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Abstract

Diabetes mellitus is a disease that is characterized by the lack of controlling blood
glucose levels due to no insulin production or reduced insulin sensitivity. Treatment
of diabetes therefore include injections of exogenous insulin. The artificial pancreas is
a device that automates the delivery of exogenous insulin and thus enables automatic
blood glucose regulation. One of the main disturbances to the artificial pancreas are
meals which increases the blood glucose. It is therefore important to have knowledge
about how di�erent types of meals a�ect the glucose levels. An important tool here are
mathematical glucose-insulin meal models that can be used in simulations to compute what
the postprandial glucose response will be for di�erent types of meals. This thesis aims to
investigate these meal models. That includes a literature review where 11 di�erent meal
models are compared. Three of these meal models were then coupled with a whole-body
glucose model (Sorensen model) and the model parameters were then estimated using
a dataset containing glucose and meal data from six patients. The results showed that
two of the models were able to satisfactorily fit the experimental data in identification,
whereas one model did not. The identification results were then tested on a test dataset.
The test results were varying and indicated that more data should be used in identification
to reduce overfitting. Still, some of this variation between training and testing was within
what could be expected due to normal di�erences between meals.
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Sammendrag

Diabetes mellitus er en sykdom som kjennetegnes ved mangelen på å kontrollere
blodsukkernivået grunnet ingen produksjon av insulin eller redusert insulinsensitivitet.
Behandling av diabetes inkluderer derfor injeksjoner av eksogent insulin. En kunstig
bukspyttkjertel er en innretning som automatiserer injeksjonene av eksogent insulin
og muliggjør derfor automatisk blodsukkerregulering. En av hovedforstyrrelsene til den
kunstige bukspyttkjertelen er måltider, noe som øker blodsukkeret. Det er derfor viktig å ha
kunnskap om hvordan ulike måltider påvirker blodsukkeret. Et viktig hjelpemiddel her er
matematiske glukose-insulin-måltidsmodeller som kan brukes i simuleringer til å predikere
hva postprandiale glukoseverdier vil være. Denne masteroppgaven har som mål å undersøke
slike måltidsmodeller. Det inkluderer et litteratursøk der 11 ulike måltidsmodeller ble
sammenlignet. Tre av disse modellene ble så koblet sammen med en fullkroppsglukosemodell
(Sorensen-modellen) og modellparameterne ble så estimert ved hjelp av et datasett som
inneholder glukosemålinger og måltidsdata fra seks pasienter. Resultatene viste at to av de
tre modellene var i stand til å etterligne den eksperimentelle dataen i tilfredsstillende grad,
mens én modell ikke var det. De estimerte parameterne ble så testet på et testdatasett.
Resultatet av testingen var varierende og indikerte at mer data skulle ha blitt brukt i
parameteridentifikasjonen for å redusere overtilpasning. Likevel er variasjon mellom ulike
måltid forventet og kan forklare mye av forskjellen i resultat mellom trening og test.
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Introduction

1 Introduction

This section will give a brief description of some background theory to motivate the aim of
this thesis.

1.1 Diabetes mellitus

Diabetes mellitus is a disease that a�ects blood glucose (BG) regulation. Diabetes can be
divided into two groups, Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). T1D is caused by
auto-immune destruction of the beta cells in the pancreas, causing a lack of insulin production.
This lack of insulin production causes hyperglycemia (high BG). Thus, a T1D patient has
to be treated with exogenous insulin. T2D is a lifestyle related disease. It is not caused by
destruction of the beta cells, but rather reduced sensitivity of the insulin receptors. This causes
the cells to be unable to utilize the glucose in the blood, yielding hyperglycemia. Treatment
of T2D includes taking on a healthy lifestyle through healthy eating and exercise. In T1D, the
individual has to measure their BG levels and inject exogenous insulin with a pump several
times a day. A device that does this automatically is called an artificial pancreas, and would
greatly improve the life of a type 1 diabetic patient. Parts of this section is cited from the
term project by Mørch-Thoresen, 2020 [3].

1.2 Artificial pancreas

An artificial pancreas (AP) is a system combining a glucose sensor, a control algorithm, and
an insulin pump which can help optimize glycemic control in T1D (fig. 1.1). The AP computes
the amount of insulin needed based on BG measurements, and then injects the insulin through
a pump. A disturbance to the artificial pancreas is meals. After a meal, the carbohydrates
in the food causes the BG level to increase and insulin needs to be injected. An AP that
takes ingested food into account is important to stay within the euglycemic range. However,
di�erent meals will have di�erent e�ects on the glucose levels. Meals that are rich in fat may
slow down absorption of glucose, whereas glucose from foods such as sugar, rice and bread is
absorbed faster [1]. A diabetic patient needs to count the carbohydrates in the meal in order
to inject the correct amount of insulin. This can be challenging, and a system such as the AP
that does this automatically would be of great help.

Insulin pump Sensors (CGM, 
wearable devices)

Control system

Figure 1.1: Artificial pancreas block diagram
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Introduction

1.3 Aim of study

The aim of this master thesis is to

• Investigate how a meal a�ects the blood glucose levels through reading relevant literature
about physiology

• Perform a literature review of mathematical models describing a meal into the glucose-
insulin dynamics

• Select one or several meal models and incorporate them into the Sorensen model

• Perform a parameter identification on the meal model(s) using a suitable data set

1.4 Outline

This thesis is organized as follows: section 2 describes relevant background theory about
physiology, section 3 discusses how the glucose-insulin dynamics and meals can be mathe-
matically described, section 4 goes through theory on how parameters can be identified and
section 5 presents the meal models that were found in the literature review. Identification of
meal model parameters is discussed in section 6 and section 7, section 8 contains discussion
and a conclusion is presented in section 9. Lastly, the appendix contains additional relevant
information such as equations and code.

1.5 Artificial Pancreas Trondheim (APT)

This thesis is written in partnership with Artificial Pancreas Trondheim (APT). APT is a
research group established in 2013 at The Norwegian University of Science and Technology
(NTNU) in Trondheim and consists of researchers in the fields of control engineering, biomedi-
cal engineering, biosensors, applied clinical research, endocrinology, anesthesia and intensive
care medicine, pharmacology, biotechnology, mathematical modeling, biochemistry and chemo-
metrics [4]. APT has a long-term goal of developing a robust artificial pancreas for patients
with T1D and T2D. This section is cited from the term project report by Mørch-Thoresen,
2020 [3].
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2 Physiology

This section will present relevant theory about physiology for this thesis. That includes
diabetes, the gastrointestinal system and how meals a�ect glucose levels.

2.1 Glucose-insulin regulatory system and diabetes

During fasting, the BG levels in a healthy person are tightly controlled to be between 80
and 90 mg/100 ml. After a meal containing carbohydrates, the BG may rise up to 120-140
mg/100 ml, but is rapidly returned to the euglycemic range due to the release of insulin [5].
This control of blood glucose is facilitated through the release of the two hormones insulin
and glucagon.

Figure 2.1: E�ects on BG after a meal for people with and without
T1D [5]

Insulin is a hormone that decreases BG levels in three ways:

1. By turning glucose into ATP through a process which is called glycolysis. ATP is energy
that is to be used immediately by the cells anywhere in the body.

2. By turning glucose into glycogen. This process is called glycogenesis. This is short-term
storage of energy mainly in the liver and muscles.

3. By turning glucose into fatty acids (lipids). This process is called lipogenesis. The fatty
acids are stored in adipose tissue and is a long-term storage of energy.

When BG levels are low, the hormone glucagon is released. Glucagon increases BG through

1. Breaking down liver and muscle glycogen into glucose. This is called glycogenolysis.

2. Turning amino acids into glucose through a process called gluconeogenesis.
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In addition, glucagon also turns fatty acids in adipose tissue into ketone bodies through
ketogenesis. Parts of this section is cited from the term project report by Mørch-Thoresen,
2020 [3].

2.2 Secretion of insulin and glucagon

Insulin and glucagon are produced in the endocrine pancreas. The endocrine pancreas consist
of a type of tissue called islets of Langerhans. An islet consists of four types of cells; alpha,
beta, delta and F cells [6]. The beta cells secrete insulin and the alpha cells secrete glucagon. In
an individual with T1D, the pancreas does not secrete insulin due to auto-immune destruction
of the beta cells. This means that the individual has no ability to lower BG levels. This causes
a constant state of hyperglycemia if not treated with exogenous insulin. Parts of this section
is cited from the term project report by Mørch-Thoresen, 2020 [3].

2.3 Hyper- and hypoglycemia

Hyperglycemia is the state where the BG levels are above the normal range. Untreated high
blood glucose concentration over time can lead to heart attack, stroke or blindness due to
abnormal function of the blood vessels in multiple tissues [5]. Hypoglycemia, on the other hand,
occurs when the BG levels are too low. This is dangerous because glucose is the only nutrient
used by the brain, and a lack of glucose can cause dizziness, seizures and coma. Hypoglycemia
occurs when too much insulin is injected, and can also happen due to prolonged vigorous
exercise. Correct injections of insulin is therefore necessary to stay healthy for a person with
T1D. Parts of this section is cited from the term project report by Mørch-Thoresen, 2020 [3].

2.4 Gastrointestinal system

The gastrointestinal (GI) system consists of the gastrointestinal tract and its associated
glandular structures. This includes the oral cavity, esophagus, stomach, small intestine, large
intestine, rectum, and the glandular structures such as salivary glands, liver, exocrine pancreas
and intestinal glands [1] (ref fig. 2.2). The major function of the GI system is to provide
nutrition through ingestion, with the main principles being secretion, digestion, absorption
and motility. Secretions from exocrine glands facilitate digestion and promote absorption of
nutrients. Digestion refers to the process where foodstu� are broken down into smaller particles,
whereas absorption refers to the process where the products of digestion are transported from
the lumen of the GI tract into the blood. Motility refers to the movement of the GI tract
(such as gastric emptying) due to the presence of smooth muscles.
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Liver

Esophagus

Small intestine
Large intestine

Oral cavity

Rectum

Pancreas

Stomach

Figure 2.2: Gastrointestinal system

Food enters through the oral cavity where it is chewed and mixed with saliva. The esophagus
transports the food into the stomach through peristaltic contractions. In the stomach, the
food is transformed into a thick semi-fluid mass called chyme. This is done through churning
and mixing the food with gastric juices as shown in fig. 2.3. The chyme is then released into
the small intestine at a controlled rate.

BA C D

Figure 2.3: Gastric motility: the pyloric sphincter is closed from A to
C while the food is mixed and grinded. A - peristaltic contraction, B
- antral contraction, C - retropulsion. In D, the sphincter opens to let
chyme into the duodenum. Adapted from G. K. Pal [1]

The small intestine is where the major part of digestion takes place, and can be further
divided into three parts; duodenum, jejunum and ileum. The inside of the small intestine has
finger-like projections that are called villi. They increase the inner surface area up to 300
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m2 to increase absorption [1]. Once all the nutrients are digested and absorbed in the small
intestine, the remaining contents goes to the large intestine where water and electrolytes are
absorbed. Finally, the waste products enter the rectum where it is stored until disposed.

2.5 Gastric emptying

The term gastric emptying refers to the emptying of the gastric contents into the duodenum
(small intestine). Gastric emptying occurs when the pyloric sphincter opens to let chyme leave
the stomach and enter the duodenum. The gastric emptying is precisely controlled due to
inhibitory and excitatory vagal motor neurons [7]. There are several factors that a�ect the rate
of gastric emptying. Meals rich in fat slow down gastric emptying. This is because fat forms
an oily layer on top of the other gastric contents. This, in addition to the weak contractions
of the stomach, slows down emptying. Another factor that a�ects emptying is the consistency
of the food. Liquid food is emptied faster than solid food [1]. Gastric emptying can also work
di�erently in T1D than in healthy people. A study from 1995 [8] showed that individuals with
T1D had delayed solid and liquid gastric emptying compared to healthy subjects. The rate of
gastric emptying also varies with the blood glucose levels. Gastric emptying is slower during
hyperglycemia when compared with euglycemia and accelerated during hypoglycemia [9].

2.6 Digestion and absorption

The process of breaking down food into smaller pieces is called digestion. This happens
partially in the stomach and partially in the small intestine. In the stomach, the food is mixed
with gastric juices to make chyme. When the chyme enters the small intestine, pancreatic
and biliary enzymes are released. They help to break down the particles into the final form
for absorption. The main nutrients from food that are absorbed in the small instestine are
carbohydrates, proteins and fat.

• Carbohydrates are broken down into monosaccharides

• Proteins are broken down into amino acids and peptides

• Fat is broken down into fatty acids and monoglycerides

The nutrients are then absorbed through the wall of the small intestine and into the blood.
Carbohydrates end up as blood glucose (energy), amino acids from proteins are used in
formation and maintenance of tissues, and fatty acids from fat end up as energy or stored in
adipose tissue [10].

2.7 Carbohydrates and blood glucose levels

Carbohydrates is the only nutrient that a�ect BG levels directly and are molecules made
up of carbon, hydrogen and oxygen [11]. The most simple type of carbohydrates are the
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monosaccharides. They are building blocks for the more complex di- and polysaccharides. The
di�erent types of carbohydrates and their food sources are shown in table 2.1.

Carbohydrate type Source Functions
Monosaccharides
Glucose Sugar, rice, bread, vegetables Final form for tissue utilization
Fructose Fruits, honey Converted to glucose by liver
Galactose Milk lactose Converted to glucose by liver
Disaccharides
Sucrose Sugar cane, pineapple Converted to glucose by liver
Lactose Milk Converted to glucose by liver
Maltose Germinating seeds Converted to glucose by liver
Polysaccharides
Starch Plants, rice, potato, wheat, corn Converted to glucose by liver
Soluble fibers Fruits, grains, legume Incr. abs. time of food
Insoluble fibers Vegetables, wheat bran Incr. passage of intestinal content

Table 2.1: Carbohydrates and their food sources [10]

Of the absorbed monosaccharides, glucose is in the final form and ready to be used directly,
whereas fructose and galactose are transported to the liver where they are converted into glucose.
BG levels will then increase. Since the carbohydrates are broken down into monosaccharides
before absorption, the more complex carbohydrates are taken up more slowly and gives a
more controlled increase in BG than simpler molecules. Something that describes this is the
glycemic index. The glycemic index is a relative ranking of how quickly a food increases BG
levels. It ranks foods from 0 to 100, where high glycemic index means fast absorption and low
index means slower absorption. Foods with high glycemic index are for example sugar/glucose
(100), white wheat bread (75) and boiled potato (78). Low index foods include kidney beans
(24), skim milk (37) and soya beans (16) [12].

Figure 2.4: Glycemic index. Figure borrowed from Glycemic Index
Foundation [13]
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Nutritionally, it makes sense to divide carbohydrates into digestible and non-digestible carbohy-
drates. The non-digestible carbohydrates come from dietary fibers that cannot be broken down
by human digestive enzymes. However, they are still important as they keep the gut healthy,
slow down absorption of glucose, flatten postprandial BG response and are useful in weight
management [11] [14]. The digestible carbohydrates are broken down into monosaccharides and
then absorbed in the small intestine as discussed previously.

2.8 Diabetes and meals

Since ingested carbohydrates increase BG levels, it is important that this is accounted for
through insulin injections in T1D to stay within the euglycemic range for as much time as
possible. This is done by estimating the amount of carbohydrates in a meal and self-administer
an insulin bolus [15]. It is also important to remember when dosing a bolus, that it is not
only the amount of carbohydrate that a�ects the BG, but also the type of carbohydrate
(glycemic index, fibers). However, it is important to note that postprandial BG responses are
highly individual and that the glycemic index is not always accurate. Zeevi et al [16] showed
that people responded very di�erently to the same standardized meals. One cause of this
is the gut microbiota composition. Microbiota are important for utilization of some of the
non-digestible carbohydrates that human enzymes cannot break down. The study showed
that when providing info of the microbiota composition along with information about the
ingested food to a machine learning algorithm, the algorithm was able to predict individual BG
responses. A third thing to consider is that meals rich in fat and protein slow down absorption,
and that this can cause prolonged hyperglycemia [15]. All in all, the diabetic patient has to
estimate the carbohydrate content of each meal and then inject an insulin bolus. However,
individual factors a�ects the BG response, and the individual must therefore take this into
account.

2.9 Summary

This section has presented relevant theory about physiology for this thesis. That includes
info about the glucose-insulin system, gastrointestinal system, digestion and absorption,
carbohydrates and postprandial blood glucose.

19



Mathematical modeling

3 Mathematical modeling

This section will discuss how the glucose-insulin system can be described mathematically, and
then present some of the most known models. A discussion about how meal and gastrointestinal
dynamics can be incorporated into these models follows afterwards.

3.1 Compartmental analysis

When developing a mathematical model of the glucose-insulin system, it is very common to
use compartmental analysis. That means to assign tissues or organs to di�erent compartments
that represent the quantity of some material inside them. A di�erential equation is then
developed by writing reaction kinetics and mass balances between inflows and outflows to the
compartment. Figure 3.1 shows two compartments.

Q1(t) Q2(t)
k12

k21

k11 k22

J(t) K(t)

Figure 3.1: Mathematical modeling with compartments. Adapted from
Chee and Fernando [17]

Q1 and Q2 represents the quantity of materials in compartments 1 and 2 respectively, whereas
the di�erent kijs are flow rates to and from compartments. J(t) and K(t) are exogenous flows
of material. This results in the following mass balance equations:

dQ1(t)
dt

= ≠k11Q1(t) ≠ k12Q1(t) + k21Q2(t) + J(t) (3.1)

dQ2(t)
dt

= k12Q1(t) ≠ k21Q2(t) ≠ k22Q2(t) + K(t) (3.2)

In a glucose-insulin model, the same approach is used, but the compartments are now
representing the amount of insulin and glucose in di�erent tissues in the body. One example
of such a compartment can be “plasma glucose”. The amount of glucose in the plasma, i.e.
blood, is then given by the di�erence between what flows in and what flows out. Inflows can
be hepatic glucose production or glucose from food. Outflows can be utilization of glucose by
the muscles.

Blood
glucose

Uptake by 
skeletal muscle

Food
Liver

Figure 3.2: Example of a compartment

Parts of this section is cited from the term project report by Mørch-Thoresen, 2020 [3].
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3.2 Bergman model

The Bergman model [18], also called the minimal model because of its simplicity, was developed
in the 1980’s. It consists of three ODEs that represent plasma glucose G(t), plasma insulin
I(t) and insulin action X(t). The equations for a person in a diabetic state are given by

dG(t)
dt

= ≠p1(G(t) ≠ Gb) ≠ X(t)G(t) + p(t) (3.3)

dX(t)
dt

= p3(I(t) ≠ Ib) ≠ p2X(t) (3.4)

dI(t)
dt

= ≠n(I(t) ≠ Ib) + u(t) (3.5)

The terms p(t) and u(t) represents exogenous infusions of glucose and insulin respectively. Ib

and Gb are basal levels of insulin and glucose. Refer to fig. 3.3 below for a visualization of
how the three states interact with each other.

Plasma insulin 
I(t)

Insulin action 
X(t)

Plasma glucose 
G(t)

Insulin-dependent 
utilization

u(t)

n

p3

p(t) p1G
b

p2
p3Ib

nIb

p1Insulin-independent 
utilization

Figure 3.3: Scheme of Bergman model.

The amount of plasma insulin is a�ected by exogenous insulin infusion, and is again a�ecting
insulin action. The insulin action state describes how insulin is needed to decrease BG, i.e.
insulin-dependent utilization of glucose. Glucose can also decrease through insulin-independent
utilization, such as usage by the brain. Glucose levels increases through exogenous infusion.
The simplicity of this model is both its strength and its limitation. It is easy to comprehend
while it also is somewhat accurate in modeling glucose and insulin levels. However, it only uses
lumped compartments, and a physiologically accurate distinction between organs or tissues is
not modeled.

3.3 Sorensen model

The Sorensen model is an extensive mathematical model that describes glucose and insulin in
the human body by 19 ODEs. It was developed in 1985 as a part of a PhD thesis. It divides
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he body into six compartments, namely brain, heart/lungs, liver, gut, kidney and periphery
as shown in fig. 3.4.
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Figure 3.4: Scheme of Sorensen model. Solid arrows represent blood
flow between compartments. The pancreas (glucagon) model is only
assumed to have e�ect on endogenous glucose production �HGP .

The types of states in the model are glucose concentration G, insulin concentration I and
glucagon concentration ‰, where the subscripts describes which compartment it is modeling (B
- brain, H - heart/lungs, L - liver, G - gut, K - kidney and P - periphery). If a second subscript
is included, that indicates if it is interstitial fluid space (I) or vascular blood water space (V).
The parameters V and Q represent volume and vascular blood water flow rate. Another type
of important parameter/variable are the metabolic sources or sinks. They are indicated by
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the symbol � with di�erent subscripts. For example, �HGP means hepatic glucose production.
The mass balance equations are written on the form

V X

J

dCJ(t)
dt

= QX

J (CJi(t) ≠ CJ(t)) ≠ �JU (3.6)

where subscript J represents the compartment and superscript X the type of solute (insulin,
glucose) [19]. C can either be insulin, glucose or glucagon. All equations and parameters of
the Sorensen model are listed in appendix A. A strength of the Sorensen model is that it is
physiologically accurate as it is modeling glucose and insulin in di�erent tissues, and not only
in lumped compartments. It is thus able to capture more of what is happening in the body.

3.4 Hovorka model

The model by Hovorka [20] was developed in 2004 and consists of a glucose subsystem (two
states), insulin subsystem (one state) and insulin action subsystem (three states). The
equations model are given by

dQ1(t)
dt

= ≠( F C
01

VGG(t) + x1(t))Q1(t) + k12Q2(t) ≠ FR + UG(t) + EGP0(1 ≠ x3(t)) (3.7)

dQ2(t)
dt

= x1(t)Q1(t) ≠ (k12 + x2(t))Q2(t)y(t)G(t) = Q1
VG

(3.8)

dI(t)
dt

= UI(t)
VI

≠ keI(t) (3.9)

dx1(t)
dt

= ≠ka1x1(t) + kb1I(t) (3.10)

dx2(t)
dt

= ≠ka2x2(t) + kb2I(t) (3.11)

dx3(t)
dt

= ≠ka3x3(t) + kb3I(t) (3.12)

where Q1 and Q2 represent glucose in accessible and non-accessible compartments. I is the
amount of insulin and x1, x2, x3 are insulin actions on transfer from Q1 to Q2, utilization of
glucose and EGP (endogenous glucose production). The equations are also shown in fig. 3.5.
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Fc01Q1/(GVG)-
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Figure 3.5: Scheme of Hovorka model

3.5 UVA/Padova model

The UVA/Padova model [21] is an FDA approved diabetes simulator, meaning that it can be
used as a substitute for preclinical trials for certain insulin treatments, including closed-loop
algorithms for AP. The first version was released in 2008, and it was updated in both 2013
and 2017. It consists of compartments describing glucose, liver, GI tract, muscle and adipose
tissue, insulin, insulin delivery, glucagon, alpha cells and glucagon delivery. Figure 3.6 shows
how these compartments interact with each other. This model consists of many equations
that will not be listed here. The reader is referred to check the appendix of Dalla Man et al,
2017 [21] where all equations are listed.
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Figure 3.6: Scheme of UVA/Padova 2017

3.6 Modeling meal dynamics

The previous subsections have presented some of the most known glucose models. In order for
them to represent glucose dynamics accurately, the e�ects of a meal should be included. That
is mainly to model how BG increases after eating carbohydrates. However, there are many
other important factors that a�ect BG as well. Based on the discussion about the GI system
in section 2, there are a number of factors that should or could be included in a meal model.
They are

Amount of ingested carbohydrates or glucose
Digestible carbohydrates increase BG levels. A large amount of carbohydrates will increase
BG more than a small amount. It is therefore important to include the amount of CHO in
the meal model.

Type of carbohydrate
As discussed previously, digestible carbohydrates from di�erent foods will have di�erent e�ects
on BG. Sugar is absorbed much faster than for instance starch. A way of including this in a
model could be by using the glycemic index.

Mixed meals and other macronutrients
A typical meal does not only consist of carbohydrates. Nutrients such as fat, protein and
dietary fibers are important parts of a meal. These nutrients typically slow down absorption
of glucose into the blood. Including these dynamics would be beneficial in order to be even

25



Mathematical modeling

more accurate.

Stomach and gastric emptying
After a meal, food is first stored in the stomach where it is grinded and turned into chyme
before it is sent to the small intestine. Including a stomach compartment in a meal model
would increase the physiological accuracy. It is also important to be able to fit the model
better to the individual since people with T1D are known to have malfunctioning gastric
emptying [9]. Thus, including some adjustable parameters here could help fitting the model to
the individual.

Small intestine and absorption rate
The small intestine is the last stop before nutrients are absorbed and is therefore an important
part of the process of digestion. Absorption of glucose depends on the amount of food in the
small intestine, so adding a compartment describing the gut would be helpful.

Physiological accuracy
When developing a model, there are two approaches one can take. One is to create a model that
is motivated by knowledge about the GI system. The other one is to make a more empirically
based model, meaning that it is based more on empirical data rather than theoretical knowledge.
Both approaches can give good models, but the ones based on theoretical knowledge can
sometimes provide better understanding.

Order of ingestion
Dietary fibers slow down absorption. That means that if fibers are ingested before fast sugars,
one can have improved BG response. This is something that can be valuable to include in a
meal model.

Personalized factors
Another thing that can be included in a meal model is that people react di�erently to same
foods. One cause of this is the microbiota composition. However, this is a very detailed factor
to include, and is probably not included in many models.

3.7 Summary

This section has presented theory about how mathematical model describing the glucose-insulin
system are developed. The most known glucose-insulin models were then presented. Lastly,
important factors to include in a meal model were discussed.
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4 Parameter identification and evaluation

This section will go through theory about parameter identification and evaluation of dynamical
systems.

4.1 Cost function optimization

The goal of parameter identification is to find the parameter values of a model so that the
output of the model is as close to measured empirical data as possible. This is done by
minimizing a cost function (also known as error function). Given a system described by the
model

ysim = f(x; p) (4.1)

where x is the input and p are parameters, and empirical measured data described as ymeas,
the cost function C can be defined as an error or distance measure between the two

C = d(ysim, ymeas) (4.2)

which in this thesis will be defined as the mean squared error (MSE). The optimization problem
can then be formulated as

min
p

d(ysim, ymeas) s.t. some constraints (4.3)

where the constraints can for instance be lower and upper bounds, linear and nonlinear equality
constraints. Parameter values p that minimize the cost function are found by a optimization
algorithm. Refer to fig. 4.1 for a graphical description of the process. In the case of this thesis,
the model with parameters to estimate is a glucose-insulin meal model (described in section 5)
and the empirical data comes from real life measurements of blood glucose, insulin infusion
and meal data (dataset described in section 6). Inputs to the model are meals and insulin
injections (basal and bolus), while the output is glucose level.

Figure 4.1: Parameter identification. Figure borrowed from Moeller [22]

Regarding the parameter adjustment algorithm, there are many di�erent algorithms depending
on the complexity of the problem. A glucose-insulin model will typically fall under the category
of nonlinear programming and will therefore need an algorithm that is suited for solving such
a task. This was later in this thesis implemented in MATLAB through the function fmincon.
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4.2 Training, validation, test and overfitting

The empirical measured data described in the section above is called training data. The
purpose of the training data is to fit the model. However, it is desired that the model is able to
predict the glucose response for any type of meal, and the identified parameters are therefore
tested on a new dataset (test set) to see if the model is able to produce good results for data
that has not been used in fitting. If the model performs well on both training and test data, it
is said to be able to generalize. An obstacle to generalizability is overfitting. Overfitting occurs
when the model is able to fit to the training data, but not the test data (the gap between
training error and test error is too large) [23], and typically happens when the training dataset
is small or when the model has too many parameters. A solution to this is to increase the
size of the training dataset. On the other hand, there is underfitting which occurs when the
training error is too large. The goal is therefore to find an optimal solution where the model
has both low training error and a small gap between training and test error. Figure 4.2 shows
the di�erences in performance for a model that is underfitting or overfitting vs. an optimal
result.

(a) Underfitting (b) Optimal fit (c) Overfitting

Figure 4.2: The model that is underfitting is not able to follow the
curve of the data, whereas the model that is overfitting is following the
data “too well”. In the middle, the optimal model is capturing the curve
of the data points. Figure borrowed from Goodfellow [23].

Another thing that might improve the results is to take use of a validation dataset to tune
hyperparameters. Hyperparameters are settings to the optimization algorithm such as step
size, number of iterations or other factors that a�ects the training result. The validation
dataset is therefore constructed to estimate the generalization error after training and update
hyperparameters accordingly [23]. In this thesis, only a training and test dataset will be used,
whereas a validation set is not utilized.

4.3 Summary

This section has gone through theory about how minimizing a cost function can be used to
obtain a set of optimal parameters. This technique will later be used in this thesis to fit meal
models to a dataset containing glucose measurements.
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5 Literature review of meal models

This section will present the meal models that were found in the literature review that was
performed.

5.1 Method

The literature review was performed in January and February 2021. The goal of the review
was to find mathematical models describing how meals a�ect blood glucose levels. Google
Scholar was the search engine that was used, and words that were searched for included
“meal” or “food” in combination with for instance glucose model, glucose simulator, diabetes,
postprandial, mathematical model, Bergman, Sorensen, UVA/Padova etc. The models that
were considered relevant were organized into a table with descriptions about title, author(s),
year, short description and which main model they were used in. After the review was
finished, the models were analyzed and compared. Figures showing compartments and their
relations were made such that the models could be compared more easily. Findings that have
been included in this review, i.e. considered relevant, are meal models that are described by
algebraic or di�erential equations. Machine learning algorithms have not been included. The
results from the literature review are presented in the next section.

5.2 Results

Lehmann and Deutsch, 1992 [24]

This meal model consists of one compartment describing glucose in the gut. Ingested carbohy-
drates (glucose) enters the gut through a gastric emptying function Gempt that depends on
the amount of ingested carbohydrates. Glucose leaves the gut compartment as absorption into
the blood. The model equations are given by

Ġgut(t) = Gempt(t) ≠ kabs · Ggut(t) (5.1)

where Gempt is a function whose shape is either trapezoidal or triangular depending on the
amount of carbohydrates in the meal (refer to fig. 5.1). The equation for Gempt is given by

Gempt =

Y
_____]

_____[

(Vmax/Tasc)t if t < Tasc

Vmax if Tasc Æ t < Tasc + Tmax

Vmax ≠ (Vmax/Tdes)(t ≠ Tasc ≠ Tmax) if Tasc + Tmax Æ t < Tasc + Tmax + Tdes

0 elsewhere
(5.2)

where Tmax describes the duration for which the gastric emptying is at its maximum (Vmax),
while Tasc and Tdes describe the increase and decrease time for the gastric emptying to reach
its maximum. Vmax is given by

Vmax = a · CHO

Tasc + 2 · Tmax + Tdes

(5.3)
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with a = 2. The variable CHO describes the amount of ingested carbohydrates in grams.
Default values of Tasc and Tdes were set to 30 min. However, for small meals (CHO<10g),
Tmax is set to zero, so that Gempt becomes triangular. Graphically, Gempt looks like this:

(a) Gempt for CHO>10g (b) Gempt for CHO<10g

Figure 5.1: Gastric emptying curves for di�erent amounts of ingested
carbohydrates. Figures taken from Lehmann and Deutsch [24]

The negative term in eq. (5.1) describes the absorption of glucose from the gut and into the
blood. A graphical representation of the model can be seen in fig. 5.2 below.

Ggut(t)
GemptCHO [g]

Plasma 
glucose

kabs

Figure 5.2: Scheme of meal model by Lehmann and Deutsch

The meal model by Lehmann and Deutsch was added to the Bergman model by Lynch and
Bequette [25] in 2002. They also added a state describing subcutaneous glucose.

Plasma insulin 
I(t)

Insulin action 
X(t)

Plasma 
glucose 

G(t)

p4u1(t)
p3 p2

p3Ib

Ggut(t)

D(t)=RGabs/VI

RGempt

p1
G+Gb

Subcutaneous 
glucose 
Gsc(t) 1

5($ − $!")

Rut

CHO [g]

Figure 5.3: Scheme of model by Lynch and Bequette where the
Lehmann & Deutsch meal model was coupled with the Bergman model.
The gray compartment represents the meal model by Lehmann and
Deutsch.

Roy and Parker, 2006 [26]
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This meal model is based on the structure of the Lehmann and Deutsch model, but extended
to include protein and fat. The meal model was paired with a Bergman model that was
augmented with free fatty acid (FFA) dynamics. The motivation for including FFA dynamics
was that during rest, FFA stands for about 90% of the energy source for the muscles. The
amounts of the three nutrients glucose, protein and fat in the gut are given by

ṄG(t) = xG · Gempt(t) ≠ kG · NG(t) (5.4)
ṄP (t) = xP · Gempt(t) ≠ kP · NP (t) (5.5)
ṄF (t) = xF · Gempt(t) ≠ kF · NF (t) (5.6)

where Gempt is the same trapezoidal function as in Lehmann and Deutsch [24] (equation 5.2).
The value for Vmax (highest value of gastric emptying) depends on the amount of ingested
nutrients in grams:

Vmax = 2Ntot/(Tasc + 2 · Tmax + Tdes) (5.7)
Glucose and FFA then appears in the blood through the two equations

u2(t) = kG · NG(t) + 0.6kP · NP (t) (5.8)
u3(t) = kF · NF (t) (5.9)

where it is assumed that 60% of proteins are turned into glucose. The absorption rates u2(t)
and u3(t) are simply added as a disturbance to the di�erential equations describing Ġ(t) and
Ḟ (t).

Plasma insulin 
I(t)

Insulin action 
X(t)

Plasma 
glucose 

G(t)
Liver Periphery

p2

n

FFA action 
Y(t)

Plasma FFA 
F(t)

Adipose 
tissue Periphery

p3

Z(t)

Ntot [g]

u1

u2=CHO+60% of protein

u3=ingested fat

xFGempt

xPGempt

xGGemptNG(t)

NP(t)

NF(t)

Gut

Figure 5.4: Scheme of extended Bergman model by Roy and Parker.
The gray compartments represents the meal part of the model.

Data from a mixed meal tolerance test (CHO = 70 g, protein = 18 g, FFA = 20 g) was used in
simulations. The value for Vmax was 2.2 g/min from calculations of eq. (5.7) based on the meal
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composition. Other parameter values were Tmax = 35 min, kG = 0.022 min≠1, kP = 0.0097
min≠1, kF = 0.015 min≠1 and Tasc = Tdes = 10 min. The model successfully captured the
dynamics of plasma glucose concentration.

Natalucci et al, 2003 [27]

Natalucci presents in his paper a Bergman minimal model coupled with the meal dynamics by
Lehmann and Deutsch [24]. However, the term describing gastric emptying has been modified
and is no longer represented by a trapezoidal function as in the original model. The gut
compartment is described by the equation

Ġgut(t) = Gempt(t) ≠ kabs · Ggut(t) (5.10)

i.e. the same as in the Lehmann and Deutsch meal model, but Gempt has been replaced by a
power exponential function

Gempt(t) = Dk— · exp (≠kt)— (5.11)

where D is the amount of ingested glucose, — = 1.23 is a shape factor and k = 0.014 is a
velocity constant. The whole model can be visualized in fig. 5.5 below.

Plasma insulin 
I(t)

Insulin action 
X(t)

Plasma 
glucose 

G(t)

p2SI p2

Ggut(t)

kabs/V

!!"#$ "
= $%& ' exp	 −%" %

SG

CHO [g]

SGGb

p2SIIb

X(t)G(t)

Figure 5.5: Scheme of extended Bergman model by Natalucci. The
gray compartment represents the meal part of the model.

The reason for modeling the equation for Gempt as a power exponential was that such a curve
had previously been used to fit a gastric emptying curve during an OGTT [28]. Data from nine
non-diabetic subjects was used to obtain estimates of kabs and the insulin sensitivity SI .

UVA/Padova, 2017 [21]

The UVA/Padova simulator has a subsystem describing the gastrointestinal tract (refer to
fig. 3.6). This part couples ingested carbohydrates to glucose rate of appearance into the blood.
The GI subsystem consists of a three compartments in a chain. The first two compartments
describes the amount of glucose in the stomach in the solid and then liquid state. This
corresponds to the grinding of the stomach to make chyme. The third compartment represents
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the gut. The equations are given by

Qsto(t) = Qsto1(t) + Qsto2(t) (5.12)
Q̇sto1(t) = ≠kgri · Qsto1 + D · ”(t) (5.13)
Q̇sto2(t) = ≠kempt(Qsto) · Qsto2(t) + kgri · Qsto1(t) (5.14)
Q̇gut(t) = ≠kabs · Qgut(t) + kempt(Qsto) · Qsto2(t) (5.15)

Ra(t) = f · kabs · Qgut(t)
BW

(5.16)

where Qsto1 is amount of glucose in the stomach in the solid phase, Qsto2 in the liquid phase,
Qgut is amount of glucose in the intestine, D is the amount of ingested glucose, ”(t) is an
impulse function, BW body weight and Ra rate of appearance. The rate kgri is constant,
whereas the gastric emptying rate kempt(Qsto) is a nonlinear function that depends on the
amount of glucose in the stomach. The equation is given by

kempt(Qsto) = kmin + kmax ≠ kmin

2 · [tanh –(Qsto ≠ b · D) ≠ tanh —(Qsto ≠ c · D) + 2] (5.17)

where kmin and kmax refers to the minimum and maximum rate of gastric emptying. The
constants – and — are computed as

– = 5
2 · D · (1 ≠ b) (5.18)

— = 5
2 · D · c

(5.19)

A qualitative plot (fig. 5.6) may help to understand what this function looks like.

Figure 5.6: Gastric emptying in UVA/Padova meal model. Figure
borrowed from Dalla Man et al. [29]
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When the stomach contains the full amount of ingested glucose from a meal (Qsto = D), the
rate of gastric emptying will be maximum (kmax). As the amount of glucose in the stomach
descreases, the rate of gastric emptying will also decrease until it reaches a minimum kmin.
When the stomach is empty (Qsto = 0), the transport of stomach contents to the gut will again
be zero because the expression kempt(Qsto) · Qsto2 will be zero. Table 5.1 below summarizes
the parameters of the UVA/Padova meal model.

Parameter Meaning Unit
kmin, kmax Min. and max. rate of gastric emptying min≠1

kabs Rate of absorption from the gut min≠1

kgri Rate of grinding (from solid to liquid) min≠1

D Amount of ingested carbohydrates mg
f Fraction of intestinal absorption which appears in plasma dimensionless
BW Body weight kg
–, — Rate of decrease and increase of gastric emptying
b, c Constants dimensionless

Table 5.1: Parameters in UVA/Padova meal model.

A visual representation of the meal model equations are shown below in fig. 5.7.

Qsto1 Qsto2 Qgut! " #(%)

Solid Liquid

kgri kempt(Qsto)

!" # = % &  '!"# &  ($%&(#)
+,

Plasma
glucose

Figure 5.7: Meal subsystem in UVA/Padova

This meal model was first developed in Dalla Man et al., 2006 [29] where four di�erent meal
models were validated using gold standard data on Ra obtained by a triple-tracer technique.
The meal model that is now included in the UVA/Padova simulator were the one that performed
best and fitted data from both an OGTT and a mixed meal in average and on an individual
level. Another feature of this meal model is that it is able to distinguish between di�erent Ra
patterns, such as for instance diabetic versus non-diabetic subjects [29].

Hovorka, 2004 [20]

The meal model by Hovorka is represented by a chain of two compartments. The equations
are

Ḋ1(t) = AGDG ≠ D1(t)
tmax,G

(5.20)

Ḋ2(t) = D1(t)
tmax,G

≠ D2(t)
tmax,G

(5.21)
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where DG is the amount of ingested carbohydrates and AG is carbohydrate bioavailability
(constant given by 0.8). Absorption into the accessible compartment Q1 (where measurements
of glucose are made) can be written as

UG(t) = DGAGte≠t/tmax,G

t2
max,G

(5.22)

where tmax,G is the time constant of the absorption, from the beginning of the meal consumption,
for the absorption rate to reach its maximum. The whole Hovorka model with the meal
subsystem indicated by grey boxes can be seen in fig. 5.8.

Q1(t) Q2(t)

I(t)

x1(t)

x2(t)

x3(t)

EGP

Insulin 
absorption

k12

kb1

kb2

kb3

ka1

ka2

ka3ke

Fc01Q1/(GVG)-
FR

DG D2(t)D1(t)
1/tmax,G 1/tmax,G

Figure 5.8: Scheme of Hovorka. Gray compartments are meal subsys-
tem.

The paper that presented this meal model has not justified the model by any sort of physiological
arguments. Neither are the meal compartments named after the stomach or the gut. It therefore
seems like this meal structure is simply just a two-compartmental delay chain with no specific
motivation behind other than the delay between ingestion of carbohydrates and the increase
of BG levels.

Rashid et al, 2019 [30]

This paper from 2019 presents a simulation software for testing control algorithms. The
patient model is given by the Hovorka model but have been extended it to include exercise
e�ects. The meal model is very similar to Hovorka, 2004 [20], but have added a distinction
between carbohydrates from a regular meal and rescue carbohydrates that act twice as fast.
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The equations are

Ḋ1(t) = AG · D(t) ≠ D1
tmax,G

(5.23)

Ḋ2(t) = D1
tmax,G

≠ D2
tmax,G

(5.24)

˙DH1(t) = AG · DH(t) ≠ DH1
tmax,g

(5.25)

˙DH2(t) = DH1
tmax,g

≠ DH2
tmax,g

(5.26)

UG(t) = D2
tmax,G

+ DH2
tmax,g

(5.27)

tmax,g = tmax,G

2 (5.28)

D(t) and DH(t) is the amount of carbohydrate intake for a regular meal and rescue carbohy-
drates respectively. The distinction between “regular” and fast-acting carbs allows for a little
more accurate reproduction of a meal. A visual representation of the entire model can be seen
in fig. 5.9 below.
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Figure 5.9: Scheme of model by Rashid et al. The gray compartments
represent the meal subsystem. The compartments E1, TE and E2 are
exercise compartments whereas the rest of the comparments originates
from the Hovorka model.

Fisher, 1991 [31]
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The meal model by Fisher is probably the most simple of the models presented in this literature
review. It consists of one equation that describes the absorption rate of glucose into the blood
directly. That is

P (t) = B · exp (≠kt) (5.29)
with B = 0.5 and k = 0.05. The model assumes that the meal occurs at t = 0. The reasoning
behind this model is that in OGTTs with normal subjects, the plasma levels increase quite
rapidly within 30 minutes and then fall to the base level within 2-3 hours. The absorption
rate P (t) was thus made to match that assumption. Figure 5.10 shows what eq. (5.29) looks
like. At time t = 0 a meal is ingested, such that the rate of appearance is at 0.5. After 120
min, the absorption of glucose has decreased to 0.

0 20 40 60 80 100 120 140

t [min]

0

0.1

0.2

0.3

0.4

0.5

0.6

P
(t

)

Figure 5.10: Rate of appearance P (t) from Fisher model

The meal model was paired with the Bergman model and then used in simulations for glucose
control where three di�erent insulin infusion programs were tested. A lack of this model is
that it does not include the amount of carbohydrates or any states describing the stomach or
intestines. However, it is very simple and is easy to couple with a glucose model.

Farmer et al, 2009 [32]

The meal model by Fisher [31] presented in the section above was modified slightly by Farmer
and used in simulations of the Sorensen and Bergman models. The new model is given by the
equation

D(t) =

Y
]

[
0 if t < tmeal

A · exp (≠b(t ≠ tmeal)) if t Ø tmeal

(5.30)

where A represents the size of the meal and is given by

A = Mmealb (5.31)

where Mmeal is the amount of carbohydrate content and b = 0.05 is the absorption rate. Meals
can now occur at any time (tmeal) and a plot of the absorption of glucose after a meal is shown
in fig. 5.11.
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Figure 5.11: Plot showing D(t) from the Farmer meal model. A meal
of 40g carbohydrates ingested at tmeal = 10min. After 120 minutes from
the meal started, the absorption has returned to zero.

In the paper by Farmer, the meal model was then used in simulations of a 50g carbohydrate
meal with both the Bergman model and the Sorensen model. It was also used in control
schemes. This model is still very simple, but allows for di�erences in the amplitude (determined
by A) and decay (determined by b).

Rozendaal et al, 2015 [33]

This model, also called the Eindhoven Diabetes Education Simulator (E-DES), is a physiological
model consisting of four compartments. That is gut, plasma, interstitial fluid and subcutaneous
tissue. The meal subsystem is included via the gut compartment with the equation

dMgut

G
(t)

dt
= ‡k‡

1 t‡≠1 · e≠(k1t)‡ · Dmeal ≠ k2 · Mgut

G
(t) (5.32)

that represents the amount of glucose in the gut. The parameters are

Parameter Meaning Value Unit
k1 Rate of glucose appearance in gut 0.0145 min≠1

k2 Rate of gut emptying 0.276 min≠1

‡ Shape factor 1.34 dimensionless
Dmeal Amount of ingested carbohydrates - g

Table 5.2: Parameters in E-DES meal model.

Glucose from the gut then appears in the glucose plasma equation as a disturbance. This is
represented in eq. (5.33) by the first term on the right hand side of the equation sign.

dGpl(t)
dt

= k2
f

VGM b
Mgut

G
(t) + gliv(t) ≠ gnon≠it(t) ≠ git(t) ≠ gren(t) (5.33)
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The other terms represent inflows and outflows to the glucose plasma compartment, such
as endogenous glucose production or renal excretion. The entire glucose-insulin model by
Rozendaal et al is shown in fig. 5.12 below.
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Renal excretion

Figure 5.12: Rozendaal scheme. Blue arrows represent insulin fluxes,
black arrows are glucose fluxes. The amount of glucose and/or insulin is
only computed in gut, plasma, interstitial fluid and subcutaneous tissue
compartments. The meal part is represented by the gray compartment.

The parameters of the model were found through nonlinear least squares optimization on data
from healthy subjects. This model has later been used in a study on the e�ect of di�erent
types of food [34].

Fabietti et al, 2006 [35]

The model by Fabietti et al. is a control-oriented model of glucose and insulin dynamics.
It is developed from the Bergman minimal model, but has been extended to include more
compartments. The meal part of this model is included via the exogenous glucose compartment
(fig. 5.14). The intake of carbohydrates is split into three terms depending on which type of
carbohydrate is ingested. The meal model equations are given by

Eg = Ag(s) + As(s) + Am(s) (5.34)

where Ag(s) is absorption rate of sugar, As(s) fast absorption rate of starch, and Am(s) slow
absorption of starch from a mixed meal. The equations for the absorption rates are

Ag(s) = (1 ≠ Fs) 16.6
(s + 1.44)(s + 135)Ri(s) (5.35)

As(s) = Fs(1 ≠ Fm) 467
(s + 1.61)(s + 7.20)(s + 7.18)Ri(s) (5.36)

Am(s) = FsFm

75.1
(s + 0.466)(s + 5.54)(s + 5.86)(s + 6.43)Ri(s) (5.37)
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where Fs is the fraction of starch in the meal and (1 ≠ Fs) the fraction of sugar. Fm is the
fraction of a mixed meal in the total amount of starch. An OGTT is thus represented by
setting Fs = 0. Ri(s) is the rate of ingestion.

Sugar
absorption

Fast starch 
absorption

Slow starch 
absorption

Plasma 
glucoseRi(s)

Figure 5.13: Scheme of meal model by Fabietti et al. Absorption
dynamics of sugar, fast starch and slow starch are represented by 2nd,
3rd and 4th order transfer functions respectively.

A figure of the whole model is shown below.

Insulin
infusion

Insulin 
subsystem

Exogenous
glucose

Hepatic
balance

Intravenous 
glucose

Glucose
subsystem

Figure 5.14: Scheme of model by Fabietti et al. Meals are included in
the exogenous glucose-compartment (gray box). Insulin subsystem con-
sists of 3 compartments, glucose subsystem consists of 2 compartments.

An advantage of this model is that it includes di�erent absorption rates. As discussed in
section 2, carbohydrates need to be broken into monosaccharides before absorption, and this
causes more complex carbohydrates to be absorbed more slowly than for instance sugar. It is
therefore more physiologically accurate to include these di�erent types of absorption rates.

Lema-Perez et al, 2018 [36]

This model aims to be very physiologically accurate. Instead of using lumped compartments,
it models real process systems. However, this is not an entire meal model, but only a stomach
submodel. The stomach is divided into three compartments, stomach blood, stomach wall and
stomach contents. The stomach contents compartment models the amount of gastric mass in
the stomach, such as carbohydrates, fat, proteins, fiber, water etc. The stomach wall produces
gastric juices that are released into the stomach contents. The last compartment represents
the capillaries around the stomach. The model is shown in fig. 5.15.
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Figure 5.15: Stomach model by Lema-Perez et al.

This model consists of many equations and variables that will not be listed here. Since
the model is so extensive, it is maybe not the best one suited for control schemes, but can
nevertheless provide useful information. The stomach model is planned to be part of a
whole-body model developed by the same research group.

5.3 Discussion

All the models presented in the previous section describe how the glucose dynamics changes
after a meal. Even though they all aim to solve the same problem, there are a lot of di�erent
solutions. However, there are some things that are similar for many of the models. Such
a thing is the model structure. From the literature review, it has become clear that there
are two model structures that are common. That is to either model the GI system as a
two-compartment chain that typically represent the stomach and the gut, or to model it
through one compartment where the stomach and gut are lumped together. The models that
use one compartment are Rozendaal et al [33], Natalucci et al [27], Roy and Parker [26], Lehmann
and Deutsch [24]. This type of structure is shown in fig. 5.16.

Plasma 
glucoseGutFood 

intake

Figure 5.16: Meal models with one compartment

The meal models that model the stomach and gut as separate compartments include Hovorka [20],
Rashid et al [30] and UVA/Padova [21]. The UVA/Padova meal model actually further divide
the stomach into two compartments describing solid and liquid food (i.e. the process of making
chyme). Figure 5.17 shows what this structure looks like.
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glucose

Figure 5.17: Meal models with two compartments

Using two compartments definitely increases the physiological accuracy, but is also increasing
the number of states and parameters. If the goal is the use a minimal model, it is maybe
su�cient with one compartment as in fig. 5.16.

Gastric emptying is another factor that is important to capture. Gastric emptying refers to
the emptying of the stomach contents into the small intestine. Some models were too simple
to include gastric emptying (Fisher [31], Farmer [32], Fabietti [35]), while other models includes
it. The models by Lehmann & Deutch [24] and Roy & Parker [26] models gastric emptying
as a trapezoidal curve, while Natalucci [27] and Rozendaal [33] uses a power exponential. The
UVA/Padova meal model [21] uses a nonlinear rate between the stomach and gut compartment.

Another important factor to model is the rate of appearance (Ra) of glucose from food into
the blood. In other words, at which rate and amount ingested carbohydrates (glucose) appear
in the blood. Three models that just modeled this directly without any states describing
the stomach or gut, were the models by Fisher [31], Farmer [32] and Fabietti [35]. Other models
typically modeled Ra through first order linear kinetics dependent on the amount of glucose
in the gut-compartment. The equation for rate of appearance would then look something
like Ra(t) = k · Ggut(t) where k is a constant. This approach is seen in UVA/Padova [21],
Rozendaal [33], Natalucci [27], Roy and Parker [26], and Lehmann and Deutsch [24]. The models
by Hovorka [20] and Rashid [30] also use this approach even though they don’t specify it as Ra.

It is also important for a meal model to be accurate that it includes more info about the
ingested food. Either by giving nuances to the type of ingested carbohydrate, or to include the
e�ect of ingested fat or protein. There were actually only two models that included di�erent
types of carbohydrates. The model by Rashid et al [30] used “regular meal” and “rescue
carbohydrates” that was absorbed twice as fast. Fabietti [35] had three types of carbohydrates
with di�erent absorption rates; sugar, fast starch and slow starch. There were also only two
models including other macronutrients. The meal model by Roy and Parker [26] considered a
meal of carbohydrates, fat and protein. The extensive stomach model by Lema-Perez [36] also
modeled reaction kinetics and dynamics of many substrates, including carbohydrates, fat and
proteins.

There are in total a lot of factors to think about when modeling the GI system into a glucose-
insulin model. The models from the literature review have been compared on the basis of
some of these factors. That is summarized in table 5.3.
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5.4 Summary

A total of 11 meal models have been presented. Their similarities and di�erences have been
discussed, and it was seen that two model structures were common. The models were also
compared on the basis of how they model gastric emptying, rate of appearance and which
type of meal input they take. These factors are summarized in table 5.3.
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6 Meal model identification setup

This section will go through the identification that was performed on three of the meal models
from the literature review in section 5. The purpose of this was to assess how the models
performed compared to real glucose data, i.e. to see if the simulated postprandial glucose
response resembled this measured data. A publicly available data set was used to perform
the parameter identification. The data had to be prepared to be used for identification, that
is, converted to a format that could be used as an input to the di�erential equations. The
meal models were coupled with the Sorensen model. A subcutaneous insulin model was also
included.

6.1 Data set

The data that was used in identification was the Ohio T1DM data set [2] (2018 version), which
consists of data for six people with T1D. Four of them were female and two were male. The
subjects wore a Medtronic 530G insulin pump and a Medtronic Enlite CGM sensor together
with a Basis Peak fitness band. The subjects also reported life-event data such as stress, sleep,
meals and work. The data is stored in an XML-file for each patient with the following entries;
patient info, glucose level, finger stick, basal insulin, temp basal insulin, insulin bolus, meal,
sleep, work, stressors, hypo event, illness, exercise, heart rate, galvanic skin response, skin
temperature, air temperature, steps and sleep from Basis band. The data also contains a
viewer which enables data visualization.

6.2 Data preparation

The XML-files containing the Ohio data set were imported into MATLAB and then made into
a table for each data entry (such as glucose level or meals) with timestamps in one column and
the measured value in the other. These tables were also stored as excel files. However, since
the data was intended to be used in the Sorensen simulator, the data had to be interpolated
to match the simulator’s timestep of 0.1 minute. Glucose data that was measured every 5th
minute was interpolated to every 0.1 minute using a Kalman filter developed for automatic
preprosessing of glucose data [37] as shown in fig. 6.1. This also provided estimates of the
glucose level at times where the CGM measurements were missing.
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Figure 6.1: Kalman filtered CGM data of two days. The three spots
where CGM data is missing is filled with estimated glucose values which
is represented by the blue line. The dashed lines represent the estimated
value ± 2 standard deviations.

Meal data from the Ohio data set were filled with zeros for the timestamps where food was not
ingested. The type of meal was also included as a number from 1 to 5, describing breakfast,
lunch, dinner, snack and hypo correction respectively. Bolus insulin data were filled with zeros
at the timestamps where not infused. Basal and temp basal data had to be combined since
the temp basal insulin supersedes the basal rate when active. Lastly, the interpolated glucose,
meal and insulin data was combined in one large table for each patient. The units in the Ohio
T1DM dataset was mg/dL for glucose measurements, U (units) and U/hour for bolus and
basal insulin, and grams for carbohydrates. The glucose and insulin data had to be converted
to the same units as the Sorensen simulator uses, i.e. mmol/L (divide by 18.018) and pmol/L
(multiply by 6.94) respectively. The table was then stored as an excel file, and the data was
now ready to be used as input to the Sorensen simulator. The structure of the data was then
looking like the table shown in fig. 6.2.

Figure 6.2: Table with formatted data. This is from patient 588.
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The dates of the Ohio dataset have been shifted by a random amount into the future in order
to de-identify the dataset. However, days of the week and times of the day have been kept the
same.

6.3 Sorensen simulator

The glucose simulator based on the Sorensen model uses the revised equations from Panunzi
et al. [38] where some equations and parameter values of the original Sorensen model have been
updated. It is implemented in MATLAB and uses a 4th order Runge-Kutta method to solve
the di�erential equations. The code is available at Github at https://github.com/iasi-cnr/
A-Revised-Sorensen-Model. The simulator had to be modified to include subcutaneous
insulin infusion so that the insulin data from the Ohio T1DM dataset could be used. The
insulin model that was implemented was the Wilinska 2005 [39] (model 1) (also in Hovorka
2004 [20]) model of subcutaneous insulin, which is a two-compartment model. The equations
are given by

Ṡ1(t) = u(t) ≠ ka · S1(t) (6.1)
Ṡ2(t) = ka · S1(t) ≠ ka · S2(t) (6.2)
�ISC = ka · S2(t) (6.3)

with appearance in the heart and lungs compartment as

dIH(t)
dt

= 1
VIH

(�ISC + QI

BIB + QI

LIL + QI

KIK + QI

P IP V ≠ QI

HIH) (6.4)

The parameter ka represents the time constant for transfer between the subcutaneous insulin
compartments (ka = 1

Tins
) and was set to 0.0144 as in Rashid 2019 [30]. Figure 6.3 shows how

the subcutaneous insulin was added. Meal models were coupled with the gut compartment
through the rate �meal in the equation

dGG(t)
dt

= QG

G

V G

G

(GH(t) ≠ GG(t)) + 1
V G

G

(�meal ≠ �GGU ) (6.5)

as shown in fig. 6.3. For the meal models that had their own gut compartment (Lehmann
& Deutsch and UVA/Padova), this compartment was dropped and Sorensen’s own gut
compartment was used instead. How this was done is shown in detail in the appendix.
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Figure 6.3: Adding meal and subcutaneous insulin models to the
Sorensen model.

6.4 Meal models

Meal models from the literature review to identify were chosen by their compatibility with
both the Sorensen model and the Ohio T1DM dataset. Only models that were compatible
with both could be used. For example, the model by Roy & Parker could not be used since it
needs data on ingested fat and protein as well as carbohydrate, which is something the Ohio
dataset does not contain. The model also needs compartments modeling FFA dynamics, which
is something the Sorensen model does not have. Similarly, other meal models were ruled out,
leaving us with six possible models (Lehmann & Deutsch, Natalucci, UVA/Padova, Hovorka,
Farmer, Rozendaal). Table 6.1 below shows which models were compatible and not.

Meal model Compatible with Sorensen Can use Ohio dataset
Lehmann & Deutsch Yes Yes. Only need CHO data
Roy & Parker No. Need to model FFA dynamics No. Need FFA and protein data
Natalucci Yes Yes. Only need CHO data
UVA/Padova Yes Yes. Only need CHO data
Hovorka Yes Yes. Only need CHO data
Rashid Yes No. Need type of CHO
Fisher Yes No. No CHO input
Farmer Yes Yes. Only need CHO data
Rozendaal Yes Yes. Only need CHO data
Fabietti No. Control oriented No. Need type of CHO
Lema-Perez No. Too extensive No. Need data on many substrates

Table 6.1: Compatibility of meal models with Sorensen simulator and Ohio T1DM dataset.
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After this, three models of di�erent complexity levels were picked out to be identified. These
were Farmer, UVA/Padova and Lehmann & Deutsch. The models were then implemented in
the Sorensen simulator by modifying the state vector and adding the necessary algebraic and
di�erential equations.

6.5 Identification and training data

Identification of parameters was implemented through the MATLAB function fmincon. The
cost function to minimize was defined as the MSE between glucose output from simulating the
Sorensen model (heart and lungs compartment) and glucose data from the Ohio dataset. The
goal was then to find the optimal choice of meal model parameters, meaning the parameters
that yields a simulation output that is as close to the empirical dataset as possible such that
the cost function is minimized.

Sorensen model with meal 
dynamics

Ohio blood glucose value
Ohio dataset, patient 559, 09-Dec-2021
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Figure 6.4: Parameter identification of meal models was performed
through minimizing the MSE between the measured glucose data and
the simulated glucose data. The MSE was then used as input to the
fmincon function.

The parameters in the three di�erent meal models were identified on one meal (breakfast)
from each of the 6 patients. Plots of these meals are shown below in fig. 6.5. They range
from a small carbohydrate content (9g) to a large carbohydrate content (105g). The meals
were chosen such that they had a couple of hours before next meal was ingested, so that the
postprandial glucose response was as clear as possible and not disturbed by a next meal. They
were also chosen based on the quality of the CGM measurement, meaning that meals where a
lot of data was missing was not included. Before optimizing, some time was spent to find a
good initial point for the parameters before optimization. This is because fmincon is a local
optimizer, and the optimized minimum relies heavily on the initial point. This included some
manual tuning by trial and error which took approximately 10 minutes for each patient. Once
a satisfactory initial point was found, the optimization algorithm was run.
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Figure 6.5: Training data. Glucose, meal and insulin data from
the 6 meals in the Ohio T1DM dataset that was used in parameter
identification.

6.6 Evaluation and test data

After the parameters have been identified on the training dataset presented in fig. 6.5, the
results will be tested on data that are previously unknown to the optimizer (test dataset). The
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test data was picked out to be meals of the same type (breakfast) and approximately same
carbohydrate content as the training data. For example, for patient 559, the training meal
size was 30g and validation meal was 40g. For patient 563, this was 9g and 8g respectively.
Figure 6.6 shows the glucose and insulin for the test dataset.
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Figure 6.6: Test data. Glucose, meal and insulin data from the 6 meals
in the Ohio T1DM dataset that was used in evaluation.
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6.7 Summary

This section has presented the setup of the parameter identification of three meal models. The
dataset that was used have been presented, including how it was formatted. How the three
meal models have been coupled with the Sorensen glucose simulator has also been discussed.
The results of the identification and testing are given in the next section.
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7 Results of meal model identification and evaluation

This section will go through the results from the identification and evaluation of the meal
model parameters.

7.1 Farmer

7.1.1 Identification

The only parameter that were to be fitted was the parameter b in eq. (5.30) with the original
value of 0.05. This parameter controls both the amplitude and decay of the exponential
function. However, simulations showed that using an amplitude of CHO · 0.05 was way
too small (for example, a meal of 40g carbohydrate would only increase glucose levels by 2
mmol/L). An additional constant a was therefore included instead to control the amplitude
such that the equation now became

�meal = CHO · a · e≠b(t≠tmeal) (7.1)

with a = 0.2. The results of the parameter identification are shown in table 7.1 below.

Patient Date CHO Init. param. Est. param. MSE
559 11-Dec-2021 40g 0.05 0.0846 (7.8358)

05:05-09:00 5.4757
563 23-Oct-2021 9g 0.05 0.0175 (2.0603)

08:00-11:00 0.0438
570 07-Jan-2022 105g 0.05 0.1637 (127.1929)

08:00-10:45 11.0815
575 25-Nov-2021 55g 0.05 0.0795 (11.2153)

06:55-10:15 2.1390
588 10-Sep-2021 15g 0.05 0.0225 (3.9346)

07:12-10:15 0.3897
591 22-Dec-2021 36g 0.05 0.0543 (5.6083)

09:20-12:45 5.5556

Table 7.1: Parameter identification on six individual meals for the
Farmer meal model. The parameter to identify was b. The last column
describes MSE for the initial parameters (in parenthesis) and after
optimization.

Figure 7.1 below shows a comparison between the experimental data and the simulated blood
glucose value. It is clear that this meal model was not able to fit to the experimental data very
well. An average MSE of 4.1142 after parameter identification strengthens this statement.

53



Results of meal model identification and evaluation

0 500 1000 1500 2000 2500

Time [0.1 min]

8

9

10

11

12

13

14

15

16
G

lu
co

se
 [

m
m

o
l/L

]

39

39.2

39.4

39.6

39.8

40

40.2

40.4

40.6

40.8

41

C
a

rb
o

h
yd

ra
te

s 
[g

]

Glucose and meals, patient 559, 11-Dec-2021 05:05:00

Sorensen simulator

Ohio T1DM dataset

Ohio meals

(a) Patient 559

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [0.1 min]

9.5

10

10.5

11

11.5

12

12.5

G
lu

co
se

 [
m

m
o

l/L
]

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

C
a

rb
o

h
yd

ra
te

s 
[g

]

Glucose and meals, patient 563, 23-Oct-2021 08:00:00

Sorensen simulator

Ohio T1DM dataset

Ohio meals
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(c) Patient 570
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(d) Patient 575
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(e) Patient 588
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Figure 7.1: Results of Farmer meal model parameter identification.
The plots show the simulated glucose in the heart and lungs compartment
vs. the experimental data. The orange circles represent when a meal
was ingested.
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Results of meal model identification and evaluation

7.1.2 Evaluation

Since this model already had bad results in identification, there were no expectations of a good
test data fit. The results are shown below in fig. 7.2. Test gave an average MSE of 7.9232.
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(a) Patient 559, MSE=8.7706
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(b) Patient 563, MSE=9.0309
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(c) Patient 570, MSE=11.6162
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(d) Patient 575, MSE=1.8729
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(e) Patient 588, MSE=2.0384
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Figure 7.2: Evaluation of Farmer model on test data
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7.2 Lehmann & Deutsch

7.2.1 Identification

The parameters that were to be fitted in this meal model were Tasc, Tmax, Tdes and a from
eq. (5.2) and eq. (5.3). The parameter Tasc determines how fast the glucose level is increasing,
Tmax determines the amount of minutes for which the glucose level is at its highest, and Tdes

determines how fast the glucose level is decreasing afterwards. a contributes to determining
the maximum glucose value. The results are shown in table 7.2 and fig. 7.3.

Patient Date CHO Init. params. Est. params. MSE
559 11-Dec-2021 40g [47, 5, 56, 6] [49.1638, 2.0219, 59.2644, 6.1919] (0.1973)

05:05-09:00 0.1628
563 23-Oct-2021 9g [2, 80, 50, 18] [2.000, 89.9997, 37.7809, 19.9999] (0.1819)

08:00-11:00 0.0944
570 07-Jan-2022 105g [10, 60, 42.9997, 3.2] [3.1499, 76.3339, 42.6501, 3.4029] (0.1624)

08:00-10:45 0.0397
575 25-Nov-2021 55g [5, 70, 5, 5] [2.0000, 79.1594, 2.0005, 5.2752] (0.3116)

06:55-10:15 0.2680
588 10-Sep-2021 15g [5, 80, 30, 15] [2.0002, 87.4488, 34.337, 16.6438] (0.1342)

07:12-10:15 0.0618
591 22-Dec-2021 36g [50, 45, 20, 6] [51.8804, 49.2228, 22.3572, 7.2913] (0.2531)

09:20-12:45 0.1633

Table 7.2: Parameter identification on six individual meals for the
Lehmann & Deutsch meal model. The parameter vector corresponds
to [Tasc, Tdes Tmax, a]. The last column describes MSE for the initial
parameters (in parenthesis) and after optimization.

The model was able to replicate the glucose dynamics after a meal from the experimental data.
For all patients, the shape of the curve is following the Ohio data. The average MSE for the
six simulations was 0.1317.
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(b) Patient 563
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(c) Patient 570
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Figure 7.3: Results of Lehmann & Deutsch meal model parameter
identification. The plots show the simulated glucose in the heart and
lungs compartment vs. the experimental data. The orange circles
represent when a meal was ingested.
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7.2.2 Evaluation

Evaluation of parameters on the test dataset was performed. The results are shown in fig. 7.4.
The resulting average MSE was 4.4120, which is substantially higher than on the training
data. But, when looking at the plots, the test results are tolerable, especially in patients 570,
575 and 588.
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(a) Patient 559, MSE=4.0233
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(b) Patient 563, MSE=9.7021
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(c) Patient 570, MSE=3.5196
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(d) Patient 575, MSE=0.4501
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(e) Patient 588, MSE=1.8259
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Figure 7.4: Evaluation of Lehmann & Deutsch meal model on test
data.
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7.3 UVA/Padova

7.3.1 Identification

The parameters that were to be fitted in this model were b, c kmin, kmax and kgri from
eq. (5.12) and eq. (5.17). An additional parameter f was added to control the amplitude as is
also done in the original model in the equation describing Ra(t), where the amount of glucose
in the gut is multiplied by kabs·f

BW
. However, since the gut equation was skipped when coupling

the meal model with the Sorensen model (stomach equations were coupled with Sorensen’s own
gut compartment), this amplitude control had to be implemented otherwise. It was instead
multiplied with �meal in the gut compartment. The weight of the patients was not provided
in the dataset, and therefore f had to capture the e�ects of BW as well. A linear inequality
constraint was also included in parameter identification of this meal model to ensure that
kmin < kmax. The results of the parameter identification are presented in table 7.3 below.

Patient Date CHO Initial params. Optimized params. MSE
559 11-Dec-2021 40g [0.69, 0.17, 0.006, [0.7542, 0.0100, 0.0040, (1.3538)

05:05-09:00 0.03, 0.03, 0.25] 0.0499, 0.0606, 0.1854] 0.3120
563 23-Oct-2021 9g [0.69, 0.17, 0.006, [0.0145, 0.2973, 0.0101, (0.1437)

08:00-11:00 0.045, 0.045, 0.6] 0.9962, 0.0163, 0.6929] 0.0406
570 07-Jan-2022 105g [0.69, 0.17, 0.006, [0.4956, 0.2550, 0.0171, (0.1682)

08:00-10:45 0.04, 0.04, 0.1] 00.0387, 0.0386, 0.1061] 0.0616
575 25-Nov-2021 55g [0.69, 0.17, 0.006, [0.5020, 0.2550, 0.0471, (0.5553)

06:55-10:15 0.06, 0.06, 0.17] 0.4740, 0.0350, 0.1616] 0.4011
588 10-Sep-2021 15g [0.69, 0.17, 0.006, [0.7135, 0.1178, 0.0004, (0.1752)

07:12-10:15 0.05, 0.04, 0.48] 00.0418, 0.0416, 0.5052] 0.1396
591 22-Dec-2021 36g [0.69, 0.17, 0.006, [0.7317, 0.0116, 0.0000, (0.6628)

09:20-12:45 0.03, 0.03, 0.25] 0.0488, 0.0520, 0.2174] 0.2272

Table 7.3: Parameter identification on six individual meals for the
UVA/Padova meal model. The parameter vector corresponds to [b, c
kmin, kmax, kgri, f ]. The last column describes MSE for the initial
parameters (in parenthesis) and after optimization.

The model was able to capture the dynamics of the experimental data quite well in all patients.
The average MSE after parameter identification was performed was 0.1970. Figure 7.5 shows
a comparison of simulations with optimized parameters and the experimental data. The
simulations are able to follow the Ohio data satisfactory.
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(b) Patient 563
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(c) Patient 570
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(d) Patient 575
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(e) Patient 588
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Figure 7.5: Results of UVA/Padova meal model parameter identifi-
cation. The plots show the simulated glucose in the heart and lungs
compartment vs. the experimental data. The orange circles represent
when a meal was ingested.
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7.3.2 Evaluation

The identified parameters from table 7.3 were evaluated on the test dataset. The result is
shown in fig. 7.6 below. Testing gave a mean MSE of 4.2735, which is much higher than the
results on the training data which was 0.1970. For all patients except 563, the problem in
the test results lie more within the amplitude than in shape. The amplitude is a�ected by
parameter f . For some patients, the glucose curve is increasing either too early or too late.
This is especially easy to see in patient 559 where the glucose is increasing too late. The
parameters that a�ect this behavior are kmin, kmax and kgri. A high value speeds up the
increase, while a small value slows it down. However, some of the gap in MSE between the
training and test meal is expected due to natural variation between meals.
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(c) Patient 570, MSE=3.4295
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(d) Patient 575, MSE=0.7133
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Figure 7.6: Evaluation of UVA/Padova meal model on test data.

7.4 Summary

This section has presented the results of the parameter identification and evaluation.
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8 Discussion

This thesis has aimed to investigate how the impact of a meal on the blood glucose levels can
be mathematically modeled. The first part of this work was to map out existing meal models
by performing a literature review. 11 meal models were found and they were compared on the
basis of their complexity, structure and physiological accuracy. The details of this discussion
and comparison were presented in section 5.3 and will not be repeated here. The second part
of this thesis revolved around parameter identification of 3 meal models. The models were
assessed to see if they could capture the postprandial glucose dynamics of six patients from
an experimental dataset [2]. Following is a discussion of how well the three models performed.

8.1 Farmer

The Farmer model was the most simple meal model and only consisted of an exponential
function. The parameter to be fitted was the absorption constant b which determined the
decay of the exponential function. This model was not able to fit to the experimental data
very well. It had no delay after the carbohydrates were ingested, resulting in a huge increase
in blood glucose immediately after. This behavior is depicted in fig. 8.1. This did not resemble
the experimental data which had a more delayed type of increase. The decay part of the
glucose curve might have been able to fit to the experimental data, but some additional
dynamics would have been needed to be added for the whole model to fit well. However, it is
important to keep in mind that this model was developed from the Fisher model [31], which
again was based on an OGTT rather than a meal. In an OGTT, glucose is ingested in a liquid
form and absorption happens much faster since there is no need to digest the liquid. Citing
Fisher [31], “the aim is for the model to produce the desired e�ect of the plasma glucose levels
rising quite rapidly to a maximum in less than 30 min and then falling to the base level after
about 2-3 hours”. This means that the model will not be able to reproduce what is happening
in a mixed meal where absorption can take much longer time than in an OGTT. However, it
is a very simple model that is easy to interpret, so if the goal is simplicity and a qualitative
representation of a meal, this model might be satisfactory. Nonetheless, in this thesis it fell
short in fitting to the six experimental meals. Neither did it give good results in evaluation on
the test data, which was expected.
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Figure 8.1: Farmer gamma meal, gut and blood glucose. Blood glucose
levels rise too rapidly in this model, causing it to be unable to fit to the
experimental data.

8.2 Lehmann & Deutsch

The model by Lehmann & Deutsch performed significantly better than the Farmer model. As
seen in fig. 7.3, it was able to replicate the curve of the experimental data to a satisfactory
extent. For all patients, the simulated meal response was very similar to the experimental
data. On average, it gave a MSE of 0.1317 which is much better than the Farmer model.
However, the testing gave an average MSE of 4.4120. This higher test result was expected
since only one meal was used in parameter identification for each patient. Using a small
amount of data allows for overfitting and thus low generalizability. To be able to lower the
test error, one would need to train on many more meals. However, due to a limited amount of
time, that was not possible for this thesis. Nevertheless, this meal model was able to capture
postprandial glucose dynamics and it is likely that with a larger training dataset, it would
be able to generalize better as well. It is also important to remember that there are a lot of
di�erences between meals and that this can explain the test error. Even though the MSE
from testing was higher than in training, the test results still show that the model is following
the shape of the glucose curve after a meal. The error lies mostly within the discrepancy in
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amplitude, or sometimes how quickly the curve is increasing or decreasing. As opposed to
the Farmer model, this meal model was able to recreate the delay between ingestion of food
and blood glucose increase. That was captured through the parameter Tasc which determines
the amount of time it takes for the gastric emptying to reach its maximum. The identified
parameters varied somewhat between patients, and it was di�cult to find a pattern. However,
some similarities were found in parameters between patients. Tasc were in 4 of 6 patients very
small (around 2-3 minutes), Tdes was in 5 of 6 patients between 50 and 90 minutes, whereas
Tmax varied between 20 and 60 minutes for all patients except one. These trends resulted in
a gastric emptying curve that had a fast increase, but a much slower decrease. Figure 8.2
depicts this. The amplitude a was usually around 5, but had in patients 563 and 588 a value
of 16 and 19.

Patient Tasc Tdes Tmax a
559 49.1638 2.0219 59.2644 6.1919
563 2.0001 89.9997 37.7809 19.9999
570 3.1499 76.3339 42.6501 3.4029
575 2.0000 79.1594 2.0005 5.2752
588 2.0002 87.4488 34.3377 16.6438
591 51.8804 49.2228 22.3572 7.2913

Table 8.1: Identified parameters, Lehmann & Deutsch
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Figure 8.2: Gamma meal, patient 570. Fast increase, slow decrease.

8.3 UVA/Padova

Lastly, the meal model from the UVA/Padova simulator was identified and evaluated. Average
training MSE was 0.1970, while average test MSE was 4.2735. The model was able to follow
the experimental data after identification which is reflected in the low training error. However,
overfitting is a problem in this model as well due to the small training dataset, and the test
error is therefore higher than the training error. Nevertheless, the training results were very
good and test results were tolerable, so it can be expected that with more data, the model
will be able to generalize better. One of the factors that made this model fit so well to the
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experimental data was probably its two stomach compartments that causes a delay between
ingestion of carbohydrates and the increased BG level. The model is therefore able to capture
the time it takes for the stomach to grind and digest the food before absorption. A plot of these
two stomach compartments are shown in fig. 8.3a. A meal is represented by a delta function
which increases the amount of glucose in Qsto1 immediately, whereas the glucose in the second
compartment Qsto2 increases more slowly. Absorption by the gut is given by the rate �meal

which is shown in fig. 8.3b. Lastly, glucose reaches the heart and lungs compartment.
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Figure 8.3: UVA/Padova meal model stomach, gut and blood glucose
for patient 570.

The parameter values of the UVA/Padova meal model did not vary very much from the
original values in Dalla Man, 2006 [29]. The original value of b was 0.69, and was identified
to be between 0.49 and 0.75 in five of six patients. Parameter c with the original value of
0.17 was identified between 0.1 and 0.3, except in two patients. kmax and kgri were around
0.04, which is similar to the original value of 0.05. These two parameters controls the rate
at which glucose moves between compartments, and higher values means a faster increase
in BG. The only parameter that was di�erent from the original values was kmin, which was
often estimated to something between 0.01 and 0.04, i.e. a faster rate than the original value
of 0.006. The parameter f was created when coupling the meal model with the Sorensen
model, and did therefore not exist in the original model. f was in most cases estimated to
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something between 0.1 and 0.2, but was in patients 563 and 588 much higher (0.5 and 0.69
respectively). This was also the case in the Lehmann & Deutsch model, where the amplitude a
was much higher for the same two patients. This suggests that these two meals were somewhat
di�erent than the others. They have in common that they are the two smallest meals in terms
of carbohydrate (9g and 15g), and maybe therefore needed an extra amplification since the
measured BG levels did still increase a lot.

Patient b c kmin kmax kgri f
559 0.7542 0.0100 0.0400 0.0499 0.0606 0.1854
563 0.0145 0.2973 0.0101 0.9962 0.0163 0.6929
570 0.4956 0.2550 0.0171 0.0387 0.0386 0.1061
575 0.5020 0.2550 0.0471 0.4740 0.0350 0.1616
588 0.7135 0.1178 0.0004 0.0418 0.0416 0.5052
591 0.7317 0.0116 0.0000 0.0488 0.0520 0.2174

Table 8.2: Identified parameters, UVA/Padova

In the original UVA/Padova meal model, the rate of appearance is divided by the body weight
BW of the patient. The weight of the patients was not provided by the Ohio T1DM dataset,
and could therefore not be included in the simulations. As a result, the parameter f also had
to capture this. Di�erences in body weight might therefore explain some of the di�erences in
the estimated value of f .

8.4 Sorensen simulator

Even though the most important thing to consider when including a meal model to the whole-
body model of Sorensen is the glucose level in the heart and lungs compartment (as done in
parameter identification), it is important to remember that the Sorensen simulator is complex,
and that adding a meal model to it will a�ect what is happening in all other compartments. A
subcutaneous insulin model was also added, which made the insulin dynamics change. Some
plots of other relevant compartments and rates are therefore added to increase understanding of
what is going on during the simulations. These plots are depicted in fig. 8.4. These figures are
from the simulation of a meal from patient 570 (fig. 7.5c) where the peak glucose level occurs
at 80 minutes. The production of glucose (�HGP ) and the glucagon concentration are both
decreasing until the glucose level reaches its peak at 80 min, and then slowly increasing again.
This makes sense with how the body wants to maintain a stable glucose level. Figure 8.4c
shows the subcutaneous insulin model that was added. Two boluses are given in a short
amount of time, which makes the first insulin compartment S1 increase. There is a delay
for when the levels are increasing in the second compartment S2. This corresponds with
how subcutaneous insulin injections has a delay before in appearing in plasma. The last plot
(fig. 8.4d) shows the level of insulin in various compartments. Since the simulated patient is a
type 1 diabetic, no insulin are produced endogenously, but depends only on the injected bolus
and basal rate.
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Figure 8.4: Inside Sorensen simulator during a meal. This is with the
UVA/Padova meal model and the meal and insulin inputs from patient
570.

8.5 Challenges

Even though the models were able to fit to the experimental data in most cases, there are
still a lot of challenges in identifying the parameters. Most of these challenges originate from
the dataset itself and its trustworthiness. All information about meals from this dataset are
self-reported by the patient and is therefore subject to errors. The amount of carbohydrate
might not be correct, neither the time of the meal. When going through the data, it was seen
that sometimes meals were not reported at all (but glucose levels increased, so the meal must
have happened), or that meals were reported too early or too late according to the glucose
curve (ref. fig. 8.5). When using this type of data in parameter identification, one might end
up with parameters trying to compensate for this misreported time of a meal. The parameters
will then not represent the true postprandial glucose response. Even though the meals that
were chosen for the parameter identification did not seem to su�er from misreported time of
announcement, one can still not be 100 % sure. The data is also recorded during “everyday
life”, meaning that the patients are working, exercising, sleeping etc. during the data collection.
In other words, there are factors that might have influenced the data that are not considered
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by the simulator and can potentially cause errors.
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Figure 8.5: Misreported meal from Ohio T1DM dataset. One can
clearly see that the curve has been going up for a while before the meal
is reported.

Another challenge is that the optimizer is comparing simulated blood glucose values with
CGM measurements. A CGM sensor measures the glucose in the interstitial fluid rather than
in the blood, and will typically have a delay of 5 minutes. This is because the glucose moves
from the blood vessels and capillaries first and then into the interstitial fluid [40]. Ideally, one
should have used blood glucose data instead of CGM, or implemented some CGM dynamics
to the Sorensen model.

A third challenge is the validity of the subcutaneous insulin model that was added to the
Sorensen simulator. It was a simple model with the same rate parameter for both compartments,
with a value of ka = 0.0144 resulting in a time-constant of 69.444 minutes. There was no way
of identifying this parameter or to check its validity since the Ohio dataset did not contain
blood insulin measurements (only insulin infusion). An erroneous insulin rate could potentially
cause simulated blood glucose values to decrease too fast or too slow.

The optimizer itself and the choice of cost function is also something that a�ects the results
of the parameter identification. As stated earlier, the optimizer fmincon only provides local
results and is therefore dependent on the initial parameter values. Time was spent in order
to find a good initial point, but there might exist another initial point that would provide a
better result. The cost function was implemented as the MSE between the simulated glucose
in heart and lungs compartment and the measured glucose data from the dataset. No other
type of cost function was tested out.

It is also important to keep in mind that the Sorensen simulator is a “general” glucose simulator
and that parameters that a�ect for instance insulin sensitivity or glucagon response have not
been adapted to fit the individual patient. Since intra-patient variability is not captured by
the Sorensen simulator, postprandial glucose responses are not completely accurate.

Lastly, the only type of meal considered in identification of parameters in this thesis were
breakfasts. Breakfasts are subject to the dawn phenomenon (an increase in BG between 02:00
and 08:00 in the morning), and glucose values might be a�ected from that. Future work can
therefore include identifying parameters on other types of meals (lunch, dinner, snack etc.).
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After the parameters were identified, the models were evaluated on a test dataset. This
dataset has not been seen by the optimizer, and is therefore completely new data. Since the
parameters were identified to fit the training data which only consisted of one meal from one
patient, the test error ended up being larger than the training error. This is what is known
as overfitting. This happens because there are many di�erences between individual meals,
so that fitting parameters to one meal might not be suitable for another meal. Even though
the carbohydrate content was approximately the same in both training and test meals, there
are many other di�erences to consider. Both the content of other macronutrients and the
time of ingestion vary between the two meals. For instance, the test meal for patient 563
(fig. 6.6b) is slower than the others (slow increase in glucose), which might be caused by a high
fat content. This is not similar to the training meal for patient 563, which has a much faster
increase in blood glucose. It is therefore important to give the optimizer several meals such
that the parameters capture these di�erences. Ideally, more data should have been used in
identification to obtain more credible and general results. This could have been implemented
by a cost function that simulated several meals and then adding up the MSE from each meal,
such that one would find one set of optimal parameters common for all these meals. However
due to a limited amount of time and the fact that optimizing on just one meal took around 60
minutes, this was never tested out in this thesis.

8.6 Summary

This section has discussed the performance of the three meal models. The Farmer model
failed in both identification and evaluation, mostly due to its structure that only allowed for
an immediate increase in BG after ingestion which did not fit the experimental data. The
Lehmann & Deutsch model and the UVA/Padova model gave much better results and were
able to mimic the postprandial glucose response of the experimental data in identification.
However, on the test data, the results were not as good. This was caused by the small amount
of training data, and the models are believed to perform better with a larger training dataset.
Still, it is important to keep in mind that all meals are di�erent and that some variation in
test results are to be expected. Even though the test results were not completely satisfactory,
this work has nonetheless provided great insights in how a meal model and its structure a�ects
glucose levels.
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9 Conclusion

This thesis has investigated the e�ect meals have on the blood glucose levels and how that can
be mathematically modeled. This includes theory about the physiology of the gastrointestinal
system and diabetes. A literature review was performed, and 11 meal models were found. The
literature review showed that

• The most common way to quantify a meal was through the amount of carbohydrates
(although some models included more information such as amount of fat, proteins or
type of carbohydrate)

• The two most common structures were to use one gut compartment, or one stomach
and one gut compartment

• More complex information such as order of ingestion or other personalized factors were
not included in any of the models

Three of the meal models from the literature review were then used in parameter identification
and evaluation. Results showed that

• The UVA/Padova and Lehmann & Deutsch models performed much better than the
Farmer model

• Models with a delayed increase in glucose fit better to the experimental data. This was
probably due to the fact that the stomach needs time to grind stomach contents before
absorption is possible

• Due to a small training dataset, overfitting was an issue

Future work could be to fix some of the challenges that was mentioned in the discussion
in section 8. Most important would be to use more data in parameter identification in
order to improve test results. Another improvement could be to use a “better” dataset that
contained blood glucose measurements instead of CGM, blood insulin measurements and more
trustworthy meal information regarding carbohydrate content and time of ingestion. Lastly,
more time can be spent on tuning initial values before running the optimizer in order to find
a better local minimum.
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Sorensen model

A Sorensen model

The following section is adapted from the revised Sorensen model [38].

Parameters and variables
G – glucose concentration [mmol/L]
I – insulin concentration [pmol/L]
‰ – glucagon concentration [pmol/L]
V – volume [L]
Q – vascular blood water flow rate [L/min]
� – metabolic source or sink rate [mmol/min or pmol/min]
T – trans-capillary di�usion rate [min]
t – time [min]

Subscripts
First subscript: which compartment (B – brain, H – heart/lungs, G – gut, L – liver, K –
kidney, P – periphery, A - artery)
Second subscript: interstitial fluid space (I) or vascular blood water space (V)

Superscripts
G – glucose
I - insulin
‰ - glucagon
B - basal value
N - normalized value (divided by basal value)

Metabolic sources or sinks
�P GU - peripheral glucose uptake, eq. (A.17)
�RBCU - red blood cell glucose uptake [10 mg/min]
�P IR - peripheral insulin release [0 mg/min] for a type 1 diabetic
�LIC - liver insulin clearance, eq. (A.33)
�KIC - kidney insulin clearance, eq. (A.35)
�P IC - peripheral insulin clearance, eq. (A.36)
�KGE - kidney glucose excretion, eq. (A.31)
�HGU - hepatic glucose uptake, eq. (A.27)
�HGP - hepatic glucose production, eq. (A.20)
�GGU - gut glucose utilization [20 mg/min]
�BGU - brain glucose uptake [70 mg/min]
�P‰C - plasma glucagon clearance, eq. (A.37)
�M‰C - metabolic glucagon clearance [0.91 L/min]
�P‰R - pancreatic glucagon release, eq. (A.38)

Equations
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Sorensen model

Brain compartment

dGBV (t)
dt

= QG

B

V G

BV

(GH(t) ≠ GBV (t)) ≠ VBI

V G

BV
T G

B

(GBV (t) ≠ GBI(t)) (A.1)

dGBI(t)
dt

= 1
T G

B

(GBV (t) ≠ GBI(t)) ≠ �BGU

VBI

(A.2)

dIB(t)
dt

= QI

B

V I

B

(IH(t) ≠ IB(t)) (A.3)

Heart/lungs compartment

dGH(t)
dt

= 1
V G

H

(QG

BGBV (t) + QG

L GL(t) + QG

KGK(t) + QG

P GP V (t) ≠ QG

HGH(t) ≠ �RBCU )

(A.4)
dIH(t)

dt
= 1

V I

H

(QI

BIB(t) + QI

LIL(t) + QI

KIK(t) + QI

P IP V (t) ≠ QI

HIH(t) + i(t)) (A.5)

Gut compartment

dGG(t)
dt

= QG

G

V G

G

(GH(t) ≠ GG(t)) + 1
V G

G

(�meal ≠ �GGU ) (A.6)

dIG(t)
dt

= QI

G

V I

G

(IH(t) ≠ IG(t)) (A.7)

Liver compartment

dGL(t)
dt

= 1
V G

L

(QG

AGH(t) + QG

GGG(t) ≠ QG

L GL(t) + �HGP ≠ �HGU ) (A.8)

dIL(t)
dt

= 1
V I

L

(QI

AIH(t) + QI

GIG(t) ≠ QI

LIL(t) + �P IR ≠ �LIC) (A.9)

Kidney compartment

dGK(t)
dt

= QG

K

V G

K

(GH(t) ≠ GK(t)) ≠ 1
V G

K

�KGE (A.10)

dIK(t)
dt

= QI

K

V I

K

(IH(t) ≠ IK(t)) ≠ 1
V I

K

�KIC (A.11)
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Sorensen model

Periphery compartment

dGP V (t)
dt

= QG

P

V G

P V

(GH(t) ≠ GK(t)) ≠ VP I

V G

P V
T G

P

(GP V (t) ≠ GP I(t)) (A.12)

dGP I(t)
dt

= 1
T G

P

(GP V (t) ≠ GP I(t)) ≠ �P GU

V G

P I

(A.13)

dIP V (t)
dt

= QI

P

V I

P V

(IH(t) ≠ IP V (t)) ≠ VP I

V I

P V
T I

P

(IP V (t) ≠ IP I(t)) (A.14)

dIP I(t)
dt

= 1
T I

P

(IP V (t) ≠ IP I(t)) ≠ �P IC

V I

P I

(A.15)

Glucagon system
d‰N (t)

dt
= 1

V ‰
(�M‰C · �N

P‰R ≠ �M‰C · ‰N (t)) (A.16)
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Sorensen model

Metabolic sinks and sources equations

�P GU = M I

P GU · MG

P GU · 35 (A.17)
M I

P GU = 7.03 + 6.52 · tanh [0.338(IN

P I(t) ≠ 5.82)] (A.18)
MG

P GU = GN

P I(t) (A.19)
�HGP = M I

HGP · M‰

HGP
· MG

HGP · 155 (A.20)
dM I

HGP

dt
= 1

·1
(M IŒ

HGP ≠ M I

HGP ) (A.21)

M IŒ
HGP = 1.2793 ≠ 1.0647 · tanh [1.733(IN

L (t) ≠ 0.849)] (A.22)
M‰

HGP
= M‰0

HGP
≠ f2 (A.23)

M‰0
HGP

= 2.7 · tanh [0.39‰N (t)] (A.24)
df2
dt

= 1
·‰

(M‰0
HGP

≠ 1
2 ≠ f2) (A.25)

MG

HGP = 1.42 ≠ 1.41 · tanh [0.62(GN

L (t) ≠ 0.497)] (A.26)
�HGU = M I

HGU · MG

HGU · 20 (A.27)
dM I

HGU

dt
= 1

·1
(M IŒ

HGU ≠ M I

HGU ) (A.28)

M IŒ
HGU = 2.0 · tanh [0.55IN

L (t)] (A.29)
MG

HGU = 5.66 + 5.66 · tanh [2.44(GN

L (t) ≠ 1.48)] (A.30)
�KGE = 71 + 71 · tanh [0.11GK(t) ≠ 460] 0 < GK(t) < 460mg/dL (A.31)
�KGE = ≠330 + 0.872GK(t) GK(t) Ø 460 (A.32)
�LIC = fLIC · (QI

HIH(t) + QI

GIG(t) + �P IR) (A.33)
�P IR = 0 (for T1D) (A.34)
�KIC = fKIC · QI

KIH(t) (A.35)

�P IC = IP I(t)

(1≠fP IC
fP IC

)( 1
Q

I
P

) ≠ T
I
P

VP I

(A.36)

�P‰C(t) = �M‰C(t) · ‰N (t) (A.37)
�N

P‰R = M I

P‰R · MG

P‰R (A.38)
MG

P‰R = 2.93 ≠ 2.10 · tanh [4.18(GN

H(t) ≠ 0.61)] (A.39)
M I

P‰R = 1.31 ≠ 0.61 · tanh [1.06(IN

H (t) ≠ 0.47] (A.40)

Parameter values and units
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Sorensen model

Parameter Value Unit
·1 25 min
·‰ 65 min
V G

BV
0.35 L

V G

BI
0.45 L

V G

H
1.38 L

V G

L
2.51 L

V G

G
1.12 L

V G

K
0.66 L

V G

P V
1.04 L

V G

P I
6.74 L

QG

B
0.59 L/min

QG

H
4.37 L/min

QG

A
0.25 L/min

QG

L
1.26 L/min

QG

G
1.01 L/min

QG

K
1.01 L/min

QG

P
1.51 L/min

T G

B
2.1 min

T G

P
5.0 min

fLIC 0.4 dimensionless
fKIC 0.3 dimensionless
fP IC 0.15 dimensionless
V I

B
0.26 L

V I

H
0.99 L

V I

G
0.94 L

V I

L
1.14 L

V I

K
0.51 L

V I

P V
0.74 L

V I

P I
6.74 L

QI

B
0.45 L/min

QI

H
3.12 L/min

QI

A
0.18 L/min

QI

K
0.72 L/min

QI

P
1.05 L/min

QI

G
0.72 L/min

QI

L
0.9 L/min

T I

P
20.0 min

V ‰ 11.31 L

Table A.1: Parameter values Sorensen model.
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Meal models added to Sorensen model

B Meal models added to Sorensen model

All 3 meal models were coupled with the Sorensen model through the �meal rate in the gut
compartment.

Farmer model

�meal = CHO · a · exp (≠b · (t ≠ tmeal)) (B.1)
dGG(t)

dt
= QG

G

V G

G

(GH(t) ≠ GG(t)) + 1
V G

G

(�meal ≠ �GGU ) (B.2)

Lehmann & Deutsch model

Gempt =

Y
_____]

_____[

(Vmax/Tasc)t if t < Tasc

Vmax if Tasc Æ t < Tasc + Tmax

Vmax ≠ (Vmax/Tdes)(t ≠ Tasc ≠ Tmax) if Tasc + Tmax Æ t < Tasc + Tmax + Tdes

0 elsewhere
(B.3)

Vmax = a · CHO

Tasc + 2 · Tmax + Tdes

(B.4)

�meal = Gempt(t) (B.5)
dGG(t)

dt
= QG

G

V G

G

(GH(t) ≠ GG(t)) + 1
V G

G

(�meal ≠ �GGU ) (B.6)

UVA/Padova meal model

Qsto(t) = Qsto1(t) + Qsto2(t) (B.7)
Q̇sto1(t) = ≠kgri · Qsto1 + D · ”(t) (B.8)
Q̇sto2(t) = ≠kempt(Qsto) · Qsto2(t) + kgri · Qsto1(t) (B.9)
�meal = f · kempt(Qsto(t)) · Qsto2 (B.10)
dGG(t)

dt
= QG

G

V G

G

(GH(t) ≠ GG(t)) + 1
V G

G

(�meal ≠ �GGU ) (B.11)
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Code - simulator and identification

C Code - simulator and identification

This section presents the MATLAB code for the Sorensen simulator which is coupled with
the UVA/Padova meal model. The simulator is the revised Sorensen simulator [38], but has
been modified to include the equations for the meal models and inputs from the Ohio T1DM
dataset. The code for the cost function and parameter identification is included as well. Some
files from the Sorensen simulator is not included here due to its size, but the most relevant files
in order to understand the setup are included. Code for the two other meal models (Lehmann
& Deutsch and Farmer) is not included since it is very similar to the UVA/Padova code. The
only changes are the meal equations and parameters, but they are added to the simulator in
the exact same way.

CreateInputArraysOhio.m

global date_ patient_nr data_one_day time_one_day ...
meal_one_day cgm_one_day bolus_one_day basal_one_day CHO_0

patient_nr = ’570’;

% Read all data files to workspace
% data_559 = readtable(’559/interpolated/interpolated_data_with_kalman_559.xlsx’);
% data_563 = readtable(’563/interpolated/interpolated_data_with_kalman_563.xlsx’);
% data_588 = readtable(’588/interpolated/interpolated_data_with_kalman_588.xlsx’);
% data_591 = readtable(’591/interpolated/interpolated_data_with_kalman_591.xlsx’);
% data_570 = readtable(’570/interpolated/interpolated_data_with_kalman_570.xlsx’);
% data_575 = readtable(’575/interpolated/interpolated_data_with_kalman_575.xlsx’);

switch patient_nr
case ’559’

data = evalin(’base’,’data_559’);
data = removevars(data,{’total’});
t_start = {’11-Dec-2021 05:05:00’};
t_end = {’11-Dec-2021 09:00:00’};
CHO_0 = 40000; % mg carbohydrate

case ’563’
data = evalin(’base’,’data_563’);
t_start = {’23-Oct-2021 08:00:00’};
t_end = {’23-Oct-2021 11:00:00’};
CHO_0 = 9000;

case ’570’
data = evalin(’base’,’data_570’);
t_start = {’07-Jan-2022 08:00:00’};
t_end = {’07-Jan-2022 10:45:00’};
CHO_0 = 105000;

case ’575’
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Code - simulator and identification

data = evalin(’base’,’data_575’);
t_start = {’25-Nov-2021 06:55:00’};
t_end = {’25-Nov-2021 10:15:00’};
CHO_0 = 55000;

case ’588’
data = evalin(’base’,’data_588’);
t_start = {’10-Sep-2021 07:12:00’};
t_end = {’10-Sep-2021 10:15:00’};
CHO_0 = 15000;

case ’591’
data = evalin(’base’,’data_588’);
t_start = {’22-Dec-2021 09:20:00’};
t_end = {’22-Dec-2021 12:45:00’};
CHO_0 = 36000;

end

% Extract data from chosen time period and patient
date_ = datestr(t_start);
i1 = find(data.time == t_start);
i2 = find(data.time == t_end);

data_one_day = data(i1:i2, [1,2,4,5,6,7]);
time_one_day = data_one_day.time;
meal_one_day = data_one_day.carbs;
cgm_one_day = data_one_day.cgm_mmol_kalman;
bolus_one_day = data_one_day.bolus_pmol;
basal_one_day = data_one_day.basal_pmol;

% Find times where meal is ingested, bolus is injected and basal change happens
global meal_index_times bolus_index_times basal_index_times

meal_index_times = find(data_one_day.carbs ~= 0);
bolus_index_times = find(data_one_day.bolus_pmol ~= 0);

basal_index_times = [];
prev_val = data_one_day.basal_pmol(1);

for i=1:length(data_one_day.basal_pmol)
basal_val = data_one_day.basal_pmol(i);
if basal_val ~= prev_val

basal_index_times = [basal_index_times i];
prev_val = basal_val;

end
end

basal_index_times = transpose(basal_index_times);
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Code - simulator and identification

CostFunction.m

function error = CostFunction(params)

global b_p0 c_p0 k_min_p0 k_max_p0 k_gri_p0 ...
Tzero_ Tend_ Insu_init Gluc_init f

tic
% Parameters to identify
b_p0 = params(1);
c_p0 = params(2);
k_min_p0 = params(3);
k_max_p0 = params(4);
k_gri_p0 = params(5);
f = params(6);

% Make arrays for insulin and meal input
createInputArraysOhio;

% Set start and end time according to Ohio data time
Tzero_ = 0;
Tend_ = minutes(data_one_day.time(end) - data_one_day.time(1));

% Initial values for glucose and insulin
Insu_init = basal_one_day(1);
Gluc_init = cgm_one_day(1);

% Simulate Sorensen model
SorensenAutoTester;

% Extract glucose data after simulation
glucose_sim = STATEVARS(:,3);
glucose_ohio = data_one_day.cgm_mmol_kalman;
minLength = min(length(glucose_sim), length(glucose_ohio));
glucose_sim = glucose_sim(1:minLength);
glucose_ohio = glucose_ohio(1:minLength);

% Calculate MSE
error = immse(glucose_ohio, glucose_sim);
toc
end
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Code - simulator and identification

optimizeParameters.m

% Initial point
p0 = [0.69, 0.17, 0.006, 0.03, 0.03, 0.25];

% Lower and upper bounds
lb = [0.01, 0.01, 0, 0, 0, 0.01];
ub = [0.99, 0.5, 0.1, 1, 1, 1];

% Inequality constraint to ensure k_min < k_max
A = [0, 0, 1, -1, 0, 0];
b = 0;

N = length(p0);
options = optimoptions(’fmincon’,’Display’,’iter’,’MaxFunctionEvaluations’, ...

1000*N,’MaxIterations’,150);
params_opt = fmincon(@CostFunction,p0,A,b,[],[],lb,ub,[],options);

x



Code - simulator and identification

updateParvalsFromOhio.m

% Change values for meals and insulin infusion in Sorensen simulator at correct time

% update meal data
for i=1:length(meal_index_times)

if Time == floor(meal_index_times(i)/10)
Time_meal = floor(meal_index_times(i)/10);
% multiply by 1000 to get mg instead of g
CHO = data_one_day.carbs(meal_index_times(i))*1000;

end
end

% update bolus data
for i=1:length(bolus_index_times)

% insulin infusion = bolus + basal
if Time == floor(bolus_index_times(i)/10)

insulin_inf = data_one_day.bolus_pmol(bolus_index_times(i)) + ...
data_one_day.basal_pmol(bolus_index_times(i));

end
% must be set to basal rate again at next step since a bolus is
% delivered all at once
if Time == floor(bolus_index_times(i)/10)+1

insulin_inf = data_one_day.basal_pmol(bolus_index_times(i)+1);
end

end

% update basal data
for i=1:length(basal_index_times)

if Time == floor(basal_index_times(i)/10)
insulin_inf = data_one_day.basal_pmol(basal_index_times(i));

end
end
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SorensenAutoTester.m

%=========================================================================
% SCRIPT SorensenAutoTester.m: automatic pure-Matlab (no C++) Tester
% Sorensen V01.01.41 20190724 (Gemini 13.01.06, BMLib 10.0.2
% Autocoder 02.11.09, coded 24-Jul-2019 16:06:54)
%=========================================================================

% calls DetermineParameters and produces the initialization values for
% the variables (parameters initialized BEFORE variables)
SorensenInitializeParvals;
SorensenInitializeStateVars;
TIME = Tzero:Tdelta:Tend;
nTimes = length(TIME);
STATEVARS = zeros(nTimes,nDepVars);
STATEVARS(1,:) = CurrentY;

% 20190709 Andrea De Gaetano, Marcello Pompa: Runge Kutta 4
% NOTE: this MATLAB implementation of RK4 uses vector assignments and therefore
% does NOT replicate exactly the corresponding C++ RK routine. By vector-assigning
% the increments to the (differentially-defined) Ys, the intermediate and final
% computation of the derivatives of one Y depend on the intermediate and final
% values of the other Ys. Conversely, when using loops, the intermediate and
% final computation of the derivatives of one Y depend on the interval INITIAL
% values of the other Ys, same as in C++. This last arrangement is consistent with
% the fact that the algebraic variables too are updated only after the computation
% of all the differential variables and that therefore the algebraic variable values
% used during all of the intermediate computations are the interval initial values.
% For smooth functions the differences in the implementations ought to be minimal.
% In case of differences, the C++ version is the logically consistent one.
% In any case, for non-smooth functions a variable-step integrator such as
% Runge-Kutta-Fehlberg ought to be used.

fprintf(1,’\ n.’);
Time = TIME(1);
for (tk=1:(nTimes-1))

CurrentY0 = CurrentY;

% update meal and insulin inputs
updateParvalsFromOhio;

SorensenCurrentY2NamedVars;
SorensenComputeDerivatives;
dY1 = out1; % RK constant 1
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Code - simulator and identification

Time = TIME(tk) + Tdelta/2;
CurrentY = CurrentY0 + Tdelta/2 * dY1;
SorensenCurrentY2NamedVars;
SorensenComputeDerivatives;
dY2 = out1; % RK constant 2

CurrentY = CurrentY0 + Tdelta/2 * dY2;
SorensenCurrentY2NamedVars;
SorensenComputeDerivatives;
dY3 = out1; % RK constant 3

Time = TIME(tk+1);
CurrentY = CurrentY0 + Tdelta * dY3;
SorensenCurrentY2NamedVars;
SorensenComputeDerivatives;
dY4 = out1; % RK constant 4

CurrentY = CurrentY0 + Tdelta * (dY1/6 + dY2/3 + dY3/3 + dY4/6);
SorensenForceVars;
SorensenCurrentY2NamedVars; % needed to do the next computations
SorensenComputeDiracs;
SorensenNamedVars2CurrentY; % rebuild CurrentY
SorensenForceVars;
SorensenCurrentY2NamedVars; % needed to do the next computations
SorensenComputeAlgebraic;
SorensenNamedVars2CurrentY; % rebuild CurrentY
SorensenForceVars;
STATEVARS(tk+1,:) = CurrentY; % add state values for each timestep to STATEVARS matrix
%fprintf(1,’.’); if (mod(tk,50)==0) fprintf(1,’\ n’); end % show progress

end

SorensenLoadNames;

SorensenInitializeParvals.m

% ====================================================================================
% SCRIPT SorensenInitializeParvals.m: assignment of initial values to named parameters
% Sorensen V01.01.41 20190724 (Gemini 13.01.06, BMLib 10.0.2
Autocoder 02.11.09, coded 24-Jul-2019 16:06:54)
% ====================================================================================

global PARMIN PARMAX PARDETM;

nPars = 152;
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PARMIN = zeros(152,1); % max and min value of a certain parameter
PARMAX = zeros(152,1);
PARDETM = zeros(152,1); % PARDETM = 0 if not determined in DetermineParams.m
PARMIN(001) = -30; PARMAX(001) = 1440; PARDETM(001)=0;
PARMIN(002) = 0; PARMAX(002) = 10080; PARDETM(002)=0;
PARMIN(003) = 0; PARMAX(003) = 600; PARDETM(003)=0;
PARMIN(004) = 0; PARMAX(004) = 10; PARDETM(004)=0;
PARMIN(005) = 0; PARMAX(005) = 10; PARDETM(005)=0;
PARMIN(006) = 0; PARMAX(006) = 10; PARDETM(006)=0;
PARMIN(007) = 0.01; PARMAX(007) = 50; PARDETM(007)=0;
PARMIN(008) = 0.1; PARMAX(008) = 20; PARDETM(008)=0;
PARMIN(009) = 0; PARMAX(009) = 10; PARDETM(009)=0;
PARMIN(010) = 0; PARMAX(010) = 10; PARDETM(010)=0;
PARMIN(011) = 0; PARMAX(011) = 10; PARDETM(011)=0;
PARMIN(012) = 0; PARMAX(012) = 10; PARDETM(012)=0;
PARMIN(013) = 0; PARMAX(013) = 10; PARDETM(013)=0;
PARMIN(014) = 0; PARMAX(014) = 10; PARDETM(014)=0;
PARMIN(015) = 0; PARMAX(015) = 10; PARDETM(015)=0;
PARMIN(016) = 0; PARMAX(016) = 10; PARDETM(016)=0;
PARMIN(017) = 0; PARMAX(017) = 10; PARDETM(017)=0;
PARMIN(018) = 0; PARMAX(018) = 10; PARDETM(018)=0;
PARMIN(019) = 0; PARMAX(019) = 10; PARDETM(019)=0;
PARMIN(020) = 0; PARMAX(020) = 10; PARDETM(020)=0;
PARMIN(021) = 0; PARMAX(021) = 10; PARDETM(021)=0;
PARMIN(022) = 0; PARMAX(022) = 10; PARDETM(022)=0;
PARMIN(023) = 0; PARMAX(023) = 10; PARDETM(023)=0;
PARMIN(024) = 0.01; PARMAX(024) = 50; PARDETM(024)=0;
PARMIN(025) = 0; PARMAX(025) = 10; PARDETM(025)=0;
PARMIN(026) = 0; PARMAX(026) = 100; PARDETM(026)=0;
PARMIN(027) = 0; PARMAX(027) = 100; PARDETM(027)=0;
PARMIN(028) = 0; PARMAX(028) = 100; PARDETM(028)=0;
PARMIN(029) = 0; PARMAX(029) = 100; PARDETM(029)=0;
PARMIN(030) = 0; PARMAX(030) = 100; PARDETM(030)=0;
PARMIN(031) = 0; PARMAX(031) = 100; PARDETM(031)=0;
PARMIN(032) = 0; PARMAX(032) = 100; PARDETM(032)=0;
PARMIN(033) = 0; PARMAX(033) = 100; PARDETM(033)=0;
PARMIN(034) = 0; PARMAX(034) = 100; PARDETM(034)=0;
PARMIN(035) = 0; PARMAX(035) = 100; PARDETM(035)=0;
PARMIN(036) = 0; PARMAX(036) = 100; PARDETM(036)=0;
PARMIN(037) = 0; PARMAX(037) = 100; PARDETM(037)=0;
PARMIN(038) = 0; PARMAX(038) = 100; PARDETM(038)=0;
PARMIN(039) = 0; PARMAX(039) = 100; PARDETM(039)=0;
PARMIN(040) = 0; PARMAX(040) = 100; PARDETM(040)=0;
PARMIN(041) = 0; PARMAX(041) = 100; PARDETM(041)=0;
PARMIN(042) = 0; PARMAX(042) = 20; PARDETM(042)=0;
PARMIN(043) = 0; PARMAX(043) = 100; PARDETM(043)=0;
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PARMIN(044) = 0; PARMAX(044) = 100; PARDETM(044)=0;
PARMIN(045) = 0; PARMAX(045) = 100; PARDETM(045)=0;
PARMIN(046) = 0; PARMAX(046) = 100; PARDETM(046)=0;
PARMIN(047) = 0; PARMAX(047) = 100; PARDETM(047)=0;
PARMIN(048) = 0; PARMAX(048) = 100; PARDETM(048)=0;
PARMIN(049) = 0; PARMAX(049) = 20; PARDETM(049)=0;
PARMIN(050) = 0; PARMAX(050) = 100; PARDETM(050)=0;
PARMIN(051) = 0; PARMAX(051) = 100; PARDETM(051)=0;
PARMIN(052) = 0; PARMAX(052) = 100; PARDETM(052)=0;
PARMIN(053) = 0; PARMAX(053) = 100; PARDETM(053)=0;
PARMIN(054) = 0; PARMAX(054) = 100; PARDETM(054)=0;
PARMIN(055) = 0; PARMAX(055) = 100; PARDETM(055)=0;
PARMIN(056) = 0; PARMAX(056) = 10; PARDETM(056)=0;
PARMIN(057) = 0; PARMAX(057) = 10; PARDETM(057)=0;
PARMIN(058) = 0; PARMAX(058) = 10; PARDETM(058)=0;
PARMIN(059) = 0; PARMAX(059) = 10; PARDETM(059)=0;
PARMIN(060) = 0; PARMAX(060) = 10; PARDETM(060)=0;
PARMIN(061) = 0; PARMAX(061) = 10; PARDETM(061)=0;
PARMIN(062) = 0; PARMAX(062) = 10; PARDETM(062)=0;
PARMIN(063) = 0; PARMAX(063) = 10; PARDETM(063)=0;
PARMIN(064) = 0; PARMAX(064) = 10; PARDETM(064)=0;
PARMIN(065) = 0; PARMAX(065) = 10; PARDETM(065)=0;
PARMIN(066) = 0; PARMAX(066) = 10; PARDETM(066)=0;
PARMIN(067) = 0; PARMAX(067) = 10; PARDETM(067)=0;
PARMIN(068) = 0; PARMAX(068) = 10; PARDETM(068)=0;
PARMIN(069) = 0; PARMAX(069) = 10; PARDETM(069)=0;
PARMIN(070) = 0; PARMAX(070) = 10; PARDETM(070)=0;
PARMIN(071) = 0; PARMAX(071) = 50; PARDETM(071)=0;
PARMIN(072) = 0; PARMAX(072) = 10; PARDETM(072)=0;
PARMIN(073) = 0; PARMAX(073) = 10; PARDETM(073)=0;
PARMIN(074) = 0; PARMAX(074) = 10; PARDETM(074)=0;
PARMIN(075) = 0; PARMAX(075) = 10; PARDETM(075)=0;
PARMIN(076) = 0; PARMAX(076) = 10; PARDETM(076)=0;
PARMIN(077) = 0; PARMAX(077) = 10; PARDETM(077)=0;
PARMIN(078) = 0; PARMAX(078) = 1; PARDETM(078)=0;
PARMIN(079) = 0; PARMAX(079) = 100000; PARDETM(079)=0;
PARMIN(080) = 0; PARMAX(080) = 1e+06; PARDETM(080)=0;
PARMIN(081) = 0; PARMAX(081) = 1; PARDETM(081)=0;
PARMIN(082) = 0; PARMAX(082) = 10; PARDETM(082)=0;
PARMIN(083) = 0; PARMAX(083) = 1; PARDETM(083)=0;
PARMIN(084) = 0; PARMAX(084) = 1; PARDETM(084)=0;
PARMIN(085) = 0.1; PARMAX(085) = 1000; PARDETM(085)=0;
PARMIN(086) = 0.1; PARMAX(086) = 1000; PARDETM(086)=0;
PARMIN(087) = 0; PARMAX(087) = 10; PARDETM(087)=0;
PARMIN(088) = 0.1; PARMAX(088) = 1000; PARDETM(088)=0;
PARMIN(089) = 0; PARMAX(089) = 100; PARDETM(089)=0;
PARMIN(090) = 0; PARMAX(090) = 100; PARDETM(090)=0;
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PARMIN(091) = 0; PARMAX(091) = 100; PARDETM(091)=0;
PARMIN(092) = 0; PARMAX(092) = 100; PARDETM(092)=0;
PARMIN(093) = 0; PARMAX(093) = 100; PARDETM(093)=0;
PARMIN(094) = 0; PARMAX(094) = 100; PARDETM(094)=0;
PARMIN(095) = 0; PARMAX(095) = 100; PARDETM(095)=0;
PARMIN(096) = 0; PARMAX(096) = 100; PARDETM(096)=0;
PARMIN(097) = 0; PARMAX(097) = 100; PARDETM(097)=0;
PARMIN(098) = 0; PARMAX(098) = 150000; PARDETM(098)=0;
PARMIN(099) = 0; PARMAX(099) = 150000; PARDETM(099)=0;
PARMIN(100) = -10; PARMAX(100) = 100; PARDETM(100)=0;
PARMIN(101) = -10; PARMAX(101) = 100; PARDETM(101)=0;
PARMIN(102) = 0; PARMAX(102) = 20; PARDETM(102)=0;
PARMIN(103) = 0; PARMAX(103) = 80000; PARDETM(103)=0;
PARMIN(104) = -3; PARMAX(104) = 1440; PARDETM(104)=0;
PARMIN(105) = -3; PARMAX(105) = 1440; PARDETM(105)=0;
PARMIN(106) = 0; PARMAX(106) = 1000; PARDETM(106)=1;
PARMIN(107) = 0; PARMAX(107) = 1000; PARDETM(107)=1;
PARMIN(108) = 0; PARMAX(108) = 1000; PARDETM(108)=1;
PARMIN(109) = 0; PARMAX(109) = 1000; PARDETM(109)=1;
PARMIN(110) = 0; PARMAX(110) = 1000; PARDETM(110)=1;
PARMIN(111) = 0; PARMAX(111) = 1000; PARDETM(111)=1;
PARMIN(112) = 0; PARMAX(112) = 1000; PARDETM(112)=1;
PARMIN(113) = 0; PARMAX(113) = 1000; PARDETM(113)=1;
PARMIN(114) = 0; PARMAX(114) = 1; PARDETM(114)=1;
PARMIN(115) = 0; PARMAX(115) = 1; PARDETM(115)=1;
PARMIN(116) = 0; PARMAX(116) = 1; PARDETM(116)=1;
PARMIN(117) = 0; PARMAX(117) = 1; PARDETM(117)=1;
PARMIN(118) = 0; PARMAX(118) = 200100; PARDETM(118)=1;
PARMIN(119) = 0; PARMAX(119) = 10000; PARDETM(119)=1;
PARMIN(120) = 0.1; PARMAX(120) = 50; PARDETM(120)=1;
PARMIN(121) = 0.1; PARMAX(121) = 50; PARDETM(121)=1;
PARMIN(122) = 0.1; PARMAX(122) = 50; PARDETM(122)=1;
PARMIN(123) = 0.1; PARMAX(123) = 50; PARDETM(123)=1;
PARMIN(124) = 0.1; PARMAX(124) = 50; PARDETM(124)=1;
PARMIN(125) = 0.1; PARMAX(125) = 50; PARDETM(125)=1;
PARMIN(126) = 0.1; PARMAX(126) = 50; PARDETM(126)=1;
PARMIN(127) = 0; PARMAX(127) = 20; PARDETM(127)=1;
PARMIN(128) = 0; PARMAX(128) = 10; PARDETM(128)=1;
PARMIN(129) = 0; PARMAX(129) = 10; PARDETM(129)=1;
PARMIN(130) = 0; PARMAX(130) = 10; PARDETM(130)=1;
PARMIN(131) = 0; PARMAX(131) = 10; PARDETM(131)=1;
PARMIN(132) = 0; PARMAX(132) = 100; PARDETM(132)=1;
PARMIN(133) = 0; PARMAX(133) = 10; PARDETM(133)=1;
PARMIN(134) = 0; PARMAX(134) = 10; PARDETM(134)=1;
PARMIN(135) = 0; PARMAX(135) = 20; PARDETM(135)=1;
PARMIN(136) = 0; PARMAX(136) = 20; PARDETM(136)=1;
PARMIN(137) = 0; PARMAX(137) = 1000; PARDETM(137)=1;
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PARMIN(138) = 0; PARMAX(138) = 1000; PARDETM(138)=1;
PARMIN(139) = 0; PARMAX(139) = 100; PARDETM(139)=1;
PARMIN(140) = 0; PARMAX(140) = 10; PARDETM(140)=1;
PARMIN(141) = 0; PARMAX(141) = 100; PARDETM(141)=1;
PARMIN(142) = 0; PARMAX(142) = 100; PARDETM(142)=1;
PARMIN(143) = 0; PARMAX(143) = 100; PARDETM(143)=0; % ka
PARMIN(144) = 0; PARMAX(144) = 200; PARDETM(144)=0; % insulin_inf
PARMIN(145) = 0; PARMAX(145) = 2000; PARDETM(145)=1;% alpha
PARMIN(146) = 0; PARMAX(146) = 2000; PARDETM(146)=1; % beta
PARMIN(147) = 0; PARMAX(147) = 200000; PARDETM(147)=0; % CHO [mg]
PARMIN(148) = 0; PARMAX(148) = 200; PARDETM(148)=0; % b
PARMIN(149) = 0; PARMAX(149) = 200; PARDETM(149)=0; % c
PARMIN(150) = 0; PARMAX(150) = 200; PARDETM(150)=0; % k_min
PARMIN(151) = 0; PARMAX(151) = 200; PARDETM(151)=0; % k_max
PARMIN(152) = 0; PARMAX(152) = 200; PARDETM(152)=0; % k_gri
PARMIN(153) = 0; PARMAX(153) = 200000; PARDETM(153)=0; % Time_meal

Tzero = Tzero_; % (bigtheta 001);
Tend = Tend_; % (bigtheta 002);
Tdelta = 0.1; % (bigtheta 003);
QfloGB = 0.59; % (bigtheta 004);
VolGBV = 0.35; % (bigtheta 005);
VolBI = 0.45; % (bigtheta 006);
TdifB = 2.1; % (bigtheta 007);
GlucH0 = 5.07333; % (bigtheta 008);
GammaBGU = 0.388889; % (bigtheta 009);
QfloGL = 1.26; % (bigtheta 010);
QfloGK = 1.01; % (bigtheta 011);
QfloGP = 1.51; % (bigtheta 012);
QfloGH = 4.37; % (bigtheta 013);
GammaRBCU = 0.0555556; % (bigtheta 014);
VolGH = 1.38; % (bigtheta 015);
QfloGJ = 1.01; % (bigtheta 016);
VolGJ = 1.12; % (bigtheta 017);
GammaJGU = 0.111111; % (bigtheta 018);
QfloGA = 0.25; % (bigtheta 019);
VolGL = 2.51; % (bigtheta 020);
VolGK = 0.66; % (bigtheta 021);
VolGPV = 1.04; % (bigtheta 022);
VolPI = 6.74; % (bigtheta 023);
TdifGP = 5; % (bigtheta 024);
GammaBPGU = 0.194444; % (bigtheta 025);
beta0PGU = 7.03; % (bigtheta 026);
beta1PGU = 6.52; % (bigtheta 027);
beta2PGU = 0.338; % (bigtheta 028);
beta3PGU = 5.82; % (bigtheta 029);
beta0HGP = 2.7; % (bigtheta 030);
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beta1HGP = 0.388852; % (bigtheta 031);
tauCgon = 65; % (bigtheta 032);
beta2HGP = 1.21; % (bigtheta 033);
beta3HGP = 1.14; % (bigtheta 034);
beta4HGP = 1.66; % (bigtheta 035);
beta5HGP = 0.887748; % (bigtheta 036);
tauInsu = 25; % (bigtheta 037);
beta6HGP = 1.42; % (bigtheta 038);
beta7HGP = 1.41; % (bigtheta 039);
beta8HGP = 0.62; % (bigtheta 040);
beta9HGP = 0.504543; % (bigtheta 041);
GammaHGP0 = 0.861111; % (bigtheta 042);
beta0HGU = 2; % (bigtheta 043);
beta1HGU = 0.549306; % (bigtheta 044);
beta2HGU = 5.66; % (bigtheta 045);
beta3HGU = 5.66; % (bigtheta 046);
beta4HGU = 2.44; % (bigtheta 047);
beta5HGU = 1.4783; % (bigtheta 048);
GammaHGU0 = 0.111111; % (bigtheta 049);
beta0KGE = 0.394444; % (bigtheta 050);
beta1KGE = 0.394444; % (bigtheta 051);
beta2KGE = 0.198; % (bigtheta 052);
beta3KGE = 25.5556; % (bigtheta 053);
beta4KGE = 1.834; % (bigtheta 054);
beta5KGE = 0.0872; % (bigtheta 055);
QfloIB = 0.45; % (bigtheta 056);
VolIB = 0.26; % (bigtheta 057);
VolIH = 0.99; % (bigtheta 058);
QfloIL = 0.9; % (bigtheta 059);
QfloIK = 0.72; % (bigtheta 060);
QfloIP = 1.05; % (bigtheta 061);
QfloIH = 3.12; % (bigtheta 062);
VolIJ = 0.94; % (bigtheta 063);
QfloIJ = 0.72; % (bigtheta 064);
VolIL = 1.14; % (bigtheta 065);
QfloIA = 0.18; % (bigtheta 066);
FracLIC = 0.4; % (bigtheta 067);
FracKIC = 0.3; % (bigtheta 068);
VolIK = 0.51; % (bigtheta 069);
VolIPV = 0.74; % (bigtheta 070);
TdifIP = 20; % (bigtheta 071);
FracPIC = 0.15; % (bigtheta 072);
beta1PIR = 3.27; % (bigtheta 073);
beta2PIR = 7.33333; % (bigtheta 074);
beta3PIR = 2.879; % (bigtheta 075);
beta4PIR = 3.02; % (bigtheta 076);
beta5PIR = 1.11; % (bigtheta 077);
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KappaRinsu = 0.00794; % (bigtheta 078);
Rinsu0 = 44310; % (bigtheta 079);
KappaRinsuPotn = 4025; % (bigtheta 080);
KappaPotnPtgt = 0.0482; % (bigtheta 081);
KappaPinhPrp = 0.931; % (bigtheta 082);
EMME1 = 0.00747; % (bigtheta 083);
EMME2 = 0.0958; % (bigtheta 084);
InsuPV0 = 91; % (bigtheta 085);
Cgon0 = 11.48; % (bigtheta 086);
GammaMCC = 0.91; % (bigtheta 087);
VolC = 11.31; % (bigtheta 088);
beta0PCR = 2.93; % (bigtheta 089);
beta1PCR = 2.1; % (bigtheta 090);
beta2PCR = 4.18; % (bigtheta 091);
beta3PCR = 0.621325; % (bigtheta 092);
beta4PCR = 1.31; % (bigtheta 093);
beta5PCR = 0.61; % (bigtheta 094);
beta6PCR = 1.06; % (bigtheta 095);
beta7PCR = 0.471419; % (bigtheta 096);
Func20 = 0; % (bigtheta 097);
GammaIVG0 = 0; % (bigtheta 098);
GammaIVGin = 0; %64.81; % (bigtheta 099); changed
TimeIVG = -3; % (bigtheta 100);
TimeIVGend = 0; % (bigtheta 101);
GammaIVI0 = 0; % (bigtheta 102);
GammaIVIin = 0; % (bigtheta 103);
TimeIVI = 0; % (bigtheta 104);
TimeIVIend = 0; % (bigtheta 105);
InsuH0 = 107.059; % (bigtheta 106);
InsuK0 = 74.9412; % (bigtheta 107);
InsuB0 = 107.059; % (bigtheta 108);
InsuJ0 = 107.059; % (bigtheta 109);
InsuPI0 = 40.9651; % (bigtheta 110);
InsuL0 = 151.488; % (bigtheta 111);
GammaBPIR = 0; %130.879; % (bigtheta 112); zero for T1D
GammaPIC0 = 16.8618; % (bigtheta 113);
Pprp0 = 0.19032; % (bigtheta 114);
Ptgt0 = 0.158572; % (bigtheta 115);
Pinh0 = 0.19032; % (bigtheta 116);
Potn0 = 0.158572; % (bigtheta 117);
InitialRinsu0 = 108507; % (bigtheta 118);
Secr0 = 128.53; % (bigtheta 119);
GlucPV0 = 4.94456; % (bigtheta 120);
GlucK0 = 5.07333; % (bigtheta 121);
GlucBV0 = 4.4142; % (bigtheta 122);
GlucJ0 = 4.96332; % (bigtheta 123);
GlucL0 = 5.58039; % (bigtheta 124);

xix



Code - simulator and identification

GlucBI0 = 2.59938; % (bigtheta 125);
GlucPI0 = 4.80032; % (bigtheta 126);
MIPGU0 = 0.992859; % (bigtheta 127);
MCHGP0 = 1; % (bigtheta 128);
MC0HGP0 = 1; % (bigtheta 129);
MIHGP0 = 1; % (bigtheta 130);
MIHGPinf0 = 1; % (bigtheta 131);
MGHGP0 = 1; % (bigtheta 132);
MIHGU0 = 1; % (bigtheta 133);
MIHGUinf0 = 1; % (bigtheta 134);
MGHGU0 = 1; % (bigtheta 135);
GammaKGE0 = 0.000236777; % (bigtheta 136);
GammaLIC0 = 90.8929; % (bigtheta 137);
GammaKIC0 = 23.1247; % (bigtheta 138);
MGPCR0 = 1; % (bigtheta 139);
MIPCR0 = 1; % (bigtheta 140);
GammaPCC0 = 10.4468; % (bigtheta 141);
GammaBPCR = 10.4468; % (bigtheta 142);
ka = 0.0144; % (bigtheta 143); absorption constant for subcutaneous insulin
insulin_inf = Insu_init; % (bigtheta 144); infusion rate of subcutaneous insulin
alpha = 0; % (bigtheta 145);
beta = 0; % (bigtheta 146);
CHO = CHO_0; % (bigtheta 147); mg of carbohydrate
b = b_p0; % (bigtheta 148);
c = c_p0; % (bigtheta 149);
k_min = k_min_p0; % (bigtheta 150);
k_max = k_max_p0; % (bigtheta 151);
k_gri = k_gri_p0; % (bigtheta 152);
Time_meal = 10000; % (bigtheta 153);

% run DetermineParameters on the named parameters before assigning all values to bigtheta
SorensenDetermineParameters;

% build bigtheta
bigtheta = zeros(nPars,1);
SorensenParvals2Bigtheta;

SorensenInitializeStateVars.m

% ==================================================================================
% SCRIPT SorensenInitializeStateVars.m: assign the starting values to ALL
% dependent variables
% Sorensen V01.01.41 20190724 (Gemini 13.01.06, BMLib 10.0.2, Autocoder 02.11.09
% coded 24-Jul-2019 16:06:54)
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% ==================================================================================

global VARMIN VARMAX;

nDepVars = 62;

VARMIN = zeros(63,1);
VARMAX = zeros(63,1);
VARMIN(001) = 0; VARMAX(001) = 1440;
VARMIN(002) = 0; VARMAX(002) = 200;
VARMIN(003) = 0; VARMAX(003) = 200;
VARMIN(004) = 0; VARMAX(004) = 200;
VARMIN(005) = 0; VARMAX(005) = 200;
VARMIN(006) = 0; VARMAX(006) = 200;
VARMIN(007) = 0; VARMAX(007) = 200;
VARMIN(008) = 0; VARMAX(008) = 100;
VARMIN(009) = 0; VARMAX(009) = 200;
VARMIN(010) = 0; VARMAX(010) = 200;
VARMIN(011) = 0; VARMAX(011) = 200;
VARMIN(012) = 0; VARMAX(012) = 200;
VARMIN(013) = 0; VARMAX(013) = 200;
VARMIN(014) = 0; VARMAX(014) = 999;
VARMIN(015) = 0; VARMAX(015) = 999;
VARMIN(016) = 0; VARMAX(016) = 999;
VARMIN(017) = 0; VARMAX(017) = 999;
VARMIN(018) = 0; VARMAX(018) = 999;
VARMIN(019) = 0; VARMAX(019) = 999;
VARMIN(020) = -20; VARMAX(020) = 999;
VARMIN(021) = 0; VARMAX(021) = 999;
VARMIN(022) = 0; VARMAX(022) = 999;
VARMIN(023) = 0; VARMAX(023) = 999;
VARMIN(024) = 0; VARMAX(024) = 999;
VARMIN(025) = 0; VARMAX(025) = 999;
VARMIN(026) = 0; VARMAX(026) = 9999;
VARMIN(027) = 0; VARMAX(027) = 10000;
VARMIN(028) = 0; VARMAX(028) = 9999;
VARMIN(029) = 0; VARMAX(029) = 9999;
VARMIN(030) = 0; VARMAX(030) = 9999;
VARMIN(031) = 0; VARMAX(031) = 99999;
VARMIN(032) = 0; VARMAX(032) = 9999;
VARMIN(033) = 0; VARMAX(033) = 9999;
VARMIN(034) = 0; VARMAX(034) = 9999;
VARMIN(035) = 0; VARMAX(035) = 200;
VARMIN(036) = 0; VARMAX(036) = 999;
VARMIN(037) = 0; VARMAX(037) = 99999;
VARMIN(038) = 0; VARMAX(038) = 999;
VARMIN(039) = 0; VARMAX(039) = 999;
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VARMIN(040) = 0; VARMAX(040) = 90000;
VARMIN(041) = 0; VARMAX(041) = 1000;
VARMIN(042) = 0; VARMAX(042) = 1000;
VARMIN(043) = 0; VARMAX(043) = 1e+07;
VARMIN(044) = 0; VARMAX(044) = 99999;
VARMIN(045) = 0; VARMAX(045) = 1000;
VARMIN(046) = 0; VARMAX(046) = 1000;
VARMIN(047) = 0; VARMAX(047) = 1000;
VARMIN(048) = 0; VARMAX(048) = 999;
VARMIN(049) = 0; VARMAX(049) = 200;
VARMIN(050) = 0; VARMAX(050) = 999;
VARMIN(051) = 0; VARMAX(051) = 999;
VARMIN(052) = 0; VARMAX(052) = 10;
VARMIN(053) = 0; VARMAX(053) = 10;
VARMIN(054) = 0; VARMAX(054) = 1000;
VARMIN(055) = 0; VARMAX(055) = 1000;
VARMIN(056) = 0; VARMAX(056) = 1000;
VARMIN(057) = 0; VARMAX(057) = 1000;
VARMIN(058) = 0; VARMAX(058) = 10000;
VARMIN(059) = 0; VARMAX(059) = 10000;
VARMIN(060) = 0; VARMAX(060) = 10000;
VARMIN(061) = 0; VARMAX(061) = 10000;
VARMIN(062) = 0; VARMAX(062) = 10000;
VARMIN(063) = 0; VARMAX(063) = 10000;

GlucBV = Gluc_init; % GlucBV0; % CurrentY(001)
GlucBI = Gluc_init; %GlucBI0; % CurrentY(002)
GlucH = Gluc_init; %GlucH0; % CurrentY(003)
GlucNH = 1.000000000000; % CurrentY(004)
GlucJ = Gluc_init; %GlucJ0; % CurrentY(005)
GlucL = Gluc_init; %GlucL0; % CurrentY(006)
GlucNL = 1.000000000000; % CurrentY(007)
GlucK = Gluc_init; %GlucK0; % CurrentY(008)
GlucPV = Gluc_init; %GlucPV0; % CurrentY(009)
GlucPI = Gluc_init; %GlucPI0; % CurrentY(010)
GlucNPI = 1.000000000000; % CurrentY(011)
GammaPGU = GammaBPGU; % CurrentY(012)
MIPGU = MIPGU0; % CurrentY(013)
GammaHGP = GammaHGP0; % CurrentY(014)
MIHGP = MIHGP0; % CurrentY(015)
MIHGPinf = MIHGPinf0; % CurrentY(016)
MCHGP = MCHGP0; % CurrentY(017)
MC0HGP = MC0HGP0; % CurrentY(018)
Fun2 = Func20; % CurrentY(019)
MGHGP = MGHGP0; % CurrentY(020)
GammaHGU = GammaHGU0; % CurrentY(021)
MIHGU = MIHGU0; % CurrentY(022)
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MIHGUinf = MIHGUinf0; % CurrentY(023)
MGHGU = MGHGU0; % CurrentY(024)
GammaKGE = GammaKGE0; % CurrentY(025)
InsuB = Insu_init; %InsuB0; % CurrentY(026)
InsuH = Insu_init; %InsuH0; % CurrentY(027)
InsuNH = 1.000000000000; % CurrentY(028)
InsuJ = Insu_init; %InsuJ0; % CurrentY(029)
InsuL = Insu_init; %InsuL0; % CurrentY(030)
InsuK = Insu_init; %InsuK0; % CurrentY(031)
InsuPV = Insu_init; %InsuPV0; % CurrentY(032)
InsuPI = Insu_init; %InsuPI0; % CurrentY(033)
InsuNPI = 1.000000000000; % CurrentY(034)
InsuNL = 1.000000000000; % CurrentY(035)
GammaLIC = GammaLIC0; % CurrentY(036)
GammaKIC = GammaKIC0; % CurrentY(037)
GammaPIC = GammaPIC0; % CurrentY(038)
GammaPIR = 0; %GammaBPIR; % CurrentY(039) zero for type 1 diabetes
Potn = Potn0; % CurrentY(040)
Pinh = Pinh0; % CurrentY(041)
Rinsu = InitialRinsu0; % CurrentY(042)
Secr = Secr0; % CurrentY(043)
SecrN = 1.000000000000; % CurrentY(044)
Pprp = Pprp0; % CurrentY(045)
Ptgt = Ptgt0; % CurrentY(046)
Cgon = Cgon0; % CurrentY(047)
CgonN = 1.000000000000; % CurrentY(048)
GammaPCC = GammaPCC0; % CurrentY(049)
GammaPCR = GammaBPCR; % CurrentY(050)
MGPCR = MGPCR0; % CurrentY(051)
MIPCR = MIPCR0; % CurrentY(052)
GammaIVG = GammaIVG0; % CurrentY(053)
GammaIVI = GammaIVI0; % CurrentY(054)
Gamma_meal = 0; % CurrentY(055)
GammaISC = Insu_init; % CurrentY(056)
S1 = Insu_init; % CurrentY(057)
S2 = Insu_init; % CurrentY(058)
Q_sto = 0; % CurrentY(059)
Q_sto1 = 0; % CurrentY(060)
Q_sto2 = 0; % CurrentY(061)
k_empt = 0; % CurrentY(062)

CurrentY = zeros(62,1);

SorensenNamedVars2CurrentY;
SorensenForceVars;
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DetermineParameters.m

% =================================================================================
% SCRIPT SorensenDetermineParameters.m: compute the values of determined from free
% parameters. Sorensen V01.01.41 20190724 (Gemini 13.01.06, BMLib 10.0.2
% Autocoder 02.11.09, coded 24-Jul-2019 16:06:54)
% ================================================================================

InsuH0 = InsuPV0/(1-FracPIC); % (bigtheta 106)
InsuK0 = InsuH0*(1-FracKIC); % (bigtheta 107)
InsuB0 = InsuH0; % (bigtheta 108)
InsuJ0 = InsuH0; % (bigtheta 109)
InsuPI0 = InsuPV0-((QfloIP*TdifIP/VolPI)*(InsuH0-InsuPV0)); % (bigtheta 110)
InsuL0 = 1/QfloIL*(QfloIH*InsuH0-QfloIB*InsuB0

-QfloIK*InsuK0-QfloIP*InsuPV0); % (bigtheta 111)
GammaBPIR = 0; %QfloIL/(1-FracLIC)*InsuL0 - QfloIJ*InsuJ0-QfloIA*InsuH0; % (bigtheta 112) ------------ changed ----------
GammaPIC0 = InsuPI0/(((1-FracPIC)/FracPIC)*(1/QfloIP)-TdifIP/VolPI); % (bigtheta 113)
Pprp0 = pow((GlucH0),beta1PIR) /( pow((beta2PIR),beta1PIR)+

beta3PIR*pow((GlucH0),beta4PIR) ); % (bigtheta 114)
Ptgt0 = pow(Pprp0,beta5PIR); % (bigtheta 115)
Pinh0 = Pprp0; % (bigtheta 116)
Potn0 = Ptgt0; % (bigtheta 117)
InitialRinsu0 = ((KappaRinsu*Rinsu0)+ KappaRinsuPotn * Potn0)

/(KappaRinsu+EMME1* Potn0); % (bigtheta 118)
Secr0 = EMME1*Ptgt0*InitialRinsu0; % (bigtheta 119)
GlucPV0 = GlucH0 - GammaBPGU/QfloGP; % (bigtheta 120)
GlucK0 = GlucH0; % (bigtheta 121)
GlucBV0 = GlucH0 - GammaBGU/QfloGB; % (bigtheta 122)
GlucJ0 = GlucH0-GammaJGU/QfloGJ; % (bigtheta 123)
GlucL0 = (QfloGA*GlucH0+QfloGJ*GlucJ0+GammaHGP0-GammaHGU0)/QfloGL; % (bigtheta 124)
GlucBI0 = GlucBV0-(GammaBGU*TdifB)/VolBI; % (bigtheta 125)
GlucPI0 = GlucPV0-GammaBPGU*TdifGP/VolPI; % (bigtheta 126)
MIPGU0 = beta0PGU+beta1PGU*tanh(beta2PGU*(1-beta3PGU)); % (bigtheta 127)
MCHGP0 = beta0HGP * tanh(beta1HGP * 1) - Func20; % (bigtheta 128)
MC0HGP0 = beta0HGP * tanh(beta1HGP * 1); % (bigtheta 129)
MIHGP0 = beta2HGP - beta3HGP * tanh(beta4HGP * (1-beta5HGP)); % (bigtheta 130)
MIHGPinf0 = MIHGP0; % (bigtheta 131)
MGHGP0 = beta6HGP-beta7HGP*tanh(beta8HGP*(1-beta9HGP)); % (bigtheta 132)
MIHGU0 = beta0HGU * tanh(beta1HGU); % (bigtheta 133)
MIHGUinf0 = MIHGU0; % (bigtheta 134)
MGHGU0 = beta2HGU+beta3HGU*tanh(beta4HGU*(1-beta5HGU)); % (bigtheta 135)
GammaKGE0 = (GlucK0<beta3KGE) * (beta0KGE+beta1KGE*tanh(beta2KGE*

(GlucK0-beta3KGE))) + (GlucK0 >= beta3KGE)
* (-beta4KGE+beta5KGE*GlucK0); % (bigtheta 136)

GammaLIC0 = FracLIC*(QfloIA*InsuH0+QfloIJ*InsuJ0+GammaBPIR); % (bigtheta 137)
GammaKIC0 = FracKIC*(QfloIK*InsuH0); % (bigtheta 138)
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MGPCR0 = beta0PCR - beta1PCR * tanh(beta2PCR * (1-beta3PCR)); % (bigtheta 139)
MIPCR0 = beta4PCR - beta5PCR * tanh(beta6PCR * (1-beta7PCR)); % (bigtheta 140)
GammaPCC0 = Cgon0*GammaMCC; % (bigtheta 141)
GammaBPCR = GammaPCC0; % (bigtheta 142)
alpha = 5 / (2*CHO*(1-b)); % (bigtheta 145)
beta = 5 / (2*CHO*c); % (bigtheta 146)

SorensenComputeDerivatives.m

% ==================================================================================
% SCRIPT SorensenComputeDerivatives.m: compute the derivatives of the differential
% variables. Sorensen V01.01.41 20190724 (Gemini 13.01.06, BMLib 10.0.2
% Autocoder 02.11.09, coded 24-Jul-2019 16:06:54)
% ==================================================================================

% Builds contextually the out1 column (!) vector used by Matlab’s Odefile
out1 = [];
dGlucBVdt = (GlucH - GlucBV) * QfloGB / VolGBV - VolBI / (TdifB * VolGBV) *

(GlucBV - GlucBI);
out1 = [out1; dGlucBVdt];
dGlucBIdt = 1 / TdifB * (GlucBV - GlucBI) - GammaBGU / VolBI;
out1 = [out1; dGlucBIdt];
dGlucHdt = (QfloGB * GlucBV + QfloGL * GlucL + QfloGK * GlucK + QfloGP * GlucPV -

QfloGH * GlucH - GammaRBCU + GammaIVG) / VolGH;
out1 = [out1; dGlucHdt];
% Variable GlucNH (CurrentY 004) is not differentially expressed
out1 = [out1; 0];
dGlucJdt = (GlucH - GlucJ) * QfloGJ / VolGJ + (f*Gamma_meal - GammaJGU) / VolGJ;
out1 = [out1; dGlucJdt];
dGlucLdt = (QfloGA * GlucH + QfloGJ * GlucJ - QfloGL * GlucL + GammaHGP

- GammaHGU) / VolGL;
out1 = [out1; dGlucLdt];
% Variable GlucNL (CurrentY 007) is not differentially expressed
out1 = [out1; 0];
dGlucKdt = (GlucH - GlucK) * QfloGK / VolGK - GammaKGE / VolGK;
out1 = [out1; dGlucKdt];
dGlucPVdt = QfloGP / VolGPV * (GlucH - GlucPV) - VolPI / (TdifGP * VolGPV)

* (GlucPV - GlucPI);
out1 = [out1; dGlucPVdt];
dGlucPIdt = (GlucPV - GlucPI) / TdifGP - GammaPGU / VolPI;
out1 = [out1; dGlucPIdt];
% Variable GlucNPI (CurrentY 011) is not differentially expressed
out1 = [out1; 0];
% Variable GammaPGU (CurrentY 012) is not differentially expressed
out1 = [out1; 0];
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% Variable MIPGU (CurrentY 013) is not differentially expressed
out1 = [out1; 0];
% Variable GammaHGP (CurrentY 014) is not differentially expressed
out1 = [out1; 0];
dMIHGPdt = (MIHGPinf - MIHGP) / tauInsu;
out1 = [out1; dMIHGPdt];
% Variable MIHGPinf (CurrentY 016) is not differentially expressed
out1 = [out1; 0];
% Variable MCHGP (CurrentY 017) is not differentially expressed
out1 = [out1; 0];
% Variable MC0HGP (CurrentY 018) is not differentially expressed
out1 = [out1; 0];
dFun2dt = ((MC0HGP - 1.0) / 2.0 - Fun2) / tauCgon;
out1 = [out1; dFun2dt];
% Variable MGHGP (CurrentY 020) is not differentially expressed
out1 = [out1; 0];
% Variable GammaHGU (CurrentY 021) is not differentially expressed
out1 = [out1; 0];
dMIHGUdt = (MIHGUinf - MIHGU) / tauInsu;
out1 = [out1; dMIHGUdt];
% Variable MIHGUinf (CurrentY 023) is not differentially expressed
out1 = [out1; 0];
% Variable MGHGU (CurrentY 024) is not differentially expressed
out1 = [out1; 0];
% Variable GammaKGE (CurrentY 025) is not differentially expressed
out1 = [out1; 0];
dInsuBdt = QfloIB / VolIB * (InsuH - InsuB);
out1 = [out1; dInsuBdt];
dInsuHdt = (QfloIB * InsuB + QfloIL * InsuL + QfloIK * InsuK + QfloIP * InsuPV

- QfloIH * InsuH + GammaISC) / VolIH;
out1 = [out1; dInsuHdt];
% Variable InsuNH (CurrentY 028) is not differentially expressed
out1 = [out1; 0];
dInsuJdt = QfloIJ / VolIJ * (InsuH - InsuJ);
out1 = [out1; dInsuJdt];
dInsuLdt = (QfloIA * InsuH + QfloIJ * InsuJ - QfloIL * InsuL + GammaPIR - GammaLIC)

/ VolIL;
out1 = [out1; dInsuLdt];
dInsuKdt = (QfloIK / VolIK) * (InsuH - InsuK) - GammaKIC / VolIK;
out1 = [out1; dInsuKdt];
dInsuPVdt = (QfloIP/VolIPV) * (InsuH - InsuPV) - VolPI / (VolIPV * TdifIP) * (InsuPV - InsuPI);
out1 = [out1; dInsuPVdt];
dInsuPIdt = (1 / TdifIP)

* (InsuPV - InsuPI) - GammaPIC / VolPI;
out1 = [out1; dInsuPIdt];
% Variable InsuNPI (CurrentY 034) is not differentially expressed
out1 = [out1; 0];
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% Variable InsuNL (CurrentY 035) is not differentially expressed
out1 = [out1; 0];
% Variable GammaLIC (CurrentY 036) is not differentially expressed
out1 = [out1; 0];
% Variable GammaKIC (CurrentY 037) is not differentially expressed
out1 = [out1; 0];
% Variable GammaPIC (CurrentY 038) is not differentially expressed
out1 = [out1; 0];
% Variable GammaPIR (CurrentY 039) is not differentially expressed
out1 = [out1; 0];
dPotndt = KappaPotnPtgt * (Ptgt - Potn);
out1 = [out1; dPotndt];
dPinhdt = KappaPinhPrp * (Pprp - Pinh);
out1 = [out1; dPinhdt];
dRinsudt = KappaRinsu * (Rinsu0 - Rinsu) + KappaRinsuPotn * Potn - Secr;
out1 = [out1; dRinsudt];
% Variable Secr (CurrentY 043) is not differentially expressed
out1 = [out1; 0];
% Variable SecrN (CurrentY 044) is not differentially expressed
out1 = [out1; 0];
% Variable Pprp (CurrentY 045) is not differentially expressed
out1 = [out1; 0];
% Variable Ptgt (CurrentY 046) is not differentially expressed
out1 = [out1; 0];
dCgondt = (GammaPCR - GammaPCC) / VolC;
out1 = [out1; dCgondt];
% Variable CgonN (CurrentY 048) is not differentially expressed
out1 = [out1; 0];
% Variable GammaPCC (CurrentY 049) is not differentially expressed
out1 = [out1; 0];
% Variable GammaPCR (CurrentY 050) is not differentially expressed
out1 = [out1; 0];
% Variable MGPCR (CurrentY 051) is not differentially expressed
out1 = [out1; 0];
% Variable MIPCR (CurrentY 052) is not differentially expressed
out1 = [out1; 0];
% Variable GammaIVG (CurrentY 053) is not differentially expressed
out1 = [out1; 0];
% Variable GammaIVI (CurrentY 054) is not differentially expressed
out1 = [out1; 0];
% Variable Gamma_meal (CurrentY 055) is not differentially expressed
out1 = [out1; 0];
% Variable GammaISC (CurrentY 056) is not differentially expressed
out1 = [out1; 0];
dS1dt = insulin_inf - ka*S1;
out1 = [out1; dS1dt];
dS2dt = ka*S1 - ka*S2;
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out1 = [out1; dS2dt];
% Variable Q_sto (CurrentY 059) is not differentially expressed
out1 = [out1; 0];
dQ_sto1dt = CHO*kronDel(Time, Time_meal) - k_gri*Q_sto1;
out1 = [out1; dQ_sto1dt];
dQ_sto2dt = k_gri*Q_sto1 - k_empt*Q_sto2;
out1 = [out1; dQ_sto2dt];
% Variable k_empt (CurrentY 062) is not differentially expressed
out1 = [out1; 0];

SorensenComputeAlgebraic.m

% ==================================================================================
% SCRIPT SorensenComputeAlgebraic.m: compute the values of algebraic variables
% Sorensen V01.01.41 20190724 (Gemini 13.01.06, BMLib 10.0.2
% Autocoder 02.11.09, coded 24-Jul-2019 16:06:54)
% ==================================================================================

% Variable GlucBV (CurrentY 001) is not determined
% Variable GlucBI (CurrentY 002) is not determined
% Variable GlucH (CurrentY 003) is not determined
GlucNH = GlucH / GlucH0;
% Variable GlucJ (CurrentY 005) is not determined
% Variable GlucL (CurrentY 006) is not determined
GlucNL = GlucL / GlucL0;
% Variable GlucK (CurrentY 008) is not determined
% Variable GlucPV (CurrentY 009) is not determined
% Variable GlucPI (CurrentY 010) is not determined
GlucNPI = GlucPI / GlucPI0;
GammaPGU = GammaBPGU * GlucNPI * MIPGU;
MIPGU = beta0PGU + beta1PGU * tanh(beta2PGU * (InsuNPI - beta3PGU));
GammaHGP = GammaHGP0 * MIHGP * MCHGP * MGHGP;
% Variable MIHGP (CurrentY 015) is not determined
MIHGPinf = beta2HGP - beta3HGP * tanh( beta4HGP*(InsuNL - beta5HGP));
MCHGP = MC0HGP - Fun2;
MC0HGP = beta0HGP * tanh(beta1HGP * CgonN);
% Variable Fun2 (CurrentY 019) is not determined
MGHGP = (beta6HGP - beta7HGP * tanh(beta8HGP * (GlucNL - beta9HGP)));
GammaHGU = GammaHGU0 * MIHGU * MGHGU;
% Variable MIHGU (CurrentY 022) is not determined
MIHGUinf = beta0HGU * tanh(beta1HGU * InsuNL);
MGHGU = beta2HGU + beta3HGU * tanh(beta4HGU * (GlucNL - beta5HGU));
GammaKGE = (GlucK < beta3KGE) * (beta0KGE + beta1KGE * tanh(beta2KGE*

(GlucK - beta3KGE ))) + (GlucK >= beta3KGE) * (- beta4KGE + beta5KGE * GlucK);
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% Variable InsuB (CurrentY 026) is not determined
% Variable InsuH (CurrentY 027) is not determined
InsuNH = InsuH / InsuH0;
% Variable InsuJ (CurrentY 029) is not determined
% Variable InsuL (CurrentY 030) is not determined
% Variable InsuK (CurrentY 031) is not determined
% Variable InsuPV CurrentY 032) is not determined
% Variable InsuPI (CurrentY 033) is not determined
InsuNPI = InsuPI / InsuPI0;
InsuNL = InsuL / InsuL0;
GammaLIC = FracLIC * (QfloIA * InsuH + QfloIJ * InsuJ + GammaPIR);
GammaKIC = FracKIC * (QfloIK * InsuH);
GammaPIC = InsuPI / (((1.0 - FracPIC ) / FracPIC) * (1 / QfloIP) - (TdifIP / VolPI));
GammaPIR = SecrN * GammaBPIR;
% Variable Potn (CurrentY 040) is not determined
% Variable Pinh (CurrentY 041) is not determined
% Variable Rinsu (CurrentY 042) is not determined
Secr = (Pprp > Pinh)*((EMME1 * Ptgt + EMME2 * (Pprp - Pinh)) * Rinsu)

+ (Pprp <= Pinh) * (EMME1 * Ptgt * Rinsu);
SecrN = Secr / Secr0;
Pprp = pow(GlucH,beta1PIR)/(pow(beta2PIR,beta1PIR)+beta3PIR*pow(GlucH,beta4PIR));
Ptgt = pow(Pprp,beta5PIR);
% Variable Cgon (CurrentY 047) is not determined
CgonN = Cgon / Cgon0;
GammaPCC = GammaMCC * Cgon;
GammaPCR = GammaBPCR * MGPCR * MIPCR;
MGPCR = beta0PCR - beta1PCR * tanh(beta2PCR * (GlucNH - beta3PCR));
MIPCR = beta4PCR - beta5PCR * tanh(beta6PCR * (InsuNH - beta7PCR));
GammaIVG = GammaIVG0+(GammaIVGin)*(Time>=TimeIVG)*(Time<=TimeIVGend);
GammaIVI = GammaIVI0+(GammaIVIin)*(Time>=TimeIVI)*(Time<=TimeIVIend);
Gamma_meal = k_empt*Q_sto2;
GammaISC = S2;
% Variable S1 (CurrentY 057) is not determined
% Variable S2 (CurrentY 058) is not determined
Q_sto = Q_sto1 + Q_sto2;
% Variable Q_sto1 (CurrentY 060) is not determined
% Variable Q_sto2 (CurrentY 061) is not determined
k_empt = k_min + (k_max - k_min)/2 * (tanh(alpha*(Q_sto-b*CHO))

- tanh(beta*(Q_sto-c*CHO)) + 2);
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D Code - data preparation

This section presents the code from the preparation of the Ohio T1DM dataset. That includes
converting the XML-files into xlsx-files, extracting the necessary data (glucose, insulin, meals),
convert units, increase sample time through interpolation and Kalman filtering and lastly
saving the prepared data for each patient into a large xlsx-file.

Convert from XML to xlsx (main.m)

This code file was given to me by my supervisor Hasti Khoshamadi.

clc;
clear all;
sampleXMLfile = ’591-ws-training.xml’;
mlStruct = parseXML(sampleXMLfile);
clear Data
for i= 1:18

clear V
clear t
clear t2
clear t3
t1 = {};
t2 = {};
n=floor(length(mlStruct.Children(2*i).Children)/2);

for j=1:n
if i==5 % bolus

V(j,1)=str2double(mlStruct.Children(2*i).Children(2*j).Attributes(1).Value);
V(j,2)=str2double(mlStruct.Children(2*i).Children(2*j).Attributes(2).Value);
DateString = mlStruct.Children(2*i).Children(2*j).Attributes(3).Value;
t(j,1) = datetime(DateString,’InputFormat’,’dd-MM-yyyy HH:mm:ss’);
t2j,1=datestr(t(j,1),’dd-mmm-yyyy HH:MM:SS’);
t3(j,1)=juliandate(t(j,1));

elseif i==6 % meal
V(j,1)=str2double(mlStruct.Children(2*i).Children(2*j).Attributes(1).Value);
Food_Type=mlStruct.Children(2*i).Children(2*j).Attributes(3).Value;

V(j,2)= strcmp(Food_Type, ’Breakfast’)+...
2*strcmp(Food_Type, ’Lunch’)+...
3*strcmp(Food_Type, ’Dinner’)+...
4*strcmp(Food_Type, ’Snack’)+...
5*strcmp(Food_Type, ’HypoCorrection’);

DateString = mlStruct.Children(2*i).Children(2*j).Attributes(2).Value;
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t(j,1) = datetime(DateString,’InputFormat’,’dd-MM-yyyy HH:mm:ss’);
t2j,1=datestr(t(j,1),’dd-mmm-yyyy HH:MM:SS’);
t3(j,1)=juliandate(t(j,1));

elseif i==7 || i==8 || i==18
V(j,1)=str2double(mlStruct.Children(2*i).Children(2*j).Attributes(1).Value);
DateString = mlStruct.Children(2*i).Children(2*j).Attributes(2).Value;
t(j,1) = datetime(DateString,’InputFormat’,’dd-MM-yyyy HH:mm:ss’);
t2j,1=datestr(t(j,1),’dd-mmm-yyyy HH:MM:SS’);
t3(j,1)=juliandate(t(j,1));
DateString = mlStruct.Children(2*i).Children(2*j).Attributes(3).Value;
t(j,2) = datetime(DateString,’InputFormat’,’dd-MM-yyyy HH:mm:ss’);%ts_end
t2j,2=datestr(t(j,2),’dd-mmm-yyyy HH:MM:SS’);
t3(j,2)=juliandate(t(j,2));

elseif i==9 || i==11
V(j,1)=0;
DateString = mlStruct.Children(2*i).Children(2*j).Attributes(2).Value;
t(j,1) = datetime(DateString,’InputFormat’,’dd-MM-yyyy HH:mm:ss’);
t2j,1=datestr(t(j,1),’dd-mmm-yyyy HH:MM:SS’);
t3(j,1)=juliandate(t(j,1));

elseif i==10
V(j,1)=0;
DateString = mlStruct.Children(2*i).Children(2*j).Attributes(1).Value;
t(j,1) = datetime(DateString,’InputFormat’,’dd-MM-yyyy HH:mm:ss’);
t2j,1=datestr(t(j,1),’dd-mmm-yyyy HH:MM:SS’);
t3(j,1)=juliandate(t(j,1));

elseif i==12
V(j,1)=str2double(mlStruct.Children(2*i).Children(2*j).Attributes(2).Value);
V(j,2)=str2double(mlStruct.Children(2*i).Children(2*j).Attributes(3).Value);
DateString = mlStruct.Children(2*i).Children(2*j).Attributes(4).Value;
t(j,1) = datetime(DateString,’InputFormat’,’dd-MM-yyyy HH:mm:ss’);
t2j,1=datestr(t(j,1),’dd-mmm-yyyy HH:MM:SS’);
t3(j,1)=juliandate(t(j,1));

else

V(j,1)=str2double(mlStruct.Children(2*i).Children(2*j).Attributes(end).Value);
DateString = mlStruct.Children(2*i).Children(2*j).Attributes(1).Value;
t(j,1) = datetime(DateString,’InputFormat’,’dd-MM-yyyy HH:mm:ss’);
t2j,1=datestr(t(j,1),’dd-mmm-yyyy HH:MM:SS’);
t3(j,1)=juliandate(t(j,1));
if i==4%temp_ba and sleep

DateString = mlStruct.Children(2*i).Children(2*j).Attributes(2).Value;
t(j,2) = datetime(DateString,’InputFormat’,’dd-MM-yyyy HH:mm:ss’);
t2j,2=datestr(t(j,2),’dd-mmm-yyyy HH:MM:SS’);
t3(j,2)=juliandate(t(j,2));

end
end

end
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Data{i}.Name=mlStruct.Children(2*i).Name;
Data{i}.Value=V;
Data{i}.Time=t;
Data{i}.Time2=t2;
Data{i}.Time3=t3;

end

Save converted files (save_results_in_folder.m)

This code file was given to me by my supervisor Hasti Khoshamadi.

% specify folder to save files in
folder = sampleXMLfile(1:3);

% save files
glucose_level=table(Data{1}.Time, Data{1}.Value);
path = strcat(folder, ’/glucose_level.xlsx’);
writetable(glucose_level, path);

basal=table(Data{3}.Time, Data{3}.Value);
path = strcat(folder, ’/basal.xlsx’);
writetable(basal, path, ’Sheet’, 1);

temp_basal=table(Data{4}.Time, Data{4}.Value);
path = strcat(folder, ’/temp_basal.xlsx’);
writetable(temp_basal, path, ’Sheet’, 1);

bolus=table(Data{5}.Time,Data{5}.Value);
path = strcat(folder, ’/bolus.xlsx’);
writetable(bolus, path, ’Sheet’, 1);

meal=table(Data{6}.Time,Data{6}.Value);
path = strcat(folder, ’/meal.xlsx’);
writetable(meal, path, ’Sheet’, 1);

interpolate.m

% read data from file
patient_nr = sampleXMLfile(1:3);
cgm_table = readtable(strcat(patient_nr, ’/glucose_level.xlsx’));
meal_table = readtable(strcat(patient_nr, ’/meal.xlsx’));
basal_table = readtable(strcat(patient_nr, ’/basal.xlsx’));
temp_basal_table = readtable(strcat(patient_nr, ’/temp_basal.xlsx’));
bolus_table = readtable(strcat(patient_nr, ’/bolus.xlsx’));
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% interpolate cgm data
cgm_time = cgm_table.Var1;
cgm_data = cgm_table.Var2;
time_array = cgm_time(1):seconds(6):cgm_time(end);
y = interp1(cgm_time, cgm_data, time_array, ’linear’);

% make table to store data
time_array = transpose(time_array);
interpolated_data = array2table(time_array, ’VariableNames’,{’time’});
% fill with zeros when not eating
interpolated_data.carbs = zeros(length(interpolated_data.time), 1);
interpolated_data.meal_type = zeros(length(interpolated_data.time), 1);

% add carbohydrate amount and meal type on correct time slot
for i=1:length(meal_table.Var1)

ts = meal_table.Var1(i);
carb = meal_table.Var2_1(i);
meal = meal_table.Var2_2(i);

% insert carb amount at where interpolated_data.time = ts
j = find(interpolated_data.time == ts);
interpolated_data.carbs(j) = carb;
interpolated_data.meal_type(j) = meal;

end

% add a column with cgm data
y = transpose(y);
interpolated_data.cgm = y;

% insulin data
% bolus
interpolated_data.bolus = zeros(length(interpolated_data.time), 1);

for i=1:length(bolus_table.Var1)

ts = bolus_table.Var1(i);
ts = dateshift(ts, ’start’, ’minute’, ’nearest’);
bolus_dose = bolus_table.Var2_2(i);

% insert bolus dose at where insulin_interp.time = ts
j = find(interpolated_data.time == ts);
interpolated_data.bolus(j) = bolus_dose;

end
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% basal
interpolated_data.basal = NaN(length(interpolated_data.time), 1);

for i=1:length(basal_table.Var2)

ts = basal_table.Var1(i);
ts = dateshift(ts, ’start’, ’minute’, ’nearest’);
basal_rate = basal_table.Var2(i);

% insert basal rate at where insulin_interp.time = ts
j = find(interpolated_data.time == ts);
interpolated_data.basal(j) = basal_rate;

end

interpolated_data.basal = fillmissing(interpolated_data.basal, ’previous’);
first_basal_value = basal_table.Var2(1);
interpolated_data.basal(isnan(interpolated_data.basal)) = first_basal_value;

% temp_basal supersedes basal between ts_1 and ts_2
interpolated_data.temp_basal_and_basal = interpolated_data.basal;

for i=1:length(temp_basal_table.Var2)

ts_1 = dateshift(temp_basal_table.Var1_1(i), ’start’, ’minute’, ’nearest’);
ts_2 = dateshift(temp_basal_table.Var1_2(i), ’start’, ’minute’, ’nearest’);

temp_basal_value = temp_basal_table.Var2(i);

j1 = find(interpolated_data.time == ts_1);
j2 = find(interpolated_data.time == ts_2);

for k=j1:j2
interpolated_data.temp_basal_and_basal(k) = temp_basal_value;

end

end

% Convert units of glucose and insulin data
interpolated_data.cgm_mmol = mgdl_to_mmol(interpolated_data.cgm);
interpolated_data.bolus_pmol = units_to_pmol(interpolated_data.bolus);
interpolated_data.basal_pmol = units_to_pmol(interpolated_data.temp_basal_and_basal)/60;
% divide by 60 to get per minute

% Remove unnecessary columns
interpolated_data = removevars(interpolated_data, {’cgm’, ’bolus’, ...
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’basal’, ’temp_basal_and_basal’});

% Save as excel file
writetable(interpolated_data, strcat(patient_nr, ’/interpolated/interpolated_data_’, ...

patient_nr, ’.xlsx’));

Unit conversion (units_to_pmol.m and mgdl_to_mmol.m)

function f = units_to_pmol(n)
f = n*6.94;

end

function f = mgdl_to_mmol(n)
f = n/18;

end

Kalman smoothing (test.m)

This code file uses the Kalman filter for glucose data [37] by Staal.

patient_nr = ’575’;
opts = detectImportOptions(strcat(patient_nr, ’/glucose_level.xlsx’))
opts = setvartype(opts,{’Var2’},’double’);
table = readtable(strcat(patient_nr, ’/glucose_level.xlsx’),opts);

% Smooth 2 and 2 days at a time
indices_559 = [0,516,1092,1640,1971,2527,3074,3488,3940,4509,5040, ...

5527,6103,6647,7165,7712,8230,8676,9213,9774,10279,10796];
indices_563 = [0,421,997,1573,2113,2684,3260,3785,4356,4929,5217, ...

5757,6297,6744,7320,7896,8431,8872,9448,10024,10452,11025,11549,12124];
indices_588 = [0,434,1586,2094,2670,3246,3781,4357,4933,5435,6011, ...

6430,7006,7582,8116,8692,9268,9797,10373,10949,11488,12064,12640];
indices_591 = [0,371,933,1504,2042,2530,3089,3654,4191,4764,5340, ...

5876,6437,7013,7081,7486,8012,8224,8623,9195,9698,10271,10847];
indices_570 = [0,376,952,1528,2073,2649,3138,3694,4258,4754,5330, ...

5900,6445,7021,7587,8133,8643,9067,9643,10178,10694,10982];
indices_575 = [0,420,1357,1929,2412,2964,3506,4040,4507,5077,5643, ...

6114,6678,7226,7695,8248,8679,9237,9772,10239,10791,11346,11866];

switch patient_nr
case ’559’

indices = indices_559;
case ’563’

indices = indices_563;
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case ’588’
indices = indices_588;

case ’591’
indices = indices_591;

case ’570’
indices = indices_570;

case ’575’
indices = indices_575;

end

time = [];
cgm_mmol = [];

for i=1:length(indices)-1
i1 = indices(i)+1;
i2 = indices(i+1);
tablenew = table(i1:i2,:);
y = convertTo_mmol_L(tablenew.Var2); % glucose measurements
t = tablenew.Var1; % time
timevector = t(1):seconds(6):t(end);

smoother_result = SmoothSMBGData(t,y,’outlierRemoval’,1, ...
’dynamicModel’,2, ’tout’, timevector);

% Append interpolated data to arrays
time = [time, timevector];
cgm_mmol = [cgm_mmol, smoother_result.y_smoothed_at_tout’];

date = t(1);
date.Format = ’dd-MMM-yyyy’;
date = datestr(date);

figure, hold on
plot(t,y,’r.’,’MarkerSize’,20)
plot(smoother_result.t_i,smoother_result.y_smoothed,’b-’,’LineWidth’,2);
plot(smoother_result.t_i,smoother_result.y_smoothed+ ...

2*smoother_result.y_smoothed_sd,’b--’);
plot(smoother_result.t_i,smoother_result.y_smoothed- ...

2*smoother_result.y_smoothed_sd,’b--’);
ol = smoother_result.outliers==1;
plot(t(ol),y(ol),’kx’,’MarkerSize’,10)
legend(’Input glucose measurements’,’Smoothed glucose’,’+2 std.dev.’, ...

’-2 std.dev.’,’Outliers’,’location’,’NorthWest’)
title(strcat(’Kalman filtered CGM data - patient’, patient_nr))
ylabel(’cgm value [mmol/L]’)
x0=100;
y0=200;
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width=1000;
height=400;
set(gcf,’position’,[x0,y0,width,height])
saveas(gcf, strcat(patient_nr, ’/kalman_filter_plot_’, patient_nr, ...

’_’, date, ’.eps’), ’epsc’)

end

time = transpose(time);
cgm_mmol = transpose(cgm_mmol);
interp_table = array2table(time, ’VariableNames’,{’time’});
interp_table.cgm_mmol_kalman = cgm_mmol;
writetable(interp_table, strcat(patient_nr,’/’, patient_nr, ...

’_cgm_kalman_interpolated.xlsx’));

combine_kalman_cgm_and_other_data.m

kalman_table = readtable(’575/interpolated/575_cgm_kalman_interpolated.xlsx’);
table_old = readtable(’575/interpolated/interpolated_data_575.xlsx’);

% This is extremely slow, takes approx 2 hours
% Add kalman data at the indices where we have timestamps
kalman_cgm = kalman_table.cgm_mmol_kalman;
kalman_time = kalman_table.time;

% Make column to store Kalman data
table_old.cgm_mmol_kalman = NaN(length(table_old.time), 1);

for i=1:length(kalman_cgm)

ts = kalman_time(i);
cgm = kalman_cgm(i);
j = find(table_old.time == ts);
table_old.cgm_mmol_kalman(j) = cgm;

end

writetable(table_old, ’575/interpolated/interpolated_data_with_kalman_575.xlsx’);
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