
Johan Gangsås Hole

Automatic Species Counterpoint
Music Generation at Five Levels Using a Guided
Local Search Algorithm

Master Thesis

Supervisor: Sverre Hendseth

Trondheim, May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

ii ii

NTNU

Norwegian University of Science and Technology

Master Thesis

Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

© 2021 Johan Gangsås Hole. All rights reserved

Master thesis at NTNU,

Printed by NTNU-trykk

Contents

1 Introduction 3

2 Background 7

2.1 Counterpoint . 7

2.1.1 Intervals . 8

2.1.2 Contrapuntal Motion . 10

2.1.3 Cantus Firmus . 11

2.1.4 First Species . 13

2.1.5 Second Species . 17

2.1.6 Third Species . 18

2.1.7 Fourth Species . 21

2.1.8 Fifth Species . 23

2.2 Review of Existing Methods and Software 27

2.2.1 Neural Networks and Artificial Intelligence 27

2.2.2 Knowledge-based Methods 31

2.3 Species Counterpoint Used In Automatic Harmonization 33

2.4 Constraint Satisfaction Program 35

iii

iv CONTENTS

2.5 Software Development Tools . 37

2.5.1 MIDI . 37

2.5.2 MuseScore 3 . 37

2.5.3 Python . 38

3 Software Design 41

3.1 Early Phase - Formalizing the System Structure 41

3.2 Choosing the Granularity of the Music Representation 43

3.3 Music Module . 45

3.4 Cantus Firmus . 48

3.5 Counterpoint . 52

3.6 Constraint Formalism and Cost Function 55

3.7 Search Algorithm . 61

3.8 MIDI Generator . 66

4 Implementation 71

4.1 Assumptions . 71

4.2 Musical Representation . 72

4.3 Cantus Firmus . 86

4.4 Counterpoint . 93

4.4.1 The Counterpoint Super Class 93

4.4.2 The General Structure of the Species Class 97

4.4.3 FirstSpecies Class . 97

4.4.4 SecondSpecies Class . 98

4.4.5 ThirdSpecies Class . 100

4.4.6 FourthSpecies Class . 101

4.4.7 FifthSpecies Class . 102

CONTENTS v

4.4.8 generate_ctp . 105

4.5 The Guided Local Search Strategy 105

4.6 Constraints . 108

4.6.1 Melodic Rules . 109

4.6.2 Voice-Independence Rules 112

4.6.3 Harmonic Rules . 114

4.6.4 Dissonance Handling . 115

4.7 MIDI-Generator . 117

5 Result 121

5.1 Generative Analysis . 121

5.1.1 First Species Generation 122

5.1.2 Second Species Generation 123

5.1.3 Third Species Generation 124

5.1.4 Fourth Species Generation 126

5.1.5 Fifth Species Generation 129

6 Discussion 133

6.1 Constraint Optimization as System Structure 133

6.2 The Effect of the Abstract Design of the Music Representation . . 135

6.3 The Isolated Cantus Firmus Module 136

6.4 Constraint Formalism . 136

6.4.1 Cost Function . 138

6.5 The Structure of the Counterpoint Module 138

6.6 The Choice of Search Algorithm 139

6.7 Auditory Quality - Some Musical Remarks 141

6.8 Future Work . 141

vi CONTENTS

6.8.1 Improving the System 141

6.8.2 Expanding the System 142

7 Conclusion 145

A Generated Counterpoints 147

A.1 First Species . 147

A.2 Second Species . 149

A.3 Third Species . 151

A.4 Fourth Species . 153

A.5 Fifth Species . 156

Abstract

In this thesis, a system is developed that can generate counterpoint pieces in each
of the five species as presented by Johann Joseph Fux in 1725. Existing rules of
counterpoint from Fux, supplemented by Jeppesen in 1930, are formalized and
quantified as a set of constraints. These constraints form the basis of the proposed
constraint optimization problem (COP), for which an algorithm is designed to en-
sure a satisfactory melody generation. The algorithm developed is a guided local
search metaheuristic. The search strategy iteratively improves a given counterpoint
melody by always picking and improving upon the note in the melody that leads to
the most accumulated penalty. The search algorithm is generalized and applicable
to all of the five different species. The user provides input parameters such as key,
scale type, vocal range and type of species. The generated results are exported
symbolically in midi-format, which can be further handled by programs such as
musescore.

Generated results have been made available on soundcloud. The reader is encour-
aged to listen to the auditory examples linked throughout the thesis. An example
of a fifth species counterpoint generation is given here: https://soundcloud
.com/johan-gangsas-hole/automatic-generation-of-fifth-spec

ies.

1

https://soundcloud.com/johan-gangsas-hole/automatic-generation-of-fifth-species
https://soundcloud.com/johan-gangsas-hole/automatic-generation-of-fifth-species
https://soundcloud.com/johan-gangsas-hole/automatic-generation-of-fifth-species

2 CONTENTS

Chapter 1

Introduction

The question of whether musical compositions can be automated has been a topic
of conversation for several centuries. Already in the baroque era of Bach, musical
dice games aided novice composers to generate music from a set of pre-composed
options randomly. These dice games also include variants of automated coun-
terpoint by the well-known composer C.P.E. Bach, the son of Johann Sebastian
Bach. Bach devised a game for "making six bars of double counterpoint at the
octave without knowing the rules" [26, p. 36]. The computer was introduced to
aid in algorithmic compositions as early as 1955. The composition was done on a
symbolic level and was produced by Hiller and Issasscon from 1955-1956 with the
"Illiac Suite" . Since then, a large variety of different algorithms and paradigms
has been used in computer-aided compositions. These include generative gram-
mars, rule-based systems, transition networks, genetic algorithms, and stochastic
models such as Markov models [26].

In species counterpoint, a melody is composed over or below a given melody called
the cantus firmus. The goal of the counterpoint is to be as independent as possible
from the cantus firmus, while still creating pleasing harmonies when played to-
gether. The main difference between the different species are the rhythms. As an
example: first species has one note for each note in the cantus firmus, and second
species has two notes for each note in the cantus firmus. The rules regarding how
to compose the counterpoint has most famously been laid out by Johann Joseph
Fux.

The goal of the system presented in this thesis will be to generate all of the five
species of counterpoint. Previous solutions seem to be concerned mostly with

3

4 Introduction

only first- or fifth species, which motivates the idea of making a contained sys-
tem that can handle all of the five species. This will be achieved by implementing
a guided local search algorithm that is issued on a pre-constrained system. The
rules presented by Fux and Jeppesen are to be structured as system constraints in
a cost function that is to be minimized. The task of the complete algorithm will
be to incrementally adjust a initially randomized melody pitch sequence until the
cost function is under a certain threshold. Having a well formed system structure
will also be a goal in of itself. This means that the proposed algorithm should be
generalized to the extent that it can be used for generation of all the five different
species. To achieve this, certain care must be done during the design phase.

The choice of focusing on species counterpoint as the composition task was made
because of several reasons. The pedagogical framework in which the species was
first outlined makes it approachable and contained. It also supports a good balance
of abstraction and generality compared to other composition styles. Its division
into different levels, or species, with a concrete rule-set that is sufficiently pre-
cise, gives a well-formed system specification in the form of explicit counterpoint
rules. Therefore, the system design phase has a good entry point since the sys-
tem specification to a large degree is already given by formal rules. Fifth species
counterpoint has also been used extensively in algorithmic composition tasks [10,
6, 20, 1, 32], making it possible to compare solutions and strategies.

The problem of algorithmic composition is interesting in itself, but we are also
interested in system design, particularly scalability. Therefore, the music repres-
entation in the style of objects and how these objects can be further structured
to reduce higher-order complexity is also addressed. Modern approaches in al-
gorithmic composition has also shifted more towards machine learning methods
during the last decade. Although these results have been promising - as will be
discussed in section 2.2 - the issue of such "black-box" implementations is the loss
of control of the generated results. A system based on a rule-based paradigm was
therefore more intriguing, as this led to a more in depth study of how rules of com-
position could be expressed in a computer system.

The thesis is structured as follows. First, some music theory is presented to give
context to the problem to be solved. This musical introduction includes a brief
study of counterpoint and harmonization, in addition to different musical concepts
such as intervals. The presentation of counterpoint also include the rules as presen-
ted by Fux and Jeppesen. The second part of the background chapter is a presenta-
tion of existing methods for algorithmic composition. This presentation is both in
regards to general approaches and practices dealing with automatic counterpoint

5

specifically. Based on the information regarding existing solutions, the proposed
system is design in chapter 3. Chapter 4 presents the implementation, while the
results are presented in chapter 5. Lastly, a discussion is made with remarks regard-
ing the development phase and choices made during the system implementation.
It is also discussed whether the implemented system was successful in generating
species counterpoint, in addition to possible improvements and future work.

6 Introduction

Chapter 2

Background

This chapter provides background to the work described in this thesis. First, we
give an introduction to counterpoint and the different rules for each species. Then,
an overview of other techniques for algorithmic composition is outlined from a
historical perspective. We separate this preview into two main categories, AI-based
and knowledge-based. Lastly, more concrete examples of systems for counterpoint
generation are presented.

2.1 Counterpoint
In this section, basic concepts regarding music theory are presented. In particular,
the set of rules for strict contrapuntal writing is described. The information here
is based on the counterpoint book by Johann Joseph Fux, translated in 1965 by
Mann [7]. Information regarding intervals and other fundamental music theory is
from Steven G. Laitz’s "The Complete Musician" and Catherine Schmidt-Jones’
"Understanding Basic Music Theory", both books on fundamental music theory
[21, 31].

Counterpoint is when more than one independent melodic line is happening sim-
ultaneously in a piece of music. The music is then contrapuntal [31, p. 85]. Inde-
pendent melodies mean that whatever is happening in one line (both rhythmically
and melodic) is independent (or, if possible: different) from what is happening in
the other lines. One simple example of counterpoint is a round, where everyone
sings the same melody, but starting at different times. In this way, even though
everyone is singing the same tune, the fact that people will be singing different
parts leads to independence between voices. An example of a simple round is
given in figure 2.1. Here, the asterisk’s indicate the entry points where a new part

7

8 Background

Figure 2.1: Simple example of applied counterpoint in "row your boat".1

can join the singing from the start. Given the three asterisks in this example, a
maximum of four different parts can be sung simultaneously.

Counterpoint has since the beginning of the tenth century been a focus of west-
ern music together with polyphony and harmony [21, p. 47]. This led to an early
pedagogical study by the early eighteenth centrury, mostly credited to the works
of Johann Joseph Fux in his book Gradus ad Parnassum from 1725 [7]. The book
consists of compositional exercises divided into five levels or species. Given a
melody called the cantus firmus a new melody is constructed as a counterpoint
based on certain rules and constraints.

To write a satisfactory counterpoint, one must first have a good understanding
of intervals. Presented with a pair of pitches, the various distance between these
two pitches form intervals. These intervals are, along with the rhythm, one of the
fundamental building blocks of tonal music [21, p. 713], and a presentation is
therefore given in the following section.

2.1.1 Intervals

As mentioned above, intervals are the distances between two pitches. Therefore,
an interval gives a relationship between notes, where one might be higher or lower
than the other. Describing smaller intervals can be done using half steps (adjacent
keys on a piano keyboard) and whole steps (consists of two half steps). One ex-
ample is "D natural is a whole step above a C natural". Larger intervals require a
more descriptive way of naming them, typically done by an ordinal number rep-
resenting the number of pitch-names that span the two notes [31, p. 136-140]. For
example, an interval from C to G is a fifth since five pitch names span C to G (C,
D, E, F, G). One can also identify intervals by their number of half steps. A fifth,

1picture from https://en.wikipedia.org/wiki/Round_(music)

https://en.wikipedia.org/wiki/Round_(music)

2.1. Counterpoint 9

for instance, correspond to seven half steps.

Intervals can further be divided into simple intervals and compound intervals. The
simple intervals are limited to be within a range of an octave. Compound intervals
are larger than an octave but are often expressed as their simple counterpart [21, p.
13]. Figure 2.2 shows all of the simple generic intervals with their corresponding
ordinal name. A more specific representation is given in figure 2.3. Here, all of the
specific simple intervals for a C major scale is shown. The prefixes "P" and "M"
indicate the two basic categories of intervals: the unison, fourth, fifth and octave
are perfect (P) intervals, and the rest are major(M)/minor(m) intervals, also called
imperfect intervals. These two categories are used to distinguish the quality of
the interval. In a harmonic context, perfect intervals are more stable and "at rest".
Imperfect intervals might create tensions that need to be resolved.

Both imperfect and perfect intervals can be further transformed into other intervals
[21, p. 13]. Increasing the intervals by a half step creates an augmented interval.
Decreasing the interval by a half step results in a diminished interval. The only in-
terval that can not be diminished is the unison, but all intervals can be augmented.
It is, however, impossible for an imperfect interval to be augmented or diminished
to a perfect interval and vice versa. A simple example of an augmented interval is
shown in figure 2.4.

The transformation induced by augmentation and diminution means that similar-
sounding intervals can have different names [31, p. 144]. One such example is the
tritone, which gets its name from the number of whole tones in the interval, three.
A tritone can be expressed as a diminished fifth or augmented fourth. Since this
interval is neither major, minor or perfect, it is unusually dissonant and unstable
and must therefore be handled with care.

Such dissonances lead us into the quality of the intervals, namely the level of sta-
bility. The perceived stability or instability of a given interval is highly determined
by musical context. However, it is possible to categorize the intervals into two
new categories, which is essential in the study of counterpoint. These categories
are consonant and dissonant intervals. Consonant intervals consist of stable inter-
vals - including unison, third, fifth, sixth, and octave. The dissonant, or unstable,
intervals include the second, the seventh, and all diminished and augmented in-
tervals. The perfect fourth can either be stable or unstable depending on musical
context, but in the study of counterpoint, this interval is considered to be dissonant
[31, p. 183-186].

10 Background

Figure 2.2: Generic simple intervals with ordinal names [21, p. 13].

Figure 2.3: Specific intervals for the C major scale above the tonic [21, p. 13].

The consonant intervals can further be divided into two types: perfect conson-
ances and imperfect consonances. Figures 2.5 and 2.6 summarizes the types of
intervals. The interplay between the different types of intervals is a powerful tool
for composers to create motion in their music; for example, a seventh that is im-
mediately followed by a consonance, like a perfect fifth. This creates tension that
is resolved when a dissonance goes back to a perfect consonance.

2.1.2 Contrapuntal Motion

When two voices move together, as is the case of counterpoint, they create dif-
ferent contours depending on how the voices move relative to each other. The
different contours create what is known as contrapuntal motion, and there are in
all four different motions for species counterpoint [21, p.50].

The first one is when the two melodies move in opposite directions from one an-
other. This creates contrary motion. Example of contrary motion is shown in part
A of figure 2.7. This is the motion that gives the most voice independence, and
should therefore be preferred.

The second type of motion is similar motion, which means that the voices move

Figure 2.4: Augmentation of a perfect fifth.

2.1. Counterpoint 11

Figure 2.5: Consonant intervals.

Figure 2.6: Dissonant intervals.

in the same direction but with different melodic intervals. This is illustrated in part
B of figure 2.7.

When one voices stays monotonic while the other moves freely, we get the third
type of motion: oblique motion. In oblique motion, there is only one of the voices
which changes pitch value. An example is shown in figure 2.8A.

The last type of motion is parallel motion, which creates the most dependence
between the voices and should therefore be avoided if possible in counterpoint.
In parallel motion, the voices move in the same direction with the same melodic
interval. This is illustrated in 2.8B.

Figure 2.7: Example of contrary and similar motion between two voices.

2.1.3 Cantus Firmus

Cantus firmus (plural: cantus firmi) is Latin for "fixed song" and is a preexisting
melodic line used as a basis of the contrapuntal composition [26, p.48]. The cantus
firmus is often abbreviated CF. Fux presents many examples of cantus firmi in all
of the different modes (scales) in his study of counterpoint. These melodic lines
are mono-rhythmic, meaning that the notes are of equal length (often whole notes).

12 Background

Figure 2.8: Examples of oblique and parallel motion between two voices.

Figure 2.9: Example of a cantus firmus in the dorian mode [7].

The number of pitches is usually between 8 and 14 notes [7]. The cantus firmus is
the basic structural pillar against which the counterpoint voice is added. How the
counterpoint voice move in relation to the CF is what separates the different spe-
cies. Each species introduces a new way of complementing the CF rhythmically,
creating tension, resolution, and melodic fluency. Figure 2.9 illustrate a cantus
firmus example in dorian mode given by Fux in Gradus ad Parnassum [7].

Rules

Since the cantus firmus is often given as an initial melody which form the basis of
the counterpoint to be composed, the rules regarding how to compose cantus firmus
melodies is not as formalized as that of species counterpoint. It is, however, still
possible to list some rules by studying Jeppesen’s preliminary exercises regarding
melodies in first species and Palestrina-style melodies in general [18, p.83-97 and
p. 109-112]. The rules are similar to that of first species melodic consideration,
with some minor differences:

1. One must begin and end on the tonic to emphasize the key.

2. Only melodic consonances may be used.

3. The cantus firmus should have a clear climax point.

4. All notes must be whole-notes.

5. The cantus firmus should be within a range of a tenth and in a singable vocal
range.

6. The penultimate note should be a major second above the tonic. A minor
second below is also allowed, but this should be rare.

2.1. Counterpoint 13

7. All perfect, major, and minor intervals up to the fifths are permitted in as-
cending as well as in descending motion, as is the octave. Only ascending
and not descending minor sixths are allowed.

8. Having too many skips in the cantus firmus is bad. Likewise, having too long
sequences of step-wise motion might sound trivial. One should therefore
aim to find a balance between the two.

9. Large leaps should be recovered by a step in the opposite direction.

10. Care should be taken in having successive large leaps both in the same and
opposite direction.

11. Successive note repetitions is not allowed, and a note should not be repeated
too much across the entire cantus firmus given its short length. One must
also be careful not to repeat motivic sequences, as this might come at the
expense of the melodic direction.

12. Following the lengths of the cantus firmi provided by Fux, the length of the
cantus firmus should lie between 8 and 14 notes.

13. Leading tones (seventh scale degree) should be resolved by the tonic.

By inspecting the dorian cantus firmus in figure 2.9, one can observe that all of the
rules are satisfied. Since the cantus firmus is in the dorian mode, the tonic is D,
which is correctly the start and end note of the cantus firmus melody. The cantus
firmus is also well within the maximum allowed range of a tenth, with a good mix
of both small leaps and step-wise motion.

2.1.4 First Species

First species counterpoint begins with introducing one new note for each note in
the cantus firmus. This new melody can either be above or below the cantus firmus.
The intervals used must also be consonant and as independent as possible. This
means that they should ideally move in different melodic motion to the cantus
firmus. This results in a note-against-note or 1:1 counterpoint. The added voice
is also called the contrapuntal voice [21, p. 48-49]. A simple example is shown
in figure 2.10A. Here, the counterpoint is given above the cantus firmus. Notice
how the voices move with close to mirrored contours in contrary motion. This is
to enforce as much independence as possible. The melodic climaxes are also dif-
ferent. The climax for the cantus firmus is in measure three, while the climax for
the counterpoint voice is in measure five.

14 Background

Figure 2.10: Example of first and second species counterpoint using the same cantus
firmus [21, p. 48].

The notes that form the counterpoint must follow a set of rules and guidelines to
ensure both harmonic and melodic fluency. One such rule, and arguably the most
important according to Fux [7], is that all harmonic intervals between the cantus
firmus and the counterpoint must be consonant. This rule creates a framework of
feasible note possibilities, and other rules are introduced to ensure a well-formed
global structure adherent to the form. Example: Any motion is allowed except for
the direct motion into a perfect consonance.

Several more rules and considerations have to be made when composing first spe-
cies counterpoint. These rules are now presented in the following subsection. By
enforcing these rules, the number of note repetitions allowed, leaps, possible start
and end notes in addition to counterpoint range is constrained.

Rules

The rules for different species of counterpoint is taken from a translated and mod-
ernized version of Fux’s Gradus ad Parnassum [7, p.27-70]. Since the work of
Fux is presented as a dialog between a teacher and a student, some of the rules are
somewhat unclear. Therefore, Knud Jeppesen’s work on counterpoint from 1930
[18] is used as a supplement to formalize the rules with a clearer distinction. Be-
fore the rules are presented, some additional musical terminology is explained.

Diatonic means the seven steps that an octave is divided evenly into in minor
and major scales. A melody in C-major is therefore diatonic if all of the notes in
the melody is one of the white keys on a keyboard; C-D-E-F-G-A-B [21].

Harmonic intervals are the vertical intervals between the counterpoint and cantus
firmus voice.

Melodic intervals are the intervals from one pitch to the next in a single voice

2.1. Counterpoint 15

line.

Cadence is a melodic or harmonic configuration that creates a feeling of resol-
ution. Cadences often appear at the end of music phrases as a form of musical
punctuation [21, p. 43].

Bellow follows a list of all the major rules for first species composition:

1. For every note of the cantus firmus, there is one note in the counterpoint.

2. The counterpoint is diatonic except for the raised leading tone in minor.
This means that all of the notes must be within the given scale implied by
the cantus firmus except for occasionally the leading tone in minor.

3. All harmonic intervals must be consonant (a perfect fourth is considered a
dissonance).

4. The voices should lie within their respective ranges - bass, tenor, alto or
soprano. This is to keep each separate part within a reasonable and singable
range.

5. The first harmonic interval between the cantus firmus and counterpoint voice
must be any perfect harmony and the last an octave or unison. If the coun-
terpoint lies in the lower part, however, only the octave or unison might be
used.

6. Unisons may occur only on the first and last notes of the counterpoint melody.

7. The maximum range between the cantus firmus and counterpoint should
rarely exceed the interval of a tenth.

8. The last interval must be approached by motion of a minor second up-
wards or major second downwards, depending on the penultimate note of
the cantus firmus.

9. Jeppesen supplements Fux and specify the importance of a clear high point
in the counterpoint melody that should not be exceeded or introduced more
than once. The rule of having a distinct climax-point is therefore added.

10. Upper voices can sometimes cross if necessary, but avoid "overlapping" (in
an overlap voices do not cross, but one moves to a position that is at or
beyond the previous pitch of another voice). Examples of rule violations is
shown in figure 2.12.

16 Background

11. All perfect harmonic intervals must be approached by contrary motion.

12. Melodic motion can proceed by step or leap but steps and leaps of augmen-
ted and diminished intervals and leaps of any seventh are forbidden. Leaps
greater than an ascending sixth are forbidden except for leaps of an octave
which should be rare.

13. The counterpoint may not outline an interval of a tritone or seventh except
for an augmented fourth that is fully stepwise outlined and precedes an in-
ward step. See figure 2.11 for an example of a tritone outline. Dissonant
intervals is therefore avoided both harmonically (between the counterpoint
and cantus firmus), and as melodic contours.

14. No note may be repeated more than three times successively. Jeppesen
seems to be more strict regarding repetitions than Fux. While Fux set the
limit at three repetitions, Jeppesen strictly specifies: "The repetition of a
tone is permitted occasionally in the first species, and there only." [18, p.
111], implying that the number of repeating notes should not exceed two.

15. No two successive melodic leaps in the same direction may total more than
an octave.

16. While ascending, in the case of two successive melodic steps or leaps, the
larger one should precede the smaller; while descending the smaller should
precede the larger. Jeppesen, however, points out that this rule should not be
applied too rigidly in first species counterpoint between whole notes [18, p.
109].

17. No successive melodic leaps in opposite directions; leaps should be followed
by inward, step-wise motion.

18. The same harmonic interval should not repeat more than three times suc-
cessively.

19. There should be no more than two successive melodic leaps.

20. The range of the counterpoint should be limited to a tenth.

21. Contrary motion should be preferred.

22. No voice should move by a chromatic interval (any augmented or diminished
interval).

2.1. Counterpoint 17

Figure 2.11: Example of violation of rule 13 for first species counterpoint. The stepwise
motion F-A-B outlines a tritone, which is not allowed.

Figure 2.12: Example of violation of rule 10 for first species counterpoint. The first
example contains a voice crossing, while example two illustrates voice overlap.

2.1.5 Second Species

In second species counterpoint, two notes are written for each note in the cantus
firmus. This form is also called 2:1 counterpoint [21, p. 48]. In contrast to first spe-
cies counterpoint, second species introduces the possibility of dissonant intervals
on weak-beats. Other than that, the rules are generally the same as first species.
For example, all harmonic intervals on downbeats must be consonant. An example
of second species counterpoint is shown in figure 2.10B.

Rules

Second species build upon the rules of first species, adding the rules listed below:

1. The repetition of notes should now be avoided in second species and in the
remaining species.

2. The counterpoint must end on a whole note.

3. The accented portion of the measure (beat 1) can only have consonances.

4. The unaccented portion of the measure (beat 2) may have either consonances
or dissonances. Consonances may be introduced freely, while dissonances
must be approached and left by step continuing in the same direction. In
other words; it must fill in the interval of the third between the two notes on
either side of it. Figure 2.13 illustrates a valid dissonance, approached and
left by step in descending motion.

18 Background

Figure 2.13: Example of allowed and disallowed dissonance handling for second species.
The dissonance in the first measure is properly resolved with continuous step-wise motion,
while the dissonance in the third measure is followed by upward leap and is therefore not
resolved.

5. As in first species; avoid unisons except at the terminals. Authorities dis-
agree: Fux forbids unisons except at beginning and end (though he occa-
sionally includes them in his examples). Jeppesen is less strict. But since
we are interesting in staying true to the Fuxian style, we will keep Fux’s
objection to unisons.

6. Must begin on an up-beat (beat 2 of the measure), and the first tone must be
the tonic or the fifth of the scale.

7. Avoid consecutive melodic intervals on the same pitches. That is, motivic
repetitions.

8. Accented fifths or octaves following each other on successive accents should
be avoided if possible, unless the intervening accompaniment note leaps by
more than a third. In the second of these parallels between downbeats the
leap of a fourth is thought to mask the effect of the parallel. This rule ex-
ception is somewhat unclear, so an example of two parallel octaves is given
in figure 2.14. The first one is not allowed, while the second one is allowed
due to the skip in the intervening note.

2.1.6 Third Species

Third species does not introduce any more types of dissonances, but it does make
possible richer and more varied melodies. The added counterpoint will now be in
quarter-notes, except for in the last measure which will be a whole-note to em-
phasize the cadence. The number of notes is therefore twice that of second species
counterpoint, and is called 4:1 counterpoint.

In contrast with the other two species presented so far, third species has a lot more

2.1. Counterpoint 19

Figure 2.14: Example of violation of parallel perfect intervals for second species coun-
terpoint. The intervening interval in measure two is too small to mask the parallel octave.
The parallel octave is properly handled in measure three.

Figure 2.15: Two possible melodic routes. Notes on strong beats are indicted in green.

note repetitions across the whole melody. This is due to the limited range and num-
ber of notes. To prevent monotonic melodies, third species introduces the notion of
different routes [7, p. 51-54]. Direct routes stay between the two notes on strong
beats in consecutive measures. Indirect routes goes out of the range between two
consecutive strong beats, leading to a more unpredictable and varied melodic line.
Examples of routes is shown in figure 2.15.

Given the increased complexity, musical context also becomes more apparent. Par-
allel motion is still constrained, but is allowed if the number of beats between them
are at least four and occurring on weak-beats. This results in a more goal oriented
composition with a sense of direction, with a goal to peak on a consonance. The

Figure 2.16: Example of a third species counterpoint. Courtesy of Alan Belkin
[4]

20 Background

added difficulties also mean that the whole cantus firmus must be analyzed before
even beginning to compose the counterpoint voice. This is to ensure no overlap-
ping climaxes or voice crossing. An example of a third species counterpoint above
a given cantus firmus is shown in figure 2.16. Notice how the contour of the coun-
terpoint ascends to a peak in measure 6 before descending down to a imperfect
consonant in the last measure, while the cantus firmus is mostly descending after
the initial leap in measure 2.

Rules

1. Four quarter-notes for each whole note in the cantus firmus, except on the
start, which start on a rest, and the last note, which must end on a whole-
tone.

2. The first note must, as in the preceding species, be a perfect consonance.
However, imperfect consonances may be used occasionally if this leads to a
better overall melodic structure.

3. The first and third quarters in each measure must be consonances.

4. The second and fourth quarters might be consonances or dissonances. The
conditions are the same for that of second species. Jeppesen however, con-
trary to Fux, does not restrict movement to the continuation in the same
direction. It might return to the tone from which one started. This is called
auxiliary notes, and only lower auxiliary notes are allowed in Jeppesen’s
modernized counterpoint.

5. One common exception to the above-mentioned rule is the descending skip
of the third following an unaccented quarter note introduced stepwise from
below, see figure 2.17. Unaccented quarter notes introduced from above
is treated less rigorously. Some common rule exceptions with unaccented
notes introduced from above are shown in figure 2.18.

6. Aside from in the first and last measures, unisons can only appear on beats
2-4 in each measure, but only rarely.

7. No exceptions are permitted to the rule that "larger intervals must precede
smaller ones in upwards movement", and vice versa, where the direction is
opposite.

8. Two or more successive skips in the same direction is not permitted.

9. No upward skips from an accented quarter note is permissible.

10. Skips should be filled out immediately.

2.1. Counterpoint 21

Figure 2.17: Allowed exception to rule number 5 for third species counterpoint.

Figure 2.18: Common figures with the unaccented quarter note introduced from above.
The figure in measure one is the much-liked cambiata figure.

11. Descending or ascending skips from two successive accented quarter notes
are to be avoided.

12. Repetitions of notes within a bar should be avoided when the repeating note
is introduced from above. Therefore, the motifs shown in figure 2.19 are
rare in pure Fux style. Note repetition introduced from below is allowed, as
this was a popular and common ornament in the sixteenth century.

13. Given the increased restriction due to the introduced notes, accented fifths
or octave on successive accented quarters following each other may be per-
mitted very rarely.

2.1.7 Fourth Species

Fourth species counterpoint is rhythmically different from the preceding species.
Fourth species introduces a new form of dissonance, the suspension. Up until now,
dissonances has always been placed on weak-beats and approached and left by
step. The suspension however introduces dissonances on strong beats. To achieve
this, the note is started on a consonance on a weak beat in the previous bar, and
then, sustained, becomes dissonant in the next bar as the harmony changes around
it [4]. Each suspension consists of three steps; the preparation, which must be
consonant, the dissonance, which is the same note as the preparation but with
another harmony surrounding it, and lastly, the resolution, another consonance to
resolve the suspension. It is, however, possible that the tied note is a consonance
in both measures. It is then possible to leap in stead of moving by step. Figure

Figure 2.19: Examples of note repetitions in measures that should be avoided in Fux style.

22 Background

Figure 2.20: Example of a fourth species counterpoint. Courtesy of Alan Belkin
[4]

2.20 shows an example of fourth species counterpoint with the cantus firmus given
below. The suspensions are illustrated with tied notes across the bar-lines. Notice
how the chain of suspension is broken in measures three and four. According to
Fux, this may only happen maximum one time each exercise. Notice also how the
dissonances is mostly resolved by step downward. This makes it hard to create
convincing melodic lines in fourth species [4].

Rules

1. As in second species, there are two half notes for each note in the cantus
firmus.

2. The rhythm is now syncopated, meaning that the unaccented half note in
each measure is tied to the accented one immediately following.

3. Dissonances may only be used on accented half notes (beat 1), such that
the dissonant tone is tied over from the unaccented part of the preceding
measure, where it must be a consonance with the cantus firmus. In fourth
species such dissonances are preferred to consonances.

4. Each dissonance must be followed by a step-wise movement downwards to
an imperfect consonance. Therefore, when the counterpoint is in the upper
voice, only the seventh and fourth may be used as a suspension dissonance.
When the counterpoint is below the cantus firmus, only the second and ninth
can be used. Note that this is only necessary when the syncope is dissonant.

5. It is possible to break the chain of syncopation, which should be done very
rarely. This give rise to second species movement that must be handled
according to the rules of this species. Figure 2.21 illustrates this, where the
break in syncopation in measure two leads to one measure of second species
in measure three. Notice that since a syncopated consonance occurs on the
strong accent in measure three, it is permissible to take a passing dissonance
on the following weak-beat.

2.1. Counterpoint 23

Figure 2.21: Example of allowed chain break in fourth species counterpoint.

6. Must begin on a up-beat (beat 2 of the measure) which forms a perfect con-
sonance to the cantus firmus.

7. If the counterpoint is in the upper voice, the dissonance in the penultimate
measure should be a seventh. With the cantus firmus in the upper voice, the
suspension of the second is the rule.

2.1.8 Fifth Species

Fifth species combine the rhythms off all the preceding species. This results in a
more complex contrapuntal voicing, with the goal being a fluid and smooth res-
ult. That increased freedom means that there is more care that has to be made in
how the melody flows. As Jeppesen writes; "When melody and rhythm unite the
relation becomes very complex and subtle. It becomes increasingly difficult to for-
mulate impressions into rules; they must be held fluid within certain broad limits"
[18, p. 135]. Jeppesen still manages to formalize some generalizations, presented
in the following rule section.

In fifth species counterpoint, we have access to eight-notes for the first time. Figure
2.22 shows how a perfect fourth, from C to F, can be elaborated with eight-notes in
fifth species. The added notes are D and E, and works as double passing notes that
fill in the ascending gap. This is similar to how the interval of a third was filled
in with a passing note in earlier species. Eight-notes used in this way will always
occur on the weak beats of the measure (beats two and four). Example 2.22 uses
eight-notes in beat two.

An example of fifth species counterpoint is shown in figure 2.23. Notice how
the counterpoint now uses rhythms found in the preceding species, including tied
notes and eight-notes.

24 Background

Figure 2.22: Example of melodic elaboration in fifth species using eight-notes.

Figure 2.23: Fifth species example with eight-note elaborations and tied notes [10].

2.1. Counterpoint 25

Rules

1. No longer limited to one specific rhythm.

2. Rhythms require compensations just like leaps; rhythmic fluency should
develop in a continuous way, with slower rhythms developing into faster
rhythms, and faster rhythms developing into slower rhythms.

3. Syncopations require some extra care because of its halting effect on the
melody. It is therefore common that shorter note values are put immediately
before the syncope, and that the syncopated note is followed by eights.

4. The higher tones often have longer note durations, as to emphasis the climax
of the counterpoint.

5. In ascending motion, it is common to begin with the quicker notes. The
opposite is true for descending movement, where it is more common that
the longer note values precede the smaller.

6. Treatment of quarter-notes:

• Quarter-note movement should, if possible, begin on an unaccented
half-note. This rule applies especially to descending movements.

• A leap followed by step-wise movement of quarter-notes is a natural
progression and is often used.

• The quarter-note movement should continue up to an accented half-
note or suspension.

• The total number of quarter-notes in succession should not be longer
than eight.

• Two quarter notes should, if possible, not stand isolated in the place of
an accented half note in a bar.

7. Treatment of eight-notes:

• Assuming that the cantus firmus moves in whole-notes, no more than
two eight-notes should be in succession and in each measure. They
can also only appear in metrically weak positions (the second or fourth
beat of a 4/4 measure).

• Eight-notes must be introduced and left by step-wise movement.

• Since eights may only occur on unaccented beats, they cannot come
after a note value greater than a dotted half.

8. Treatment of syncopation:

26 Background

• The note of least value to be syncopated with another note of equal
value is the half-note. This means that a quarter-note can never be tied
to another quarter-note.

• It is not allowed to tie notes of less value to subsequent notes of greater
value. The opposite may take place, but only in 2:1 relation.

• In the use of dotted half notes the rules for the third species apply to
the part of the note that is tied over to the next measure. This means
that this part of the note must be treated as either a passing dissonance
or a dissonant auxiliary note, and may never proceed upward by skip.

9. Treatment of dissonances:

• An unaccented half-note that follows after a tie can form a dissonance
when the dissonance is treated according to the rules of the second
species. The same applies to quarter-notes after ties or dotted half
notes. The keyword here is that the note must be unaccented to be able
to form dissonances.

• Tied quarter notes should rarely be used as dissonances if it is not on a
weak beat.

2.2. Review of Existing Methods and Software 27

2.2 Review of Existing Methods and Software
In general, procedures for music generation can be divided into two main categor-
ies; knowledge-based and non-knowledge-based methods [26, p. 270]. The non-
knowledge-based methods are characterized by being learning-based. This means
that the structure and musical content is not generated based on a predefined rule-
set, but learned from training on a data set. This type of music generation has
become increasingly more popular over the last decade concurrent with the de-
velopment of more sophisticated neural networks. These modern, state of the art
models incorporate memory, and can therefore represent more abstract musical
structures and generate longer, structurally sound musical pieces.

It will also become evident that the diversity of musical dimensions leads to an
unavoidable excessive list of different methods and approaches which are possible
to use when generating music procedurally. Nonetheless, various approaches are
listed in the following two sections, focusing on each of the two main categories:
knowledge-based and non-knowledge-based. Since the trend in algorithmic com-
position in recent years have been dominated by machine learning approaches, we
will begin by presenting different approaches within this sub-field of music gener-
ation.

2.2.1 Neural Networks and Artificial Intelligence

The main advantage of (artificial) neural networks is its enabling of problem solv-
ing by changing a number of weights in a structure of interconnected components.
In this way, the network can learn from data sets of different content and structure,
resulting in artificial networks being applicable to a number of different sub-fields,
such as natural language processing (NLP), image recognition and in our case mu-
sic generation. The name is derived from its biological model, the interconnection
of the neurons in brains [26, p. 205].

Early Stages

The earliest examples of artificial neural networks started to form as early as 1943,
when neurophysiologist Warren St. McCulloch and Walter Pitts started to de-
velop models for connectionist structures. This dealt with the reaction patterns in
nervous systems. Due to the limitation with computational power during this time,
the connectionist model only allowed for the calculation of simple logic functions
[24]. Although the first results were quite limited, it did spark the interest in artifi-
cial neural networks, leading to the development of the first perceptron in 1958 by
Frank Rosenblatt [30]. Early development within the field of artificial intelligence
did however come to a halt with the publication of the Lighthill report in 1973,

28 Background

which presented the limitation of perceptrons and current models and criticized
AI’s failed realisation of its main objective [23]. The publication of this report in
addition to a general declining lack of enthusiasm led to a cut in funding for AI
research, resulting in a decade long quiet era known as the first AI-winter2.

Transitional Period (1980s-1990s)

A new wave of enthusiasm and funding happened in the 1980s. This period also
saw new applications of artificial intelligence. The classical NLP approach was
broadened, and the first examples of music generation using neural nets were real-
ised [26, p. 213]. The first system for music generation using AI was a hybrid
approach, developed by Hermann Hild et al. in 1991 using methods based on
neural networks and a rule-based system. The system was called HARMONET
and its task was to harmonize melodies in the style of Bach chorales [12]. They
also explored different options for harmonization, using decision trees and nearest
neighbour classification. However, all of these alternative approaches were all out-
performed by the neural networks.

The development of music generation using neural nets stagnated after an initial
boom during the 1990s. This might be related to the second AI-winter which oc-
curred after the development of expert systems from 1980-1990. The initial ANN
approach developed during the late 80s became somewhat of a standard approach
up until the deep learning boom from 2006 to 2009. Research during this period in-
clude the feed-forward ANN by Todd and Loy in 1989 [33], CONCERT by Mozer
(1994), a recurrent autopredictive connectionist network [25], and MELONET I
by Hörnel (1997), a music generator in the baroque style of Bach [14].

Current Methodology and Research

The use of deeper neural networks and more computational power has led to an in-
crease in more creative applications using computer-aided music generation. There
is no longer a focus on only symbolic generation of creating MIDI or sheet mu-
sic, but also on performance generation like the new wave2midi2wave system [8].
This system is unique in the way that the symbolic representation being gener-
ated is further passed into a performer network that maps the symbols to sound
using a model trained on actual live piano performances. In this way the output
is much more realistic and human-like, with inferred dynamics in the piano play-

2https://www.investopedia.com/terms/a/ai-winter.asp

https://www.investopedia.com/terms/a/ai-winter.asp

2.2. Review of Existing Methods and Software 29

ing. The training set is the MAESTRO (MIDI and Audio Edited for Synchronous
TRacks and Organization) data set, consisting of close to 200 hours of piano per-
formances in both MIDI and audio. By training the model on actual performances,
the generated music is more expressive and sound more like human performances,
with different timbres and acoustic textures based on microphone placement of the
training set recording. This means that sounds like the performer breathing, pedal
presses and turning of sheet music paper is also modelled. This further enhances
the piano synthesis, creating a realistic rendering of the symbolic representation.

The above-mentioned wave2midi2wave system is one of the latest system by the
Magenta project, a google brain research group exploring the role of machine
learning as a tool in creative musical processes3. Magenta was started in 2016,
and has since then published 27 papers in the field of music synthesis, sequencing,
audio-to-MIDI and MIDI-to-audio translation and music generation. The research
started with an initial basic RNN model to test the Magenta code framework4.This
was further fine-tuned and a technical report was published in 2016 by Natasha
Jaques et al. [17]. This model purposed a simple note-RNN for monophonic
melodic structure, and served as a good starting point for further research. The
model combined machine learning with reinforcement-learning, in an approach to
further develop the LSTM structure purposed by Eck and Schmidhuber mentioned
above. The reinforcement learning model was used on the LSTM model to try to
capture some music theory constraints. The results were satisfactory in that the
application of reinforcement learning was able to correct almost all of the targeted
"bad behaviours" of the LSTM model, such as note repetition. But even though
the results were promising on an objective level (as seen by statistics based on
100,000 compositions from the model) the subjective interpretation of the melodic
lines were more varied. The LSTM melodies were more monotone and conjunct,
while the melodies generated by the LSTM+reinforcement-learning model were
more disjunct and "off". This illustrates that objectively good results does not ne-
cessarily mean that the music generated sounds better.

Advancements in polyphonic piano music transcriptions were made in 2018, as
seen in the paper published by C. Hawthrones and others [9]. Here, a deep con-
volutional and recurrent neural network is presented to jointly predict onsets and
frames, which means to create a symbolic music representation based on raw au-
dio. The transcription was done on piano music and trained on the MAPS data set,
consisting of piano audio and corresponding annotations of symbolic representa-

3https://magenta.tensorflow.org/
4https://magenta.tensorflow.org/2016/06/10/recurrent-neur

al-network-generation-tutorial

https://magenta.tensorflow.org/
https://magenta.tensorflow.org/2016/06/10/recurrent-neural-network-generation-tutorial
https://magenta.tensorflow.org/2016/06/10/recurrent-neural-network-generation-tutorial

30 Background

tion of the piano piece. Hawthorne concludes that the system does a good job in
capturing harmony, melody rhythm and dynamics, but that further improvements
are limited by the need of a more expansive data set. This work was further de-
veloped in the more recent (and above-mentioned) article on wave2midi2wave [8],
using the larger MAESTRO data set of 200 hours of virtuoso, live-recorded piano
music.

A new breakthrough was made with the emergence of Transformers, a new attention-
based neural network with increased memory capabilities. Note that it is based
solely on attention mechanisms, dispensing with recurrence and convolutions. The
initial tests were presented in a paper by A. Vaswani et al. in 2017 [34], with
the task being translation from English language to both French and German.
Attention-mechanisms was used to better capture global dependencies between in-
put and output. The Transformer architecture also allowed for significantly more
parallelization, which is better suited for modern GPUs. The transformer saw an
improvement in both computational time and outperformed the best previously
reported models, which illustrates the strength of such a model architecture for
sequence transduction.

This method was adopted by Magenta in another attempt to capture long-term
structure[15]. The reader is encouraged to examine Google Magenta’s latest Trans-
former network 5, to get a feel of the current state-of-the-art music generation using
neural networks. Although the results are good in terms of performance and local
structure, the generated pieces still lack a global structure, and better resemble pi-
ano improvisations rather than isolated pieces.

A more song-based approach has been done recently with Jukebox: a generat-
ive model for music in the raw-audio domain [5]. What distinguishes Jukebox
from other models is the direct use of audio and not a symbolic representation like
MIDI or sheet music. First the audio is processed through a VQ-VAE (a type of
variational autoencoder that uses vector quantisation to obtain a discrete latent rep-
resentation)[27] to compress the audio to discrete codes that is further passed to
an autoreggressive transformer model, similar to the one used by Magenta. Since
the model is based on pure audio, it manages to represent melody, composition,
timbre and human voice singing all in one system. Because of its vast data set
with over 1.2 million songs, it also manages to imitate many different styles and
artists. What separates this model is the ability to generate pieces that are multiple
minutes long. But due to the system being frequency-based, the generated songs

5Generated samples of the latest Wave2Midi2Wave architecture can be found here: https:
//magenta.tensorflow.org/maestro-wave2midi2wave

https://magenta.tensorflow.org/maestro-wave2midi2wave
https://magenta.tensorflow.org/maestro-wave2midi2wave

2.2. Review of Existing Methods and Software 31

are often somewhat muddled, especially with the synthesized lyrics.

Based on the presentation of existing work some pros and cons with a neural
network approach is worth mentioning. The greatest advantage, which to some
degree has been mentioned implicitly in this chapter, is that you do not need a
deep musical understanding to be able to create decent results. The emphasis is in
many cases on constructing a well formed model that captures features from the
data set, rather than developing an expert system based on music theory. Using
ANN’s is also good for performance synthesis (e.g. Wave2Midi2Wave [8]) and
translation from audio to symbolic representation and vice versa, as explored in
the later works of Magenta.

The main disadvantage is that you often loose some of the control of the gener-
ated result. It is difficult to capture heuristic and using meta-information in the
music generation. Such information include time signature, key signature and
the hierarchical composition of different element that constitutes a musical piece.
Since music generation requires models of many different timescales, it is diffi-
cult to capture all temporal dependencies within a musical piece with only using
neural networks. It is, however, common to decompose the music into discrete
note events, which represent different notes in a musical score. The generated mu-
sic might sound good, but it is hard quantify why the model generated the results it
did. Another problem is modelling long term structures. As mentioned above, this
is an issue that has been in the forefront when developing new models. Creating
music with long-term structure (e.g. more than several seconds of structure) is still
a very challenging problem, even with modern sophisticated methods [28].

2.2.2 Knowledge-based Methods

The other field of computer-aided music generation can be described as knowledge-
based methods or, alternatively, algorithmic composition. Note that ANN’s are of-
ten also mentioned as part of algorithmic composition, and the distinction between
these two fields are therefore somewhat blurry in literature.

In his book Algorithmic Composition, Gerhard Nierhaus presents multiple ap-
proaches to computer-aided music generation, including historic perspective and
a thorough presentation of different algorithms and paradigms used in procedural
music generation. Based on the survey of Gerhard Nierhaus, this section presents
popular knowledge-based methods and their application in modern systems, start-
ing with a short historic outline.

32 Background

Historic Perspective

The first music that was generated with the aid of the computer was the ILLIAC
suite in 1957 by the professors and composers Lejaren Hiller and Leonard Issac-
son [26, p. 63]. The output was on a symbolic level, consisting of four move-
ments were each movement was a different experiment. The first movement or
"experiment" was used to generate a cantus firmus, a start-melody to be further
harmonized through the means of counterpoint. The latter three movements was
for harmonization and further playing instructions by the means of Markov models
and other stochastic principles and constraints [13].

Knowledge-based systems has also seen a broader application in the field of computer-
assisted composition. In contrast to artificial neural network models, which are
primarily used for symbolic generation, performance synthesis and audio to sym-
bol conversion, knowledge-based methods are more applicable to compositional
aid given rule-constraints [26, p. 64]. This has led to the emergence of special-
ized languages for computer music, to aid composers that do not have an extensive
technical background. This began with the language of MusicN (first language for
audio synthesis). Others include Csound (written in C and still being used today)
and SuperCollider [26, p.64]. More modern programs include that of DAW’s -
Digital Audio Workstations - that are meant to provide a working environment
for composers utilizing multiple libraries and programs for computer-aided music
composition [19].

The ILLIAC-suite provided a start for computer-aided music generation, and new
systems soon followed throughout the 1960s and 1970s. Concurrent with the de-
velopment of the ILLIAC suite, Iannis Xenakis also developed a system based on
Markov models [26, p. 72], were he uses Markov chains to arrange segments or
"screens" of different musical density and dynamics. But in contrast to the work
of Hiller and Issacson on the ILLIAC-suite, Xenakis was more interested in using
his models as tools. That is, to realize computer assisted compositions [26, p. 81].
The output could be used or discarded by the composer as seen fit. Hiller and
Issacson however wanted to model the entire compositional process from start to
finish (although on a symbolic level) [2, p. 2].

Hiller continued his work on algorithmic composition and developed together with
Robert A. Baker MUSICOMP in the late 1950s, the first computer-assisted com-
position environment. The system consisted of a number of subroutines, similar
in design to the program that generated the ILLIAC-suite. Given that it was de-
veloped as more of a composition environment, it made the process of writing the
compositions much easier. Having well defined smaller structures put together to

2.3. Species Counterpoint Used In Automatic Harmonization 33

form a larger hierarchy of different musical entities gave the program and the in-
terface with the user much more flexibility, resulting in a rich variety of different
generated results [2, p. 3].

Later models include the works of David Cope. He began his work in 1981 with
EMI - Experiments in Musical Intelligence. EMI uses transitional networks which
are represented in a graph to represent and process musical information. First, the
system is tasked to analyse a corpus of a particular musical genre [26, p. 4]. Cope’s
system first decompose the given composition, before a complex recombination of
musical segments at different timescales and levels is applied. Since the system is
a transitional network with an exhaustive analysis model based on decomposition,
the generated results are classified as style imitations of the style of the corpus.

The advantage of using knowledge-based methods is that the generated results
reflect the granularity of the implemented music theory. In this way, the gener-
ated results can be evaluated based on what was expected from the knowledge
represented within the system. One clear disadvantage, however, is the difficulty
in quantifying musical concepts within a program. This often requires a thorough
understanding of the musical domain the system should explore and potentially
realise. Such systems might therefore be less approachable for developers with
limited knowledge regarding music theory.

2.3 Species Counterpoint Used In Automatic Harmonization
One problem that seem to reappear in literature on algorithmic composition is
that of autonomous harmonization of a given melody [10, 6, 20, 1, 32]. The
reason might be that the rules of Fux [7] can be expressed formally, and can there-
fore be employed in algorithmic composition without introducing too much non-
determinism and ad hoc solutions.

Given this fixed rule-set, there are a number of ways to implement this. Ignoring
a rule hierarchy, Komosinksi et al. [20] employs a method of dominance rela-
tionship. This allows for analysis of evaluation criteria deduced from the rules of
counterpoint, without making any assumptions on the importance of each rule. In
this way, aggregations of criteria that would lead to loss of information are avoided.
Komosinksi defends this approach by stating that a rule hierarchy often becomes
non-specific, with "some rules are more important than others" [7] being the only
way to quantify the importance of one rule over another. This quantification is also
especially difficult since contrapuntal writing to a large degree is driven by audible
preferences over structural preferences. That is; a properly structured counterpoint
that satisfy all of the rules might still sound bad to the listener, while a ill struc-

34 Background

tured counterpoint that fails to satisfy some of the constraints might sound better.
To avoid this problem, Komosinski and Szachewicz propose a method of domin-
ance relation in order to find the set of best counterpoint for a given cantus firmus,
without imposing an importance-hierarchy of the different rules [20]. They are
also concerned with the relationship between all of the different possible counter-
points for a given cantus firmus, so their research is also an analysis of the solution
space of counterpoints. Their system manages to compose first species counter-
point using this dominance relation. The generated counterpoint melodies is a set
of best counterpoints to the given melody, but given the dominance relation they
are mutually incomparable.

Another solution that in contrast with the system of Komosinski et al. does im-
pose an importance hierarchy on the rules, is the genetic algorithm of Acevedo
used for fugue generation [1]. A fugue subject is the input of the system, and the
generated counterpoint melody is the countersubject. The fitness evaluation was
based on a sum of weighted features. These features were deduced from the rule-
set of Fux. One such feature was for instance that the generated melody had to
be in the same key as the input melody. The generated results proved satisfactory.
The generated results were evaluated by an external musician, which gave an av-
erage grade of 2.94 out of 5, with 5 corresponding to a melody being the work of
a musical expert. Despite the results being promising, Acevedo points out a few
important steps of improvement. Firstly, the set of features must be expanded to
include more of the rules of Fux. Secondly, data-representation of both notes and
melodies should be more detailed, making explicit the concepts regarding both
measures and beats.

Acevedo also references the system of Bill Schottstaedt, who was one of the first
to implement automatic fifth species counterpoint [32]. This was done in 1984 in
his thesis on computer research in music and acoustic. Schottstaedt structures his
program as a rule based expert system, where the knowledge is encoded as a list of
IF. . . THEN statements. This was done purely procedural and not object-oriented,
which led to a large list of checks and rules. To better illustrate the functionality,
Schottstaedt also provides the code in its entirety. In contrast with the above-
mentioned systems, Schottstaedt implements fifth species counterpoint, not only
first species. Despite only having a subset of the rules of Fux, the results were
satisfactory despite the limited computational power.

A more modern approach to fifth species generation was done by Herremans et al.
using a variable neighborhood search algorithm [10, 11]. The system includes a
multitude of rules and checks similar to Schottstaedts system. It is, however, struc-

2.4. Constraint Satisfaction Program 35

tured somewhat differently. All the rules of fifth species counterpoint is encapsu-
lated in an objective function consisting of a set of sub-scores. Each sub-score
relates to one rule. These sub-scores are part of one of two categories, where the
melodic aspects (horizontal relationship) is grouped into one subclass, and the har-
monic aspects (vertical note relationship) is grouped into another subclass. Each
subscore were quantified into a value between 0 and 1. The rules that they rep-
resents are rules such as “each large leap should be followed by step-wise motion
in the opposite direction” and “the climax should be melodically consonant with
the tonic”. The search algorithm used was a local search strategy with three differ-
ent neighborhood searches. First, an initial random counterpoint melody fragment
is generated that satisfy all of the hard constraints, before three different local
searches with different neighborhoods are performed. The melody fragment is
therefore iteratively improved based on the three different local searches, until a
valid solution is found.

In addition to search methods presented above, stochastic models can also be used
in counterpoint generation [6]. In her analysis and synthesis of Palestrina-style
counterpoint, Farbood uses Markov chains to express the relationship between suc-
cessive notes. This is done both in horizontal and vertical direction. To realize this,
transition tables were constructed for each of the different rules. One example of
this is the harmonic interval table, with consonant intervals (third, sixth and tenth)
having higher probability. The results were satisfactory, but given the multitude of
different transition tables, some inter-dependencies between the tables appeared.
This resulted in a small change in one table leading to a large change of the quality
of generated results. A lot of time therefore went into weighing the probabilities
properly in order to get musical results. The end results were however good and
comparable to that of student compositions.

This concludes the presentation of methods for automatic counterpoint generation.
As can be seen, there are multiple algorithms and paradigms that can be applied to
realize systems for generating counterpoint.

2.4 Constraint Satisfaction Program
Constraint satisfaction programming introduces ways to solve problems where the
property of the solution can be expressed as a set of rules that it must satisfy. A
CSP consists of three main parts [3]:

1. Variables - The set of variables to be constrained. These variables can be
limited to a domain, or be part of an infinite domain such as all the real
numbers in some interval. The values in the domain is usually of the same

36 Background

Figure 2.24: Layout of the CSP architecture used in PWConstraints. From [3, p. 18].

type.

2. Constraints - Expression of the mathematical relations between the vari-
ables. These may in theory be arbitrary mathematical relations, such as
logical relations or set relations.

3. Solver - The solver finds a valid value to the variable that satisfy the given
set of constraints. Since the search space may be huge, having an efficient
solver has a great impact on the computational time of a CSP.

The CSP paradigm often appears in systems for modeling music theories and com-
position. In fact, system such as the above-mentioned fifth species generator by
Schottstaedt [32] and the VNS-approach by Herremans et al. [11] is implemented
as a form constraint optimization problem. In these examples, the variables are
sequences of pitches, the constraints are the quantification of the rules of Fux, and
the solver is the different algorithmic approaches to find valid solutions.

What is advantageous with this approach compared to others in algorithmic com-
position is how compositional rules can so easily be expressed in the world of com-
puter programming. The expression of music theory in the system becomes declar-
ative and modular [3]. By implementing constraints on the solution space instead
of defining how to achieve this outcome makes the problem more approachable.
CSP also provides a intuitive system architecture which gives a clear modular re-
lationship between the different components. An example of such an architecture
is shown in figure 2.24, which is based on the constraint programming language
PWConstraints used to solve complex musical problems [22]. In this architecture,
the variable domain specification and the constraints are handed independently to
the solver, which then returns valid solutions.

2.5. Software Development Tools 37

2.5 Software Development Tools
This section gives some context to the different choices of software development
tools used in this project.

2.5.1 MIDI

MIDI (Musical Instrument Digital Interface) is an industry-standard that defines
pitches and pitch durations in a digital music format. This symbolic representation
is precise and consistent and has been a standard for the vast majority of electronic
audio interfaces since the mid-1980s. MIDI works as a communication protocol
that allows computers and synthesizers to control each other and exchange in-
formation. This means that an event triggered by, for instance, a key-press on a
keyboard can instantiate a predefined drum pattern or sequence. MIDI has also
become an integral part of many digital audio workstations (DAWs) since MIDI is
just a set of commands that can be manipulated in ways prerecorded audio cannot.
This allows for easier multitrack recording and composition and gives the com-
poser more freedom. DAWs with MIDI support, therefore, can quickly change the
key, tempo, or instrumentation of a MIDI arrangement [16].

We are, however, more interested in the information stored in its file format, the
Standard MIDI File (SMF). SMFs give a standardized way of representing sym-
bolic music information. This information includes the note values, timing and
track names. The MIDI-files are also compact, since they do not contain any real
audio data. Also, since MIDI has become an integral part in many computer audio
system, using SMFs as the file format means that the music generated can be ex-
ported and opened in a large variety of different softwares. One such software is
MuseScore 3, a free music composition and sheet music notation software.

2.5.2 MuseScore 3

MuseScore provides methods for automatic sheet music transcription from MIDI
files. Such a transcription is essential for the implemented system since it gives
a way to express the generated results, which to a large degree is audible, in a
neat and professional printed score. MuseScore can also export the MIDI as au-
dio, sampled with high-quality sound fonts. Despite its many features for musical
notation, MuseScore will only be used in this thesis as a utility program to convert
the generated MIDIs to either sheet music (.pdf) or audio files (.wav) 6.

6https://musescore.org/

https://musescore.org/

38 Background

2.5.3 Python

The proposed system is implemented in the Python language using the PyCharm
IDE. The reason for choosing Python is primarily due to personal preference, as
this is the programming language that the author is most familiar with. However,
Python does have some advantages over other languages. It has simplified syntax,
meaning that the code can be easily written and executed. There are also additional
libraries that provide useful extended functionality.

Some of these libraries are used in this project; mainly matplotlib for plotting
charts and graphs, random for generating pseudo-random numbers, and pretty_midi
to handle the MIDI data7. pretty_midi proved to be an invaluable part of the MIDI
I/O of the system. It is therefore further presented in the following section.

pretty midi

pretty_midi is a Python library that provides functionality for easy MIDI modific-
ation and extraction. The library contains utility functions and classes for handling
the MIDI data in a simplified format, with usages in analyzing, manipulating and
synthesizing a MIDI file. Examples of such functions include loading a MIDI file
into a PrettyMIDI object or instantiating an empty pretty_midi object that can fur-
ther be loaded with instruments [29].

To better illustrate the functionality, some example code is given below8. The
code illustrates how to create and export a simple MIDI file:

7https://www.python.org/about/
8Curtesy of Colin Raffel, https://github.com/craffel/pretty-midi

https://www.python.org/about/
https://github.com/craffel/pretty-midi

2.5. Software Development Tools 39

import pretty_midi
Create a PrettyMIDI object
cello_c_chord = pretty_midi.PrettyMIDI()
Create an Instrument instance for a cello instrument
c_p = pretty_midi.instrument_name_to_program('Cello')
cello = pretty_midi.Instrument(program=c_p)
Iterate over note names,
which will be converted to note number later
for note_name in ['C5', 'E5', 'G5']:

Retrieve the MIDI note number for this note name
n_n = pretty_midi.note_name_to_number(note_name)
Create a Note instance for this note,
starting at 0s and ending at .5s
note = pretty_midi.Note(pitch=n_n, start=0, end=.5)
Add it to our cello instrument
cello.notes.append(note)

Add the cello instrument to the PrettyMIDI object
cello_c_chord.instruments.append(cello)
Write out the MIDI data
cello_c_chord.write('cello-C-chord.mid')

40 Background

Chapter 3

Software Design

3.1 Early Phase - Formalizing the System Structure
The development phase was a mixture of bottom-up programming and modular
implementation. This meant that having a clear system architecture in place before
beginning to implement the different modules was crucial, as not to lose vision of
the program’s scope. As a result, considerations had to be made early in the design
to keep the modules as independent as possible, imposing a modular hierarchy in
line with the main objective; to generate counterpoints in each of the five species.

Previous solutions to the problem as illustrated in section 2.3 shows a large number
of different approaches. Schottstaedt [32] structures his program as a knowledge-
based system, using IF.. THEN.. statements to formalize the rules and assigning
penalties according to the severity of the broken rule. The modern approach of
Herremans et. al. [10, 11] uses a similar structure to that of Schottstaedt, with
the rules formalized in an objective function used by a search strategy to converge
to valid solutions. The approach of Acevedo [1] uses a genetic algorithm as the
search strategy, with the rules being formalized as weighted features. Common to
all these approaches is the set of three main system components; namely a cost
function, search strategy and constraint representation. These three system com-
ponents were therefore chosen as the main modules in the proposed program in
this thesis.

Having decided on the main structure of the program, it was possible to adopt
a design paradigm to help formalize the rest of the neseccary system compon-
ents. By comparing the three proposed modules with different paradigms, one
good match was the conventional optimization strategy, consisting of a objective

41

42 Software Design

function and search strategy. However, the standard optimization task does not
include, formally, a constraint formalism. Therefore, a hybrid design paradigm
consisting of both optimization and constraint satisfaction programming was adop-
ted. Representing the system as a constrained optimization problem introduced the
possibility of including a constraint formalism also seen in the above-mentioned
systems. The constraint formalism is concerned with how the cost function should
be structured based on the underlying constraints on feasible solutions.

While the constrained optimization problem helped to outline the main compon-
ents necessary, some were still left to be defined. For the solver and cost function
to be able to communicate, they needed a mutual representation of the input value
and search domain. A formal representation of the search strategy’s search space
led to the next module: the music representation. As the program is tasked with
generating both a cantus firmus and a counterpoint melody, two additional modules
must be included at a higher abstraction than the music representation, containing
the data structures for different species of counterpoint and the cantus firmus.

Lastly, the user must have a way to communicate with the system, giving para-
meters such as what species to generate and what instruments to be used. There is
also the question of the format of the generated counterpoint to be exported. This
was chosen to be the general format of a symbolical midi-representation, as this is
usable by a large number of external music programs. The last module is there-
fore tasked with communicating with the other modules to get a generated cantus
firmus and counterpoint melody based on user input. The information contained
in the music representation must then be converted to midi-format, which is then
exported as system output.

Gathering all of the proposed system components, the high level system struc-
ture is outlined in figure 3.1. Below follows an overview of the main functionality
of each component and how they communicate, in addition to a high level spesi-
fication of the neseccary functionality of each module.

3.2. Choosing the Granularity of the Music Representation 43

Figure 3.1: Diagram of the system architecture. The different boxes indicate the different
modules. The arrows between the boxes represent the module hierarchy and how the dif-
ferent modules call each other. E.g. the MIDI-generator is the user interface, which uses
the cantus firmus generator and counterpoint generator. The cantus firmus and counter-
point modules are therefore at a lower modular hierarchy than the MIDI-generator.

3.2 Choosing the Granularity of the Music Representation
With the outline of the main system structure in place, initial testing and imple-
mentation could begin. To formalize the format of the cost function and search
strategy variables, the first module to be tackled was the musical description.
Music has many dimensions, as is apparent also for algorithmic composition.
Choosing an appropriate musical representation is, therefore, crucial for the fur-
ther scalability of the system. Because of this, the music module was the first to
be outlined and design.

The music module must encapsulate the data structures necessary to extract the
information required to compose contrapuntal melodies. Care must also be taken
in finding the right granularity of music representation. Having too much inform-
ation can make the musical objects unnecessarily complicated, while having too
little information might lead to the need to add help functionality in the other
modules. Choosing what information to include is difficult, mainly because the
representation must reflect the generation of first to fifth species. As presented in
chapter 2, the different species are structurally different. They traverse different
paths of the musical dimensions. While first species has a trivial rhythm similar

44 Software Design

to the cantus firmus, one note for each measure, fifth species might have a florid
rhythm with tied notes across bar lines. So while rhythmic considerations can
almost be abstracted away from first species, instead expressing the melody as a
sequence of pitches, this approach is not feasible for fifth species. Therefore, the
music representation must express the melodies of cantus firmus and accompa-
nying counterpoint in a format that is usable for all the different species. This
melodic structure is the primary goal of the music representation module. Such
melodic objects are to act as the information passed between the different mod-
ules. In this way, the information necessary to represent the music is contained in
classes that the various system modules can interpret.

To get a better grip of the necessary granularity of the music module, an ana-
lysis of the structure of the different species of counterpoint must be made. Figure
3.2 shows an excerpt of the various species for a given cantus firmus, meant to
illustrate the difference between the species. Below follows a brief overview of
what information regarding the musical dimensions that must be included in the
music representation module.

Figure 3.2: Illustration of the rhythmic form of the different species of counterpoint over
the same cantus firmus.

Rhythmic dimension

One immediate observation from figure 3.2 is the relationship between the rhythm
of first to third species. Second species has, except for the terminals, double the
amount of notes as first species. Third species has twice as many notes as second

3.3. Music Module 45

species. Therefore, the rhythms for species one to three is related by a factor of
2. The rhythms of fourth and fifth species are, however, more complicated. Fourth
species is syncopated, with notes crossing bar lines. But, similarly to species 1 to
3, the note durations are mostly equal across the melody. The last species is more
florid, resulting in a more free rhythm with note durations of different lengths and
possible ties across bar lines. The music representation must, therefore, include
support for tied notes and varied rhythms.

Melodic dimension

The pitches of the various counterpoints in figure 3.2 all have something in com-
mon; They are all in the same key and diatonic scale as the cantus firmus. The
melody representation of the system must therefore include some form of pitch
constraint given the key and scale in which the counterpoint or cantus firmus
melody should be in. Having a constraint on the possible pitches as early as in
the music representation itself can also help in reducing the search space of the
search algorithm, as the list of possible notes are limited by the fact that they must
be the same tonality as the cantus firmus.

Instrumental dimension

As can be observed from the purely symbolical representation in figure 3.2, in-
formation regarding what instrument the melodies should be played in can be ab-
stracted away from the musical representation entirely, and rather be handled by
other modules such as the midi-generator. In this way, the information contained
in the music module is as lightweight as possible, only containing the necessary
information needed by the other modules. Therefore; the musical representation
should only be on a symbolical level.

3.3 Music Module

Specifications

Gathering all of the key points from the preceding section, the music module has
the following high level specification:

• The representation should only be on a symbolical level.

• Must include support for tied notes and varied rhythms.

• The possible pitches must be constrained to lie within a given key and range.

46 Software Design

• The format of the melody object must be usable by the cantus firmus AND
counterpoint representation.

• The information in the music module should not be excessive and overly
complicated.

Design

A natural way to structure the music module according to the listed specification is
to use an object-oriented approach. In this way, it is possible to express the musical
components as mutable containers usable by the other modules, where each object
is tasked with containing information regarding one musical concept. Adopting an
objective approach also mean that it is possible to structure a musical hierarchy of
objects, accumulating in the melody-object, which contains the data structures to
represent the cantus firmus and counterpoint.

As to stay true to the proposed granularity of the representation, as well as be-
ing expressive enough to be used by the other modules, the following musical
classes are outlined. At the lowest level we have a Note, which contains inform-
ation regarding the pitch and duration of a singular note. The next abstraction is
a Interval class, which consists of two notes and is tasked with identifying dif-
ferences between two given pitches. As a way to constrain the possible melody
pitches to lie within a key and scale, the proposed next abstraction is the Scale
class, containing functionality for building a list of note objects that lie within a
scale. In this way, unwanted non-diatonic pitches can be omitted. Lastly, we have
the Melody class, consisting of a scale and appropriate data-structures to contain
the relevant information regarding a melody. A figure illustrating the high level
music topology is shown in 3.3.

3.3. Music Module 47

Figure 3.3: High level class diagrams of the different objects proposed to represent the
music.

The high level design presented here was done purposely to give flexibility dur-
ing the implementation of the module. Since the music representation is such a
key part of the system, it was excepted that it would be prone to minor alterations
throughout the development, concurrent with the implementation of the other mod-
ules. The presentation of the implementation in 4.2 is, as an effect, therefore quite
thorough. The implementation presents how the different classes are outlined and
structured, giving both code examples and more detailed class diagrams.

48 Software Design

3.4 Cantus Firmus
The cantus firmus is designed as an extension of the music representation and
adds functionality for cantus firmus generation. Figure 3.4 illustrates the overall
design. The methods marked with "-" are intended to be private. Methods marked
with "+" are public. As shown in the figure, the class contains three main parts;
melodic constraints, a generator algorithm, and an initialization method.

The reason for this module structure was a result of keeping the functionality
regarding cantus firmus and counterpoint generation clearly divided. Since the
cantus firmus works as an input to the counterpoint, having the cf generation as
part of the search solver and constraints module would lead to modular inter-
dependencies that should be avoided. We did, however, perform some minor tests
to explore the possibility of incorporating the cantus firmus generation into the
constraints and search strategy modules. Although possible, it was discovered that
it would mean writing the rules of generation with several exceptions since the
building of counterpoints and cantus firmi, while similar, have some subtle differ-
ences that require different approaches. While the cantus firmus must be generated
from scratch, the counterpoint is more comparative given its dependency on the
given cantus firmus. A deliberate design choice was therefore made to keep the
counterpoint and cantus firmus generation contained within separate modules.

This design choice meant in turn that all of the needed functionality for repres-
enting, constraining and solving the COP task for a cantus firmus must be con-
tained within the module. As a result, an object-oriented approach is proposed to
subdivide the needed methods into their respective categories without making the
functionality accessible to the other modules. An object-oriented approach also
meant that the melody class could be easily extended, avoiding the need to re-
state already implemented functionality. The design of the constraints, generator
algorithm, and cantus firmus initialization is now presented separately.

3.4. Cantus Firmus 49

Figure 3.4: Main functionality of the cantus firmus class.

Cantus Firmus Initialization

By analyzing the rules presented in section 2.1.3, one can observe that the list of
initial note possibilities for a cantus firmus can be limited. There are mainly four
points that is worth addressing; the possible start notes, end notes, penultimate
notes and length of the cantus firmus. Given the importance of emphasizing which
key the cantus firmus is in, the start and end note can only be the tonic (the first
scale degree). The penultimate note can only be one of two possibilities; a minor
second below the tonic or a major second above. When these notes are identified,
the length of the cantus firmus is generated. As by rule nr 12 in section 2.1.3, the
number of notes must be between 8 and 14. The start, end and penultimate notes
are pre-set in the initialization of the cantus firmus, while the notes between the
start note and penultimate notes are randomly initialized. For a cantus firmus in
C-major alto range of length 8, a initialization might look like this;

cf = ["C",random,random,random,
random, random, "D","C"]

Here, C is the tonic and must therefore be the start and end note. D is a major
second above C, and is therefore acceptable as the penultimate note.

50 Software Design

Constraints Penalty
Octave leap severe
Large consecutive leaps minor
Large leaps in opposite direction severe
Large leap not recovered minor
Too many large leaps severe
Note repetition severe
Is not within valid vocal range severe
Repeats motifs minor
No clear climax point severe
Dissonant intervals severe
Leading tone not resolved severe

Table 3.1: List of all the constraints issued on the generated cantus firmus, based on the
list of rules presented in 2.1.3.

Constraints

The cantus firmus is rarely good enough after initialization, and must therefore be
constrained and iteratively improved until a valid solution is found. To achieve
this, a constraint formalism is proposed. Initial tests were, however, made to gen-
erate these melodies from scratch. Although possible, this approach did lead to
an overly detailed constraint description, since a lot of temporal information about
the CF had to be known pre-generation. This information included a rough melody
contour, and how the melody should approach and leave the climax point. How-
ever, by issuing the constraints after generation instead of before, the problem
became much more approachable.

Based on the rules presented in section 2.1.3, the initial set of constraints to be
implemented is shown in 3.1. The associated severity of each constraint is a result
of the wording of the corresponding rules as presented by Fux and Jeppesen. If
the rule states that it "should be avoided if possible", it is defined as a minor pen-
alty. The minor penalties may be accepted if it means that a severe constraint gets
satisfied as a result.

Generator Algorithm

The generator algorithm iteratively improves upon the randomized solution until
the global penalty given by the constraints is under a certain threshold. Origin-
ally, this was implemented as more of a brute force approach given the limited
constraints. However, under stress testing it was discovered that this approach in

3.4. Cantus Firmus 51

some cases could halt the run-time quite considerably, so the following change was
made to optimize the algorithm.
A simple best local optimal search was added between the randomization and con-
straint check. This algorithm is outlined in figure 3.5. While simple in design,
it proved sufficient for the given task since the maximum allowed penalty could
be set to 0. In this way, for each generated cantus firmus that is passed to the
MIDI-generator, all of the implemented constraints are satisfied. The best local
search works by for each possible note in the cantus firmus, picking the solution
which results in the minimum amount of accumulated penalty. The generator starts
with the first note, traversing the randomized cantus firmus until reaching the last
note. If the local search does not converge to a valid solution, the cantus firmus is
randomized and another local search is executed.

Figure 3.5: Main loop of the designed cantus firmus generator.

52 Software Design

Figure 3.6: Input and output of the counterpoint module. The cantus firmus is given from
the MIDI-generator as input, and the counterpoint is returned as output.

3.5 Counterpoint
The counterpoint module must contain information containers for all of the
different species. The proposed strategy to achieve this is again by using a object-
oriented approach, structuring the different species as classes. The functionality
of the various species is to generate a randomized counterpoint draft and a list of
possible note values that is passed to the search algorithm. The cantus firmus to
be harmonized is provided as input from the MIDI-generator. The cantus firmus is
then scanned using methods in the species class, and a list of possible note values
is returned. The list of possible notes together with a randomized counterpoint
draft is then sent to the search algorithm, which returns a counterpoint with an
accumulated penalty below a certain threshold. In other words, the counterpoint
module is to declare for the solver the domain of possible melody pitches for
the different species. By having this module as a interface between the music
representation and the solver, the search space for the solver is drastically reduced.
If one were to pass the list of possible scale pitches directly to the solver, the total
search space of a counterpoint with 12 notes would be 1215 = 1.54e16 different
melodies.

Here is an example of how this can be reduced by the counterpoint mod-
ule. Lets say that the MIDI-generator module provides the generated cantus
firmus of length 12 in C major alto range as shown in the lower voice in figure
3.6. The counterpoint module is tasked with finding possible notes for the first
species counterpoint above this CF. The counterpoint module then scans the notes
in the cantus firmus, and constructs a list of possible values for each of the notes
in the cantus firmus. For first species this is trivial, as all of the notes in the
counterpoint must be consonant intervals of their respective cantus firmus notes.
Further limitation can be done to the start, end and penultimate notes. The start
note must be a perfect interval above or below the cantus firmus, while the end
note must be a unison or octave. The penultimate note must be a major second

3.5. Counterpoint 53

above or minor second below the end note, as was the case for cantus firmus. A
high level pseudo-code illustration of this functionality (for first species) is shown
below, which results in the search domain shown in 3.1.

def generate_search_domain:
search_domain = [None for /...

all note durations in species rhythm]
for each note duration in rhythm:

if start_note:
search_domain[0] = get_start_notes()

if penultimate_note:
search_domain[-2] = get_penultimate_notes()

elif end_note:
search_domain[-1] = get_end_notes()

else:
search_domain = get_consonant_intervals(/...

corresponding_cf_note)
return poss

Code 3.1: Search domain of first species counterpoint using the cantus firmus presented
in 3.6

possible_notes = {[C4,G4,C5],[G4,B4,C5,E5,G5],
[G4,A4,B4,D5,F5], [A4,C5,D5,F5,A5],
[B4,D5,E5,G5,B5],[D5,G5,B5],
[C5,E5,F5,A5,C6],[B4,D5,E5,G5,B5],
[A4,C5,D5,F5,A5],[G4,B4,C5,E5,G5],
[B3,B4],[C4,C5]}

which reduces the number of possible solutions to 32 ∗ 22 ∗ 85 = 1179648. This
list of possible notes, together with an initial randomized counterpoint, is then
passed to the search algorithm. When a valid solution is found, the first species is
returned from the solver and sent as output from the counterpoint module to the
MIDI-generator. A proposed solution is shown in the upper voice of figure 3.6.
To achieve the functionality illustrated above, an inheritance hierarchy is proposed
in which the interface with the other modules is contained in a super-class, while
how the different species of counterpoint is initialized are contained in extended
classes which inherits from the super-class. The inheritance hierarchy of the
proposed Counterpoint module structure is shown in figure 3.7. In this way, the
functionality similar for all the species are contained in the super-class, while
isolated species functionality is handled within its respective extended class.

54 Software Design

The different classes of species are also tasked with finding the rhythm of
the counterpoint to be generated. For first species the rhythm is equal to the cantus
firmus since the harmonization is 1:1. Since the fastest note allowed in species
counterpoint is an eight note, this is set as the lowest rhythmic resolution. The
counterpoint rhythm is therefore expressed as the number of eight-notes that the
corresponding note consists of. A whole-note is eight eight-notes, a half-note is
four eight-notes etc. For a first species counterpoint with a cantus firmus of length
8, the counterpoint rhythm is simply

first_species_rhythm = [8,8,8,8,8,8,8,8]

The task of rhythmic generation is, however, not as trivial for the other species. The
search algorithm needs note possibilities for each note in the cantus firmus, but for
all the species except the first, the number of notes in the counterpoint is higher
than the number of notes in the cantus firmus. This issue is handled by ordering
the rhythm by measure, with each measure containing a set of note durations for
that measure. For second species, there are two notes for each note in the cantus
firmus. This can be interpreted as two notes for each measure. The rhythm of a
second species counterpoint with a cantus firmus of length 8 is therefore:

second_species_rhythm = [[4,4],[4,4],[4,4],[4,4],
[4,4],[4,4],[4,4],[8]]

Notice that the last note is a whole-note. This is to stay true to the rhythmic rules of
Fux. By generating a list of possible notes based on each entry in this 2D-rhythm
list, it is possible to abstract away the rhythm from the search strategy, since the
representation given is only a sequence of pitches. The same search strategy can
therefore be used in all of the different species.

3.6. Constraint Formalism and Cost Function 55

Figure 3.7: Counterpoint class hierarchy.

3.6 Constraint Formalism and Cost Function
The design of the constraint formalism is concerned with two main objectives:
quantifying the constraints and choosing the sub-set of Fux rules to be implemen-
ted. By inspecting the rules for the various species as presented in section 2.1, the
list of rules is quite extensive. There are in all 59 different rules divided among
the five species, not including the various rhythmic treatments for fifth species.
Implementing all 59 rules would be too immensive for a system of this scope, and
a restriction of the rule-set must therefore be done as to limit the complexity of
the constraint module. Luckily, some of the rules have already been considered
implicitly by how the search domain of possible pitches is defined in the counter-
point module. These are the rules regarding rhythm and tonality, e.g. "there are
two half notes for each note in the cantus firmus", and "the counterpoint is diatonic
except for the raised leading tone in minor". By removing the already considered
constraints, we are left with a total of 41 constraints, which is a reduction by 30%.
These 41 explicit constraints are still to excessive, so a sub-set has to be picked out
based on their relative importance.

By inspecting the remaining rules for the different species (that it, the rules not
considering rhythm), one can observe that many are common for all of the five
species. These common rules are the same as those listed for first species, and
include constraints such as "no parallel fifths allowed" and "no large leaps except
octave and ascending minor sixth". Since the rules of first species forms the basis
for the remaining species as well, all the rules of first species is to be quantified.
For the remaining species, additional rules are added according to the relative im-
portance deduced from the implied severity of breaking the rule as presented by
Fux and Jeppesen.

56 Software Design

There are in all 22 rules listed for first species in section 2.1.4, in which 19 must be
explicitly stated. To keep the constraints organized and maintainable, some further
categorization of the rules should be made. This will also aid in the consideration
of other species. Many of the rules seem to consider the melodic fluency of the
counterpoint. Such rules include "there should be no more than two successive
leaps" and "unisons may only occur on the first and last notes of the counterpoint
melody". The first defined rule category is therefore the melodic rules.

Another sub-set of rules which can easily be categorized are the ones consider-
ing the interplay between the cantus firmus melody and the counterpoint melody.
Examples of such rules are "upper voices can sometimes cross if necessary, but
avoid overlapping" and "all perfect intervals must be approached by contrary mo-
tion". Such rules are defined as voice-independence rules.

The third rule category is defined based in identifying the main difference between
the species. Other than the rhythm which is handled by the counterpoint module,
how the dissonances are handled is what seem to separate the different species the
most. While first species have zero dissonances, both second, third and fifth spe-
cies introduces the possibility of having dissonant intervals on weak-beats. Fourth
species can have dissonances on strong-beats, which must be resolved by down-
ward step. As a result, the penultimate rule category is dissonance handling.

The last category is harmonic rules, which consists of possible structural rules
that was not handled implicitly in the counterpoint module. As an example, "no
outlined dissonance allowed" is one such rule.

For each rule, there must be assigned a penalty relative to the severity of breaking
said rule. To quantify the rules in an importance hierarchy, each rule is penalized
by how Fux and Jeppesen express the gravity of the rule not being satisfied. Rules
expressed as being "forbidden" are categorized as severe. Example:

Rule 12 (2.1.4): Motion can proceed by step or leap but steps and
leaps of augmented and diminished intervals and leaps of any seventh
are forbidden.

Other rules can be interpreted as being unwanted, but acceptable if it means that a
severe rule, as a result, gets satisfied. An example of such a "bad" rule is:

Rule 14 (2.1.4): following Jeppesen: The repetition of a tone is per-
mitted occasionally in the first species, and there only.

3.6. Constraint Formalism and Cost Function 57

Rule Type Penalty
"Forbidden" severe
"Should be avoided" bad
"Allowed, but rarely" minor
"Preferred" preference

Table 3.2: A list of the penalty categorization based on the wording of the associated rule.

The second to last penalty is the "minor" penalty, which is more prone to subjective
preference compared to the preceding penalties. As to guide the generated results
to be more lively with a balance of both leaps and step-wise motion, breaking rules
regarding how leaps should formally be compensated are categorized as "minor":

Rule 17 (2.1.4): ... leaps should be followed by inward, step-wise
motion.

The last category is "preferences", which is used to guide the generation in the right
direction when given the choice between two almost equal states. One example of
a "preference" penalty is the one regarding contrary motion:

Rule 21 (2.1.4): Contrary motion should be preferred.

To summarize, the penalty categorizes are listed in table 3.2. Below follows a
presentation of the chosen rules and how they are divided among the categories.

Melodic Rules

The melodic rules are very similar to that of the constraints in the cantus firmus
module. They include rules such as what leaps that are allowed and not allowed,
how successive leaps should be handled and if the melodic range is valid. A com-
plete list of the melodic rules a long with associated penalties are shown in table
3.3.

58 Software Design

Species Melodic Rule Penalty
All Large melodic leap severe
All Octave leap minor
All Leap not compensated bad
All Octave not compensated minor
All Successive leaps in same direction minor
All Invalid successive leaps in same direction severe
All Chromatic step severe
All Is not within the range of a tenth severe
All Repeats pitches bad / severe
All No unique climax severe
>1 Motivic repetition severe

Table 3.3: List of all the melodic constraints issued on the generated counterpoints.

By inspecting the rules presented in section 2.1.4, the proposed melodic constraints
satisfy rules number. 9, 12, 14, 15, 16, 17, 19, 20 and 22. Notice how there is
only one additional rule needed to express the melodic rules for the remaining
species. This is the rule forbidding motivic repetitions, which is used in second,
third, fourth and fifth species.

Voice-Independence Rules

The voice-independence category contains rules regarding the interplay between
the cantus firmus and the proposed counterpoint. Examples of voice-independence
rules include the law of no parallel fifths or octaves, and if the voices are overlap-
ping. A table of the voice independence rules are shown in 3.4. These rules satisfy
rules nr 6, 10, 11, 18 and 21 from 2.1.4, in addition to including the rule forbidding
parallel intervals on successive downbeats. This rule is issued on all the species
except first.

3.6. Constraint Formalism and Cost Function 59

Species Voice-Independence Rule Penalty
All Perfect interval not properly approached severe
All Consecutive perfect intervals not valid severe
All Parallel fourths bad
All Voice overlappping severe
All Voice crossing bad
All Not contrary motion preference
All Too many equal consecutive intervals severe
All Unison between terminals bad
>1 Paralell perfect intervals on downbeats severe

Table 3.4: List of all the voice-independence rules issued on the generated counterpoints.

Harmonic Rules

Most of the harmonic rules are already considered in the initialization of the pos-
sible notes in the counterpoint module. These pre-constrained rules include that
the notes must be diatonic and that the start and end notes must be perfect inter-
vals. As a result, the harmonic rules nr 1-5 and 7 from 2.1.4 are already considered.
The only fundamental harmonic rule remaining is therefore nr 13, which forbids
the outline of dissonant intervals. Table 3.5 shows the associated penalty of the
harmonic rule.

Species Harmonic Rule Penalty
All Outlined dissonant interval bad

Table 3.5: Table of the harmonic rule and associated penalty.

Dissonance Handling

The last rule-category is dissonance handling, which for the first species is empty.
This is due to dissonances not being valid at all for first species, and since the
note possibilities are pre-constrained to just be consonant intervals, the dissonance
handler has no penalties. For the remaining species, some simplifications are made
to the rules presented in section 2.1. For second species, rule 4 is the only one con-
cerning how dissonances are handled. Rule 4 states that the dissonance must be
approached and left by step in the same direction. Rule 4 in third species is similar
to rule 4 in second species: dissonances are allowed on weak beats. But for third
species, the movement is not restricted to be a continuation in the same direction.
Also, the figure known as the cambiata is allowed in third and fifth species, which
is a special kind of dissonance. The dissonance handling in third species also have

60 Software Design

many exceptions, such as the figures shown in 2.18. Such rule exceptions are not
considered in this system. For fourth species, there are two rules regarding dis-
sonances. Rule 3 states that dissonances may be accented, but rule 4 specify that
accented dissonances must be resolved by downward step.

Fifth species, however, have an extensive list of rules regarding how dissonances
may possibly be handled. Many of those rules are also concerned with how the
rhythm and melody is tied together, which is not the focus of the system proposed
here. This is because the rhythm to a large degree have been abstracted away from
the search strategy and constraint formalism, as to make the solver usable for each
of the different species. As a result, some simplifications are made. The treatment
of quarter notes (rule 6 in section 2.1.8) is not considered beyond how quarter notes
are handled in third species. Rule 7 (also from 2.1.8) is included in its entirety.
This means that eight notes are handled according to the rules of Fux.

After omitting the rules of fifth species most prone to exceptions, the dissonance
handler gets the form outlined in table 3.6. Notice how some rules do not have
an associated penalty. This is because they check possible dissonance states. For
example, if the cambiata figure is recognized, the dissonance is accepted.

Species Dissonance Handling Penalty
2,3,5 Dissonance not properly approached or left severe
2,3,4,5 Is dissonant interval N/A
3,5 Is cambiata N/A
5 Eight notes not handled properly severe
4,5 Tied notes not properly resolved severe

Table 3.6: List of all the voice-independence rules issued on the generated counterpoints.

This concludes the presentation of the constraints to be included in the formal-
ism. As can be seen, there are in all 24 that are implemented. All the rules for
first, second and fourth species are considered. However, to ensure convergence
to solutions under the error threshold, some rules in third and fifth species are re-
laxed. For third species, these include rule 5, rule 10, rule 11 and 12 presented
in section 2.1.6. These have rule exceptions, and since the counterpoint already
has limited possibilities, a choice was made to limit the set of initial constraints.
However, adding further restrictions can be done under the implementation if the
results achieved with the proposed rule-set is unsatisfactory. In fifth species, the
rules regarding rhythmic considerations are simplified or omitted. These include
rule 2, 4, 5 and 6 from 2.1.8. In effect, therefore, out of the 41 explicit rules listed

3.7. Search Algorithm 61

by Fux and Jeppesen, only 8 are either simplified or not considered.

Cost Function

The cost function is similar in design for all the different species. Each rule cat-
egory has an associated accumulated penalty for unsatisfied constraints. The pen-
alties are integer values based on the severity of the broken rule. The cost function
simply adds all these penalties together, resulting in the total penalty score for the
proposed counterpoint.

The structure of the cost function is illustrated in figure 3.8. As presented above,
each constrain can be divided into one of four categories; melodic, voice-independence,
dissonance handling and harmonic. The melodic constraint consists of 12 rules,
voice-independence has 9, dissonance handling, including the dissonant state checks,
has 5 and harmonic 1. The rest of the rules are considered by the limitations of the
search space done in the counterpoint module. The cost function therefore is the
accumulated penalty for all of these 27 constraints. Note that there are differences
between the rules for the given counterpoints. These differences must be handled
in the implementation of the rules.

cost function =
12∑

i=1

melodic rules +
9∑

i=1

voice independence rules +

5∑

i=1

dissonance handling rules+ harmonic rule

Figure 3.8: Simple illustration of how the total penalty of a given counterpoint is calcu-
lated. The four summations compute the accumulated penalties for each of the different
sub-categories.

3.7 Search Algorithm
By adopting a design paradigm based on a constraint optimization problem, a high
level specification of necessary functionality of the search algorithm can be out-
lined:

The search algorithm must find valid solutions of counterpoints with
the accumulated penalty being below a certain threshold. The data-
structure to be minimized is given by the counterpoint module as an
object. The search algorithm calls the constraints module which re-
turns the total penalty of the given counterpoint object. the search
algorithm must perform suitable alterations to the counterpoint pitch

62 Software Design

Figure 3.9: Example cantus firmus melody to which a counterpoint should be generated.

sequence until the cost function is below a threshold equalling the
integer value of a severe penalty.

With this high level specification in place, we can begin by identifying the different
components needed in the search strategy. The counterpoint object given as input
contains a randomized pitch sequence of a feasible counterpoint. It is this random-
ized pitch sequence that must be iteratively improved by the solver. The search
algorithm must use derivate-free methods, since the search space is discrete. The
possibilities for each pitch slot is also given by the counterpoint object, which in
total equals the search domain. To get a better grip of problem domain, the search
space for a first species counterpoint in C major is illustrated as a graph in figure
3.10.

Example

an example is given to illustrate the search space and the difference between good
and bad sequences of pitches. The counterpoint module is given a cantus firmus
in C major as shown in figure 3.9. The cantus firmus has the following pitch
representation:

cf_pitches = [60, 64, 57, 53, 57, 55, 59, 60]

The counterpoint module then establishes a list of possible notes of counterpoint
pitches for each corresponding note in the cantus firmus. The search domain is as
follows:

search_domain = [[60, 67, 72], [67, 71, 72, 76, 79],
[60, 64, 65, 69, 72], [60, 62, 65, 69],
[60, 64, 65, 69, 72], [62, 64, 67, 71],
[62, 74], [60, 72]]

The search domain representation and randomized initial sequence of counterpoint
notes is passed to the search strategy. For illustrative purposes, the search domain
is shown as a directed node network in figure 3.10. The depth of the graph
equal the length of the counterpoint. The width of each graph-layer equals the

3.7. Search Algorithm 63

Figure 3.10: The search domain of the counterpoint given the cantus firmus in figure 3.9,
illustrated as a directed node network. The node values represent the MIDI-number of the
note represented.

number of possible pitches for that pitch slot in the counterpoint melody. To
illustrate: the start note can be one of three options given the three nodes at the
first vertical layer. The network is fully connected between the layers, with the
arrows indicating possible paths from one pitch value to the next. The value of the
node indicate the MIDI-number of the represented note.

The randomized initial pitch sequence is a feasible path through the search
domain. One valid randomization is therefore:

random_counterpoint = [67, 72, 69, 69, 64, 62, 62, 60]

This randomized pitch sequence contains errors, such as the pitch repetition
between note nr 3 and 4. The search algorithm must therefore traverse alternative
paths in the search domain until the sequence of counterpoint pitches gives a
penalty below the threshold. As the number of paths for first species is limited
(24000 in this example), one novice approach would be brute forcing. This is,
however, not tractable for the other species, as the number of paths increase
exponentially by the number of notes in the counterpoint. The search strategy
must therefore utilize more local optimization, as to avoid having to search an
excessive amount of different paths.

64 Software Design

Figure 3.11: The search domain of the counterpoint given the cantus firmus in figure 3.9
with the best first guess highlighted in green. As can be seen, the best first guess might
still contain errors.

Instead of randomly iterating through each possible solution, one can ob-
serve that each layer in the search domain (see 3.10) has a possible best local
option. Therefore, by iterating through all of the layers starting with the start
note, choosing for each layer the pitch that gives the lowest overall accumulated
penalty in the cost function, one can get a best first guess of a possible pitch
sequence. Each locally best option replaces the note currently at that position in
the given randomized pitch sequence. As an example, a best first search of the
search domain illustrated above is done. The best option for each layer, starting
with the start note, is marked in green in figure 3.11. The final best first guess
option is therefore the path traversed by following the green nodes:

best_first_guess = [67, 71, 72, 69, 69, 64, 62, 60]

The best first guess may still contain errors, as can be seen in this example. The
most noticeable is the pitch repetition between note nr 4 and 5. The search strategy
must therefore include functionality for adjusting the pitch sequence by identify-
ing which layer accumulates the most amount of error. In this case, this is layer
4, which leads to the note repetition. By changing the note from 69 to 65, one
avoids the note repetition but other errors might have appeared. The search must

3.7. Search Algorithm 65

then again identify the layer with the most accumulated penalty, and adjust the
corresponding note in the pitch sequence. By always adjusting the worst note, the
search strategy will either eventually converge to a valid option or return the best
possible pitch sequence found for the given cantus firmus.

The Proposed Strategy

The proposed search strategy is therefore a guided local search algorithm. An
initial path-traversing is made through the search domain, for each layer picking
the note which results in the minimum amount of accumulated global penalty for
the pitch sequence. This best first guess is then adjusted by randomizing the notes
which has the highest local penalty. The different layers are then visited in another
order than the initial pass, and a new local search is done. If the accumulated
global penalty is the same as the previous local search, the number of notes to be
randomized according to the worst local penalty is increased. This continues until
the global penalty decreases, in which the number of notes to be randomized is
again set to one. The proposed strategy is illustrated in the following pseudo-code:

Code 3.2: Pseudocode of the search strategy

def guided_local_search(Counterpoint):
penalty = math.inf
pitch_sequence = Counterpoint.randomized_ctp_melody
best_pitch_sequence = pitch_sequence
lowest_penalty = math.inf
search_order = [i for i in range(len(pitch_sequence))]
notes_to_randomize = 1
while penalty >= ERROR_THRESHOLD and elapsed_time < 5 seconds:

penalty, pitch_sequence,worst_notes = local_search(/...
pitch_sequence,search_order)

if no decrease in penalty:
for note in notes_to_randomize ordered by worst_notes:

pitch_sequence[note] = random_choice(/...
search_domain[note])

randomize(search_order)
if notes_to_randomize != length of pitch_sequence:

randomize_idx += 1
if penalty < lowest_penalty:

notes_to_randomize = 1
best_pitch_sequence = pitch_sequence
lowest_penalty = penalty

return lowest_penalty, best_pitch_sequence,

66 Software Design

The local search algorithm can also be further specified and outlined in high-level
pseudocode:

Code 3.3: Pseudocode of the local search

def best_first_search(ctp,search_order):
for i in search_order:

local_error = math.inf
for note in search domain layer:

pitch_sequence[i] = note
error = constraints.cost_function(pitch_sequence)
weighted_worst_notes = constraints.sort_indices()
if error <= local_error:

best_note = note
local_error = error

pitch_sequence[i] = best_note
if local_error < best_global_error:

best_global_ctp = pitch_sequence
best_global_error = local_error
best_global_weighted_indices = local_weighted_indices

return best_global_error, best_global_ctp,weighted_worst_notes

As a way to compare the search strategy of the counterpoint melody with the search
strategy of the cantus firmus melody, a flowchart is also presented in figure 3.12 to
showcase the main search functionality.

3.8 MIDI Generator
The last module is the MIDI generator, which generates the system output and
works as the user interface. The MIDI-generator coordinates the generation of a
cantus firmus and corresponding counterpoint. The counterpoint species, key, vo-
cal range and if the counterpoint should be above or below the cantus firmus can
all be defined by the user.

The MIDI-generator was together with the music representation the first modules
to be designed. This was due to the importance of having the possibility of export-
ing to MIDI early on in the design- and implementation-phase.

Since the module is only tasked with being an interface between the user and the
rest of the system, it is quite simple in design. The user provides a set of wanted
parameters, and the module does the rest. The main functional flow of the proposed
module is shown in figure 3.13. First, a set of parameters is set by the user. Then,
the cantus firmus is generated before the accompanying counterpoint is generated.

3.8. MIDI Generator 67

Figure 3.12: The proposed main flow of the search strategy. The local search scans the
search possibilities in each layer of the search domain following a given search order. The
possibility that leads to the least amount of global penalty is chosen, and the pitch sequence
is updated with this value.

68 Software Design

Lastly, the information contained in the data-structures of the cf and counterpoint
melodies is loaded to pretty_midi objects, which then exports the combined cf and
counterpoint to a midi-file.

3.8. MIDI Generator 69

Figure 3.13: Main functional flow of the MIDI-generator.

70 Software Design

Chapter 4

Implementation

In this chapter, the implementation of each individual system module is presented.
The source-code is made available online, and can be found here: https://gi
thub.com/JohanGHole/AutomaticCounterpoint.

4.1 Assumptions
1. The different notes are identified by their corresponding midi-numbers. This

means that each pitch value is assigned an integer value between 0 and 127.
Examples include the number 60 representing middle C (C4) and 62 repres-
enting middle D (D4).

2. The rhythmic resolution is eight-notes as this is the fastest note that is al-
lowed in species counterpoint.

3. Dynamic playing is not considered in this implementation. Therefore, the
MIDI information that identifies how hard the note should be played of each
note object is set to 100.

4. Possible counterpoint tones for a given note in the cantus firmus can be
expressed as a list of midi-numbers. In this way, it is possible to implement
one search algorithm that can find solution for all the different species.

5. We have chosen to not use the church modes, instead focus on generating
species counterpoint for all the different minor and major keys. This devi-
ates from the style of Fux, but it does make the counterpoint more tonal.
Since major and natural minor corresponds to the church modes Ionian and
Aeolian, respectively, this decision does not have major impact on the con-
trapuntal style.

71

https://github.com/JohanGHole/AutomaticCounterpoint
https://github.com/JohanGHole/AutomaticCounterpoint

72 Implementation

6. Melodic fluency is prioritized over rhythmic fluency for fifth species. This
means that rhythmic considerations, beyond leading to a sufficient melody,
is not required.

4.2 Musical Representation
We begin with the implementation of the musical representation. This is due to the
objects defined here acting as the information passed between the other modules.
The music module is tasked with representing the musical concepts necessary to
express the search domain and format of the variables used in the cost function and
search algorithm. Therefore, the objects must contain sufficient information while
still keeping it as simple as possible. As presented in the design chapter, the lowest
level of musical granularity is the Note Object. But to have a common ground for
all the musical objects, some constants must first be defined.

Constants

Before implementing the musical objects, we must first define some common
terms. This include data-representation of the different key names, represented
as a list of strings:

KEY_NAMES = ['C', 'Db', 'D', 'Eb','E', 'F', 'Gb',
'G', 'Ab', 'A', 'Bb', 'B']

KEY_NAMES_SHARP = ['C', 'C#', 'D', 'D#', 'E', 'F','F#',
'G', 'G#', 'A', 'A#', 'B']

The different intervals also need a token representation as to clarify what interval
corresponds to what integer value representing the number of semitones in said
interval. This is more easily explained with an example. A perfect fifth consists of
7 semitones or half-steps, and therefore has an integer value of 7. The abbreviation
of a perfect fifth is set to P5. Minor and major intervals are notated "m" and "M",
respectively. Diminished intervals are notated with "d", and augmented intervals
"aug". In addition, some intervals have other tokens as well, such as diminished
fifth equaling a tritone. The representation of the intervals from unison to perfect
fifth is illustrated below.

P1 = Unison = 0
m2 = 1
M2 = 2
m3 = 3
M3 = 4
P4 = 5

4.2. Musical Representation 73

d5 = Tritone = 6
P5 = 7

It is worth to mention that this is only an illustration of how the intervals are
named, and not the extensive list. The extensive list contains all the intervals
within an octave.

Since sequences of pitches are represented as a list of corresponding midi-values,
it is also possible to express the vocal ranges as a sequence of midi-numbers. As
an example, let us consider the vocal range alto. The alto range is typically the
notes between F3 and F5, which has the corresponding midi-numbers 53 and 77.
The alto range representation is therefore:

ALTO_RANGE = [53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77]

All the vocal ranges are further represented in a 2D list of length 4, from lowest to
highest register. The BASS voice is therefore the first entry, and the SOPRANO
voice the last. The ALTO voice is the second highest range, and can therefore be
expressed as the third entry in the 2D RANGES list:

ALTO_RANGE = RANGES[2]

The constants also include dictionaries for scale representation within an octave,
and a representation of the different species names. The scales are either minor or
major, and expressed as tuples with instructions on how to build the scale within an
octave. The numbers in the tuple illustrates how many semitones there are between
the corresponding notes in the scale:

NAMED_SCALES = {
"major": (2, 2, 1, 2, 2, 2, 1),
"minor": (2, 1, 2, 2, 1, 2, 2),

}

SPECIES = {
"first": 1,
"second": 2,
"third": 3,
"fourth": 4,
"fifth": 5,

}

74 Implementation

Lastly, the list of constants include a categorization of the different intervals. This
representation is used extensively in the rest of the system. Notice how the melodic
intervals have negative entries. This is because they are used to check consecutive
intervals within a melodic line, and can therefore be negative. The harmonic in-
tervals are always computed by subtracting the lower voice from the upper voice,
meaning that they are always positive. If not, we have voice crossings, which is
not allowed. The different categorizes are illustrated below, which conclude the
set of system constants.

MELODIC_INTERVALS =[Unison,m2,M2,m3,M3,P4,P5,m6,P8,
-m2,-M2,-m3,-M3,-P4,-P5,-P8]

HARMONIC_DISSONANT_INTERVALS = [m2,M2,P4,M7,m7,
P8+m2,P8+M2]

HARMONIC_CONSONANCES = [m3,M3,P5,m6,M6,P8,
P8+m3,P8+M3]

PERFECT_INTERVALS = [P5,P8]

Note Object

Figure 4.1: Diagram of the Note class.

Notated music consists of successive notes both vertically and horizontally ar-
ranged on a staff. There are also other things needed to express music symbolic-
ally, like clefs, key signatures and time signatures. But at the lowest level we have
the singular note, which is a good place to start to structure the object-oriented

4.2. Musical Representation 75

hierarchy of musical classes. The system’s container for singular note information
is contained in the Note Class located in the music module. This object is tasked
with both containing note information but also contains a lightweight wrapper to
pass the note information to a pretty_midi object. This makes it possible to use
some helper functions from the pretty_midi library for midi export. To better il-
lustrate how the note object should behave, we give an example. First, the object
must be instantiated. We begin with a common note, the middle C:

middle_C = Note("C4")

We here use the convention where middle C is notated C4, with C representing the
note name and 4 representing the octave. We have now instantiated the note object,
and a set of attributes are now initialized. These include pitch (midi-number) and
note velocity. To support simple midi conversion, the attributes start_time and
end_time are also included.

A set of class methods must also be included to support the construction of the
note object in addition to alterations such as transpose:

middle_D = middle_C.transpose(2, inPlace = False)

If inPlace = True, the original note is changed. If inPlace = False, a new note
object is returned that represent the transposed note of the original note object. In
the example above, the transpose method returns a new note two semitones above
the already constructed middle C note.

The note object is implemented as dictated by the class diagram in figure 4.1. The
class attributes are set according to the inputs given to the constructor, except for
pitch which can either be given in string format or MIDI-numbers. Two valid
instances of note objects that both represent middle C is therefore:

C_str = Note["C4"]
C_midi = Note[60]

The constructor is implemented as follows:

class Note:
def __init__(self, note_name, start=None,

end=None, velocity=100):
if isinstance(note_name,str):

self.pitch = pm.note_name_to_number(note_name)
elif isinstance(note_name,int): # MIDI-number

76 Implementation

self.pitch = note_name
else:

print("error: Wrong pitch"+
"format in Note class")

self.start = start
self.end = end
self.velocity = velocity

Notice the use of the help function note_name_to_number from the pretty_midi
library. The note_name input is converted to its corresponding midi-number, and
the rest of the attributes are set according to the corresponding inputs.

The implementation of the class methods was straight-forward. All the
methods are therefore listed in the code shown below. Notice especially the
implementation of the to_instrument method. Here, the information contained
within the self-implemented class is passed in a format that is interpretable by the
pretty_midi library. In this way, the note can be added to pretty_midi instruments
which then can be exported as midi.

@Classmethods
def get_pitch(self):

return self.pitch

def set_time(self, start, duration):
self.start = start
self.end = start + duration

def get_duration(self):
if self.start == None or self.end == None:

return None
else:

return self.end - self.start

def transpose(self, i, inPlace = False):
if inPlace:

self.pitch += i
else:

return Note(self.pitch+i,self.start,self.end,
self.velocity)

def to_instrument(self, instrument):
adds the note to the given instrument
if self.start == None or self.end == None:

print("Error: no temporal"+

4.2. Musical Representation 77

"information is given for the Note")
pass

note = pm.Note(velocity=self.velocity,
pitch=self.pitch,
start=self.start, end=self.end)

instrument.notes.append(note)

Interval Class

The next abstraction level is the Interval Class, which encapsulates the relation-
ship between two note objects. This will prove useful in the constraint formalism,
as the interplay between different voices is given to a large degree by the inter-
vals between them. The methods in this class must therefore include functionality
to distinguish between the different types of intervals discussed in chapter 2.1.
The interval class is instantiated as follows: two note objects are given as input.
The constructor will then save the interval as the distance in number of semitones
between the two given notes:

Interval(note1, note2)

The majority of the Fuxian rules are concerned with the interval relationship between
two notes. Therefore, the interval class must also include methods for interval-
analysis. As to ensure that the interval class structure is preserved as a container,
these methods are limited to be boolean expressions to check if the interval is per-
fect, consonant or dissonant. An overview of the main functionality is shown in
class diagram 4.2.

Figure 4.2: Diagram of the interval class.

78 Implementation

The constructor follows the class diagram, and the implementation is shown below.

class Interval:
def __init__(self, note1, note2):

self.note1 = note1
self.note2 = note2
self.interval = self.note2.pitch - self.note1.pitch
self.name = self.get_pretty_name(self.interval)

The get_pretty_name() checks the integer value of the interval and returns the cor-
responding string name. The implementation, slightly abbreviated, is shown be-
low. For each interval within a single octave, a corresponding string name is given.
If the interval is larger than an octave, the name is given as "compound" + how
much the interval exceeds an octave.

def get_pretty_name(self,interval):
i = interval
pretty_name = ""
if i == 0:

pretty_name = "unison"
elif i == m2:

pretty_name = "minor second"
.
.
.
elif i == Octave:

pretty_name = "octave"
else:

pretty_name = "compound"+
self.get_pretty_name(interval-Octave)

return pretty_name

Lastly, we have the analysis part of the interval class. These methods are boolean
expression that checks if the interval is within a certain category.

def is_dissonant(self):
if self.interval in HARMONIC_DISSONANT_INTERVALS:

return True
else:

return False
def is_melodic_consonant(self):

if self.interval in MELODIC_CONSONANT_INTERVALS:
return True

else:
return False

4.2. Musical Representation 79

def is_consonant(self):
if self.interval in HARMONIC_CONSONANCES:

return True
else:

return False

def is_perfect(self):
if self.interval in PERFECT_INTERVALS:

return True
else:

return False

Scale Class

The scale object constructs a list of all the possible notes in a given scale. The
scale class is meant to help the higher order Melody Class to constrain the set of
possible notes. A scale object is instantiated as follows:

Scale(key, scale)

Where key is the key signature and scale is the name of the scale to be generated.
A valid instance of the object is therefore:

C_major = Scale("C", "major")

Which will contain note objects for all the different tones in a C major scale that
is possible to sound on a 88 key piano. The main functionality is illustrated in
figure 4.3. The intervals attribute is a tuple containing the intervals to form the
given scale from root position over one octave. This tuple is equal to one of the
two NAMED_SCALES ("major" or "minor") declared in the constants file.

80 Implementation

Figure 4.3: Class diagram of the scale class.

As can be seen in the methods part of the class diagram 4.3, the class also contain
functionality to limit the scale to lie within a given vocal range. This is more in
line with the restriction that Fux imposes on the possible melodies, since they
must lie within their respective ranges.

The class constructor for the scale object is more complicated than the pre-
ceding classes. First, the key parameter must be checked to see if it is valid. In
addition, given the layout of a 88 key piano, the lowest note in different scales
may be in different octaves. The keys "A", "A#", "B" and "Bb" all have their
lowest note in octave 0, while the remaining keys have their lowest note in octave
1. This is also handled in the constructor, as illustrated below. The rest of the
functionality of the constructor is to build and possibly limit the scale to lie within
a given range:

class Scale:
def __init__(self, key, scale, scale_range=None):

if key[0].upper() not in (KEY_NAMES_SHARP or KEY_NAMES):
print("Error, key name not valid!"+

"Try on the format 'C' or 'Db' ")
pass

if key in ["A", "A#", "B", "Bb"]:
oct = 0

else:
oct = 1

sets the root of the scale as a note object

4.2. Musical Representation 81

self.root = Note(key + str(oct))
self.key = key
self.scale_type = scale
if isinstance(scale, str):

scale = Scale.intervals_from_name(scale)
elif isinstance(scale, Scale):

scale = scale.intervals
self.intervals = tuple(scale)
self.scale = self.build_scale()
self.scale_pitches = self.get_scale_pitches()
if scale_range != None:

self.limit_range(scale_range)

Help methods are also implemented to aid in the scale construction. These are
illustrated in figure 4.3. The intervals_from_name(scale_name)) method finds the
tuple declared in the constants that corresponds with the given scale name. The
build_scale() method constructs a sequence of note objects that lie within the scale.
Lastly, the limit_scale() limits the range of the scale according to the vocal ranges
declared in the constants-file. The implementation of these three methods is illus-
trated below.

@classmethod
def intervals_from_name(self, scale_name):

global NAMED_SCALES
scale_name = scale_name.lower()
support for alternative formatting..
for text in ['scale', 'mode']:

scale_name = scale_name.replace(text, '')
for text in [" ", "-"]:

scale_name = scale_name.replace(text, "_")
return NAMED_SCALES[scale_name]

def build_scale(self):
start_pitch = self.root.get_pitch()
scale_len = len(self.intervals)
highest_pitch = 108 # MIDI-number for C8
lowest_pitch = 21 # MIDI-number for A0
j = 0
scale = []
pitch = start_pitch
adds all possible values above the root pitch
while pitch <= highest_pitch:

scale.append(Note(pitch))
pitch = scale[j].get_pitch() +

self.intervals[j % scale_len]
j += 1

adds all possible values under the root pitch
j = scale_len - 1

82 Implementation

pitch = start_pitch - self.intervals[j % scale_len]
while pitch >= lowest_pitch:

scale.insert(0, Note(pitch))
j -= 1
pitch = pitch - self.intervals[j % scale_len]

return scale

def limit_range(self, scale_range):
scale = []
for notes in scale_range:

if notes in self.scale_pitches:
scale.append(Note(notes))

self.scale = scale

The last code snippet below show the implementation of the remaining help func-
tion. The to_instrument(instrument) methods load each note object in the scale to
the given pretty_midi instrument. In this way, it is possible to export whole scales
to MIDI. The set_time(duration) method set equal durations for each note object
in the scale list.

def get_scale_pitches(self):
scale_pitches = []
for notes in self.scale:

scale_pitches.append(notes.get_pitch())
return scale_pitches

def get_scale_range(self, scale_range):
scale_pitches = []
for notes in scale_range:

if notes in self.scale_pitches:
scale_pitches.append(notes)

return scale_pitches

def set_time(self, duration):
t = 0
for notes in self.scale:

notes.set_time(t, duration)
t += duration

def to_instrument(self, instrument):
for notes in self.scale:

notes.to_instrument(instrument)

Melody Class

To better illustrate the needed functionality in this class, we will now sketch
a simple example. The main functionality of the entire system is to generate

4.2. Musical Representation 83

a cantus firmus and a counterpoint harmonization of said cantus firmus. Let
us say that the cantus firmus module wants to generate a 12 note melody in C
major. What information does the CF generator need to be able to create such
a melody? It is this information that must be contained in the melody class.
In this example, the token "C" and "major" indicate the key and scale type of
the melody, respectively. Therefore, the melody class must call the scale class
to get a list of note pitches within the given scale and within a specific vocal
range. This limits the options for possible melody pitches, which is in line with
the Fuxian rules in which the melody must be diatonic and within a singable range.

The list of possible vocal range pitches is the first main part that the melody class
must include. This helps in defining the search domain of the search strategy.
In addition, the two musical dimensions concerning rhythm and melody must
be defined. The granularity of this representation can be extracted by analysis
of the structure of the different species of counterpoint presented in section 2.1.
The rhythm can be represented as a sequence of integer values which represent
the number of eight-notes the corresponding note has as duration. Since some of
the rules are concerned with checking dependencies across entire measures, the
rhythm is structured measure by measure. To keep the data-structure as simple as
possible for the guided search strategy, the pitches of the melody is represented as
a list of their respective MIDI symbols, and not as a list of note objects. Lastly,
some notes can move between measures. For example: tied notes in fourth
species. The melody class must therefore contain some data-structure to identify
if a note is tied forward or not.

To summarize; the main data-structure of the melody class is three parallel
lists containing the melody pitches, note lengths in eight-notes, and if the note
should be tied forward or not. The short melodic fragment shown in figure 4.5,
therefore, has the following representation in the melody class:

melody = [60,62,64,65,69,67,65,65,64,62,60]
melody_rhythm = [(4,1,1,2),(2,2,4),(2,4,2),(8,)]
ties = [False, False, False, False, False,

False, True, False, False, False, False]

Notice how the sum of all the measure-tuples are 8. This is because there can max-
imum be eight eight-notes in each measure. The tied note is also repeated in the
list of melody pitches. This is to keep the length of the lists equal and set according
to the measures.

As was the case of notes, intervals and scales, the melody class must also include

84 Implementation

functionality for loading note information to pretty_midi instruments for easy midi
export. The main functionality that the melody class must satisfy is illustrated in
the class diagram in figure 4.4. As can be seen, this is mostly a container of in-
formation.

Figure 4.4: Main functionality of the melody class.

Figure 4.5: A small melodic fragment i C major alto range to illustrate the data-structure
in the melody class.

It is important to specify that the melody class only contains the information
necessary to generate a melody, but it does not contain functionality of melody
generation. It can therefore store information such as the MIDI pitches and cor-
responding note durations and load this information to pretty_midi instruments,
but it cannot generate said information. This was a deliberate design choice made
to stay true to the container like structure as in the rest of the music module,
delegating the task of generation to other modules of the system.

The constructor is implemented according to the class diagram in figure
4.4. Similar to the scale class, the melody class have input parameters "key",
"scale" and "vocal range" to limit the list of possible notes for the melody. In
addition, temporal information regarding the length of each measure is needed
when loading the information to pretty_midi instruments. This is why bar_length

4.2. Musical Representation 85

(named measure_duration in 4.4) is included as an attribute. The parallel lists
melody_pitches, melody_rhythm and ties are all declared as void. This information
is to be filled in by the other modules. The code below also include the set and get
methods for the three parallel lists that constitute the music representation.

class Melody:
def __init__(self, key, scale, bar_length,

melody_notes=None, melody_rhythm = None,
ties = None, start=0, voice_range = None):

self.key = key
self.scale_name = scale
self.voice_range = voice_range
self.scale = Scale(key, scale, voice_range)
self.scale_pitches = self.scale.get_scale_pitches()
self.note_resolution = 8
self.start = start
self.bar_length = float(bar_length)

"""Music Representation"""
self.pitches = melody_notes
self.rhythm = melody_rhythm
self.ties = ties
if self.pitches != None:

self.search_domain = [self.scale_pitches for
notes in self.pitches]

else:
self.search_domain = [self.scale_pitches]

def set_ties(self,ties):
self.ties = ties.copy()

def set_rhythm(self,rhythm):
self.rhythm = rhythm.copy()

def set_melody(self,melody):
self.pitches = melody.copy()

def get_ties(self):
return self.ties.copy()

def get_rhythm(self):
return self.rhythm.copy()

def get_melody(self):
return self.pitches.copy()

86 Implementation

The last part of the music class is the to_instrument(instrument)) method, which
now is more complex compared to the preceding classes. This is due to the con-
sideration of having possible tied notes across measures. For each measure, the
method iterates through all the note duration in the corresponding measure tuple.
If the note is tied, the duration of the first note in the next measure is appended. In
this way, notes can be expressed to lie outside the metric bounds of the bar lines.
If the pitch value is -1, it means at the method should interpret the note duration as
a rest and not a midi-number. Therefore, no note is loaded to the instrument if the
pitch is -1, but the duration is still appended which means that the next note will be
loaded after said rest. Notice also how the bar_line attribute is used to quantify the
length of the eight-notes. If bar_length = 2, then each eight-note in the measure
has a length of 2/8 = 0.25 seconds

""" MIDI SUPPORT """
def to_instrument(self, instrument, start = 0):

i = 0
measure_idx = 0
t = start
while measure_idx < len(self.rhythm):

duration_idx = 0
while duration_idx < len(self.rhythm[measure_idx]):

dur = self.rhythm[measure_idx][duration_idx]
duration = float(dur*self.bar_length /

float(self.note_resolution))
if self.ties[i] == True:

measure_idx += 1
duration_idx = 0
dur = self.rhythm[measure_idx][duration_idx]
duration += float(dur*self.bar_length /

float(self.note_resolution))
i += 1

if self.pitches[i] != -1:
note = Note(self.pitches[i],start=t,

end=t+duration)
note.to_instrument(instrument)

t += duration
i += 1
note_duration += 1

measure_idx += 1

4.3 Cantus Firmus
The Cantus Firmus Class is an extension of the melody class. The methods in the
extension are for generating the data structures from the melody class necessary

4.3. Cantus Firmus 87

to express the music representation. The constructor is shown below, with the
main functionality tasked with generating the rhythm, ties, and pitch values for the
melody super class.

class Cantus_Firmus(m.Melody):
def __init__(self,key, scale, bar_length,

melody_notes=None, melody_rhythm = None,
start=0, voice_range = RANGES[ALTO]):

super(Cantus_Firmus, self).__init__(**args)
self.cf_errors = []

""" Music representation"""
self.rhythm = self._generate_rhythm()
self.length = len(self.rhythm)
self.ties = [False]*len(self.rhythm)
self.pitches = self._generate_cf()

The implementation of the cantus firmus class is divided into how the different
dimensions of the music representation is generated, starting with the simplest
one.

Rhythm and Ties Generation

Following the rules of Fux and Jeppesen, all notes must be whole-notes and the
length should be between 8 to 14 notes. This restricts the rhythm and ties, which
therefore easily can be stated as follows:

self.rhythm = self._generate_rhythm()
self.ties = [False]*len(self.rhythm)

The _generate_rhythm() method is private as indicated by the underscore at the
beginning of the method name. The method generates a random number between
8 and 14 which acts as the number of measures in the cantus firmus. This number
is then multiplied by the rhythmic skeleton, which in this case is tuples with the
value 8, representing whole-notes:

def _generate_rhythm(self):
random_length = rm.randint(8,14)
return [(8,)]*random_length

Melody Generation

With the rhythm and list of tied notes in place, we can now turn the attention
towards the harder task of generating the melody pitches. By inspecting the rules

88 Implementation

presented in section 2.1.3, two important observations can be made. First, rule 1
stating that one must begin and end on the tonic to emphasize the key and second,
rule 6 stating that the penultimate note should be a major second or minor second
below the tonic means that we can pre-constrain some of the pitches. The start,
end and penultimate notes are therefore found using the following methods:

def _start_note(self):
root = self.key
try:

root_idx = KEY_NAMES.index(root)
except:

root_idx = KEY_NAMES_SHARP.index(root)
v_range = self.voice_range
possible_start_notes = []
for pitches in v_range:

if pitches % Octave == root_idx:
possible_start_notes.append(pitches)

tonics = possible_start_notes
return tonics,possible_start_notes[0]

def _penultimate_note(self):
""" The last note can be approached from

above or below. It is however most
common that the last note is approached from above

"""
leading_tone = self.start_note - 1
super_tonic = self.start_note + 2
weights = [0.1,0.9] # it is more common

that the penultimate note is
the supertonic than leading tone

penultimate_note = rm.choices([leading_tone,
super_tonic],weights)[0]

return penultimate_note

Using these two methods as a basis, we can now begin to implement a randomized
cantus firmus melody:

def _initialize_cf(self):
"""
Randomizes the initial cf and sets
correct start, end, and penultimate notes.
:return: list of cf pitches.
"""
start_note = self._start_note()[1]

4.3. Cantus Firmus 89

end_note = start_note
penultimate_note = self._penultimate_note()
length = len(self.rhythm)
cf_shell = [rm.choice(self.scale_pitches)

for i in range(length)]
cf_shell[0] = start_note
cf_shell[-1] = end_note
cf_shell[-2] = penultimate_note
return cf_shell

With this method in place, the first stage of the CF pitch sequence generator out-
lined in 3.5 is done. The next step is to quantify the rules in table 3.1, formalizing
the cost function and local search algorithm

Cost Function and Constraint Formalism

The cost function is the sum of the accumulated penalty over a given sequence of
cantus firmus pitches. The different constraints are expressed as boolean functions
that scans through the given cantus firmus pitches and returns either True or False
depending on whetever the rule is satisfied or not. For clarity, the structure of the
cost function is presented first, as to give the reader an overview of the interface
between the cost function and constraints:

def _cost_function(self,cf_shell):
penalty = 0
penalty = self._check_leaps(cf_shell) # rule 8,9,10
if not self._is_valid_note_count(cf_shell): # rule 11

self.cf_errors.append("note repetition")
penalty += 100

if not self._is_climax(cf_shell): # rule 3
self.cf_errors.append("no unique cf climax")
penalty += 100

if not self._is_valid_range(cf_shell): # rule 5
self.cf_errors.append("exceeds the range of a tenth")
penalty += 100

if self._is_repeated_motifs(cf_shell): # rule 11
self.cf_errors.append("motivic repetitions")
penalty += 100

if not self._is_resolved_leading_tone(cf_shell): # rule 13
self.cf_errors.append("leading tone not resolved")
penalty += 100

if self._is_dissonant_intervals(cf_shell): # implicit rule 2
self.cf_errors.append("dissonant interval")
penalty += 100

return penalty

90 Implementation

As can be seen in the code above, the cost function, given a cantus firmus draft
as input, enforces a set of constraints and appends possible accumulated penalties
to the total score. The different rules that are not satisfied are also stored in string
format in a cantus firmus error list declared in the constructor. In this way, it is pos-
sible to easily identify possible mistakes in the generated result. For each boolean
rule expression, the associated rule number corresponding to the rule presented in
section 2.1.3 is also commented. For example: _is_repeated_motifs() corresponds
to rule 11. The remaining rules have been enforced during pre-constraining in
the cf initialization. The structure of the constraints are mostly similar, with one
constraint being implemented differently than the other, namely the first checked
_check_leaps(cf_shell) constraint. This is because the leaps checks are similar in
design and scope, and are therefore grouped together:

def _check_leaps(self,cf_shell):
penalty = 0
num_large_leaps = 0
for i in range(len(cf_shell)-2):

if self._is_large_leap(cf_shell[i],cf_shell[i+1]):
num_large_leaps += 1
if abs(cf_shell[i]-cf_shell[i+1]) == Octave:

small penalty for octave leap
self.cf_errors.append("penalty for octave leap")
penalty += 50

Check consecutive leaps first
elif self._is_large_leap(cf_shell[i+1],cf_shell[i+2]):

self.cf_errors.append("consecutive leaps")
penalty += 50
if sign(cf_shell[i+1]-cf_shell[i]) /
!= sign(cf_shell[i+2]-cf_shell[i+1]):

self.cf_errors.append("Large leaps in"
+"opposite direction")

penalty += 50
elif self._is_step(cf_shell[i+1],cf_shell[i+2]) /
and sign(cf_shell[i+1]-cf_shell[i]) /
== sign(cf_shell[i+2]-cf_shell[i+1]):

self.cf_errors.append("A leap is not"
+"properly recovered")

penalty += 75
if num_large_leaps >= int(len(self.rhythm) /2) - 2:

penalty += 100
return penalty

The _check_leaps(cf_shell) shown above is expressed in its source code as to
give the reader an idea of how the constraints were formalized. Notice especially
the use of the help methods _is_step(interval), _is_small_leap(interval) and
_is_large_leap(interval). These are used to identify the melodic leaps in the

4.3. Cantus Firmus 91

melody. Also, the help function sign(x) is used to recognize the direction of the
melody. If sign returns 1, it means that the melody is ascending. If the sign
method return -1, it means that the melody is descending.

The rest of the constraints are implemented in similar fashion. Showcasing
the entire source code implementation would be extensive, which is why
only two additional implementations are given: the is_climax(cf_shell) and
is_dissonant_intervals(cf_shell). Both are given in pseudo-code for clarification
of program flow:

def _is_dissonant_intervals(self,cf_shell):
dissonant_intervals = [m7, M7, Tritone,-m6,-m7,-M7]
for each note in the cf_shell:

if successive notes are in dissonant_intervals:
return True

return False

def _is_climax(self,cf_shell):
if the number of max entries in cf_shell is 1:

return True
else: # has more than one climax point

return False

This concludes the presentation of the cost function used in the cantus firmus gen-
eration. With all of the rules formalized, the value of the cost function reflects the
"goodness" of a proposed solution, which can be used by the search algorithm to
locate local optimal solutions.

Search Strategy

The search strategy is implemented according to figure 3.5. We now have methods
for initializing a random melody, and the cost function provides a way to compute
local and total penalties. The search algorithm is implemented as part of the gen-
erate_cf() method, which returns a sequence of optimal pitches. The structure of
the generate_cf() method is given below:

def _generate_cf(self):
total_penalty = math.inf
iteration = 0
while total_penalty > 0 and iteration < 1000:

cf_shell = self._initialize_cf() # initialized randomly
for i in range(1,len(cf_shell)-2):

self.cf_errors = []
local_max = math.inf

92 Implementation

cf_draft = cf_shell.copy()
possible_notes = /...

self._get_melodic_consonances(cf_shell[i-1])
best_choice = possible_notes[0]
for note in possible_notes:

cf_draft[i] = note
local_penalty = self._cost_function(cf_draft)
if local_penalty <= local_max:

local_max = local_penalty
best_choice = notes

cf_shell[i] = best_choice
self.cf_errors = []
total_penalty = self._cost_function(cf_shell)
iteration += 1

return cf_shell.copy()

The algorithm literates through all of the randomized notes of the cantus firmus
except for the terminals and penultimate note, which is pre-set. For each note, a
list of possible notes is extracted using the _get_melodic_consonances(prev_note)
method. For each of these possibilities, the cost function is called to identify
which of the possibilities leads to the minimum penalty. This best choice is then
picked, and the search can move to the next note. After the whole cantus firmus
has been searched, a last call to the cost function is made to find the total penalty
for the now optimized cantus firmus draft. If this totals more than 0, a new pass is
made with a randomization of the cantus firmus notes. Given the few constraints
and short melody, the algorithm usually converges within 30 iterations.

The cantus firmus constructor now have the necessary functionality to load
the data-structure with the correct music representation format. The call:

C_major_cf = Cantus_Firmus("C","major",bar_length=2,
voice_range = RANGES[ALTO])

now constructs a cantus firmus melody in alto range with the melody super-class
containing feasible rhythm, ties and melody pitches. Since the bar length is 2,
each eight note has a length of 0.25 seconds. Temporal information is therefore
also stored, which means that the call:

C_major_cf.to_instrument(pretty_midi.instrument)

can be used to load the music representation to a pretty_midi instrument, which
then can be written to a midi-file.

4.4. Counterpoint 93

4.4 Counterpoint
The counterpoint module is to contain information regarding the structure of the
different counterpoints, subject to two main tasks. The first is to limit the search
domain of the search algorithm as to make the convergence to valid solutions faster.
The second is to abstract away as much information as possible from the search
algorithm, making the search strategy more generalized and usable by all the spe-
cies despite their differences. To achieve this, the musical dimensions concerning
rhythm, ties and instrumentation must be abstracted away from the search strategy.

Therefore, each individual species class is tasked with generating the rhythm, ties
and search domain of their respective species. The Counterpoint Super Class con-
tains functionality common for all the different species. This includes methods for
extracting the possible start, end, and penultimate notes, in addition to acting as the
interface with the search strategy. The initial randomization of the counterpoints
is also done here, following the music representation formalized in the different
species classes. The class hierarchy is illustrated in the class diagram in figure 3.7.

4.4.1 The Counterpoint Super Class

The code below includes the attributes and methods of the Counterpoint Class.
The possible start, end, and penultimate notes are equal for all of the five different
species, which is why the functionality is located here;

Code 4.1: Counterpoint Class implementation

class Counterpoint:
""" CONSTRUCTOR """
def __init__(self,cf,ctp_position = "above"):

if ctp_position == "above":
self.voice_range = /...

RANGES[RANGES.index(cf.voice_range)+1]
else:

self.voice_range = /...
RANGES[RANGES.index(cf.voice_range)-1]

self.melody = m.Melody(cf.key,cf.scale,cf.bar_length,
voice_range = self.voice_range)

self.ctp_position = ctp_position
self.scale_pitches = self.melody.scale_pitches
self.cf = cf
self.species = None
self.search_domain = []
self.ctp_errors = []
self.MAX_SEARCH_TIME = 5 #seconds

""" VALID START, END, AND PENULTIMATE NOTES"""

94 Implementation

def _start_notes(self):...

def _end_notes(self):...

def _penultimate_notes(self, cf_end):...

""" INITIALIZING COUNTERPOINT WITH RANDOM VALUES"""
def get_consonant_possibilities(self,cf_note):...

def randomize_ctp_melody(self):...

""" GENERATE COUNTERPOINT PITCHES BY
CALLING THE SEARCH ALGORITHM"""

def generate_ctp(self):...

The methods for extracting possible start, end and penultimate notes are similar to
that of the cantus firmus module. According to Fux, if the counterpoint is above
the cantus firmus, the possible start notes are perfect intervals including unison
for first species. The end note is either unison or octave, and the penultimate is
as for the cantus firmus either a major second above or minor second below the
end note. If the counterpoint is below the cantus firmus, the possible notes are
further restricted to emphasize the key. The methods therefore have the following
implementation in pseudo-code:

def _start_notes(self):
cf_tonic = self.cf.pitches[0]
if self.ctp_position == "above":

if SPECIES[self.species] == 1:
return [cf_tonic, cf_tonic + P5, cf_tonic + Octave]

else:
return [cf_tonic+P5,cf_tonic + Octave]

else:
if SPECIES[self.species] == 1:

return [cf_tonic - Octave, cf_tonic]
else:

return [cf_tonic - Octave]

def _end_notes(self):
cf_tonic = self.cf.pitches[0]
if self.ctp_position == "above":

return [cf_tonic, cf_tonic + Octave] # unison and octave
else:

return [cf_tonic, cf_tonic - Octave]

def _penultimate_notes(self, cf_end):
if last note in cantus firmus is approached from below:

Then the end note of the

4.4. Counterpoint 95

counterpoint must be approached from a major
second above
penultimate = end_note+M2

elif last note in cantus firmus is approached from above:
Then the end note of the
counterpoint must be approached by a minor
second below
penultimate = end_note-m2

if self.ctp_position = "above":
return [penultimate, penultimate + Octave]

else:
return [penultimate, penultimate - Octave]

Two methods to aid in the initialization of the melody pitches of the different spe-
cies is also included in the super-class. These methods are the
get_consonant_possibilities(cf_note) and randomize_ctp_possibilities(cf_note),
declared in 4.1. The get_consonant_possibilties(cf_note) method returns a list of
the possible consonant pitches either above or below the given cantus firmus note,
and is used for limiting the search domain according to rule 3 in 2.1.4 stating that
all harmonies must be consonant:

def get_consonant_possibilities(self,cf_note):
poss = []
for interval in HARMONIC_CONSONANCES:

if self.ctp_position == "above":
if cf_note+interval in self.scale_pitches:

poss.append(cf_note+interval)
else:

if cf_note-interval in self.scale_pitches:
poss.append(cf_note-interval)

return poss

The counterpoint pitch randomization method uses the search domain defined by
the corresponding species class and returns a sequence of feasible pitches.

96 Implementation

def randomize_ctp_melody(self):
ctp_melody = []
i = 0
measure = 0
while measure < len(self.melody.rhythm):

note_duration = 0
while note_duration < len(self.melody.rhythm[measure]):

if i == 0:
ctp_melody.append(/...

rm.choice(self.search_domain[i]))
elif i > 0 and self.melody.ties[i-1] == True:

ctp_melody.append(ctp_melody[i-1])
else:

ctp_melody.append(/...
rm.choice(self.search_domain[i]))

i += 1
note_duration += 1

measure += 1
return ctp_melody

Notice how the underlying music representation contained in the melody ob-
ject declared in the counterpoint constructor is used when constructing a ran-
domized counterpoint. This is illustrated by the calls to self.melody.rhythm and
self.melody.ties. For each note duration in the rhythm generated by the underlying
child class, a note is picked randomly from the corresponding list of possible notes
in the search domain. If the note is tied, the previous note is used as to stay true
with the musical representation defined in the melody class. This is emphasized in
the code below:

.

.

.
elif i > 0 and self.melody.ties[i-1] == True:

The note is tied forward from the preceding measure.
The note appended to the randomized sequence of pitches
must therefore be equal to the previous note
ctp_melody.append(ctp_melody[i-1])

else:
ctp_melody.append(rm.choice(self.search_domain[i]))

.

.

.

4.4. Counterpoint 97

4.4.2 The General Structure of the Species Class

To load the counterpoint melody with a valid music representation, child classes of
the counterpoint class are implemented for each of the five different species. The
method names are the same for all the classes, but the implementation is varied
according to the different rhythms, possible dissonances and ties. All the species
classes have the following constructor form:

class Species(Counterpoint):
def __init__(self,cf,ctp_position = "above"):

super(Species,self).__init__(cf,ctp_position)
self.species = "first","second",

"third","fourth", or "fifth"
self.ERROR_THRESHOLD = 100

""" Music Representation """
self.melody.set_rhythm(self.get_rhythm())
self.num_notes = sum(len(row)

for row in self.get_rhythm())
self.melody.set_ties(self.get_ties())
self.search_domain = self._possible_notes()
self.melody.set_melody(self.randomize_ctp_melody())

The ERROR THRESHOLD attribute is the maximum allowed penalty for a gen-
erated species counterpoint. For first species, given its low complexity, this is set
to 50. This corresponds to one allowed bad penalty. For the remaining species, the
threshold is set to be below 100, which represents a severe penalty.

Each species has three main methods, get_rhythm(), get_ties() and _possible_notes().
These methods generate information regarding the musical dimensions that is not
to be explored by the search strategy. How these methods are implemented for
each of the five different species is illustrated in the following subsections.

4.4.3 FirstSpecies Class

Rhythm and Ties

The rhythmic skeleton of first species is equal to the cantus firmus; one whole-note
for each measure and zero ties. The get_rhythm() and get_ties() methods therefore
have the following trivial form:

""" FIRST SPECIES RHYTHM """
def get_rhythm(self):

#Voices all move together in the same
#rhythm as the cantus firmus.

98 Implementation

return [(8,)]*self.cf.length

def get_ties(self):
return [False]*len(self.cf.length)

Search Domain

The search domain is structured as a 2D list of possible counterpoint notes for each
note in the cantus firmus. For first species, only harmonic consonant intervals of
the cantus firmus note is allowed. The _possible_notes() method therefore has the
following implementation:

""" FIRST SPECIES SEARCH DOMAIN """
def _possible_notes(self):

poss = [None for elem in self.melody.rhythm]
for i in range(len(self.melody.rhythm)):

if i == 0:
poss[i] = self._start_notes()

elif i == len(self.melody.rhythm)-2:
poss[i] = self._penultimate_notes(/...

self.cf.pitches[-1])
elif i == len(self.melody.rhythm)-1:

poss[i] = self._end_notes()
else:

poss[i] = self.get_consonant_possibilities(/...
self.cf.pitches[i])

return poss

The method iterates through all the notes as dictated by the rhythmic skeleton,
constructing a list of possible notes for each note in the cantus firmus. The terminal
and penultimate notes are further constrained, and is set accordingly.

4.4.4 SecondSpecies Class

Rhythm and Ties

In second species, there are two notes for each note in the cantus firmus except for
the last note, which is a whole-note. There are still no ties allowed, so the methods
get_rhythm() and get_ties() have the following implementation:

""" SECOND SPECIES RHYTHM """
def get_rhythm(self):

rhythm = [(4,4)]*(self.cf.length-1)
rhythm.append((8,))

4.4. Counterpoint 99

return rhythm

def get_ties(self):
return [False]*self.num_notes

Search Domain

In second species, dissonances on weak beats are allowed. The difference between
strong and weak beats in measures are illustrated in figure 4.6. The _pos-
sible_notes() method is therefore a bit more extensive than that of first species.
Therefore, an additional method is implemented to help distinguish between which
notes can be dissonant and which can only be consonant. This is done in the
get_harmonic_possibilities() method, which add dissonant possibilities if the note
index is on a rhythmic weak beat:

def get_harmonic_possibilities(self, idx, cf_note):
poss = super(SecondSpecies,self)./...

get_consonant_possibilities(cf_note)
upbeats = self.get_upbeats()
if idx in upbeats:

for diss in HARMONIC_DISSONANT_INTERVALS:
if self.ctp_position == "above":

if cf_note+diss in self.scale_pitches:
poss.append(cf_note+diss)

else:
if cf_note-diss in self.scale_pitches:

poss.append(cf_note-diss)
return poss

The _possible_notes() method is similar to that of first species. But now, the
rhythm is iterated measure by measure, and the first note is always set to be a
rest, illustrated by the "-1" token.

""" SECOND SPECIES SEARCH DOMAIN """
def _possible_notes(self):

poss = [None for elem in range(self.num_notes)]
i = 0
for m in range(len(self.get_rhythm())):

for n in range(len(self.get_rhythm()[m])):
if m == 0:

First measure. start notes
if n == 0:

poss[i] = [-1]
else:

poss[i] = self._start_notes()

100 Implementation

elif m == len(self.get_rhythm()) - 2 and n == 1:
penultimate note before last measure.
poss[i] = self._penultimate_notes(/...

self.cf.pitches[-1])
elif m == len(self.get_rhythm())-1:

Last measure
poss[i] = self._end_notes()

else:
poss[i] = self.get_harmonic_possibilities(/...

i, self.cf.pitches[m])
i += 1

return poss

Figure 4.6: Strong beats are notated 1, weak beats are notated 2.

4.4.5 ThirdSpecies Class

Rhythm and Ties

Again, the rhythm and ties are easy to generate, since for third species there are
four notes for each note in the cantus firmus, and no ties are allowed. Each note
has a length of 2 eight-notes, except for the last measure which is a whole-note.
This leads to the following implementation:

""" THIRD SPECIES RHYTHM """
def get_rhythm(self):

rhythm = [(2, 2, 2, 2)] * (self.cf.length - 1)
rhythm.append((8,))
return rhythm

def get_ties(self):
return [False] * self.num_notes

4.4. Counterpoint 101

Search Domain

As for second species, weak beats can be dissonant. The weak beats are the second
and fourth beats of each measure, and the strong beats the first and third. This is
illustrated in figure 4.7. Since the structure of the search domain generation is just
an extension of that of second species, the same methods used in second species
can be used in third species, with the only change being the rhythmic difference.

Figure 4.7: Strong beats are notated 1, weak beats are notated 2.

4.4.6 FourthSpecies Class

Rhythm and Ties

The rhythm of the fourth species is equal to that of second species. However, there
is now a tied note at the end of each measure except for the last and penultimate
measure. This leads to the first introduction of tie handling, which given the strict
syncopated rhythm of fourth species is quite trivial:

""" FOURTH SPECIES RHYTHM """
def get_rhythm(self):

rhythm = [(4, 4)] * (self.cf.length - 1)
rhythm.append((8,))
return rhythm

def get_ties(self):
ties = []
for i in range(self.num_notes-2):

if i%2 == 0:
ties.append(False)

else:
ties.append(True)

The last two notes are not tied:
ties.append(False)
ties.append(False)

102 Implementation

return ties

Search Domain

The notes in fourth species can only be consonant intervals. The _possible_notes()
method for fourth species is therefore equal to that of second species, except for
dissonances not being allowed. Given the tied notes, each note duration is in effect
a whole note going between consecutive measures. Since the beginning of the
counterpoint is a rest, fourth species can be viewed as a first species counterpoint
shifted by a half-note.

4.4.7 FifthSpecies Class

Rhythm and Ties

Fifth species introduces a more florid rhythm and list of tied notes. This is due
to fifth species being an extension of all the preceding species. The rhythm in
fifth species can therefore have rhythmic elements from second, third and fourth
species, making the counterpoint border tonal music.

Section 2.1.8 presents several rules regarding rhythm, which in this system
is not to be explicitly handled. This was also discussed in the design and in the
assumptions, and is due to the focus on the melodic dimension rather than the
rhythmic dimensions. However, the proposed rhythmic generation seen below
still provide interesting and varied rhythms, with the possibility of having eight
notes on weak beats.

""" FIFTH SPECIES RHYTHM """
def get_rhythm(self):

rhythm = []
measure_rhythms = [(2,2,2,2),(4,2,2),(2,2,4),(4,4),

(2,1,1,2,2),(2,1,1,4),(4,2,1,1),
(2,2,2,1,1),(2,1,1,2,2)]

rhythmic_weights = [100,50,50,25,10,5,5,5,5]
for measures in range(cf.length-1):

if measures == 0:
rhythm.append((4,4))

else:
rhythm.append(/...
rm.choices(measure_rhythms,rhythmic_weights)[0])

rhythm.append((8,))
return rhythm

4.4. Counterpoint 103

The first measure is fixed to be two half-notes. The first note is a rest, the second
a start note. In this way, the tonality of the counterpoint is highlighted with the
slower rhythm in the first measure. Faster rhythms are instead introduced in
subsequent measures. Different rhythmic tuples have been listed. These acts as
instructions for the possible measure-wise rhythm, and is listed by relevance. The
first entry is the same rhythm as that of third species. The second and third entry
is a combination of second and third species, while the fourth entry is the rhythm
of second species. The last options all include eight notes on weak beats. Since
they are to appear more rarely, they are given a lower weight. For each measure
except the terminals, a randomized measure rhythm is chosen based on the list of
possibilities and associated weights. In this way, the rhythm becomes more florid.

There are also some considerations that has to be made when handling pos-
sible tied notes. A variation of rule 3 presented in 2.1.8 is therefore implemented,
stating that all half-notes followed by a quarter-note across measures is to be
tied. In this way, the counterpoint gets a syncopated effect while not halting the
melodic flow to a large extent. This also helps in the independence between the
cantus firmus and counterpoint. As in fourth species, the penultimate note and end
note can not be tied.

def get_ties(self):
rhythm = self.rhythm
ties = []
for m in range(len(rhythm)-1):

for n in range(len(rhythm[m])):
if m == 0 and n == 1:

ties.append(True)
elif m > 0 and n == len(rhythm[m])-1:

if rhythm[m+1][0] == rhythm[m][n]/2:
ties.append(True)

else:
ties.append(False)

else:
ties.append(False)

ties.append(False)
ties.append(False)
return ties

Search Domain

The construction of the search domain is similar to that of third species. However,
eight notes is now a possibility. Since they always appear on weak beats, they must
always include dissonant possibilities. Other possible dissonances are identified

104 Implementation

by the sum of the note durations in the measure up until the given index. If the
sum is 2 or 6, the corresponding beat of the measure is either 2 and 4, which are
weak beats. Dissonance should therefore be included in these cases. The methods
get_harmonic_possibilities() and _possible_notes() are implemented as follows:

""" DEFINING SEARCH DOMAIN FIFTH SPECIES """
def get_harmonic_possibilities(self, m,n, cf_note):

add_diss = False
if self.rhythm[m][n] == 1:

add_diss = True
if sum(self.rhythm[m][:n]) in [2,6]:

add_diss = True
poss = super(FifthSpecies, self)./...

get_consonant_possibilities(cf_note)
if add_diss:

for diss in HARMONIC_DISSONANT_INTERVALS:
if self.ctp_position == "above":

if cf_note + diss in self.scale_pitches:
poss.append(cf_note + diss)

else:
if cf_note - diss in self.scale_pitches:

poss.append(cf_note - diss)
return poss

def _possible_notes(self):
poss = [None for elem in range(self.num_notes)]
i = 0
for m in range(len(self.rhythm)):

for n in range(len(self.rhythm[m])):
if m == 0:

First measure. start notes
if n == 0:

poss[i] = [-1]
else:

poss[i] = self._start_notes()
elif m == len(self.rhythm) - 2 and /...

n == len(self.rhythm[m])-1:
penultimate note before last measure.
poss[i] = self._penultimate_notes(/...

self.cf.pitches[-1])
elif m == len(self.rhythm) - 1:

Last measure
poss[i] = self._end_notes()

else:
poss[i] = self.get_harmonic_possibilities(/...

m,n, self.cf.pitches[m])
i += 1

return poss

4.5. The Guided Local Search Strategy 105

4.4.8 generate ctp

The last method in 4.1 yet to be presented is the generate_ctp() method, which
calls the search strategy to find a local optimal melody sequence for the given
counterpoint. This acts as the interface between the counterpoint object and the
search strategy:

def generate_ctp(self):
if self.species == None:

print("No species to generate!")
self.ctp_errors = []
self.error, best_ctp, self.ctp_errors = /...

Search_Algorithm.guided_local_search(self)
self.melody.set_melody(best_ctp)

As can be seen above, the search algorithm returns the integer error, the best pitch
sequence it found, and a list of possible unsatisfied constraints in string format.
The search algorithm takes a Counterpoint object as argument.

4.5 The Guided Local Search Strategy
The search strategy was implemented according to the flow diagram shown in 3.12.
Given its importance in the system structure and compact form, the implementa-
tion is here presented in a high level of detail. The search strategy module consists
of only two functions: the guided_search() and local_search(). The local search is
to adjust the initial sequence of pitches that was initialized randomly in the corres-
ponding species class. For each slot in this pitch sequence, there is a corresponding
list of possible pitches that can be chosen for that slot. These pitches were defined
by the search domain of the given counterpoint object. The search order, that is,
the order in which the slots of the pitch sequence is visited, is given by a list of
weighted indices. This to avoid a implicit "look-ahead" preference in the search
order by always scanning from the lowest index and up. For each possible note in
the search domain for a given pitch index, the pitch which leads to the lowest pen-
alty is chosen as the option. In this way, the local search always picks the option
which results in the globally least accumulated penalty from the set of possible
note possibilities. The local search function returns the best counterpoint pitch
sequence it found, along with the associated penalty score and a dictionary of the
pitch indices ordered by which index has the most local penalties. The weighted
indices are given by the constraints module after the cost function has been issued.
An example of a weighted index dictionary is given below:

weighted_idx = {2: 5, 4: 5, 3: 4,
0: 0, 1: 0, 5: 0,

106 Implementation

6: 0, 7: 0, 8: 0, 9: 0}

In the above example, the pitches at index 2, 5, 4 and 3 are the only ones leading
to penalties, with index 2 and 5 being the worst with a value of 5. These weighted
indices are used to identify which pitches that should be changed first. The local
search function has the following form in high level pseudo-code:

def local_search(ctp,search_order):
search_domain = ctp.search_domain
search_ctp = ctp.melody.get_melody()
best_global_ctp = search_ctp.copy()
best_global_error = math.inf
best_global_weighted_indices = []
for i in search_order:

for each slot in the pitch sequence..
best_note = search_domain[i][0]
local_error = math.inf
local_weighted_indices = []
for j in range(len(search_domain[i])):

for each note possibility for the pitch slot..
check the note possibility by assigning it to the
appropriate pitch slot in the pitch sequence
search_ctp[i] = search_domain[i][j]
ctp.melody.set_melody(search_ctp.copy())
validity = Constraints(ctp)

check the associated accumulated penalty
and get indices ordered by their local error
error = validity.cost_function()
weighted_indices = validity.get_weighted_indices()
if error <= local_error:

Update the best note possibility
best_note = search_domain[i][j]
local_error = error
local_weighted_indices = weighted_indices

after all the possibilities are checked,
set the best one in the associated pitch sequence slot
search_ctp[i] = best_note
if local_error < best_global_error:

if the proposed counterpoint has lower score
than the current best, update current best
best_global_ctp = search_ctp.copy()
best_global_error = local_error
best_global_weighted_indices = local_weighted_indices

return best_global_error, best_global_ctp,
best_global_weighted_indices

4.5. The Guided Local Search Strategy 107

To help the local search strategy to exit sub-optimal local minimums, another func-
tion is wrapped around the local search function. This is the guided_search(ctp)
procedure, which is the function that is directly called from the counterpoint
module. The function is tasked with guiding the local search with the aid of the
returned weighted indices. If the local search strategy has reached a sub-optimal
local minimum, identified by the penalty being the same for each call, one or
more pitches in the pitch sequence is randomized starting with the pitch index
that has the highest associated penalty in the weighted index dictionary. In this
way, the search strategy always prioritize the most penalized pitches. If the initial
randomization did not guide the search out of the local minimum, the number of
pitches to be randomized is increased by one. This continues until the penalty is
again minimized, which resets the number of pitches to be randomized back to one.

The guided search iterates until a valid solution is found with accumulated
penalty below the threshold, or the time limit of 5 seconds is reached. When the
search terminates, a last call is made to the constraints module to get the penalty
and list of errors in string format of the final sequence of counterpoint pitches.
The implementation represented in high-level pseudo-code is shown below:

def guided_search(ctp):
start_time = t.time()
penalty = math.inf
elapsed_time = t.time()-start_time
best_ctp = ctp.melody.get_melody()
lowest_penalty = math.inf
the initial search order is a
scan from left to right
search_order = [i for i in range(len(best_ctp))]
prev_penalty = penalty

how many of the pitch slots to be randomized
according to the weights
randomize_idx = 1
while penalty >= ctp.ERROR_THRESHOLD and /...

elapsed_time < ctp.MAX_SEARCH_TIME:
penalty, ctp_notes,weighted_idx = /...

local_search(ctp,search_order)
if penalty == prev_penalty: # no improvement

weighted_idx = list(weighted_idx.keys())
for i in range(randomize_idx):

picks a new, possible local sub-optimal
pitch from the search domain
ctp_notes[weighted_idx[i]] = /...

rm.choice(ctp.search_domain[weighted_idx[i]])

the search order is shuffled

108 Implementation

to avoid implicit search order preferences
and as an additional step to break out of
unwanted local minima
rm.shuffle(search_order)
ctp.melody.set_melody(ctp_notes)
if randomize_idx != len(best_ctp)-1:

randomize_idx += 1
if penalty < lowest_penalty:

randomize_idx = 1
best_ctp = ctp_notes
ctp.melody.set_melody(best_ctp)
lowest_penalty = penalty
weighted_idx = weighted_idx

elapsed_time = t.time()-start_time
prev_penalty = penalty

constraint = Constraints(ctp)
lowest_penalty = constraint.get_penalty()
lowest_error_list = constraint.get_errors()
return lowest_penalty, best_ctp,lowest_error_list

4.6 Constraints
The implementation of the cost function and constraints formalism for the counter-
point generation follows the design presented in section 3.6 quite thoroughly. That
means that for each of the constraints in their respective rule-category, a method
is implemented to check the validity of said constraint issued on a given counter-
point. The cost function is structured by calling each of the four main constraint
categories:

def cost_function(self):
penalty = 0
self.ctp_errors = []

pitch sequence provided by the counterpoint object:
ctp_draft = self.ctp

extended version of the cantus firmus to
ensure 1:1 correspondence between cf pitch sequence
and counterpoint:

cf_notes = self.extended_cantus_firmus

accumulated penalty:
penalty += self._melodic_rules(ctp_draft)
penalty += self._voice_independence_rules(ctp_draft,

cf_notes)
penalty += self._dissonance_handling(cf_notes, ctp_draft)

4.6. Constraints 109

penalty += self._harmonic_rules(ctp_draft, cf_notes)
return penalty

The different constraint categories are based on their respective list of outlined
rules that they must satisfy. Each constraint is given a penalty related to the severity
of breaking said rule. The integer values associated with each penalty is illustrated
in table 4.1.

Penalty Integer Value
severe 100
bad 50
minor 25
preference 5

Table 4.1: The different penalties and associated integer values.

In the following subsections, the layout of the different categorizes are presented
with the inclusion of how the different species are handled.

4.6.1 Melodic Rules

The melodic rules category is the most extensive. However, most of the rules are
applicable to all species of counterpoint with only minor alterations. To keep the
structure as streamlined as possible, each constraint is implemented as a boolean
expression with a descriptive name. An integer value is associated with each
constraint expression according to the severity of breaking said constraint. The
_melodic_rules() method is therefore structured as a sequence of IF statements,
checking each of the implemented boolean constraint expressions. If the rule is
broken, a penalty is added to the accumulated penalty for the rule-category, a text
representation of what rule is broken is added to the list of errors, and lastly, the
weight of the corresponding error pitch index is increased. With the implement-
ation of all the rules listed in 3.3 in section 3.6, the _melodic_rules() method has
the following form:

def _melodic_rules(self, ctp_draft):
penalty = 0
Index based rules
valid melodic rules for each species
for i in range(len(ctp_draft)):

if self._is_melodic_leap_too_large(ctp_draft, i):
self.ctp_errors.append("Too large leap!")
penalty += 100
self.weighted_indices[i] += 4

110 Implementation

if self._is_melodic_leap_octave(ctp_draft, i):
self.ctp_errors.append("Octave leap!")
penalty += 25
self.weighted_indices[i] += 1

if not self._is_leap_compensated(ctp_draft, i):
self.ctp_errors.append("Leap not compensated!")
penalty += 50
self.weighted_indices[i] += 2

if not self._is_octave_compensated(ctp_draft, i):
self.ctp_errors.append("Octave not compensated!")
penalty += 25
self.weighted_indices[i] += 1

if self._is_successive_same_direction_leaps(ctp_draft, i):
self.ctp_errors.append("Successive Leaps"+

"in same direction!")
penalty += 25
self.weighted_indices[i] += 1
if not self._is_successive_leaps_valid(ctp_draft, i):

self.ctp_errors.append("Successive leaps"
+"strictly not valid!")

penalty += 100
self.weighted_indices[i] += 4

if self._is_chromatic_step(ctp_draft, i):
self.ctp_errors.append("Chromatic movement!")
penalty += 100
self.weighted_indices[i] += 4

if self._is_repeating_pitches(ctp_draft,i):
self.ctp_errors.append("Repeats pitches!")
penalty += 100
self.weighted_indices[i] += 1

Global rules
if not self._is_within_range_of_a_tenth(ctp_draft):

self.ctp_errors.append("Exceeds the"+
"range of a tenth!")

penalty += 50
if not self._is_unique_climax(ctp_draft):

self.ctp_errors.append("No unique climax or at same"+
"position as other voices!")

penalty += 100
if not self._is_leading_tone_properly_resolved(ctp_draft):

self.ctp_errors.append("leading tone not"
+"properly resolved!")

penalty += 100
if SPECIES[self.species] >= 2:

for i in range(len(ctp_draft)):
if self._is_motivic_repetitions(ctp_draft,i):

self.ctp_errors.append("Motivic repetitions!")
penalty += 100

return penalty

4.6. Constraints 111

Showcasing the implementation of each individual boolean expression would be
too extensive, which is why only two examples are given to illustrate the imple-
mentation of one global and one index based rule. The first example is the im-
portant rule regarding if leaps are too big. The implementation illustrates a minor
difference in handling leaps in the case of fifth and third species. The constraint
is index based, and given a sequence of counterpoint pitches and index it checks
ahead to see if the melodic leap is allowed:

def _is_melodic_leap_too_large(self, ctp_draft, idx):
if idx in self.end_idx or ctp_draft[idx] == -1:

rest, start and end index should be ignored
return False

interval = ctp_draft[idx + 1] - ctp_draft[idx]
if abs(interval) > P5: # the interval is a large leap

if self.species == "fifth":
if self.note_durations[idx] < 4 /...

and self.note_durations[idx+1] < 4:
Having large leaps between short notes can
make the counterpoint
feel jagged, and is therefore not allowed
return True

if sign(interval) == 1.0 and interval == m6 /...
and self.species != "third":

ascending minor sixth interval
allowed in all species
except third species
return False

if abs(interval) == Octave:
return False

return True
else:

return False

The second example has a simpler implementation, and checks if the pitches in the
counterpoint is within the range of a tenth. Notice how the first entry in the pitch
sequence is omitted when identifying the lowest pitch value. This is due to the
possibility of having a rest, which should be ignored:

def _is_within_range_of_a_tenth(self, ctp_draft):
if max(ctp_draft) - min(ctp_draft[1:]) > Octave + M3:

return False
else:

return True

112 Implementation

4.6.2 Voice-Independence Rules

The voice-independence rules is structured in similar fashion to that of the melodic
rules. The implemented constraints are equal to the ones formalized in table 3.4
in section 3.6. The number of constraints are less extensive than the previous cat-
egory, but now the harmony between the cantus firmus and counterpoint melody
is checked. The _voice_independence_rules() therefore have an additional para-
meter, namely the extended cantus firmus notes:

def _voice_independence_rules(self, ctp_draft, cf_notes):
if self.ctp_position == "above":

upper_voice = ctp_draft
lower_voice = cf_notes

else:
upper_voice = cf_notes
lower_voice = ctp_draft

penalty = 0
Index based rules
valid rules for each species
for i in range(len(ctp_draft)):

if not self._is_perfect_interval_properly_approached(/...
upper_voice, lower_voice, i):

self.ctp_errors.append("Perfect interval not"+
"properly approached!")

penalty += 100
self.weighted_indices[i] += 4

if not self._is_valid_consecutive_perfect_intervals(/...
upper_voice, lower_voice, i):

self.ctp_errors.append("Consecutive perfect intervals,
+"but they are not valid!")

penalty += 100
self.weighted_indices[i] += 4

if self._is_parallel_fourths(/...
upper_voice, lower_voice, i):

self.ctp_errors.append("Parallel fourths!")
penalty += 50
self.weighted_indices[i] += 2

if self._is_voice_overlapping(/...
upper_voice, lower_voice, i):

self.ctp_errors.append("Voice Overlapping!")
penalty += 100
self.weighted_indices[i] += 4

if self._is_voice_crossing(upper_voice, lower_voice, i):
self.ctp_errors.append("Voice crossing!")
penalty += 50
self.weighted_indices[i] += 2

if self._is_contrary_motion(upper_voice, lower_voice, i):
This not not a severe violation,
but more of a preference to avoid similar motion

4.6. Constraints 113

penalty += 5
Global rules
if not self._is_valid_number_of_consecutive_intervals(/...

upper_voice, lower_voice):
self.ctp_errors.append("Too many consecutive intervals!")
penalty += 100

if self._is_unisons_between_terminals(ctp_draft):
self.ctp_errors.append("Unison between terminals!")
penalty += 50

Additional rule for species 2,3,4,5
if SPECIES[self.species] >= 2:

if self._is_parallel_perfects_on_downbeats(/...
ctp_draft, upper_voice, lower_voice):

self.ctp_errors.append("Parallel perfect intervals"
+"on downbeats!")

penalty += 100
return penalty

Notice how there is only one additional rule for species 2, 3, 4 and 5. This is the
constraint regarding parallel perfect intervals on downbeats, which is not allowed
in the species with fast rhythms.

Again, two constraint implementations are shown. The first one is index
based, and arguably one of the most important rules of Fux; how approaches to
perfect intervals should be handled:

def _is_perfect_interval_properly_approached(self,
upper_voice, lower_voice, idx):

the start and end notes are allowed to be perfect
if idx in self.start_idx or idx in self.end_idx:

return True
always checked between the strongest measure beat
if the index is not on a strong beat,
it is therefore accepted
if idx not in self.measure_idx:

return True
if upper_voice[idx] - lower_voice[idx] in PERFECT_INTERVALS:

^The current harmonic interval is perfect
if self.motion(idx, upper_voice, lower_voice) /...

not in ["oblique", "contrary"]:
if the harmonic interval is not approached
by oblique or contrary motion, it is not valid
return False

if self._is_large_leap(upper_voice, idx - 1) or /...
self._is_large_leap(lower_voice, idx - 1):

if upper_voice[idx] - lower_voice[idx] == Octave:

114 Implementation

Octave must be approached by oblique motion
if self.motion(idx, upper_voice, lower_voice)/...

== "oblique":
return True

else:
return False

return True

The second example is a more trivial one, which checks whether the two melodies
cross:

def _is_voice_crossing(self, upper_voice, lower_voice, idx):
possible rests should be ignored
if upper_voice[idx] == -1 or lower_voice[idx] == -1:

return False
if upper_voice[idx] - lower_voice[idx] < 0:

if the interval difference between
the upper and lower voice is negative,
the lower voice is above the upper voice
which is not allowed
return True

return False

4.6.3 Harmonic Rules

Given how most of the harmonic rules are handled implicitly in the formation
of the search domain, the list of explicit harmonic rules is limited. In fact, the
remaining harmonic rule is only one; the scanning for outlined dissonances in
species with a rapid rhythm. The _harmonic_rules() method therefore has the
following form:

def _harmonic_rules(self, ctp_draft, cf_notes):
penalty = 0
if SPECIES[self.species] in [3,5]:

if not self._no_outlined_tritone(ctp_draft):
self.ctp_errors.append("Outlined dissonant interval!")
penalty += 50

return penalty

With the _no_outlined_tritone(ctp_draft) having the following implementation:

def _no_outlined_tritone(self, ctp_draft):
outline_idx = [0]
outline_intervals = []
not_allowed_intervals = [Tritone]

4.6. Constraints 115

between endpoints + step in opposite direction
dir = [sign(ctp_draft[i + 1] - ctp_draft[i])

for i in range(1,len(ctp_draft) - 1)]
for i in range(1,len(dir) - 1):

if dir[i] != dir[i + 1]:
outline_idx.append(i + 1)

outline_idx.append(len(ctp_draft) - 1)
Iterate over the outline indices and check if
a tritone is found
for i in range(len(outline_idx) - 1):

outline_intervals.append(/...
abs(ctp_draft[outline_idx[i]] /...
- ctp_draft[outline_idx[i + 1]]))

for interval in not_allowed_intervals:
if interval in outline_intervals:

return False

return True

4.6.4 Dissonance Handling

The last rule-category is that of dissonance handling, which is the set of constraints
which is most dissimilar between the different species. In species 2, 3 and 5,
all notes on weak beats may contain dissonances if they are properly left and
approached. In addition, fifth species has the possibility of having eight-notes,
which must be handled separately. Both fourth and fifth species might have
dissonances when notes are tied over from the previous measure. If that is the
case, the dissonance must be resolved by a downward step. In addition, third and
fifth species might have a figure known as the cambiata, which despite breaking
rules regarding dissonance, is allowed by Fux. The cambiata figure must therefore
also be handled separately.

All these constraints equal the dissonance rules in table 3.6, and result in
the following dissonance-handler:

def _dissonance_handling(self, cf_notes, ctp_draft):
penalty = 0
if SPECIES[self.species] == 1:

In first species there is no dissonance,
so the allowed harmonic intervals are consonances
return penalty

if self.ctp_position == "above":
upper = ctp_draft
lower = cf_notes

else:

116 Implementation

upper = cf_notes
lower = ctp_draft

if SPECIES[self.species] in [2,3,5]:
for i in range(1, len(ctp_draft)-1):

if SPECIES[self.species] in [3,5] and /...
self._is_cambiata(i,cf_notes,ctp_draft):
allowed
penalty += 0

elif self._is_dissonant_interval(upper,lower,i):
if not self._is_dissonance_properly_handled(/...

i,ctp_draft):
self.ctp_errors.append("Dissonance not"+

"properly left or approached!")
penalty += 100

if SPECIES[self.species] == 5:
for i in range(1,len(ctp_draft)-1):

if not self._is_eight_note_handled(i,ctp_draft):
self.ctp_errors.append("eight notes"+

"not properly handled!")
penalty += 100

if SPECIES[self.species] in [4,5]:
penalty += self._tied_note_properly_resolved(/...

cf_notes,ctp_draft)

return penalty

To illustrate how the dissonance rules might be slightly different between the
different species, the implementation of _is_dissonance_properly_handled(idx,
ctp_draft) is shown. This function checks whether the dissonance has been prop-
erly approached and left by step. For first species, the dissonance must be ap-
proached and left by step in the same direction. This is, however, relaxed for third
and fifth species:

def _is_dissonance_properly_left_and_approached(/...
self,idx,ctp_draft):

current_note = ctp_draft[idx]
prev_note = ctp_draft[idx-1]
next_note = ctp_draft[idx+1]
if abs(next_note-current_note) <= M2 and /...

abs(current_note-prev_note) <= M2:
if SPECIES[self.species] in [3,5]:

return True
if sign(next_note-current_note) == /...

sign(next_note-current_note):
return True

else:
return False

4.7. MIDI-Generator 117

else:
return False

4.7 MIDI-Generator
The last module is the user-interface, which consists of a midi-generator class
and the main loop. The midi-generator is tasked with calling the cantus firmus
and counterpoint modules, generating a counterpoint with parameters set by the
user. The midi-generator then loads the musical representation to pretty_midi
instruments, which is then exported to midi.

The midi-generator constructor is tasked with calling related modules to
generate the cantus firmus and species counterpoint:

class Midi_Generator:
instruments = ["Church Organ","Church Organ"]
def __init__(self,key,scale_name,species,

bar_length = 2,ctp_position = "above",
cf_range = RANGES[TENOR]):

self.cf_range_name = RANGES.index(cf_range)
self.species = species
self.cf = Cantus_Firmus(key,scale_name,bar_length,

voice_range = cf_range)
self.loaded_instruments = []
if species == "first":

self.ctp = FirstSpecies(self.cf, ctp_position)
elif species == "second":

self.ctp = SecondSpecies(self.cf,ctp_position)
elif species == "third":

self.ctp = ThirdSpecies(self.cf, ctp_position)
elif species == "fourth":

self.ctp = FourthSpecies(self.cf, ctp_position)
elif species == "fifth":

self.ctp = FifthSpecies(self.cf, ctp_position)
else:

print("error: "+species+" is not a valid species")
self.ctp.generate_ctp()

The first method is the set_instrument(instrument) method, which set the instru-
ment(s) according to the input. The class supports different instruments for the
cantus firmus and counterpoint, which is handled in set_instrument():

def set_instrument(self,instrument):
if isinstance(instrument,list):

self.instruments = instrument

118 Implementation

else:
self.instruments = [instrument]*2

The second method loads the information contained in the generated cantus firmus
and counterpoint to pretty_midi instruments. This is done by first instantiat-
ing two pretty_midi instruments, which are then loaded using the lower level
melody.to_instrument() method:

def to_instrument(self):
inst_number1 = pretty_midi./...

instrument_name_to_program(self.instruments[0])
inst_number2 = pretty_midi./...

instrument_name_to_program(self.instruments[1])
cf_inst = pretty_midi.Instrument(inst_number1,name="cf")
ctp_inst =pretty_midi.Instrument(inst_number2,name="ctp")
self.ctp.melody.to_instrument(ctp_inst)
self.loaded_instruments.append(ctp_inst)
self.cf.to_instrument(cf_inst)
self.loaded_instruments.append(cf_inst)

The last method exports the loaded instrument to midi. This is done using the
function pretty_MIDI.write(path):

def export_to_midi(self,tempo = 120,
name = "generated_midi/user_defined/ctp.mid"):

pm = pretty_midi.PrettyMIDI(initial_tempo= tempo)
for inst in self.loaded_instruments:

if inst != None:
pm.instruments.append(inst)

pm.write(name)

The main loop generates species counterpoint according to parameters set by the
user. The structure of the main loop has the following implementation, showcased
in pseudo-code:

def main():
cont = True
i = 0
print("Automatic Species Generation")
while cont:

Input(key, scale_name, species,
ctp_position, cf_range, instrument)

name = "ctp"+str(0)
mid_gen = Midi_Generator(key,scale_name,species,

ctp_position = ctp_position,

4.7. MIDI-Generator 119

cf_range = cf_range)
mid_gen.set_instrument(instrument)
mid_gen.to_instrument()
mid_gen.export_to_midi(name = path+name+".mid")
print("midi successfully exported to "+path+name+".mid")
cont_str = input("try again? [y/n]: ")
if cont_str[0].upper() == "Y":

cont = True
else:

cont = False

As an example of valid input, the inputs shown in figure 4.8 generated the results
shown in figure 4.9. The audio rendition of the results can be heard here 1.

Figure 4.8: Example of valid user inputs in the main loop of the system.

Figure 4.9: Sheet music rendition of the generated result using inputs from 4.8.

1Audio of figure 4.9: https://soundcloud.com/johan-gangsas-hole/va
lid-main-result

https://soundcloud.com/johan-gangsas-hole/valid-main-result
https://soundcloud.com/johan-gangsas-hole/valid-main-result

120 Implementation

Chapter 5

Result

In this chapter some examples of generated results for each of the five different
species is given. In addition, an analysis is made by generating batches of 100
counterpoints for each species and inspecting the data. links to audio files of all
of the presented results in this chapter are also made available in footnotes1. The
reader is strongly encouraged to listen to the results, as this gives auditory refer-
ence while analyzing the sheet music of the different examples in this chapter.

5.1 Generative Analysis
A generator analysis was made to achieve an evaluation paradigm applicable for
all of the different species. This analysis consisted of, for each species, generating
100 randomly instantiated counterpoints. The parameters that are set randomly are
as follows:

Key - what key the counterpoint is in. All of the different 12 keys are possible.

Scale - which scale that should be used. The scale can either be major or harmonic
minor.

Counterpoint position - if the counterpoint should be above or below the cantus
firmus.

1Fifth Species example: https://soundcloud.com/johan-gangsas-hole/
fifth-species

121

https://soundcloud.com/johan-gangsas-hole/fifth-species
https://soundcloud.com/johan-gangsas-hole/fifth-species

122 Result

Vocal range - which of the four main vocal ranges the cantus firmus should be in.
The different vocal ranges are bass, tenor, alto and soprano.

Some meta-information is extracted for each batch of 100 counterpoints. The in-
formation are as follows:

Error - the accumulated error of the generated counterpoint.

List of errors - a list of the different constraints that is not satisfied for the gener-
ated counterpoint.

Time - how long, in seconds, it took to generate said counterpoint.

Penalties - the accumulated error for each step in the search algorithm.

5.1.1 First Species Generation

First Species Metric Score
% of generated counterpoint below penalty threshold: 96 %
Average penalty: 30.65
Worst case penalty: 205
Average runtime of search algorithm: 0.27 sec

Table 5.1: Extracted evaluation metrics from the batch of 100 generated first species coun-
terpoint.

Table 5.1 shows the extracted metrics for the 100 counterpoints generated in first
species. The error threshold for first species was set to 50. This means that a minor
penalty in addition to possible preference penalties regarding contrary motion is
allowed. As can be seen in the table, the results for first species generation are
satisfactory. Of the 100 counterpoints in the batch, there are only four which are
over the error threshold. The worst case penalty is 205, and a sheet music repres-
entation of said counterpoint is shown in 5.1. In this example, there are in all three
constraints that are broken. The first one is a melodic constraint, and is violated in
measures 4-6. Two voice-independence rules are broken in measures 12-13. The
corresponding audio representation is made using a church organ as instrument to
emphasize the effect of the broken rules2. After an initial pleasing harmony in
the first three measures, a clear clash is heard during the similar motion between
the cantus firmus and counterpoint in measures 4-6. This is further highlighted

2Worst case first species:https://soundcloud.com/johan-gangsas-hole/
first-species-worst-case

https://soundcloud.com/johan-gangsas-hole/first-species-worst-case
https://soundcloud.com/johan-gangsas-hole/first-species-worst-case

5.1. Generative Analysis 123

Figure 5.1: Worst case first species. There are in all three constraints that are not satis-
fied. Two large successive leaps in measure 4-6, and voice overlap and voice crossing in
measure 12-13.

Figure 5.2: First species with zero penalty. Notice how the melodic flow of the cantus
firmus helps in guiding the counterpoint in the right direction.

by the two successive large leaps in the counterpoint which is not allowed. The
voice overlap and voice crossing in the penultimate measures creates quite a aud-
ible dissonance, leading to the resolution in the last measure feeling unsatisfactory.

To give a counter example, figure 5.2 shows a first species example with zero
accumulated penalty. The associated audio file is again rendered using church or-
gan as instrument 3. At first glance it is very similar to 5.1. The difference is the
avoidance of excessive leaps and emphasis on similar motion. In this way, the two
melodic lines are perceived as being both independent but when combined creating
a pleasant sounding harmony.

5.1.2 Second Species Generation

A similar analysis to that of first species is now made for second species. Table 5.2
show the metrics for the batch of second species counterpoint. The error threshold
is now increased to 100 to reflect the added complexity and as a factor to lower

3Zero penalty first species: https://soundcloud.com/johan-gangsas-hol
e/first-species-zero-penalty

https://soundcloud.com/johan-gangsas-hole/first-species-zero-penalty
https://soundcloud.com/johan-gangsas-hole/first-species-zero-penalty

124 Result

Second Species Metric Score
% of generated counterpoint below penalty threshold: 84 %
Average penalty: 31.5
Worst case penalty: 300
Average runtime of search algorithm: 1.37 sec

Table 5.2: Extracted evaluation metrics from the batch of 100 generated second species
counterpoint.

the run-time. As illustrated in table 5.2, the percentage of generated counterpoints
below the threshold of 100 is lower than for first species. The reason is mostly
due to the stricter constraints. The dissonance handling introduced in second spe-
cies adds a entirely new class of constraints and as a effect a new dimension to
the constraint formalism. As illustrated in the worst case example shown in figure
5.3, the stricter penalty for repeating pitches (increased from bad in first species to
severe in second species) has a profound effect on the accumulated penalty, since
note repetitions rarely come alone. The corresponding audio clip is, as for first
species, a church organ 4. Notice how the repeated pitches makes the counterpoint
more "muddy", while still keeping the harmonization going. This illustrates how
a broken rule can have more effect on one musical dimension over another. The
melodic fluency of the counterpoint is halted, while the harmonic fluency is barely
affected.

The counterexample is a generation with zero penalty, and is shown in figure 5.4.
The cantus firmus mostly move step-wise, with the counterpoint mimicking its
contour in the first four measures, after which the counterpoint becomes more
prone to leaps. As can be heard in the audio 5, the contour imitation by the coun-
terpoint makes it predictable. Luckily, this is compensated by the leap in measure
8.

5.1.3 Third Species Generation

Third species has a much faster rhythm, with four notes in the counterpoint melody
for each note in the cantus firmus. This in turn means on average twice the num-
ber of notes as in the preceding second species. As can be seen in table 5.3, the
algorithm struggles more with finding local optimum. The average run-time is
higher than first- and second-species, and the average penalty is above 50. This

4Worst case second species: https://soundcloud.com/johan-gangsas-hol
e/worst-case-second-species

5Zero penalty second species: https://soundcloud.com/johan-gangsas-h
ole/second-species-zero-penalty

https://soundcloud.com/johan-gangsas-hole/worst-case-second-species
https://soundcloud.com/johan-gangsas-hole/worst-case-second-species
https://soundcloud.com/johan-gangsas-hole/second-species-zero-penalty
https://soundcloud.com/johan-gangsas-hole/second-species-zero-penalty

5.1. Generative Analysis 125

Figure 5.3: Worst case second species. Notice how the harmony keeps on going in
oblique motion during note repetitions. In this way, note repetitions are more noticeable
melodically than harmonically.

Figure 5.4: Second species with zero penalty This generated second species example has
zero accumulated penalty, which results in an interesting counterpoint. Notice especially
the dissonance in measure 4 which is properly approached and left by step.

means that on average, the generated results fail to satisfy some of the constraints.
The batch of 100 generated third species counterpoint give an indication of what
errors that seem to be most common. The most common is exceeding the range of
a tenth which totals 26 % of all the penalties in the batch. While being classified as
a bad penalty, exceeding the range of a tenth is subjectively better than excessive
note repetitions and wrong dissonance handling.

As for the preceding species, two examples are given. One with zero accumulated
penalty, the other the worst of the batch. Given the faster rhythm, the examples are
now rendered using piano as instruments 6 7. As can be seen and heard in the worst
case example in figure 5.5, the counterpoint is prone to excessive note repetitions.
In addition, there is both a large leap and unresolved dissonance in measure 1.
Despite this, the errors are audibly more difficult to detect given the faster rhythm.
The error that is most noticeable is therefore the note repetition in the penultimate

6Third species zero penalty: https://soundcloud.com/johan-gangsas-hol
e/third-species-zero-penalty

7Third species worst case: https://soundcloud.com/johan-gangsas-hol
e/worst-case-third-species

https://soundcloud.com/johan-gangsas-hole/third-species-zero-penalty
https://soundcloud.com/johan-gangsas-hole/third-species-zero-penalty
https://soundcloud.com/johan-gangsas-hole/worst-case-third-species
https://soundcloud.com/johan-gangsas-hole/worst-case-third-species

126 Result

measure.

As seen in figure 5.6, the cantus firmus for the zero penalty example is now in
the upper voice. The counterpoint is characterized by bar-wise motivic repetitions
as can be seen in measures 5, 6 and 8. While not being an intended feature, it helps
at making the melody feel less random.

Third Species Metric Score
% of generated counterpoint below penalty threshold: 74%
Average penalty: 88.5
Worst case penalty: 550
Average runtime of search algorithm: 1.91 sec

Table 5.3: Extracted evaluation metrics from the batch of 100 generated third species
counterpoint.

Figure 5.5: Worst case third species. There is a high error rate in the first two measures.
This is however masked by the rapid movement in the counterpoint. The most noticeable
error is therefore the note repetitions in bar 6, 8 and 10.

5.1.4 Fourth Species Generation

Given the slower rhythm and therefore fewer notes compared to third species, the
guided search strategy has a better time finding solutions below the threshold. The
threshold is, as in second and third species, set to 100. As seen in table 5.4, the
percentage of generated counterpoint below the threshold is at 90%. The average

5.1. Generative Analysis 127

Figure 5.6: Third species with zero penalty. Notice the resolved dissonance in measure
2 and the motifs appearing in measures 5, 6 and 8.

penalty is also quite low, averaging on a score of 25 which corresponds to a minor
penalty. The average run-time is comparable to that of second species, which is
expected since the rhythm is similar.

The instrumentation is again church organs, as this better fit with the slower rhythm
8 9. The worst case example shown in figure 5.7 has a accumulated penalty of 300.
This is due to the successive note repetitions on measures 8 and 9, which together
total a penalty of 200. In addition, there is a harsh voice crossing in measure 6,
which is quite noticeable in the audio rendering. Despite this, the worst case still
has some interesting harmonizations, especially before the voice crossing in meas-
ure 6.

The zero penalty example shown in figure 5.8 can be viewed as a shifted second
species counterpoint with tied notes. The melody is quite uneventful, but the step-
wise resolution from measure 11 to the last measure is quite nice and pleasing.

8Fourth species zero penalty: https://soundcloud.com/johan-gangsas-h
ole/fourth-species-zero-penalty

9Fourth species worst case: https://soundcloud.com/johan-gangsas-hol
e/worst-case-fourth-species

https://soundcloud.com/johan-gangsas-hole/fourth-species-zero-penalty
https://soundcloud.com/johan-gangsas-hole/fourth-species-zero-penalty
https://soundcloud.com/johan-gangsas-hole/worst-case-fourth-species
https://soundcloud.com/johan-gangsas-hole/worst-case-fourth-species

128 Result

Figure 5.7: Worst case fourth species. The voice crossing in measure 6 is quite notice-
able.

Figure 5.8: Fourth species with zero penalty.

5.1. Generative Analysis 129

Fourth Species Metric Score
% of generated counterpoint below penalty threshold: 90%
Average penalty: 24.25
Worst case penalty: 300
Average runtime of search algorithm: 1.41 sec

Table 5.4: Extracted evaluation metrics from the batch of 100 generated fourth species
counterpoint.

5.1.5 Fifth Species Generation

Fifth species is the highest level of counterpoint and is therefore, together with
third species, the species with the highest number of notes. In contrast with the
other types of species, fifth species introduces the possibility of having eight notes.
This rapid movement can create some florid melodies, as showcased in the worst
case example shown in figure 5.9. The search algorithm does however have some
problems in finding correct configurations when using eight notes, and since the
rhythm of the fifth species is fixed in the counterpoint object initialization and is
immutable, the average error score is quite high. This is shown in table 5.5, to-
gether with the highest average run-time so far with close to three seconds for
each counterpoint. The worst case penalty is still reasonably low and in the same
range as in the other species. The percentage of generated counterpoint below the
penalty threshold which is 100 inclusive is also within a reasonable range with its
79 %.

Given the faster rhythm, the counterpoints are again rendered as piano 10 11. While
listening to the generated results, the auditory differences between the best-case
and worst-case is now less noticeable than in the preceding species. This reflects
how the faster rhythm helps in masking the errors. In fact, having some disson-
ances and minor contrapuntal errors can make the melodies more interesting and
less predictable. Figure 5.9 shows the worst case example of fifth species. There
are in all three eight-notes that fail to be resolved or approached by step. While
sounding dissonant, the quick rhythm and subsequent resolution to consonant in-
tervals makes it less noticeable. In addition to the three eight-notes, there is also
a unison between the start and end measures, located in measure 7. The counter-
point also exceeds the range of a tenth, which when rendered as piano is not as
noticeable as if it were to be rendered as vocals.

10Fifth species zero penalty: https://soundcloud.com/johan-gangsas-hol
e/fifth-species-zero-penalty

11Fifth species worse case: https://soundcloud.com/johan-gangsas-hol
e/worst-case-fifth-species

https://soundcloud.com/johan-gangsas-hole/fifth-species-zero-penalty
https://soundcloud.com/johan-gangsas-hole/fifth-species-zero-penalty
https://soundcloud.com/johan-gangsas-hole/worst-case-fifth-species
https://soundcloud.com/johan-gangsas-hole/worst-case-fifth-species

130 Result

Fifth Species Metric Score
% of generated counterpoint below penalty threshold: 79%
Average penalty: 85
Worst case penalty: 400
Average runtime of search algorithm: 2.93 sec

Table 5.5: Extracted evaluation metrics from the batch of 100 generated fifth species
counterpoint.

Figure 5.9: Worst case fifth species. The dissonant eight notes creates tension in the
melody, but due to the fast rhythm this is quickly resolved to consonances.

The zero penalty example in 5.10 has no eight-notes, but the melody is still florid.
The tied half-notes into quarter-notes in measures 5 and 6 especially have a pleas-
ant effect on the melodic flow, making it feel like the counterpoint waits for the
cantus firmus to catch up. The steady increasing contour of the cantus firmus also
have a nice effect on the overall perceived "goodness" of the counterpoint. It helps
in keeping the counterpoint more goal oriented, resulting in the climax in measure
in 9.

Additional examples for all of the five different species can be found in appendix
A.1. All of the generated counterpoints have links to an audio rendering, using a
choir for the slower rhythms in species 1, 2 and 4. Species 3 and 5 are rendered
using piano. Each species have a total of five examples generated randomly.

5.1. Generative Analysis 131

Figure 5.10: Fifth species with zero penalty. The counterpoint is characterized by a
quick and syncopated rhythm. This creates tension and interplay between the counterpoint
and cantus firmus which leads to a rich contrapuntal texture.

132 Result

Chapter 6

Discussion

6.1 Constraint Optimization as System Structure
The iterative process of finding a good structure in the early development phase
was characterized by much trial and error. During this phase, tests were made to
generate the counterpoint by building the melodies iteratively note by note. In this
stage, the cantus firmus was predefined as the start of "twinkle twinkle little star"
in C-major. The results were promising for first species counterpoint, with an ad-
equate melodic flow and movement. An example of such an early generation is
shown in figure 6.1. However, when we tried to extend the system to include the
generation of second species counterpoint, building the counterpoint note for note
became increasingly difficult. Instead of supplementing the already implemented
rules, the rules for second species had to be restated to fit with the changed rhythm
(2:1 instead of 1:1). The rules also started to deviate from the fixed rules of Fux,
and the system became more and more prone to ad-hoc solutions and "rules with
exceptions" to be able to generate results. Some satisfactory results were even-
tually generated, but it was apparent that this methodology would not lead to a
scalable system with a clearly defined rule-set. This also clarified that separating
the rhythm and melodic pitches would lead to a more modular and structurally ex-
pandable system, with no need to restate rules for each species rhythm.

The design was therefore taken in a different direction. After restating some of the
rules as boolean expressions enforced upon a randomized counterpoint, the gener-
ator managed to generate first species counterpoint after randomly trying different
note combination until one satisfying all of the constraints were found. This brute
force approach of the second system iteration was neither optimal nor elegant, but
it paved the way for a different and more scalable system structure. While the more

133

134 Discussion

Figure 6.1: Example of first species generation using the procedural approach.

procedural first approach told the program how to generate the results, the latter
approach told the program how not to generate the results. A more constraint-
based system, where the constraints were issued on a given randomized draft of a
counterpoint, led to a more formalized rule structure. Rules could now easily be
appended to the program without restructuring the system, which was the case for
the first procedural approach. Adopting the constraint optimization paradigm gave
quick progress in implementing the different modules necessary and proved to be
a valid structural design to realize a system for automatic generation for all of the
five species.

By choosing to adopt the constraint optimization paradigm, many of the compon-
ents needed could be outlined. This modular design also gave a natural flow to both
the design and implementation. The different modules were tasked with handling
different music dimensions. The counterpoint module was assigned to rhythm and
ties generation, and defined the melodic search space. The cantus firmus mod-
ule was an independent component for cf generation. The search strategy was
tasked with finding an appropriate melody, expressed as a pitch sequence with its
search domain pre-constrained by the counterpoint module. The music represent-
ation contained the musical objects necessary to give the other modules a common
data structure. The constraints module quantified the "goodness" of melodies, and
lastly, the midi-generator generated the complete result given parameters by the
user. Having these modules outlined in the design before the second, constraint
optimization based, system iteration begun meant a lot to the progress. Knowing
at a high level what the module should do was crucial for upgrading and testing the
various components quickly without having to restructure and change features in
other modules. This became especially true in the search algorithm module, where
different search strategies were tried out.

6.2. The Effect of the Abstract Design of the Music Representation 135

6.2 The Effect of the Abstract Design of the Music Represent-
ation

The choice of developing the music representation as the first module was done as
to define the data structures necessary for the other modules. Now in retrospect,
this approach could probably have benefited from being done differently. While it
gave a quick initial progression to the system implementation, the granularity of
the musical objects was hard to specify. Both the search strategy and the different
classes related to the different species had yet to be determined. Therefore, identi-
fying the musical information necessary to express the wanted search domain ad-
equately was a non-trivial task. As a result, some of the functionality in the music
representation proved to be redundant. This was especially the case with the inter-
val class. While providing useful analytical functionality, it was easier to analyze
intervals by computing the different pitch values between notes directly instead
of instantiating interval classes. In the melody class, it also proved satisfactory to
express the pitch sequence as a list of integer values instead of note objects, which
simplified the data used in the search strategy. The rest of the music representation
did however prove to be satisfactory and usable by the other modules.

Given the importance of a well-structured music representation, the initial design
using the more procedural approach consisted of using a preexisting library. Tests
were made using the library music21, a Python toolkit for computer-aided musi-
cology. While it provided functionality for both sheet music and midi exportation,
the higher-order musical objects for melody construction proved to be too complex
to be used as a data structure to be constrained. While being very expressive and
user-friendly, music21 made it hard to formalize the search space in a format that
made it feasible for a search strategy to find reasonable solutions. Therefore, the
use of preexisting libraries in the music representation was abandoned, except for
the utility functions provided by the pretty_midi library for easy midi-conversion.

As the melody class represents the highest abstraction in the music module, it
defines the format of the music representation to be passed to the search strategy.
After testing various representations, including a sequence of note objects, a simple
list of respective MIDI-numbers for a given melody proved to be sufficient. It is
therefore just a sub-structure, although important, of the melody structure that is
actually used as the music representation in the search strategy. This was done for
several reasons. By abstracting away the list of corresponding note durations, fo-
cusing rather on the MIDI pitch representation, the search strategy could be more
generalized. Instead of having to handle both rhythmic and melodic dependencies,
the solver is only concerned with the sequence of MIDI pitches of the generated

136 Discussion

melody. The rhythmic difference between the different species is handled sep-
arately for each species in the counterpoint module. The main justification for
the removal of the rhythmic information in the search strategy was that the same
search algorithm could be used for all of the different species.

6.3 The Isolated Cantus Firmus Module
The cantus firmus module turned out to be the most isolated part of the system.
The original idea was to also include the cantus firmus in the search strategy, de-
fining it as a lightweight form of species counterpoint. However, while the rules
are similar to that of the melodic rules for first species, the cantus firmus must be
built note by note by continuously comparing the current pitch to the next pitch.
While requiring similar search strategies, this distinction meant that the system
structure would benefit from having the cantus firmus generated separately. In
this way, implementing functionality in the search algorithm not usable for the
remaining species was avoided. Another justification was the simplicity in gen-
erating cantus firmus compared to that of species counterpoint. While a CF can
be built successively pitch by pitch, species counterpoint is more comparable and
dependent on a cantus firmus. Therefore, the cantus firmus generator could have
a more lightweight search algorithm, with a fast convergence to a total penalty of 0.

The focus on species counterpoint over cantus firmus generation might have been
taken a bit lightly. The CF melodies could probably have benefited from being con-
strained by more preference-defined rules. Such rules might have included giving
the melody a more evident contour to make it easier to find feasible counterpoint
melodies to the cantus firmus. Nevertheless, the subtle randomness in some cantus
firmus melodies help to make the counterpoints more exciting and less predict-
able. So while it for some cases may give the counterpoint generator a hard time
converging to reasonable solutions, the end result is still musically interesting.

6.4 Constraint Formalism
after adopting the constraint optimization paradigm, the first sketch of the coun-
terpoint structure included classes for all the species similar to the one for cantus
firmus generation. This meant that all the necessary functionality for generat-
ing the given species was contained within its object. In this way, each spe-
cies included its own set of constraints and cost function. However, this rule-
categorization by species rather than by the commonality between them led to
more redefinition of rules than first expected. The assumed modular independence
between the species became more and more blurred as the rules became shared
between them. This, in effect, led to ill scaled program maintainability. There-

6.4. Constraint Formalism 137

fore, a choice was made to separate the constraints from their respective species
entirely, creating a constraint module of its own. After the initial modular testing
with species and their respective constraints contained within the same class, it
also became apparent that a further rule categorization was in place. Since the list
of constraints was quite extensive, it was expected that implementing each rule one
by one with no further segmentation would lead to maintainability issues. It was
during this time that the analysis of the Fux rules, as presented in section 3.6, was
made.

By identifying what rules were common across all the species and categorizing
them by what musical dimension they checked, the constraints’ structure became
clearer. The four proposed categories; melodic, voice-independence, harmonic
and dissonance-handling, proved to be a valid categorization for the Fuxian rules.
Spending time identifying what rules to include and what rules to omit during the
design phase also made the implementation easier. Having the constraints sep-
arated into different categories made the system more organized and made the
inclusion of remaining species simpler. A formalized plan led to quick progress
in outlining the different rules, resulting in quick testing of the constraint module.
Having each rule quantified as a weighted boolean expression came very natur-
ally, and the constraints provided by Fux proved to be a ready-made case for a
knowledge-based system. Each rule was implemented and tested using a counter-
point pitch sequence with known bugs. In this way, identifying and fixing errors
in the implementation was easy since the expected functionality was quickly de-
termined to be either satisfied or unsatisfied. Therefore, although there is a high
number of constraints, the implementation was mostly straightforward.

A feature that proved invaluable during testing was the list of errors in string
format. When testing the interface between the constraints module and search
module, knowing what rules reappeared for multiple counterpoints helped pin-
point possible weaknesses in the structure of the constraints. An example is il-
lustrated from the implementation of third species. The search strategy seemed
to return multiple counterpoints with the "motivic repetition" error broken suc-
cessively throughout the pitch sequence. While the initial idea was to check the
implementation of the boolean expression associated with the "motivic repetition"
rule, an observation was made when identifying how there seemed to be no rule
breakings regarding dissonance handling in none of the generated counterpoints.
Therefore, the bug was located in the dissonance handler rather than the imple-
mentation of the broken constraint. This also illustrates the profound effect that
one rule constraint can have over another. When the constraint module failed to
identify possible dissonances, it forced the counterpoint to repeat motives as the

138 Discussion

only way to avoid the more strict "repeat pitches" rule.

6.4.1 Cost Function

How one rule seem to affect another is also an effect of the penalty categoriza-
tion that was formalized in the system, consisting of preference, minor, bad and
severe. The granularity of the different penalties was sufficient, but now in ret-
rospect, some of the rules might have benefited from being less strict. As an ex-
ample, the counterpoint rules in Schottstaedt’s [32] system are penalized using a
wider range on the weights. For Schottstaedt, the rule regarding parallel motion
to octaves have a penalty of 200, while note repetitions only have a penalty of 4.
Therefore, adopting a penalty hierarchy more in line with "acceptable" and strictly
"not-acceptable" rules could have helped the search strategy to find valid solutions
faster. Nevertheless, the penalties in the implemented system reflect the severity as
defined by Fux, so changing the weights of the rules would lead the system away
from the Fuxian style and more towards tonal and more free counterpoint. A higher
run-time was therefore preferred over making the counterpoint less style-adherent.

6.5 The Structure of the Counterpoint Module
The first approach to the structure of the counterpoint module was approached
quite differently than the proposed design and implementation. Instead of limit-
ing the functionality to only pre-constraining the search space, the original design
for each species contained its own initialization, constraint formalism and search
strategy. The design was therefore quite similar to that of the cantus firmus. The
constraints were implemented for the species in which they belonged. This ap-
proach had certain advantages, with one being the clear partitioning of the differ-
ent species and associated functionality. One clear disadvantage, however, was
the need to restate and copy already implemented constraints into the new species.
These restatements with only minor alteration lead to an increasingly hard main-
tainability. This approach also meant that the search strategy had to be slightly
altered depending on what species of counterpoint it had to search for. As a
result, stress-testing and identifying bugs became harder as the modules became
more co-dependent. Constraints used in multiple species also led to some hard-to-
track inter-dependencies between the modules, making progress and adding new
functionality slow. A decision was therefore made after first- and second-species
testing to separate out the functionality common for all of the different species.
The segmentation also led to a more formalized and better structured search- and
constraint-module. The counterpoint module was therefore only left with creating
the list of possible notes to be passed to the search algorithm, which proved to
sufficient for the proposed system.

6.6. The Choice of Search Algorithm 139

Designing each species class to have the same set of methods also helped dur-
ing implementation and to keep the different species module-based. After defining
the methods necessary for first species, it was possible to adopt a similar structure
for the remaining species, generating the species rhythm, ties and list of possible
notes for each slot in the pitch sequence.

6.6 The Choice of Search Algorithm
The search strategy module was the system component that was subject to the
highest amount of iterations. A total of three search strategies were explored before
landing on the design presented in 3.7.

Brute Force

As was briefly mentioned in the design section, we first tried a novice brute force
approach for first species generation in the early stages of the second system it-
eration. The search strategy was tractable since the number of pitch sequences
to be explored by the search algorithm was limited. It was, however, known dur-
ing this time that this approach would not be suitable for the remaining species.
Still, the novice approach helped identify issues regarding the interface between
the cost function and search strategy. Therefore, the brute force approach was
used during testing of the constraint module to see if it was even possible to find
a pitch sequence with zero accumulated penalty. After all of the known bugs in
the constraint module were fixed, the brute force approach had served its pur-
pose. It was now possible to improve the search strategy knowing that possible
non-convergence to valid pitch sequence was the fault of the search module, and
not the constraint module. In this way, the search module could be implemented
separately, knowing that the other modules were implemented correctly.

Picking The best Local Option

One important observation was the exponential increase in possible paths when
handling more complex rhythms. Even a worst-case first species counterpoint of
length 14 can potentially have 6 ∗ 109 different pitch sequences. The number of
possible paths for the remaining species, therefore, becomes intractable.

It was therefore clear that the search algorithm would have to adopt a search
strategy that increased linearly and not exponentially by the number of states. By
observing that each note in the pitch sequence can be one of several possibilities, a
test was made to pick the best local option for the different pitch slots in the pitch
sequence. This prototype strategy continuously scanned the pitch sequence, start-
ing with the first note and ending on the last. In this way, the cost function quickly
converged to a local minimum. However, the local optimum was often above the

140 Discussion

minimum allowed threshold value. This led to the algorithm often reaching a dead
end, with no way to exit the sub-optimal local minimum. The local search had
to be improved somehow, making it possible to exit the dead ends and traverse
different paths. To achieve this, two approaches were tested.

Backtracking

The first algorithm was backtracking. After the local search had scanned the pitch
sequence until convergence to a local optimum, the algorithm traversed new paths
starting with changing the end note. If the total penalty was still over the allowed
threshold, the algorithm moved one step back, and explored new paths from that
position and picking the best path. While this approach converged to valid solu-
tions for both first- and second species, it was extremely slow due to the number
of paths it had to scan before breaking out of the sub-optimal local minimum. A
new approach was therefore explored to try to break out of the local minimum at a
faster rate.

Variable Window Search

The next approach was a variable window search, similar to the initial best local
option algorithm. The difference was the handling when the algorithm reached a
dead end. In the variable window search, the window of best-option-combinations
is increased. This means that while the best local option algorithm only picked the
best note in the given pitch layer, the variable window search increased the width
of the search to include additional layers. Instead of finding the best singular op-
tion, it found the best combination of two and two notes. If the solution still did
not converge to a valid minimum below the threshold, the search width was further
increased by one. This meant that three and three notes were searched and picked
by the lowest accumulated penalty.

This approach, compared to backtracking and best local search, did converge to
valid solutions for all of the five different species. But despite converging, it was
very slow, and it had a hard time to identify bad paths and / or bad combination
of notes. It also did not scale well with the increased note numbers for third and
fifth species, making the search slower and slower for each complexity level. This
approach made it clear that an extensive search approach was not the way to go.
While having moderate convergence rates for first, second and fourth species (be-
low 2 seconds), it often ground to a halt with the added complexity of the quicker
third and fifth species rhythms (15-30 seconds).

Based on the information obtained by exploring the different options, a choice
was made to further improve upon the first outlined algorithm, namely the best

6.7. Auditory Quality - Some Musical Remarks 141

local search. The improvement was done by guiding the local search out of sub-
optimal local minima by changing the notes which accumulated the most amount
of local penalty. This led to the outline of the algorithm presented in 3.7 and 4.5.

6.7 Auditory Quality - Some Musical Remarks
Since the generated results from the implemented system are purely symbolical,
represented as events in midi-format, all of the provided audio-renderings are done
using the external program musescore 3. This also emphasizes an interesting point
regarding the perceived "goodness" of a musical score as an effect of the sound
quality. If we instead were to use dated midi-programs such as vanBasco’s MIDI
Player from 2006, the generated results would have sounded more trivial. To illus-
trate, listen to the difference in musical quality of the two audio renderings of the
same fifth species counterpoint shown in figure A.22. The first one is generated
using VanBasco1, the second using musescore 32. Therefore, external musical
enhancements such as dynamic playing, reverb and more exclusive soundfonts
can breathe life into another vice bland musical score. This also underlines the
subjective nature of music generation evaluation, further justifying the choice of
expressing the generated results mainly as sheet music and using audio renderings
purely for musical reference and not an evaluation metric.

6.8 Future Work

6.8.1 Improving the System

In the proposed system, not all the rules of fifth species counterpoint has been
explicitly stated. A natural next step would therefore be to include these rules,
staying true to how Fux presented them. This would mean to formalize a way to
further quantify these rules, since they were subject to a lot of exceptions. An im-
provement of the rhythmic generator for fifth species would also be in place, as to
better reflect the rhythmic rules such as that higher notes should have longer note
durations and slower rhythms should be followed by faster rhythms and vice versa.
This would also mean a restructuring of the search strategy, as to guarantee con-
vergence to feasible solutions with the added complexity of expanding the rule-set.

It would also be interesting to compare how well the developed search strategy
performs compared to other similar solutions. Schottstaedt [32] and Herremans
et al. [10, 11] both approach the problem in a similar manner, using a constraint

1Fifth Species C minor using VanBasco: https://soundcloud.com/johan-gan
gsas-hole/fifth-species-c-minor-vanbasco

2Fifth Species C minor using musescore 3: https://soundcloud.com/johan-g
angsas-hole/fifth-species-c-minor

https://soundcloud.com/johan-gangsas-hole/fifth-species-c-minor-vanbasco
https://soundcloud.com/johan-gangsas-hole/fifth-species-c-minor-vanbasco
https://soundcloud.com/johan-gangsas-hole/fifth-species-c-minor
https://soundcloud.com/johan-gangsas-hole/fifth-species-c-minor

142 Discussion

formalism, cost function and search strategy. Similar to all three solutions (includ-
ing the system presented in this thesis), is the use of a metaheuristic search strategy
to find the best possible solution within both rule-constraints and time-constraints.
Herremans et al. uses a variable neighborhood search, and Schottstaedt uses a re-
cursive best-first guess approach. Doing a more thorough analysis comparing the
proposed system with the structure of similar solutions could aid in identifying
possible strengths and weaknesses of the developed system in this thesis.

6.8.2 Expanding the System

Given the modularity of the designed system, several promising directions can be
explored as a natural next step. Fux and Jeppesen, as an example, present addi-
tional rules for adding up to four simultaneous sounding voices. The proposed
system in this thesis could, therefore, be expanded to include functionality to sup-
port this. This would result in richer harmonies, with the possibility of developing
a more optimized search strategy.

Given the structure of the proposed system, a minor test was made to explore
the possibility of adding a third voice. Note that this was done purely for per-
sonal curiosity, and was not intended as a feature in the final system. The test
generation is shown in figure 6.2, and consists of one cantus firmus and two coun-
terpoints in fifth species. The result sound surprisingly pleasing despite not having
included additional rules. These initial results further motivates the inclusion of
more voices.

Figure 6.2: Test with three voices in fifth species, audio rendering: https://soun
dcloud.com/johan-gangsas-hole/three-voices-test2

Another direction is to continue to develop the rules of counterpoint, taking the
generation to a step beyond fifth species. This would result in a more free coun-
terpoint, in style with the great composer like Bach during the baroque and early

https://soundcloud.com/johan-gangsas-hole/three-voices-test2
https://soundcloud.com/johan-gangsas-hole/three-voices-test2

6.8. Future Work 143

classical era in music. In free (or tonal) counterpoint, the strictness regarding mo-
tivic repetition is relaxed, and the rule regarding that the cantus firmus must be
in whole notes is disregarded. Free counterpoint, therefore, moves away from the
pedagogical style of species counterpoint, introducing compositional techniques
used by the great composers. Exploring this direction would consequently result
in a more style-imitative generation rather than the proposed auto generative nature
of this system.

Disregarding the cantus firmus would also result in a more florid rhythmic de-
velopment, opening up for the possibility of having both style-imitation and form-
imitation. With form we mean the higher-level structure of the composition. One
form often found in Bach music is the fugue. In this contrapuntal composition
technique, a musical idea expressed as a melodic phrase is developed and imitated
in other voices while maintaining melodic independence. In this way, a fugue can
be viewed as a series of counterpoints exploring and developing the same musical
idea. Given how modern algorithmic composition systems seem to be concerned
with trying to represent larger musical structures (as presented in 2.2.1), forming a
fugue generator would be a fruitful endeavor as it has relevance to state of the art
in procedural music generation.

144 Discussion

Chapter 7

Conclusion

In this thesis, a system capable of generating each of the five levels of species
counterpoint was developed. By representing the counterpoint melodies as a se-
quence of integer values, it was possible to formalize a general search strategy
and cost function usable for all of the different species of counterpoint. This was
achieved by abstracting away the other musical dimensions such as rhythm, in-
strumentation, and tempo from the search algorithm. Therefore, by having differ-
ent modules focus on different musical features, the complexity is evenly divided
across the system’s main components. For each of the five species, the local search
strategy finds satisfactory results that sound pleasing, with the accumulated pen-
alty averaging below a severe penalty.

Quantifying the Fuxian rules as weighted boolean expression proved to be a lo-
gical and maintainable constraint formalism. In this way, concurrent implement-
ation and testing was achieved, and the list of rules could be quantified in quick
succession. Having objects express different musical structures also proved to be
a valid music representation, as it gave the modules a common musical format.

An interesting continuation of the presented work would be to add more voices to
the contrapuntal structure, resulting in richer harmonies. Fux presents in his work
additional rules that support up to four voices, and the system can be extended to
include these constraints. Some results also border on baroque tonality, especially
the florid melodies in fifth species. An interesting next step would therefore be
to try to formalize a richer tonal counterpoint in Bach-style. An analysis of how
the developed local search strategy performs compared to other approaches would
also be an important topic for further research.

145

146 Conclusion

Appendix A

Generated Counterpoints

A.1 First Species

Figure A.1: First Species in C major audio: https://soundcloud.com/johan
-gangsas-hole/c-major-tenor-above

Figure A.2: First Species in Bb minor audio: https://soundcloud.com/johan
-gangsas-hole/bb-major-soprano-below

147

https://soundcloud.com/johan-gangsas-hole/c-major-tenor-above
https://soundcloud.com/johan-gangsas-hole/c-major-tenor-above
https://soundcloud.com/johan-gangsas-hole/bb-major-soprano-below
https://soundcloud.com/johan-gangsas-hole/bb-major-soprano-below

148 APPENDIX A

Figure A.3: First Species in A minor audio: https://soundcloud.com/johan
-gangsas-hole/a-minor-bass-above

Figure A.4: First Species in F# minor audio: https://soundcloud.com/johan
-gangsas-hole/f-minor-tenor-below

Figure A.5: First Species in G major audio: https://soundcloud.com/johan
-gangsas-hole/g-major-alto-above

https://soundcloud.com/johan-gangsas-hole/a-minor-bass-above
https://soundcloud.com/johan-gangsas-hole/a-minor-bass-above
https://soundcloud.com/johan-gangsas-hole/f-minor-tenor-below
https://soundcloud.com/johan-gangsas-hole/f-minor-tenor-below
https://soundcloud.com/johan-gangsas-hole/g-major-alto-above
https://soundcloud.com/johan-gangsas-hole/g-major-alto-above

A.2. Second Species 149

A.2 Second Species

Figure A.6: Second Species in A major audio: https://soundcloud.com/joh
an-gangsas-hole/second-species-a-major

Figure A.7: Second Species in Ab minor audio: https://soundcloud.com/joh
an-gangsas-hole/second-species-ab-minor

https://soundcloud.com/johan-gangsas-hole/second-species-a-major
https://soundcloud.com/johan-gangsas-hole/second-species-a-major
https://soundcloud.com/johan-gangsas-hole/second-species-ab-minor
https://soundcloud.com/johan-gangsas-hole/second-species-ab-minor

150 APPENDIX A

Figure A.8: Second Species in C# major audio: https://soundcloud.com/joh
an-gangsas-hole/second-species-c-major

Figure A.9: Second Species in D major audio: https://soundcloud.com/joh
an-gangsas-hole/second-species-d-major

Figure A.10: Second Species in E minor audio: https://soundcloud.com/joh
an-gangsas-hole/second-species-e-minor

https://soundcloud.com/johan-gangsas-hole/second-species-c-major
https://soundcloud.com/johan-gangsas-hole/second-species-c-major
https://soundcloud.com/johan-gangsas-hole/second-species-d-major
https://soundcloud.com/johan-gangsas-hole/second-species-d-major
https://soundcloud.com/johan-gangsas-hole/second-species-e-minor
https://soundcloud.com/johan-gangsas-hole/second-species-e-minor

A.3. Third Species 151

A.3 Third Species

Figure A.11: Third Species in A major audio: https://soundcloud.com/joh
an-gangsas-hole/third-species-a-major

Figure A.12: Third Species in B minor audio: https://soundcloud.com/joh
an-gangsas-hole/third-species-b-minor

https://soundcloud.com/johan-gangsas-hole/third-species-a-major
https://soundcloud.com/johan-gangsas-hole/third-species-a-major
https://soundcloud.com/johan-gangsas-hole/third-species-b-minor
https://soundcloud.com/johan-gangsas-hole/third-species-b-minor

152 APPENDIX A

Figure A.13: Third Species in C major audio: https://soundcloud.com/joh
an-gangsas-hole/third-species-c-major

Figure A.14: Third Species in D# major audio: https://soundcloud.com/joh
an-gangsas-hole/third-species-d-major

https://soundcloud.com/johan-gangsas-hole/third-species-c-major
https://soundcloud.com/johan-gangsas-hole/third-species-c-major
https://soundcloud.com/johan-gangsas-hole/third-species-d-major
https://soundcloud.com/johan-gangsas-hole/third-species-d-major

A.4. Fourth Species 153

Figure A.15: Third Species in F major audio: https://soundcloud.com/joh
an-gangsas-hole/third-species-f-major

A.4 Fourth Species

Figure A.16: Fourth Species in B minor audio: https://soundcloud.com/joh
an-gangsas-hole/fourth-species-b-minor

https://soundcloud.com/johan-gangsas-hole/third-species-f-major
https://soundcloud.com/johan-gangsas-hole/third-species-f-major
https://soundcloud.com/johan-gangsas-hole/fourth-species-b-minor
https://soundcloud.com/johan-gangsas-hole/fourth-species-b-minor

154 APPENDIX A

Figure A.17: Fourth Species in C minor audio: https://soundcloud.com/joh
an-gangsas-hole/fourth-species-c-minor

Figure A.18: Fourth Species in F# major audio: https://soundcloud.com/joh
an-gangsas-hole/fourth-species-f-major

https://soundcloud.com/johan-gangsas-hole/fourth-species-c-minor
https://soundcloud.com/johan-gangsas-hole/fourth-species-c-minor
https://soundcloud.com/johan-gangsas-hole/fourth-species-f-major
https://soundcloud.com/johan-gangsas-hole/fourth-species-f-major

A.4. Fourth Species 155

Figure A.19: Fourth Species in G minor audio: https://soundcloud.com/joh
an-gangsas-hole/fourth-species-g-minor

Figure A.20: Fourth Species in G# major audio: https://soundcloud.com/j
ohan-gangsas-hole/fourth-species-g-major

https://soundcloud.com/johan-gangsas-hole/fourth-species-g-minor
https://soundcloud.com/johan-gangsas-hole/fourth-species-g-minor
https://soundcloud.com/johan-gangsas-hole/fourth-species-g-major
https://soundcloud.com/johan-gangsas-hole/fourth-species-g-major

156 APPENDIX A

A.5 Fifth Species

Figure A.21: Fifth Species in A major audio: https://soundcloud.com/johan
-gangsas-hole/fifth-species-a-major

Figure A.22: Second Species in C minor audio: https://soundcloud.com/joh
an-gangsas-hole/fifth-species-c-minor

https://soundcloud.com/johan-gangsas-hole/fifth-species-a-major
https://soundcloud.com/johan-gangsas-hole/fifth-species-a-major
https://soundcloud.com/johan-gangsas-hole/fifth-species-c-minor
https://soundcloud.com/johan-gangsas-hole/fifth-species-c-minor

A.5. Fifth Species 157

Figure A.23: Fifth Species in D major audio: https://soundcloud.com/johan
-gangsas-hole/fifth-species-d-major

Figure A.24: Fifth Species in F major audio: https://soundcloud.com/johan
-gangsas-hole/fifth-species-f-major

https://soundcloud.com/johan-gangsas-hole/fifth-species-d-major
https://soundcloud.com/johan-gangsas-hole/fifth-species-d-major
https://soundcloud.com/johan-gangsas-hole/fifth-species-f-major
https://soundcloud.com/johan-gangsas-hole/fifth-species-f-major

158 APPENDIX A

Figure A.25: Fifth Species in G major audio: https://soundcloud.com/johan
-gangsas-hole/fifth-species-g-major

https://soundcloud.com/johan-gangsas-hole/fifth-species-g-major
https://soundcloud.com/johan-gangsas-hole/fifth-species-g-major

Bibliography

[1] Andres Acevedo. “Fugue Composition with Counterpoint Melody Genera-
tion Using Genetic Algorithms”. In: vol. 3310. Feb. 2005, pp. 96–106. DOI:
10.1007/978-3-540-31807-1_7.

[2] Adam Alpern. Techniques for algorithmic composition of music. Hampshire
College, 1995.

[3] Torsten Anders and Eduardo Miranda. “Constraint Programming Systems
for Modeling Music Theories and Composition”. In: ACM Computing Sur-
veys 43 (Oct. 2011), 30:1–30:38. DOI: 10.1145/1978802.1978809.

[4] Alan Belkin. Musical Composition. Yale University Press, 2018. DOI: doi:
10.12987/9780300235661. URL: https://doi.org/10.12987/
9780300235661.

[5] Prafulla Dhariwal et al. Jukebox: A Generative Model for Music. 2020.
arXiv: 2005.00341 [eess.AS].

[6] Morwaread Farbood and Bernd Schoner. “Analysis and Synthesis of Palestrina-
Style Counterpoint Using Markov Chains”. In: (Jan. 2001).

[7] J.J. Fux et al. The Study of Counterpoint from Johann Joseph Fux’s Gradus
Ad Parnassum. Norton library. W. W. Norton, 1965. ISBN: 9780393002775.
URL: https://books.google.no/books?id=qQOnQZNvVSAC.

[8] Curtis Hawthorne et al. “Enabling Factorized Piano Music Modeling and
Generation with the MAESTRO Dataset”. In: 2019. URL: https://arxiv.
org/pdf/1810.12247.

159

https://doi.org/10.1007/978-3-540-31807-1_7
https://doi.org/10.1145/1978802.1978809
https://doi.org/doi:10.12987/9780300235661
https://doi.org/doi:10.12987/9780300235661
https://doi.org/10.12987/9780300235661
https://doi.org/10.12987/9780300235661
https://arxiv.org/abs/2005.00341
https://books.google.no/books?id=qQOnQZNvVSAC
https://arxiv.org/pdf/1810.12247
https://arxiv.org/pdf/1810.12247

160 BIBLIOGRAPHY

[9] Curtis Hawthorne et al. “Onsets and Frames: Dual-Objective Piano Tran-
scription”. In: Proceedings of the 19th International Society for Music In-
formation Retrieval Conference, ISMIR 2018, Paris, France, 2018. 2018.
URL: https://arxiv.org/abs/1710.11153.

[10] D. Herremans and K. Sörensen. “Composing fifth species counterpoint mu-
sic with a variable neighborhood search algorithm”. In: Expert Systems with
Applications 40.16 (2013), pp. 6427–6437. ISSN: 0957-4174. DOI: https:
//doi.org/10.1016/j.eswa.2013.05.071. URL: https://www.
sciencedirect.com/science/article/pii/S0957417413003692.

[11] Dorien Herremans and Kenneth Sörensen. “FuX, an Android app that gen-
erates counterpoint”. In: Apr. 2013, pp. 48 –55. DOI: 10.1109/CICAC.
2013.6595220.

[12] Hermann Hild, Johannes Feulner and Wolfram Menzel. “HARMONET: A
Neural Net for Harmonizing Chorales in the Style of J.S.Bach”. In: Proceed-
ings of the 4th International Conference on Neural Information Processing
Systems. NIPS’91. Denver, Colorado: Morgan Kaufmann Publishers Inc.,
1991, 267–274. ISBN: 1558602224.

[13] Lejaren Arthur Hiller and Leonard M. Isaacson. Experimental Music; Com-
position with an Electronic Computer. USA: Greenwood Publishing Group
Inc., 1979. ISBN: 0313221588.

[14] Dominik Hörnel. “MELONET I: Neural Nets for Inventing Baroque-Style
Chorale Variations”. In: Proceedings of the 1997 Conference on Advances
in Neural Information Processing Systems 10. NIPS ’97. Denver, Colorado,
USA: MIT Press, 1998, 887–893. ISBN: 0262100762.

[15] Cheng-Zhi Anna Huang et al. “Music Transformer: Generating Music with
Long-Term Structure”. In: 2019. URL: https://arxiv.org/abs/1809.
04281.

[16] David Miles Huber and Craig Anderton. The MIDI Manual. 2nd. USA:
Butterworth-Heinemann, 1998. ISBN: 0240803302.

[17] Natasha Jaques et al. “Generating Music by Fine-Tuning Recurrent Neural
Networks with Reinforcement Learning”. In: Deep Reinforcement Learning
Workshop, NIPS. 2016.

[18] K. Jeppesen, G. Haydon and A. Mann. Counterpoint: The Polyphonic Vocal
Style of the Sixteenth Century. (The Prentice-Hall music series). Dover Pub-
lications, 1992. ISBN: 9780486270364. URL: https://books.google.
no/books?id=OcSVGkug58gC.

[19] Alan P. Kefauver. Fundamentals of Digital Audio. USA: A-R Editions, Inc.,
1998. ISBN: 0895794055.

https://arxiv.org/abs/1710.11153
https://doi.org/https://doi.org/10.1016/j.eswa.2013.05.071
https://doi.org/https://doi.org/10.1016/j.eswa.2013.05.071
https://www.sciencedirect.com/science/article/pii/S0957417413003692
https://www.sciencedirect.com/science/article/pii/S0957417413003692
https://doi.org/10.1109/CICAC.2013.6595220
https://doi.org/10.1109/CICAC.2013.6595220
https://arxiv.org/abs/1809.04281
https://arxiv.org/abs/1809.04281
https://books.google.no/books?id=OcSVGkug58gC
https://books.google.no/books?id=OcSVGkug58gC

BIBLIOGRAPHY 161

[20] Maciej Komosinski and Piotr Szachewicz. “Automatic species counterpoint
composition by means of the dominance relation”. In: Journal of Math-
ematics and Music 9.1 (2015), pp. 75–94. DOI: 10.1080/17459737.
2014.935816. eprint: https://doi.org/10.1080/17459737.
2014.935816. URL: https://doi.org/10.1080/17459737.2014.
935816.

[21] Steven G. (Steven Geoffrey) Laitz. The complete musician : an integrated
approach to tonal theory, analysis, and listening. eng. 3rd ed. New York:
Oxford University Press, 2012. ISBN: 9780199742783.

[22] M. Laurson. PATCHWORK: A Visual Programming Language and some
Musical Applications. Ph.D. thesis. Helsinki: Sibelius Academy, 1996.

[23] J. Lighthill. “Artificial Intelligence: A General Survey”. In: Artificial In-
telligence: a paper symposium (1972). URL: http://www.chilton-
computing.org.uk/inf/literature/reports/lighthill_report/

p001.htm.

[24] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of the Ideas
Immanent in Nervous Activity”. In: Neurocomputing: Foundations of Re-
search. Cambridge, MA, USA: MIT Press, 1988, 15–27. ISBN: 0262010976.

[25] Michael Mozer. “Neural Network Music Composition by Prediction: Ex-
ploring the Benefits of Psychoacoustic Constraints and Multi-scale Pro-
cessing”. In: Connection Science - CONNECTION 6 (Jan. 1994), pp. 247–
280. DOI: 10.1080/09540099408915726.

[26] Gerhard Nierhaus. Algorithmic Composition - Paradigms of Automated Mu-
sic Generation. Springer-Verlag Wien, 2009.

[27] Aaron van den Oord, Oriol Vinyals and koray kavukcuoglu. “Neural Dis-
crete Representation Learning”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.,
2017, pp. 6306–6315. URL: https://proceedings.neurips.cc/
paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.

pdf.

[28] S. Oore et al. “This time with feeling: learning expressive musical perform-
ance”. In: Neural Comput Applic 32 (2020). DOI: https://doi.org/
10.1007/s00521-018-3758-9.

[29] Colin Raffel and Daniel P.W. Ellis. “Intuitive Analysis, Creation and Ma-
nipulation of MIDI Data with pretty_midi”. In: 2014.

https://doi.org/10.1080/17459737.2014.935816
https://doi.org/10.1080/17459737.2014.935816
https://doi.org/10.1080/17459737.2014.935816
https://doi.org/10.1080/17459737.2014.935816
https://doi.org/10.1080/17459737.2014.935816
https://doi.org/10.1080/17459737.2014.935816
http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p001.htm
http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p001.htm
http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p001.htm
https://doi.org/10.1080/09540099408915726
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://doi.org/https://doi.org/10.1007/s00521-018-3758-9
https://doi.org/https://doi.org/10.1007/s00521-018-3758-9

162 BIBLIOGRAPHY

[30] F. Rosenblatt. “The perceptron: A probabilistic model for information stor-
age and organization in the brain.” In: Psychological Review 65.6 (1958),
pp. 386–408. ISSN: 0033-295X. DOI: 10.1037/h0042519. URL: http:
//dx.doi.org/10.1037/h0042519.

[31] Catherine Schmidt-Jones. Understanding Basic Music Theory. OpenStax
CNX, 2013.

[32] B. Schottstaedt. Automatic Species Counterpoint. Automatic Species Coun-
terpoint nr. 19. CCRMA, Department of Music, Stanford University, 1984.
URL: https://books.google.no/books?id=TJEXAQAAIAAJ.

[33] P. Todd and G. Loy. “A Connectionist Approach To Algorithmic Composi-
tion”. In: Computer Music Journal 13 (1989), pp. 173–194.

[34] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017, pp. 5998–6008. URL: https://proceedings.
neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf.

https://doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
https://books.google.no/books?id=TJEXAQAAIAAJ
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

	Introduction
	Background
	Counterpoint
	Intervals
	Contrapuntal Motion
	Cantus Firmus
	First Species
	Second Species
	Third Species
	Fourth Species
	Fifth Species

	Review of Existing Methods and Software
	Neural Networks and Artificial Intelligence
	Knowledge-based Methods

	Species Counterpoint Used In Automatic Harmonization
	Constraint Satisfaction Program
	Software Development Tools
	MIDI
	MuseScore 3
	Python

	Software Design
	Early Phase - Formalizing the System Structure
	Choosing the Granularity of the Music Representation
	Music Module
	Cantus Firmus
	Counterpoint
	Constraint Formalism and Cost Function
	Search Algorithm
	MIDI Generator

	Implementation
	Assumptions
	Musical Representation
	Cantus Firmus
	Counterpoint
	The Counterpoint Super Class
	The General Structure of the Species Class
	FirstSpecies Class
	SecondSpecies Class
	ThirdSpecies Class
	FourthSpecies Class
	FifthSpecies Class
	generate_ctp

	The Guided Local Search Strategy
	Constraints
	Melodic Rules
	Voice-Independence Rules
	Harmonic Rules
	Dissonance Handling

	MIDI-Generator

	Result
	Generative Analysis
	First Species Generation
	Second Species Generation
	Third Species Generation
	Fourth Species Generation
	Fifth Species Generation

	Discussion
	Constraint Optimization as System Structure
	The Effect of the Abstract Design of the Music Representation
	The Isolated Cantus Firmus Module
	Constraint Formalism
	Cost Function

	The Structure of the Counterpoint Module
	The Choice of Search Algorithm
	Auditory Quality - Some Musical Remarks
	Future Work
	Improving the System
	Expanding the System

	Conclusion
	Generated Counterpoints
	First Species
	Second Species
	Third Species
	Fourth Species
	Fifth Species

