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Abstract

This thesis evaluates ablations of a graph convolutional neural network for machine
learning aided branching proposed by Gasse et al. (2019) for faster solving of mixed-
integer linear programming (MILP) problems. Efficient MILP solution algorithms
are important for real-time optimization in various industries, including industrial
production, logistics, transportation, and energy production. Reduced computation
time via merging machine learning with the branch-and-bound solution algorithm can
improve these algorithms without sacrificing the strong benefits of global optimization.
In 2019, reliable results of improvement over top branching policies in open-source
solvers were shown, and in 2020 these methods have been expanded to purely CPU-
based solutions. Different network topologies and feature sets on both GPUs and CPUs
have been presented, however, the trade-off between accuracy and efficiency with
these models on varying hardware is still mostly unexplored. In order to address this,
two variants of graph convolutional neural networks and three multi-layer perceptron
configurations are trained via imitation learning on the strong branching algorithm
with generated MILP problems using the new framework Ecole. The models are
then incorporated into the SCIP optimization solver and evaluated on test problems.
All models show near state-of-the-art efficiency when run on the GPU. The models
containing graph convolutions show a considerably larger reduction in efficiency than
the MLPs when run on the CPU.
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The source code for this project is available at
https://github.com/Sandbergo/branch2learn

ii

https://github.com/Sandbergo/branch2learn


Sammendrag

Denne oppgaven evaluerer ablasjoner av et grafkonvolusjonelt nevralt nettverk for
maskinlæringsassistert forgrening foreslått av Gasse et al. (2019) for mer effektiv
løsning av blandede heltallsproblemer (MILP). Effektive MILP-løsningsalgoritmer er
viktige for optimering i sanntid i mange industrier, blant annet produksjon, logistikk,
transport og energiproduksjon. Reduksjon i beregningstid ved å kombinere maskin-
læring og branch-and-bound-løsningsalgoritmen kan forbedre disse algoritmene uten
å ofre de sterke fordelene til global optimering. I 2019 ble pålitelige resultater med
forbedring over de beste forgreningsstrategiene i åpen-kildekodeløsere vist, og i 2020
ble disse metodene utvidet til rent CPU-baserte modeller. Forskjellige nettverkstopolo-
gier og datasett for både GPU og CPU har blit foreslått, men kompromisset mellom
nøyaktighet og effektivitet for modellene på forskjellig maskinvare er for det meste
uutforsket. For å adressere dette blir to grafkonvolusjonale nevralnett og tre fler-
lagsperceptroner trent gjennom imitasjonslæring av strong branching-algoritmen
på genererte MILP-problemer i det nye rammeverket Ecole. Modellene blir deretter
inkorporert i optimaliseringsløseren SCIP og evaluert på testproblemer. Alle modeller
viser nær høyeste effektivitet mot sammenlignbare algoritmer på GPU. Modellene med
grafkonvolusjoner viser et mye mer betydelig effektivitetstap enn modellene uten når
beregningene gjennomføres på CPU.

iii



Kildekoden for denne oppgaven er tilgjengelig på
https://github.com/Sandbergo/learn2branch
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Introduction

This chapter presents a short history, motivation, and background in the fields of math-
ematical programming and machine learning, summarizes the previous work on the
topic of learning-to-branch, poses the research questions for the project, and explains
the structure of the project. Sections 1.1 and 1.2 and 1.5 are adapted from the project
report Multi-Layer Perceptrons for Branching in Mixed-Integer Linear Programming
(2020).

1.1 Background

In this section, a background in the relevant fields of mathematical programming
and machine learning is presented, as well as an overview of the previous work in
combining these fields. A familiarity of the reader with the central concepts and terms
in this field is assumed.
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2 1. INTRODUCTION

1.1.1 Mathematical Programming

The invention of efficient solution algorithms for linear mathematical programming
problems is considered one of the great post-war inventions [1]. The simplex algorithm
and its derivatives have since become ubiquitous in a number of disciplines including
finance, engineering, transportation, and energy [2]. These algorithms allow for the
efficient solution of the global optimum of linear functions with an objective function,
a number of variables and a number of constraints on these variables. However, the
simplex algorithm is limited to problems where the feasible set of possible solutions is
convex.

To further increase the expressiveness of the linear programming language, the inclu-
sion of non-convex constraints such as limiting variables to only take integer values, is
a reoccurring limitation in modeling real-world problems in a mathematical program-
ming language. The set of linear optimization problems with these integer constraints
is known as mixed-integer linear programs (MILP). The inclusion of integer constraints
to linear problems has proved to be a very challenging problem class to develop ef-
ficient solution algorithms for, and it is considered unlikely that a polynomial-time
solution algorithm exists [3].

For problems including integer constraints, the naïve approach of comparing every
possible combination of feasible solutions, known as explicit enumeration, will result
in a solution algorithm that is of exponential complexity, which makes larger opti-
mization problems intractable [4]. An alternative to explicit enumeration is implicit
enumeration, where a large number of possible solutions do not have to be evaluated
explicitly. Branch-and-bound (B&B), conceived in 1960 [5], is an algorithm for solving
mathematical programming problems via implicit enumeration that has become the
standard solution algorithm [4]. It has since received numerous improvements and
extensions [4].
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For time-constrained applications of these non-convex optimization problems, a de-
crease in time to calculate the optimal solution can result in significant improvements
and has been a very active field of research for many decades [4]. For the interested
reader, the modern advances of branch-and-cut, column generation, and Bender’s decom-
position algorithms are recommended reading in Integer Programming by Lawrence
Wolsey [4].

Currently, the most efficient solution algorithms using Branch and Bound are propri-
etary algorithms, notably IBM CPLEX and Gurobi [6]. Open-source solvers also exist
and are under continuous development, e.g. COIN-OR and SCIP Optimization Suites
[6], [7]. The algorithms are highly complex and employ a large variety of methods to
quickly solve the complex problems [4].

There is a large interest in both theoretical and practical mathematical programming for
methods that can improve the efficiency of MILP optimization algorithms [4]. This can
have a lasting impact on the nature of mathematical programming and is therefore an
important area to explore further. Researchers in mathematical optimization have also
noted the potential for expert-constructed branching strategies based on knowledge
obtained from statistical learning, also known as machine learning (ML) [8].

1.1.2 Machine Learning

The current dominating paradigm of artificial intelligence (AI) is machine learning,
where computers (algorithms) learn from experience (data) [9]. The capabilities of
these models have had exponential success in recent years, much due to advances
in computer hardware [9]. A variety of fields have seen breakthroughs by using ML
methods, including medical diagnostics, industrial optimization, autonomous vehicles,
and board games [9].
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There are a number of sub-fields within machine learning. In this project, the class
known as supervised classification is explored. Supervised classification is the general
problem of dividing instances into classes based on past instances and their respective
classes. These models learn through observing examples of past data and their classifi-
cations. The basic assumption is that the ML model will learn from its experience, and
be accurate in classifying previously unseen data.

An important field within machine learning in the last decade is deep learning (DL),
where models are built up of series of nonlinear functions [9]. The multi-layer percep-
tron (MLP), or feedforward deep neural network, is the most common model in Deep
Learning [9]. Nonlinear representations are iteratively performed, giving the model a
large capacity for representing complex relations between input and output.

For many tasks, e.g. tasks with a real-time component, the strength of ML models lies
in the fast evaluation of the generated, nonlinear functions, also known as the inference
[10]. This strength makes it possible for machines to take over tasks previously thought
to require a human operator or increase efficiency greatly via automation.

Further, the results of the iterative optimization process of generating an ML model can
find patterns in data that are difficult to discover with traditional statistics [9]. Much
like chess grandmasters learn from observing the best AI algorithms, so too might
experts gain knowledge in their respective fields by analyzing the inner workings of
an algorithm built on statistical learning.

Within the field of machine learning, the concept of ablations and ablation studies
are gaining interest [11]. In an ablation study, the performance of a learned model is
examined after the removal of sections of the original model. This is performed in an
attempt to understand the role of a section within a complex system.
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1.2 Previous Work

There has been a recent surge of interest in leveraging machine learning methods
in solving non-convex optimization problems, notably in a recent literature review
conducted by Yoshua Bengio [3]. The aim is for statistical learning to aid in the efficient
solving of complex problems without sacrificing the strong guarantees inherent in
mathematical optimization solvers. These hybrid methods now show the potential to
be competitive with the state-of-the-art solvers for these difficult problems [12].

An overview of the history of learning in B&B is given a survey paper by Lodi and
Zarpellon [8]. To summarize, interest in using more advanced statistics to unravel the
relations of a MILP problem and the optimal branching variable was first presented
in 2009. Various approaches to learning have been attempted, with recent efforts to
directly incorporate the learned algorithms into the solution algorithm from 2016 and
onwards [8].

A thorough look into the possibilities of machine learning in B&B was conducted
by Elias Khalil [13], in which he chose the term data-driven algorithm design for
this approach. In Learning to Branch (2016) [14] imitation learning of an expert
branching policy. The algorithm was competitive with a selection of modern solvers
[14]. Recent advances using graph convolutional neural networks (GCNNs) have proved
to consistently improve on the solution time of the best available open-source solvers
by Gasse et al. (2019) [12].

The promising results found by Gasse et al. (2019) [12] were, however, criticized
by Gupta et al. (2020) [15] for reliance on modern GPU processing power. They
showed that the efficiency of the GCNN-aided algorithm did not improve on the native
branching strategies when run on a CPU. Gupta et al. presented novel methods running
only on the CPU that were able to improve on the native strategies. These methods
include support vector machines (SVM), multi-layer perceptrons (MLP), and feature-wise
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linear modulation models (FiLM) [15].

Though GPU aided algorithms are interesting in their own right, a fair comparison
of algorithmic efficiency cannot be made when the machine learning-based models
are aided by expensive, advanced and specialized GPU processing power, as in Gasse
et al. (2019) [12]. However, the efficiency when run on a GPU will be interesting
for applications where this is available. For this reason, all analysis of computational
efficiency in this project will be performed on both GPU and CPU. Discrete optimization
performed on GPUs is a very interesting topic, for a discussion on Branch and Bound
algorithms on GPUs the reader is referred to Schultz et al. [16]. It is also assumed by
the author that advances in ML aided optimization can combine nicely with advances
in parallel computing and specialized hardware.

The methods of Gasse et al. (2019) [12] and the improvements made by Gupta et al.
(2020) [15] have shown that data-driven methods can improve upon existing state-of-
the-art solvers, and is therefore an avenue worth examining, exploring, and expanding
further. Machine learning is a rapidly evolving field, and recent advances have shown
to outclass the early proof-of-concept attempts, sometimes by considerable margins
[17]. There is little reason to believe that ML-leveraged algorithms do not have this
latent potential.

Recent attempts to facilitate the development of ML-aided B&B includes a notable
project named Extensible Combinatorial Optimization Learning Environments (Ecole)
[18], [19]. It was developed by the group Data Science For Decision Making (DS4DM),
connected to the Polytechnique Montréal university. Ecole is an open-source frame-
work for a controllable and extensible python interface to B&B algorithms and is
built on SCIP and PySCIPOpt [18]. The framework is based on previous work from
the group, notably Gasse et al. (2019) [12] and Gupta et al. (2020) [15], and aims
to standardize research within the field of B&B algorithm improvement. A recent
article by Cappart et al. (2021) [20] presents the current status of and the role of the
Ecole framework in further developing this field. As of May 2021, no articles have
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been published with results using this framework, bar the aforementioned introducing
articles.

1.3 Motivation

As stated, the ubiquity of B&B algorithms in industry implies that increased efficiency
in computation time will be very beneficial. The benefits could be in the form of
reduced resource expenditure on computations, increased time resolution in real-time
applications, or even new applications due to the increased efficiency.

Machine learning has been proved by many researchers to be a good candidate for
improving B&B [12]–[15], [21]. Of these, the graph convolutional neural network
presented in Gasse et al. (2019) [12] has received the most attention and provides a
very interesting approach to the variable selection problem in B&B. The model showed
satisfactory improvements over the SCIP native brancher, however, the model was
shown to be non-competitive when running on a CPU in Gupta et al. (2020).

While the alternative models presented in Gupta et al. (2020) [15] are interesting,
a thorough exploration of the more standard models in ML (GCNNs and MLPs) is
assumed to be more fruitful if they can achieve similar performance. The GCNN
developed and presented in Gasse et al. (2019) [12] (from now on referred to as the
Gasse GCNN) might not be competitive on the CPU in the current configuration,
however, this does not necessarily mean that the GCNN architecture is unsuited for
the application on a CPU.

A comparison, with the solution efficiency reported on both GPU and CPU, of a
selection of simplified variants of the Gasse GCNN can give further insight into the
model accuracy versus solution efficiency trade-off. When future researchers chose
ML models for learning in B&B, this work will serve as a resource to better understand
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this trade-off on the two different computational resources.

The term iterative ablations (IA) will be used to describe the process of removing parts
of a network sequentially. The term is, to the knowledge of the author, only used once
before, in the context of ablative liver surgery in Seror (2015) [22].

In addition, the choice to implement the source code in the new Ecole framework is a
conscious decision to aid in the standardization of how research is done within the
field of improving B&B algorithms.

1.4 Research Questions

For this project, three research questions are considered. This is done to aid the
reader in following the thesis. The questions will be answered explicitly in Chapter 5.
In addition, the topics of accuracy-efficiency-implementation will be reoccurring
throughout the chapters of the thesis.

The research questions are as follows:

(i) What is the impact of iterative ablations on the accuracy of the Gasse GCNN?

The GCNN successfully implemented in Gasse et al. (2019) [12] was criticized in Gupta
et al. (2020) for not being competitive with the classical strategies when run on a CPU.
Hybrid models were implemented in Gupta et al. (2019) [15], where GCNN features
were combined with the general variable features. This is done to mitigate the loss in
efficiency by running GCNNs on the CPU. To investigate whether the original model
can be competitive on both the GPU and CPU, 5 models are constructed by iteratively
reducing the model size. These models will be referred to as GNN2, GNN1, MLP3,
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MLP2, and MLP1. The last models will consist of multi-layer perceptrons with only
the variable features, and will therefore have dissimilar names. The MLP models are
devised based on promising results found in the project Multi-Layer Perceptrons for
Learning to Branch (2020).

(ii) What is the impact of iterative ablations on the efficiency of the Gasse GCNN when
run on the CPU and GPU as a part of the B&B algorithm?

Machine learning model choice based on reduced complexity is cited as a motivation
for design choices in Gupta et al. [15], however the impact of varying sizes of the
same model has not been performed before, and the magnitude of the impact is
unknown. Increasedmodel capacity is known to facilitate higher accuracy [9], however,
whether this has a detrimental effect on the Branch and Bound algorithm’s overall
performance is unknown. Results frommethods that are more comparable will indicate
the importance of accuracy versus computational complexity. It is also not clear
whether the graph convolution as developed in the Gasse GCNN is the component
resulting in a detrimental loss of CPU performance. By conducting all experiments
on both types of hardware, results should be sufficient to conclude with a degree of
certainty what the accuracy and efficiency trade-offs are and what differences there
are between the CPU and GPU methods.

(iii) What are the most promising research opportunities for learning in Branch and
Bound?

The general field has gained traction recently [3], and the author assumesmore research
and interest will come in the next few years. In the implementation of this project, the
new framework Ecole is used. This is the first paper where Ecole is used as the basis
for the experiments, and an independent review of this framework is due. The road
towards a conform and standardized framework and practice to develop methods in
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the field of ML aided B&B can increase productivity and usher in breakthroughs in
this field. On a broader note, as there is so much interest in the field, providing ideas
for further research appears highly relevant.

1.5 Thesis Structure

Chapter 1 contains an introduction to the thesis with a short background in the
relevant field, an overview of previous work, a section on the motivation for the
conducted experiments, a formulation of the three research questions, and an overview
of the thesis structure. In the following chapter, Chapter 2, the necessary theoretical
background in optimization and machine learning is presented, as well as a review of
earlier work in the field. In Chapter 3, the data set, chosen training and testing methods,
and experiments are presented, alongwith the architectural choices. Chapter 4 provides
the results of the aforementioned experiments. Then, Chapter 5 contains discussions of
the results, a critique of the experiments, and ideas for further work. Finally, Chapter 6
summarizes the project with a conclusion on the implications of the results. Additional
material is provided in Appendix A and Appendix B.



2

Background

The following chapter lays the theoretical groundwork for the project. An understand-
ing of linear algebra, numerical optimization, algorithms, and statistics is assumed.
Sections 2.1, 2.2 and 2.4.1 are adapted from the project report Multi-Layer Perceptrons
for Branching in Mixed-Integer Linear Programming (2020).

2.1 Mathematical Programming

This section presents the field of mathematical programming at the level relevant
for understanding the thesis. In this work, the terms mathematical programming,
numerical optimization, and optimization are used interchangeably. The differences
between these stem largely from the different communities who use them. The section
will first cover the topic of linear programming (LP), then the topic of mixed-integer
linear programming (MILP), and lastly a section on computational complexity.

11
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2.1.1 Linear Programming

In mathematical programming, the general linear problem can be stated as [12]:

arg min
x

{
c⊤x | Ax ≤ b, x ∈ R𝑛+

}
, (2.1)

where x ∈ R𝑛+ is the variable vector with the objective coefficient vector c ∈ R𝑛 , the
constraint coefficient matrix A ∈ R𝑚×𝑛 and the constraint right-hand-side vector
b ∈ R𝑚 .

The size of the problemwill be measured by the dimensions of the constraint coefficient
matrix A, where the number of rows and columns corresponds to the number of
variables and constraints, respectively.

These problems are convex [4], and can be solved by several efficient algorithms.
The simplex algorithm can solve problems on this form efficiently, and the same for
interior-point methods [23]. These algorithms are good average performance but
do not have guaranteed polynomial running time in the worst case. Guaranteed
polynomial solution algorithms do exist, for instance Karamkar’s algorithm [24].

2.1.2 Mixed Integer Linear Programming

Mixed integer linear programming is a superset of linear programming, where one or
more of the variables can be restricted to discrete values. The general problem can in
this case be stated as [12]:

arg min
x

{
c⊤x | Ax ≤ b, x ∈ Z𝑝+ × R

𝑛−𝑝
+

}
, (2.2)
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Figure 2.1: Illustration of an LP with its corresponding ILP, i.e. the LP with integrality
constraints.

where 𝑝 is the number of integer variables, otherwise the variables are the same as
Equation (2.1).

In Figure 2.1, an LP problem and the problem with integrality constraints is shown.
For the LP problem, the shaded areas represent the inequality constraints, where the
diagonal lines represent the level curves of the objective function. In the ILP problem,
the crosses represent the feasible solutions. The LP is also called a relaxation of the
original ILP, which is fundamental to efficient solving algorithms of MILP problems.

A problem that includes integrality constraints cannot be convex [4]. The non-
convexity of the feasible set of the problem constitutes a significant challenge, and it is
considered unlikely that polynomial-time solutions exist [25]. MILP problems belong
to the category of NP-hard problems [25] (this class of problems will be discussed in
Section 2.1.3).

A subset of MILP problems can be integer linear programming (ILP), where all variables
are restricted to integer values, or binary linear programming (BLP), where all variables
are restricted to binary values.
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ILP and BLP problems belong to the category of combinatorial optimization (CO)
problems, which has been the main focus of the efforts to solve entirely or partially
with machine learning methods [3].

2.1.3 Computational Complexity

A basic understanding of computational complexity is required to justify the nature of
the algorithms used to solve MILP problems.

Problems can be divided into classes by the nature of the algorithms that can solve
these problems. Problems for which there exist algorithms that can solve the problem
in a time that is polynomial of the problem size belong to class P. Problems to which
a correct solution can be verified in polynomial time belong to the class NP (non-
deterministic polynomial time) [26].

Two other central complexity classes in this context are the NP-complete and NP-
hard classes. The NP-complete class contains problems that can be reduced to any
other problem in the NP-complete class in polynomial time. The NP-hard class
contains problems that are at least as hard as the problems in theNP-complete group
but has not been proved to be reducible to a NP-complete problem. An illustration
showing this is given in Figure 2.2. The general MILP belongs to the NP-hard class,
and some MILPs have been shown to belong to the NP-complete class [26].

As stated, it is considered unlikely that MILP problems can be solved in polynomial time.
Therefore, it is more fruitful to improve upon the best existing solution algorithms and
evaluating the improvements on practical problems. As the improvements attempted
by substituting variable selection algorithms do not affect the running time complexity
of the B&B algorithm, this will not be discussed.
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Figure 2.2: Illustration of the most commonly held view of the P, NP, NPC, and NP-hard
relationship. Adapted from Cormen et al. (2009) [26].

2.2 Branch and Bound

A relaxation of a MILP problem is achieved by relaxing the integrality constraint, as
shown in Figure 2.1. Obtaining the solution to the relaxed problem gives a lower bound
on the optimal solution (for a minimization problem). Naturally, any feasible solution to
the integrality-constrained problem gives an upper bound to the solution. Furthermore,
if the solution to the relaxed problem adheres to the integrality constraints, it is also
the solution to the MILP problem [4].

The most prevalent solution algorithm for MILP problems exploits these results, by
sequentially dividing the solution space until the optimum with the integrality con-
straint is found. This is done by branching in a binary tree structure according to
[12]:

𝑥𝑖 ≤
⌊
𝑥★𝑖

⌋
∨ 𝑥𝑖 ≥

⌈
𝑥★𝑖

⌉
, ∃ 𝑖 ≤ 𝑝 | 𝑥★𝑖 ∉ Z (2.3)
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Further creating sub-problems with this binary decomposition. A general algorithm
for this process is presented in Algorithm 1, and an illustration of this process is shown
in Figure 2.3.

Algorithm 1: A generic branch-and-bound algorithm [27].
Result: Optimal point and solution value of given problem.
Set 𝐿 = {𝑋 } and initialize 𝑥 ;
while 𝐿 ≠ ∅ do

Select a subproblem 𝑆 from 𝐿 to explore;
if a solution 𝑥∗ ∈ {𝑥 ∈ 𝑆 | 𝑓 (𝑥) < 𝑓 (𝑥)} can be found then

Set 𝑥 = 𝑥∗;
end
if 𝑆 cannot be pruned then

Partition 𝑆 into {𝑆1, 𝑆2..., 𝑆𝑟 };
Insert {𝑆1, 𝑆2..., 𝑆𝑟 } into 𝐿;

end
Remove 𝑆 from 𝐿;

end
Return 𝑥 ;

For each generated solution, represented by nodes in Figure 2.3, a relaxation of the
problem is solved in order to obtain an upper and lower bound on the solution of
the sub-problem. These values are shown on the top and bottom right, respectively.
Generating upper and lower bounds for solutions allows for discarding a large number
of solutions [4]. Branches can be pruned (meaning no further partitioning from that
branch) if they meet at least one of the following three criteria [4]:
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Figure 2.3: Illustration of the branch-and-bound algorithm adapted from a maximiza-
tion problem in Integer Programming (2020) [4].

(i) Pruning by optimality: 𝑍 𝑡 = {max c⊤x : x ∈ 𝑆𝑡 } has been solved.

(ii) Pruning by bound: 𝑍
𝑡 ≤ 𝑍 𝑡 .

(iii) Pruning by infeasiblity: 𝑆𝑡 = ∅.

For Figure 2.3, the graph on the right represents the tree after solving the relaxation,
resulting in 𝑆2 being pruned by infeasibility, 𝑆3 pruned by bound, and 𝑆4 pruned by
optimality.

The choice of node and variable to branch on to find the optimum in the fewest number
of branching processes is central to an efficient implementation of B&B. Partitioning
the feasible set such that the node with the optimal value is found in the fewest possible
branching iterations is the optimal policy.
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Figure 2.4: Figure of an ILP before and after an added valid inequality.

2.2.1 Valid Inequalities

Another important method used in B&B algorithms is the concept of valid inequalities.
A valid inequality is an inequality that does not remove feasible solutions of the non-
convex solution set but can remove potential solutions to the relaxed problems. A
valid inequality can be expressed as:

π⊤x ≤ 𝜋0 ∀ x ∈ X (2.4)

whereX is the feasible set as described in Equation (2.2). These inequalities reduce
the size of the feasible set for the relaxations of the problem without removing feasible
solutions of the original problem. An illustration of an ILP with an added valid
inequality is shown in Figure 2.4. Here the feasible set of the relaxation is reduced in
size by the added constraint, while the feasible points of the ILP remain feasible after
the application of the inequality, as is given in Equation (2.4).

Algorithms that find these inequalities during the B&B algorithm are called branch-
and-cut. The nomenclature comes from calling the application of these inequalities
cuts or cutting planes. When an application of inequalities are only employed on the
root node (before dividing the solution space in the enumeration), the algorithm is
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sometimes referred to as cut-and-branch rather than branch-and-cut [4].

2.2.2 Primal and Dual Heuristics

The modern implementations of B&B solvers base their efficiency on the implementa-
tion of heuristics [13], which are divided into the classes primal and dual. Heuristic is
synonymous with "human-designed rule" in this context.

Primal heuristics are methods for finding feasible solutions at a given B&B node, where
the quality, i.e. the distance to the optimal bound, is the determining factor to whether
the feasible solution is useful or not [13]. These heuristics are as costly as they are
useful, andmodern solvers periodically run different heuristics at different times during
the solution process [13].

Dual heuristics are the methods that find the lower bound of the optimization problem.
This includes solution of relaxations of the problem as well as the addition of valid
inequalities.

The relationship is summarized in this quote from Khalil (2020) [13]:

[...] the primal side refers to the quest for good feasible solutions, whereas
the dual side refers to the search for a proof of optimality.

2.2.3 Branching Variable Selection Policy

As mentioned, an important decision in the B&B algorithm is the choice of the variable
that should be branched on. There exists many heuristics for solving this, who vary in
computational complexity and accuracy. A good branching algorithm should choose
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to branch on variables that lead to small solution trees (fewer nodes evaluated) and
find these variables in a computationally efficient manner.

All popular variable selection policies depend on scoring the candidate branching
variables, expressed as 𝑠𝑖 ∈ R1 ∀ 𝑖 ∈ C, and then selecting the variable with the most
optimal score [28]. The branching operation generates two child nodes, 𝑄−𝑖 and 𝑄+𝑖 .
The branching candidate comparison is done by comparing the two objective function
changes of each candidate, denoted as Δ−𝑖 B 𝑐𝑄−

𝑖
− 𝑐𝑄 and Δ+𝑖 B 𝑐𝑄+

𝑖
− 𝑐𝑄 [28]. The

final score is then typically calculated by a function similar to [28]:

𝑠𝑐𝑜𝑟𝑒 (𝑞−, 𝑞+) = (1 − `) ·min{𝑞−, 𝑞+} + ` ·max{𝑞−, 𝑞+} , ` ∈ [0, 1] (2.5)

The current branching policy resulting in the smallest solution trees is known as strong
branching (SB) [29], and the application of this branching policy at every node is known
as full strong branching (FSB) [28]. This branching policy is based on determining the
best variable to branch on by solving the relaxation for every candidate variable, and
is therefore very computationally expensive compared to other methods [28].

Another branching policy is most infeasible branching (MIB), where the variable with
the fractional part of the relaxation optimum closest to 0.5 is selected. This policy,
though computationally inexpensive, has proved to be very poor [28].

An effective and popular policy is pseudo-cost branching (PB), which relies on the
expected change in objective value based on previous branching on the variable in
question [28]. In short, the objective gain per unit change in a variable is averaged
over all nodes where it has been branched upon. This value is termed the pseudo-cost
of the variable. As is evident, these values depend on a history of branching, and will
therefore be inaccurate for the first decisions [28].

The policy known as reliability pseudo-cost branching (RPB) aims to mitigate the
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inaccuracy of the PB algorithm by combining SB and PB [6]. In RPB, SB is employed
for variables that are either uninitialized (never branched on before) or have unreliable
pseudo-costs (pseudo-costs that stem from little data) [28]. This policy is the standard
of the SCIP optimization suite [7].

In the literature, the branching policy is referred to as a policy, strategy, or rule. In
this thesis policy is used.

2.2.4 Learned Branching Policy

Recently, attempts have been made to find a branching policy based on statistical
learning.

Usingmachine learning, specifically imitation learning, to find good candidate variables
for branching in a less computationally demanding manner was proposed by Elias
Khalil [14]. Various methods for learning in branching include support vector machine
ranking (SVM) [14], graph convolutional neural networks (GCNN) [12] and feature-wise
linear modulation (FiLM) [15].

The fundamental assumption to this approach is that a computationally efficient
approximation to the most computationally demanding but most accurate branching
policy can be learned. The algorithm will use imitation learning on the branching
expert to find a computationally less expensive non-linear function approximation to
the expert algorithm’s variable scoring. Then, the algorithm branches on the variable
with the highest score.
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2.3 Markov Decision Processes

This section presents the Markov decision process formulation of the variable selection
problem.

2.3.1 Markov Decision Processes Formulation

Central to the advancement of learned policies in B&B is the interpretation of the solu-
tion algorithm as an agent in aMarkov decision process (MDP) [12]. This interpretation
relates the problem to a large collection of literature on the topic [30].

In an MDP, the agent is at time 𝑡 in a state S𝑡 , from which it performs an action A𝑡

that transforms the agent to the state S𝑡+1 and receives the reward R𝑡+1 [19]. The
probability of an agent performing action 𝑎 in state 𝑠 is given as 𝜋 (𝑎 |𝑠). The probability
distribution for the agent to transition to a new state 𝑠 ′ is given as P(𝑠 ′, 𝑟 |𝑎, 𝑠) [19].

A sequence of actions generates a sequence of trajectories 𝜏 , and is described as an
episode. The probability of a trajectory is given in Prouvost et al. (2021) [18] as:

P(𝜏) ∼ P(S0)︸︷︷︸
initial state

∞∏
𝑡=0

𝜋 (A𝑡 |S𝑡 )︸     ︷︷     ︸
next action

P(S𝑡+1,R𝑡+1 |A𝑡 ,S𝑡 )︸                    ︷︷                    ︸
next state

(2.6)

These definitions now allow a formulation of the MDP control problem, which is the
problem of interest in this thesis. The control problem consists of finding the action
policy that maximizes the reward.
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2.3.2 Partially-observable Markov Decision Processes

A subset or generalization of an MDP is the partially-observable Markov decision process
(PO-MDP) [31]. Processes of this class allow for uncertainty of the states as well as
additional acquisition of state information [31]. The agent will therefore decide actions
based on the observation of the state, given as O [19]. All past observations of the
observations, rewards and actions are given in the historyH𝑡 , given as [19]:

H𝑡 = {O(S0),R(𝑆0),A0, ...,O(S𝑡−1),R(𝑆𝑡−1),A𝑡−1,O(S𝑡 )} (2.7)

The generalization from MDP to PO-MDP concedes the Markovian nature of the
trajectories [18].

In addition, the initial state is given by the distribution of the problem instance 𝐼 ,
giving the relation P(S0) = P(𝐼 )P(S0 |𝐼 ) [19].

This results in the final formulation [19]:

P(𝜏) ∼ P(𝐼 )P(S0 |𝐼 )︸        ︷︷        ︸
initial state

∞∏
𝑡=0

𝜋 (A𝑡 |H𝑡 )︸      ︷︷      ︸
next action

P(S𝑡+1,R𝑡+1 |A𝑡 ,S𝑡 )︸                    ︷︷                    ︸
next state

(2.8)

An illustration of the Markov decision process control loop from the documentation
of Ecole is shown in Figure 2.5.

2.3.3 Branch & Bound as a PO-MDP

Interpreted in the language of MDPs, the B&B algorithm is the environment and a
concrete MILP problem instance is an episode in this environment. The agent is the
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Figure 2.5: Illustration of the Markov decision process control loop. Figure from
Prouvost et al. (2021) [19].

brancher, where in this thesis the variable selection policy is the component of interest,
ignoring the node selection policy. The state of the solver consists of the B&B tree at
that instance, as well as the observations at each node (the history of the PO-MDP).

This formulation is the basis for the Ecole framework, which is discussed in Section 3.5.3
The PO-MDP formulation allows for the agent in the B&B environment to be learned
through reinforcement learning, discussed in Section 2.4.4.

2.3.4 Branch & Bound Observation

A prerequisite for learning in B&B is the observation of the state of the episode, i.e.
the state of the solver of an instance at a specific node in the solution tree.

The features of a B&B node are divided into three classes: variable features, constraint
features and edge features.

Variable Features

For a candidate branching variable, relevant features include the type of the variable
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(binary, integer, etc.), whether the variable has a defined lower and/or upper bound,
and whether the solution is at at either of these bounds. If not, the variable has a
fractionality that represents the solution of the relaxed problem. At the solution node,
the incumbent has a value that can be compared to incumbents at other nodes, as
well as the relative impact of the variable on the objective value in the incumbent.
The variable also has a state with respect to the solution of the relaxation with a
simplex solution algorithm — if the variable is a basic or non-basic variable or other
information relating to this solution. Presented in Khalil et al. (2016) [14] are also a
number of other features that will not be utilized in this work.

Constraint Features

The cosine similarity represents a coefficient of the angle between the variable and
the constraint. The bias of the constraint is also included. An additional feature is
whether the variable is at the constraint in the relaxation Each constraint also has a
value from the solution of the dual problem.

Edge Features

The edge features consist of the constraint coefficient, meaning the coefficient that
is multiplied with the candidate variable. This will also give the relations between
constraints and variables.

2.3.5 Bipartite Graph Representation

The application of GCNNs on MILP and sub-MILP problems rely on the bipartite
representation of constraints and variables as presented in Gasse et al. (2019) [12].
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Figure 2.6: Example of a bipartite constraint-variable graph.

This concept will be introduced with an example MILP given as:

min v1 + v2 + v3 (2.9)

𝑠 .𝑡 . v1 + v2 − v3 ≥ 1 (𝑐1)

v3 ≥
1
2

(𝑐2)

v ∈ B3

For Equation (2.9), the corresponding constraint-variable graph representation can be
illustrated as in Figure 2.6.

Constraints and variables are the numbered nodes of the graphs, while the edges
represent the relation between the nodes.

2.4 Machine Learning Models

The ML-models used in the thesis are presented in this section. First the multi-layer
perceptron and graph convolutional neural network models, then the concepts of
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ablation studies and reinforcement learning.

2.4.1 Multi-layer Perceptrons

Multi-layer perceptrons (MLPs), more commonly known as deep feed-forward neural
networks, are recommended by Gupta et al. (2020) [15] as a less computationally
expensive alternative to the approaches by Khalil et al. (2016) [14] and Gasse et al.
(2019) [12].

MLPs are networks that generate a nonlinear function 𝑦 = 𝑓 (x;θ), where 𝑥 is the
input, 𝑦 is the output, and θ represents the parameters of the function. The parameters
are learned during repeated optimization, and will under ideal circumstances converge
to approach the optimal function 𝑦 = 𝑓 ∗ (x). The function is realized as a series of
compositions of functions. The composed functions are represented as an acyclical,
directed graph [32], and can be expressed as:

𝑦 = 𝑓𝐿 ◦ 𝑓𝐿−1 ◦ . . . ◦ 𝑓1 ◦ 𝑓0 (x) (2.10)

The functions are denoted as layers of the perceptron, and are implemented as affine
functions of every input parameter at every node, z𝑙 = x𝑇

𝑙−1w𝑙 + b𝑙 . Applying non-
linear function, known as an activation function, allows the MLP to represent arbitrary
nonlinear functions [9]. This is expressed as x𝑙 = a(z𝑙 ).

The computation of the output of the function given its input is known as a forward
pass through the network. The required computations for a single input vector into
a network with 𝑛 hidden layers will include 𝑛 + 1 matrix multiplications and 𝑛 + 1
applications of the non-linear activation function, given that there is an activation
function on the output.
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Figure 2.7: Example of a graph convolution on a bipartite constraint-variable graph.

2.4.2 Graph Convolutional Neural Networks

Graph convolutional neural network (GCNN) is a term for neural networks that have
input data represented in a graph-structure that is processed by a convolution operation
[33]. In this thesis, the terms GCNN and GNN will be used interchangeably.

The fundamental property of the graph convolution is its ability to create representa-
tions of irregular data without altering the structure of the data. This means that, for
instance, nodes that share vertices can pass information to each other, so the feature
representation of a node can utilize the features of neighboring nodes. An illustration
of this using the bipartite graph from Figure 2.6 is given in Figure 2.7. The features of
the nodes are transformed while maintaining the structure of the graph.

A graph convolution can be expressed as a matrix/tensor multiplication followed by a
nonlinear activation function, as in Section 2.3. This will be explained in the case of a
undirected graph for the sake of simplicity. A prerequisite for this is the representation
of the graph with the adjacency matrix, denoted as Ã. The adjacency matrix is a
square |V| × |V| matrix containing 0 or 1 depending on whether the pair of vertices are
connected or not [33]. In addition the adjacency matrix, the degree matrix D̃ =

∑
𝑗 Ã𝑖 𝑗
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is necessary in order to normalize the operation [33].

With the given definitions, the graph convolution operation can be expressed by the
propagation rule [33]:

H(𝑙+1) = 𝑎

(
D̃−

1
2 ÃD̃−

1
2 H(𝑙)W(𝑙)

)
(2.11)

where H(𝑙) is the matrix of activations in layer 𝑙 , with the first layer H0 = X. W(𝑙) is
a layer of learned weights. 𝑎(·) is a nonlinear activation function. This operation is
inspired by the first-order approximations to spectral filters on graphs [33].

Models that leverage the graph nature of combinatorial optimization problems have
been shown to have satisfactory performance, see e.g. Dai et al. (2018) [34]. GCNNs
are proposed by Gasse et al. (2019) [12] as an alternative to the feature-rich approaches
by Khalil et al. (2016) [14]. The application of GCNNs on B&B algorithms rely on the
bipartite constraint-variable representation at each node of the B&B solution tree.

The term embeddings will be used in this thesis for continuous-variable representations
derived from the input features, as it is used in Gasse et al. (2019) [12].

The state of the B&B graph at a node can be represented as 𝑠𝑡 = (G,C, E,V), where
G represents the bipartite B&B solution graph at that time instance, C represents the
constraints, E represents the edges (connections) between the variables and constraints,
and V represents candidate variables.

Gasse et al. (2019) [12] presents three motivating points for why graph convolutions
would be a good architecture for learning to branch:

(i) They are well-defined no matter the input graph size.

(ii) Their computational complexity is directly related to the density of the graph,
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which makes it an ideal choice for processing typically sparse MILP problems.

(iii) They are permutation-invariant, that is they will always produce the same output
no matter the order in which the nodes are presented.

2.4.3 Ablation Studies

The concept of ablation studies in machine learning, as presented in Meyes et al. (2019)
[11] is presented in this section. Ablation studies hail from the field of neuroscience, in
which a complex system, e.g. the brain, is examined after removing different sections.
The function of the removed sections can then be inferred by the change in the observed
reaction to external stimuli [11].

In the context of ML, ablation studies are a formalization of observing changes in
performance after the removal of components of artificial neural networks [11]. The
concept, or at least the formalization, is not yet considered a standard method in ML
research [35]. In this thesis, the concept of an ablation study will be interpreted more
broadly than in Meyes et al. (2019) [11], as the networks in this thesis are retrained
after each section is removed. This form of ablation study is coined as model ablation
in Sheikholeslami (2019) [35].

2.4.4 Reinforcement Learning

The subset of machine learning described as reinforcement learning (RL) is highly
relevant in the context of ML in CO. No results will be discussed in this thesis, however,
a background in the topic is necessary to understand both related work and the long-
term goals of the field.

RL encompasses the problem of an agent learning a policy for behaving in an envi-
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ronment so as to achieve a global objective. Any sequential decision-making problem
with a measure of optimality that relies on past experience can be formulated as a RL
problem [36]. The approach has seen success in a number of fields in the past years
with the integration of deep learning models, often termed deep RL [36]. Most notable
of the advancements might be AlphaZero, Google’s successful chess-AI [37]. RL has
the important property of being independent of data, meaning a number of core ML
challenges (quantity, quality, and bias of data) are rendered irrelevant [9].

Many attempts have been made at implementing RL in CO, see for example Etheve et
al. (2020) [21] or Tang et al. (2020) [38]. Approaches for learning variable selection,
such as reported in Scavuzzo (2020) [39], rely on efficient and accurate pre-trained
models based on imitation learning, like the models presented in this thesis. More
knowledge is likely needed for the pure RL approach to take over the mantle. Recently,
Cappart et al. (2021) [20] also concluded that useful RL policies are not mature yet.
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Methods

In this chapter, the selected methods for the experiments are presented and discussed.
An understanding of the theoretical groundwork of the project from Chapter 2 is
assumed. A substantial part of the methods are taken directly or indirectly from the
source code of Gasse et al. (2019) [12], Gupta et al. (2020) [15], and the Ecole source
code [18]. Some sentences and formulations are adapted from the project report Multi-
Layer Perceptrons for Branching in Mixed-Integer Linear Programming (2020), as this
thesis shares methods with the report.

3.1 Dataset

This section presents the selected data set and the process of generating trainable and
testable data for the models. This will include a presentation of the problem instances,
the generation of the expert solutions as well as the features that will be the input of
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the ML models.

3.1.1 Problem Instances

In order to evaluate the methods presented in this project to the previous advances in
the field, artificially generated MILP problems found in Gasse et al. (2019) [12] are used
to train and evaluate the models. These problems are also the standard implemented
in Ecole. The problems are expressed as pure binary programs. The results of the
algorithm are, however, generalizable to general MILP problems, as it extends the
general B&B algorithm [12].

In the mentioned articles, four problem classes are used: set covering, combinatorial
auctions, capacitated facility location, and maximum independent set. In this thesis,
only the first two will be used due to problems in the Ecole framework that have since
been resolved.

Set Covering

The set covering problem is implemented in Ecole as described in Balas & Ho (1980)
[40] 1. The general problem includes a set of vertices 𝑉𝑗 and a matrix of costs 𝑐 𝑗 for
activating an edge between any two vertices. The activation of an edge is modeled
with the binary variable 𝑥 𝑗 and the characteristic vector of subset 𝑉𝑗 denoted A𝑗 . The
binary linear problem of covering all vertices at minimum cost can be expressed as

1The available version of this paper contains nearly illegible equations, the article Minoux (1987) [41]
has therefore been used to supplement.
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[41]:

min
𝑁∑
𝑖=1

𝑐𝑖𝑥𝑖 (3.1)

𝑠 .𝑡 .

𝑁∑
𝑖=1

A𝑖𝑥𝑖 ≤ 1 (3.2)

x ∈ B𝑁 (3.3)

The problem is therefore a pure binary linear problem with only inequality constraints.
The set covering problem is a well-known class and is one of Karp’s 21 NP-complete
problems [42].

Combinatorial Auction

The combinatorial auction problem is the problem with the shortest solution time in
the mentioned articles [12], [15]. The problem is implemented by Gasse et al. (2019)
[12], and is based on the formulation presented in Leyton-Brown et al. (2020) [43]. The
version is specifically the arbitrary formulation from the original article [43]. In this
formulation, 𝑁 is the number of combinations of items, 𝑝𝑖 is the price of an item, P is
the set of all items, and 𝑎𝑖, 𝑗 ∈ B represents whether item 𝑗 belongs to combination 𝑖 .
With this, the problem can be stated as [44]:

max
𝑁∑
𝑖=1

𝑝𝑖𝑥𝑖 (3.4)

𝑠 .𝑡 .

𝑁∑
𝑖=1

a𝑖, 𝑗𝑥𝑖 ≤ 1 , ∀ 𝑗 ∈ P (3.5)

x ∈ B𝑁 (3.6)

The combinatorial auctions problem is based on multi-object auctions where bidders
place monetary bids on bundles (combinations) of goods, and the optimization problem
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is to find the bids that maximize the profit of the auctioneer [43]. The problems are
considered realistic and economically oriented, and are applicable to five broad domains
in which optimization is important: proximity in space, paths in space, arbitrary
relationships, temporal matching, and temporal scheduling [43]. The problems are
NP-hard [45].

3.1.2 Expert Solution Generation

The generated problems are solved using the full strong branching policy, as explained
in Section 2.2.3. To not interfere with branching policies, the application of cutting
planes to the problem is restricted to the root node, before any branching decisions are
made. This means that the Branch-and-bound algorithm used in these experiments
could be called a cut-and-branch algorithm, as is discussed in Section 2.2.1. However,
without loss of generality and for simplicity, the algorithm will be referred to as
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branch-and-bound in this thesis despite the initial application of cutting planes.

Algorithm 2: Data collection algorithm
Result: Variable selection samples
for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ 𝐸𝑃𝐼𝑆𝑂𝐷𝐸𝑆 do

while episode not solved do
𝜌 ← 𝑟𝑎𝑛𝑑 ();
if 𝜌 ≤ 0.05 then

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← 𝑛𝑜𝑑𝑒_𝑠𝑡𝑎𝑡𝑒 ;
𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑆𝐵_𝑠𝑐𝑜𝑟𝑒𝑠;
Save scores and state;
Branch on SB score;

else
Branch on pseudo-cost scores;

end

end

end

The algorithm for data collection is shown in Algorithm 2 and is adapted from Gasse
et al. (2019) [12]. During training, 5 % of the branching variable decisions are done
by the strong branching expert, compared to 5 % in Gasse et al. (2019) [12] and 100
% in Gupta et al. (2020) [15]. This method of generating expert samples has been
criticized by Sun et al. (2021) [46], among other reasons because strengths of SB cannot
be learned through variable selection only. The reader is referred to this article for
further reading, in addition to the thesis Ross (2013) [47] for more on expert imitation
learning data.

For every node, the SB policy assigns a score to every possible branching variable.
The best variable to branch on according to SB is saved explicitly and then branched
on. The best candidate variable is used for training, while the SB scores are used for
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evaluating the learned policy. The placement of the selected variable compared to the
candidate variables will be used to generate an accuracy score, to evaluate whether
the algorithm is able to select among the top variables to branch on.

3.1.3 Branching Variable Features

At nodes where the strong branching policy is used, available features for every
possible branching variable is saved. The features, as explained in Section 2.3.4, are
divided into the groups variable features, constraint features and edge features. These
features are presented in Table 3.1. For a further explanation on the relevant features,
see Section 2.3.4.

The underlying assumption is that these features are sufficiently correlated with the
optimal variable to branch on, as it is given by the Strong Branching algorithm.

3.2 Models

This section presents the ML models used in the experiments. These models are
iterative ablations of the model presented in Gasse et al. (2019) [12], meaning each
model is an increasingly simplified version of the original network.

3.2.1 Original Graph Convolutional Neural Network

First, the nature of the Gasse GCNN has to be formulated. The central component is
the graph convolution, which is modelled as two half-convolutions. This means that
the convolution is divided into to subsequent passes — one from variable to constraints
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Tensor Feature Description

V (19)

objective Objective coefficient, normalized.

type (4) Type (binary, integer, impl. integer, contin-
uous) as a one-hot encoding.

has_lb Lower bound indicator.

has_ub Upper bound indicator

reduced_cost Reduced cost, normalized.

sol_value Solution value.

sol_frac Solution value fractionality.

sol_is_at_lb Solution value equals lower bound.

sol_is_at_ub Solution value equals upper bound.

scaled_age LP age, normalized.

inc_val Value in incumbent.

avg_inc_val Average value in incumbents.

basis_status (4) Simplex basis status (lower, basic, upper,
zero) as a one-hot encoding.

C (5)

obj_cos_sim Cosine similarity with objective.

bias Bias value, normalized with constraint co-
efficients.

is_tight Tightness indicator in LP solution.

dualsol_val Dual solution value, normalized.

scaled_age LP age, normalized with total number of
LPs.

E (1) coef Constraint coefficient, normalized per con-
straint.

Table 3.1: Features of each variable in the data, adapted from Gasse et al. (2019) [12].



40 3. METHODS

and one from constraints to variables [12].

The two half-convolutions can be expressed as [12]:

c𝑖 ← fC

(
c𝑖
(𝑖, 𝑗) ∈E∑

𝑗

gC (c𝑖 , v𝑗 , e𝑖, 𝑗 )
)
, v𝑗 ← fV

(
c𝑗
(𝑖, 𝑗) ∈E∑

𝑗

gV (c𝑖 , v𝑗 , e𝑖, 𝑗 )
)

(3.7)

for all 𝑖 ∈ C, 𝑗 ∈ V . fC, fV , gC, gV are 2-layer perceptrons.

The addition of the graph convolution operator results in the nodes of the bipartite
variable-constraint graph containing information about its neighbors

Gasse et al. (2019) [12] also notes that it is common to normalize convolutional layers
by the number of neighbors, however, they conclude that the loss of expressiveness
by including this normalization is not beneficial. Therefore they include the affine
normalization layer called a prenorm layer. The layer is applied after the convolution,
and is expressed as x← (x − β)/σ.

In the original implementation, the prenorm layer’s coefficients (β,σ) are approxi-
mated and fixed in a pre-training phase, while the implementation in this thesis uses
the new PyTorch library-component torch.nn.LayerNorm(), where the coefficients
are approximated continuously.

After the normalizations, the features are transformed to embeddings of a uniform size
of 64 via linear neural network layers.

An illustration of the Gasse GCNN in given in Figure 3.1. 𝑛 is the number of candidate
variables,𝑚 is the number of constraints, 𝑑 = 19 is the number of variable features,
𝑒 = 1 is the number of edge features, 𝑐 = 5 is the number of constraint features.
The two convolutions are marked and the network layers are represented with a
rectangle for each layer. The size of the hidden layers is consistently equal to 64. After
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Figure 3.1: The graph convolutional neural network as specified in Gasse et al. (2019)
[12].

the convolutions, a 2-layer perceptron transforms from the variable features (with
information gained after the convolutions) to the single output. The dimensions for
the tensors are marked in the figure.

3.2.2 Network Topologies

As stated, the ML-models used in the experiments are generated by iteratively ablating
(removing components) from the original network. This results in models that are
GCNNs and models that are pure MLPs, which will be compared for accuracy and
efficiency on both GPU and CPU.

The ablated models are chosen based on three basic assumptions that are assumed to
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be true based on the vast literature in deep learning2 [9]. The assumptions are stated
as:

(i) It is assumed that increasing the capacity of the network correlates to increasing
the number of computations [9].

(ii) It is assumed that the variation in complexity will lead to differences in both
accuracy and forward pass computation time [9].

(iii) It is assumed that the addition of the graph convolution will be a significant
factor in the accuracy and efficiency of the models, particularly on the CPU,
based on the results in the appendix of Gupta et al. (2020) [15].

Considering this, the experiments will be performed with a total of five models, mean-
ing the original model and four models stemming from the iterative ablation of this
model. Of these, two models will contain the graph convolution operation, and three
will be multi-layer perceptrons that only use the variable data.

Results in the specialization project this thesis is based on showed consistent and
significant changes in the accuracy/efficiency trade-off were found with a similar
selection of MLP models, although these models relied on the extended variable feature
set developed in Khalil et al. (2016) [14].

GNN2, illustrated in Figure 3.2, is identical (except for the minor, commented details),
to the original Gasse GCNN.

GNN1, illustrated in Figure 3.2, is the model resulting from the first iteration of the
ablation, which has reduced the number of layers in the embeddings and the output
module. The graph convolutions are therefore unchanged.

2These assumptions are separate from the three research questions presented in Section 1.4, and will not
be covered in the same detail.
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Figure 3.2: Topology of the ablated model GNN1.
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Figure 3.3: Topology of the larger sized MLP3 feed-forward network.

Figure 3.4: Topology of the medium sized MLP2 feed-forward network.

MLP3 is illustrated in Figure 3.3. The second ablation removes the convolutions in their
entirety, resulting in an MLP model consisting of the prenorm layer and embedding of
the variable features with the output module. This equates to a four-layer MLP

MLP2 is illustrated in Figure 3.5. The third ablation removes layers from the MLP3
model, yielding a network with lower capacity but fewer operations needed for evalua-
tion. The two-layer MLP also results in a minimal network for representing non-linear
relations between the features and the scores.

MLP1 is illustrated in Figure 3.4. The fourth ablation removes all hidden layers, resulting
in anMLPmodel consisting of the prenorm layer and embedding of the variable features
with the output module. This is equivalent to finding the optimal linear combination
of input parameters3. A forward pass is equivalent to a single matrix multiplication.

3To be exact, MLP1 is not a Multi-Layer Perceptron, however, the name is chosen to be consistent with
the other models. The central difference between the models is whether they contain graph convolutions or
not (given by the acronym) and the number of parameters (given by the number).
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Figure 3.5: Topology of the smaller sized MLP1 feed-forward network.

3.2.3 Network hyperparameters

All hyperparameters except for the amount and size of the hidden layers is consistent
for all models, in order to make a fairer judgment of the accuracy/efficiency trade-off.
The activation function is the recti-linear unit (ReLU), expressed as𝑦 = max{0, 𝑥}. This
non-linear activation function is the least computationally expensive of the common
activation functions. This is consistent with Gasse et al. (2019) [12] and Gupta et al.
(2020) [15].

3.3 Training Protocol

In this section, the training protocol is presented, which explains how the parameters
of the models are learned.

3.3.1 Loss function

The problem is expressed as a two-class classification problem, where the classes
are optimal variable and sub-optimal variable, respectively. The first class contains
only the top variable from the strong branching evaluation. The loss function in
binary classification is typically chosen as the binary cross-entropy loss function [9],
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calculated as:

L(θ) = − 1
|D|

∑
(x,𝑦) ∈D

(𝑦𝑖 · log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) · log(1 − 𝑦𝑖 )) , (3.8)

whereD is the data set, 𝑦𝑖 is the predicted class based on the sample features 𝑥 , and 𝑦𝑖
is the classification by the Strong Branching expert. This means that for each branching
decision, 𝑛 candidate variables will be given a score analogous to the probability of
that variable being the best variable according to the strong branching expert policy.

3.3.2 Training method

The parameters of the MLP are trained via mini-batch gradient descent [9], and is
performed using the Adam optimizer [48]. The Adam optimizer performs gradient
descent with adaptive moments in both the first and second order [48]. The batch size
(number of problems processed at once) is set to 32. The learning rate is reduced upon
plateaus4 in validation loss by multiplying with 0.2. This is a well-known method to
ensure convergence to a reasonably good local minimum [9].

Further, the training has implemented an early stopping scheme, to ensure that the
models have converged, regardless of model complexity. If the validation loss does not
decrease 16 epochs in a row, the model that resulted in the lowest validation loss is
saved and the training process is stopped. This is because it is considered unlikely for
the optimizer to improve the model after that amount of epochs without improvement.

All of these methods are implemented in order to give the fairest evaluation of the
models, as individual hyperparameter optimization for each model would be too
time-consuming to be performed.

4Plateaus are multiple epochs without reduction in the target loss.
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3.3.3 Computer Hardware

Training of the models is performed on an NVIDIA RTX2070 SUPER GPU (8GB VRAM).
The B&B solution efficiency evaluations are performed with an Intel i5-2500K CPU (4
cores, 6 threads) running at 3.31 GHz. This is less expensive hardware compared to
Gasse et al. (2019) [12] and Gupta et al. (2020) [15], particularly the CPU. Variation in
processing power is assumed to have an insignificant effect on the relative solution
times of the methods, however, CPUs with internal acceleration methods for matrix
operations might give varying results [49]. It is assumed that the results on the chosen
hardware yield a more pessimistic performance overall for the ML based methods,
and will therefore not be given too much attention in the thesis. Analysis of these
differences in hardware and processing performance for both the classical and learned
methods on both CPU and GPU is of interest, but far beyond the scope of this thesis.

3.4 Comparison Method

The method in which the learned models are compared to each other and the classical
branching policies is presented in this section.

3.4.1 Classical Branching Policies

The accuracy and efficiency of the algorithm with the learned branching policy are
evaluated against three branching policies native to the SCIP optimization suite, and
explained in more detail in Section 2.2.3.

First is the full strong branching (FSB) policy [29], the slow but accurate expert policy
that performs strong branching at every node for every variable. This algorithm is not
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commonly used because of the computationally heavy variable decision process [28].

Pseudo-cost branching (PB) is the fast but inaccurate branching policy [50] that chooses
the variable that maximizes the lower bound improvement according to the results of
previous branching decisions [51].

Reliability pseudo-cost branching (RPB) [28] combines FSB and PB by performing SB
on variables with low confidence in the pseudo-costs [50]. RPB is the default branching
policy in the SCIP B&B solver.

The classical variable selection policies will be implemented by configuring the priority
of the branching policies in SCIP.

3.4.2 Benchmarking

The learned branching policies are evaluated for both accuracy and efficiency.

The accuracy of the policies is evaluated against the expert decisions of the full strong
branching algorithm. This is done by evaluating the average top-k accuracy over an
unseen test set. Top-k accuracy measures whether the chosen branching variable was
within the top k choices of the strong branching algorithm, based on the score given
to each candidate variable by the algorithm. Only the learned models are measured in
this regard.

The efficiency of the policies is evaluated by exchanging the branching policy of
the optimization solver and testing on the data set, as described in Section 3.1. The
counting of nodes and time is done with the built in capabilities of Ecole.

The number of nodes processed by the algorithm will also be reported. Fewer nodes
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are not necessarily indicative of a better algorithm, however, this will be an important
comparison, as it gives a proxy measurement of the accuracy/efficiency trade-off for
the algorithms.

3.5 Software

A number of comprehensive software libraries are required to perform the experiments
in this thesis, this section presents the three most essential.

3.5.1 SCIP

Solving Constraint Integer Programs (SCIP) [7], is the CO solver that lays the foundation
for the data generation and model evaluation for the methods. It is considered the
fastest non-commercial solver for MIP and MINLP problems [52]. It is written in C
with wrappers for C++. The software is maintained by the Zuse Institute Berlin (ZIB)
group.

The SCIP Optimization Suite contains, as of version 7, the simplex-based linear pro-
gramming solver SoPlex [53], the automated decomposition solver GCG [54], the
parallelization framework UG [55] and the MILP pre solving library PaPILO [52].

In the experiments in this thesis, the LP solver and node selection algorithms are the
most relevant, as most of the more complex capabilities of SCIP are deactivated in
order to make the results as fair and reproducible as possible.
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3.5.2 PyTorch

PyTorch is the Python library that the machine learning models are written in. The
library provides, most notably, dynamic eager execution, automatic differentiation,
and GPU acceleration [56].

Necessary for constructing and training the graph convolutional neural networks, the
PyTorch Geometric library was used [57]. The library facilitates deep learning on data
with irregular structures, such as graphs. This includes methods for sparse data GPU
acceleration and efficient mini-batch handling [57].

3.5.3 Ecole

To facilitate and standardize the development of ML-based improvements of CO al-
gorithms, Extensible Combinatorial Optimization Learning Environments (Ecole) was
developed [18], with the first version published in the last quarter of 2020. Ecole aims
to mimic the openAI Gym framework [58], a popular framework for developing RL
models. It is a python library written largely in efficient C++. The library is based on
the open-source solver SCIP [7].

It also provides problem generators for the four problem classes presented in this thesis.
As of version 0.5, these generators are not completely correct, and in the problem
generators from Gupta et al. (2020) [15] were therefore used. These problems appear
to be resolved in version 0.6.

The theoretical basis for Ecole is the PO-MDP formulation for Ecole, given in Sec-
tion 2.3.
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3.5.4 Development Environment

The project is run on only open-source software, in order to support and further develop
the commonly available tools for machine learning and mathematical programming.
For reproducibility, the libraries and their respective versions are listed here, as well
as in the publicly available code repository.

The project code is written in python 3.8.5 [59], and uses pytorch 1.7.1 [56] for
the machine learning models.

For GPU accelerated training, CUDA 10.1 and cudatoolkit 11.2 [60] is used.

The optimization problems are solved using the SCIP 7.0.2 Optimization Suite [52],
using the SoPlex 4.0.1 [53] linear programming solver to solve the relaxed problems.
The Python interface PySCIPOpt 3.0.4 [61] is used in and alongside Ecole to facilitate
communication with SCIP.

The computer is running the Ubuntu 20.04.2 Linux distribution.

3.5.5 Code Repository

As stated, the code for reproducing the experiments is given in a publicly available code
repository, found at https://github.com/Sandbergo/branch2learn. It is intended
to be similar to the source code for Gasse et al. (2019) [12], and to be extensible in
order to facilitate further work.

A presentation of the code is given in README.md, with installation instructions
in INSTALLATION.md. Installation requires some manual installation but is mostly
done using Anaconda. The eponymous subdirectory branch2learn contains python

https://github.com/Sandbergo/branch2learn
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scripts for running the respective processes of training and evaluating the models:
00_generate_instances.py, 01_generate_data.py, 02_train.py, 03_test.py,
04_evaluate.py, and 05_evaluate_standard.py. In addition, the directories for the
models and utility functions are found there.

The directory scripts contains bash-scripts for reproducing all experiments used in
this thesis.
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Results

In this chapter, the results of the experiments are reported, as described in Chapter 3.
Some sentences and formulations are adapted from the project report Multi-Layer
Perceptrons for Branching in Mixed-Integer Linear Programming (2020), as this thesis
shares methods with the report.

4.1 Data Set

Problem instances are generated as described in Section 3.1.1. In total, 2000 training
instances, 500 validation instances, and 500 test instances are created. These are of size
100 × 500 for the combinatorial auction problems and 100 × 500 for the set covering
problems, as stated in Section 3.1. This information is shown in Table 4.1.

The generated problem instances are then solved as specified in Section 3.1.2. This

53
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results in a total of 50000 training samples, 10000 validation samples, and 10000 test
samples for the combinatorial auctions problems, and the same for the set covering
problems. This is also shown in Table 4.1.

The division into train, validation and test sets is done as is standard inML development
[9]. The train set will be used to optimize the model parameters, the validation set will
be used to monitor the model’s ability to generalize to unseen samples, and the test
set will be used to evaluate the model.

A notable difference between the problem classes is the number of constraints. The
combinatorial auction problems average about 200 constraints, while the set covering
problems have 500 constraints.

250 problem instances are generated for evaluating the efficiency of the models.

Train Validate Test

Auctions

Dimensions 100 × 500 100 × 500 100 × 500

Instances 2000 500 250

Samples 50000 10000 10000

Setcover

Dimensions 500 × 1000 500 × 1000 500 × 1000

Instances 2000 500 500

Samples 50000 10000 50000

Table 4.1: Data set, dimensions and number of problem instances for each problem
class.
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4.2 Training

The training was performed as described in Section 3.3. The training graph for MLP2
on the combinatorial auction data set is shown in Figure 4.1, and the training graph for
GNN1 on the set covering data set is shown in Figure 4.2. The training and validation
loss quickly converges before flattening out. There is no discernible difference between
training and validation loss. Loss graphs for the other models are not presented, as
they are very similar, and are therefore considered to be of little interest.
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Figure 4.1: Training graph for MLP2 on the combinatorial auctions data set.

4.3 Accuracy

The accuracy of the models is measured by the top-k accuracy, as specified in Sec-
tion 3.4.2. The top-k accuracy scores for k equal to 1, 5, and 10 for the models along
with the benchmark accuracy for random variable selection are shown in Table 4.2.



56 4. RESULTS

5 10 15 20 25 30 35 40 45 50 55 60
2.4

2.6

2.8

3

3.2

3.4

Epoch

Lo
gl
os
s

Training loss
Validation loss

Figure 4.2: Training graph for GNN1 on the set covering data set.

Top-k accuracy for this application is defined as the percentage of selected branching
variables within the top k variables as determined by the strong branching evaluation.

Comparison with the random variable selection policy shows considerable improve-
ment in favor of the trained models. Accuracy decreases with the ablations, although
there is little difference between GNN2 and GNN1, and MLP3 and MLP2, respectively.
MLP1 performs considerably poorer than the other models, indicating that a non-linear
relationship between the variable features and the variable score is beneficial. There
is also a noteworthy decrease in accuracy after removing the graph convolutions,
indicating that the module aids in prediction.

A comparison of the differences between models of the two problem classes shows
that the decrease in accuracy from GNN1 to MLP3 is around three times larger for the
set covering problems. This indicates that the addition of different problem classes in
the evaluation of branching policies is necessary.
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Combinatorial Auction Set Covering

Model acc@1 acc@5 acc@10 acc@1 acc@5 acc@10

random 15.8 % 34.5 % 44.6 % 14.6 % 32.6 % 41.2 %

MLP1 46.2 % 75.1 % 87.0 % 40.2 % 63.6 % 73.3 %

MLP2 50.1 % 78.9 % 89.9 % 49.1 % 75.5 % 88.1 %

MLP3 50.2 % 79.3 % 90.1 % 49.4 % 75.7 % 88.3 %

GNN1 53.0 % 87.5 % 95.9 % 57.9 % 89.4 % 97.0 %

GNN2 53.0 % 87.1 % 96.0 % 58.8 % 89.9 % 97.2 %

Table 4.2: Top-k accuracy scores for combinatorial auctions and set covering on the
test set, representing the priority of the selected variable by the strong branching score
evaluation.

Note that the GNN2 model should have similar accuracy to the corresponding model
in Gasse et al. (2019) [12], however, the models have around 7% lower accuracy in this
implementation. The cause for this is unknown, and the analysis of the models will
not be affected by this.

4.4 Efficiency

Eight branching policies were compared on the problem data set. The branching poli-
cies are full strong branching, pseudo-cost branching, reliability pseudo-cost branching,
and the five learned models. The results for the combinatorial auctions problems are
shown in Table 4.3 and for the set covering problems in Table 4.4. Time is the mean
solution time, nodes is the mean number of nodes in the solution graphs (calculated in
accordance with the findings of Gamrath et al. (2018) [50]), time/node is the average
time per node, calculated by dividing the two means, and parameters is the number of
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(trainable) parameters of the model. The solution times and number of nodes are also
provided with their respective standard deviations. For evaluating the time per node,
it is worth noting that the average number of candidate variables may vary between
methods. In other works relating to node and time measurements when comparing
branching policies, a variant of the shifted geometric mean is used. This is not done in
this thesis, see Appendix A for a short discussion on this. The branching policy with
the shortest mean solution time is marked bold for the GPU and CPU times.

The solution time and number of nodes for the classical branching policies is as
expected: FSB has the lowest number of nodes but the processing time per node
is too high to be competitive, PB has a competitive solution time as the branching
variable selection is performed very quickly, while RPB is a midpoint between the two
algorithms.

For the learned models, the results show that the ablation from GNN2 to GNN1 does
not particularly reduce the time per node, neither does the removal of hidden layers
between the models MLP3 and MLP2. Time per node is considerably reduced after the
graph convolutions are removed and reduced again when the model’s hidden layers
are removed. This is consistent over both the GPU and CPU variants.

Figure 4.3 and Figure 4.4 shows the results for the results from Table 4.3 and Table 4.4,
respectively, including 95% confidence intervals calculated under the assumption that
the solution times are normally distributed. See appendix A for a brief discussion on
this assumption.

For the set covering problems, the learned models are less efficient than PB and RPB,
which is inconsistent with the results from Gasse et al. (2020) [12]. This will not
be given too much attention, as this is irrelevant to the comparative analysis of the
ablations. Note also that the time per node is not equal between the two problem classes
— the average number of candidate variables per node will vary between problems.
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Model Time [s] Nodes Time/node [ms] parameters

FSB 4.08 ± 2.11 8 ± 8 462.6 —

PC 1.96 ± 0.84 355 ± 358 5.5 —

RPC 2.73 ± 1.18 16 ± 30 171.1 —

MLP1g 1.58 ± 0.46 146 ± 149 10.8 19

MLP2g 1.56 ± 0.43 119 ± 119 13.1 1344

MLP3g 1.57 ± 0.44 118 ± 115 13.2 9702

GNN1g 1.58 ± 0.42 92 ± 78 17.2 52083

GNN2g 1.59 ± 0.43 91 ± 80 17.5 64562

MLP1c 3.14 ± 1.53 147 ± 148 21.2 19

MLP2c 3.07 ± 1.35 120 ± 118 25.4 1344

MLP3c 3.08 ± 1.32 118 ± 112 26.0 9702

GNN1c 5.34 ± 3.42 97 ± 86 54.8 52083

GNN2c 5.61 ± 3.65 94 ± 84 59.3 64562

Table 4.3: Combinatorial auction solving time for classical and learned methods. Sub-
scripts denote whether the model is run on the GPU or CPU.
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Model Time [s] Nodes Time/node [ms] parameters

FSB 26.23 ± 33.79 31 ± 45 845.6 —

PC 7.78 ± 9.50 749 ± 1634 10.4 —

RPC 10.68 ± 8.01 295 ± 895 36.2 —

MLP1g 16.28 ± 24.29 621 ± 1097 26.2 19

MLP2g 15.75 ± 21.89 531 ± 917 29.6 1344

MLP3g 15.83 ± 22.25 523 ± 899 30.3 9702

GNN1g 11.95 ± 12.94 268 ± 384 44.6 52083

GNN2g 11.71 ± 12.92 266 ± 382 44.0 64562

MLP1c 17.57 ± 20.96 609 ± 1019 28.8 19

MLP2c 17.39 ± 21.31 535 ± 929 32.5 1344

MLP3c 17.38 ± 21.35 517 ± 889 33.6 9702

GNN1c 60.06 ± 81.62 265 ± 382 226.1 52083

GNN2c 63.11 ± 87.58 268 ± 392 235.1 64562

Table 4.4: Set covering solving time for classical and learned methods. Subscripts
denote whether the model is run on the GPU or CPU.
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Figure 4.3: Combinatorial Auction test problem mean solution time when run on the
GPU and CPU.



62 4. RESULTS

SB PC RPC MLP1 MLP2 MLP3 GNN1 GNN2
0

10

20

30

40

50

60

70

80

Branching policy/model

So
lu
tio

n
tim

e
[s
]

CPU GPU

Figure 4.4: Set covering test problem mean solution time when run on the GPU and
CPU.
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Discussion

This chapter discusses the results obtained in Chapter 4, critiques the choice of ex-
periments, presents ideas about further work in the field, and answers the research
questions. Some sentences and formulations are adapted from the project reportMulti-
Layer Perceptrons for Branching in Mixed-Integer Linear Programming (2020), as this
thesis shares methods with the report.

5.1 Data Set

The problem instances were only created from the combinatorial auction and set
covering classes. As noted in Chapter 4, there are differences between performance
on the two problem classes, indicating that problem classes are important for fair
judgment on the branching policies. Especially as the largest loss of accuracy when
removing the constraint features was found for the problem set with a larger number
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of constraints. This need for various problem classes is consistent with previous work
in evaluating B&B solvers [6]. Apart from this, a standardization regarding problem
classes and sizes are necessary for fair evaluation of the B&B improvements.

Generating samples (branching problem samples with strong branching scores) was
performed following Gasse et al. (2019) [12], using the data collection model presented
in Ecole. The number of samples was reduced from 100000 to 50000.

On a practical note, several of the provided problem generator classes in Ecole were
flawed during the creation of the experiments, which delayed the work and resulted
in only two problem classes being present in the experiments. These problems were
generated with the old generators from Gasse et al. (2019) [12], and solved (generating
branching problem samples) using the Ecole framework. These issues have since been
resolved. Other researchers are advised to implement a parallelization of the sample
generation found in the source code of this thesis.

Increasing the problem size was chosen as the method for estimating the out-of-
distribution efficiency of the MLP-aided B&B, as was done by Gasse et al. (2020) [12].
Other approaches to the problem generation and generalization efficiency estimation
might look into problem distributions with a temporal component, i.e. where the test
samples are from a provably different distribution, without dramatically increasing the
difficulty. This might be more representative of problems that are time-constrained,
and will give a different estimate of the out-of-distribution generalization error. In
the articles of Gasse et al. (2019) [12] and Gupta et al. (2020) [15], generalization was
measured by evaluating on problems of larger dimensions than was trained on. This
was not done in this thesis, as the results were evaluated to be of little interest.
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5.2 Training

The training is discussed based on general insights as presented in Goodfellow et al.
(2016) [9], as it is difficult to come to decisive conclusions within the field of deep
learning. On a general note, the graphs presented in Section 4.2 show a large reduction
in the evaluation loss after the first epoch, indicating that the model optimization
process quickly results in a reasonable model. This is consistent with a comparison of
the random variable selection policy, as the untrained model is practically a random
choice policy.

A sign of overfitting the model to the training data would be a validation loss that
increases while the training loss decreases. This is not the case, meaning that there
is no reason to believe that the model merely remembers the training data instead
of learning an approximation of the relationship between the node features and the
variable SB score.

All models stopped training within 100 epochs due to the early stopping scheme
explained in Section 3.3, meaning that it is reasonable to assume that maintaining an
identical optimizer and learning rate between the models was not detrimental to the
accuracy of the trained models.

5.3 Accuracy

All models show a considerable improvement over the random choice heuristic, further
verifying that the model training process was productive.

In addition, model accuracy strictly decreases as the model is ablated, indicating that
the model is not over-parameterized to the point of being unable to reach a good
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function approximation with the selected training method.

A clear result is the near-constant accuracy when ablating from GNN2 to GNN1 and
MLP3 to MLP2. In these ablations, only hidden layers are removed. This can indicate
an over-parameterization in terms of the number of hidden layers.

When model capacity decreases (via ablations) without a decrease in accuracy, two
causes must be balanced when attempting to gain insight from the results:

(i) The training protocol is not able to discover the complex relations between the
input features and the output scores of the Strong Branching algorithm.

(ii) The theoretical optimal branching function is not strongly dependent on complex,
non-linear relations between input and output.

The latter argument seems more likely based on the results in this project and previous
experiments [15] [12], however there are no convergence guarantees for the models,
and option one can therefore not be ruled out.

A large loss of accuracy occurs when removing the graph convolutions (ablating from
GNN1 to MLP3), meaning the graph convolutions are productive in aiding the scoring
process. This is consistent for both model classes, though the loss of accuracy is double
for the set covering problems. This might be explained through the nature of the
problems, as the set covering problems has around 150 % more constraints than the
combinatorial auctions problems. From this, it is possible to hypothesize that the
value of the convolutions are problem-dependent. This is viewed as a problematic
conclusion, as the B&B variable selection algorithm should ideally be a universally
well-performing model, irrelevant of the particularities of the model. It must also be
noted that further experiments with many more problem classes should be conducted
to reach a definite conclusion in this regard.
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Further, the ablation from MLP2 to MLP1, in which the non-linear capabilities of the
model are removed, a large drop off in accuracy is found. This indicates that a non-
linear transformation from input to output is useful, as a single-layer neural network
is assumed to quickly converge to the optimal model [9]. This is true for the variable
feature set, though a more expressive variable feature set such as the one found in
Khalil et al. (2016) [14] might give better performance.

The lower accuracy scores compared to the results in Gasse et al. (2019) [12] can come
from several sources. For the purposes of the ablation study, lower accuracy should
not impact the results of comparison between the ablated models, however, it is not
possible to rule out that the training process is sub-par compared to the original, which
can mean that the models are under-trained compared to the models presented in
Gasse et al. (2019) [12]. The reader is advised to keep this in mind.

Based on this, the following insights regarding the accuracies of the models seem
probable based on the experiments:

(i) The graph convolutional operator is beneficial for the accuracy of the model,
with the effect depending on the problem class.

(ii) The Gasse GCNN might be overparameterized, as removal of hidden layers did
not show a considerable reduction in accuracy.

(iii) The change in accuracy after ablations varies in magnitude between the problem
classes.

5.4 Efficiency

The central problem in learning-to-branch is the trade-off between computational
efficiency and the number of nodes processed, where the goal is to solve problems in
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the least amount of time. The results in Table 4.3 and Table 4.4 show that the time per
branching decision varies greatly between the models. The time per node decreases
strictly as the model is ablated, which is expected. This verifies the assumption that a
reduction in model size leads to a reduction in computation time. The combination of
the reduced accuracy and reduced computation time following the ablations allows
for studying the aforementioned accuracy/efficiency trade-off.

Comparing the models with similar accuracy (GNN2 and GNN1, MLP3 and MLP2)
shows that the decrease in the number of hidden layers does not particularly impact
the time spent per node. The larger changes in time spent per node are found in the
same ablation iterations as the reduction in model accuracy: after the removal of the
graph convolutions and after all hidden layers are removed. This trend is clear for
both problem classes and is consistent when run on both the GPU and CPU. This is
particularly noticeable in the ablation MLP3 to MLP2, where the number of parameters
is reduced by over 85 %, though the time per node is only reduced by less than 3 % for
both problems.

A comparison between the classical branching policies (FSB, PB, RPB) shows that the
methods are generally improved upon by theML-models for the combinatorial auctions
problems, but not for the set covering problems. This is not the case for the original
Gasse GCNN, which can come from the reduced model accuracy in this implementation
as well as lower capacity hardware. This will not be commented on further, as the
comparisons of the models and hardware are the focus of the experiments. It is still
not ideal that the models have seemingly not achieved the same improvements as the
original implementation.

On the CPU, the results vary between the problem classes: Only the MLPs are near-
competitive for the combinatorial auction problems, while the MLPs show little reduc-
tion in efficiency on the set covering problems. Either way, for both problem classes
the results show that models with graph convolutions are far too inefficient when run
on the CPU.
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Lastly, inconsistencies between the differences in solution time when run on the GPU
and CPU must be noted: For the set covering problem, the CPU restriction results
in a considerably larger increase in solution time than for the combinatorial auction
problems. This is assumed to be due to the larger number of constraints resulting in
these operations being infeasible on the reduced capacity for large tensors on the CPU.
Further, MLP3 and MLP2 have a larger decrease in performance when run on the CPU
for the combinatorial auctions problems. This is surprising and should be examined
by further experiments on more problem classes.

Based on this, the following insights regarding the efficiency of the models seem
probable based on the experiments:

(i) All ablations show competitive efficiency when run on the GPU.

(ii) Removal of hidden layers does not particularly impact the computation time per
node.

(iii) Graph convolutional models are far too inefficient to be used on a CPU only
setup.

5.5 Critique of Experiments

The conducted experiments have given useful insights into the topic at hand, and a
critique of those experiments is due. Three points of criticism are presented in this
section:

Firstly, the variable performance when comparing the different models on the GPU and
CPU between the two problem classes means that a larger number of classes should be
evaluated. Conclusions based on the problem formulation differences are not reliable
with so few problem classes. Due to the aforementioned issues regarding the problem
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generators and the time-consuming process of training and evaluating all models for
each problem.

Secondly, the accuracy of GNN2 is lower than the original Gasse GCNN implementation
[12]. This can possibly mean that the model does not converge as successfully as the
original implementation, or that other subtle differences result in a worse performance.
This issue was not expected.

Thirdly, the implementation of the original GCNN in a new and different framework
might reduce the validity of the ablation study, as a number of changes from the
original have been made. This ties into the issues with the reduced performance, as
changes were made in order to follow the implementations found in the Ecole source
code. This was clear beforehand, however, the value of making the implementation in
the Ecole was evaluated to outweigh this drawback.

5.6 Further Work

Further work in the field of ML based variable selection can gain insights from the
results in this thesis. The experiments show that the viability for GCNN models are
very limited when run on the CPU, showing that the model is not productive with this
hardware restriction. In addition, results seem to indicate that both the accuracy and
efficiency of the model on different hardware are reliant on the particularities of the
problem formulation. This sets a precedent for a thorough evaluation of the models
that are presented in future work within the field, as the applicability of the results is
dependent on many factors. For applications of B&B run on specialized hardware this
is less of an issue, but this limits the general usefulness of the models.

As ML approaches are highly dependent on the hardware, model choices and perfor-
mance evaluation should be tied to the practical application of the algorithms. This is
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the trend in Gupta et al. (2020) [15], and for applications of B&B on general, inexpen-
sive hardware, this restriction is necessary. For this case, making promising features,
known as observation functions in the PO-MDP literature, can be a method for improv-
ing the accuracy of the ML models without using the spatially and computationally
expensive graph convolution model.

With this caveat noted, there are still many opportunities for ML aided B&B, especially
as the Ecole framework is expanded upon. This includes both primal and dual heuristics
of the solution algorithm. A recurring approach mentioned in the context of improving
B&B is the reinforcement learning approach. This appears to be under development,
with results in review by Etheve et al. (2020) [21]. On a larger scale, the work on
learning-to-branch fits in the context of learned algorithms replacing expert-created
algorithms. This has the potential to eventually remove the human component in
algorithm construction. For now, closer attention to the features and correlations of
the variable scoring might be the more fruitful endeavor, as the results in this project
show that the deep learning approach does not yield significantly better results. Some
results in this regard are given in appendix B.

The problem classes are a reoccurring point of interest in the results of the experiments,
indicating that a varied selection of problem classes is necessary for a fair evaluation
of the models’ ability to be efficient in any application. Four problem generators
currently exist in the Ecole framework, with the assumed benefit of more problem
classes. Further, the most recent novel model presented by Zarpellon et al. (2020) [62]
states the importance of trained branching models to generalize to unseen problem
classes. The work in this field remains on artificial problems, however, there would be
great interest in a practical implementation on real-world optimization problems, e.g.
an optimal traffic routing algorithm running on an embedded system.

In addition, further work in the field should also strive to compare results with the
top commercial solvers IBM CPLEX and Gurobi [6]. The automatic tuning of the
highly parameterized commercial optimization solvers has also been shown to yield
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significant improvements in solution time [63], and is therefore advised to include in
further and more comprehensive comparisons.

5.7 Research Questions

In this section, the answers to the research questions from Section 1.4 are discussed
based on the results.

The first question was stated as:

(i) What is the impact of iterative ablations on the accuracy of the Gasse GCNN?

The iterative ablations showed a consistent decrease in accuracy for both problem
classes. The notable decreases in accuracy occurred after removing the graph con-
volutional modules (resulting in a pure multi-layer perceptron) and after all of the
hidden layers of the model were removed, resulting in a linear model. A larger loss
of accuracy was found for the set covering problems than the combinatorial auction
problems after the removal of the graph convolutions. This is assumed to be because
of the higher number of constraints in the set covering problems compared to the
combinatorial auction problems.

The second question was formulated:

(ii) What is the impact of iterative ablations on the efficiency of the Gasse GCNN when
run on the CPU and GPU as a part of the B&B algorithm?

All ablations resulted in decreased computation time per variable branching decision.
All models were competitive with the classical branching policies (full strong branching,
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pseudo-cost branching, reliability pseudo-cost branching) when run on the GPU. On
the CPU, there was a significant decrease in performance for the models containing
graph convolutions. This performance reduction was greater for the set covering
problems, indicating that the number of constraints might exacerbate problems with
running graph convolutional models on restricted hardware. Reducing the number
of hidden layers did not impact the computation time per node in particular, and is
therefore not considered a viable alternative for reducing the computation time.

Lastly, research question three:

(iii) What are the most promising research opportunities for learning in Branch and
Bound?

This was covered in more detail in Section 5.6. In short, future work should include
testing the models on varied problem classes, as well as considering what hardware the
enhanced B&B algorithm is approved for. With this in mind, an increased focus on the
observation of the B&B algorithm as well as analysis of the score computation process
is important. The clearest opportunities lie in using reinforcement learning to further
improve the models learned by imitation learning, in order to free the heuristics of the
limits of the strong branching imitation. On the practical side, Ecole has proved to be
a useful framework, and future researchers are advised to consider using it.
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Conclusion

In this thesis, the graph convolutional neural network presented in Gasse et al. (2019)
[12] was iteratively ablated. The ablations resulted in five models, among which two
were graph convolutional neural networks and three were pure multi-layer percep-
trons. The GCNN models used the bipartite graph nature of the constraint-variable
relationship, while the MLPs only used the features of the candidate variables. The
models were trained, tested, and evaluated on generated MILP problems from the
problem classes combinatorial auctions and set covering. All resulting models were
tested for accuracy on predicting the optimal branching variable according to the
strong branching algorithm. The efficiency of the ML-enhanced solvers were evaluated
by running the models on both a GPU and CPU. These experiments were chosen in
order to gain insight into the model and help future researchers make informed choices
on ML model selection.

The experiments were implemented in the new framework Ecole [18]. The framework
provides an interface for the B&B solver SCIP, inspired by OpenAI Gym [58]. This
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thesis is the first article to use Ecole except for the introductory papers by Provoust
et al. (2020) [18] and Cappart et al. (2021) [20]. The framework was evaluated to be
useful, especially as it is improved upon in the future.

The accuracy of the models consistently decreased as layers were removed from the
original model. There was a significant loss of accuracy after removing the graph
convolutional component as well as after removing all hidden layers of the model.
Both problem sets showed the same tendency, though the degradation of accuracy
was more dramatic for the set covering problems, where there is a larger number of
constraints.

The computation time per variable decision also decreased with the ablations. Signifi-
cant reductions in time per node were found after removing the graph convolutions
and after removing all hidden layers. When the SCIP solver was run on test problems
by performing the variable selection with the learned models, all models showed com-
petitive efficiency with a selection of classical branching algorithms. When the models
were run on the CPU, the more complex models suffered a large loss of efficiency.
This particularly affected the models containing graph convolutions. Results were
also indicative of the problem formulation being relevant for the viability of running
GCNN models on the CPU.

The main implications of the results are the importance of considering the hardware
the ML enhanced solver will be deployed on, as well as the problem types the models
are tested on. The relation between the running times of the different models on both
hardware implied non-trivial relations, which urges caution for future attempts at
developing ML models for this purpose. The results in this thesis as well as the project
Multi-Layer Perceptrons for Branching in Mixed-Integer Linear Programming (2020) and
the article by Gupta et al. (2020) [15] stipulate a shift toward less computationally
complex models with richer input features (observation functions). These models
will be more universally applicable and predictable on the various hardware that will
run B&B algorithms. In addition, the most recent attempt at learning to branch by



77

Zarpellon et al. (2020) [62] is consistent with this observation by training models that
generalize across problem classes.

Future work should take into account the implications of this thesis in terms of
both hardware and problem class. The analysis of how problem formulations can be
detrimental to model performance is also highly relevant and should be taken into
consideration when presenting data-drivenmethods with the implication of universally
useful. Following the trend of the last few years, models pre-trained with imitation
learning and improved with reinforcement learning can provide further advances in
the field of ML enhanced B&B. These models will yield insights into the greater topic
of machine-created algorithms, and may revolutionize how the hardest computational
problems are solved in the future.
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Appendix A

Time and Node Distributions

The distribution of solution times and number of nodes is central to the evaluation of
the variable selection algorithms. In this thesis, the mean and standard deviation are
calculated under the assumption of both of these variables having a distribution that
can be approximated as a Gaussian (normal) distribution. This is in contrast with the
main sources of this thesis (Gasse et al. (2019) [12], Gupta et al. (2020) [15]), which
use shifted geometric means. The choice of distribution in this thesis is based on
uncertainty in the distribution parameters and configurations in the previous works.
An example of a time and node distribution with a superimposed normal distribution
approximation is shown in Figure A.1 and Figure A.2. Some discrepancy is found for
the time distribution, and more considerably for the number of nodes. The discrepancy
is considered of little importance in the comparison of the models, particularly as the
node number comparison is devoted little attention in this thesis. Further researchers
are encourage to standardize the statistical side of branching comparison in larger
detail.
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Figure A.1: Solution time for GNN1 on combinatorial auctions problems with a normal
distribution approximation.
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Figure A.2: Number of nodes after solving for GNN1 on combinatorial auctions prob-
lems with a normal distribution approximation.



Appendix B

Linear Model Coefficients

The coefficients of the MLP1 model constitute a linear classifier for predicting the top
branching variable according to the Strong Branching algorithm. The input variables
are normalized in the prenorm layer as explained in Section 3.2.1, and the coefficients
are then min-max normalized between -1 and 1, calculated as:

x𝑚𝑖𝑛𝑚𝑎𝑥 = 2 · x − 1 ·min(x)
1 · (max(x) −min(x)) − 1 (B.1)

The result is presented in Table B.1. The variable type features are omitted, as these
are equal for all samples and therefore do not contribute to the prediction.

A thorough analysis of the variable features and their correlation with the variable
quality and/or Strong Branching score is interesting in its own right and highly relevant
in an analysis of the quality of the feature set. This is outside of the scope and purpose
of this thesis, but this little result is included in order to encourage future research.
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Feature Auctions Setcover

objective 0.99 1.00

has_lb 0.37 0.58

has_ub -0.79 -1.00

reduced_cost -1.0 -0.89

sol_value -0.64 -0.91

sol_frac -0.97 -0.98

sol_is_at_lb 1.00 0.82

sol_is_at_ub -0.76 -0.94

scaled_age -0.69 -0.90

inc_val -0.09 0.34

avg_inc_val -0.38 0.20

basis_status_lower 0.97 0.90

basis_status_basic -0.77 -0.93

basis_status_upper -0.76 -0.94

basis_status_zero -0.89 -0.98

Table B.1: Normalized coefficients for the MLP1 linear models. Irrelevant features are
omitted.
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