
A Flashcard Based Web
Application for Collective Learning
and Peer Review Based Evaluation
of Students

May 2021

M
as

te
r's

 th
es

is

M
aster's thesis

Asgeir Hunshamar

2021
Asgeir H

unsham
ar

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

A Flashcard Based Web Application for
Collective Learning and Peer Review
Based Evaluation of Students

Asgeir Hunshamar

Cybernetics and Robotics
Submission date: May 2021
Supervisor: Sverre Hendseth

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Problem statement

A flashcard based learning tool is to be developed for use in the Real-Time Pro-
gramming course (TTK4145) at NTNU. This flashcard system will handle the cre-
ation, peer review and studying of student submitted flashcards.

The following tasks will be performed in order to create a maintainable, working
web application to realize the flashcard system.

• Specify a list of functional and non-functional requirements for the system
• Develop the client-server system, consisting of a single-page application and

a REST-API connected to a SQL database, satisfying the system require-
ments.
• Test, deploy and host the system on a server
• Beta test the system on students to test functionality, usability and scalability

of the application.

i

Abstract

This thesis describes the implementation of a flashcard-based educational applic-
ation developed for the course TTK4145 - Real-Time Programming at NTNU. The
system was developed with the goal of providing a new, unique type of exercise
for students to submit, whilst simultaneously providing a learning tool for stu-
dents to study the course material and to prepare for the final exam. The goal of
the application is to facilitate a collective effort of student contributions to create
a set of quality flashcards, covering the curriculum of the course. This collective
set of flashcards can be used by students to effectively study the course mater-
ial. A peer-review process will filter out the highest quality flashcards, whilst also
providing a basis for evaluation of students.

The implemented web application was beta tested as a voluntary exercise by
students attending the Real-Time Programming Course. The students submitted
flashcards that were rated and evaluated in a peer review process by fellow stu-
dents. A selection of unique, highly rated flashcards were made available for
studying. The flashcard application was actively used by 105 students. A majority
of students surveyed found that the flashcards studied had a high degree of qual-
ity and relevance to the course material and that the flashcard application helped
them prepare for the exam.

The effectiveness and ease of use of this application has been demonstrated through
beta testing and user surveys, but further work remains to be implemented for
maximizing the learning effect and potential of the application.

The application is available at http://ttk4145flashcards.no alternative link

iii

http://ttk4145flashcards.no
http://ttk4145flashcards.herokuapp.com

Sammendrag

Denne oppgaven beskriver implementeringen av en flashcard-basert pedagogisk
applikasjon utviklet for emnet TTK4145 - Sanntidsprogrammering ved NTNU.
Systemet ble utviklet med formål om å tilby en ny, unik type øving for studentene
å levere, samtidig som det gir et læringsverktøy for studenter til å studere em-
nematerialet og forberede seg til avsluttende eksamen. Målet med applikasjonen
er å legge til rette for en samlet innsats av studentbidrag for å lage et sett med
flashcard av høy kvalitet som dekker pensum i emnet. Dette kollektive settet med
flashcards kan brukes av studenter til å effektivt studere emnematerialet. En fag-
fellevurderingsprosess vil filtrere ut flashcards av høyeste kvalitet, samtidig som
det gir grunnlag for evaluering av studentene.

Den implementerte webapplikasjonen ble betatestet som en frivillig øvelse av stu-
denter som var meldt opp i sanntidsprogrammeringsemnet. Studentene leverte
flashcards som ble vurdert og evaluert i en fagfellevurdering av medstudenter.
Et utvalg av unike, høyt rangerte flashcards ble gjort tilgjengelig for å studere.
Flashcard-applikasjonen ble aktivt brukt av 105 studenter. Et flertall av spurte
studenter svarte at flashcard som ble studert i applikasjonen hadde en høy grad
av kvalitet og relevans for emnematerialet, og at applikasjonen hjalp dem med å
forberede seg til eksamen.

Effektiviteten og brukervennligheten til denne applikasjonen har blitt demonstrert
gjennom betatesting og brukerundersøkelser, men ytterligere arbeid gjenstår å
implementeres for å maksimere læringseffekten og potensialet til applikasjonen.

Applikasjonen kan testes på http://ttk4145flashcards.no alternativ link

v

http://ttk4145flashcards.no
http://ttk4145flashcards.herokuapp.com

Table of Contents

Problem statement . i
Abstract . iii
Sammendrag . v
Table of Contents . vii
1 Introduction . 1

1.1 Motivation and Project Description . 1
1.2 Similar Applications . 2

2 Theory . 3
2.1 Flashcards . 3
2.2 Spaced Repetition and the Forgetting Curve 3
2.3 Peer Review and Feedback . 4

3 Tools and Methods . 7
3.1 Client-Server Model . 7

3.1.1 REST API . 8
3.1.2 Relational Database . 8
3.1.3 Single Page Application . 8

3.2 Python with Flask . 9
3.2.1 Features of Flask . 10
3.2.2 Package Managing System - Pip 11
3.2.3 Database ORM - SQLAlchemy 11
3.2.4 Database Migration - Flask-Migrate 12
3.2.5 Tokens - Flask-JWT-Extended 13
3.2.6 Other Libraries . 13

3.3 Javascript with React . 15
3.3.1 Package manager - npm . 17
3.3.2 Internal state management - Redux 17
3.3.3 User Interface - Material UI . 20
3.3.4 Other Libraries . 20

4 Requirements specification . 21
4.1 Functional Requirements . 21

4.1.1 General and Home Page . 21
4.1.2 Flashcards and Flashcard Groups 22
4.1.3 Peer Review . 23

vii

viii :

4.1.4 Flashcard Study . 24
4.1.5 Admin Page . 25

4.2 Non-functional requirements . 26
5 Implementation and Application Architecture 27

5.1 Server . 27
5.1.1 Structure and modularization 27
5.1.2 SQL Database Tables and Entity Relationships 28
5.1.3 JWT Tokens . 30
5.1.4 Users . 31
5.1.5 Flashcards and Flashcard Groups 32
5.1.6 Peer Review and Card Ratings 32
5.1.7 Collective Deck and User Flaskcard Decks 34

5.2 Client . 34
5.2.1 Structure . 35
5.2.2 Design Patterns and Component Structure 36
5.2.3 Login and User Authentication 37
5.2.4 Home Page and Navigation . 39
5.2.5 Flascard Groups and Flashcard Creation 40
5.2.6 Peer Review of User Flashcards 42
5.2.7 Study - User Flashcard Decks 43
5.2.8 Admin page . 44

6 Deployment and Beta Testing . 47
6.1 Deployment With Heroku . 47

6.1.1 Gunicorn . 47
6.1.2 PostgreSQL . 47
6.1.3 Temporary Domain . 47

6.2 Closed Beta Test With Student Assistants 48
6.3 Open Beta Test With Students . 48

6.3.1 Flashcard Creation . 48
6.3.2 Peer Review . 49
6.3.3 Flashcard Study . 49

6.4 User Survey . 50
7 Discussion and Further Work . 53

7.1 Discussion . 53
7.2 Further Work . 54

7.2.1 Hosting on NTNU Virtual Server 54
7.2.2 Implementation of Spaced Repetition 54
7.2.3 Further Data Analysis . 54
7.2.4 Responsive Design . 55
7.2.5 Mobile App for Flashcard Review 55

Bibliography . 57
A ER Diagram . 61
B API Routes . 63
C Code . 67

Table of Contents ix

D Beta Test Survey Results . 69

Chapter 1

Introduction

1.1 Motivation and Project Description

Compulsory activities, usually in the form of obligatory exercises or more creat-
ive projects, are commonly used at Norwegian universities and higher education.
The purpose of these exercises is usually to either motivate the students to work
continuously through the semester, deterring them from procrastinating the en-
tire workload of a subject to the weeks leading up to the final exam, or to provide
an alternative mode of evaluation of students from the written examination. Or
both.

The problem with this approach, especially with the more generic obligatory exer-
cises consisting of a set of tasks from the curriculum with rather specific answers,
is the widespread plagiarism and sharing of answers, also known as koking, a
term coined by students to describe the act of copying answers either from an an-
swer sheet or from other students [1]. An interview with PhD Candidate Tir Aksel
Heirung revealed that of 50 submitted assignments in a subject, nine were clearly
copied from an answer sheet that could be found online. [1]

Another problem with the current approach is the lack of repetition and long-
term review of the course material. Students are expected to retain the informa-
tion learned throughout the semester, and preferably throughout their education
and career. Without any attempt to retain information learned, through conscious
review of the material, humans tend to forget most of the newly acquired know-
ledge in a matter of days. This phenomenon is known as the forgetting curve and
was first described by German psychologist Hermann Ebbinghaus in 1985 [2].
Many different strategies and techniques are commonly used by students to res-
ist this phenomenon. These strategies include well organized notes, flashcards,
re-watching lectures and redoing assignments, but without a systematic tool for
retention, a lot of the learned material will usually quickly be forgotten.

This thesis will describe the development of a new and unique learning tool, which

1

2 :

is to be used in the subject TTK415 - Real Time Programming at NTNU. This tool
will be developed with the goal of encouraging students to gain an understanding
of the curriculum early as well as a tool for students to review the curriculum and
retain the material throughout the semester. The tool will allow students to deliver
mandatory assignments consisting of a set number of questions and answers for
each section of the curriculum after it has been lectured. Through systematic peer
review of the assignments, the highest-rated questions and answers will be made
available as flashcards for students to study. The cards will be rated on quality and
difficulty, and questions too similar can be marked as duplicates, discouraging the
students from koking questions from each other or from older exams. The flash-
card study review process is voluntary, but encouraged. The tool will be developed
with the goal to utilize spaced repetition for flashcard studying, a technique for
active recall with increasing intervals, taking advantage of the forgetting curve,
optimizing the retention of information.

1.2 Similar Applications

Multiple flashcard based learning applications already exists. A popular choice is
Anki, a flashcard program supporting the creation of Flashcards using HTML and
using spaced repetition for flashcard reviews. Anki is especially popular among
medical students, with a 2015 study finding that 31% of medical students answer-
ing a survey reported using Anki. It was also found that the use of Anki flashcards
resulted in higher scores in the United States Medical Licensing Examination [3].
Whilst it is possible to share flashcard decks in Anki, collaborative decks with user
ratings are not a feature.

Other popular flashcard applications include Brainscape, Quizlet, Cram and IDoRe-
call [4], but none of these, or any other researched applications, include any sim-
ilar collective, peer review based rating and quality assurance features of the flash-
card application described in this thesis.

Chapter 2

Theory

2.1 Flashcards

Studying flashcards is a commonly used study technique by students to retain
information. Flashcards, either digital or physical, consists of a question on one
side and an answer on the other. The studying of flashcards provides an alternat-
ive mode of studying from passively reading the material, whilst also taking ad-
vantage of the testing effect, a well-established learning method that increases the
effectiveness of reviewing during learning by answering questions about the learn-
ing content rather than restudying the material [5]. A study concluded that uni-
versity students answering short-answer questions after a lecture provided greater
retention of learning than students who read summarizing statements about the
core lecture content [5].

The efficiency of flashcards as a study aid for higher education has also been
demonstrated through a study on the use of flashcards for studying for exams.
The study found that students in an Introduction to Psychology class who used
flashcards for studying had significantly higher exam scores overall than those
students who did not use flashcards. [6]

2.2 Spaced Repetition and the Forgetting Curve

The information retention effect of flashcards can be further optimized using a
spaced repetition approach. Spaced repetition is a learning technique designed to
exploit the psychological spacing effect, a phenomenon that suggests that active
recall with increasing time intervals increases the probability of remembering in-
formation. [7]. For most people, a single exposure to a fact or concept is usually
inadequate for long-term retention. Flashcards can provide a great resource to be
frequently exposed to the material, but with a sporadic approach to the repeti-
tion of flashcards, the result will usually be a lot of redundant studying of already

3

4 :

familiar and learned material. The idea behind spaced repetition is to create a sys-
tem to increase the frequency of reviews for hard and unfamiliar flashcards, whilst
the familiar flashcards are de-prioritized by gradually increasing the time interval
between their exposure to the student. Spaced repetition will also space out the
flashcard reviews, preventing cramming and increasing long-term retention of the
material. [8]

The forgetting curve, illustrated in figure 2.1, discovered by Hermann Ebbinghaus
in 1885, representing the spacing effect, shows how information is forgotten over
time when there is no attempt to recall it, and how each repetition of the ma-
terial increases the interval before the next repetition is needed. [8]. Initially, the
material may need to be repeated within days, but as the repetition interval in-
creases, using spaced repetition, the material can be remembered for months or
years before requiring new repetitions.

Figure 2.1: Ebbinghaus’ Forgetting Curve [9]

2.3 Peer Review and Feedback

Peer reviewing is a reciprocal process, where student produce and receive feed-
back on each others’ work. Peer reviews are familiar to most students at NTNU and
is also utilized in the Real Time Programming subject, where students are assigned
to review each others code for the course lab assignments. A study conducted at
the University of Strathclyde found that producing feedback reviews engages stu-
dents in multiple acts of evaluative judgement, both about the work of peers, and,
through a reflective process, about their own work; that it involves them in both in-
voking and applying criteria to explain those judgements; and that it shifts control
of feedback processes into students’ hands, a shift that can reduce their need for ex-
ternal feedback. [10]. In addition the use of peer reviews significantly reduces
the workload of academic staff and by collecting feedback from multiple peers, a
larger quantity and variety of feedback is collected.

Chapter 2: Theory 5

The use of peer review feedback in this application ensures that minimal addi-
tional workload is given to the student assistants or academic staff of the course
as well as giving the students the learning benefit gained by evaluating and re-
flecting each others’ work.

Chapter 3

Tools and Methods

3.1 Client-Server Model

The application is built using the client-server model, a two-tier architecture model,
providing a presentation layer, often referred to as the front end, and a data access
layer, referred to as the back end. [11]

The main principle behind the client-server architecture is a separation of con-
cerns. The user interface concern is separated from the data storage concern, im-
proving portability of the user interface across multiple platforms and improving
the scalability of the system by simplifying the server component. This allows for
the components to evolve independently. [11]

The technology stack used to implement the client-server application is summar-
ized in figure 3.1

Figure 3.1: Application Architecture

7

8 :

3.1.1 REST API

To pass data between the client-side and the server-side, the server application was
built as a Representational state transfer application programming interface (REST
API). The REST API defined a set of endpoints, or routes, that can be requested
to fetch or manipulate data on the server [11]. Five types of requests are used in
REST APIs

• GET: Used to fetch data
• POST: Used to send data
• PUT: Used to replace existing data
• PATCH: Used to modify existing data
• DELETE: Used to delete existing data

3.1.2 Relational Database

To store the data on the server, a relational database is utilized. Relational data-
bases store data in tables representing entity types. Each row in each table has a
unique key and data in one table can be linked to data from other tables by using
foreign keys, referencing the unique key of another table row. [12]. The use of
structured query language (SQL) to manage data in a relational database allows
for retrieving data using queries, requesting information based on the fields in the
table.

3.1.3 Single Page Application

In order to provide a better user experience as well as a high level of speed and
performance on the web page, the client application is built as a single page applic-
ation (SPA) with React. SPA is a type of web application or website that dynamic-
ally reloads selected page elements in line with user interactions in order to avoid
fetching entire new pages from a server, reducing the amount of data needed to
be fetched and increasing the speed of the application. [13].

Chapter 3: Tools and Methods 9

3.2 Python with Flask

The Python programming language was chosen to implement the server. Python
was chosen because of its emphasis on code readability, simplicity, and its vast
selection of libraries and packages. Python is becoming a more and more popular
language, having a solid claim to being the fastest-growing major programming
language [14].

Python is a language familiar to most NTNU students, which in conjunction with
the benefits listed above allows for the creation of a maintainable and readable
server application that can be handed over to future students at NTNU for further
development.

There exists multiple web frameworks for handling the REST API implementation
in Python. The two most popular frameworks are, according to the 2020 JetBrains
Python Developer Survery, by far Flask and Django [15]. Whilst Django is a more
broad, monolithic web framework with a steep learning curve, Flask is a micro
web framework, meaning it aims to keep its core simple, but extensible. Whilst
Django makes a lot of decisions for you when it comes to database management
and security, Flask supports a wide range of third-party extensions, leaving the
decisions up to the developer. [16]. For its flexibility and simplicity Flask was
chosen as a web framework.

Creating a REST API endpoint in Flask is as simple as importing the framework,
creating an instance of the Flask class and defining a function with the route()
decorator to specify what URL to trigger the function as well as which HTTP meth-
ods are allowed on the route. An example is shown below in listing 3.1, with the
jsonify() method creating a JSON representation of the data being returned by
the API, in this case, a python dictionary.

Code listing 3.1: simple api route in Flask

1 from flask import Flask, jsonify
2 app = Flask(__name__)
3

4 @app.route("/api/hello", methods=["GET"])
5 def hello_world():
6 return jsonify({"status":"Hello,World!"})

The API can be tested using curl, a tool to transfer data from a server. Running the
curl http://localhost:5000/api/hello command would make a GET request
to this REST API running on localhost:5000, returning
{"status":"Hello,World!"}

10 :

3.2.1 Features of Flask

Blueprints and Modularization

Blueprints are a built-in feature of Flask, allowing organizing related code, modu-
larizing the application into different components, simplifying how large applica-
tions work and their structure. [17]. An example of a blueprint, used for the user
module, can be created simply by writing

1 user_blueprint = Blueprint("user", __name__)

Routes are added to the user_blueprint by writing

1 user_blueprint.route("/api/users", methods=["GET"])

followed by the rest of the route information as shown in listing 3.1

This allows for all the routes, logic and methods of the modules to be separated
from the main application into different files and folders. These blueprints are
simply imported to the main app.py file using the register_blueprint() method
as shown below

1 from blueprints.user import user_blueprint
2

3 app.register_blueprint(user_blueprint)

Session

Flask sessions is a built-in feature in Flask that provides a method to store data on
the server-side. Sessions store information specific to a user from one request to
another, allowing data to be shared between routes in the API. To use sessions,
users must be allowed to make authenticated requests, which can be achieved by
modifying the CORS policy of the application, further detailed in section 3.2.6, to
support credentials by setting CORS(app, supports_credentials=True). In ad-
dition, API requests to the URLs using session must include the property with-
Credentials: true to send cross-origin cookies required by session [18].

The use of sessions in the server allows for example for one route to receive user-
data from an external login api, storing it in the session, allowing the information
to be accessible from another login callback route. A simplified example, not very
different from the one implemented in the final application, is shown in listing
3.2

Chapter 3: Tools and Methods 11

Code listing 3.2: Login example using sessions

1 user_blueprint.route("api/login/userdata")
2 def user_data():
3 userdata = request.values.get("userdata")
4

5 # loads - serialize json data to python dict
6 session["userdata"] = json.loads(userdata)
7

8 # return redirect to login page
9

10 user_blueprint.route("api/login/callback")
11 def login_callback():
12 userdata = session.pop("userdata")
13

14 # return login token

3.2.2 Package Managing System - Pip

The following is a description of packages used in conjunction with Flask to im-
plement the server application in Python. All packages were installed with pip,
a package management system for python, in a virtual environment. A virtual
environment is a self-contained directory tree of packages used to isolate the de-
pendencies of the project, ensuring the correct versions of the packages are util-
ized. [19]. All python dependencies, with the related version, are summarized in
a requirements.txt file. All dependencies are installed by running the pip in-
stall -r requirements.txt command inside the virtual environment. The re-
quirements.txt file of the server application contains the following dependen-
cies, shown in listing 3.3.

Code listing 3.3: requirements.txt

1 Flask_JWT_Extended==3.25.0
2 Flask==1.1.2
3 requests==2.25.1
4 Flask_Script==2.0.6
5 alembic==1.5.8
6 Flask_Migrate==2.7.0
7 Flask_Cors==3.0.10
8 PyMySQL==1.0.2
9 Flask_SQLAlchemy==2.4.4

10 SQLAlchemy==1.3.23
11 python-dotenv==0.17.0

3.2.3 Database ORM - SQLAlchemy

The communication between python and the relational database was facilitated
using the SQLAlchemy extension for Flask. SQLAlchemy functions as an object
relational mapper (ORM) which translates python classes to tables on relational

12 :

databases. SQLAlchemy converts python function code into database queries, al-
lowing database objects to be treated as python objects, allowing the creation of
database-agnostic code for the application [20]. SQLAlchemy is compatible with
different types of relational databases, including PostgreSQL, MySQL, and SQLite.
All three of these were tested and used with the application through development,
with little modification to the python code necessary.

A minimal example of the SQLAlchemy implementation of the User table is shown
in listing 3.4. With the exception of the ORM mapping process, which here con-
verts the class into a database table with the columns id and username, with a
creator relationship to the Flashcard class, the class mostly remains a normal Py-
thon class, that can be given ordinary attributes and methods. Here a to_dict()
is implemented to return a dictionary presentation of the class attributes, useful
for formatting the outgoing data of the REST API.

Code listing 3.4: Python example

1 app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
2 db = SQLAlchemy(app)
3

4 class User(db.Model):
5 __tablename__ = "user"
6 id = db.Column(db.Integer, primary_key=True)
7 username = db.Column(db.String(24), unique=True)
8

9 flashcards = db.relationship("Flashcard", backref="creator")
10

11 def to_dict(self):
12 return {
13 "id": self.id,
14 "username": self.username,
15 "flashcards": [f.to_dict() for f in self.flashcards]
16 }

3.2.4 Database Migration - Flask-Migrate

The Flask-Migrate extension expands the Flask-SQLAlchemy application with data-
base migration features using alembic, a lightweight database migration tool for
SQLAlchemy [21]. Database migration refers to controlled sets of changes used to
modify the structure of the objects in a relational database. Migrations help trans-
ition database schemas from their current state to a new desired state, whether
that involves adding tables and columns, removing elements, splitting fields, or
changing types and constraints [22].

Flask Migrate is used in conjunction with the Manager from the Flask-Script library
to create an external script that can be run in the python shell to handle migrations

Chapter 3: Tools and Methods 13

in the database in a well organized way [23] . A minimal implementation of a
migration script for the flask app is shown in listing 3.5

Code listing 3.5: Implementation of Database Migration for SQLAlchemy with
Flask-Migrate and Flask-Script

1

2 from flask_script import Manager
3 from flask_migrate import Migrate, MigrateCommand
4

5 migrate = Migrate(app, db)
6

7 manager = Manager(app)
8 manager.add_command('db', MigrateCommand)
9

10 if __name__ == '__main__':
11 manager.run()

3.2.5 Tokens - Flask-JWT-Extended

Flask-JWT-Extended provides support for using JSON Web Tokens (JWT) in the
flask application. JWT is a compact and self-contained way for transmitting in-
formation between parties as JSON objects securely. [24] JWT is used for author-
ization. Access tokens are generated on the server-side from each unique user id
and are sent and stored in local storage on the client-side. Each JSON request
from the client-side will include the access token in its header, allowing the server
to verify the user credentials of each request. Access tokens have a short lifecycle,
and in Flask-JWT-Extended they have an expiration date of 15 minutes by default
[25]. To remedy this, refresh tokens are utilized, a type of token that can be used
to retrieve new access tokens.

Flask-JWT-Extended allows for a a simple and robust implementation of JSON
Web Tokens. The create_access_token(user_identification) method creates
a unique JWT whilst the python decorator @jwt_required and the get_jwt_identity()
function allows for route protection and user identification.

3.2.6 Other Libraries

Flask-CORS

Flask-CORS is a Flask extension for handling Cross-Origin Resource Sharing [18].
Flask-CORS allows the server to handle requests from different urls. CORS is use-
ful in the application if the API is to be accessed externally, running cross-origin
requests, which is mainly used in the development environment for this specific
application, running the server and client on different localhost ports. CORS are
easily enabled for the Flask application with the following code, shown in listing
3.6

14 :

Code listing 3.6: Enabling CORS for Flask application

1 from flask import Flask
2 from flask_cors import CORS
3

4 app = Flask(__name__)
5 CORS(app)

Requests

Requests is a simple Python library for HTTP. It allows the server application to
send HTTP requests, which in this application is used to handle external API calls
to the FEIDE login API, as shown in listing 3.7

Code listing 3.7: Request GET example

1 import requests
2

3 feide_token = requests.get(
4 "https://www.itk.ntnu.no/api/feide_token.php?apiKey="+api_key)

Chapter 3: Tools and Methods 15

3.3 Javascript with React

For implementing the client-side of the application, the JavaScript library React
was chosen. React is a JavaScript library for building user interfaces developed
by Facebook. As an alternative to vanilla JavaScript, React allows the creation of
reusable entities named components which can be rendered to the Document Ob-
ject Model (DOM), the programming interface for HTML document in the browser
[26].

React is used and installed from NodeJS, with NodeJS’s default package manager,
npm, explained in section 3.3.1. NodeJS is a runtime environment that executes
JavaScript code outside the web browser, which also allows for running, compiling
and optimizing the react applications to pure JavaScript, HTML and CSS code.

React version 17.0.1 was used, supporting react hooks, a new feature added in
version 16.8 allowing us to create react components as simple JavaScript func-
tions [27] using hooks, special functions allowing the creation of local states in
JavaScript function components.

The two most commonly used hooks are useState and useReducer, the former
being used to control the state and the latter to control the side effects of the
component. The useState hook takes one argument, the initial state, and returns
two values, the current state and a function to update it. The useEffect hook takes
a function as an argument, referred to as the effect, and an array of dependencies
as an optional second argument. Every time one of the dependencies change, the
function, or effect, is executed.

A simple example of a react component named UserInfo, created using both hooks
described above, is shown in listing 3.8. Here the useEffect hook is used to trigger
a fetch request to an external API and update the UserInfo state every time the id
state is changed. The return value of the function component is Javascript XML
(JSX), a modified version of HTML that allows us to write HTML elements in
JavaScript and place them directly in the DOM. [28]

Code listing 3.8: Simple React Hooks Example

1 import React, { useEffect, useState } from "react";
2

3 const UserInfo = ({ style }) => {
4 const [id, setId] = useState(null);
5 const [userInfo, setUserInfo] = useState({});
6

7 useEffect(() => {
8 if (id) {
9 fetch("https://jsonplaceholder.typicode.com/users/" + id)

10 .then((response) => response.json())
11 .then((json) => {

16 :

12 setUserInfo(json);
13 });
14 }
15 }, [id]);
16

17 const setRandomId = () => {
18 let newRandomId = Math.floor(Math.random() * 10) + 1;
19 setId(newRandomId);
20 };
21

22 return (// jsx
23 <div style={style}>
24 <h1>userinfo: </h1>
25 <pre>{JSON.stringify(userInfo, null, 2)}</pre>
26 <button onClick={setRandomId}>Generate random id</button>
27 <div>Current id: {id ? id : "undefined"} </div>
28 </div>
29);
30 };

Figure 3.2: Rendered HTML from the implemented UserInfo component

The id state is changed when the setRandomId() function is executed, on every
click of the Generate random id button. The component, rendered to the DOM is
shown in figure 3.2. React components are rendered from the reactDOM.render()
function of the react application by creating component tags. In this example, a
<UserInfo style= border: "1px solid black" /> tag is added to the react-

Chapter 3: Tools and Methods 17

DOM.render() function to render the UserInfo component.

3.3.1 Package manager - npm

Node Package Manager (npm) is a package manager for JavaScript, and the de-
fault package manager for NodeJS. A package.json file in the project directory
allows for the correct version of all dependencies of a project to be installed. New
packages can simply be installed with the npm install package_name command
from the terminal with NodeJS [29]. The package.json file for this application is
shown in listing 3.9

Code listing 3.9: package.json

1 "dependencies": {
2 "@date-io/date-fns": "^1.3.13",
3 "@material-ui/core": "^4.11.2",
4 "@material-ui/data-grid": "^4.0.0-alpha.20",
5 "@material-ui/icons": "^4.11.2",
6 "@material-ui/lab": "^4.0.0-alpha.57",
7 "@material-ui/pickers": "^3.2.10",
8 "@testing-library/jest-dom": "^5.11.9",
9 "@testing-library/react": "^11.2.3",

10 "@testing-library/user-event": "^12.6.0",
11 "axios": "^0.21.1",
12 "date-fns": "^2.0.0-beta.5",
13 "eslint": "^7.24.0",
14 "react": "^17.0.1",
15 "react-device-detect": "^1.17.0",
16 "react-dom": "^17.0.1",
17 "react-markdown": "^5.0.3",
18 "react-redux": "^7.2.2",
19 "react-router-dom": "^5.2.0",
20 "react-scripts": "4.0.1",
21 "redux": "^4.0.5",
22 "redux-thunk": "^2.3.0",
23 "web-vitals": "^0.2.4"
24 },

3.3.2 Internal state management - Redux

While React handles the rendering of components to the DOM and their local com-
ponent states, React is not very suitable for managing the state of the application
as a whole. As an alternative to React handling states between components as
props in Parent-Child relationships, which would quickly become a mess, Redux
allows the creation of a global store in the application for managing the applica-
tion state. The store is accessible across the entire application from all components,
making the application state centralized, resulting in cleaner code while also mak-
ing the architecture of the application more flexible, modular, and maintainable.
[30]

18 :

The Redux store, which contains the application’s global state, should never be
modified directly, but is updated by reducer functions dispatched by actions. Ac-
tions, which typically sends fetched data from the UI, are triggered from the React
UI components, which are rendered based on the extracted state from the Redux
store. This one-way data flow of the Redux setup is illustrated in figure 3.3

Figure 3.3: Redux data flow

Using the Thunk middleware, officially supported by Redux, allows us to write
middleware functions with async logic that can dispatch actions to the store [30].
This is necessary for handling asynchronous actions, such as API requests. An
example of a thunk function, expanding the UserInfo example from listing 3.8
with redux, is shown in listing 3.10. The data is fetched and an action, consisting
of a type and a payload, is dispatched to be received by a reducer.

Code listing 3.10: Redux action example

1 export const fetchUser = (id) => async (dispatch) => {
2 await fetch("https://jsonplaceholder.typicode.com/users/" + id)
3 .then((response) => response.json())
4 .then((json) => {
5 dispatch({ type: "LOAD_USER", payload: json });
6 });
7 };

The reducer takes the current state and receives actions to return a new, modified
state. With Redux, the application state is always kept in plain JavaScript objects.
To modify the state in the UserInfo example, an example of a reducer with an
initial state is shown in listing 3.11. The received action’s type is handled by the
switch statement, updating the application state based on the payload received.

Chapter 3: Tools and Methods 19

Code listing 3.11: Redux reducer example

1 const initState = {
2 user: "undefined",
3 };
4

5 const userReducer = (state = initState, action) => {
6 switch (action.type) {
7 case "LOAD_USER":
8 return {
9 user: action.payload,

10 };
11 default:
12 return state;
13 }
14 };
15

16 export default userReducer;

Updated code from the UserInfo component from listing 3.8 is shown in listing
3.12. As illustrated, the API calls and state handling is abstracted away from the
UI Component itself, and handled in the redux store. The fetchUser() function is
dispatched from the component using the useDispatch() hook, whilst the state of
the user is read with the useSelector() hook, which allows data to be extracted
from the Redux store. A second useEffect() hook is used to handle the change
of the userInfo state.

Code listing 3.12: Updated function component with Redux

1 const [id, setId] = useState(null);
2 const [userInfo, setUserInfo] = useState({});
3

4 const user = useSelector((state) => state.userReducer.user);
5

6 const dispatch = useDispatch();
7 useEffect(() => {
8 if (id) {
9 dispatch(fetchUser(id));

10 }
11 }, [id]);
12

13 useEffect(() => {
14 setUserInfo(user);
15 }, [user]);

This basic setup is used across the application, scaled to handle hundreds of API
requests and allows for the applications state to be accessible from all components.
Due to the size and complexity of the application, multiple reducers are created
separate files, each managing independent parts of the state. Multiple reducers

20 :

are combined into one rootReducer, with the combineReducer() function from
the Redux API [30]

3.3.3 User Interface - Material UI

As the project is time-restricted and building a unique design was not a main
priority, designing and building UI components from scratch was not an option.
As the focus on the user interface is to create a functional intuitive experience, not
a visually unique solution, a UI Component library was used. The library Material
UI was chosen due to its flexibility and comprehensive documentation. Material UI
is a React Framework that implements Google’s Material Design, a design system
based on the physical world with features such as shadows, visual feedback and
animations, providing great usability and versatility [31].

Material UI implements Material Design as React components that can be styled,
modified and combined in the React application. Material UI contains components
such as buttons, grid, input, cards and tables. The library also includes a react
hook function, makeStyles(), which is used for creating themes and styles for
the application components.

3.3.4 Other Libraries

Axios

As an alternative to using the built in fetch() method, demonstrated in the ex-
ample in listing 3.8, the third-party library axios is used to handle HTTP request
to the API. Axios has wider browser support than fetch, supports features such as
request cancellation and automatic transformation of JSON data [32]. Since all
data of our REST API is transferred using JSON, Axios is the obvious choice for
handling requests, resulting in simplified and cleaner code.

React-Markdown

For supporting user input in Markdown for flashcard, supporting the creation of
formatted text in the flashcards, the npm library React-Markdown was used. Un-
like other Markdown libraries for React, React-Markdown does not rely on danger-
ouslySetInnerHTML for setting the inner HTML of components, preventing Cross
Site Scripting Attacks [33], which are more detailed in section 4.1.1

React-Router-Dom

As React is only concerned with state management and rendering the state to the
DOM, the application requires an additional library for routing, React-Router-Dom.
This library gives the application the capacity to show different pages on different
urls. [34]

Chapter 4

Requirements specification

In order to understand the demand and specifications of the system before im-
plementation, an overview of requirements was made, prioritized based on their
necessity in the system and the time constraints of the development of the system.

4.1 Functional Requirements

The following is an overview and discussion of functional requirements for differ-
ent parts of the application. The functional requirements describe what the system
should do, specifying the behavior and functionality of the system. [35]

4.1.1 General and Home Page

The system requires a secure method for user login. As all the users of the system
are students at NTNU and FEIDE is the solution for secure identification for Innsida
and other NTNU services, FEIDE was chosen as a login solution for the application
(FR1) [36]. A distinction must be made between the regular users of the system,
and the course staff overseeing the use of the system, hence separate admin and
user roles must be implemented (FR2).

To make the page welcoming and user-friendly, the user should be presented with
an about section on the home page after login. This about page will give the user
information about the use and functionality of the system, hopefully removing
confusion and minimizing questions from students (FR3). The home page should
also have functionality for submission of anonymous feedback on the system, to
receive bug reports and suggestions for improvements (FR4).

As an added bonus, there could exist a user mode for admins to view the web site
as a regular user (FR5).

The General and Home Page functional requirements are summarized in table 4.1
below.

21

22 :

ID Priority Description
FR1 High The user should be able to log in through feide
FR2 High The page should have separate admin and user privileges

FR3 Medium
The home page should provide the user with a adequate
text containing information and suggestions for using the
system.

FR4 Medium
The user should be able to submit anonymous feedback,
bugs and suggestions from the home page

FR5 Low
The admin should be able to view the page in a user
mode, removing all admin functionality temporary until
disabled.

Table 4.1: Caption

4.1.2 Flashcards and Flashcard Groups

After a chapter or part of the syllabus is finished in a subject, the students will be
able to create flashcards covering the material. The admin users of the system will
be able to create flashcard groups corresponding to the part of the syllabus, giving
it a name, due date, and a set number of flashcards for each user to submit (FR6).
These attributes should be possible to edit and delete later, as mistakes can be
made by the admin users, and due dates could be useful to postpone (FR7). The
same logic applies to the user-submitted flashcards, which should be able to be
created, deleted, and edited before the due date has passed (FR8). To get an idea
of the usability and function of the flashcard, the user should be able to preview
the flashcard that was created as if the user was studying it (FR9). This preview
flashcard feature is especially useful if the text of the flashcard is formattable us-
ing a markup language, such as HTML, Markdown, or LaTeX, that also supports
images, lists and other features, allowing for more engaging flashcards (FR10).

ID Priority Description

FR6 High
An admin user should be able to create a flashcard group,
giving it a name, due date and a set number of flashcards
for each user to submit

FR7 High
An admin user should be able to edit and delete the flash-
card group

FR8 High
The user should be able to create, delete and edit flash-
cards in the flashcard group before the due date of the
flashcard group is passed

FR9 High The user should be able to preview the flashcard

FR10 Medium
The User should be able to format the text of the flash-
card, add images and lists using a markup language.

Table 4.2: Caption

Chapter 4: Requirements specification 23

4.1.3 Peer Review

To filter out the best flashcards from the user-submitted ones, and discard flash-
cards that are too similar, a flashcard rating process is necessary. As explored in
section 2.3, the use of peer reviews, letting students rate each others flashcards,
provide both a learning benefit to the students and minimal workload to the stu-
dent assistants. This peer review system of the application will be automated as
much as possible.

Peer review sessions for each student will be created by admin users, choosing a
flashcard group, number of flashcards for each student to rate, and a due date for
submission (FR11). These sessions should also be able to be edited and deleted by
the admin user, in case of the need to postpone deadlines or make other changes.
(FR12).

The peer review process consists of a user being presented with a random set
of flashcards to rate on difficulty and quality. The quality rating is a rating of
how relevant the flashcard is to the course curriculum and the overall quality
of the flashcard as a study tool. The difficulty rating is useful for letting the user
decide the difficulty range of the flashcards when studying them. In order to get an
overview over which flashcards are too similar to each other, a mark as duplicate
functionality is necessary, making it possible to select one or more flashcards.
(FR13). To remove confusion and increase the ease of use of this feature, the
process should be bidirectional, meaning that if one flashcard is selected to be
similar to another, they are both marked. (FR14). As this application is meant to
be used to evaluate students based on the quality of their submitted flashcards,
all flashcards should receive approximately the same amount of ratings, meaning
the random selection, must be weighed (FR15).

ID Priority Description

FR11 High

An admin user should be able to create peer review ses-
sions for students, choosing a flashcard group which due
date has passed, choosing number of flashcards for each
student to rate and a due date for submitting the peer
review

FR12 High
An admin user should be able to edit and delete the peer
review

FR13 High
The user should be presented with a random set of flash-
cards to review, rating each flashcards’ difficulty and qual-
ity as well as marking similar flashcards as duplicates

FR14 High Marking flashcards as duplicate should be bidirectional

FR15 Medium
All flashcards should receive approximately the same
amount of ratings, making the random selection weighed

Table 4.3: Caption

24 :

4.1.4 Flashcard Study

Due to the relatively short period between the completion of the system and the
end of the semester, the spaced repetition flashcard review process was depriorit-
ized in favor of an alternative solution. As spaced repetition spaces the introduc-
tion and review of flashcards over weeks or months, depending on the number
of flashcards and the algorithm implemented, it was not a useful feature for the
short usage time of the application. As an alternative, studying a random selec-
tion of flashcards that have passed the peer review process was prioritized to be
implemented (FR16). Using a form, the user can choose difficulty range, flash-
card groups, and how many flashcards to study (FR17). Based on the concept of
spaced repetition, incorrectly answered flashcards should be re-asked, but cor-
rectly answered flashcards discarded (FR18). After each review process, a sum-
mary of the users’ study performance should be presented (FR20). The lower pri-
ority features of flashcard study, related to spaced repetition, were not implemen-
ted (FR20, FR21, FR22), but added as futher work in section 7.2

ID Priority Description

FR16 High
The user should be able to a random selection of flash-
cards that have passed the peer review process.

FR17 High
The user should be able to choose a difficulty range and
which flashcard groups to select n flashcards from for the
random review

FR18 Medium
The random flashcard review should discard flashcards
that are successfully answered and repeat flashcards that
are failed

FR19 Medium
The user should receive a detailed summary and statistics
of their flashcard review performance

FR20 Low
The user should be able to review the flashcard in a
spaced repetition manner

FR21 Low
The spaced repetition review should be customizable for
the user, i.e. review intervals and being able to discard
flashcards from their spaced repetition flashcard set

FR22 Low
The user should be able to add custom flashcards to their
own spaced repeition set, bypassing the peer review pro-
gress.

Table 4.4: Caption

Chapter 4: Requirements specification 25

4.1.5 Admin Page

The main function of the admin page is to provide an overview of the users on
the application and their activity. The necessary data to present is a list of all
users, the delivery status of the flashcard groups and peer reviews, as well as
a list of all flashcards and their ratings from the peer review (FR23). To make
the admin page user-friendly and make it easy to look up specific data, all lists
should be filterable and searchable (FFR24). Further details on the admin page
requirements are detailed in table 4.5 below, allowing for a full overview and
necessary information presented to the administrator users.

ID Priority Description

FR23 High
The admin page should contain lists of all users, delivery
status for all flashcard groups, delivery status for peer re-
views and a list of all flashcards and their ratings.

FR24 High All lists should be filterable and searchable

FR25 High
User list should contain a list of all users, their credentials
and role

FR26 High
The admin should be able to promote a user to admin
status from the user list

FR27 High
The flashcard delivery status page should contain the de-
livery status of each user for each flashcard group

FR28 High
The all flashcards page should contain all flashcards of all
users from each flashcard group, their ratings and duplic-
ates

FR29 Medium
Clicking a flashcard from the all flashcards page should
give a preview of the flashcard as well as a list of all rat-
ings associated with the flashcard

FR30 High

The all flashcards page should have a functionality for
automatically filtering out the highest quality flashcards,
removing duplicates, based on their ratings, so they can
be added to the collective deck to be used by students for
studying.

FR31 High
The peer review delivery status page should contain the
delivery status of each user’s peer review submission for
each cardgroup

Table 4.5: Caption

26 :

4.2 Non-functional requirements

Non-functional requirements describe not how the system functions, but how
it performs it functions and the constraints on the functions in the system as a
whole. [35]. The following non-functional requirements were decided. The non-
functional requirements for this application mainly revolve around usability and
security.

Because this project is most likely to be handed over to future students for de-
velopment, the maintainability of the project is highly prioritized (nFR3). This is
reflected both in the choice of technology used for implementation and the im-
plementation and code itself.

Because the application is to be used to collect data and evaluation from students,
security is a high priority. Both in the secure transfer between the server and the
client (nFR4), but also from cross-site scripting (XSS) attacks (nRF5), which can
be a vulnerability if the user data is carelessly rendered to the browser by the
application, allowing users to inject client-side scripts [37].

The main priority of the user interface should be simplicity (nFR1) and intuitively
(nFR2). The web application should be usable on mobile screens and tablets, but
the main priority will be development for a desktop browser (nFR6).

ID Priority Description

nFR1 High
The system should have a minimalistic interface consist-
ing of simple elements

nFR2 High
The interface of the system should be responsive, inviting
the user to intuitive actions

nFR3 High The system should have a high degree of maintainability

nFR4 High
The system should have secure transfer between the
server and the client

nFR5 High
The system should be secure from Cross-Site Scripting at-
tacks

nFR6 Low
The interface of the system should be responsive for ad-
apting to mobile screens and tablets.

Table 4.6: Caption

Chapter 5

Implementation and Application
Architecture

In this chapter the implementation and architecture of the server and client ap-
plications for the system will be presented, satisfying the application requirements
set in chapter 4

5.1 Server

The server, which is built as a REST API in Python with Flask, contains all the logic
for manipulating and accessing data in the systems client-server relationship. The
independent server application is connected to a MySQL relational database using
SQLAlchemy and uses JWT Tokens for secure, authenticated transmission of data,
as explained in chapter 3.

5.1.1 Structure and modularization

Using the Blueprint feature of Flask, discussed in section 3.2.1, the different parts
of the server application were modularized into separate folders. In each module
folder, separate files for the module routes and the module logic were created. For
example, the cardgroup.py file in the cardgroup module contains the Cardgroup
class, which is correlated to a cardgroup table in the SQL database using SQLAl-
chemy, as discussed in section 3.2.3, and functions and methods for interacting
with this class. This includes functions for creating class instances, editing, delet-
ing, and modifying the class as well as other logic required by the module, for
example for calculating the average rating of flashcards.

The routes.py file of each module is only concerned with handling the HTTP
routes of the REST API. Each module’s routes.py file contains a blueprint for
that module and a set of API route functions that are triggered by HTTP calls
to specified routes as explained in chapter 3.1.1. These route functions utilize

27

28 :

the functions from the module logic file to manipulate the database and return
the correct data for each HTTP request. Each module is imported into the main
app.py file using the app.register_blueprint(...) function as explained in sec-
tion 3.2.1. The HTTP routes for each module, their input parameters, and return
values, are listed in appendix B.

This modularity and separation of concerns of the server application allows the
creation of code with a high level of maintainability and readability, aiding in
the fulfillment of the nFR3 maintainability requirement from section 4.2 for the
server. The file structure, containing all the modules of the server application, was
implemented as follows.

server
app.py

db.py

blueprints
cardgroup

cardgroup.py
routes.py

cardrating
cardrating.py
routes.py

collective_deck
collective_deck.py
routes.py

flashcard
flashcard.py
routes.py

peerreview
peerreview.py
routes.py

user
user.py
routes.py

user_flashcard_deck
user_flashcard.py
routes.py

5.1.2 SQL Database Tables and Entity Relationships

An Entity Relationship Diagram (ER diagram) was created to show the relationship
between tables in the database, and their columns. By using the visual database
design tool mySQL Workbench, built-in data modeling tools can be used to model
an ER diagram of the database [38]. This generated ER diagram is shown in ap-
pendix A. A similar, but simplified, ER diagram created using Lucidchart is shown
in figure 5.1. This simplified diagram models the pure entity relationship tables
(association tables) with a more descriptive, unique syntax using rectangles. In
addition, the structural constraints between classes are represented as numbers,
(min,max), as an alternative to the less readable differently styled lines used by

Chapter 5: Implementation and Application Architecture 29

the MySQL Workbench generated ER diagram. For example the (1,1) to (0,1) re-
lationship between the User table and Flashcard table, illustrates that each flash-
card can only be related to one user, whilst one user can be the creator of zero
to multiple flashcards. Some columns, such as foreign keys, are omitted from the
simplified diagram, as they are represented by the relationship lines in the model.

Figure 5.1: Application Architecture

As each module class is tied to a relational database class in SQLAlchemy, the ER
diagram of the database of the server application highly correlates to the file struc-
ture tree in section 5.1.1, with a couple of exceptions. Despite the PeerReview class
being a pure entity-relationship class, it was still given its own module and class
in the system, as it contains a large amount of separate logic and functions for
handling the peer review functionality. By contrast, the duplicate_ratings and
duplicate_flashcards associative tables were implemented as Self-Referential
Many-to-Many Association Tables in the Cardrating and Flahcard modules, re-
spectively, to create a bidirectional sibling relationship. This type of implemented
sibling relationships was based on the SQLAlchemy documentation [39].

In addition the FlashcardReview class was implemented as part of the UserFlash-

30 :

cardDeck module, as the FlashcardReview class did not require any separate URL
routes or self contained logic, and is therefore not given its own module folder in
the file structure.

5.1.3 JWT Tokens

To satisfy the non-functional requirement of a secure connection between the
client and the server (nFR4), JSON Web Tokens implemented with Flask-JWT-
Extended, as explained in section 3.2.5, were implemented in the server applica-
tion to facilitate the secure transmission of data.

In addition to the built in @jwt_required wrapper, the get_jwt_identity() func-
tion allows for customized wrappers to protect routes and was used for check-
ing admin privileges. This function is used to create the @admin_only decorator,
shown in listing 5.1, protecting admin routes from being accessed by normal users.

Code listing 5.1: Decorator for admin routes with JWT

1 def admin_only(f):
2 @wraps(f)
3 def wrapper(*args, **kwds):
4 uid = get_jwt_identity()
5 user = get_user(uid)
6

7 if user.is_admin():
8 return f(*args, **kwds) # continue
9 else:

10 raise Exception("Not admin")
11 return wrapper

To prevent tokens from being reused for authentication purposes, the refresh
token and access tokens of a user are invalidated on logout. This is implemented
by implementing a callback function in the @jwt.token_in_blacklist_loader
wrapper, that checks if the token is invalid, as specified by the Flask-JWT-Extended
documentation [40]. To implement this function, a database table for blacklis-
ted tokens is created with SQLAlchemy as shown in listing 5.2. Blacklisted token
are saved in the database on logout using the save() function, and the imple-
mented @jwt.token_in_blacklist_loaderwrapper callback function utilizes the
is_invalid() function to check for validity.

Code listing 5.2: Invalid Token Database Table

1 class InvalidToken(db.Model):
2 __tablename__ = "invalid_tokens"
3 id = db.Column(db.Integer, primary_key=True)
4 jti = db.Column(db.String(128))
5

Chapter 5: Implementation and Application Architecture 31

6 def save(self):
7 db.session.add(self)
8 db.session.commit()
9

10 def is_invalid(self, jti):
11 q = self.query.filter_by(jti=jti).first()
12 return bool(q)

5.1.4 Users

Login

An external login API created by Åsmund Stavdahl, an engineer at the department
of cybernetics at NTNU, was used to facilitate user login with FEIDE, as specified
in requirement FR1 in section 4.1.1

The login solution works by simply redirecting the user to an external web ser-
vice for login. To access this web page, a unique, one-time API token, which is
generated by a separate API using a secret API KEY, is required. The external web
service for FEIDE login posts a GET request to a requested API URL with the user
information, as specified in table B.1 in appendix B. To secure the login GET re-
quest, a login token encrypted with a secret API key, the user information, and
a unique one-time API token, using SHA-1, a cryptographic hash function, is in-
cluded in the request. This token is validated on the server application to ensure
the login is secure. Three API routes are used to securely login a user, below are
a summary of each routes’ task. Details about these routes can be found in table
B.1 in appendix B.

• /api/login/url

◦ get feide API key from external API using API KEY
◦ Return valid login url to client

• /api/login/userdata

◦ receive userdata and sha1 encrypted login token from login api
◦ if token valid, store userdata in Flask Session
◦ Return redirect to flashcard application

• /api/login/callback

◦ check session for userdata
◦ if user with userdata does not exist, register user
◦ Return generated jwt access and refresh tokens

Roles

By default all users are given a ”User” role when signing in to the application.
The ”Admin” role can either be designated by other admins, through the POST

32 :

and DELETE admin routes, detailed in appendix B, or through running the flask
terminal of the application by running a make_admin(user_id) function from the
server application, which is useful if no admins already exists on the system.

Admin users have all the privileges of normal users, with the additional permis-
sion of being able to make HTTP requests to admin protected routes in the API.
All admin protected routes begin with /api/admin/... and are protected by the
@admin_only wrapper explained in section 5.1.3

This separation of admin and user privileges satisfy the FR2 requirement from
section 4.1.1

5.1.5 Flashcards and Flashcard Groups

Flashcards can be submitted by any user to a flashcard group. Flashcard groups
can only be created by administrators, who specify the due date and the number of
flashcards for each user to submit. Both the flashcards and flashcard groups exist
as relational tables in the system and are related by foreign keys as shown in figure
5.1. The flashcards also have values for average quality rating and difficulty rating,
which are automatically calculated on the server side after the peer review of the
flashcard group has ended. The API routes of the server application to create, edit
and delete flashcard groups. as well as create, edit and delete flashcards in the
groups are detailed in table B.2 appendix B, fulfilling requirements FR6, FR7 and
FR8 in section 4.1.2.

5.1.6 Peer Review and Card Ratings

After a flashcard groups’ due date has elapsed, the admin is able to create peer
review sessions for each student.

Each student is presented with a number of flashcards to rate on quality and diffi-
culty. To ensure all flashcards receive approximately the same amount of ratings,
an algorithm for picking out flashcards for all users was developed. The code for
this algorithm is shown in listing 5.3

Code listing 5.3: Login example using sessions

1 # ensures all cards are picked the same amount of times
2 def pick_random_cards(cardids, number_of_users, ratings_per_student):
3

4 users_cards = []
5 for n in range(number_of_users):
6 users_cards.append([]) # Create a 3d list of flashcards
7

8 cards = cardids.copy() # shallow copy of cardid parameter
9 random.shuffle(cards)

10 for u in range(number_of_users):
11 # not enough cards left to draw from ?
12 if (len(cards) < ratings_per_student):

Chapter 5: Implementation and Application Architecture 33

13

14 # draw all remaining cards
15 users_cards[u] += cards
16

17 # add new random cards
18 cards = cardids.copy()
19 random.shuffle(cards)
20

21 # Go through new random cards and find unique cards
22 for n in range(ratings_per_student - len(users_cards[u])):
23 for i, c in enumerate(cards):
24 if c not in users_cards[u]:
25 users_cards[u].append(cards.pop(i))
26 break
27

28 else: # draw first cards and remove them from list
29 users_cards[u] = cards[0:ratings_per_student]
30 cards = cards[ratings_per_student:]
31

32 return users_cards

Assuming all users complete their peer review, this algorithm ensures all flashcards
receive approximately the same number of ratings, a deviation of one flashcard
rating is expected, as the number of flashcards is rarely divisible by the number
of students.

The algorithm simply returns a two-dimensional array, with one list of n flashcard
ids for each student, where n is equal to the ratings_per_student parameter.
The cardids parameter is a list of ids for all flashcards that belong to the flash-
card group, which is shuffled and drawn to student lists. When there are too few
cards left to draw, the remaining cards are drawn and the input cardids list is
shuffled and drawn from again. To ensure a flashcard is not drawn multiple times,
a duplicate check is done on line 24 of listing 5.3. This weighed random selection
fulfills requirement FR15 of section 4.1.3.

The bidrectional mark as duplicate requirement, FR14, described in section 4.1.3 is
fulfilled on the server side by a simple add_duplicate() function, shown in listing
5.4, that uses the duplicate_rating self-referential many-to-many association table
to create a sibling relationship between the two ratings, as explained in section
5.1.2.

Code listing 5.4: Login example using sessions

1 def add_duplicate(rating, duplicate_rating):
2 rating.duplicates.append(duplicate_rating)
3 duplicate_rating.duplicates.append(rating)

The API routes of the server application to create, edit and delete peer reviews as
well as rate flashcards in each peer review are detailed in table B.4 in appendix

34 :

B, which fulfill requirements FR11, FR12 and FR13 explained in section 4.1.2.

5.1.7 Collective Deck and User Flaskcard Decks

Flashcards can be added to and removed from the collective deck by administrator
users using the API routes detailed in table B.6 in annexed B. After each peer re-
view, the administrator has access to the average ratings and duplicate status of
each flashcard in a flashcard group, giving the administrator the final responsib-
ility to decide which flashcards pass the peer review process.

the api/admin/cardgroup/<cgid>/flashcards route detailed in table B.3 in ap-
pendix B, allows for filtering out flashcards below a certain rating and only show-
ing the highest rated flashcard if duplicates exists. This provides a list of highly-
rated, not duplicate flashcards for the admin to add to the collective deck, but
the admin will still have the flexibility of being able to manually add and remove
flashcards. Details about the client-side functionality of this process is explained
in section 5.2.8.

As an alternative to spaced repetition, which is a lower priority requirement due
to time constraints, as explained in section 4.1.4, the collective deck is studied
through user flashcard decks, which are created by the user, choosing difficulty
range of flashcards, flashcard groups to pick cards from and a name for their
flashcard deck. Users receive a selection of random flashcards to study, and submit
feedback after every flashcard study attempt on whether they are successful or not
in answering the question. The number of correct and wrong answers are stored
in a column in the user_flashcard_deck table created for each deck, allowing
the user to receive feedback on their performance after each finished deck.

To allow for wrongly answered flashcards to be moved to the back of the flashcard
deck, an order_index attribute of the FlashcardReview object associated with
each flashcard in the user flashcard deck was used for ordering the flashcards in
the deck. If a flashcard study attempt was failed, the order_index of that flashcard
review is simply changed to be the largest one the deck.

The routes for studying flashcards from the collective deck, using user flashcard
decks, are detailed in table B.7, fulfilling the FR16, FR17, FR18, FR19, and FR20
requirements for Flashcard Study, but not the lower prioritized requirements re-
lated to spaced repetition study.

5.2 Client

The client application, a single-page user interface for interacting with the REST
API, is written in JavaScript using the library React. The client application inter-
acts with the REST API through HTTP requests as explained in section 3.1.1. The
design of the user interface was implemented using Material UI, as explained in
section 3.3.3, with the goal of creating a minimalist, intuitive application.

Chapter 5: Implementation and Application Architecture 35

5.2.1 Structure

A react-project was created using the npx create-react-app command in Node.
With this command the foundation for a new single-page application in react is
created with a src folder to place all components.

The file structure of this source folder is shown in the figure below. The redux
store explained in section 3.3.2 is given a separate folder, containing the state of
the applications, as well as actions and reducers to modify this state. The static
folder contains files for themes and styling, while the utilities folder contains some
simple, pure JavaScript functions that are shared between components.

The component folder contains all components that make up the application, sep-
arated into distinct folders related to their purpose. For example all components
in the page folder are used for separate pages in the application, and utilize a
common PageWrapper component from the static folder.

client
src

components
adminpages

adminHomePage.js
...

dialogs
cardPreviewDialog.js
...

layout
navbar.js
...

notifications
alerter.js
...

pages
createCards.js
...

submodules
cardgroupCheck.js
...

static
theme.js
...

store
actions

alertActions.js
...

reducers
alertReducer.js
...

utiles
cardhandling.js
...

App.js

index.css
index.js

routes.js
...

36 :

5.2.2 Design Patterns and Component Structure

A shared code style for all components was incorporated to ensure consistency
and readability of the code, resulting in a higher degree of maintainability, nFR3
in table 4.2. A basic outline of this structure is shown in listing 5.5

Code listing 5.5: Component structure

1

2 ... // imports
3

4 const useStyles = makeStyles({
5 /* styles */
6 wrapper: {
7 .. // css
8 }
9 ...

10 });
11

12 const ExampleComponent = ({
13 ... // component props
14 }) => {
15 const classes = useStyles();
16

17 /* redux states */
18 const reduxState = useSelector(state => state.reducer.value)
19 ...
20

21 /* component states */
22 const [state, setState] = useState(initState)
23 ...
24

25 dispatch = useDispatch()
26 useEffect(() => {
27 dispatch(...) // dispatch redux actions
28 }. [])
29

30 /* component methods */
31 const handleChange = event => {
32 ... // change
33 }
34 ...
35

36 return (
37 <div className={classes.wrapper}>
38 // JSX for component
39 </div>
40)
41 };

Most of the CSS styling of components is handled outside of the component itself,

Chapter 5: Implementation and Application Architecture 37

and placed in a useStyles component using the makeStyles function from Mater-
ial UI, explained in section 3.3.3. The CSS styling can be accessed by components
using the className attribute as shown on line 37 of listing 5.5

Following the declaration of styling classes of the component, the Redux states are
accessed using the useSelector hook explained in section 3.3.2. The component
states follows, using the setState hook explained in section 3.3.

The Redux actions are dispatched using the useDisptach and useEffect hook, as
explained in section 3.3.2.

Lastly, before the return JSX of the component, the component methods are writ-
ten. For example for handling changes to the state.

5.2.3 Login and User Authentication

The login page is created as a simple React Component, with a Material UI button
that when pressed, sends a GET request to the server for a URL to open an external
FEIDE login page. The simple login page is shown in figure 5.2. Forgotten password
for FEIDE is handled by an external page supplied by idporten.

Figure 5.2: Login Page

The client side interacts the login functionality explained in section 5.1.4. The
interaction between the client, server and FEIDE API to facilitate secure login of
users is illustrated in figure 5.3

The unique user token and refresh tokens generated by the server application are
stored locally in the users browser local storage. On logout they are deleted. This
ensures the user is not logged out every time the browser is closed.

38 :

Figure 5.3: Client, Server, FEIDE API interaction for login

Chapter 5: Implementation and Application Architecture 39

5.2.4 Home Page and Navigation

After login in, the user is redirected to the home page of the application, shown in
figure 5.4. The home page contains text containing information about the applic-
ation, its purpose and suggestions for using it, satisfying FR3 in section 4.1.1. FR4
is satisfied by adding a SEND FEEDBACK button to the home page, which opens
a Google Form, a survey administration software [41] , allowing for anonymous
feedback to be collected by users.

Figure 5.4: Caption

Overheading all pages of the application is a navigation bar, as shown in figure
5.4. This is a separate component which consists of a list of links to different
pages of the application as well as information about the logged in user, and an
related drop down menu, shown in figure 5.5. From this menu the user can access
their profile, change theme of the page and log out. In addition, admin users are
able to view the page in User Mode by toggling a button on the menu, satisfying
requirement FR5 in section 4.1.1.

Figure 5.5: User drop down menu

40 :

5.2.5 Flascard Groups and Flashcard Creation

Flashcard Groups are created by administators using the form opened by clicking
the CREATE GROUP button on the Create Flashcard page shown in figure 5.6, send-
ing a POST request to the API as detailed in section 5.1.5. By clicking a flashcard
group the user is redirected to a separate page for creating, editing and deleting
flashcards.

Figure 5.6: Caption

Figure 5.7: Caption

The separate page for flashcard actions is shown in figure 5.7. On this page buttons
for editing and deleting the flashcard group appears for admin users. For normal
users, preview of all their created flashcards are shown, with buttons for editing
and deleting flashcards. The +Create Flashcard button opens a dialog with a form

Chapter 5: Implementation and Application Architecture 41

to submit new flashcards.

The dialog for submitting new flashcards is shown in figure 5.8. Text fields for the
front and back of the flashcard appear, and the user is able to preview the flash-
cards by clicking a SHOW PREVIEW button in the dialog, which is shown opened
in figure 5.8, fulfilling requirement FR9 in section 4.1.2. In this, newest version of
the application, Markdown is used for text formatting, fulfilling requirement FR10
in section 4.1.2. HTML was also tested. As discussed in section 3.3.4, the React-
Markdown library was used to support Markdown formatting, a formatting library
secure from cross site scripting attacks (nRF5). More details about the choice to
use Markdown is discussed in section 6.2.

Figure 5.8: Caption

42 :

5.2.6 Peer Review of User Flashcards

Peer Review sessions are created by administrators using the form opened by click-
ing the ADD PEER REVIEW SESSION button on the Peer Review page shown in
figure 5.9, sending a POST request to the API as detailed in section 5.1.6. Peer
Review sessions have buttons for admins, for deleting and editing. By clicking a
peer review session the user is redirected to a separate page for rating flashcards.

Figure 5.9: Caption

Figure 5.10: Caption

The separate page for rating flashcards is shown in figure 5.10. On this page,
a random selection of flashcards is shown for rating. The details about which
flashcards are shown to the user is explained in section 5.1.6. Pressing Mark As

Chapter 5: Implementation and Application Architecture 43

Duplicated opens a dialog for checking flashcards on the page as duplicates.

5.2.7 Study - User Flashcard Decks

To allow students to study flashcards that have passed the peer review process,
an alternative method for studying was implemented, discussed in section 4.1.4.
Functionality for creating user flashcard decks was implemented, where students
were able to study a random selection of flashcards from the collective deck. The
page for user flashcard decks is shown in figure 5.11. The + NEW FLASHCARD
DECK button opens a form to create a new user deck of flashcards to study.

Figure 5.11: Caption

Figure 5.12: Caption

The dialog form to create a new user deck is shown in figure 5.12. Here users
are able to choose which flashcard groups to study, difficulty of the flashcards and
amount of flashcards to study.

44 :

The study process of flashcards is shown in figure 5.13. The user is presented with
the flashcards in a random order, where only the front of the flashcard is initially
presented. The user can check the back of the flashcard and is presented with
options to retry the card, moving it to the end of the study sequence, or remove
it, depending if they were successful or unsuccessful in correctly answering the
question presented. At the end of the study sequence, the user is presented with
how many correct and wrong answers they gave.

Figure 5.13: Caption

5.2.8 Admin page

An admin page was created to provide information about users, their delivery
status, the peer review process, and all flashcards with their ratings, as discussed
in section 4.1.5. The admin page utilizes many of the /admin routes presented in
appendix B, to access information not accessible for normal users. The admin page
fulfills all requirements in section 4.1.5. One of the pages, showing all flashcards
and their ratings, is shown in figure 5.14. A toggle button was implemented that
sends a GET request to the /api/admin/cardgroups/<cgid>/flashcards route
detailed in table B.3 in appendix B. This route allows for filtering based on the
minimum average rating of flashcards, as well as an option to remove duplicate
flashcards, as explained in section 5.1.7. This functionality makes it simple for
the administrator to filter out the highest quality flashcards, adding them to the
collective deck for studying. By clicking a flashcard row, a dialog with a preview
of the flashcard, as well as information about all ratings of the flashcard appears.

To organize the data on the admin page the DataGrid component of Material
UI was used [42], allowing for client-side searching, filtering and ordering of
columns, as well as pagination with dynamic row size.

Chapter 5: Implementation and Application Architecture 45

Figure 5.14: Caption

Chapter 6

Deployment and Beta Testing

6.1 Deployment With Heroku

Due to a very slow process of accessing a virtual server on NTNU to host the
application, an alternative hosting service was used, named Heroku, running the
Gunicorn web server and PostgreSQL.

6.1.1 Gunicorn

As an alternative to the built-in web server of Flask, the Python HTTP server Gu-
nicorn was utilized. As the built-in web server of Flask only processes a single
request at a time, resulting in an unresponsive and slow application, Gunicorn
was chosen as it supports concurrently running multiple Python processes. [43].
Gunicorn is installed with pip and added to the requirements.txt file explained
in section 3.2.2.

6.1.2 PostgreSQL

As Heroku natively uses PostgreSQL, this was used as an alliterative to MySQL
when hosting on Heroku. As the python object-relational mapper SQLAlchemy
was used, switching to an alternative SQL database management system required
little configuration.

6.1.3 Temporary Domain

As the time constraints did not make it possible to host the system on NTNU’s
systems for beta testing an alternative, a temporary domain was acquired and
connected to the Heroku page.

The web domain http://ttk4145flashcards.no was chosen and used during the
beta test.

47

http://ttk4145flashcards.no

48 :

6.2 Closed Beta Test With Student Assistants

The choice of using Markdown for formatting text on flashcards was made after a
short, closed beta test involving the student assistants and the course research as-
sistant, only testing the create flashcard feature of the application. Initially, HTML
was used as a markup language, but due to its lack of familiarity for the stu-
dents and general more complicated syntax than Markdown, it was replaced after
user feedback. Another benefit of Markdown is its readability and intuitively over
HTML, for example line breaks are achieved by simply creating a new paragraph,
whilst HTML requires the use of the less intuitive
 tag.

Markdown supports many of the same features as HTML, such as images, lists, and
formatted text, but one drawback is that it does not support styling, for example
for coloring text or resizing images. Adding support for both markup languages
was considered, but as this could seem overwhelming for users and the choice
was made to only support Markdown.

6.3 Open Beta Test With Students

With the completion of the application and having successfully hosted it on a
server and conducted a closed beta test, the system was rolled out to be used
by students in the Real-Time Programming course as a voluntary exercise. 234
students were asked to participate. A timeline of the beta test is shown below

• April 21st 2021: Create flashcards due Tuesday 4th of may
• May 5th 2021: Peer review flashcards due Tuesday 11th of may
• May 12th 2021: Study flashcards
• May 19th 2021: End of beta

6.3.1 Flashcard Creation

The following five flashcard groups for submission were created, all with the dead-
line of may the 4th. These flashcard groups were decided in collaboration with the
course lecturer based on the structure of the course. The students were tasked with
creating 2 or 3 flashcards for each flashcard group.

• Code Quality (2 flashcards)
• Fault Tolerance (3 flashcards)
• Transactions and Atomic Actions (3 flashcards)
• Shared Variable Synchronization (3 flashcards)
• Scheduling (2 flashcards)

By the due date, May the 4th, 73 flashcards had been submitted by 6 different
students.

Chapter 6: Deployment and Beta Testing 49

6.3.2 Peer Review

Following the flashcard creation process, the students were tasked with rating
each other’s flashcards. Based on the number of flashcards received in each flash-
card group and the number of participating students, the following number of
flashcards to rate per student for each flashcard group was decided.

• Code Quality (8 flashcard to rate)
• Fault Tolerance (12 flashcard to rate)
• Transactions and Atomic Actions (12 flashcard to rate)
• Shared Variable Synchronization (10 flashcard to rate)
• Scheduling (6 flashcard to rate)

247 flashcard ratings were collected from 10 different users, providing a suffi-
cient number of ratings, with all flashcards receiving between 1 and 6 ratings.
As not all users participated in the peer review process, the flashcards did not
receive approximately the same amount of ratings. The algorithm for selecting
which flashcards users are to rate did successfully hand out all flashcards approx-
imately the same amount of times to be rated. But for each flashcard to receive an
equal amount of ratings, the system depends on every user to complete the peer
review process.

6.3.3 Flashcard Study

Based on the peer review process, the highest quality flashcards were selected to
be added to the collective deck for studying. All flashcards with an average quality
rating of 6.5 or above were selected. For duplicate flashcards, only the flashcard
with the highest average rating was selected. The admin functionality for adding
flashcards to the collective deck, explained in section 5.2.8, required very little
effort, and yielded a set of highly rated, unique flashcards.

The studying of flashcards turned out to be an extremely popular feature of the
application. While only 6 users participated in creating flashcards, and 10 users
participated in the peer review process, 105 users used the flashcard study feature.
Before the flashcard study feature of the application was rolled out, but students
had been asked to participate in creating and rating each other flashcards, only 53
users had logged into the application. This number increased to 172 from the time
the study feature was rolled out and leading up to the exam. A total of 6271 flash-
card reviews were initiated in 251 user flashcard decks from 105 users, despite
only 58 flashcards being available for studying.

The total flashcard reviews for each day leading up to the exam is shown in figure
6.1, with the most popular days being the launch of the study feature and the day
before the exam.

50 :

12/05 13/05 14/05 15/05 16/05 17/05 18/05 19/05
date

0

200

400

600

800

1000

1200

1400

No
. o

f f
la

sh
ca

rd

Figure 6.1: Number of Flashcard Reviews each day of the open beta test

6.4 User Survey

A voluntary user survey was sent out to all students after the beta test ended, with
highly encouraging results. The survey consisted of a series of questions where the
user would answer with a score of 1 to 5, from strongly disagree to strongly agree.
15 students answered the survey. The questions and results from the survey are
shown in appendix D.

Whilst the flashcard creation process was not very popular as a voluntary exercise,
the students who participated in creating flashcards found the creation of flash-
cards rewarding and educational and the creation process intuitive and simple to
use. The users who did not create flashcards highly reported time constraints as
the main issue, with a lot of other, mandatory exercises to hand in parallel to the
beta test of this application.

The peer review process was also found to be intuitive and simple, as well as edu-
cational and rewarding for the students participating, based on the survey results.
The users who did not contribute with peer reviews reported time constraints and
lack of knowledge as the main issue.

The study process was also well received, with 38.5% of students rating the flash-
card study process 4/5 and 61.5% rating the process 5/5 on intuitively and sim-
plicity of use. Most students surveyed responded that studying flashcards in the
application helped them prepare for the exam and found the flashcards studied
had a high level of quality and relevance to the course material. The students
surveyed agreed that they wished there were more flashcards to study, with all
students responding between 3/5 and 5/5 on this question.

A majority of the students surveyed strongly agreed that the application user

Chapter 6: Deployment and Beta Testing 51

friendly and intuitive, and a vast majority of 75% responded with strongly agreee
on whether the web application was fast and responsive.

On the question of whether the use of the flashcard application to submit and rate
flashcards should be a compulsory exercise in ttk4145 - Real-Time Programming,
the answers ranged from strongly disagree to strongly agree, with the majority
disagreeing with the suggestion. Based on the written feedback in the survey, it
seemed that most students found the amount of compulsory work in the subject
was already too much and did not think additional compulsory exercises were a
good idea. However, some users reported that it depended on whether or not the
other workload in the course was reduced or not.

Other feedback from users consisted of some confusion on the concept of user
flashcard decks and suggestions of implementing spaced repetition for flashcard
studying. This is further discussed in the further work section, chapter 7.2.

Chapter 7

Discussion and Further Work

7.1 Discussion

From the beta test, the functionality, usability, and scalability of the application
have been demonstrated to perform with a high degree of success. No bugs were
reported and there were no occurrences of crashes or malfunctions. The goal of
creating a responsive, intuitive, and user-friendly application is also reflected in
the survey results from the beta test, with all survey respondents agreeing all
features of the application were intuitive and simple to use.

As testing the application as a voluntary exercise in the course at the end of the
semester yielded few flashcards, efforts should be made to encourage students to
participate in the flashcard creation process. To maximize the learning potential
of the application the submission and peer review of flashcards could be made a
mandatory exercise in courses, where students are evaluated based on the ratings
of their flashcards and possibly on how well they rate other students’ and their
own flashcards. This type of exercise would provide a unique way to encourage
students to get a solid understanding of the course material after it has been lec-
tured, and effectively retain the information learned through the semester by the
use of flashcard study.

Despite a low number of participants in the create flashcard and peer review pro-
cess of the beta test, a majority of those who did participate and answered the
survey responded that both the creation and peer review of flashcards was by it-
self rewarding and educational, demonstrating the potential learning benefits of
these features of the system, as theorized in chapter 2

The functional and non-functional requirements were successfully implemented,
with few compromises necessary. Still, some features remain to be implemented.
Further use of this application in future semesters should come with the added
feature of spaced repetition study of flashcards, maximizing the information re-
tention effect of flashcard studying. Because the studying of flashcards will always

53

54 :

be a voluntary part of the application, the flashcard review method implemented
for the beta test of this system should also be kept as a feature of the application,
making it possible for students who have not utilized the spaced repetition system
to cram random flashcards before the exam.

With the popularity of the study feature of the application and a majority of stu-
dents surveyed responding positively to the application, reporting that studying
the flashcards helped them prepare for the exam, the potential for this application
as a learning resource and exercise system for future semesters has been demon-
strated. There is potential for further expansion with spaced repetition and other
features, and the system could also be used for other courses at NTNU with few
modifications necessary.

7.2 Further Work

7.2.1 Hosting on NTNU Virtual Server

The application should be hosted on a NTNU Virtual Server to handle the data
traffic and administration of the system. A virtual machine at http://ttk4145.it.ntnu.no/,
supporting MySQL and automatic backups, was set up in collaboration with Orakeltjen-
esten, but hosting the application on this server remains to be done.

7.2.2 Implementation of Spaced Repetition

The foundations are set for expanding the application with a Spaced Repetition
study feature. Different algorithms for spaced repetition exist, but the SuperMemo
(SM-2) algorithm, used by Anki and other flashcard applications, [44] was imple-
mented and tested on the back-end. However, due to time constraints and prior-
ities, it was scrapped in favor of an alternative solution, as explained in chapter
4.1.4.

7.2.3 Further Data Analysis

The existing system collects data for each user, their flashcards and their ratings,
but there is much more data that can be collected an analyzed. Examples include

• Study habits of students
• Which flashcards are most difficulty based on flashcard study reviews
• Evaluating the students’ peer review performance - How well does the stu-

dent rate flashcards?
• Which parts of the curriculum are most difficult
• Correlation between questions, if question A is successfully answered - is

the student more likely to correctly answer Question B.

Chapter 7: Discussion and Further Work 55

7.2.4 Responsive Design

Some work on the design and usability of the web application remains to be im-
plemented. Mainly the application is not very responsive on smaller screen sizes
in portrait mode. React libraries for the conditional rendering of separate or mod-
ified components to differently sized screens exists, but the existing components
can also be made more responsive by further utilizing the Material UI Grid com-
ponent or other flex based features of Material UI and React.

7.2.5 Mobile App for Flashcard Review

As the REST API on the back-end exists as a completely separate entity from the
client, alternative clients can be used to interact with the server. The daily task
of doing spaced repetition flashcard reviews could benefit from a simple mobile
application for flashcard study. Building the application in React Native would be
the obvious solution. React Native allows for the creation of native iOS and An-
droid apps using React, but using native components instead of web components
[45].

Bibliography

[1] A. Ebrahimi. (2011). ‘Alle ’koker” oppgaver,’ [Online]. Available: https:
//www.nrk.no/trondelag/_-alle-_koker_-oppgaver-1.7634773. (ac-
cessed: 27.02.2021).

[2] N. Sonnad. (2018). ‘You probably won’t remember this, but the “forgetting
curve” theory explains why learning is hard,’ [Online]. Available: https:
//qz.com/1213768/the- forgetting- curve- explains- why- humans-
struggle- to- memorize/#:~:text=Hermann%5C%20Ebbinghaus’ %5C%
20memory%5C%20experiments,is%5C%20over%5C%20100%5C%20years%5C%
20old.&text=Ebbinghaus%5C%20discovered%5C%20that%5C%20his%5C%
20memory%5C%20of%5C%20them%5C%20quickly%5C%20decayed.. (accessed:
27.02.2021).

[3] J. A. G. Francis Deng, A. T. Douglas P. Larsen * and C. Breslina. (2015).
‘Student-directed retrieval practice is a predictor of medical licensing ex-
amination performance,’ [Online]. Available: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4673073/. (accessed: 16.05.2021).

[4] R. Patterson. (2021). ‘These flashcard apps will help you study better in
2021,’ [Online]. Available: https://collegeinfogeek.com/flashcard-
apps/. (accessed: 16.05.2021).

[5] S. Greving and T. Richter. (2018). ‘Examining the testing effect in university
teaching: Retrievability and question format matter,’ [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02412/
full. (accessed: 15.05.2021).

[6] N. E. W. Jonathan M. Golding1 and B. Fletcher1. (2012). ‘Examining the
testing effect in university teaching: Retrievability and question format
matter,’ [Online]. Available: https://journals.sagepub.com/doi/pdf/
10.1177/0098628312450436#:~:text=Almost%5C%2070%5C%25%5C%20of%
5C%20the%5C%20class,on%5C%20one%5C%20or%5C%20two%5C%20exams..
(accessed: 15.05.2021).

[7] S. H. K. Kang. (2016). ‘Spaced repetition promotes efficient and effective
learning: Policy implications for instruction,’ [Online]. Available: https://
www.researchgate.net/publication/290511665_Spaced_Repetition_

57

https://www.nrk.no/trondelag/_-alle-_koker_-oppgaver-1.7634773
https://www.nrk.no/trondelag/_-alle-_koker_-oppgaver-1.7634773
https://qz.com/1213768/the-forgetting-curve-explains-why-humans-struggle-to-memorize/#:~:text=Hermann%5C%20Ebbinghaus'%5C%20memory%5C%20experiments,is%5C%20over%5C%20100%5C%20years%5C%20old.&text=Ebbinghaus%5C%20discovered%5C%20that%5C%20his%5C%20memory%5C%20of%5C%20them%5C%20quickly%5C%20decayed.
https://qz.com/1213768/the-forgetting-curve-explains-why-humans-struggle-to-memorize/#:~:text=Hermann%5C%20Ebbinghaus'%5C%20memory%5C%20experiments,is%5C%20over%5C%20100%5C%20years%5C%20old.&text=Ebbinghaus%5C%20discovered%5C%20that%5C%20his%5C%20memory%5C%20of%5C%20them%5C%20quickly%5C%20decayed.
https://qz.com/1213768/the-forgetting-curve-explains-why-humans-struggle-to-memorize/#:~:text=Hermann%5C%20Ebbinghaus'%5C%20memory%5C%20experiments,is%5C%20over%5C%20100%5C%20years%5C%20old.&text=Ebbinghaus%5C%20discovered%5C%20that%5C%20his%5C%20memory%5C%20of%5C%20them%5C%20quickly%5C%20decayed.
https://qz.com/1213768/the-forgetting-curve-explains-why-humans-struggle-to-memorize/#:~:text=Hermann%5C%20Ebbinghaus'%5C%20memory%5C%20experiments,is%5C%20over%5C%20100%5C%20years%5C%20old.&text=Ebbinghaus%5C%20discovered%5C%20that%5C%20his%5C%20memory%5C%20of%5C%20them%5C%20quickly%5C%20decayed.
https://qz.com/1213768/the-forgetting-curve-explains-why-humans-struggle-to-memorize/#:~:text=Hermann%5C%20Ebbinghaus'%5C%20memory%5C%20experiments,is%5C%20over%5C%20100%5C%20years%5C%20old.&text=Ebbinghaus%5C%20discovered%5C%20that%5C%20his%5C%20memory%5C%20of%5C%20them%5C%20quickly%5C%20decayed.
https://qz.com/1213768/the-forgetting-curve-explains-why-humans-struggle-to-memorize/#:~:text=Hermann%5C%20Ebbinghaus'%5C%20memory%5C%20experiments,is%5C%20over%5C%20100%5C%20years%5C%20old.&text=Ebbinghaus%5C%20discovered%5C%20that%5C%20his%5C%20memory%5C%20of%5C%20them%5C%20quickly%5C%20decayed.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673073/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673073/
https://collegeinfogeek.com/flashcard-apps/
https://collegeinfogeek.com/flashcard-apps/
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02412/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02412/full
https://journals.sagepub.com/doi/pdf/10.1177/0098628312450436#:~:text=Almost%5C%2070%5C%25%5C%20of%5C%20the%5C%20class,on%5C%20one%5C%20or%5C%20two%5C%20exams.
https://journals.sagepub.com/doi/pdf/10.1177/0098628312450436#:~:text=Almost%5C%2070%5C%25%5C%20of%5C%20the%5C%20class,on%5C%20one%5C%20or%5C%20two%5C%20exams.
https://journals.sagepub.com/doi/pdf/10.1177/0098628312450436#:~:text=Almost%5C%2070%5C%25%5C%20of%5C%20the%5C%20class,on%5C%20one%5C%20or%5C%20two%5C%20exams.
https://www.researchgate.net/publication/290511665_Spaced_Repetition_Promotes_Efficient_and_Effective_Learning_Policy_Implications_for_Instruction
https://www.researchgate.net/publication/290511665_Spaced_Repetition_Promotes_Efficient_and_Effective_Learning_Policy_Implications_for_Instruction
https://www.researchgate.net/publication/290511665_Spaced_Repetition_Promotes_Efficient_and_Effective_Learning_Policy_Implications_for_Instruction
https://www.researchgate.net/publication/290511665_Spaced_Repetition_Promotes_Efficient_and_Effective_Learning_Policy_Implications_for_Instruction

58 :

Promotes_Efficient_and_Effective_Learning_Policy_Implications_
for_Instruction. (accessed: 03.02.2021).

[8] S. Tamm. (2021). ‘Spaced repetition: A guide to the technique,’ [Online].
Available: https://e- student.org/spaced- repetition/. (accessed:
15.05.2021).

[9] B. A. Chun. (2021). ‘The effect of flipped learning on academic perform-
ance as an innovative method for overcoming ebbinghaus’ forgetting curve,’
[Online]. Available: https://www.researchgate.net/figure/Ebbinghaus-
forgetting-curve-and-review-cycle_fig1_324816198. (accessed: 26.05.2021).

[10] A. T. David Nicola * and C. Breslina. (2014). ‘Rethinking feedback practices
in higher education: A peer review perspective,’ [Online]. Available: http:
//l2l.ie/documents/feedback.pdf. (accessed: 15.05.2021).

[11] R. T. Fielding. (2000). ‘Chapter 5 representational state transfer (rest)?’
[Online]. Available: https://www.redhat.com/en/topics/api/what-is-
a-rest-api. (accessed: 7.05.2021).

[12] Oracle. (2021). ‘What is a relational database?’ [Online]. Available: https:
//www.oracle.com/database/what-is-a-relational-database/. (ac-
cessed: 21.05.2021).

[13] K. Ismail. (2018). ‘What is a single page application?’ [Online]. Available:
https://www.cmswire.com/digital-experience/what-is-a-single-
page-application/. (accessed: 7.05.2021).

[14] D. Robinson. (2017). ‘The incredible growth of python,’ [Online]. Avail-
able: https://stackoverflow.blog/2017/09/06/incredible-growth-
python/. (accessed: 19.04.2021).

[15] jetbrains. (2020). ‘Python developers survey 2020 results,’ [Online]. Avail-
able: https://www.jetbrains.com/lp/python-developers-survey-
2020/. (accessed: 19.04.2021).

[16] Flask. (2020). ‘Python developers survey 2020 results,’ [Online]. Available:
https://flask.palletsprojects.com/en/1.1.x/foreword/. (accessed:
19.04.2021).

[17] Pallets. (2010). ‘Modular applications with blueprints,’ [Online]. Available:
https://flask.palletsprojects.com/en/1.1.x/blueprints/. (ac-
cessed: 5.05.2021).

[18] C. Dolphin. (2013). ‘Flask-cors,’ [Online]. Available: https://flask-cors.
readthedocs.io/en/latest/. (accessed: 19.04.2021).

[19] (2021). ‘Python documentation - virtual environments and packages,’ [On-
line]. Available: https://docs.python.org/3/tutorial/venv.html.
(accessed: 16.04.2021).

[20] B. Krebs. (2017). ‘Sqlalchemy orm tutorial for python developers,’ [On-
line]. Available: https://auth0.com/blog/sqlalchemy-orm-tutorial-
for-python-developers/. (accessed: 16.04.2021).

https://www.researchgate.net/publication/290511665_Spaced_Repetition_Promotes_Efficient_and_Effective_Learning_Policy_Implications_for_Instruction
https://www.researchgate.net/publication/290511665_Spaced_Repetition_Promotes_Efficient_and_Effective_Learning_Policy_Implications_for_Instruction
https://www.researchgate.net/publication/290511665_Spaced_Repetition_Promotes_Efficient_and_Effective_Learning_Policy_Implications_for_Instruction
https://www.researchgate.net/publication/290511665_Spaced_Repetition_Promotes_Efficient_and_Effective_Learning_Policy_Implications_for_Instruction
https://e-student.org/spaced-repetition/
https://www.researchgate.net/figure/Ebbinghaus-forgetting-curve-and-review-cycle_fig1_324816198
https://www.researchgate.net/figure/Ebbinghaus-forgetting-curve-and-review-cycle_fig1_324816198
http://l2l.ie/documents/feedback.pdf
http://l2l.ie/documents/feedback.pdf
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://www.cmswire.com/digital-experience/what-is-a-single-page-application/
https://www.cmswire.com/digital-experience/what-is-a-single-page-application/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://www.jetbrains.com/lp/python-developers-survey-2020/
https://www.jetbrains.com/lp/python-developers-survey-2020/
https://flask.palletsprojects.com/en/1.1.x/foreword/
https://flask.palletsprojects.com/en/1.1.x/blueprints/
https://flask-cors.readthedocs.io/en/latest/
https://flask-cors.readthedocs.io/en/latest/
https://docs.python.org/3/tutorial/venv.html
https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/
https://auth0.com/blog/sqlalchemy-orm-tutorial-for-python-developers/

Bibliography 59

[21] M. Grinberg. (2019). ‘Flask-migrate,’ [Online]. Available: https://flask-
migrate.readthedocs.io/en/latest/. (accessed: 19.04.2021).

[22] Prisma. (2020). ‘What are database migrations?’ [Online]. Available: https:
//www.prisma.io/dataguide/types/relational/what-are-database-
migrations. (accessed: 19.04.2021).

[23] Smurfix. (2020). ‘Flask-script?’ [Online]. Available: https://flask-script.
readthedocs.io/en/latest/. (accessed: 19.04.2021).

[24] Auth0. (2020). ‘Introduction to json web tokens,’ [Online]. Available: https:
//jwt.io/introduction/. (accessed: 19.04.2021).

[25] Auth0. (2020). ‘Introduction to json web tokens,’ [Online]. Available: https:
//flask-jwt-extended.readthedocs.io/en/stable/options/#configuration-
options. (accessed: 19.04.2021).

[26] F. Inc. (2021). ‘Python developers survey 2020 results,’ [Online]. Available:
https://reactjs.org/. (accessed: 30.04.2021).

[27] F. Inc. (2021). ‘Introducing hooks,’ [Online]. Available: https://reactjs.
org/docs/hooks-intro.html. (accessed: 3.05.2021).

[28] F. Inc. (2021). ‘Introducing jsx,’ [Online]. Available: https://reactjs.
org/docs/introducing-jsx.html. (accessed: 3.05.2021).

[29] npm. (2021). ‘About npm,’ [Online]. Available: https://docs.npmjs.com/
about-npm. (accessed: 5.05.2021).

[30] D. Abramov. (2015). ‘Introducing jsx,’ [Online]. Available: https://react-
redux.js.org/introduction/why-use-react-redux. (accessed: 3.05.2021).

[31] google. (2021). ‘Material design - introduction,’ [Online]. Available: https:
//material.io/design/introduction#components. (accessed: 4.05.2021).

[32] axios. (2021). ‘Axios - getting started,’ [Online]. Available: https://axios-
http.com/docs/intro. (accessed: 7.05.2021).

[33] E. H. MIT. (2021). ‘React-markdown,’ [Online]. Available: https://github.
com/remarkjs/react-markdown. (accessed: 7.05.2021).

[34] R. Florence. (2021). ‘React-router-dom,’ [Online]. Available: https : / /
reactrouter.com/. (accessed: 7.05.2021).

[35] U. Eriksson. (2012). ‘Why is the difference between functional and non-
functional requirements important?’ [Online]. Available: https://reqtest.
com/requirements-blog/functional-vs-non-functional-requirements/.
(accessed: 21.05.2021).

[36] NTNU. (2021). ‘Feide innlogging,’ [Online]. Available: https://innsida.
ntnu.no/wiki/-/wiki/Norsk/FEIDE+innlogging. (accessed: 09.05.2021).

[37] KirstenS. (2021). ‘Cross site scripting (xss),’ [Online]. Available: https:
//owasp.org/www-community/attacks/xss/. (accessed: 21.05.2021).

https://flask-migrate.readthedocs.io/en/latest/
https://flask-migrate.readthedocs.io/en/latest/
https://www.prisma.io/dataguide/types/relational/what-are-database-migrations
https://www.prisma.io/dataguide/types/relational/what-are-database-migrations
https://www.prisma.io/dataguide/types/relational/what-are-database-migrations
https://flask-script.readthedocs.io/en/latest/
https://flask-script.readthedocs.io/en/latest/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://flask-jwt-extended.readthedocs.io/en/stable/options/#configuration-options
https://flask-jwt-extended.readthedocs.io/en/stable/options/#configuration-options
https://flask-jwt-extended.readthedocs.io/en/stable/options/#configuration-options
https://reactjs.org/
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://docs.npmjs.com/about-npm
https://docs.npmjs.com/about-npm
https://react-redux.js.org/introduction/why-use-react-redux
https://react-redux.js.org/introduction/why-use-react-redux
https://material.io/design/introduction#components
https://material.io/design/introduction#components
https://axios-http.com/docs/intro
https://axios-http.com/docs/intro
https://github.com/remarkjs/react-markdown
https://github.com/remarkjs/react-markdown
https://reactrouter.com/
https://reactrouter.com/
https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/
https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/
https://innsida.ntnu.no/wiki/-/wiki/Norsk/FEIDE+innlogging
https://innsida.ntnu.no/wiki/-/wiki/Norsk/FEIDE+innlogging
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/

60 :

[38] Z. Liew. (2021). ‘Create er diagram of a database in mysql workbench,’
[Online]. Available: https://www.smashingmagazine.com/2018/01/
understanding-using-rest-api/. (accessed: 24.05.2021).

[39] MIT. (2021). ‘Sqlalchemy - self-referential many-to-many relationship,’ [On-
line]. Available: https :/ /docs .sqlalchemy .org / en/ 14/ orm/ join_
conditions.html#self-referential-many-to-many. (accessed: 12.05.2021).

[40] Auth0. (2020). ‘Jwt revoking / blocklist,’ [Online]. Available: https://
flask- jwt- extended.readthedocs.io/en/stable/blocklist_and_
token_revoking/#database. (accessed: 09.05.2021).

[41] google. (2021). ‘Google form - about,’ [Online]. Available: https://www.
google.com/forms/about/. (accessed: 14.05.2021).

[42] google. (2021). ‘Material ui datagrid,’ [Online]. Available: https://material-
ui.com/api/data-grid/. (accessed: 15.05.2021).

[43] heroku. (2021). ‘Deploying python applications with gunicorn,’ [Online].
Available: https://devcenter.heroku.com/articles/python-gunicorn.
(accessed: 15.05.2021).

[44] P. Wozniak. (1990). ‘Application of a computer to improve the results ob-
tained in working with the supermemo method,’ [Online]. Available: https:
//www.supermemo.com/en/archives1990-2015/english/ol/sm2. (ac-
cessed: 21.05.2021).

[45] Facebook. (2021). ‘React native,’ [Online]. Available: https://reactnative.
dev/. (accessed: 21.05.2021).

https://www.smashingmagazine.com/2018/01/understanding-using-rest-api/
https://www.smashingmagazine.com/2018/01/understanding-using-rest-api/
https://docs.sqlalchemy.org/en/14/orm/join_conditions.html#self-referential-many-to-many
https://docs.sqlalchemy.org/en/14/orm/join_conditions.html#self-referential-many-to-many
https://flask-jwt-extended.readthedocs.io/en/stable/blocklist_and_token_revoking/#database
https://flask-jwt-extended.readthedocs.io/en/stable/blocklist_and_token_revoking/#database
https://flask-jwt-extended.readthedocs.io/en/stable/blocklist_and_token_revoking/#database
https://www.google.com/forms/about/
https://www.google.com/forms/about/
https://material-ui.com/api/data-grid/
https://material-ui.com/api/data-grid/
https://devcenter.heroku.com/articles/python-gunicorn
https://www.supermemo.com/en/archives1990-2015/english/ol/sm2
https://www.supermemo.com/en/archives1990-2015/english/ol/sm2
https://reactnative.dev/
https://reactnative.dev/

Appendix A

ER Diagram

Entity Relationship Diagram of the applications relational database. Generated
with MySQL Workbench.

Figure A.1: MySQL Workbench generated ER diagram

61

Appendix B

API Routes

API Routes for the REST API

url method input returns
/api/admin/<uid> POST none created admin
/api/admin/<uid> DELETE none removed admin
/api/currentuser/user GET none current user
/api/admin/users/all GET none all users
/api/admin/users/role=<role> GET none all users with role
/api/login/url GET none login url
/api/login/userdata∗ GET none jwt tokens
/api/login/callback GET userdata login redirect
/api/token/expired POST none token status
/api/token/refresh POST none refresh token
/api/logout/access POST none logout status
/api/logout/refreshtoken POST none logout status

Table B.1: user Routes
∗ get request url params: userdata=[name, email,username, sha1] (sha1 is login
token)

63

64 :

url method input returns
/api/admin/flashcards GET none all flashcards
/api/admin/flashcards/<cid> GET none flashcard with id=cid
/api/admin/flashcards/cardratings GET none ratings of flashcard
/api/currentuser/flashcards POST flashcard∗ created flashcard
/api/currentuser/flashcards/<cid> PUT flashcard∗∗ edited flashcard
”/<cid> DELETE none deleted flashcard
”/cardgroupid=<cdid> GET none user flashcards from group

Table B.2: flashcard routes
∗ flashcard: {front, back, cardgroupid}
∗∗ flashcard: {front, back}

url method input returns
/api/cardgroups GET none all cardgroups
/api/cardgroups/<cgid> GET none cardgroup with id=cgid
/api/admin/cardgroups POST cardgroup∗ created cardgroup
/api/admin/cardgroups/<cgid> PUT cardgroup∗ edited cardgroup
/api/admin/cardgroups/<cgid> DELETE none deleted cardgroup
/api/admin/cardgroups/<cgid>/flashcards∗∗ GET none all cardgroup flashcards

Table B.3: cardgroup routes
∗ cardgroup: {title, numberOfCardsDue, dueDate}
∗∗: filters: minrating, removeduplicates

url method input returns
/api/admin/peerreviews POST peerreview∗ success status
/api/admin/peerreviews PUT peerreview∗∗ success status
/api/currentuser/peerreviews GET none user peerreviews
/api/currentuser/peerreview/<prid> GET none peerreview id=prid
/api/currentuser/peerreview/<prid>/cardratings GET none peerreview ratings
/api/admin/cardgroup/<cgid>/peerreview GET none cardgroup peerreviews
/api/admin/cardgroup/<cgid>/peerreview DELETE none succcess status

Table B.4: peerreview routes
∗ peerreview: {groupId, dueDate, numberOfReviews}
∗∗ peerreview: {groupId, dueDate}

url method input returns
/api/currentuser/cardrating/<rid>/difficulty PATCH difficulty patched rating
/api/currentuser/cardrating/<rid>/quality PATCH quality patched rating
/api/currentuser/cardrating/<rid>/duplicates PATCH duplicates patched rating

Table B.5: cardrating routes

Chapter B: API Routes 65

url method input returns
/api/admin/collective-deck/flashcards POST none collective deck flashcards
/api/admin/collective-deck/flashcards DELETE none collective deck flashcards
/api/collective-deck/flashcards∗ GET none collective deck flashcards
/api/collective-deck/cardgroups GET none cardgroups with cards in collective deck

Table B.6: collective_deck routes
∗: filters: difficulty-min, difficulty-max, cardgroup-id, ncards, id-only

url method input returns
/api/currentuser/user-flashcard-decks GET none all user flashcard decks
/api/currentuser/user-flashcard-decks POST none created user flashcard deck
”/<ufdid> DELETE none deleted user flashcard deck
”/<ufdid>/flashcards GET none flashcards from deck
”/<ufdid>/flashcard/<cid>/answer POST study answer∗ flashcards from deck

Table B.7: user_flashcard_deck routes
∗ answer: { correct: true/false }

Appendix C

Code

Github link for the projects code and guides for setting up and running the applic-
ation.

https://github.com/hunshamar/TTK4145-Flashcards

67

Appendix D

Beta Test Survey Results

Survey responses from 15 students conducted after the beta test of the system.

69

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 1/15

Did you use the "create flashcard" feature of the application

15 responses

TTK4145�ashcards - feedback
15 responses

Publish analytics

Yes
No53.3%

46.7%

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 2/15

If no, why not?

8 responses

Didnt have time

Time, Shitloads of things to do late (way to late) in the semester, including exercise 8 & 9,
code review, post mortem.

Fint for å få inn kunnskap om sentrale begreper

This course takes too much time allready

Did not have time to contribute.

Prioritized elevator project and other projects

Because I had a lot do do and forgot unfortunately :(

I don't feel competent enough to know the right answer

Flashcard Submission

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 3/15

The flashcard creation process was intuitive and simple to use

4 responses

Creating flashcards was rewarding and educational

4 responses

1 2 3 4 5
0

1

2

3

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (25%)

3 (75%)

1 2 3 4 5
0

1

2

3

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (25%)

3 (75%)

0 (0%)0 (0%)0 (0%)

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 4/15

Additional feedback for flashcard submission

0 responses

No responses yet for this question.

Did you use the application to rate and "peer review" other students'
flashcards?

15 responses

yes
no

20%

80%

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 5/15

If no, why not?

10 responses

Peer Review

Didnt have time

I forgot it, since I was so busy with studying for other exams.

Didn't have enough knowledge on the subjects, so it felt pointless

Visste ikke funksjonen fantes

This course takes too much time allready

Hadde ikke nok kunnskap

Did not find others flashcards at the time I looked at the feature

Didn't know when this happened, and didn't add cards either

My skills were so lacking that I couldn't really say if it was relevant to the course or not.

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 6/15

The "peer review" process was intuitive and simple to use

2 responses

Rating other students' flashcards was rewarding and educational

3 responses

1 2 3 4 5
0

1

2

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (100%)

1 2 3 4 5
0

1

2

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (66.7%)

1 (33.3%)

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 7/15

Additional Feedback for the peer review process

0 responses

No responses yet for this question.

Did you use the application to study flashcards

15 responses

If no, why not?

1 response

Did not find any

Flashcard Study

Yes
No

13.3%

86.7%

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 8/15

The "flashcard study" process was intuitive and simple to use

13 responses

1 2 3 4 5
0

2

4

6

8

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

5 (38.5%)

8 (61.5%)

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 9/15

Studying flashcards in the application helped me prepare for the exam

13 responses

1 2 3 4 5
0

2

4

6

0 (0%)0 (0%)0 (0%)

2 (15.4%)

4 (30.8%)

5 (38.5%)

2 (15.4%)

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 10/15

The flashcards studied had a high level of quality and relevance to the
course material.

13 responses

1 2 3 4 5
0

2

4

6

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

5 (38.5%) 5 (38.5%)

3 (23.1%)

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 11/15

I wish there were more flashcards to study

13 responses

1 2 3 4 5
0

2

4

6

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

3 (23.1%)

5 (38.5%) 5 (38.5%)

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 12/15

Additional feedback for the flashcard study process

4 responses

Felt in some subject there could be a little more cards. Not that I can critizise the amount
since I didnt add some myself. Other than that i find it irritating that the decks were
deleted after using them. Was an uneccesary feature imo.

I liked it. But I wondered if the staff had looked through them and approved that they
were all correct? I was a bit worried that there might be some mistakes in them, since
they were made by students.

Some report or edit function for the cards with typos and/or too little information

I think it's useful, it would be even more useful if we could have done it from the start.

General

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 13/15

The design of the web application was user friendly and intuitive

13 responses

The web application was fast and responsive

12 responses

1 2 3 4 5
0

2

4

6

8

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

4 (30.8%)

2 (15.4%)

7 (53.8%)

1 2 3 4 5
0.0

2.5

5.0

7.5

10.0

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

3 (25%)

9 (75%)

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 14/15

The use of the flashcard application to submit and rate flashcards should
be a compulsory exercise in ttk4145 - Real Time Programming

13 responses

1 2 3 4 5
0

2

4

6

4 (30.8%)

6 (46.2%)

1 (7.7%) 1 (7.7%) 1 (7.7%)

5/21/2021 TTK4145flashcards - feedback

https://docs.google.com/forms/d/1TLf2wtBIvKWMJqRxM4CdjMVyqYIJdQxr71kYsINLyVc/viewanalytics 15/15

Additional feedback / suggestions for the flashcard application in general

6 responses

Could maybe, but that requires the students know the curriculum good

I do NOT think it should be compulsory, with all the other tasks we had to do, especially
since we were given so many tasks at the very end. However if this is not the case, then it
could be compulsory.

Ikke helt lett å skjønne hvordan jeg skulle lage et nytt deck første gang fordi jeg trodde
det betydde å skape nye kort

Dis not understand how to start studying the cards (making a New board)

I think that whether it should be compulsary or not depend on how much else in the
subject that is compulsory. I am glad that it was not compulsary this time.

I really like the way Anki have done their flashcards. Maybe this could provide some
inspiration for additional features: https://apps.ankiweb.net/

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

 Forms

