground segment, a set of ground stations
tasked with monitoring and ensuring that the satellites are functioning correctly.

The basic principle of GNSS is the transmission of a carrier wave from each of
the satellites. This carrier is modulated with a repeating sequence, like a code or
a message, such that the receiver can lock on to the signal and retrieve data from
the message. The message contains a timestamp from the satellite’s internal clock,
and it allows the receiver to tell when the message was sent. The pseudorange
is a term reserved for the estimated geometric distance from the satellite to the
receiver, based on the estimated time of flight. The pseudorange equation can be
found in Misra and Enge (2011) and has several components:

� = A + 2(�CD − �CB) + �� + )� + �� (2.32)

Where

• � is the pseudorange
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• A is the true geometric range

• 2 is the speed of light

• �CD is the receiver’s clock error

• �CB is the satellite’s clock error

• �� is the ionospheric delay

• )� is the troposheric delay

• �� is reserved for other error sources, such as multipath and receiver noise

A GNSS receiver can use pseudoranges from four satellites to estimate its own
position through trilateration. This means that the satellite and the receiver has a
one-way type of communication, and the number of users that can be served by
a group of satellites at a given point in time is theoretically limitless. This also
means that the receiver does not need transmission capabilities, which leads to
low complexity, power consumption and cost. The global coverage of the space
segment (satellite network) of today’s GNSS systems makes the use of receivers
convenient, easy and fairly accurate outside of high latitude areas. (Swaszek et al.,
2018) GNSS yields the receiver’s position in ECEF, (or geodetic after converting
from ECEF) and as a result of this, the measurement does not need conversion
when used with an ECEF-based navigation system.

2.7 GNSS vulnerabilities

GNSS’ convenience and ease of use comes at a price. The low receiver signal at
the receiver makes it an easy target for intentional destructive interference such
as jamming, spoofing and meaconing. Jamming is the most simple form, and
it can be done in several ways. The topic of jamming GPS receivers is nothing
new (Pinker and Smith, 1999), while other systems currently lack research on this
area. The effectiveness depends on the receiver, and some receivers are reported
to be quite resilient against some types of jamming. Jamming leads to loss of lock,
and the receiver typically will not be able to get a fix until the jamming ends or the
receiver exits the jamming equipment’s effective area.

Spoofing is a more sophisticated strategy, but it is very complicated compared
to jamming. A successful spoofing attack involves capturing the victim receiver’s
lock and fooling it to generate false position estimates. Pulling off such an attack
requires large computing power, and there are several reasons for an attempt to
fail, as listed in Schmidt et al. (2016). A few of the major points are recounted:

• The receiver’s Automatic Gain Control (AGC) may notice an abrupt increase
in the received signal power. This could cause loss of lock and alert the
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receiver about the existence of a malicious signal source. The spoofing
signal’s received power must be estimated and controlled, and this requires
knowledge about the victim’s position.

• The spoofer might not be able to tell whether the victim receiver has locked
on to the spoofing signal or not, and it is possible for the receiver to lock on
to the legitimate signal while the spoofing signal is being transmitted.

• Many vehicles have compasses as an auxiliary heading sensor, and a dif-
ference between the compass and the satellite-aided navigation computer
might alert a human operator to the possibility of spoofing. A human op-
erator might also notice that the movement on the map does not match
the movement outside the windows, but this is not as likely for vehicles at
high altitude or at sea. In any case, these considerations are less critical in
unmanned applications.

• The navigation message relayed by the GNSS signal contains information
about the satellites’ orbital parameters, and this enables the receiver to cal-
culate each satellite’s approximate position several hours ahead in time.
Depending on the receiver’s complexity, a spoofer might have to simulate
the entire constellation in order so as not to send a fake signal from a satellite
that is not really in sight from the victim. The spoofer can generate its own
virtual constellation and transmit a fake navigation message, but this will
also require simulation.

Meaconing is a third alternative, and in a sense, it is a simple form of spoofing.
Meaconing is the capture and retransmission of GNSS signals, and this results in
the victim believing to be in the same position as the meaconer. This happens
because the meaconer retransmits the signals exactly as they were received, and
since they are now all coming from the same source, the relative arrival times will
be unchanged when they arrive at the victim receiver. This method is thus signifi-
cantly simpler, but less useful than other forms of spoofing. However, a successful
spoofing operation on an unknowing victim remains little short of herculean, and
Schmidt’s survey describes GNSS spoofing as a future (i.e. not a current) threat.

Radio interference will typically lead to a drop in the receiver’s carrier-to-noise
ratio (C/N0), and this can be used to detect an active malicious agent. There are
ways to protect a receiver from interference such that it is able to obtain a valid
fix while the interference source is active. One way is to couple the receiver with
a navigation system, much like what is done in this report. Another approach is
spatial filtering. An aircraft can use phased-array antennas to attenuate signals
coming from below, making it harder for a jammer to capture the lock of the
aircraft’s receiver. (Gao et al., 2016)
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2.8 Phased Array Radio Systems

APhasedArray Radio System is a type of radio system utilizingmultiple antennas
in order to achieve directionality. The basic principle is that electromagnetic waves
travel at the speed of light, and two receivers will receive the signal at different
times given that there is a distance between them. With an appropriate and known
signal frequency and distance between the receivers, the signal’s originating di-
rection can be determined. The delay will present itself as a phase offset, and the
principle can be reversed to electronically steer the signal beam, achieving spatial
directionality without using directional antenna elements. This notion of steering
is often referred to as beamsteering. This eliminates the need for mechanically
steered parabolic antennas, and thus eliminates the need for motor maintenance.
A phased array system can stay in contact with several units in different directions
without losing directional gain, which is another advantage over traditional me-
chanically steered directional antennas. The use of PARS has a few drawbacks,
like increased cost and complexity. Also, a phased array is designed to work
on a specific frequency, since the distance between the elements depend on the
wavelength. As such, a PARS system must stay in its intended (and fairly limited)
frequency range in order to function correctly. (Herd and Conway, 2015)

The estimated direction can be utilized together with an estimate of the distance,
obtained through methods such as the Round-trip time (RTT). These three values
form a spherical coordinate system and are enough to determine a remote device’s
position relative to a base station.

PARS-based positioning - Spherical coordinates

PARS devices can output the distance, elevation and azimuth angle from the base
station to the remote device. Hence, for these variables to be used for positioning,
the base station’s position and orientation needs to be known in order to compute
the absolute position. The calculations presented in this and the next subsection
is based on Gryte (2020). For this project the base’s roll angle is assumed to be
zero. Each measurement is subjected to a zero mean Gaussian noise component
(gathered in the column vector 9B):

3 = 3D + �3 (2.33a)
Ψ = ΨD + �Ψ (2.33b)

 = 
D + �
 (2.33c)
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Figure 2.3: A phased array antenna, illustrating its beamsteering capabilities. The
blue boxes represent the phase shifting mechanism.

where ·D is the true value and �· is the noise. The measurement-based vector from
the base to the UAV (decomposed in the {A} frame) is

pA
A1,B

= 3


cos(Ψ) cos(
)
sin(Ψ) cos(
)
− sin(
)

 (2.34)

with the distance 3, the azimuth angleΨ and the elevation angle 
. The {A} frame
will typically be rotated in relation to the base station’s NED frame. Assuming an
angle of 0 ◦ for roll, the vector from the base to the UAV (now decomposed in the
base station’s NED frame) is

p=
A1,B

= 3


cos(Ψ +ΨA) cos(
 + 
A)
sin(Ψ +ΨA) cos(
 + 
A)

− sin(
 + 
A)

 (2.35)

where 
A , ΨA denote the base station’s elevation and azimuth, respectively. A
non-zero roll angle requires the use of a rotation matrix:

p=
A1,B

= X=A(ΦA , 
A ,ΨA)pAA1,B (2.36)

Which relates to the UAV’s position:

p4
41,B

= p44A + X4=()A ,�A)p=A1,B (2.37)

Note that the base station (not the UAV)’s position is used when computing X4= .
Also, the assumption that the base station is level (zero roll angle) is made. This is
a reasonable assumption, since there is nothing to gain from having a non-zero roll
angle. However, zero roll angle may not always be obtainable. The assumption is
only valid for stationary antennas, and a vehicle-mounted base station will have to
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take the roll angle into account. In addition, the measurement covariance matrix
X?0AB,B must be mapped to ECEF coordinates from the spherical measurements.

X=
?0AB,B = SB(3,Ψ, 
)X?0AB,BS)

B (3,Ψ, 
) (2.38)

where the SB matrix is the linearization about 9B = 0:

SB =
%p=

A1,B

%9B

�����
9B=0

(2.39a)

SB =


%3 cos(Ψ) cos(
)

%�3

%3 cos(Ψ) cos(
)
%�Ψ

%3 cos(Ψ) cos(
)
%�


%3 sin(Ψ) cos(
)
%�3

%3 sin(Ψ) cos(
)
%�Ψ

%3 sin(Ψ) cos(
)
%�


−%3 sin(
)
%�3

−%3 sin(
)
%�Ψ

−%3 sin(
)
%�



�����
9B=0

(2.39b)

SB =


cos(Ψ) cos(
) −3 sin(Ψ) cos(
) −3 cos(Ψ) sin(
)
sin(Ψ) cos(
) 3 cos(Ψ) cos(
) −3 sin(Ψ) sin(
)
− sin(
) 0 −3 cos(
)

 (2.39c)

Finally, it must be rotated to the ECEF frame.

X4
?0AB,B = X4=()A ,�A)SB(3,Ψ, 
)X?0AB,BS)

B (3,Ψ, 
)X=4()A ,�A) (2.40)

††

PARS-based positioning - Cylindrical coordinates

Due to ground reflections, the elevation angle is the least reliable of the PARS
devices’ threemeasurement variables, and the use of a barometer (using the theory
from Section 2.5), GNSS receiver or similar height sensor can improve the quality
of the output significantly. Similar to the other variables, the height measurement
is subjected to noise:

ℎ = −ℎD + �ℎ (2.41)

The range measurement, in combination with the height over the base station, can
be used to calculate the horizontal (in the North-East plane) distance 36 between
the base station and the UAV:

36 =
√
32 − ℎ2 =

√
(3D + �3)2 − (−ℎD + �ℎ)2 (2.42)

We start by looking at the position of the UAV relative to the radio coordinate
system as with spherical coordindates:

pA
A1,2

=


36 cos(Ψ)
36 sin(Ψ)

ℎ

 (2.43)

††The text above is based on (Vågsether, 2020)
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Note the negative third element, since height is positive upwards. This method of
calculation makes an additional assumption, namely that the base station is level
(zero pitch angle). The base station’s yaw angle ΨA is simply added to find the
vector decomposed in the NED frame:

p=
A1,2

=


36 cos(Ψ +ΨA)
36 sin(Ψ +ΨA)

ℎ

 (2.44)

The cylindrical measurement covariance matrix also needs to undergo a similarity
transform. The cylindrical covariancemappingmatrixS2 is calculated in a similar
manner.

92 =
[
�3 �Ψ �ℎ

]) (2.45)

S2 =
%p=

A1,2

%92

�����
92=0

(2.46a)

S2 =


%36 cos(Ψ)

%�3

%36 cos(Ψ)
%�Ψ

%36 cos(Ψ)
%�ℎ

%36 sin(Ψ)
%�3

%36 sin(Ψ)
%�Ψ

%36 sin(Ψ)
%�ℎ

%ℎ
%�3

%ℎ
%�Ψ

%ℎ
%�ℎ


�����
92=0

(2.46b)

S2 =


3 cos(Ψ)
36

−36 sin(Ψ) −ℎD cos(Ψ)
36

3 sin(Ψ)
36

36 cos(Ψ) − ℎD sin(Ψ)
36

0 0 1

 (2.46c)

using
3

3G

√
(G + 21)2 + (22 + 23)2 =

(G + 21)√
(G + 21)2 + (22 + 23)2

(2.47)

This leaves:

X4
?0AB,2 = X4=()A ,�A)S2(3, 36 ,Ψ, ℎ)X?0AB,2S)

2 (3, 36 ,Ψ, ℎ)X=4()A ,�A) (2.48)

Height correction

The use of cylindrical coordinates comes with a major drawback, which manifests
itself at long distances. The assumption that the Earth is flat is made, whichmeans
that the base station’s 0 ◦ elevation plane always is the same height above the
ellipsoid. This is not true due to the curvature of the Earth. The error introduced
by this assumption is negligible for short distance flights, but as shown in Figure
2.4, the height offset will increase with the distance from the base station. It
will propagate into the horizontal range, since the height and range is used for
this calculation. However, the effect is typically much smaller on this variable,
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H’

h’ h

H

Figure 2.4: The effects of the flat Earth assumption when using cylindrical coordi-
nates. The actual drone is drawn in black, the measured drone is drawn in grey.
The base station believes that the drone is higher than it actually is. The shapes
and sizes are distorted/exaggerated for clarity.

given that the height usually is significantly smaller than the horizontal range. A
range-dependent height error like this is very undesirable if one is to use several
PARS ground stations, since this will in practice lead to different height offsets for
each ground station. It is therefore desirable to cancel the height error. It can be
calculated using the base and UAV’s Cartesian coordinates. Let ?4

8
and ?4

9
be the

Cartesian position of the base and UAV, respectively. The angle � between the two
vector can be found using the following formula:

� = arccos
(p44A)) · p441
| |p44A | | · | |p441 | |

(2.49)

Knowing the angle and the distance from the ECEF system’s origin (the center of
the Earth), the error � can be calculated. The angle �, while describing the angular
distance between the two vectors, also describes the angular distance between the
base’sNED frame and the drone’sNED frame. The error� is defined as the vertical
(in the base’s NED frame) component of the displacement required to move an
object from the base’s 0 deg elevation plane to the same height above the geoid (or
ellipsoid, depending on the height measurement and model) as the base station.
This displacement must happen strictly downwards, i.e. along the NED frame’s
Down axis. Note that this translation is only applied to the height component, the
range and azimuth measurables are unchanged. A right angled triangle is formed
between the ECEF origin, the intersection between the base’s height sphere and
the UAV’s position vector ?4

9
, and the projection of ?4

9
onto ?4

8
. The length of the

aforementioned projection is A cos �, with A = | |p44A | |. The height error � is found
as a difference:

� = A − A cos � = A(1 − cos �) (2.50)

which is inserted into the height equation, leading to a new height and horizontal
range:

ℎ′ = −ℎD + � + �ℎ (2.51)

3′6 =
√
32 − (ℎ′)2 =

√
(3D + �3)2 − (−ℎD + � + �ℎ)2 (2.52)
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A geometric illustration of (2.50) is shown in Figure 2.5. In conclusion, the PARS
measurement can be corrected as such:

p=
A1,2,corr =


3′6 cos(Ψ +ΨA)
3′6 sin(Ψ +ΨA)

ℎ′

 (2.53)

with the following relationship to ECEF coordinates:

p4
41,2,corr = p44A + X4=()A ,�A)p=A1,2,corr (2.54)

Just like in the uncorrected cylindrical case the (corrected) height must be incor-
porated in the covariance matrix:

S2,corr =


3 cos(Ψ)
36

−36 sin(Ψ) (−ℎD+�) cos(Ψ)
36

3 sin(Ψ)
36

36 cos(Ψ) (−ℎD+�) sin(Ψ)
36

0 0 1

 (2.55)

X4
?0AB,2,corr = X4=()A ,�A)S2,corr(3, 36 ,Ψ, ℎ)X?0AB,2S)

2,corr(3, 36 ,Ψ, ℎ)X=4()A ,�A)
(2.56)
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Figure 2.5: The effects of the flat Earth assumption when using cylindrical coor-
dinates. The base station believes that the drone is higher than it actually is. The
shapes and sizes are distorted/exaggerated for clarity.



3Implementation
This chapter discusses the implementation of the navigation system. The equations
that form the basis for the filter are presented and reiterated, and some of the most
central relationships are derived. Familiarity with Kalman filtering is assumed,
but a brief derivation of the standard Kalman filter is given in Appendix A. The
calibration and outlier rejection methods are presented, before an introduction to
some of themore specialized software and hardware components is given. Finally,
the practical aspects of the test setup are discussed. The nominal and error state
and input noise vectors are given: †

x̂ =


p̂4
41

v̂4
41

q̂4
41

b̂1022
b̂10AB


(3.1)

�x̂ =



�p̂4
41

�v̂4
41

�)̂

�b̂1022
�b̂10AB


(3.2)

9 =


91022
910AB
91
1,022

91
1,0AB

 (3.3)

We have the process and system noise covariance matricesW2 and V, correspond-
ing to the error state vector.

W2 =


22
022 0 0 0
0 22

0AB 0 0
0 0 22

1,022
0

0 0 0 22
1,0AB

 (3.4)

V =


%?O3 03 03 03 03
03 %EO3 03 03 03
03 03 %�O3 03 03
03 03 03 %1,022O3 03
03 03 03 03 %1,0ABO3


(3.5)

†The following text is based on (Vågsether, 2020)

25
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We also have the measurement noise covariance matrix X, the latter of which
depends on the measurement form chosen from Section 2.8. Quaternions do not
have the same rules as other attitude representations, and the residual between
two quaternions is calculated through multiplication, not subtraction. Note that
an alternative additive scheme exists (Markley, 2004), but that is considered out
of scope for this project. A Multiplicative Extended Kalman Filter (MEKF), also
known as an error-state Kalman Filter, is often better suited than a standard EKF
when dealing with quaternions, due to these properties. The steps of an MEKF
are similar to an EKF, but the attitude gets special treatment. The PARS update
step also estimates the error states, which are then injected into the nominal states.
The error states propagate with the following equations:

� ¤̂x = G2�x̂ + H29 (3.6)

Corresponding to the following matrices (derived in Section 3.4):

G2 =


03 O3 03 03 03
03 03 −X41Y( f 181) −X41 03
03 03 −Y(81

81
) 03 −O3

03 03 03 −Z−1
022 03

03 03 03 03 −Z−1
0AB


(3.7a)

H2 =


03 03 03 03
−X41 03 03 03

03 −O3 03 03
03 03 O3 03
03 03 03 O3


(3.7b)

3.1 INS update

The INS update step is run on the arrival of every IMU measurement, and this is
where the local movement of the drone is estimated. Every IMU measurement
contains two 3D vectors, the accelerometer ( f <

81
) and Angular Rate Sensor (ARS)

(8<
81
)measurements. The INSupdate step is run once for every IMUmeasurement,

and thus there is no need for averaging like inVågsether (2020). Themeasurements
must be rotated from the {<} frame to the body frame:

f 1
81
= X1< f <

81
(3.8a)

81
81
= X1<8

<
81

(3.8b)

WhereX1< is the rotationmatrix from the {<} frame to thebody frame. Thismatrix
must be known in advance, and depends on how the IMU has been mounted on
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the vehicle. The biases are decomposed in the body frame, and can be subtracted
once the rotation has been performed:

f̂ 1
81
← X1< f̂ <

81
− b̂1022 (3.9a)

8̂1
81
← X1< 8̂<

81
− b̂10AB (3.9b)

Next, we calculate the acceleration in the ECEF frame:

â4
41
← X41 f̂ 181 + g 4 (3.10)

where X41 is calculated using (2.17). The assumption that the {4} and {8} frames
are static in relation to each other is made, this assumption will be made several
times in this report. The gravity vector g 4 is calculated as a function of the ECEF
position. The formula is found in Groves (2008) and reiterated below. Note that
the notation has been altered to match this report.

$4
41
= −

�

|p4
41
|3

©­­«p441 +
3
2 �2

'2
0

|p4
41
|2


(1 − 5(?4

41,I
/|p4

41
|)2)?4

41,G

(1 − 5(?4
41,I
/|p4

41
|)2)?4

41,H

(1 − 5(?4
41,I
/|p4

41
|)2)?4

41,I


ª®®¬ (3.11a)

g 4 = $4
41
+ $2

84


1 0 0
0 1 0
0 0 0

 p441 (3.11b)

with '0 = 6378137 m, � = 3.986004418e14 m3s−2, �2 = 1.082627e-3 m3s−2 and
$84 = 7.292115e-5 rad/s denoting the WGS84 equatorial radius, Earth’s first and
second gravitational constant and rotation rate, respectively. Next, the estimates
are updated:

p̂4
41
← p4

41
+ )5 v̂441 +

)2
5

2 â4
41

(3.12a)

v̂4
41
← v̂4

41
+ )5 â441 (3.12b)

The estimated angular rate is inserted into (2.16):

q̂4
41
← q̂4

41
⊗


cos

(
|)5 8̂1

81
|

2

)
8̂1
81

|8̂1
81
| sin

(
|)5 8̂1

81
|

2

) (3.13)

The bias estimates are updated using a first order approximation of the Gauss-
Markov model (Section 2.4):

b̂1022 ← (O3 − )5Z−1
022)b̂1022 (3.14a)

b̂10AB ← (O3 − )5Z−1
6HA>)b̂10AB (3.14b)
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Now that the nominal states have been updated, V is next:

V− ← G3V+G)3 +W3 (3.15)

Note that V corresponds to the error states, not the nominal states. The error
states are discussed in the next section. G3 and W3 can be obtained through
discretizing their continuous counterparts. One discretization method is van
Loan’s method (Loan, 1978), a popular alternative for time-varying systems. The
matrices G2 and H2 from (3.7) are inserted into a matrix L . The process noise
matrix W2 is also required:

L ←
[
−G2 H2W2H)2

0 G)2

]
)5 (3.16)

Next, 4L is approximated through the use of Taylor expansion:

4L ← O + L + L2

2! +
L3

3! + ... (3.17)

Third order approximation is deemed precise enough for this application. The
result contains the following submatrices:

4L =

[
· G−1

3
W3

0 G)
3

]
(3.18)

G3 is extracted from the result, and W3 is recovered as such:

W3 ← G3G−1
3
W3 (3.19)

3.2 PARS update

The PARS update is run each time a PARSmeasurement arrives. Themeasurement
y4
41
, is equal to p4

41
from Section 2.8, depending on which measurement type is

chosen. X is equal to X4
?0AB from the same section. We start by calculating the

Kalman gain, error state vector and new covariance matrix, like in Appendix A:

Q = V−I)(IV−I) + X)−1 (3.20a)

�x̂ = Q(y4
41
− p̂4

41
) (3.20b)

V+ = (O= − QI)V−(O= − QI)) + QXQ) (3.20c)

Note that X will have to be calculated each time it is used, given by (2.40). Recall
that �x̂ is a 15-vector consisting of the following 3-vectors:

�x̂ =



�p̂4
41

�v̂4
41

�)̂

�b̂1022
�b̂10AB


(3.21)
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We inject the error state into nominal position and velocity estimate:

p̂4
41
← p̂4

41
+ �p̂4

41
(3.22a)

v̂4
41
← v̂4

41
+ �v̂4

41
(3.22b)

The attitude estimate is corrected, using (2.15):

�q̂4
41
(�)̂) = 1

16 + �)̂)�)̂

[
16 − �)̂)�)̂

8�)̂

]
(3.23a)

q̂4
41
← q̂4

41
⊗ �q̂4

41
(�)̂) (3.23b)

Note that the error quaternion �q̂4
81
will have to be replaced by its shadow set (mul-

tiplied by -1) if the attitude error exceeds 180 degrees. This condition corresponds
to the norm of �)̂ exceeding 4. Next, we update the bias estimates:

b1022 ← b1022 + �b1022 (3.24a)

b10AB ← b10AB + �b10AB (3.24b)

Finally, the error state vector and covariance matrix are reset:

�x̂ ← 0 (3.25a)

V+ ← M(�q̂4
41
)V+M)(�q̂4

41
) (3.25b)

where M is a 15x15 matrix (Solà, 2017):

M =


O3 03 03 03 03
03 O3 03 03 03
03 03 � @̂4

41,F
O3 − Y(�q̂4

41,E
) 03 03

03 03 03 O3 03
03 03 03 03 O3


(3.26)

This concludes the PARS update step of the (error state) Multiplicative Extended
Kalman Filter (MEKF). The full algorithm is shown in Figure 3.1. ††

††The above text is based on (Vågsether, 2020)
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Figure 3.1: The algorithm, summarized.
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3.3 Calibration and outlier rejection

Inspired by Gryte (2020), ARS calibration is added. This is run for 30 seconds at
the start of each run, and neither the INS update nor the PARS update is run until
the calibration is done. The steps are reiterated:

X0AB ← �2
0ABO3 ≈ W0AB/)5 (3.27a)

I0AB ←
[
03 03 03 03 O3

]
(3.27b)

Next, the initial measurement update steps (i.e. (3.20)) are run with y being the
actual ARSmeasurement and p̂ being b̂10AB , before finally (3.24b) is run. PARS Out-
lier rejection is also added, using the same "2 test as Gryte (2020). The equations
are reiterated:

) = (p4
41,?0AB

− p̂4
41
))(IV−I) + X)−1(p4

41,?0AB
− p̂4

41
) (3.28)

If ) is greater than some threshold, corresponding to a "2 distribution with three
degrees of freedom, the measurement is discarded. This is done to keep the
navigation system from being misled by stray outliers and burst reflection mea-
surements.
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3.4 Derivations

Some of the rows in the system G2 and input noise H2 matrices are trivial, so only
the rows pertaining to the velocity and angle error will be presented here. These
derivations are given in Gryte (2020), and reiterated in slightly different words
here.

3.4.1 Velocity

The true velocity is given as the sum of the estimate and the error:

v4
41
= v̂4

41
+ �v4

41
(3.29)

¤v4
41
= ¤̂v4

41
+ � ¤v4

41
(3.30)

¤v4
41
= a4

41
= f 4

41
+ g 4 (3.31)

= X41 f 141 + g 4 (3.32)

Using f 1
41,8<D

= f 1
41
+ b1022 + �b1022 + �1022 , the equation above can be written as such:

= X41( f 141,8<D − b1022,8=B − �b
1
022 − �1022) + g 4 (3.33)

¤̂v4
41
= X̂41( f 141,8<D − b1022,8=B) + ĝ 4 (3.34)

�b1022 and �1022 are assumed to be zero. X41 is the true attitude-dependent rotation
matrix. It can be described as a product:

X41 = X̂41X(�a) (3.35)

The error rotation matrix can be approximated using the skew operator:

X(�a) ≈ O3 + Y(�a) (3.36)

� ¤v4
41
= X̂41X(�a)( f 141,8<D − b1022,8=B − �b

1
022 − �1022) + g 4 − X̂41( f 141,8<D − b1022,8=B) − ĝ 4

(3.37)
We assume that the gravity vector is perfectly approximated (ĝ 4 = g 4 ).

� ¤v4
41
= X̂41X(�a)( f̂ 141 − �b

1
022 − �1022) − X̂41( f̂ 141) (3.38)

� ¤v4
41
= X̂41( f̂ 141 − �b

1
022 − �1022) + X̂41Y(�a)( f̂ 141 − �b

1
022 − �1022) − X̂41( f̂ 141) (3.39)
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� ¤v4
41
= −X̂41�b1022 − X̂41�

1
022 + X̂41Y(�a) f̂ 141 − X̂41Y(�a)�b1022 − X̂41Y(�a)�1022 (3.40)

We apply (2.20):

� ¤v4
41
= −X̂41(�b1022 + �1022) − X̂41Y( f̂ 141)�a − X̂41Y(�a)(�b1022 + �1022) (3.41)

� ¤v4
41
= −X̂41Y( f̂ 141)�a − X̂41(�b1022 + �1022) (3.42)

Finally, we linearize with respect to �a and �b1022 about the point where both are
equal to zero:

� ¤v4
41
≈X̂41(−�1022) +

%� ¤v4
41

%�a

�����
�a=�b1022=03

�a +
%� ¤v4

41

%�b1022

�����
�a=�b1022=03

�b1022 (3.43)

� ¤v4
41
≈ −X̂41Y( f̂ )�a − X̂41(�b + �1022) (3.44)

A change of notation yields:

� ¤v4
41
≈ −X̂41Y( f 1=1)�) − X̂41�b1022 − X41�

1
022 (3.45)

3.4.2 Attitude

The true quaternion is the quaternion product of the estimated quaternion and
the error quaternion. The error quaternion is found by premultiplying both sides
by the estimated quaternion’s conjugate.

q4
41
= q̂4

41
⊗ �q4

41
(3.46)

(q̂4
41
)∗ ⊗ q4

41
= (q̂4

41
)∗ ⊗ (q̂4

41
) ⊗ �q4

41
(3.47)

�q4
41
= (q̂4

41
)∗ ⊗ q4

41
(3.48)

The product rule is applied:

� ¤q4
41
= ( ¤̂q4

41
)∗ ⊗ q4

41
+ (q̂4

41
)∗ ⊗ ¤q4

41
(3.49)

The true angular rate is a sum of the estimate, bias and error terms.

81
81
= 8̂1

81
− �b10AB − 910AB (3.50)

Equation (2.13) is used to find the derivative of both the true and estimated quater-
nion:

¤q4
41
=

1
2q

4
41
⊗

[
0

8̂1
81
− �b10AB − �10AB

]
(3.51)
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¤̂q4
41
=

1
2 q̂

4
41
⊗

[
0

8̂1
81

]
(3.52)

Equations (2.10) and (2.9) are applied to (3.52):

( ¤̂q4
41
)∗ = 1

2

[
0
−8̂1

81

]
⊗ (q̂4

41
)∗ (3.53)

Equation (3.49) is rewritten using (3.51)-(3.53):

� ¤q4
41
=

1
2

[
0
−8̂1

81

]
⊗ (q̂4

41
)∗ ⊗ q4

41
+ 1

2 (q̂
4
41
)∗ ⊗ q4

41
⊗

[
0

8̂1
81
− �b10AB − 910AB

]
(3.54)

Next, we insert (3.48):

� ¤q4
41
= −1

2

[
0

8̂1
81

]
⊗ �q4

41
+ 1

2 �q
4
41
⊗

[
0

8̂1
81
− �b10AB − 910AB

]
(3.55)

We define a new variable, �8, such that

81
81
= 8̂1

81
+ �8 = 8̂1

81
− �b10AB − 910AB (3.56)

Equations (2.6) and (2.7) are used to rewrite (3.55) with �8:

� ¤q4
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= −1

2

[
0

8̂1
81

]
!

�q4
41
+ 1

2

[
0

8̂1
81
+ �8
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'
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41

(3.57)

� ¤q4
41
=

1
2

[
0 −�8)

�8 −Y(�8) − 2Y(8̂1
81
)

]
�q4

41
(3.58)

We split the differentiated quaternion into its scalar and vector parts:

� ¤@F = −
1
2 (�8)

)�qE (3.59)

� ¤@E =
1
2 (�@F�8 − Y(�8)�qE − 2Y(8̂1

81
)�qE) (3.60)

Moving on, we know from Markley (2003) that

�a = 4�a<A? = 4
�qE

1 + �@F
(3.61)

and differentiating � ¤a<A? gives us

� ¤a<A? =
� ¤qE

1 + �@F
−

� ¤@F�qE
(1 + �@F)2

(3.62)

We insert (3.59) and (3.60) for the derivatives:

� ¤a<A? =
1
2 (�@F�8 − Y(�8)�qE − 2Y(8̂1

81
)�qE)

1 + �@F
+

1
2 ((�8))�qE)�qE
(1 + �@F)2

(3.63)
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� ¤a<A? =
1
2
�@F�8

1 + �@F

− 1
2Y(�8)a<A?

− Y(�8̂1
81
)a<A?

+ 1
2 (�8

)�a<A?)�a<A? (3.64)

We use the following relationship

1 − �a)<A?a<A? =
1 + 2�@F + (�@F)2 − (�qE))�qE

(1 + �@F)2

=
2�@F + 2(�@F)2
(1 + �@F)2

=
2�@F(1 + �@F)
(1 + �@F)2

=
2�@F

1 + �@F
(3.65)

and apply it to the first term of (3.64), leaving us with the following expression for
� ¤a<A? :

� ¤a<A? =
1
4 (1 − �a

)
<A?a<A?)�8

− 1
2Y(�8)a<A?

− Y(�8̂1
81
)a<A?

+ 1
2 (�8

)�a<A?)�a<A? (3.66)

Finally, we linearize with respect to �a<A? and �8:

� ¤a<A? ≈ 0 +
%� ¤a<A?
%�a<A?

�����
�a<A?=�8=03

�a<A? +
%� ¤a<A?
%�8

�����
�a<A?=�8=03

�8

� ¤a<A? ≈ −Y(�8̂1
81
)�a<A? +

1
4 �8 (3.67)

� ¤a = 4� ¤a<A? ≈ −4�a<A?Y(�8̂1
81
) + �8

� ¤a ≈ −�aY(�8̂1
81
) − �b10AB − 910AB (3.68)

In different notation, this becomes:

� ¤) = −Y(81
=1
)�) − O3�b10AB − 910AB (3.69)
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3.5 STIM300

The STIM300 is a Micro-Electro-Mechanical Systems (MEMS)-based Inertial Mea-
surement Unit (IMU), developed by Sensonor AS of Horten, Norway. It has an
Angular Rate Sensor (ARS), accelerometer and inclinometer (the latter not used
in this project), all with three orthogonal axes. The STIM300 uses an RS422 port
for power and data transfer, and can be connected to a general purpose computer
using a RS422 to split USB type A cable, where one USB connector is for power and
the other is for data transfer or configuration. When powered and connected to a
GNU/Linux system, the device will show up as a standard USB device file, typi-
cally /dev/ttyUSB0. The device file can be accessed by using a serial terminal such
as minicom or picocom. One thing to note about the use of these terminals is that
the device expresses line breaks using the carriage return chatacter (’\r’, <CR>).
This character does not break lines on Linux platforms, but the line feed/new-
line character(’\n’, <LF>) does. These two characters infamously cause confusion
when transferring files between Windows and Unix/Linux-based systems, since
Windows requires both to express a line break. In contrast, Unix/Linux only needs
a newline character to express a line break, but this means that picocom needs the
-imap (whichmaps incoming characters) flag in order to display the response from
the sensor properly. (linux.die.net, 2018)

The commandused to access thedevice issudo picocom -imap crcrlf -b 1000000

/dev/ttyUSB0. The -b argument accepts the baud rate in symbols per second. The
STIM300 uses one device file for both configuration and data transfer, and starts in
NormalMode (data transfermode), whichmeans that the terminalwill immediately
be flooded with what looks like random characters. This is the measurement data,
and the configuration menu can be accessed by writing SERVICEMODE and hitting
the Enter key. This might take a few tries. If it does not work after 10 attempts,
the baud rate might be incorrect. For this device, the baud rate will typically be
set to one of 377400, 460800, 921600 or 1843200, but user-defined rates in the 1500
to 5184000 range are also available. The specific unit used for this project is set to
921600, hence the -b 1000000 flag. Entering Service Modewill cause the "random"
characters to stop flooding the terminal, and one may issue commands to the unit.
Writing i and hitting Enter will show the current configuration parameters. The
parameters for the specific unit used for the Breivika field test are shown in listing
3.1. Some fields to pay attention are the output units, sample rate (lines 5-8), data-
gram content (line 50) and bit rate (line 52).

The output units are set using the u command, followed by a space, the type
of sensor, a comma and the output unit. The output unit which has different
options depending on the type of sensor. For example, typing u g,8 and hitting
Enter will set the gyro/ARS to output the angular rate in the INCREMENTAL ANGLE
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- DELAYED format. The m command sets the sample rate, and m 1 sets it to 250
samples per second. The datagram content is configured using the d command,
which specifies what kind of sensor data to send when the device is in Normal
Mode. The datagram has a few fixed fields, which cannot be disabled. These are
the ID, angle rate, counter, latency and CRC fields. Other enabled fields will be
placed between the angle rate and the counter field. The d command is also used
to set the line termination. As an example, the d 3,1 command will enable the
following datagram contents: ID, rate, acceleration, inclination, counter, latency,
CRC. In addition, it will enable <CR><LF> line termination. Finally, t sets the bit
rate. t 921600 sets the bit rate to 921600 bits per second, and t f,999325 sets it
to a user-defined rate of 999325 bits per second. (Sensonor, 2021)
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Listing 3.1: STIM300 configuration
1 SERIAL NUMBER = N25581808518268

2 PRODUCT = STIM300

3 PART NUMBER = 84507-440000-321 REV G

4 FW CONFIG = SWD12046 REV 9

5 GYRO OUTPUT UNIT = [/sample] - INCREMENTAL ANGLE DELAYED

6 ACCELEROMETER OUTPUT UNIT = [m/s/sample] - INCREMENTAL VELOCITY

7 INCLINOMETER OUTPUT UNIT = [m/s/sample] - INCREMENTAL VELOCITY

8 SAMPLE RATE [samples/s] = 250

9 GYRO CONFIG = XYZ

10 ACCELEROMETER CONFIG = XYZ

11 INCLINOMETER CONFIG = XYZ

12 GYRO RANGE:

13 X-AXIS: 400/s

14 Y-AXIS: 400/s

15 Z-AXIS: 400/s

16 ACCELEROMETER RANGE:

17 X-AXIS: 10g

18 Y-AXIS: 10g

19 Z-AXIS: 10g

20 INCLINOMETER RANGE:

21 X-AXIS: 1.7g

22 Y-AXIS: 1.7g

23 Z-AXIS: 1.7g

24 AUX RANGE: 2.5V

25 GYRO LP FILTER -3dB FREQUENCY , X-AXIS [Hz] = 262

26 GYRO LP FILTER -3dB FREQUENCY , Y-AXIS [Hz] = 262

27 GYRO LP FILTER -3dB FREQUENCY , Z-AXIS [Hz] = 262

28 ACCELEROMETER LP FILTER -3dB FREQUENCY , X-AXIS [Hz] = 262

29 ACCELEROMETER LP FILTER -3dB FREQUENCY , Y-AXIS [Hz] = 262

30 ACCELEROMETER LP FILTER -3dB FREQUENCY , Z-AXIS [Hz] = 262

31 INCLINOMETER LP FILTER -3dB FREQUENCY , X-AXIS [Hz] = 262

32 INCLINOMETER LP FILTER -3dB FREQUENCY , Y-AXIS [Hz] = 262

33 INCLINOMETER LP FILTER -3dB FREQUENCY , Z-AXIS [Hz] = 262

34 AUX LP FILTER -3dB FREQUENCY [Hz] = 262

35 AUX COMP COEFF: A = 1.0000000e+00, B = 0.0000000e+00

36 GYRO G-COMPENSATION:

37 BIAS SOURCE, X-AXIS = ACC

38 BIAS G-COMP LP-FILTER, X-AXIS = ON

39 SCALE SOURCE, X-AXIS = ACC

40 SCALE G-COMP LP-FILTER, X-AXIS = ON

41 BIAS SOURCE, Y-AXIS = ACC

42 BIAS G-COMP LP-FILTER, Y-AXIS = ON

43 SCALE SOURCE, Y-AXIS = ACC

44 SCALE G-COMP LP-FILTER, Y-AXIS = ON

45 BIAS SOURCE, Z-AXIS = ACC

46 BIAS G-COMP LP-FILTER, Z-AXIS = ON

47 SCALE SOURCE, Z-AXIS = ACC

48 SCALE G-COMP LP-FILTER, Z-AXIS = ON

49 G-COMPENSATION LP FILTER = 0.010 HZ

50 DATAGRAM = RATE, ACCELERATION , INCLINATION

51 DATAGRAM TERMINATION = <CR><LF>

52 BIT-RATE [bits/s] = 999325

53 DATA LENGTH = 8

54 STOP-BITS = 1
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55 PARITY = NONE

56 LINE TERMINATION = ON
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3.6 Sentiboard

The Sentiboard is a sensor interfacing PCB with a timestamping resolution of 10
ns, capable of supporting up to 8 sensors at once. It comes with three Universal
Asynchronous Receiver-Transmitter (UART), two Serial Peripheral Interface (SPI),
one RS422 and two RS232 ports. The Sentiboard is developed by Senti Systems AS,
which is a spinoff from the Department of Engineering Cybernetics at NTNU. The
Sentiboardacts asmiddlemanbetween the sensors and theOdroid, delivering sam-
ples with accurate timestamps. The Sentiboard creates two serial ports on the host
computer, one for configuration and another for data transfer. The configuration
can be accessed using a serial port-intended terminal emulator such as picocom or
minicom. The exact device namemay differ depending on the host computer’s OS,
but the Sentiboard’s configuration and data transfer lines can be found using the
/dev/ttyACM0 and /dev/ttyACM1 device files, respectively. Configuration can be
done using the following command: minicom -con -D /dev/ttyACM0. This will
open a serial terminal, exposing the simple configuration interface. It acts like a
regular terminal, accepting Enter-terminated commands. One may type config

r4 to access the configuration for the RS422 port. Other ports can be accessed
similarly, with the number denotingwhich port to configure, i.e. config u1 opens
the configuration menu for the first (out of three) UART ports.

Listing 3.2: Typical Sentiboard sensor configuration menu.
1 Sensor 4

2 [e] enabled true

3 [p] powered true

4 [s] sync_id [ 0xB5 0x62 ]

5 [es] end_sync_id

6 [l] length <H @ 4 + 8

7 [b] baudrate 230400

8 [m] min delay between requests [us] 0

9 [i] interrupt rising

10 [w] warn rates [0 65535]

11 [r] polling false

12 [d] poll data:

13 [?] re-print this

14 [x] exit

Listing 3.2 shows the configuration parameters for this specific sensor, and these
can be changed using the character on the left, i.e. e false switches the sensor’s
enabled state from true to false. The settings can be saved and applied by exiting
the sensor configurationmenu (x), followed by save and reset. (Senti SystemsAS,
2021)

3.7 DUNE and the LSTS toolchain

The LSTS toolchain is a framework for networked vehicle systems developed by
the University of Porto’s Underwater Systems and Technology Laboratory (LSTS)
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group. The framework consists of several components that cover various aspects of
autonomous vehicle operations, but the use of the framework in this project will be
limited to DUNE Unified Navigation Environment, Intermodule Communication
API (IMC), and to some extent, Neptus. DUNE is designed to run on each node
(i.e. vehicle) and it facilitates inter-node communication using the IMC protocol.
DUNE,written inC++, provides infrastructure for various services, or tasks, which
can exchange IMC messages and interface with hardware sensors. The tasks em-
ploy a simple publisher/subscriber architecture, just like Robot Operating System
(ROS). Documentation and build instructions on the LSTS toolchain can be found
at the LSTS website or on GitHub.

The most important aspects of DUNE tasks are presented below. Each task has a
main sourcefile calledTask.cpp,which is automatically generatedby the command
shown in Listing 3.3:

Listing 3.3: Creating a new DUNE task.
1 python <DUNE_SRC >/programs/scripts/dune-create-task.py \\

2 ../source "Author Name" Navigation/MyNavigationSystem

The auto-generated file will be valid, and DUNE will build successfully even
though the new task does not do anything yet. The first objective will often be to
subscribe to a type of IMCmessage, shown in Listing 3.4. This call is placed in the
task’s constructor.

Listing 3.4: Subscribing to the Announce message in DUNE.
1 bind<IMC::Announce >();

This subscribes the task to the Announce message, and tasks need an overloaded
consume member function for each message type. A task will not build unless all
bindedmessage types have a corresponding consume function, as shown in Listing
3.5.

Listing 3.5: Handling Announce messages in DUNE.
1 void

2 consume(IMC::Announce *announce)

3 {

4 ...

5 }

Tasks can sendmessages too, but this does not require any declaration beforehand,
such as the bind() call in the constructor. A task can simply construct and publish
a message at any time, as shown in Listing 3.6.

Listing 3.6: Sending a message in DUNE.
1 IMC::EstimatedState estate;

2 estate.lat = Angles::radians(59.0);

3 estate.lon = Angles::radians(10.0);
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4 estate.height = 100.0;

5 dispatch(estate);

DUNE tasks have an onMain() member function, shown in Listing 3.7, which is
run continuously as long as the task is active. This is themain loop, wheremuch of
the task’s logic can be placed. Note that a waitForMessages() call must be placed
in the main loop, or else the task will not be able to receive messages.

Listing 3.7: DUNE tasks’ onMain() function.
1 void

2 onMain(void)

3 {

4 while (!stopping())

5 {

6 waitForMessages(1.0);

7 }

8 }

Another central DUNE concept is the notion of configuration files, which is where
one specifies which tasks to run. The configuration files also enable the user to
pass parameters to the tasks, and one can specify the debug level on a per-task
basis. A typical task entry in a configuration file is shown in Listing 3.8.

Listing 3.8: A DUNE task configuration entry.
1 [Navigation.MyNavigationSystem]

2 Entity Label = MyNavigationSystem

3 Debug Level = None

4 Enabled = Hardware

DUNE can be run with the -p flag, which enables the user to specify which profile
to use. Profiles are useful for differentiating between hardware and simulation
runs, and the Enabled field in Listing 3.8 specifies for which profiles the task
should be enabled (typically Hardware or Simulation). This means that the same
configuration file in practice can be used for several types of runs. The Enabled

field can also be set to Always or Never. Listing 3.9 shows the command needed to
run DUNE in Hardware mode with a configuration file called ntnu-x8-002.ini.

Listing 3.9: Running DUNE.
1 ./dune -c ntnu-x8-002 -p Hardware

Neptus is a command and control software for DUNE clients, also developed
by LSTS. It is written in Java and supports IMC out-of-the-box. The concept of
consoles is central when usingNeptus. A console is an organisation ofwidgets and
plugins, usually with a map and several other displays. Consoles can be tailored
to the application, and NTNU UAVLAB’s fixed wing console, which was used for
the flight test at Breivika, includes an attitude indicator and an air speed display.
It is also possible to write custom plugins for Neptus consoles, but that is not done
for this project. (Pinto et al., 2013)
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3.8 Setup

In this section, the practical aspects of the system are presented. This section also
serves as background for the field test results discussed in Chapter 4. The base
station is a Radionor Communications CRE2-189 PARS. For the drone, a Skywalker
X8 fixed-wing drone is used. The PARS radio ismounted on the lid, while the fuse-
lage contains an array of additional devices. First and foremost, a Pixhawk remote
control/autopilot system running ArduPilot (open source autopilot software) is
responsible for the controls. The autopilot has a dedicated GNSS receiver. The
Pixhawk is connected to a router, which has three Ethernet ports in total. One of
them is connected to the PARS device (4 antennas shown on top of the drone). The
third and final port is connected to an Odroid XU4, which is where the INS is run.
PARS samples are sent via the Ethernet interface, while a Sentiboard ismounted on
top of the Odroid in order to read from the IMU via RS422. The Odroid, IMU and
SentiBoard is referred to as the payload, and fastened to the fuselage using velcro
tape. The payload is shown in Figure 3.2. The XU4 does not have a Wi-Fi adapter,
whichmeans that connecting to the Internet in order to download packages can be
a challenge. This is solved by connecting the ground station laptop to the internet
and routing the Odroid’s traffic through the PARS link. This is done using the
sshuttle tool, which creates an ad-hoc VPN. The following command shown in
Listing 3.10 is run on the Odroid.

Listing 3.10: Sshuttle setup to forward traffic through the base station
1 sudo sshuttle -r hkon@10.19.0.133 0/0 -x 10.19.0.133/16

2 --python=/usr/bin/python2 --dns

Where hkon@10.19.0.133 is the user and IP address of the ground station laptop.
The -r flag indicates that the following token specifies the SSH server to route
traffic through, and 0/0 means that all traffic should be routed through the VPN.
The 10.19 subnet needs to be excluded, hence the -x flag and 16-bit subnet mask
(255.255.0.0). This causes the existing traffic between the Odroid and the PARS
devices to remain untouched by the VPN, which is important, considering that the
ground station laptop is not directly reachable by the Odroid. The �dns flagmakes
sure DNS traffic is forwarded as well. Finally, �python=/usr/bin/python2 tells
the laptop to use Python 2 for the server process, which is a workaround for an
error likely caused by the laptop and Odroid’s Python distributions having a large
version gap. Another way of solving this problem would be to use USB tethering,
i.e. share a phone’s Internet connection via a USB cable. However, this requires
that the Odroid has two USB ports if one intends to use the Internet connection
and the Sentiboard simultaneously.

The setup procedure is described as follows. First, the base station antenna must
be placed on a tripod. It should be directed towards the drone, which should
already be in the launcher. In addition, the launcher should be oriented such
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that the drone will not fly out of sector immediately after takeoff. The position is
noted using a GNSS smartphone application, and the heading of the antenna is
found using a compass application. The heading should be cross-checked later
on a map, since smartphone compasses do not tend to be very accurate. Next,
the tripod should be adjusted to make sure the base antenna is level, this can also
be done using a smartphone. The next step is to power up the base antenna and
connect its Ethernet cable to the dedicated base station computer. At this point,
the drone can be powered on. It will take about a minute until the Odroid is
reachable via SSH from the base computer, given that the IP and MAC addresses
have been entered correctly in the PARS devices’ internal routing tables. Once the
Odroid is up, the base station’s position and orientation is entered into the DUNE
configuration file. One might also have to set the initial position and orientation
for the filter task at this point, but that depends on how the filter is initialized.
A recompilation of DUNE is required if the initial pose is hard-coded. Next, the
command in Listing 3.11 should be issued.

Listing 3.11: Command to ping the Odroid at 10 Hz.
1 sudo ping -i 0.1 10.19.60.110

This ensures that there is constant 10 Hz traffic between the base computer and
the Odroid. At this point, a program that calculates the PARS measurements and
forwards them as UDP packets is run, but this software is proprietary and will
not be discussed in detail. The final preparation step is to start logging the UDP
packets via the command in Listing 3.12 (make sure that the interface name is
correct).

Listing 3.12: Command to start logging packets with PARS measurements.
1 sudo tcpdump -n -i eth0 -s 0 -w fireball_ ‘date +"%Y-%m-%d_%H-%M-%S"‘.cap

2 \(not port 80\) and net 10.19.0.0/16

This creates a .pcap file with a name that includes the date and time. At this point
the only remaining step is to launch DUNE, just like in Listing 3.9. Neptus can
also be opened in order to watch the estimates in real time. The pilot can now start
going through the pre-flight checklist, and once that is done, the drone is cleared
for takeoff.
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Figure 3.2: The payload, shown outside of the drone. The STIM IMU to the right,
and the SentiBoard to the left. The Odroid is barely visible under the SentiBoard.
The PARS device is fastened to the lid, and thus not shown in this picture.





4Results and Discussions
The filter is evaluated using three different datasets, two captured previously and
one captured in spring 2021 as part of this project. This chapter includes plots,
discussions and other data on the performance of the filter. First, the tuning of the
filter will be discussed, before the filter’s performance on the pre-existing datasets
is presented. A few different aspects of tuning will be shown along the way, with
some proposed improvements. Finally, the Breivika field test will be discussed.

4.1 Tuning

As part of the filter evaluation, two datasets are tested. The filter uses the altitude
from the barometer-aided autopilot as a height measurement, and calculates the
UAV’s position using cylindrical coordinates (Section 2.8), thus discarding the
PARSelevationmeasurement. Thefilter discardsmeasurements that are less than 1
maway. This is because the PARS sensor sometimes outputs invalidmeasurements
with an extremely lowdistance value. An additionalmechanism is added in the "2

outlier test (Section 3.3), which only accepts PARSmeasurements that are inliers by
a probability of 0.99. The tuning values fromVågsether (2020) are used as a starting
point, and a new Xmatrix (whichmust be changed since this implementation uses
cylindrical coordinates) has been found through careful tuning for all the datasets.
The values shown in Tables 4.1 and 4.2 were found to be the optimal values for the
datasets. Some required extra tweaking, but this is discussed later.

Table 4.1: W2 , XB
?0AB elements

Parameter Value
�022 2.57e-2 m/s/

√
s

�0AB 9.59e-4 rad/
√

s
�1,022 2.55e-4 m/s5/2

�1,0AB 6.29e-8 rad/s3/2

Parameter Value
�3 50 m
�Ψ 3 deg
�ℎ 5 m

Table 4.2: Initial covariance matrix (V0) elements

Parameter Value
%? 100 m2

%E 4 m2/s2

%0 0.03 rad2

%1,022 1 m2/s4

%1,0AB 3e-6 rad2/s2

47
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W2 =


�2
022 0 0 0
0 �2

0AB 0 0
0 0 �2

1,022
0

0 0 0 �2
1,0AB

 (4.1a)

XB
?0AB =


�2
3

0 0
0 �2

Ψ
0

0 0 �2
ℎ

 (4.1b)

V0 =


%?O3 03 03 03 03
03 %EO3 03 03 03
03 03 %0O3 03 03
03 03 03 %1,022O3 03
03 03 03 03 %1,0ABO3


(4.1c)

4.2 The Raudstein dataset

The first dataset is a BVLOS flight from Raudstein, where the UAV flies in a lawn-
mower pattern away from the takeoff location until it is about 5 km away, after
which it returns in a straight line. The dataset does not include a pre-takeoff sta-
tionary period, and thus it is unsuitable for calibration. The UAV stays within the
ground station’s sector for entire flight, but flies at the very edge of the sector in the
northern end of the first couple u-turns. The flight is performed almost exclusively
over the sea, which makes for some strong reflections off the water. This increases
the risk of incorrect elevation angles, and a fair amount of elevation errors are
shown in Figure 4.1. The horizontal (geodetic) position is shown in Figure 4.2.
The PARS aided estimates follow the PARS positions quite well, despite the fact
that the drone does not have time to calibrate before takeoff (the dataset starts
right before takeoff). This quick start puts extra strain on the bias estimation, and
it takes about 2-300 seconds for the biases to settle properly after an initial spike.
This is shown in Figures 4.3 and 4.4.

The decomposed geodetic position is shown in Figure 4.5. The estimates follow
the ground truth, but the height is a few meters off, both in the beginning of the
flight and in the area where the drone is the furthest away from the base. The
initial height offset is likely caused by the bias estimates, which have not settled
at this point. The offset subsides at C = 1400 − 1500, which is when the bias
estimates subside too. One can see that the offset grows larger as the drone is far
away from the base station, at most about 2 meters at a distance of 5.2 kilometers.
This is likely caused by the curvature of the Earth and the use of cylindrical
coordinates, as discussed towards the end of Section 2.8. The barometer-aided
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height measurement represents the geodetic height, but the use of cylindrical
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Figure 4.1: Raw PARS measurements from Raudstein. The elevation angle has a
significant amount of outliers.
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Figure 4.2: Horizontal position from Raudstein.
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coordinates means that it is being interpreted as the height in the base station’s
reference frame. This equality is valid under the assumption of a flat Earth and
zero roll and pitch angle for the base station. The fact that the estimate is higher
than the ground truth supports this theory, since the curvature of the Earth will
cause the UAV to be lower on the horizon the further away it gets. The height
correction method proposed in Section 2.8 is tested and evaluated in Section 4.2.1.
Figure 4.6 shows the position error norm with 3� bounds, calculated using the
norm of the diagonal of the V matrix, to illustrate the consistency of the filter. The
error lies well within the bounds, which indicates that the filter’s confidence about
the estimates is realistic.
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Figure 4.3: Accelerometer bias estimates.
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Figure 4.4: ARS bias estimates.
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Figure 4.5: Geodetic position (estimate and ground truth) from Raudstein.
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Figure 4.6: 3�-plot from Raudstein, compared to the true error norm.
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The attitude is shown in Figures 4.7. As expected, the u-turns are evident in the
roll angle. The yaw angle switches between 0 and 180 degrees, approximately,
followed by several minutes of flying due east. The attitude error is shown in
Figure 4.8, and after an initial spike in roll and pitch, the angle errors are fairly low.
The initial spike is most likely caused by incorrect initial values for the drone’s
roll and pitch angles, since these are just set to zero. This affects the yaw error,
which also has a spike at the start of the flight. The pitch angle is off by a few
degrees, as a stationary/slowly fading error. This could be a consequence of the
IMU mounting, which is fastened to the fuselage using velcro tape.

Finally, Tables 4.3 and 4.4 show statistics (Mean Error, Mean Average Error and
RootMean Square Error) on the error between the estimates and the ground truth.
The errors are comparable, but slightly worse than the errors found in Gryte et al.
(2020) for the same dataset. When it comes to the position errors, only the Norm
column can be compared directly, since the position is decomposed in different
frames. For the attitude, the errors are fairly small and lie in the same range at 1
to 5 degrees. Comparing it to the results from Vågsether (2020), it is found that
this thesis’ implementation performs significantly better, with the position error
norms being about half the size for all error types. We also see that most of the
error in Vågsether (2020) is caused by the I axis, which indicates that the outlier
rejection has played a big part in rejecting ground reflections. The attitude error is
larger than Vågsether (2020) for the pitch and roll axes, this can likely be reduced
greatly by rotating X1< such that it matches the autopilot IMU better.
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Figure 4.7: Estimated (blue) and true (red) attitude from the Raudstein dataset.

1200 1400 1600 1800 2000 2200 2400 2600

-20

-10

0

1200 1400 1600 1800 2000 2200 2400 2600

-5

0

5

10

1200 1400 1600 1800 2000 2200 2400 2600

-10

0

10

Figure 4.8: Roll, pitch and yaw error from the Raudstein dataset.
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Table 4.3: PARS-aided position error statistics for the Raudstein dataset.

Metric G [m] H [m] I [m] Norm [m]
ME 12.89 6.56 -6.33 15.79
MAE 17.34 12.12 8.39 22.76
RMSE 22.56 15.96 11.05 29.76

Table 4.4: PARS-aided attitude error statistics for the Raudstein dataset.

Metric Roll [deg] Pitch [deg] Yaw [deg] Norm [deg]
ME 1.77 2.15 -3.24 4.28
MAE 2.20 2.25 3.70 4.86
RMSE 2.79 2.47 4.31 5.69
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4.2.1 Height error compensation

As mentioned in Section 2.8, the use of cylindrical coordinates introduces a height
error that becomes larger the further away the drone is. The compensationmethod
introduced in Section 2.8 is implemented, and the results are shown in Figure 4.9.
The compensation method appears to cancel most of the error effectively, as the
plot indicates. The remaining error could be an offset between the barometer and
the ground truth. The height error at the start of the flight fluctuates, but this
is likely due to the volatile biases. Both error curves fluctuate, but as the biases
settle and the uncorrected curve starts to rise, the corrected curve stays at around
0 m. The uncorrected curve is seen to grow steadily until reaching 2 meters at the
highest until it starts declining again as the drone moves back towards the base
station from C = 2200. Meanwhile, the corrected height error does not seem to be
affected by the distance from the base station to the UAV, which indicates that the
correction method works as intended.
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Figure 4.9: Height error plot from Raudstein.
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4.3 The Udduvoll dataset

Tha dataset from Udduvoll is quite different from the Raudstein flight. It starts
with a several minute stationary period, before the drone is put in the launcher
and takeoff is performed. This means that ARS calibration is appropriate and will
be run for 30 seconds at the very beginning. The data is captured from a flight that
is closer to the base station than the Raudstein dataset, but it is more challenging
to work with, mostly due to missing PARS data. The UAV flies out of the ground
station’s sector several times, and the PARS data even falls out completely (inten-
tionally) over a 3 minute interval towards the end of the capture. The PARS data is
disabled in order to demonstrate the system’s robustness to outage, and illustrate
that the filter works well on IMU input alone. This creates tuning challenge, and
the fact that there are so many tuneable parameters in the system make it difficult
to achieve satisfactory performance. Figure 4.10 shows the horizontal (geodetic)
positions. The PARS positions are marked in red to show the out-of-sector parts
of the flight. The estimate drift towards the Southeast is caused by the period of
time where the PARS is disabled. This is not very impressive, considering that the
PARS data is only gone for 3 minutes. However, the UAV is turning constantly
over this interval, and this type of motion is likely more difficult to estimate than a
straight-line trajectory. The drift may to be caused by an ARS bias error; the filter
believes that the drone turns more than it actually does. In addition, the 3 minutes
of dead reckoning leads to the filter estimating a slowly declining height, as shown
in Figure 4.11.

Compared to Gryte’s results (Gryte et al., 2020) for the same dataset, this south-
eastern drift is a major regression. The distance of the drift is very large, larger
than the true distance from the base to the drone at any other point in the flight.
The large gap between the performance of this implementation and Gryte’s might
be caused by the choice of reference frames. Gryte uses the NED frame, which
means that the barometer’s heightmeasurement can be used to correct the isolated
z (down) component of the position. Thus, the estimates are being corrected over
the 3 minute period even though the PARS data is not present. For this project’s
ECEF-based implementation, the height is not an isolated component of the posi-
tion, and a height-only correction cannot be done without touching the rest of the
position vector. As a result, the height is only used to correct the PARS measure-
ments, and the 3 minute PARS-less period is estimated using pure dead reckoning
only.
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Figure 4.10: Horizontal geodetic position (estimate and PARS) from Udduvoll.
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Figure 4.11: Geodetic position (estimate and ground truth) from Udduvoll. The
units are in degrees and meters.
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Although ARS calibration is enabled for this dataset, the UAV spends a lot of time
outside the base’s sector, especially shortly after takeoff. This can be seen from
the bias estimates (Figures 4.12 and 4.12), where most components don’t seem to
start settling until after C = 1500. This is the point where the UAV starts flying in
sector continuously, after flying in and out of sector (especially at the northeastern
end of the area) repeatedly. The biases also exhibit a few jumps and spikes before
takeoff (takeoff occurs at approximately C = 1200), even though the position seems
to be very still at these points. This behaviour is caused by the drone being moved
around and placed in the launcher.

The position error margins (Figure 4.14) are not as large for the Udduvoll dataset
as for the Raudstein flight. The 3� error bounds are also fairly flat during the
course of the flight, which can be attributed to the small variations in distance
between the base and the drone. The UAV stays in the same area. In contrast,
the large distance for the Raudstein flight manifests as an error bound increase
towards the middle of Figure 4.6. The error stays within the bounds for most of
the flight, but some spikes are outside the bounds, especially shortly after takeoff.
This is expected, since the drone spends so much of this time outside the base’s
sector. The 3 minute period without PARS is very easy to identify since the 3�
error bound grows to 4.5 km (this has been cropped from the figure in order to
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Figure 4.12: Accelerometer bias estimates.
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prioritize the rest of the flight). The position estimate error grows to 732 m before
PARS is reenabled. The drone also lands out of sector, which is shown as another
large spike at the very end of the flight.
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Figure 4.13: ARS bias estimates.
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Figure 4.14: 3�-plot from Udduvoll.

The attitude estimates (Figures 4.15 and 4.16) for the Udduvoll dataset start out
much calmer than the Raudstein estimates do, due to the initial stationary period,
where the drone is placed flat on the ground. This allows for the use of ARS
calibration, and it also means that the initial roll and pitch angle estimates (both
zero) are correct. The figure clearly shows that the drone is moved around before
takeoff (at C = 600) and even shows when the drone is being put in the launcher
(at C = 1000). After takeoff, the estimates’ accuracy looks very similar to that of
the Raudstein dataset, with a familiar small positive error in the pitch angle. The
estimates seem unaffected by the PARS outage, which is interestingwhen recalling
the large position errors.

The horizontal position error during the PARS cutoff phase can be reduced by
skipping the dead reckoning bias updates (equation (3.14)). This will keep the bi-
ases from changing unless corrected by PARS. The difference is shown in Figures
4.17 and 4.18. The estimated position is much closer to the true trajectory, and
the shapes even overlap. However, this worsens the landing trajectory (coming
in from the Northeast) significantly. The landing happens shortly after PARS is
reenabled, and thus the filter does not seem to have time to recover before the
drone is brought down. The landing trajectory in Figure 4.17 is followed well by
the filter, which indicates that a hybrid approach (biases are updated only if PARS
data has been received less than a second ago) might be worth investigating.
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Figure 4.15: Estimated (blue) and true (red) attitude from the Udduvoll dataset.
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Figure 4.16: Attitude error from the Udduvoll dataset.
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Figure 4.17: Udduvoll position estimates without bias updates.

Figure 4.18: Udduvoll position estimates without bias updates.
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4.4 The Breivika field test

As part of this project, a trip was taken to Breivika, Orkland in order to test the
navigation system online. The UAV was inside the antenna’s sector most of the
time, with the exception of a few turns towards the end of the flight. Field tests
and demonstrations are often associated with technical problems, and this field
test was no different. During the preparation and actual testing, several issues
arose:

• In order to get IMU data into DUNE, there are three points of configuration
that need to be set correctly: The STIM configuration, the SentiBoard con-
figuration, and the SentiBoard DUNE task. Unbeknownst to me, the STIM
had been set to a configuration that matched neither the online wiki nor the
SentiBoard task. This caused a lot of segmentation faults and errors in the
task, and Imade the false assumption that thewikiwas correct, which caused
me to spend several days solving this problem with the wrong approach. I
finally fixed it by setting the STIM configuration to match the wiki (except
for the baud rate) and SentiBoard task, which solved the problem entirely.

• On arrival at Breivika, a problem was identified with the conversion be-
tween radians and degrees, where different parts of code were using varying
amounts of decimal places to approximate�. This caused the PARSpositions
to be several kilometers off when displayed in Neptus, and while it was very
simple to fix, it took about an hour to identify.

• Ardupilot’s dedicated GNSS receiver and internal position estimates were
actingup. The estimatesweredrifting around erratically, delaying the takeoff
further. This problem was solved by righting a bent pin on the Pixhawk
autopilot device and moving the launcher and car further away from each
other.

• The next problem to occur was sporadic segmentation faults in the Senti-
Board DUNE task. This had not happened before this point, and I have not
been able to reproduce it since. This caused the entire DUNE process to
crash, which led to the discovery of the next problem. The problem was
worked around by disabling the Should log flag in the SentiBoard task, at
which point the segmentation faults subsided.

• Itwas discovered that the crashingDUNEprocess also brought theMAVLink
router process on the router down with it, which meant that a restart of the
process was required to reconnect the Ardupilot on-board software with the
ground station. This was baffling, considering that these two processes are
not running on the same computer, they are merely connected through a
TCP port where DUNE receives updates from Ardupilot. This problemmay
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have been present on shorter tests on the days leading up to the field test
at Breivika, but I was never in contact with the Ardupilot software directly,
and thus I failed to recognize this problem, much due to the fact that the
warning message was buried in messages from other parts of the system.
The MAVLink router process died both when DUNE crashed and when
DUNE was closed normally (Ctrl-C). This problem was solved by moving
the payload to the other drone, which required some time to set up, due to
the fact that the routers had equalMAC addresses but different IP addresses.
This change was difficult to apply in the PARS devices’ routing tables.

• Finally, the aforementioned issues were resolved (or at least worked around)
and a flight was performed. However, the MEKF estimates only lasted a
few seconds after takeoff until they seemed to lose lock on the actual UAV
and started to wander around aimlessly. This was very disappointing to
see, but the entire flight was logged, and upon later inspection, it was found
that the IMCmessages containing the PARSmeasurementswere invalid. The
azimuth and elevation angles differed greatly from the angles in the rawUDP
logs, and this gave the filter very difficult data toworkwith, and even though
the filter’s output seemed reasonable while the UAVwas in the launcher.The
logged angles in Figure 4.19 are clearly unusable when comparing them to
the Figure 4.20, which is generated from the raw UDP logs. The plots from
this dataset are therefore generated after the field test, using DUNE’s replay
functionality with the valid PARS measurements saved to a CSV file. The
DUNE task reads the CSV file into memory and uses this PARS data instead
of the logged IMC messages. The timestamps of the valid PARS data are
lined up with the invalid logs using visual inspections and a simple offset.
This is not ideal, but it is good enough for the data to be useable.
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Figure 4.19: Invalid PARS measurements from Breivika (logged IMC messages).
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Figure 4.20: Valid PARS measurements from Breivika (logged UDP messages).
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Figure 4.21: Horizontal position from Breivika.

The horizontal position is shown in 4.21. As we can see, the estimates do not move
perfectly with the PARS data, nor with the true positions, but this is also a much
closer flight than for example the Raudstein dataset. The estimates struggle par-
ticularly with the Southeastern portion of the trajectory leading up to the landing,
where the drone flies out of sector twice. The full geodetic position is shown in
Figure 4.22, where the estimates follow the ground truth well for the most part.
One exception is at C = 725, where the UAV flies out of sector, which throws the
filter slightly off for 15 seconds. The biases are shown in Figures 4.23 and 4.24,
and the spikes at the start are from the few seconds when the drone was moved
around before being placed in the launcher. Takeoff happens at C = 400, and this
manifests as a step in theARS’s yaw angle (z component) bias. This is likely caused
by an incorrect yaw angle on takeoff, which will be shown later. The effects of the
step subsides after half a minute. We can also see that the moments where the
drone is out of sector upset the biases further, after a period of relative calmness.
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Figure 4.22: Geodetic position from Breivika.
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Figure 4.23: Accelerometer bias estimates from Breivika.
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Figure 4.24: ARS bias estimates from Breivika.
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The 3� position error bound is shown in Figure 4.25. The error lies well inside the
bound initially, but the margin is a little slim after takeoff and the error frequently
exceeds the bounds. The error when the drone flies out of sector is also marked as
a sharp peak, and this is expected. The margin between the 3� error bounds and
the error norm can be increased by increasing the W2 matrix, and this is done in
Figure 4.26. A factor of 50 gives a more comfortable margin, but it also decreases
the filter’s confidence in the IMUmeasurements, which in this case leads to higher
errors when the drone is out of sector. Figures 4.27 and 4.28 show the estimated
attitude and error, with the ground truth drawn in red. These plots seem fairly
similar to those of the previous datasets, with the familiar small pitch offset. One
major difference stands out, namely the slowly moving pre-flight yaw error. The
estimates start out well, but after the drone has beenmoved around, an error starts
to accumulate. Looking at Figure 4.27, it is clear that it is the ground truth that is
moving, not the estimate. This does not occur in the other datasets, at least not to
such a noticeable extent. It does not seem to be the actual behaviour of the drone,
since the drone is stationary in the launcher and does not have a reason to move
this slowly. This is likely drift in the autopilot’s internal estimation algorithm, and
it cannot be ruled out that this is related to the problems that we had earlier with
the autopilot’s internal position estimates.
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Figure 4.25: 3�-plot from Breivika with the original W2 matrix.
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Figure 4.26: 3�-plot from Breivika. The W2 matrix has been multiplied by 50,
yielding a larger error bound.
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Figure 4.27: Estimated (blue) and true (red) attitude from Breivika.
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Figure 4.28: Attitude error from Breivika.



5Conclusion and Further Work
In this report, an ECEF-based Inertial Navigation System for attitude and position
estimation is presented. The system is motivated by the rising threat of jamming
and other forms of electromagnetic interference. GNSS-based navigation systems
can be very accurate, but the low received signal make them easy to disrupt or
trick. Using PARS not only increases the resilience against interference, but it
also supplies a communication channel that can work over long ranges and with
multiple base stations.

The INS that is implemented is based on a Multiplicative Extended Kalman Filter
(MEKF), which is one of the ways to solve such a motion estimation problem. It
can also be solved with nonlinear observers, but this requires a dedicated heading
sensor, even though the computational footprint is smaller. It is desirable to keep
the sensors to a minimum, to reduce the need for calibration. The INS is imple-
mented with a few smaller augmentations, such as PARS measurement outlier
rejection and ARS calibration. A height correction method is also developed and
implemented for cylindrical PARS measurements, and this is tested on a dataset
from a long range flight. Height correction enables the support of multiple PARS
base stations with different distances, since these would otherwise give very dif-
ferent height estimates. The system is implemented in DUNE Unified Navigation
Environment and tested on prerecorded datasets and a live flight. Due to unfore-
seen circumstances and invalid measurement data, the navigation system failed to
estimate the states well online, but running the filter with the corrected data offline
showed a great improvement in the system’s performance. As shown, the filter
performs well with good data. It is able to track the translational and rotational
motion of the drone with reasonable accuracy, even with short bursts of ground
reflections and PARS outages. Longer periods of PARS outage pose a challenge,
which can be mitigated by keeping the IMU biases static while PARS measure-
ments are unavailable. However, there are still some questions to be answered
about these types of systems, such as:

• The IMUused in the Skywalker X8 is a tactical grade unit. The system should
be tested with cheaper IMUs so as to decide the explicit requirements of the
filter.

• The height error compensationmethod introduced in Section 2.8 is not tested
extensively, and should be evaluated for other long-distance flights.

• Although yaw angle estimation has not been a problem in this project, long
periods of stationarity can cause it to drift away from the true angle. A mag-
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netometer can be used to correct the vehicle’s heading estimate. This might
justify the use of a cheaper IMU. However, magnetometers need calibration
and are susceptible to magnetic field disturbances, so this is not an ideal
replacement.

• The use of a barometer and cylindrical coordinates nullifies one of ECEF’s
greatest advantages, namely the PARS measurements’ invulnerability to the
curvature of the Earth. Therefore, one maywant to look at how the elevation
measurement can be processed, especially when flying over bodies of water.

• Tests in steep valleys and fjords should be performed to see how the system
acts when subjected to reflections frommultiple angles (i.e. not just from the
water).

• The introduction of techniques such asmulti-hypothesis tracking and tighter
coupling between the filter and measurement variable could make outlier
rejection easier, by tracking both the true values and the reflections.

• Being a communication (not navigation) system primarily, the PARS device
will prefer the wireless channel with the strongest signal, which can often be
a reflection. Using the channel with the shortest time-of-flight can decrease
the link quality, but increase the quality of the position estimates.

• It should be investigated whether the range measurement can be used as
a standalone measurement in the event that the drone is outside the base
station’s sector.



AKalman Filter Derivation
† Consider the following discrete autonomous system:

x:+1 = G3x: + v: (A.1a)

y: = Ix: +w: (A.1b)

with x denoting the state vector v andw being zero mean Gaussian noise. Wewill
use x̂−

:
as the a priori state estimate, x̂: as the a posteriori state estimate and x: as

the true state at time :. We define the error in the estimate:

e: = x: − x̂: (A.2)

Next, we define the process noise and measurement noise covariance matrices:

W: = E[v:v): ] (A.3a)

X: = E[w:w)
:
] (A.3b)

Similarly, we define the total error covariance matrix:

V: = E[e:e): ] (A.4a)

V: = E[(x: − x̂:)(x: − x̂:))] (A.4b)

We define the measurement update equation, which is a scaled error term (Q:

being the scaling factor) added to the a priori estimate:

x̂: = x̂−: + Q:(y: − Ix̂−: ) (A.5)

Inserting (A.1b):
x̂: = x̂−: + Q:Ix: + Q:w: − Q:Ix̂−: (A.6)

This is inserted into (A.4b):

� = x: − x̂−: − Q:Ix: − Q:w: + Q:Ix̂−: (A.7a)

V: = E[� �)] (A.7b)

V: = �[((O= − Q:I)(x: − x̂:) + Q:w:)((O= − Q:I)(x: − x̂:) + Q:w:))]

V: = (O= − Q:I)�[(x: − x̂:)(x: − x̂:))](O= − Q:I)) + Q:�[w:w)
:
]Q)

:

We recognize the expression for V: (A.4b) and X: (A.3b):

V: = (O= − Q:I)V−: (O= − I)Q)
:
) + Q:X:Q)

:
(A.8)

†The following text is based on (Vågsether, 2020)
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This is one of the equations we will be using. We differentiate the trace of V: with
respect to Q: and set it equal to zero:

V: = V−: − V−: I
)Q)

:
− Q:IV−: + Q:(IV−: I

) + X:)Q)
:

(A.9a)

% tr[V:]
%Q:

= − tr[V−: I
)] − tr[IV−: ] + 2 tr[Q:(IV−: I

) + X:)] (A.9b)

0 = −2 tr[V−: I
)] + 2 tr[Q:(IV−: I

) + X:)] (A.9c)

2V−: I
) = 2Q:(IV−: I

) + X:) (A.9d)

We arrive at an expression for Q: :

Q: = V−: I
)(IV−: I

) + X:)−1 (A.10)

This is the second equation that wewill use. The remaining equations are the state
estimate propagation steps:

x̂: ← G3 x̂:−1 (A.11a)

x̂: ← x̂: + Q:(y: − Ix̂:) (A.11b)

and finally, a step that propagates the V matrix and adds the process noise.

V: ← G3V:−1G)3 +W3 (A.12)

The Kalman Filter equations are summarized and sorted in Table A.1.

Table A.1: The standard Kalman Filter steps and their equations (autonomous
systems).

Step Equations
Time update x̂: ← G3 x̂:−1

V: ← G3V:−1G)3 +W3

Measurement update Q: ← V:I)(IV:I) + X:)−1

V: ← (O= − Q:I)V:(O= − I)Q)
:
) + Q:X:Q)

:
x̂: ← x̂: + Q:(y: − Ix̂:)

††

††The above text is based on (Vågsether, 2020)



BCode
B.1 Task.cpp

This is the MEKF DUNE task that is evaluated in this report. The code below is
for illustration, and the full source code can be found at NTNU ITK’s UAVLAB
Gitlab server. For access to code and datasets, please contact my supervisors
Torleiv Håland Bryne or Kristoffer Gryte. The code can be found on the following
branches: haakov/raudstein, haakov/udduvoll and haakov/breivika under the
dune-ntnu repository. These branches also include a folder called matlab, where
some scripts to display and evaluate the filter estimates are found.

1 // DUNE headers.

2 #include <DUNE/DUNE.hpp>

3 #include <DUNE/Math/Matrix.hpp>

4 #include <DUNE/Math/Quaternion.hpp>

5 #include <DUNE/Math/EulerAnglesZyx.hpp>

6 #include <DUNE/Coordinates.hpp>

7 #include <tuple>

8 #include <list>

9 #include <numeric>

10 #include <mutex>

11 #include <USER/Coordinates/WGS84.hpp>

12

13 #include <chrono>

14 #include <sys/time.h>

15 #include <atomic>

16 #include <iostream>

17 #include <fstream>

18

19

20 namespace Navigation

21 {

22 namespace haakov_MEKF

23 {

24 using DUNE_NAMESPACES;

25 using Vector = DUNE::Math::Matrix;

26

27 //! %Task arguments.

28 struct Arguments

29 {

30 std::string acc_src;

31 bool use_cre;

32 };

33

34 struct Task: public DUNE::Tasks::Task

35 {

36 //! Task arguments.

37 Arguments m_args;

38

39
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40 std::mutex lock_;

41

42 std::atomic<bool> m_init;

43 std::atomic<bool> m_just_corrected;

44 std::atomic<bool> m_calibrating;

45 std::atomic<bool> m_correction_waiting;

46 std::atomic<bool> m_cre_waiting;

47 std::atomic<bool> m_csv;

48

49 std::atomic<int> c_imu;

50 std::atomic<int> c_pars;

51 std::atomic<int> c_ext;

52

53 Vector m_p_e_eb;

54 Vector m_v_e_eb;

55 Vector m_q_e_eb;

56 Vector m_b_acc_b;

57 Vector m_b_ars_b;

58

59 Vector last_gnss_pos , last_gnss_rpy;

60

61 Matrix m_C;

62 Matrix m_P;

63 Matrix m_Q;

64

65 double t_last;

66 double last_height = 0.0;

67 double base_height = 0.0;

68

69 double m_imu_msg_prev_time = 0.0;

70

71 Vector m_incoming_acc;

72 Vector m_incoming_ars;

73 Vector m_incoming_gnss;

74 Vector m_incoming_pars;

75 int m_acc_points = 0;

76 int m_ars_points = 0;

77

78 double m_R_yaw;

79

80 double m_initialize_time = 0.0;

81

82 Matrix Tacc_inv, Tars_inv;

83 Matrix last_cre_pos , last_cre_R;

84

85 Matrix R_bm;

86

87 Matrix I3;

88

89 std::ofstream f_imu, f_gnss, f_pars, f_rawpars , f_est, f_rpy, f_P,

f_error;

90

91 //! Constructor.
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92 //! @param[in] name task name.

93 //! @param[in] ctx context.

94 Task(const std::string& name, Tasks::Context& ctx):

95 DUNE::Tasks::Task(name, ctx)

96 {

97 param("CRE", m_args.use_cre)

98 .defaultValue("true")

99 .size(1)

100 .description("Show CRE position");

101

102 m_args.use_cre = true;

103

104 m_csv.store(true);

105 if (m_csv.load())

106 {

107 f_imu.open ("imu.csv", std::ios::out);

108 f_imu << "t,acc_x,acc_y,acc_z,ars_x,ars_y,ars_z" << std::endl;

109

110 f_gnss.open ("gnss.csv", std::ios::out);

111 f_gnss << "t,gnss_x,gnss_y,gnss_z,gnss_lat,gnss_lon,gnss_h" << std

::endl;

112

113 f_pars.open ("pars.csv", std::ios::out);

114 f_pars << "t,pars_x,pars_y,pars_z,pars_lat,pars_lon,pars_h" << std

::endl;

115

116 f_rawpars.open ("rawpars.csv", std::ios::out);

117 f_rawpars << "t,rawpars_x ,rawpars_y ,rawpars_z ,rawpars_lat ,

rawpars_lon ,rawpars_h ,rawpars_d ,rawpars_psi ,rawpars_alpha" << std::

endl;

118

119 f_est.open ("est.csv", std::ios::out);

120 f_est << "t,est_x,est_y,est_z,est_vx,est_vy,est_vz,est_lat,est_lon

,est_h,est_r,est_p,est_y,baccx,baccy,baccz,barsx,barsy,barsz" << std::

endl;

121

122 f_rpy.open ("rpy.csv", std::ios::out);

123 f_rpy << "t,roll,pitch,yaw" << std::endl;

124

125 f_P.open ("P.csv", std::ios::out);

126 f_P << "t,perr,p3sig,roll_err,roll_3sig ,pitch_err ,pitch_3sig ,

yaw_err,yaw_3sig" << std::endl;

127

128 f_error.open ("err.csv", std::ios::out);

129 f_error << "t,x_err,y_err,z_err,roll_err,pitch_err ,yaw_err,lat_err

,lon_err,h_err" << std::endl;

130 }

131

132 lock_.lock();

133 //bind<IMC::Acceleration >(this);

134 //bind<IMC::AngularVelocity >(this);

135 bind<IMC::Imu>(this);

136 bind<IMC::ExternalNavData >(this);
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137 bind<IMC::SphericalPositionMeasurement >(this);

138

139 m_init.store(false);

140 m_just_corrected.store(false);

141 m_calibrating.store(true);

142 m_correction_waiting.store(false);

143 m_cre_waiting.store(false);

144

145

146 m_p_e_eb = Vector(3, 1, 0.0);

147 m_p_e_eb(0) = 0.0;

148 m_p_e_eb(1) = 0.0;

149 m_p_e_eb(2) = 0.0;

150

151 last_gnss_pos = Vector(3, 1, 0.0);

152 last_gnss_pos(0) = 0.0;

153 last_gnss_pos(1) = 0.0;

154 last_gnss_pos(2) = 0.0;

155

156 last_gnss_rpy = Vector(3, 1, 0.0);

157 last_gnss_rpy(0) = 0.0;

158 last_gnss_rpy(1) = 0.0;

159 last_gnss_rpy(2) = 0.0;

160

161 m_v_e_eb = Vector(3, 1, 0.0);

162

163 m_q_e_eb = Vector(4, 1, 0.0);

164 m_q_e_eb(0) = 0.300767938616783;

165 m_q_e_eb(1) = -0.36092152634014;

166 m_q_e_eb(2) = -0.882252619942563;

167 m_q_e_eb(3) = -0.0300767938616783;

168 m_q_e_eb = m_q_e_eb / m_q_e_eb.norm_2();

169

170 m_b_acc_b = Vector(3, 1, 0.0);

171 m_b_ars_b = Vector(3, 1, 0.0);

172

173 m_incoming_acc = Vector(3, 1, 0.0);

174 m_incoming_ars = Vector(3, 1, 0.0);

175 m_incoming_gnss = Vector(3, 1, 0.0);

176 m_incoming_pars = Vector(3, 1, 0.0);

177

178 m_R_yaw = ((M_PI/180.0)*2.0)*((M_PI/180.0)*2.0);

179

180 Tacc_inv = Matrix(3, 3, 0.0);

181 Tars_inv = Matrix(3, 3, 0.0);

182

183 Tacc_inv(0, 0) = 0.0002778;

184 Tacc_inv(1, 1) = 0.0002778;

185 Tacc_inv(2, 2) = 0.0002778;

186 //Tacc_inv = 0.2 * Tacc_inv;

187

188 Tars_inv(0, 0) = 0.0002778;

189 Tars_inv(1, 1) = 0.0002778;
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190 Tars_inv(2, 2) = 0.0002778;

191 //Tars_inv = 0.2 * Tars_inv;

192

193 R_bm = Matrix(3, 3, 0.0);

194 R_bm(0,1) = -1.0;

195 R_bm(1,0) = -1.0;

196 R_bm(2,2) = -1.0;

197

198 I3 = Matrix(3, 3, 0.0);

199 I3(0,0) = 1.0;

200 I3(1,1) = 1.0;

201 I3(2,2) = 1.0;

202

203 m_C = Matrix(3, 15, 0.0);

204 m_C(0, 0) = 1.0;

205 m_C(1, 1) = 1.0;

206 m_C(2, 2) = 1.0;

207

208 m_Q = Matrix(12, 12, 0.0);

209 double q_acc = 2.57*std::pow(10, -2);

210 double q_ars = 9.59*std::pow(10, -4);

211 double q_bacc = 2.55*std::pow(10, -4);

212 double q_bars = 6.29*std::pow(10, -8);

213

214 m_Q(0, 0) = q_acc*q_acc;

215 m_Q(1, 1) = q_acc*q_acc;

216 m_Q(2, 2) = q_acc*q_acc;

217

218 m_Q(3, 3) = q_ars*q_ars;

219 m_Q(4, 4) = q_ars*q_ars;

220 m_Q(5, 5) = q_ars*q_ars;

221

222 m_Q(6, 6) = q_bacc*q_bacc;

223 m_Q(7, 7) = q_bacc*q_bacc;

224 m_Q(8, 8) = q_bacc*q_bacc;

225

226 m_Q(9, 9) = q_bars*q_bars;

227 m_Q(10, 10) = q_bars*q_bars;

228 m_Q(11, 11) = q_bars*q_bars;

229

230 //m_Q = 50 * m_Q;

231

232 m_P = Matrix(15, 15, 0.0);

233

234 m_P(0, 0) = 100.0;

235 m_P(1, 1) = 100.0;

236 m_P(2, 2) = 100.0;

237

238 m_P(3, 3) = 4.0;

239 m_P(4, 4) = 4.0;

240 m_P(5, 5) = 4.0;

241

242 m_P(6, 6) = 0.03;
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243 m_P(7, 7) = 0.03;

244 m_P(8, 8) = 0.03;

245

246 m_P(9, 9) = 1;

247 m_P(10, 10) = 1;

248 m_P(11, 11) = 1;

249

250 m_P(12, 12) = 0.000003;

251 m_P(13, 13) = 0.000003;

252 m_P(14, 14) = 0.000003;

253 lock_.unlock();

254 }

255

256 //! Update internal state with new parameter values.

257 void

258 onUpdateParameters(void)

259 {

260 }

261

262 //! Reserve entity identifiers.

263 void

264 onEntityReservation(void)

265 {

266 }

267

268 //! Resolve entity names

269 void

270 onEntityResolution(void)

271 {

272 }

273

274 //! Acquire resources.

275 void

276 onResourceAcquisition(void)

277 {

278 }

279

280 //! Initialize resources.

281 void

282 onResourceInitialization(void)

283 {

284 setEntityState(IMC::EntityState::ESTA_NORMAL , Status::CODE_ACTIVE)

;

285 war("initialized");

286 }

287

288 //! Release resources.

289 void

290 onResourceRelease(void)

291 {

292 }

293

294



B.1. TASK.CPP 83

295 void

296 consume(const IMC::Imu* imu)

297 {

298

299 double T_s = 0.0;

300 if (m_imu_msg_prev_time > 0.0)

301 {

302 const fp64_t imu_msg_current_time = imu->angular_velocity ->time;

303 T_s = double( imu_msg_current_time - m_imu_msg_prev_time );

304 m_imu_msg_prev_time = imu_msg_current_time;

305 }

306 else

307 {

308 m_imu_msg_prev_time = imu->angular_velocity ->time;

309 return;

310 }

311

312

313 t_last = imu->angular_velocity ->time;

314 if (m_initialize_time < 0.1)

315 {

316 m_initialize_time = t_last;

317 }

318 if ((t_last - m_initialize_time > 30) && (m_calibrating.load()))

319 {

320 m_calibrating.store(false);

321 war("Calibration done");

322 }

323

324 Vector incoming_acc(3, 1, 0.0);

325 incoming_acc(0) = imu->acceleration ->x;

326 incoming_acc(1) = imu->acceleration ->y;

327 incoming_acc(2) = imu->acceleration ->z;

328

329 Vector incoming_ars(3, 1, 0.0);

330 incoming_ars(0) = imu->angular_velocity ->x;

331 incoming_ars(1) = imu->angular_velocity ->y;

332 incoming_ars(2) = imu->angular_velocity ->z;

333

334

335 if (m_calibrating.load())

336 {

337 calibUpdate(incoming_acc , incoming_ars);

338 }

339 else

340 {

341 if (m_init.load())

342 {

343 timeUpdate(T_s, incoming_acc , incoming_ars);

344 }

345

346

347 }
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348 }

349

350 Matrix

351 Rzyx(double phi, double theta, double psi)

352 {

353 Matrix R = Matrix(3,3,0.0);

354

355 R(0,0) = cos(psi)*cos(theta);

356 R(0,1) = -sin(psi)*cos(phi) + cos(psi)*sin(theta)*sin(phi);

357 R(0,2) = sin(psi)*sin(phi) + cos(psi)*cos(phi)*sin(theta);

358

359 R(1,0) = sin(psi)*cos(theta);

360 R(1,1) = cos(psi)*cos(phi) + sin(phi)*sin(theta)*sin(psi);

361 R(1,2) = -cos(psi)*sin(phi) + sin(theta)*sin(psi)*cos(phi);

362

363

364 R(2,0) = -sin(theta);

365 R(2,1) = cos(theta)*sin(phi);

366 R(2,2) = cos(theta)*cos(phi);

367 return R;

368 }

369

370 void

371 consume(const IMC::ExternalNavData* gnss)

372 {

373 if (m_calibrating.load())

374 {

375 return;

376 }

377 spew("GNSS recv");

378 double x, y, z;

379 Coordinates::WGS84::toECEF(gnss->state.get()->lat, gnss->state.get

()->lon, gnss->state.get()->height, &x, &y, &z);

380

381 last_height = gnss->state.get()->height;

382 if ((180.0/M_PI)*gnss->state.get()->lon < 1.0) {

383 war("Skip");

384 return;

385 }

386

387 Vector gnss_ecef = Vector(3, 1, 0.0);

388

389 gnss_ecef(0) = x;

390 gnss_ecef(1) = y;

391 gnss_ecef(2) = z;

392

393 if (not m_init.load())

394 {

395 initialize(gnss_ecef);

396 }

397

398 last_gnss_pos(0) = x;

399 last_gnss_pos(1) = y;



B.1. TASK.CPP 85

400 last_gnss_pos(2) = z;

401

402 last_gnss_rpy(0) = (180.0/M_PI)*gnss->state->phi;

403 last_gnss_rpy(1) = (180.0/M_PI)*gnss->state->theta;

404 last_gnss_rpy(2) = (180.0/M_PI)*gnss->state->psi;

405

406 double lat, lon, h;

407 Coordinates::WGS84::fromECEF(m_p_e_eb(0), m_p_e_eb(1), m_p_e_eb(2)

, &lat, &lon, &h);

408

409 }

410

411 void

412 consume(const IMC::SphericalPositionMeasurement* pars)

413 {

414 if (t_last > 840.0) {return;}

415 double range;

416 double azimuth;

417 double elevation;

418

419

420

421 if (m_calibrating.load() or not m_init.load())

422 {

423 return;

424 }

425

426 spew("PARS recv");

427

428 double x, y, z;

429 Coordinates::WGS84::toECEF(pars->base_lat, pars->base_lon, pars->

base_height , &x, &y, &z);

430 base_height = pars->base_height;

431

432 Vector base_ecef = Vector(3, 1, 0.0);

433

434 base_ecef(0) = x;

435 base_ecef(1) = y;

436 base_ecef(2) = z;

437

438 Matrix R_p = Matrix(3, 3, 0.0);

439 R_p(0,0) = (50.0*50.0);

440 R_p(1,1) = ((M_PI/180.0)*3)*((M_PI/180.0)*3);

441 R_p(2,2) = 5.0*5.0;

442

443 double horizontal_dist;

444 if ( (range < 10000000) && (range > 0.01) && (azimuth <= M_PI) &&

(azimuth >= -M_PI) )

445 {}

446

447 else

448 {
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449 war("CRE meas not vaild. Range = %f[m], Azimuth = %f[deg]",

range, azimuth*180.0/M_PI);

450 return;

451 }

452 double E = heightError(base_ecef , m_p_e_eb);

453 E = 0.0; // Disable height correction

454 double pars_height = last_height - base_height - E;

455 if (range - abs((double)pars_height) < 5 ) {

456 horizontal_dist = range;

457 } else {

458 horizontal_dist = sqrt(range*range - pars_height*pars_height);

459 }

460

461 auto M_ = M_cyl(pars_height , azimuth, range, horizontal_dist);

462 auto R_pars = Ren(base_ecef) * M_ * R_p * transpose(M_) *

transpose(Ren(base_ecef));

463

464 Vector pars_ecef = Vector(3, 1, 0.0);

465 double yaw_offset = (M_PI/180.0)*-10;

466 pars_ecef = base_ecef + Ren(base_ecef) * Vpars_cyl(pars_height ,

azimuth, horizontal_dist , pars->base_yaw + yaw_offset);

467 std::cout << "base yaw " << (180.0/M_PI)*(pars->base_yaw +

yaw_offset) << std::endl;

468

469

470

471 double lat, lon, h;

472 Coordinates::WGS84::fromECEF(pars_ecef(0), pars_ecef(1), pars_ecef

(2), &lat, &lon, &h);

473

474 Matrix T = transpose(pars_ecef - m_p_e_eb) * inverse(m_C * m_P *

transpose(m_C) + R_pars) * (pars_ecef - m_p_e_eb);

475 if (T(0,0) < 11.345)

476 {

477

478 measurementUpdate(pars_ecef , R_pars);

479 } else {war("REJECT");}

480 }

481

482 void

483 timeUpdate(double stepSize, Vector acc, Vector ars)

484 {

485 using namespace std::chrono;

486 lock_.lock();

487

488 // Rotate imu vectors

489 acc = R_bm * acc - m_b_acc_b;

490 ars = R_bm * ars - m_b_ars_b;

491

492 Vector g = g_e(m_p_e_eb);

493

494 Vector acc_e = Rquat(m_q_e_eb)*acc + g;

495 // Propagate nominal states
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496 m_p_e_eb = m_p_e_eb + stepSize * m_v_e_eb + stepSize*stepSize *

acc_e * 0.5;

497 m_v_e_eb = m_v_e_eb + stepSize * acc_e;

498

499 if (ars.norm_2() > 0.00000001) {

500 Vector d_attitude(4, 1, 0.0);

501 d_attitude(0) = cos(stepSize *ars.norm_2()/2);

502 d_attitude.put(1, 0, (ars / ars.norm_2()) * sin(stepSize * ars.

norm_2()/2));

503 m_q_e_eb = quaternionProduct(m_q_e_eb, d_attitude);

504 m_q_e_eb = m_q_e_eb / m_q_e_eb.norm_2();

505 }

506

507 m_b_acc_b = m_b_acc_b - stepSize * Tacc_inv * m_b_acc_b;

508 m_b_ars_b = m_b_ars_b - stepSize * Tars_inv * m_b_ars_b;

509

510 // Compute discrete A and Q

511 auto Ac = A(Rquat(m_q_e_eb), acc, ars);

512

513 Matrix O3 = Matrix(3, 3, 0.0);

514 Matrix I3 = Identity(3);

515

516

517

518 Matrix G(15, 12, 0.0);

519 G.put(3, 0, -Rquat(m_q_e_eb));

520 G.put(6, 3, -I3);

521 G.put(9, 6, I3);

522 G.put(12, 9, I3);

523

524 auto AdQd = van_Loan(Ac, G, m_Q, stepSize);

525

526 Matrix Ad = std::get<0>(AdQd);

527 Matrix Qd = std::get<1>(AdQd);

528

529 m_P = Ad * m_P * transpose(Ad) + Qd;

530

531 lock_.unlock();

532

533 m_just_corrected.store(false);

534 double lat, lon, h;

535 WGS84::fromECEF(m_p_e_eb(0), m_p_e_eb(1), m_p_e_eb(2), &lat, &lon,

&h);

536 Vector rpy = R2euler(transpose(Ren()) * Rquat(m_q_e_eb));

537 }

538

539 double

540 sinc( double var ) const

541 {

542 if ( abs(var) < 1e-9 )

543 {

544 //std::cout << "var: " << var << std::endl;

545 return 1.0;
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546 }

547 else

548 {

549 return (std::sin(var)/var);

550 }

551

552 }

553

554 void

555 calibUpdate(Vector acc, Vector ars)

556 {

557 double stepSize = 0.004;

558 lock_.lock();

559

560 Matrix C_ars = Matrix(3, 15, 0.0);

561 C_ars(0, 12) = 1.0;

562 C_ars(1, 13) = 1.0;

563 C_ars(2, 14) = 1.0;

564 Matrix R_ars = Matrix(3, 3, 0.0);

565 R_ars = (m_Q(3,3) / stepSize) * I3;

566

567 Matrix K = m_P*transpose(C_ars)*(inverse(C_ars*m_P*transpose(C_ars

) + R_ars));

568

569 Vector dx = K*(ars - m_b_ars_b);

570 m_P = (Identity(15) - K*C_ars) * m_P * (transpose(Identity(15) - K

*C_ars)) + K*R_ars*transpose(K);

571

572 m_b_ars_b = m_b_ars_b + dx.get(12, 14, 0, 0);

573

574 lock_.unlock();

575 }

576

577 double

578 heightError(Vector base_ecef , Vector uav_ecef)

579 {

580 double num = (transpose(base_ecef) * uav_ecef)(0);

581 double den = base_ecef.norm_2() * uav_ecef.norm_2();

582 double gamma = acos(num / den);

583 return base_ecef.norm_2() * (1 - cos(gamma));

584 }

585

586 void

587 measurementUpdate(Vector position , Vector R) {

588 double lat, lon, h;

589 WGS84::fromECEF(position(0), position(1), position(2), &lat, &lon,

&h);

590 lock_.lock();

591

592 // Calculate error states and Kalman gain

593 Matrix K = m_P*transpose(m_C)*inverse(m_C*m_P*transpose(m_C) + R);

594 Vector dx = K*(position - m_p_e_eb);
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595 m_P = (Identity(15) - K*m_C) * m_P * transpose(Identity(15) - K*

m_C) + K*R*transpose(K);

596 // Inject error into nominal states

597 m_p_e_eb = m_p_e_eb + dx.get(0, 2, 0, 0);

598

599 m_v_e_eb = m_v_e_eb + dx.get(3, 5, 0, 0);

600

601 Vector da = dx.get(6, 8, 0, 0);

602 Vector dq = Vector(4, 1, 0.0);

603

604 dq.put(0, 0, Matrix(1, 1, 16.0) - transpose(da)*da);

605 dq.put(1, 0, 8*da);

606 dq = dq / (16.0 + (transpose(da)*da)(0));

607 dq = dq / dq.norm_2();

608

609 // error > 180 deg, replace dq by its shadow set

610 if (da.norm_2() > 4.0) {

611 dq = -dq;

612 std::cout << "Shadow set\n";

613 }

614

615 m_q_e_eb = quaternionProduct(m_q_e_eb, dq);

616 m_q_e_eb = m_q_e_eb / m_q_e_eb.norm_2();

617 m_b_acc_b = m_b_acc_b + dx.get(9, 11, 0, 0);

618 m_b_ars_b = m_b_ars_b + dx.get(12, 14, 0, 0);

619

620 // Reset covariance

621 Matrix G = Identity(15);

622 G.put(6, 6, dq(0) * I3 - skew(dq.get(1, 3, 0, 0)));

623 m_P = G*m_P*transpose(G);

624 lock_.unlock();

625 }

626

627 Vector

628 g_e(Vector position) {

629 // WGS84

630 double a = 6378137.0; // equatorial radius in

meters

631 double mu = 3.986004418e14; // Earth gravitational

constant

632 double J_2 = 1.082627e-3; // Earth’s second

gravitational constant

633 double omega_ie = 7.292115e-5; // Earth’s rotation rate (

rad/s)

634

635 double mag_r = position.norm_2();

636

637 double z_scale = 5.0 * std::pow((position(2) / mag_r), 2);

638

639 Vector gamma = Vector(3, 1, 0.0);

640 Vector ret = Vector(3, 1, 0.0);

641 gamma(0) = (1.0 - z_scale) * position(0);

642 gamma(1) = (1.0 - z_scale) * position(1);
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643 gamma(2) = (3.0 - z_scale) * position(2);

644

645 gamma = (-mu / std::pow(mag_r, 3)) * (position + 1.5 * J_2 * std::

pow(a / mag_r, 2) * gamma);

646 ret.put(0, 0, gamma.get(0, 2, 0, 0) + std::pow(omega_ie , 2) *

position.get(0, 2, 0, 0));

647

648 ret(2) = gamma(2);

649 return ret;

650 }

651

652 Matrix A(Matrix R, Vector accl, Vector gyro) {

653 Matrix A = Matrix(15, 15, 0.0);

654 // row 0

655 A.put(0, 3, Identity(3));

656 // row 1

657 A.put(3, 6, -R * skew(accl));

658 A.put(3, 9, -R);

659 // row 2

660 A.put(6, 6, -skew(gyro));

661 A.put(6, 12, -Identity(3));

662 // row 3

663 A.put(9, 9, -Tacc_inv);

664 // row 4

665 A.put(12, 12, -Tars_inv);

666 return A;

667 }

668

669 Vector

670 Rquat(Vector quat) {

671 auto q = Quaternion(quat);

672 return q.rotationMatrix();

673 Vector S = Vector(3, 1, 0.0);

674 S(0) = quat(1);

675 S(1) = quat(2);

676 S(2) = quat(3);

677 S = skew(S);

678 return I3 + 2*quat(0)*S + 2*S*S;

679 }

680

681 Vector quaternionProduct(Vector lhs, Vector rhs) {

682 Vector result = Vector(4, 1, 0.0);

683 Vector eps_l = Vector(3, 1, 0.0);

684 Vector eps_r = Vector(3, 1, 0.0);

685

686 eps_l(0) = lhs(1);

687 eps_l(1) = lhs(2);

688 eps_l(2) = lhs(3);

689

690 eps_r(0) = rhs(1);

691 eps_r(1) = rhs(2);

692 eps_r(2) = rhs(3);

693
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694 result.put(0, 0, lhs(0) * rhs(0) * Vector(1, 1, 1.0) - transpose(

eps_l) * eps_r);

695 result.put(1, 0, lhs(0)*eps_r + rhs(0)*eps_l + skew(eps_l) * eps_r

);

696 return result;

697 }

698

699 std::tuple<Matrix, Matrix>

700 van_Loan(Matrix A, Matrix G, Matrix Q, double Ts)

701 {

702 Matrix A_ = Matrix(30, 30, 0.0);

703 A_.put(0, 0, -A);

704 A_.put(0, 15, G * Q * transpose(G));

705 A_.put(15, 15, transpose(A));

706 A_ = Ts * A_;

707

708 Matrix B = Identity(30);

709

710 B = B + A_ + A_*A_/2.0;

711

712 Matrix Ad = transpose(B.get(15, 29, 15, 29));

713 Matrix Qd = Ad * B.get(0, 14, 15, 29);

714

715 return std::make_tuple(Ad, Qd);

716 }

717

718 Vector

719 R2euler(Matrix R)

720 {

721 auto phi = atan2(R(2, 1), R(2, 2));

722 auto theta = -asin(R(2, 0));

723 auto psi = atan2(R(1, 0), R(0, 0));

724

725 Vector ret = Vector(3, 1, 0.0);

726 ret(0) = phi;

727 ret(1) = theta;

728 ret(2) = psi;

729 return ret;

730 }

731

732 Matrix

733 Ren() {

734 double lat, lon, h;

735 WGS84::fromECEF(m_p_e_eb(0), m_p_e_eb(1), m_p_e_eb(2), &lat, &lon,

&h);

736

737 Matrix ret = Matrix(3, 3, 0.0);

738

739 ret(0, 0) = -sin(lat)*cos(lon);

740 ret(0, 1) = -sin(lon);

741 ret(0, 2) = -cos(lat)*cos(lon);

742

743 ret(1, 0) = -sin(lat)*sin(lon);
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744 ret(1, 1) = cos(lon);

745 ret(1, 2) = -cos(lat)*sin(lon);

746

747 ret(2, 0) = cos(lat);

748 ret(2, 1) = 0;

749 ret(2, 2) = -sin(lat);

750

751 return ret;

752 }

753

754

755 Matrix

756 Ren(Vector ecef_pos) {

757 double lat, lon, h;

758 WGS84::fromECEF(ecef_pos(0), ecef_pos(1), ecef_pos(2), &lat, &lon,

&h);

759

760 Matrix ret = Matrix(3, 3, 0.0);

761

762 ret(0, 0) = -sin(lat)*cos(lon);

763 ret(0, 1) = -sin(lon);

764 ret(0, 2) = -cos(lat)*cos(lon);

765

766 ret(1, 0) = -sin(lat)*sin(lon);

767 ret(1, 1) = cos(lon);

768 ret(1, 2) = -cos(lat)*sin(lon);

769

770 ret(2, 0) = cos(lat);

771 ret(2, 1) = 0;

772 ret(2, 2) = -sin(lat);

773

774 return ret;

775 }

776

777 Vector

778 Vpars(double pitch, double yaw, double dist, double base_pitch ,

double base_yaw)

779 {

780 Vector ret = Matrix(3, 1, 0.0);

781

782 ret(0) = cos(yaw + base_yaw)*cos(pitch + base_pitch);

783 ret(1) = sin(yaw + base_yaw)*cos(pitch + base_pitch);

784 ret(2) = -sin(pitch + base_pitch);

785 return dist * ret;

786 }

787

788 Matrix

789 M(double pitch, double yaw, double dist)

790 {

791 Vector ret = Matrix(3, 3, 0.0);

792

793 ret(0,0) = cos(yaw)*cos(pitch);

794 ret(0,1) = -dist*sin(yaw)*cos(pitch);
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795 ret(0,2) = -dist*cos(yaw)*sin(pitch);

796

797 ret(1,0) = sin(yaw)*cos(pitch);

798 ret(1,1) = dist*cos(yaw)*cos(pitch);

799 ret(1,2) = -dist*sin(yaw)*sin(pitch);

800

801 ret(2,0) = -sin(pitch);

802 ret(2,1) = 0.0;

803 ret(2,2) = -dist*cos(pitch);

804

805 return ret;

806 }

807

808 Vector

809 Vpars_cyl(double height, double yaw, double horizontal_dist , double

base_yaw)

810 {

811 Vector ret = Matrix(3, 1, 0.0);

812 double bias = std::exp(-m_R_yaw/2);

813

814 ret(0) = horizontal_dist * cos(yaw + base_yaw)/bias;

815 ret(1) = horizontal_dist * sin(yaw + base_yaw)/bias;

816 ret(2) = -height;

817 return ret;

818 }

819

820 Matrix

821 M_cyl(double height, double yaw, double dist, double horizontal_dist

)

822 {

823 Vector ret = Matrix(3, 3, 0.0);

824

825 ret(0,0) = cos(yaw)*dist / horizontal_dist;

826 ret(0,1) = -sin(yaw)*horizontal_dist;

827 ret(0,2) = -cos(yaw)*height / horizontal_dist;

828

829 ret(1,0) = sin(yaw)*dist / horizontal_dist;

830 ret(1,1) = cos(yaw)*horizontal_dist;

831 ret(1,2) = -sin(yaw)*height / horizontal_dist;

832

833 ret(2,0) = 0.0;

834 ret(2,1) = 0.0;

835 ret(2,2) = -1.0;

836

837 return ret;

838 }

839

840 Matrix

841 Identity(int dim)

842 {

843 Matrix ret = Matrix(dim, dim, 0.0);

844 for (int i = 0; i < dim; i++)

845 {
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846 ret(i, i) = 1.0;

847 }

848 return ret;

849 }

850 void

851 initialize(Vector position)

852 {

853 m_p_e_eb = position;

854

855 double init_pitch = 0.0;

856 double init_roll = 0.0;

857 // Raudstein

858 double init_hdg = (M_PI/180) * 327.0;

859

860 // Udduvoll

861 init_hdg = (M_PI/180) * 122.9;

862 // Breivika

863 init_hdg = (M_PI/180) * 148.5;

864

865 Matrix Rx = Matrix(3, 3, 0.0);

866

867 Rx(0,0) = 1.0;

868

869 Rx(1,1) = cos(init_roll);

870 Rx(1,2) = -sin(init_roll);

871

872 Rx(2,1) = sin(init_roll);

873 Rx(2,2) = cos(init_roll);

874

875 Matrix Ry = Matrix(3, 3, 0.0);

876

877 Ry(0,0) = cos(init_pitch);

878 Ry(0,2) = sin(init_pitch);

879

880 Ry(1,1) = 1.0;

881

882 Ry(2,0) = -sin(init_pitch);

883 Ry(2,2) = cos(init_pitch);

884

885 Matrix Rz = Matrix(3, 3, 0.0);

886

887 Rz(0,0) = cos(init_hdg);

888 Rz(0,1) = -sin(init_hdg);

889

890 Rz(1,0) = sin(init_hdg);

891 Rz(1,1) = cos(init_hdg);

892

893 Rz(2,2) = 1.0;

894

895 auto intermediate_q = (Ren() * Rz).toQuaternion();

896 m_q_e_eb(0) = -intermediate_q(3);

897 m_q_e_eb(1) = intermediate_q(0);

898 m_q_e_eb(2) = intermediate_q(1);
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899 m_q_e_eb(3) = intermediate_q(2);

900 war("MEKF init!");

901 std::cout << "q " << std::endl << m_q_e_eb << std::endl;

902 std::cout << "g_E " << std::endl << g_e(m_p_e_eb) << std::endl;

903

904 m_init.store(true);

905 return;

906 }

907

908 //! Main loop.

909 void

910 onMain(void)

911 {

912 using namespace std::chrono;

913

914 auto start_time = steady_clock::now();

915 while (!stopping())

916 {

917 waitForMessages(1.0);

918 }

919 if (m_csv.load())

920 {

921 f_imu.close();

922 f_gnss.close();

923 f_pars.close();

924 f_rawpars.close();

925 f_rpy.close();

926 f_est.close();

927 f_P.close();

928 f_error.close();

929 }

930 }

931 };

932 }

933 }

934

935 DUNE_TASK
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