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Abstract

Autonomous wheeled mobile robots operating in crop fields are frequently subject to
wheel spin. Navigation systems for mobile wheeled robots generally rely on wheel en-
coder measurements to estimate the robot’s linear and angular velocity. The encoder
measurements are also frequently used to find the position and orientation of the robot
through integration. However, when the robot is subject to wheel spin, the encoder
measurements become redundant. Navigation systems for wheeled mobile robots sub-
ject to wheel spin must incorporate alternative measurements for estimating the linear
and angular velocity when the robot is subject to slippage.

In this thesis, a navigation system that can detect slip and estimate the states of the
robot when the robot is subject to slip has been developed. The proposed navigation
system compares measurements from an inertial measurement unit and global position-
ing system with the encoder measurements to detect slippage. The state estimation
utilizes the slip detection to switch between encoder measurements when no slip is
present and an inertial navigation system using the inertial measurement unit to esti-
mate the robot’s velocity. The proposed navigation system is tested and evaluated in
simulations through a variety of tests. The results show that the proposed navigation
system is effective at detecting slip. However, the state estimation when the robot is
subject to slip is varied.
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Sammendrag

Autonome roboter som opererer i avlingsfelt, blir ofte utsatt for hjulspinn. Navi-
gasjonssystemer for roboter er som oftest avhengig av målinger fra hjulenkodere for å
estimere robotens lineære hastighet og vinkelhastighet. Hastighetsmålingene fra hju-
lenkodermålingene blir også ofte brukt for å finne posisjonen og orienteringen til roboten
gjennom integrering. Når roboten er utsatt for hjulspinn blir hastighetsmålingene fra
enkodermålingene feilaktige. Navigasjonssystemer for roboter som er utsatt for hjul-
spinn må derfor inneholde alternative målinger for å estimere den lineære hastigheten
og vinkelhastigheten når roboten blir utsatt for glidning.

I denne oppgaven er det utviklet et navigasjonssystem som kan oppdage glidning og
estimere tilstandene til roboten når roboten er utsatt for gliding. Det foreslåtte navi-
gasjonssystemet sammenligner målinger fra en IMU og et globalt posisjoneringssystem
med enkodermålingene for å oppdage glidning. Tilstandsestimeringsmetoden bruker
glidedeteksjonen til å veksle mellom enkodermålinger når det ikke er noe hjulspinn,
og et treghetsnavigasjonssystem som bruker IMU målinger for å estimere robotens
hastighet. Det foreslåtte navigasjonssystemet blir testet og evaluert i simuleringer
gjennom en rekke tester. Resultatene viser at det foreslåtte navigasjonssystemet effek-
tivt kan oppdage glidning. Imidlertid er tilstandsestimeringen når roboten er utsatt
for glid variert.
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Symbols and Abbreviations

η: Position and orientation in NED frame

p: Position in NED frame

Θ: Orientation in NED frame

χ : Heading angle

ν : Velocity and angular velocity in body frame

ω : Angular velocity in body frame

u: Linear velocity in body frame

v: Lateral velocity in body frame

r: Angular velocity in body frame

β : Sideslip-angle

U : Total speed

γi: Angular displacement of wheel i

εi: Lateral slip

ζ: Longitudinal slip

ωi : Angular velocity of wheel i

R: Rotation matrix

T : Transition matrix

J: Jacobain

TN : Time constant

C : Mixing variable

MWR: Mobile Wheeled Robot

RTK: Real-time Kinematic
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GPS: Global Positioning System

IMU: Inertial Measurement Unit

INS: Inertial Navigation System

NED: North East Down
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1 Introduction

Row crop production in 2021 represents a notable portion of the world’s food supply. As
the projected global population in 2050 will be around 9 to 10 billion, the food supply
must increase to meet the new demand. As the meat production of the world increases,
the grain harvest per capita is decreasing. If the future food supply is to meet the
future demand an increase in food produced from agriculture is needed. Unfortunately
the expansion of agriculture comes with an environmental price. The environmental
price includes soil erosion, surface and groundwater contamination, increase of CO2,
increased weed and pest resistance and a decrease in biodiversity which is crucial for
the ecosystem[1]. In a world with increased environmental concerns, the need for a
revolutionized agricultural industry is evident. One of the main contributors to an
increased row crop production is the use of herbicide. An herbicide is a substance that
kills or inhibits unwanted plants. The use of herbicide dramatically increases weed
production since the weed no longer has to compete with other plants for water supply,
nutrients, and sunlight[2]. During the last 20 years, the weeds have become more
resistant to herbicide use, while the bans on herbicide use have increased, making it
harder for farmers to utilize herbicides to eliminate weeds effectively[3]. With the loss
of effective herbicide, some farmers have abandoned using herbicides and have turned
to labor-intensive manual hoeing. This increased cost of manual labor sparked the
development of new en more effective ways of deploying herbicides.

Kilter, a company located at Langhus in Norway currently develops a robot called
AX1 to deploy herbicide in a more effective and environmentally friendly way[4]. The
AX1 robot shown in figure 1 is a two wheeled differential drive robot with a caster
wheel that is placed off-center to not drive over any crops. The robot utilizes a vision
based system together with deep learning to detect and differentiate different weeds
and crops. Once a weed is detected, the robot utilizes high-precision nozzles to drop
effective herbicide directly on the weed leaves. By only hitting the weed leaves, the
herbicide does not affect the crop and soil. The herbicide is only deployed on the weed,
and herbicide usage can be reduced by up to 95% compared to conventional herbicide
deployment methods. Since the herbicide is not in contact with the crop, the herbicide
can be more potent and therefore more effective. Another benefit of using the AX1
robot for the deployment of herbicides is that the crops have better growth conditions
due to less or no exposure to herbicide. The AX1 robot can also navigate the fields
autonomously, meaning the robot can drop herbicide all day on an entire field with
little or no supervision. Consequently the labour force can be significantly reduced,
making crop production more effective, environmentally friendly and cheaper. The
robot can be a solution to the drop in available herbicides, the increased food demand,
the increase in herbicide-resistant plants, and the increasing environmental concern of
using herbicides.
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One of the challenges in designing and operating the AX1 robot are rooted in the
robot being autonomous. Many unpredictable factors like obstacles and uneven and
unpredictable terrain, need to be taken into account on a large field when designing the
automation system for the AX1 robot. The automation system relies on obtaining as
much information as possible from the surrounding field and processing this information
to steer and control the robot in a manner that maximizes the effectiveness of the
deployment of herbicides without damaging the crops. By utilizing a variety of sensors
combined with effective methods such as the Kalman Filter, it is possible to estimate
the position, velocity, orientation and angular velocity(states) of the robot enabling
reliable control the robot.

Figure 1: AX1 Robot

1.1 Problem statement

Control of agricultural robots, such as the AX1, are subject to many disturbances such
as uneven and rough ground and a slippery surface, making the estimation of the robots
states challenging. The slippery surface of a field makes the AX1 robot susceptible to
wheel spin. Most state estimation methods rely heavily on encoder measurements
that measure the rotational velocity of the wheels to calculate the robot’s linear and
angular velocity. However, when a mobile wheeled robot(MWR) such as the AX1 robot
is subject to slip, the encoders yield poor measurements of the actual velocity of the
robot. An alternative method for estimating the states of the robot while subject to
wheel spin is therefore required. Available to the Kilter AX1 robot is a wide range
of sensors that can be used to estimate the robot’s states. Also available are physical
parameters such as mass and moment of inertia which can be used to make dynamic
models of the AX1 robot, making state estimation from simulation of the dynamic
model possible. The goal of the thesis is to develop a system capable of reliably
detecting slip and estimating the states of the robot when the robot is subject to wheel
spin.

2



1.2 Acknowledgments

The slip detection and state estimation algorithm in this thesis further tests and builds
on the work done in [5]. In the article the accelerometer measurements from the IMU
is compared with the linear velocity measurements form the encoder to detect slip.
An alternative method for detecting slip for linear velocity by comparing RTK-GPS
velocity estimates with the encoder measurements is developed and tested in this thesis.
A comparison between the two methods is provided in section 6.1. A derivation of a
dynamic representation of the robot is also provided, based on the work done in [6],
[7] and [8].

1.3 Outline

This thesis is divided into 7 chapters. A short description of the content of each section
will now be presented.

• Chapter 2 introduces the reference frames where the states of the robot are
defined, the transformation matrices used to translate states between reference
frames, the kinematic model of the AX1 robot when subject to slip, and an
overview of the entire autonomous system.

• Chapter 3 presents a literature study on inertial navigation systems(INS) and
model-based navigation. The literature study is concluded with a discussion of
the pros and cons of each method and reason for deciding to use INS.

• Chapter 4 presents the hardware and software used in this thesis. This includes
a presentation of the environment used for communication between the simulator
and the state estimator and the sensors used by the AX1 robot.

• Chapter 5 presents the implementation of the Kalman filter and the tuning of
the state estimation method and the kalman filter. The tests performed in order
to evaluate the performance of the state estimation are also presented.

• Chapter 6 presents and discusses the simulation results from the tests presented
in chapter 5.

• Chapter 7 presents a brief overview of the thesis and gives a surmise of the most
important findings from the simulations and a discussion on weather the method
can be implemented on the real robot. Lastly the future work that can be done
to improve the state estimation method is presented.
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2 Prerequisites

2.1 Referance frames

When analysing the states of the robot a reference frame must be defined to which
the robot’s states can be related[9]. When modeling the dynamics of a vehicle it is
useful to define several coordinate frames to represent the vehicle movements. The
position and orientation of a vehicle is normally represented relative to a point on the
ground on a flat plane perpendicular to the ground. This frame is called the North
East Down(NED) frame. In the NED frame the x-axis is pointing north, the y-axis
is pointing east and the z-axis is pointing down. The frame is stationary and the
configuration of the robot represented relative to NED is denoted as

η = [xn, yn, zn, φ, θ, ψ]T (1)

where the position of the robot in NED is denoted as p = [x, y, z]T and the orientation
in NED as Θ = [φ, θ, ψ]T .

Velocity is easiest to describe relative to the robot. Therefore, the velocity of the robot
is defined in the center of the wheel axle connecting the two front wheels in a frame
called the body-fixed frame. In the body-fixed frame, the x-axis is defined pointing in
the direction of forward motion, the z-axis down perpendicular to the NED frame and
y-axis in the direction that completes the right hand rule for reference frames. The
body frame is attached to the robot and moves with the robot. The velocities defined
in the body fixed frame is denoted as

ν = [u, v, w, p, q, r]T (2)

where v = [u, v, w]T is the velocity and ω = [p, q, r]T is the angular velocities of the
robot in the body frame. An illustration of the NED frame and the body fixed reference
frame in 2D can be found in figure 2.
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Figure 2: NED and body frame

2.2 Linear velocity transformation

To obtain the velocity of the robot defined in the NED frame the velocity in the body
frame is translated to NED[9]. The velocities can be transformed to the NED frame by
using Euler angle transformation. The rotation matrix R(Θnb) : T3 → SO(3) denotes
the Euler angle rotation matrix which can be denoted as Rn

b . The Euler angle rotation
matrix Rn

b is described in terms of the Euler angles (attitude) Θnb = [φ, θ, ψ]T and
can be described by the the principle rotation around the unit vectors. This yields the
linear velocity transformation

Rn
b := Rz,ψRy,θRx,φ (3)

By using the rotation matrix the velocity of the robot in the body fixed frame can be
translated to NED as follows

ṗn = Rn
bv

b (4)

where vb is the velocity in the body-fixed frame. The velocity can also easily be
transformed from the NED frame the Body frame because of the property of the
rotation matrix Rn

n = (Rn
b )T . This means that the body velocity relative to NED

can be written as

5



vb = (Rn
b )T ṗn (5)

2.3 Angular velocity transformation

The angular velocity in body ωbnb can be transformed to angular rate in NED Θ̇nb

through the transformation matrix T (Θnb) with equation

Θ̇nb = T (Θnb)ω
b
nb (6)

where the transition matrix T (Ωnb) is defined as

T (Θnb) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 (7)

These definitions will be used throughout the next sections when the kinematics and
dynamics of a differential drive mobile wheeled robot is derived.
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2.4 Kinematics of a nonholonomic mobile wheeled robot

Kinematics describes the motion of an object without considering the forces that acts
on the object. Fields where the Kilter AX1 operates are mostly flat, the assumption
is therefore made that the robot operates on a flat 2D field. In this section the 2D
kinematics for the AX1 robot when subject to slip will be derived[9][5].

With the assumption of a flat ground the roll, pitch and height of the robot is constant
and can be neglected. The representation of the robot in 2D simplifies to 3-DOF where
the coordinates in NED is defined as

η = [xn, yn, ψn]T (8)

where η is the position and orientation of the robot in NED defined the same way as in
the previous section. The motion of the robot is defined by it’s linear velocity u along
the x-axis, the lateral velocity v along the y-axis and the angular velocity r around
the z-axis. The velocity of a WHR on a 2D plane defined in body-fixed frame can be
written as

ν = [u, v, r]T (9)

The velocity of the robot defined in the body frame can be transformed to the NED
reference frame by using the rotation matrix

R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (10)

Velocity in the body frame transformed to NED can then be written as

η̇ = R(ψ)ν (11)

By expanding this expression the kinematic equations for a nonholomonic mobile
wheeled robot is obtained

ẋ = u cos(ψ)− v sin(ψ)

ẏ = u sin(ψ) + v cos(ψ)

ψ̇ = r

(12)

7



When the robot is subject to slipping and the robot has both a linear and lateral
velocity there is a displacement in the direction in which the wheels of the robot is
pointing and the direction which the robot is traveling. This displacement is called the
sideslip angle and is defined as follows

β = arctan(
v

u
) = sin−1(

v

U
) (13)

If the robot has a lateral velocity then the actual angle of which the robot is traveling
is the sum of the robot’s heading and the sideslip angle. This angle is called course
and is defined as

χ = ψ + β (14)

The total speed of the robot is determined by the speed in the linear and lateral
direction of the robot

U =
√
u2 + v2 (15)

2.5 System overview

The system that enables the robot to move in a desired manner is made up of many
modules. A module in this contexts is an independent software program with a specific
function[9]. A mobile robot needs information about its desired state, its current state,
and how to get from its current state to its desired state. All of this information is
required to move a robot from A to B in a desired manner. Smart implementation of
this system means to make all the modules independent of one another such that one
module can be replaced with minor changes and the system can still work. This thesis
will focus on the navigation system, but to give some perspective a brief explanation
of each part in the system is in order.

Guidance system
The guidance system is used to determine the robot’s path and create a reference for
the robot to follow. The Kilter AX1 robot follows a path based on a set of waypoints
in the field, either manually placed by the robot operators or through accurate GPS
measurements from the tractor plowing the field. The guidance system makes paths
between the waypoints used as a reference for the robot to follow. Using the tractor’s
GPS measurements, the waypoints are placed such that the robot’s path is between

8



the crop rows. The path planner is the guidance system’s primary function, but it can
also include risk assessment and situational awareness.

Navigation system
To follow the path predetermined by the guidance system, the robot needs information
about its current states. To obtain this information is the primary function of the
navigation system. Navigation systems differs in the way they are implemented but
the primary methods is to either use a robot-model or robot-measurements to determine
the robot’s states. There are advantages and disadvantages to both methods, and both
approaches are discussed in detail in section 3.

Control system
Once information about the robot’s location and destination is obtained, a control law
is implemented to control the robot from its current position to its desired position.
The desired control input to the robot is found by allocating the control input to the
robot’s driving wheels that will move the robot in the desired trajectory. Different
control methods have been implemented on the AX1 robot previously, where nonlinear
model predictive control(MPC) have yielded good results[10].

Figure 3: Motion control system
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3 Navigation

In order to make a control system for a nonholominic WMR, information about the po-
sition, attitude and linear and angular velocity of the robot is needed. This information
is provided by the navigation system. These days navigation systems are complex and
uses advanced sensors and models, but navigation have existed for many years. Ac-
cording to [11], the first humans to use navigation was the Polynesians, which started
to use stars, winds, and birds to determine their position around 330-320 BCE. In
cybernetics, there are two common approaches used for navigation, inertial navigation
systems(INS) and model-based navigation.

INS uses sensor data together with a kinematic model to estimate the states of the
robot. Sensors are devices that can detect physical properties. These physical proper-
ties can for example be information about the position of the robot or the soil moisture.
The most common sensors used in navigation include GPS, wheel encoder and an IMU.
A detailed description of each sensor can be found in section 4.3.

Model based navigation on the other hand uses a physical model of the robot to esti-
mate the states. Even though models are becoming very accurate, most model based
navigation schemes also needs the aiding of sensors to give accurate state estimates.
There are drawbacks to both these methods which will be discussed further in section
3.3.

The INS scheme discussed in section 3.1 uses an inertial measurement unit(IMU) to
measure the acceleration and angular rate of the robot and encoders to measure the
robots linear and angular velocity. By integrating these measurements the position and
orientation of the robot is found. All sensors have some uncertainty, which can cause
large errors in the states obtained through integration. Integration of measurements to
obtain the position, orientation and velocity is known as dead reckoning, and the error
accumulated by integration is called drift. The method presented in section 3.1 uses
an algorithm to switch between using odometry and IMU measurements to estimate
the velocity of the robot. The switching scheme based on [5] is implemented in order
to estimate the states of the robot even if the robot is subject to wheel spin.

The other approach to obtaining information about the states of the robot is model-
based navigation. This method utilizes physical models of the robot in order to estimate
the robot’s states. The more accurate the model, the more accurate the estimation of
the states. A good understanding of the robot’s underlying physics and properties is
needed to build a reliable model. In most cases, many physical properties are neglected
in order to build a model that is computationally efficient. In this project, the main
problem is wheel slip, which is one physical property that is hard to model and ignored
in most models. A couple of methods for modeling wheeled mobile robots when subject
to slip is shown in section 3.2.
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3.1 Inertial navigation systems for nonholonomic robots

INS is used when designing a reliable dynamic model is either to complicated, time
consuming or not needed due to high quality sensors. There are different approaches to
INS when the robot is subject to wheel-spin. A model of when the robot is subject to
spinning is not available, which means that INS must rely on the sensors to determine if
the robot is subject to slip. The majority of the methods found in the literature consists
of a Kalman-filter to fuse a prediction model based on the kinematic equations with the
sensor measurements and a technique for detecting slip. In[12] a switching algorithm
that chooses between two different Kalman-filter algorithms is presented. The first
Kalman-filter algorithm uses Encoder and GPS measurements when no slipping is
detected, and the second algorithm adds an acceleration measurement to the filter
when slip is detected.

The INS that is explored in this section will be based on the navigation system found in
[5]. This navigation system detects slip by comparing encoder and IMU measurements
and uses the slip detection in a selective mixing algorithm that fuses an INS only using
IMU measurements with encoder measurements to estimate the states. In [5] this
navigation scheme is tested is combination with the MPC algorithm[13] for controlling
a MWR subject to slip.

The navigation scheme in [5] was chosen based on the simplicity of the algorithm and
the fact that experiments where done in combination with an MPC trajectory tracing
algorithm[13] similar to an MPC used on the AX1 robot previously[10].

3.1.1 Inertial navigation system

The INS in [5] uses only IMU(acceleration and angular rate) measurements to estimate
the states of the robot when the robot subject to slippage. The accelerometer measuring
acceleration is subject to drift due to a high measurement noise and growing bias.
The gyro measuring the attitude rate, on the other hand, is a much more reliable
sensor and has a low measurement noise and bias compared to the accelerometer. The
sampling rate of the IMU is denoted as ∆TN . The states estimated in this INS are
x = [u, v, r, ax, ay] where ax and ay is the acceleration along the x and y-axis in the
body frame. For obtaining the position and the orientation of the robot the kinematic
equations in equation 12 can be used. The discretized nonlinear state space model for
the robot can be written as
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x̂k =


âx,k−1 + v̂k−1r̂k−1
ây,k−1 − ûk−1r̂k−1

0
0
0

Tn +


û
v̂
r̂
âx
ây

 (16)

and the measurement vector of the IMU can be written as

ŷk =

r̂kâx
ây

 (17)

Since the state space model in equation 16 is nonlinear an extended Kalman filter(EKF)
is used to estimate the states. To use an EKF a linearized model of the system is
needed. The complete implementation of the EKF can be found in section 5.1. In
order to linearize the system the jacobian is used. The jacobian of the state space
model is

Jk =


1 rk−1∆t vk−1∆t ∆t 0

−rk−1∆t 1 −uk−1∆t 0 ∆t
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (18)

By using an EKF this is a fully functioning navigation system, but the accuracy due
to the bias drift and sensor noise makes this a unviable choice for state estimation. In
the sections a method for combining INS estimates with wheel encoder measurements
to obtain a better state estimate for robots subject to slip is presented.

3.1.2 Wheel slip detection

When the robot is not subject to wheel slip the best forward velocity and angular
velocity measurements is obtained from the encoders of the robot. A description of
the encoders and how encoder measurements are transformed to velocity and angular
velocity measurements can be found in section 4.3.1. The linear and angular velocity
measurements found from the encoder measurements are called odometry measure-
ments and will be used henceforth. Since the odometry measurements are very accu-
rate they should be used as linear and angular velocity estimates when the robot is not
subject to slip. If both encoder measurements and IMU measurements are available one
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can determine if wheel slip is present or not by comparing the measurements. When
both IMU and odometry measurements are available it is possible to compare the two
estimates to determine if wheel slip is present. The two estimates are compared by us-
ing the tangential velocity estimate from odometry measurements and comparing this
measurement with the IMU measurements over the time intervall ∆T . If the difference
is large it is probable that wheel slip is present. This is what is called wheel slip de-
tection. Because both the IMU and encoder measurement are subject to measurement
noise the comparison between the odometry measurements and accelerator measure-
ments are performed over a interval of 10 samples. This makes the slip detection more
reliable, the downside being that there is a delay in the detection. The slip detection
variable for linear velocity ∆̄uk is found as follows:

∆̄uk =
10∑
k=1

(uOk − uOk−1 − ax,kTN) (19)

where uOk is the linear velocity odometry measurement, and ax the acceleration mea-
sured by the IMU along the x-axis[5]. This formula can detect a slipping tendency,
but can not detect stationary slip as the method only compares velocity difference and
acceleration.

3.1.3 Mixing variables

When slipping is detected the odometry measurements cannot be used to estimate the
velocity of the robot. The slip detection variable is used to determine if the linear
odometry measurement should be used to estimate the velocity of the robot or if the
INS should be used. A double sided logsig function called a mixing variable that uses
the detection variable as an input determines which method is used to estimate the
velocity[5]. The mixing variable is a value between 1 and 0 where a value of 1 means
that the odometry measurement is used, a value of 0 means that INS velocity estimate
is used, and values between 1 and 0 means a combination of the two is used. The logsig
function C1 is defined as follows

C1,K = pC1,K−1 + (1− p) 1

1 + exp
(
a1
(∣∣∆vK∣∣− b1)) (20)

where a1, b1, and p are tuning variables. The variable a1 is the steepness of the curve
and should be chosen as small as possible without obtaining limit cycle behaviour. Even
if the slip detection variable ∆u found from an average of 10 samples, the variable is
still subject to noise. A threshold variable b1 is therefore used to ensure that the mixing
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variable C1 does not react to the noise. b1 should be chosen as small as possible without
triggering a changes in the mixing variable due to the noise from the measurements.
The p parameter should be chosen as small as possible while avoiding limit cycles. In
section 5.2.2 it is shown how these parameters are tuned and how they impact the state
estimation scheme.

The same method is used to estimate the angular and lateral velocity of the robot.
Lateral velocity is determined by the second mixing variable C2 which is a function
of the lateral acceleration measurement from the IMU. The second mixing variable is
included to stop lateral velocity estimate from reacting to the noise from the IMU. The
mixing variable is tuned the same way as the previous mixing variable, where b2 is the
threshold for sideways velocity.

C2,k =
1

1 + exp (a2 (|ây,k| − b2))
(21)

The third mixing variable C3 is used for angular velocity estimation. Mixing variable
C3 is tuned the same way as C1 and C2 and uses the difference in angular velocity
found from the IMU and odometry measurement to detect rotational slip.

C3,k =
1

1 + exp (a3 ( |ωO
k − ωI

k | −b3))
(22)

3.1.4 Slip estimation using GPS

Another method for estimating the velocity of the robot and determining if wheel
slip is present not used in [5] is to use a GPS. The Kilter AX1 robot uses a high
precision real time kinetic(RTK) GPS which will be described in detail in section 4.3.
The RTK-GPS has a precision of 2-4 centimeters[14] contrary to a normal GPS with an
average accuracy of around 1 meter[15]. This high accuracy RTK-GPS enables velocity
estimation for robots that moves at a low velocity. Velocity estimated from RTK-GPS
measurements is estimated by the equation

uGPSk =
pGPSk − pGPS

k−1

∆TGPS
(23)

where vGPSk is the GPS velocity estimate at time-step k, pGPSk the position measured
by the GPS at time-step k and ∆TG the frequency of the RTK-GPS measurements.
One might assume the velocity estimate to be accurate, because of the low error in the
RTK-GPS measurement but the reality is that with a typical GPS sampling rate of
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∆TG = 0.1 and RTK-GPS accuracy of around 2 centimeters the velocity estimate has
an accuracy of around 0.2m/s. This is great for fast moving robots, but for the kilter
AX1 robot which moves at velocities from 0.2m/s to 0.5m/s the GPS velocity can not
be used directly. The proposed solution to this problem is to average GPS velocity
over a interval of 6 samples. Larger intervals will yield more accurate estimation when
the velocity is constant, but for constant changing velocities this becomes a problem
as inaccurate velocity measurements will be included in the average velocity and the
estimate will become inaccurate. A balance between accuracy and responsiveness was
therefore considered and an interval of 6 was found to be optimal. The average velocity
is implemented over the last 6 samples as follows.

ūGPSk =
6∑
i=0

uGPSk−i

6
(24)

where k denotes the current RTK-GPS velocity estimate. The RTK-GPS velocity
obtained is the average velocity of the robot along the x and y-axis in NED. In order
to compare the velocity estimated from the RTK-GPS measurements with the velocity
measured from the encoders the GPS velocity needs to be transformed to the body
frame using equation 5. After the transformation the forward and sideways velocity
of the robot is obtained. In order to preform the transformation the heading of the
robot is needed. In the next section it is shown how the the kinematic equations in
equation 12 together with the state estimates are used in order to find the position and
heading of the robot, and this heading estimate is used in the transformation. The
heading angle can also be fund by using a magnetometer described in section 4.3.3. A
different method used if the heading is not available is to use the absolute velocity of
the GPS velocity estimate. This method will yield a good estimates when the robot is
moving and no sideways slip is present. When the velocity estimate is averaged and
transformed to the body fixed frame the uncertainty is small enough so that the GPS
velocity estimate can be compared with the encoder velocity measurements. Another
mixing variable is introduced comparing the two defined as follows

C4,k =
1

1 + exp(a4(|ūGPSk − uOk | − b4))
(25)

If the GPS velocity estimate is used the mixing variable C4 replaces the mixing variable
C1. The two methods for estimating the velocity is shown in section 6.1.
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3.1.5 State estimation

When the mixing variables are found the final state estimate is determined. For linear,
angular and lateral velocity the mixing variables determine if the odometry or the INS
should be used as the final state estimate. For lateral velocity this straight forward
approach can not be used since in that case pure INS would be used when the threshold
is crossed. This estimate would be very susceptible to noise and would frequently
cross the threshold b2 and then reset to zero. Therefore a new tunable geographical
relaxation variable q2 is introduced to obtain a more consistent and stable lateral
velocity estimate[5]. The final state estimates is found as follows

ûk = C1,ku
O
k + (1− C1,k)u

K
k (26)

ûk = C4,ku
O
k + (1− C4,k)u

K
k (27)

ω̂k = C3,kω
O
k + (1− C3,k)ω

K
k (28)

v̂k = C2,kv̂k−1q2 + (1− C2,k)v
K
k (29)

After obtaining the final estimate from utilizing the mixing variables, the robot’s veloc-
ity in NED and the robots orientation can be found by using forward Euler integration.

xk+1 = xk + (uk cosψk − vk sinψk) ∆T

yk+1 = yk + (uk sinψk + vk cosψk) ∆T

ψk+1 = ψk + rk∆T

(30)

If RTK-GPS measurements are used it is also possible to update the position mea-
surements, and if a magnetometer is included the heading can also be estimated more
precisely. Another possibility is to include the position and heading in the Kalman
filter and add the GPS and magnetometer to the measurement to the measurement
vector.

The total speed and sideslip angle can be found by inserting the linear velocities into
equations 15 and 13.
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3.1.6 Slip control

A slip control algorithm utilizing trajectory tracing as the guidance system is used in
[5]. The slip control works by decreasing the step size making the reference point at
the next time step closer to the robot. This will make the control system decrease it’s
velocity and make the robot more stable and less subject to slipping. Slip control is a
trajectory tracing algorithm and might be overly complex for the application discussed
in this thesis. Path following is a less complex guidance law and utilises waypoints
or predetermined path. For path following the guidance algorithm would need to
incorporate a decrease in the desired velocity in order to stabilize the system when
slip is present. The step size algorithm in [5] might be used as a scaling factor for the
velocity reference in the path following guidance law.

Finally the states, side-slip and slip control reference can be fed to the MPC scheme
for robust control[13]. As shown in [5] the navigation method using only sensors and
kinematic models to control a wheeled mobile robot yielded good results. With the
switch from trajectory tracking to path following some of the complexity of the method
is decreased and can possibly equally effective.

3.2 Dynamic modeling

Dynamic models are a powerful tool when controlling robots. Model based navigation
uses a dynamic model of the system to estimate the states of the robot. A dynamic
models is typically used to simulate the system’s response from a control input and
fusing the model estimate with the sensor measurement using a Kalman filter to obtain
reliable state estimates. One advantage of dynamic modeling over INS is that additional
state estimates are obtained that can be used if one measurement becomes redundant
such as the odometry measurements when the robot is subject to wheel spin[6][9]. Much
research is done on modeling wheeled mobile systems, but only a small parentage
considers wheel slip. Most articles consider slow-moving robots with high friction
surfaces. Some literature focuses on high-speed robots and wheel slip, but there is
limited research on slow-speed off-road vehicles. One of the main contributors in this
field for off-road model-based navigation is NASA’s Mars Rover[16][17]. However, these
models are often complicated and beyond the scope of this thesis to explore. The focus
of this small literature study has been to find an effective and simple way of modeling
an off-road robot subject to wheel slip. There are two equivalent ways of modeling the
robot’s dynamics, either with Newton laws or with Lagrange mechanics.

There are different approaches and levels of accuracy to modeling a nonholonic robot.
Some approaches consider both lateral and longitudinal forces [18][8], some also con-
sider normal force by including the mass of the robot in the model[19][7] a few also
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consider the angle of the terrain [6]. In [20] it is developed a wheel-ground interaction
model for accurate ground speed estimation. The difference between these models is
the complexity of the models. In [20] the ground speed estimation requires comprehen-
sive testing to find friction constants for the wheel and surface. Many of the methods
use the "Magic formula" developed in 1987 to estimate the ground traction in order
to predict when the robot is subject to wheel spin[21][22]. The method is tested and
verified over the years and has generally yielded good results. The method is, however,
not well suited for applications such as modeling the traction of a robot on a field.
Many factors determine ground-wheel interactions, such as the slope of the terrain if
there are variations in the surface’s friction the method fails. All these factors make
it hard to develop reliable models for estimating the states of and MWR in a field
environment. Accurate detection of wheel slip is the key to a good state estimate for
the AX1 robot. A schematic drawing of the Kilter AX1 robot is shown in figure 4.

The following subsections will present a model previously used by Kilter, a derivation
of a model based on newtons laws and one derivation of a model using Lagrange
mechanics.

Figure 4: 2D model of the AX1 robot

3.2.1 Previous work

In previous research done on the Kilter AX1 robot [10] a dynamic model based on the
works in[23] and [24] is used. In this work the slip of the robot has been implemented as
a disturbance in the model. The model is described by the state space representation
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where δ = [δx, δy, 0, δu, δω] are the disturbance from the wheel slip and θ1,2,3,4 are
constants including physical parameters of the robot. These constants are given in[10].
The model is a major simplification due to the slippage being modeled as a disturbance,
but the model has the major advantage in the reduced complexity compared to other
models.

3.2.2 Dynamic modeling Newtons method

The derivation of the model dynamics presented in this section is based on [6] and [7].
The dynamic model in [6] includes a sloping terrain, but in this thesis a flat ground
is assumed and the derivation of the forces acting on the robot will be simplified
accordingly. The dynamic model provided in [6] uses Newtons method to model all the
forces exerted on the robot. Each wheel is subject to a lateral, longitudinal and normal
force Fi,x, Fi,y and Ni, where (i=l,r) denotes the left and right wheels. The longitudinal
force of the left and right wheel are subject to a traction force and resistance force Fi,trac
and Fi,rollres. The forces on the caster wheel are Fcx, Fcy and Nc. The traction force of
the caster wheel can be neglected as the wheel is undriven. The forces and moments
exerted on the robot in a body centered reference frame can be written as

∑
Fx = Frx + Flx + Fcx∑
Fy = Fry + Fly + Fcy

(32)

where the longitudinal force Fi,x can be decomposed into rolling resistance and traction
force

Fi,x = Fi,trac − Fi,rollres (33)

External forces, such as wind are usually negligible and therefore not included in the
models. If we assume that the center of rotation is at the point between the front wheel
the momentum of the robot can be written as
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∑
Mz = Izω̇ =

l

2
(Fr,trac − Fr,rollres − (Fl,trac − Fl,rollres)) (34)

where Iz is the moment of inertia and l is the distances between the front wheels. The
schematics of the robot can be found in figure 4. The full dynamic equations based
on these equations is found by dividing by the mass of the robot for obtaining linear
acceleration and moment of inertia for obtaining angular acceleration.

The normal forces acting on each wheel can be found as follow

Nr = Nl =
W

2
(

b

a+ b
)

Nc =
W

2(a+ b)
a

(35)

where a is the distance from the left front wheel to the caster wheel, h is the height
to the center of the mass of the robot. b is the horizontal distance from the center of
mass to the caster wheel and d is the length of the front wheels axle.

In order to model the traction force most models also include wheel slip(i) and wheel
skid(is)

i = 1− u

Rγ̇

is = 1− Rγ̇

u

(36)

where R is the radius of the tire and γ̇ is the angular velocity of the driving wheels. The
velocity of the robot is usually obtained through GPS or IMU measurements, while the
angular velocity of the the wheel is gathered from a wheel encoder. After obtaining
information about the wheelspin and wheelslip the magic formula can be used to find
the friction forces of the wheel. As simplified version of the magic formula is given in
[6] where the traction force and rolling resistance are only dependent on three ground
related constants in contrast to the six needed in the normal magic formula. The
simplified traction force and rolling resistance can be written as

Ftraction = N
(
sign (urel)C1

(
1− e−At|urel|

)
+ C2urel

)
(37)

Froll res = − sign(ufwd)N(R1(1− e−Aroll |ufwd|) +R2|ufwd|) (38)

where urel = Rω − ufwd is the velocity of the tire relative to the ground and ufwd,i =
u ± 0.5dr is the forward velocity of the tire. C1, At, C2, R1, Aroll and R2 are all
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constants related to the tire-ground interaction, each variable is described in [6]. The
dynamic equations provided by the derivation of the newton laws are used together with
tire dynamics provided in [6] to build an extended Kalman filter and a slip detection
algorithm.

3.2.3 Dynamic modeling Lagrange mechanics

Lagrange mechanics are a common tool when modeling mechanical systems. There
are many proposed models where Lagrange mechanics is used to model robots when
subject to wheel spin [19][18]. Simplified models that reduces the complexity of the
slippage models has also been developed[25]. In [8] a dynamic model of the system
is developed together with a feedback-linearization algorithm to stabilize the system.
The Lagrange mechanics in this section will be based on the dynamic models presented
in [8].

The benefit of using Lagrange mechanics is the systematic way in which the models
are constructed. To construct the Lagrangian model the potential(P) and kinetic en-
ergy(K) is considered separately to find the Lagrangian function L = K − P . The
Lagrangian models are commonly found in the literature due to the simplicity of the
the model construction. Once the potential and kinetic energy has been found the
Lagrange equation can be developed. The Lagrangian equation can be written as

d

dt

(
∂L

∂q̇

)
+
∂L

∂q
= F −ATλ (39)

where q is the generalized coordinates of the system, F is the generalized force vector,
A(q) is the constraint matrix and λ is the Lagrange multipliers associated with the
constraints.

The first step in deriving the Lagrange equations is to define generalized coordinates
that can describe the configuration of the system. For differential drive three wheeled
mobile robots with wheel spin a popular choice of generalized coordinates is

q = [x, y, ψ, ε, ζr, ζl, γr, γl] (40)

where the lateral and longitudinal slip of the left and right wheels are denotes as ε, ζr
and ζl. γr and γl is the angular displacement of the right and left wheel making γ̇r and
γ̇l the velocity of the right and left wheel.

When the generalized coordinates of the robot have been defined the potential and
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kinetic energy of the system can be derived. If we assume a flat ground then there are
no potential energy present in the system and the Lagrangian function simplifies to
L = K. The kinetic energy of the robot is the sum of the kinetic energy of the body
due to the velocity denoted as KB and the force exerted on the robot from the left
and right wheels denoted as KL and KR. The total kinetic energy can be written as
K = KB +KL +KR. If we denote the center of mass as M and the total mass of the
robot as mM the kinetic energy of the body of the robot can be written as

Km =
1

2
mB(ẋ2M + ẏ2M) +

1

2
IMr

2 (41)

where IM is the moment of inertia around the center of mass. The kinetic energy of
the left and right wheel can be written as:

KL =
1

2
mw(R2γ̇2l + ζ̇2l + ε̇2) +

1

2
IW γ̇

2
l +

1

2
IDr

2

KR =
1

2
mw(R2γ̇2r + ζ̇2r + ε̇2) +

1

2
IW γ̇

2
r +

1

2
IDr

2
(42)

where mw is the mass of each wheel and IW and ID is the moment of inertia about the
rotational and diameter axis of the wheels.

The next step in building the Lagrangian equation is to find the constraint matrix
A(q). The nonholomonic constraints of the robot when slip is not included is called
the pure rolling constraints and can be written as follows

Rγ̇r = ẋM cosψ + ẏM sinψ +
l

2
r

Rγ̇l = ẋM cosψ + ẏM sinψ − l

2
r

0 = ẏM cosψ − ẋM sinψ

(43)

where R is the radius of the wheel and l is the length of the wheelbase and a is the
distance from the wheelbase to the center of mass. No slipping in the model means
that the robot has no velocity in the lateral direction. If wheel slip is included, then
we introduce longitudinal and lateral displacement for each wheel denoted as (ζr, ζl),
εr and εl. The longitudinal displacement for each wheel is equal to the left and right
wheel linear displacement ρi = Rγi + ζi. The relationship between the velocity of the
robot and the wheels is
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ρ̇r = ẋM cosψ + ẏM sinψ + lr

ρ̇l = ẋM cosψ + ẏM sinψ − lr
ε̇ = ẏM cosψ − ẋM sinψ

(44)

To find the constraint matrix A(q) we solve the kinematic constraint equation

A(q)q̇ = 0 (45)

where the A(q) matrix is obtained from comparison between equations (44) and (45).
The result is an A(q) on the form

A(q) =

 cosψ sinψ l/2 0 −1 0 −R 0
cosψ sinψ −l/2 0 0 −1 0 −R
− sinψ cosψ 0 1 0 0 0 0

 (46)

The Lagrange function can be written on the form

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= u + ATλ (47)

where λ = [λ1, λ2, λ3]
T is the Lagrange multipliers and u is the generalized force acting

on the system. If we solve the Lagrange equation the dynamics of the robot can be
represented as

Mq̈ = N1τ + N2Fy + N3Fx + ATλ (48)

where

N1 =

[
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]
N2 =

[
0 0 0 1 0 0 0 0

]
N3 =

[
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

]
τ =

[
τr τr

]T
(49)

were N are input matrices and τ is the torque vector, Fx = [Fr, Fl] and Fy are unknown
lateral forces. Fx is the sum of the traction and slipping force presented in equation
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33. The matrix M is a positive definite mass matrix and can be found together with
the inertia matrix in [8].

The equation 48 can be rewritten with respect to the wheels angular rate and lateral
and longitudinal slip

q̇ = S1(q)v + S2(q)ν̇ + S3(q)ε̇ (50)

where v = [γ̇r, γ̇l] and S1(q), S2(q) and S3(q) are matrices which can be found in [8].
By taking the derivative of this equation and do some simplifications we get

mv̇ + brε̇+ zζ̈ = τ (51)

where m is a positive definite matrix, b and z are constant vectors and matrices that
can be found in [8]. The dynamics of the model is given by the equation

v̇ = m−1
(
τ − brε̇− zζ̈

)
(52)

3.3 Conclusion of literature study

Both INS and model-based dynamics are viable options for modeling of an MWR
subject to wheel spin. The sensor-based method has the advantage of not needing
robot specific and terrain specific parameters. INS is purely based on the kinematic
model of the robot and measurements. The proposed INS in section 3.1 uses the
odometry measurement as the default state estimate when no slipping is detected. For
slip detection the algorithm compares the IMU, odometry and RTK-GPS measurements
and switches to using pure INS when slip is detected. The drawback of this method is
the uncertainty associated with using INS over longer intervals.

Model based navigation on the other hand uses a dynamic model of the robot in
combined with sensor measurements in a Kalman filter to estimate the robots states.
Two proposed methods for developing such a model have been shown in section 3.2.
The downside of using model based navigation is that physical parameters of the robot
and the terrain is required. Inaccurate model and terrain parameters as well as an
inaccurate model can cause large model errors and poor state estimates. The advantage
is that model based navigation is not reliant on uncertain measurements such as the
IMU. One more advantage is that an accurate model can yield state estimates if a sensor
fails. Slip detection using model based is complicated and therefore not shown in the
derivation of the model based method, but a similar principle to the slip detection in
[5] is used by comparing the model estimate with the odometry measurements[6].
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After some consideration the conclusion have been made that the best choice of method
for the purposes of this project is to utilize the INS scheme. Simplicity and the fact that
a high precision RTK-GPS with the potential of detecting slip reliably, not explored
in [5] makes the method an interesting possibility which can yield good results. The
method proposed in [5] have been tested with an MPC[13] with good results and MPC
have been shown to yield good results for the Kilter AX1 previously robot[10].

4 Hardware and Software

In this section the hardware and software used in this project will be discussed. In
section 4.1 the environment which the sensor-based navigation scheme is implemented
will be presented. In section 4.3 a detailed description of all the sensors used in the
implementation will be presented.

4.1 Robot Operating Sytem 2

The robot operating system(ROS) is an open source software and library tool used for
robot applications. The first version of ROS was released in 2007 and have since gone
through a number of iterations calumniating in the release of ROS2 which was released
in 2017 which have also been through a few additional iterations since then. Although
not an operation system, ROS provides a framework for making robot programming
modular and versatile. The framework provides functionality which enables commu-
nication between the hardware, operating system and user. The modular nature of
ROS2 makes it easy for developers to share code and use code from others to suit their
application. This makes ROS2 an effective tool for fast development of robot applica-
tion and the sharing mentality of the ROS2 community makes fast development of a
wide range of applications possible[26].

The ROS framework is made up of a workspace which makes it possible to run different
versions of ROS and switching between them the easily. Each ROS2 workspace is made
up of nodes which are pieces of code written in either C++ or Python. Each node
typically has a function which is independent from the other nodes in the workspace.
This is how the ROS eco system archives it’s modularity. One node can for example
simulate the robot, one node can be a controller and another node can process sensor
information. If the developer understands the function of a node and what information
the node needs, the developer does not need to know precisely how the node works. One
of the main features of ROS 2 is the framework for exchanging information between
the nodes[27]. Information can be exchanged either through what is called topics or
services. Topics acts as a bus where nodes can send information and other nodes can
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extract information. There is no limit on how many nodes can subscribe or publish to
a topic. Nodes that send information to topics are called publishers and nodes that
extracts information are called subscribers. The only limitation for sending or receiving
data is the datatype that needs to be equal for both subscriber and publisher[28]. An
illustration of how ROS2 nodes and topics interact can be found in figure 5. The
other method for nodes to exchange information are services. Nodes using services
either sends a request or gives an response to the request. The service determines
what kind of information can be requested and what response is valid. Nodes that
requests information are called service clients and nodes that responds to the requests
are called service servers[29]. In this thesis only one node is developed. The node is the
implementation of the state estimation method described in section 3.1 and the nodes
functiones as a slip detector and estimates the state of the robot. Estimated states are
published on the topic /motus/state_estimate that be accessed by other modules in
the system such as the controller.

Figure 5: ROS2 topics and nodes

4.2 Simulation

Simulations is a powerful tool when developing new functionalities for robotic systems
and other physical systems. Simulations enables testing of new features in a "risk free"
environment without using the actual physical robot. If the simulation model has an
accurate representation of the robots physics the development process can be a very
effective as new features can be tested in a simulator instead of real testing which is
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typically costly and challenging to achieve. If the simulation has yielded good results
the new features can be tested on the real robot. Kilter has implemented a simulation
model of the robot in Gazebo. This simulation model is the basis for all the experiments
preformed in this project.

4.2.1 Gazebo

Gazebo is an open source simulator which enables fast development of simulation mod-
els. The simulation platform can preform accurate dynamic simulations using ODEs,
Bullet, Simbody and Dart, making the simulations accurate and reliable. Gazebo also
includes a 3D visualization tool together with simple robot model building tools to
visualize the simulations. The simulator also generate sensor measurements with dif-
ferent amount of noise to make simulation of robot navigation more realistic[30]. One
of the biggest advantages using Gazebo is the vast ROS support. The ROS 2 package
gazebo_ros_pkgs provides an interface for 3D simulations in Gazebo for the ROS 2
environment[31].

4.2.2 Rviz

Rviz is a visualization tool used to display all the information available to the robot.
This makes the development of robot application more intuitive since the developer
can visualize all the data available. In this project this includes the body frame, the
coordinate frames attached to the left and right wheel, the IMU measurement frame,
and the GPS measurement frame. This makes the measured sensor data easier to
visualize and Rviz also provides transformation between the frames which is useful
when translating the measurement into body frame.
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4.3 Sensors

The Kilter AX1 has three primary sensors used for navigation, GNSS, IMU, and wheel
encoders. These three sensors provide position(RTK-GPS), acceleration(IMU), angular
velocity(IMU and Encoders), and linear velocity(Encoders) measurements. In this
section a detailed description of each sensor will be provided.

4.3.1 Wheel Encoder

Each of the AX1 robots motor driven wheels have an encoder which measures the
rotational motions of the wheels. There are four different types of encoders, mechan-
ical, optical, magnetic, and electromagnetic. The most popular of these is the optical
encoder. The optical encoder works by mounting a disk with a given number of slots
where light can pass through on the wheel axle. On each side of the disk, there is
mounted a light emitter and receiver that create pulses as the wheel rotate. The num-
ber of output pulses measured can be converted directly to rotational speed[32]. With
the knowledge of the rotational speed, wheel radius and length of the wheel axle, it is
trivial to find the linear and angular velocity of the robot.

u = R
ωr + ωl

2
(53)

ω = R
ωr − ωl
L

(54)

where u is the linear velocity of the robot, R is the radius of the wheels, ωr and ωl is
the rotational speed of the left and right wheel, ω is the angular velocity of the robot
and L is the length of the wheel axle.

4.3.2 GNSS and RTK-GPS

Global navigation satellite system(GNSS) is the most common navigation sensor for
position estimate of robots. A GNSS system estimates a GNSS receiver’s longitudinal
and latitudinal position by measuring the time it takes for a GNSS signal to travel
from a satellite to the receiver and comparing the time to other satellites. There are
four GNSS systems for global navigation: Navstar Global Positioning System (GPS),
GLONASS, Galileo, and BeiDou. The most famous known and used is the GPS, but
GNSS sensors often combine the systems, improving the sensor accuracy and reliabil-
ity[9].
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The Kilter AX1 robot uses Real-Time Kinematic (RTK) GPS to enhance the GPS
position measurement precision. RTK-GPS uses a base station with a known position
as a reference point. The mobile robot measurements are compared with the more
reliable measurements from the base station and are corrected accordingly. By using
an RTK-GPS position measurement with a 1-2 cm accuracy is obtained. One of the
problems associated with RTK-GPS and GNSS is that obstacles can impair the signal
from the satellite or the base-station which may lead to a drop in accuracy or a loss of
the measurement all together[14]. As mentioned in section 3.1.4 the high precision of
the RTK-GPS enables the possibility of utilizing the measurements to find the velocity
of the robot.

4.3.3 Inertial measurement unit(IMU)

An inertial measurement unit(IMU) sensor consists of a three-axis attitude rate sen-
sor(ARS) (or gyroscope) for measuring attitude rate, and a three-axis accelerometer.
The IMU used by the AX1 robot is also equipped with a three-axis magnetometer
and some IMUs also include a one-axis barometric pressure sensor. The IMU is not
placed in the body frame where the acceleration and angular velocity of the robot is
defined, but in a measurement reference frame denoted as {m}. IMU measurements
must therefore be translated to the body frame in order to be used by the state esti-
mation algorithm[9]. Transformation matrices and vectors can be be obtained in Rviz.
A calibration of the IMU measurements are also necessary to compensate for the bias
in IMU measurement.

Attitude rate sensor The original ARS is the gyroscope. A gyroscope uses a rotat-
ing wheel that can measure momentum and translates the momentum to angular veloc-
ity. Gyros are the most accurate ARSs, but Micro Electro-Mechanical Systems(MEMS)
have become popular in recent times due to their much lower price and size. The an-
gular velocity measurements are measured in the IMU reference frame and must be
translated to the body frame

ωbimu = T(Θmb)ω
m
imu (55)

where ωbimu is the IMU measurements represented in body, ωmimu is the raw IMU mea-
surements and Θmb are the Euler angles associated with the rotation from the IMU
frame to the body frame. The ARS measurements are subject to both a random walk
bias and white noise which can be represented as
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ωbimu = ωbnb + bbars + wb
ars

ḃbars = wb
b,ars

(56)

where bb
ars is the sensor bias, and wb

ars and wb
b,ars is the measurement ant bias noise

respectively. By rearanging this equation the angular velocity can easily be obtained.
After the transformation there is still an error in the measurement due to the bias and
white noise[9]. An initial bias is found by keeping the robot stationary at a flat surface
and averaging the transformed ARS measurement over for example 100 samples. The
stationary bias used as an initial bias estimate, but the bias is time variant and therefore
continually estimated when the robot is online.

Accelerometer There are many different accelerometers, but they are based on the
principle of attaching a mass to a spring and measuring the spring force. The ac-
celerometers measure specific force in three dimensions. Accelerometer measurements
are transformed from the measurement frame to the body frame as follows

f bimu = R(Θmb)f
m
imu (57)

The accelerometer defined in body can be described mathematically as follows

f bimu : =
1

m
f bnon−gravitational

=
1

m
(f btotal −

∑
f bgravitational)

(58)

This equation can be interpreted as the measured force equal to the force caused by
acceleration and the gravitational acceleration. With this the equation can be simplified
to

f bimu = abimu − gb (59)

For a accurate model of the sensor readings the sensor bias and sensor uncertainty due
to white noise must be added. Since a flat ground is assumed the gravitational force
in the body frame is equal to the gravitational force in the NED frame. With this
assumption the accelerometer measurement can be described as

f bimu = abimu − gn + bbacc + wb
acc

ḃbacc = wb
b,acc

(60)
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From this equation the acceleration in body can easily be found. An initial bias estimate
and can be found the same way as the ARS bias and the walking bias must be estimated
when the robot is online[9].

Magnetometer A magnetometer measures the magnetic field of the earth. The
earth’s magnetic field is similar to a dipole with one termination point at the north
pole and one at the south pole. Along with the globe, there are field lines with varying
magnetic strength. This variation in magnetic force is called inclination. When using a
magnetometer to measure the heading, the declination angle must be considered. The
equation for finding the heading using a magnetometer is

ψ = ψm + δ (61)

where ψ is the actual heading, ψm the measured heading and δ is the declination
angle. The declination angle at a specific longitudinal and latitudinal coordinate is
found in many mapping services. A magnetometer measures the magnetic field on the
three-axis. After rotating the magnetometer measurements to body with

mb
mag = R(Θmb)m

m
mag (62)

the magnetometer measurements can be described mathematically by

mb
mag = mb + bbmag + wb

mag (63)

The magnetometer is subject to bias and must therefore be calibrated before use. With
the flat ground assumption the magnetometer measurement mb = [mx,my,mz can be
used to find the heading

ψm = −atan2(mx,my) (64)

and by adding the declination angle the heading ψ is obtained[9].
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5 Implementation

5.1 Kalman filter

The Kalman filter(KF) is a recursive filter used to estimate a linear or nonlinear dy-
namic system’s states. The filter combines state measurements and state predictions
to obtain an accurate state estimate. Kalman filters enables the navigation schemes
such as pure INS since the Kalman filter is capable of reconstructing reconstructing
unmeasured states. Kalman filter’s also acts a coloured and white noise filter making
the Kalman filter an ideal choice when designing navigation systems. The filter can
also be operational even if measurements are lost, functioning as a predictor by using
the state prediction as the state estimate[9]. The kinematic model of the AX1 robot
is a nonlinear and can be written as

ẋ = f(x,u,w)

y = h(x,u) + ε
(65)

where f(x, u, w) and h(x, u) are nonlinear vector fields, where the vectos w and ε is
the process and measurement zero-mean white-noise associated with the covariance
matrices

w ∼ N(0,Q)

v ∼ N(0,R)
(66)

States of the system must be discretized to use the Kalman filter. The discretized state
space model for a nonlinear system can be obtained as follows

xk+1 = xk + ∆tf(xk,uk,0)

yk = h(xk,uk)
(67)

where xk+1 is the predicted state at the next time step, xk is the states at the current
time step and ∆T is the time step. Here forward Euler integration is used to discretize
the vector field f(xk,uk,0) and white noise has been neglected[9]. This discretized
model is used to give a prediction of the states. The accuracy of the prediction is
dependent on the accuracy of the model. This prediction usually gives good estimates
of the states over short period’s of times, but fails to predict the states over longer
periods of time. Therfore the Kalman filter also utilizes sensor measurements to correct
the predicted states found by the model. The Kalman filter consists therfore of two
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steps, one prediction step where the model is used to predict the states in the next time
step and one update step where the measurements are used to correct the prediction.

As discussed in section 4.3 sensors are subject to different levels of noise depending
on the sensor. One cannot be certain therefore that the sensor measurements portray
the true state of what is being measured. The kalman filter gives an estimate of the
states based on both the model and the measurements in order to compensate for the
inaccuracy of both methods for obtaining a good estimate of the current state. The
state estimate given by the Kalman filter is not an average of the state measurements
and the predicted states, but a factor based on the predicted accuracy of the state
prediction and the covariance of the measurements. For example if there are large
model uncertainties, but the sensor are accurate, the Kalman filter will "trust" the
sensor measurement more than the state prediction. The covariance matrix used to
estimate the uncertainty in the state estimates are updated in each iteration of the
Kalman filter algorithm to give continuous estimation of the accuracy in the state
estimate. The extended Kalman filter algorithm can be decribed as follows[5]

Algorithm 1 Extended Kalman filter algorithm
Initialize:x0

−,P0
− and constant measurement matrix C

State prediction:
x̂−k = x̂k−1 + ∆T f(x̂k−1,uk)

State prediction jacobian:
Fk = In + ∆T ∂f(xk,uk,0)

∂x
|x̂−

k ,uk

Covariance prediction:
P−k = FkPk−1F

T
k + Q

Kalman gain:
Kk = P−k CT (CP−k CT + R)

State estimation:
xk = x̂−k + Kk(yk −Cx̂−k )

Covariance Estimation:
Pk = (I−KkC)P−k (I−KkC)T + KkRK−k
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5.2 Tuning

5.2.1 Kalman Filter tuning

For the Kalman Filter to yield good results, the covariance matrices Q and R asso-
ciated with the process and measurement noise respectively, must be determined. A
good estimate of the covariance measurement matrix R can typically be found in the
datasheet for the sensors. The covariances given in the datasheet can be placed on the
diagonal of the covariance matrix and will typically yield good results. The process
covariance matrix on the other hand is not as straight forward. Its is very difficult
to determine the process noise without through analysis. Tuning of the process co-
variance matrix is more of an art than a science, and is based mostly on experience
and knowledge of the process and the important characteristics of the system. The
intuition is that high values in the process covariance matrix yields an unstable, but
fast convergence of the states in the Kalman Filter. Small values consequently yield
a stable filter with slow convergence. The optimal values for the process covariance
matrix depends on the system and what characteristics that is important to the sys-
tem. If the Kalman filter models a slow porcess where accuracy is important, then a
Q matrix with small values is a good choice. If one where to use a Kalman Filter to
model a drone, high values in the Q matrix is the best choice. In figure ?? and 7 two
different configurations of the Q matrix can be observed.

Figure 6: Q = 0.1I
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Figure 7: Q = 0.01 I

As one can observe the best choice for the process covariance matrix is Q = 0.1I where
I is the identity matrix. This choice gives a fast and stable response to the changes in
velocity. One can also note the error in both simulations which is a result of the error
obtained by using pure INS.

The covariance matrix P is constantly estimated in the Kalman Filter but good initial
condition is important for the initial stability of the filter. An easy way to determine
the initial covariance is to keep the robot stationary, and use the converging covariances
as the initial covariance estimate. This ensures that the state converge quickly and the
state estimation remains accurate during the beginning of the startup sequence.

5.2.2 State estimation tuning

In section 3.1.3 the mixing variables that determine which method for estimating the
states is to be used is presented. The mixing variables are double-sided sigmoid func-
tions with tunable parameters a, b, and the linear velocity mixing variable also uses p.
Parameter a determines the slope of the function, which means how fast the algorithm
switches from one state estimation method to another. The b parameter is the thresh-
old for the change between the estimation methods and is tuned to ensure that the
mixing variables do not react to the noise of the measurements used to estimate the
states. Thus, in some sense, parameter b is a noise filter that is built into the model
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and limits the interference of sensor noise on the state estimation. Unfortunately, the
parameter also comes with some downsides discussed in section 6. The parameters
used in the simulations is given in table 1

C1 C2 C3 C4
a 500 100 100 500
b 0.01 0.2 0.1 0.1
p 0.01 - - -

Table 1: Mixing variable parameters

The parameters have been found from extensive testing, and an illustration of all the
mixing variables can found in figure 8. It is easy to observe the effect of the different
parameters. The mixing variable C1 is steep and slim while C2 is shallower and larger.

For fast switching between two state estimation methods, the a parameters are large
which makes state estimation rarely a combination of state estimates but a pure es-
timate from one method. The b variable must be large enough that noise does not
trigger this change. As one can observe from figure 9 where the mixing variable b1 is
very small, the mixing variable is reacting to the noise of the system. In figure 10 on
the other hand the mixing variable holds a slightly higher value and the mixing variable
does not react to the sensor noise. The b variable should be as small as possible while
not reacting to the noise of the system and at the same time be as small as possible in
order to detect slippage as fast as possible.
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Figure 8: Mixing variables

Figure 9: b1 = 0.01
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Figure 10: b = 0.03

5.3 Kalman filter testing

Test scenarios are implemented to measure and validate the performance of the state
estimation algorithm. Three different test scenarios where the commanded velocity of
the robot is changed to move the robot in desired motions like motions performed in a
field have been developed. The performance will be measured based on the algorithm’s
ability to detect slip, estimate the correct state, and the stability of the estimate.
Some states like linear velocity are more critical than other states. Prioritization of
performance of these states is therefore in order. The test scenarios are simulated
with three levels of friction to understand better how the state estimation algorithm
performs and analyze its limitations. The robot usually operates velocities between
0.2m/s-0.5m/s and angular velocities between 0.2m/s-0.5m/s, which is reflected in the
tests. The tests used to validate the performance of the state estimation algorithm are
given below.

• Linear Velocity Test: Change the commanded linear velocity from 0.0m/s to
0.2m/ to 0.5m/s to 0.0m/s with an interval of 5 seconds between each change.

• Angular Velocity Test: Commanded angular velocity is changed from 0.0m/s
to 0.2m/s to 0.5m/s to 0.0m/s with five seconds between each interval change.
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• Circle Test: The linear and angular velocity is initially set to 0.2m/s, then
the linear velocity is set to 0.5m/s, then both the linear and angular velocity is
changed to 0.0m/s. All the changes are done with an interval of 5 seconds.

These tests represent typical motions of the robot when operational in a field. The
tests simulate forward movements from one end of the field to the other. During the
tests, the robot is subjected to friction levels that are either very high, very low, or
realistic to see how the state estimation behaves under different circumstances. For
example, when performing the tests with high friction, the robot will move in the same
way as the commanded velocity. However, when friction is very low, the robot will
be almost at a standstill with the wheels turning. With realistic friction, the robot
will slip during acceleration, but once the desired velocity is reached no slipping will be
present. Different levels of friction in Gazebo can be implemented by changing the mu1
and mu2 parameters in the SDF Gazebo file. For low friction the friction parameters
used are mu1 = 0.0001 and mu2 = 0.0002 and for high friction mu1 and mu2 are default
Gazebo friction. Real world friction coefficients between rubber wheels and soil can be
estimated to be around 0.02 based on the table found in [33].

6 Results and discussion

In this section, the results from the test cases given in section 5.3 are presented. Sim-
ulations are performed, giving the same commanded velocity to the robot both with
very high, very low, and realistic friction settings in the Gazebo simulator. Simulations
are done to test the performance of the state estimation algorithm given in 3.1 by trig-
gering behavior where the performance can be analyzed easily. The actual states of
the robot where unavailable in the Gazebo simulator and the performance of the state
estimate can only be evaluated by observations done during the simulations.

First, the linear velocity test results will be presented, followed by the angular velocity
test, then the circle test. Only the states that are influenced in each test are presented,
but all the simulation data for each test can be found in the appendix.

6.1 Linear Velocity Test

In this section, the linear velocity test is preformed with low, high and realistic friction
settings. Both the the proposed method for estimating linear velocity found in [5] using
the IMU to detect slip and the method using the GPS velocity estimate to detect slip
is shown for the three levels of friction. A comparison of the two methods for detecting
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slip will be conducted, and a concussion as to which slip detection method performs
the best in simulations, will be given at the end of this section.

6.1.1 High friction

With high friction, the robot’s actual velocity and the commanded velocity are equal.
The optimal velocity estimate is therefore using the odometry measurement for the
entirety of the linear velocity test.

In figure 11 the linear velocity test is performed with very high friction in Gazebo and
using the IMU to detect slip. One can observe the Kalman estimate, final estimate,
odometry measurement for linear velocity, and the slip variable C1. One can observe
that the encoder measurement, Kalman filter, and final estimate closely follow the
odometry measurement. The slip variable C1 is steady at a value of one, meaning that
the encoder measurement is used as the final state estimate during the entire test.

0 5 10 15 20 25 30
t(s)

0.0

0.1

0.2

0.3

0.4

0.5

u(
m

/s
)

Linear velocity
Kalman estimate
Odometry measurement
Final estimate

0 5 10 15 20 25 30
t(s)

0.0

0.2

0.4

0.6

0.8

1.0

C1

Slip variable
C1

Figure 11: Linear velocity test with high friction using IMU for detecting slip

In figure 12 the same test is performed as in figure 11, but the slip detection is performed
with the GPS velocity estimate. As one can observe, the change in velocity triggers a
change in the mixing variable C4 from 1 to 0, meaning the INS is used to estimate the
velocity in the intervals where C4 is 0. The trigger of the mixing variable C4 results
from the delay in the GPS velocity estimate, which uses the average velocity over the
last six samples. Therefore it takes sometime before the GPS estimates can react to
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the change in velocity, and the difference between odometry and GPS velocity estimate
becomes large enough to trigger a change in the mixing variable C4.
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Figure 12: Linear velocity test with high friction using GPS for detecting slip

6.1.2 Low friction

When the robot is subject to very low friction and performs the linear velocity test,
the robot is almost stationary while the wheels are spinning. The optimal velocity
estimation is to use the INS as soon as the wheels start spinning and switch back to
using the odometry measurement when the wheels stop turning.

In figure 13 the linear velocity test is performed with very low friction, and the IMU
is used for slip detection. As one can observe the odometry measurement, Kalman
filter estimate, and state estimate still follow the commanded velocity closely. The
slip variable C1 spikes in the areas where there is a change in commanded velocity.
In the interval where there are spikes in C1, the final state estimate uses INS as one
can be observed from the flat velocity estimates in these areas. The slip detection is
also somewhat delayed due to the slip detection being performed over an interval of
10 samples. As one can observe the flatting of the state estimate happens some time
after the change in commanded velocity.
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Figure 13: Linear velocity test with high friction with IMU

In figure 14 the same test is performed using the GPS velocity estimate for slip detec-
tion. The mixing variable C4 jumps from 1 to 0 when the encoder measures a velocity
of around 0.1 and remains zero until the encoders measures a velocity of around 0.1.
C4 is zero in this interval, meaning that the INS is used as the final state estimate for
linear velocity during this time. The state estimate does not change to INS before the
odometry measurement is over 0.1 because of the mixing variable tuning parameter b4,
determining the threshold for where the odometry measurement should be used. The
tuning parameter is set to b4=0.1, meaning that INS is not used until the difference
between odometry measurements and GPS velocity is over this threshold.
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Figure 14: Linear velocity test with high friction

Realistic friction With realistic friction settings, the robot will have some wheel
spin during acceleration. When reaching the commanded velocity, the wheel spin
ends. The ideal case is for the state estimation scheme to use INS while the robot is
accelerating and then switch to using odometry measurements when the robot reaches
the commanded velocity.

Figure 15 shows the simulation data for the linear velocity test when the IMU is used
to detect slip. The simulation starts with some smaller spikes in the mixing variable.
Since the spikes are a value between 0 and 1, the final estimate is a combination of the
odometry measurement and the state estimated by the INS. As one can observe the slip
detection is triggered when the robot is accelerating and the state estimation uses INS
during this time. Despite wheel spin being present the robot is still accelerating and
the final state estimate show a more moderate velocity than the commanded velocity
but a steeper curve than the one found in figure 13 where the velocity of the robot is
close to zero.
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Figure 15: Linear velocity test with high friction with IMU

The simulation of the linear velocity test where the friction settings are realistic and
where GPS velocity is used is shown in figure 16. The velocity estimate uses INS in the
intervals where slip is detected and switches back to using the odometry measurements
when the robot is close to completing the acceleration. Again there are spurts in the
velocity estimate as the difference in GPS and odometry measurements crosses the
threshold of the tuning parameter b4. The jumps can be observed in all the intervals
where the robot is accelerating.
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Figure 16: Linear velocity test with normal friction

6.1.3 Comparison between slip detection using IMU and GPS velocity

This section will discuss the performance, advantages, and disadvantages of detecting
linear slip with velocity estimated from the GPS and acceleration measured from the
IMU for the linear velocity test.

When the robot is subject to high friction, the slip detection using IMU performs
well with no detected slip and uses the odometry measurement for the entirety of the
simulation, which is ideal.

Slip detection using GPS velocity, despite using the INS while the robot is accelerating,
performs well. When switching to INS, the velocity estimate is very close to the odome-
try measurement. The performance of the INS is very reliable during accelerations, and
the result, as can be observed in figure 12 is very satisfactory. So satisfactory that the
real-world performance of running the robot on a high friction surface, the difference
in using the IMU or GPS velocity to estimate linear velocity would be negligible.

Slip detection performed on a very low friction surface should be an ideal case for
slip detection to perform well. If the robot is stuck while the wheels are still turning,
slippage must be detected so the robot can be stopped and avoid the whole system
from failing. A system can be developed based on slip detection to give warnings if the
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estimated velocity of the robot is close to zero over extended periods indicating that
the robot has gotten stuck the robot can be turned off and a warning can be sent to
the operator.

Using the IMU to detect slip with very low friction, the result is an estimated velocity
closely related to the odometry measurements. This estimate yields a massive error
in the linear velocity estimation that should be close to zero. The reason is that the
IMU slip detection can only detect slippage when there are changes in the odometry
measurements or the robot’s velocity. For the low friction simulation, the robot is
almost at a standstill, and the wheels are turning at a constant velocity meaning the
tangential velocity is close to zero. Slippage is detected by the difference in tangential
velocity and acceleration. If the difference between the tangential velocity measured
by the encoders and the accelerometers is zero, no slip is detected. The slip is detected
throughout ten samples. With the change in the velocity of the wheels happening so
fast, slip detection cannot work very effectively and is delayed, as one can observe from
the delayed response of the mixing variable C1.

Slip detection using GPS velocity performs well with a switch to INS when the com-
manded velocity is initialized. However, there is a slight delay before the slip is de-
tected, as one can observe from figure 14. One can observe that the final estimate uses
the odometry measurement in the interval where the odometry measurement is between
0 and 0.1, corresponding to the mixing variable threshold b4=0.1, before switching to
INS. This means the initial INS estimate is 0.1. Velocity estimation using INS relies
on the IMU measurements of the robot and means that the INS is unable to perceive
the actual velocity of the robot, which is zero. The real acceleration of the robot is
close to zero for the entire simulation, and one would expect the estimated velocity of
holding a constant value of 0.1 during the entire simulation. This is, however, not the
case.

The IMU used in the INS is subject to large amounts of noise and drift and is there-
fore subject to significant levels of uncertainty. In order to obtain an estimate of the
robot’s forward linear velocity, the linear, sideways, and angular velocity estimates
are combined and integrated. Based on the fact that all these estimates stem from
the IMU measurements, which are subject to much noise, it is not surprising that the
performance of the velocity estimate is unstable.

Long intervals where the INS is used result in a substantial drift in the velocity estimate.
In the simulation shown in figure 14, the estimate given by the INS is converging
towards zero(the actual state of the robot), but the INS might as well have drifted
the other way, estimating a velocity higher than the one measured by the encoders. It
becomes clear that the reliability of the INS is a significant problem if the slip detection
is to be implemented on the real robot where the IMU measurements will be subjected
to other disturbances from rugged terrain where the AX1 robot is operating. In this
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simulation, the INS is used for approximately 20 seconds and can result in significant
errors during this time. If the slip detection and state estimation algorithm are to be
used, a limit on how long the robot can use pure INS in its current iteration must
be set. Another option is to improve the INS by adding measurements. An option
is to add the position and velocity estimate from the GPS measurement. The GPS
velocity estimate has a large uncertainty, but its addition could yield good results
during stationary slippage when the GPS velocity estimate is stable. However, when
the robot is accelerating, the GPS velocity estimate would be subject to a delay and
could cause a delay in the estimate.

Slip detection performed on the linear velocity test with realistic friction will ideally
use the INS for velocity estimation during acceleration as the wheels are observed to
be spinning during acceleration.

The linear velocity test with realistic friction using IMU for slip detection performs in-
adequately, with slip detected over short intervals where the odometry measurements
change. The result is therefore not correct compared to what is observed during sim-
ulations. The problem is again connected with the delay in the detection and the fast
change in odometry measurement. In addition, the slow acceleration of the robot due
to slippage makes the difference between accelerometer readings and odometry mea-
surements too small to detect slippage over a longer interval. The IMU slip detection
is also somewhat unstable, as one can observe from the distorted line of C4 during
constant odometry readings. The slip detection variable b1 is tuned very aggressively,
and is triggered by the large amount of noise in the IMU measurements.

The results are satisfactory when using GPS velocity to estimate slip. The one flaw
with the method is the jump in velocity estimate when the estimated velocity of the
GPS and odometry measurement crosses the threshold b4. The INS estimates are
reasonable if the GPS velocity estimates are used as a performance reference. It can
be observed that the estimated velocity and the GPS velocity have a similar slope with
the GPS velocity slightly ahead of the INS as expected because of the GPS velocity
delay. The only deviation from this observation happens during the deacceleration
when the commanded velocity changes from 0.5 to 0.0. Here the INS velocity estimate
lags behind the GPS velocity and indicates that the INS’s performance is suboptimal
during longer intervals, as explained earlier. The difference causes a massive jump
in the velocity estimation and is not optimal. The issue could be improved by a
less aggressive tuning of the a4 parameter. A less aggressive tuning would result in
a smoother transition by combining the INS and odometry measurements when the
threshold b4 is crossed. However, this would also result in a slower slip detection,
which would be unfortunate in circumstances like the simulation with low friction.

By analyzing the difference in performance between the slip detection using IMU mea-
surement and GPS velocity estimate, it is clear that the slip detection using GPS
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velocity estimation is superior. If slip is present, the fast changes in the odometry
measurements make it hard for IMU slip detection to detect slip. The IMU cannot
detect stationary slip like in the low friction test and makes it very hard to recommend
using this method for the AX1 robot, which relies on detecting slip if it is stuck on the
field. Slip detection using the GPS velocity estimate performs well in all the tests. The
fast switch between the velocity estimates during the test with realistic friction might
be the state estimations’ most significant problem. Still, the problem can be solved
with less aggressive slip detection parameters. Other methods for estimating the GPS
velocity for a smoother estimation might also be a solution for making the method more
reliable. The INS is also a concern, and improvements such a drift compensation and
noise filtering might be a solution for a smoother and more reliable velocity estimate
when using INS.

6.2 Angular velocity test

In this section the angular velocity test with high, low and realistic friction settings is
presented.

High friction With high friction the optimal is for the state estimate to use the
odometry measurement during the entire angular velocity test.

In figure 17 the angular velocity test with high friction is performed. The slip variable
is almost at a constant value of one with a few minor spikes that do not have a
tangible impact on the performance of the state estimation. The final estimation and
the odometry are therefore almost identical during the entire simulation.
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Figure 17: Angular velocity test with high friction

Low friction For low friction the optimal estimate is the same as for linear veloc-
ity with the optimal behavior being a switch to INS as the commanded velocity is
initialized.

In figure 18 the friction in the simulator is very low. As can be observed, there is a
slight delay in the slip detection when the commanded angular velocity is changed from
0 to 0.2. Shortly after that, the state estimation algorithm switches to using INS, and
the estimate converges to zero before yielding another spike in the estimate when the
commanded angular velocity is changed from 0.5 to 0.0.
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Figure 18: Angular velocity test with low friction

Realistic Test The angular velocity during the angular velocity test with realistic
test is shown in figure 19. The behavior of the state estimation is similar to the linear
velocity estimate in the linear velocity test. During acceleration, the state estimation
algorithm switches from using odometry measurements to INS for angular velocity
estimation with a delay caused by the mixing parameter b3. The delay is present
every time the robot is accelerating.
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Figure 19: Angular velocity test with normal friction

6.2.1 Discussion

The angular velocity test performed with high friction yield a good result as the mixing
variable was almost at a constant value of 1 during the entire simulation. The odom-
etry measurement, as is the optimal estimate, was consequently used. The reason for
the excellent performance is that the odometry angular velocity measurements used
are very reliable. The direct comparison between the odometry measurement and the
angular velocity measurements will therefore yield a very small deviation between the
two measurements. The angular velocity measurement follows the odometry measure-
ment closely, as can be observed in figure 17 in the appendix, resulting in a very stable
slip detection.

Similar to the linear velocity test with low friction, there is a slight delay in the switch
to INS in the angular velocity test. The delay results from the tuning parameter b3 that
stops the INS from being used until the difference between the odometry measurement
and INS angular velocity estimate precedes the b3 parameter. In this simulation,
the parameter b3 is 0.1, and as can be observed from figure 18 the state estimation
algorithm switches to INS when the estimated angular velocity reaches 0.1.

Contrary to using INS for linear velocity estimation, the performance of the INS for
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angular velocity is very good. The estimate converges to zero, which is the correct
estimate. The tunable process noise parameters in the Kalman filter used, results in
a stable convergence. The reason for the superior performance of the angular velocity
estimation over the linear estimation is that the angular velocity measurements have
lower noise and are used directly and not integrated.

6.3 Circle test

In this subsection the circle test is performed. The circle test is designed to trigger
changes in multiple states to analyse if the performance of the state estimation is
affected. Like the other tests, the circle test will be performed with high, low and
realistic friction settings. The linear, lateral and angular velocity are all affected during
the circle test and will be presented for each friction setting.

High friction Figure ?? shows the forward linear velocity during the circle test with
high friction. Like the linear velocity test, there are some spikes in the mixing variables
during acceleration where INS is used as the state estimate. A couple of spikes can
also be observed when the robot has a velocity of 0.5m/s.
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Figure 20: Linear forward velocity in circle test with high friction

In figure 21 the angular velocity during the circle test with high friction is shown. One
can observe that the mixing variable is relatively stable at a value of 1, hence the
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odometry measurement is used during the entire test. Some vibrations in the estimate
can also be observed when the estimated velocity is 0.5m/s.
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Figure 21: Angular velocity in circle test with high friction

Figure 22 shows the estimated lateral velocity of the robot during the circle test with
high friction. As can be observed there are many spikes in the state estimate as the
mixing variable C2 dips below 1 but the spikes are small with a maximum value of
0.005 and can therefore be considered insignificant.
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Figure 22: lateral velocity in circle test with high friction

Low friction Figure 23 shows the linear velocity estimation on a low friction setting.
As can be observed the mixing variable C4 changes from 1 to 0 when the odometry
measures a linear velocity of 0.1. The INS is used until the encoders measures a velocity
of 0.1 and then switches back to using odometry measurements.
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Figure 23: Forward linear velocity in circle test with low friction
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In figure 24 the measured and estimated angular velocity of the robot during the circle
test with low friction is presented. As for the angular velocity test the slip variable
switches from one to zero when the odometry measurement reaches 0.1 and the final
state estimation starts to use the INS before switching back to using the odometry
measurement when it measures 0.1.
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Figure 24: Angular velocity in circle test with low friction

Figure 25 shows the lateral angular velocity estimate of the robot during the circle test
with low friction. The final state estimate and the Kalman filter estimate remains zero
during the whole test as the slip variable C2 remains constant during the test.
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Figure 25: Angular velocity in circle test with low friction

Realistic friction The linear velocity in the circle test with realistic friction shown
in figure 26 show much of the same behavior as found in the linear velocity test. The
state estimate switches to INS during accelerations. Contrary to the linear velocity
test some spikes in the mixing variable C4 can be observed when the linear velocity
estimate reaches 0.5.
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Figure 26: Circle test with normal friction linear velocity
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The angular velocity estimate in the circle test with realistic friction is shown in figure
27. The estimate switches for using the odometry measurement to using INS during
accelerations when the difference in IMU and odometry measurements reaches 0.1.
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Figure 27: Circle test with normal friction angular velocity

Figure 28 show the lateral velocity of the robot during the circle test with realistic
friction. There are spikes in the lateral velocity when the robot’s linear velocity is
estimated to be 0.5. The largest of the lateral velocity spikes almost reaches 0.25.
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Figure 28: Circle test with normal friction side slip

6.3.1 Discussion circle test

During the circle test, the state estimation performance is very similar to the perfor-
mance in the linear velocity and angular velocity tests. The delay caused by threshold
variables and averaging in the GPS velocity estimate are still present. Lateral velocity
has not yet been discussed as lateral velocity is not present in the other testes. How-
ever, in the circle test, the robot’s lateral force acting on the robot is more significant
than in the other tests.

The linear velocity estimate in the circle test is similar to the one performed in the linear
velocity test. The one noticeable difference is the spikes in the mixing variable C4 when
the velocity is 0.5 during the circle test. As can be observed in figure ?? and 26 the GPS
velocity is slightly lower than the odometry measurements suggests. If compared with
the GPS linear velocity estimate in figure 12 and 16 the difference becomes evident.
The reason behind the slightly inaccurate GPS velocity estimates during the circle test
is an error that stems from the transformation from GPS velocity in NED to GPS
velocity in the body frame. The origin of the error is the noise and drift from the
magnetometer measurement used to estimate the robot’s heading. Magnetometers are
fairly accurate, but the slight error will accumulate in the transformation and results
in a minor error in the GPS velocity estimate.

The lateral velocity estimate is found much like the other state estimates by using
mixing variables. Ideally, the robot’s lateral velocity is zero when no lateral slip is

58



present. Mixing variable C2 is used to archive a lateral velocity estimate that is only
non-zero when the robot is slipping. The mixing variable for lateral velocity is only
dependent on the lateral acceleration measured by the IMU. IMU measurements for
lateral velocity are subject to large amounts of noise, and the threshold parameter b2
acts as a noise filter and as a threshold for slip detection. As long as the robot’s lateral
acceleration is below the threshold b2, the lateral velocity converges to zero. Thus,
large amounts of noise from the IMU do not affect the estimate.

In figure 22 the friction settings are high, and one can observe a slight change in the
mixing variable C2, but the change is slight and does not yield a significant impact on
the lateral velocity, which is approximately zero. No lateral velocity is expected as the
high friction in the simulator makes it nearly impossible for the robot to slip, and no
lateral velocity can occur.

In the low friction test, the robot’s acceleration is near zero, and the lateral velocity
cannot be triggered due to the threshold.

In figure 28 the lateral velocity is triggered when the robot reaches its maximum veloc-
ity. Lateral velocity is found by integrating the lateral acceleration and the linear and
angular velocity estimates, making for a somewhat unstable estimate. One can observe
that the mixing variable is in the region between 0 and 1, resulting from a measured
lateral velocity around the threshold. The unstable mixing variable manifests itself
in the state estimate because of the unstable mixing variable C2. The estimate jump
between 0 and the INS velocity estimate with the same frequency as C2. A solution
might be to use a more significant q2 variable which might result in a smoother es-
timate. The estimate might have also been better if the a2 variable was tuned more
aggressively, making the jump to INS faster. Lateral velocity is at its peak when the
commanded velocity changes from 0.2 to 0.0, making the robot slide sideways.

As can be observed in figure 27 when the angular velocity estimate decline from 0.2,
there is a sudden rise in angular velocity as the state estimation switches to INS.
This behavior is because stems from the commanded angular velocity turning zero,
but the robot keeps rotating. The IMU measures the correct angular velocity, but
the state estimation does not switch to INS before the difference in angular velocity
is over 0.1. After the switch, the INS will converge towards the IMU measurement,
but the transition takes some time due to the Kalman filter’s slow response. By the
time the INS has caught up with the IMU measurement, the robot’s rotation slows
down, and the estimate drops rapidly to zero. When the INS approach the odometry
measurement, a combination of the state estimate and the odometry measurement is
used, as can be observed from the mixing variable C2 transition from 0 to 1.
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7 Conclusion

7.1 Overview

In this thesis, an algorithm for estimating the linear, lateral, and angular velocity of
the Kilter AX1 robot when subject to wheel spin was developed. A literature study
was conducted, concluding that INS would be the most viable and most accessible
navigation system for the Kilter AX1 robot. Then, a state estimation algorithm using
INS was implemented in the ROS2 environment working with the Gazebo simulator to
test the possibility of using INS for the AX1 robot. The algorithm works by comparing
a velocity estimate from the GPS measurements and IMUmeasurements with odometry
measurements to determine if and when the robot is subject to wheel spin. Odometry
measurements were used as the standard linear and angular velocity estimate when
no slip was detected. When slip was detected, the algorithm would change the state
estimate to using INS until no slip was detected. When no slip was detected the
algorithm would switch back to using odometry measurements as the state estimate.

7.2 Findings

A set of tests were developed in order to verify the performance of the state estimation
algorithm. The tests were performed with three different friction settings in the Gazebo
simulator. By taking advantage of the AX1s RTK-GPS, using the velocity estimated
from the RTK-GPS to detect slip was made possible. Comparing the slip detection
using an RTK-GPS and IMU for estimating the linear velocity, it was evident that GPS
velocity was more effective at detecting wheel spin for linear velocity. Furthermore,
the techniques for finding angular and lateral velocity proposed in [5] were found to be
accurate for detecting slip.

The state estimation performed well in the tests with high and realistic friction, where
the state estimation algorithm manages to capture the essential behavior of the robot.
When the simulator was in a low friction setting, the angular velocity state estimation
performed well. However, for linear velocity the state estimation uses INS for more
extended periods, resulting in an uncertain and unstable estimate due to the noise
levels and drift of the accelerometers. The lateral state estimation were unstable due
to poor tuning and direct integration of noisy estimates.

The algorithm’s most significant limitation is the threshold for which slip is detected.
The threshold results in a jump in the state estimates and can cause problems for other
parts of the system, like the controller, which does not perform well with sudden jumps
in the state estimate.
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7.3 Future work

One of the assumptions made in this thesis is flat ground. A flat ground assumption
is unlikely to hold on fields where the AX1 robot is to operate. Modifications to the
kinematic equations and GPS velocity could be made to incorporate pitch and roll.
Pitch and roll are readily available through IMU measurements.

Methods to replace the GPS velocity estimate for a more accurate slip detection that
does not suffer from delay will further improve the slip detection. Methods for detecting
slip, like using the kinetic equations to predict the future position of the robot and
comparing the position prediction to the RTK-GPS measurement, are a possibility.

Another method for detecting slip not mentioned in this thesis is using an additional
encoder on the caster wheel. With the inclusion of this additional encoder, detecting
slip becomes trivial as a direct comparison between the caster wheel encoder and the
driving wheel encoders can be used. Kilter does not currently have an encoder installed
on the caster wheel of the robot, but with its inclusion, the slip detection might become
even more reliable.
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A Appendix

A.1 Linear velocity test

A.1.1 High friction
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A.1.2 Low friction
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A.1.3 Realistic friction
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A.2 Angular velocity test

A.2.1 High friction
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A.2.2 Low friction
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A.2.3 Realistic friction
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A.3 Circle test

A.3.1 High friction
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A.3.2 Low friction
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A.3.3 Realistic friction
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