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Abstract

Exponential growth in computing power and availability of large datasets has
popularized and progressed machine learning substantially in recent years.
Neural networks are potent approximators capable of discovering patterns in
complex datasets and possibly model realistic dynamical systems. This thesis
investigates a physics-guided machine learning framework of neural networks
that combines traditional mathematical modeling with machine learning meth-
ods. Here, neural networks are injected with simplified theories of dynamical
systems at intermediate layers to improve their accuracy and interpretability. To
validate the framework, it undergoes several experiments on various systems
such as the Lotka-Volterra equations, Duffin oscillator, Lorenz system, Hind-
marsh–Rose model, and Willamowski-Rössler model. The results indicate that
the proposed framework can enhance the neural networks and be used in vari-
ous scientific machine learning applications, particularly in systems where sim-
plified theories can guide the learning process.
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Sammendrag

Eksponentiell vekst i datakraft og tilgjengelighet av store datasett har popu-
larisert og forbedret maskinlæring betydelig de siste årene. Nevrale nettverk
er sterke verktøy som kan oppdage mønstre i komplekse datasett og muli-
gens modellere realistiske dynamiske systemer. Denne oppgaven undersøker et
"physics-guided machine learning" rammeverk for nevrale nettverk ved å kom-
binere tradisjonell matematisk modellering med maskinlæringsmetoder. Her in-
jiseres nevrale nettverk med forenklede teorier om dynamiske systemer for å
forbedre nøyaktigheten og tolkningen. For å validere rammeverket gjennomgår
det flere eksperimenter på forskjellige systemer som Lotka-Volterra-ligningene,
Duffing-oscillatoren, Lorenz-systemet, Hindmarsh-Rose modellen og Willamowski-
Rössler modellen. Resultatene indikerer at det foreslåtte rammeverket kan forbedre
nevrale nettverk og brukes i forskjellige vitenskapelige maskinlæringsapplikasjoner,
spesielt i systemer der en forenklet modell kan hjelpe læringsprosessen.
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1 | Introduction

With the availability of large datasets, coupled with exponential growth in com-
puting power and improvements in algorithms, the interest in machine learning
has had unprecedented growth in recent years. Powerful tools such as artifi-
cial neural networks (ANN) can approximate complex functions and systems,
possibly replacing traditional methods in the future. However, interpreting the
black-box structure of ANNs is non-trivial, restricting its use for critical real-
world applications.

1.1 Motivation and Background

Up until recent years, modeling dynamical systems with mathematical func-
tions has been the norm. To some extent, mathematical functions can represent
everything from chemistry to electrical engineering to economics. However,
it requires a trade-off between the model’s accuracy and simplicity. Realistic
models are complex and demanding to analyze and comprehend, and can also
pose computational issues like long run time and numerical instability. Machine
learning (ML) has proven to be a handy tool in many engineering fields in re-
cent years. With the current rate of progress in ML, ML-based modeling might
replace the traditional methods.

ANNs are a subset of ML that has made tremendous progress lately. They are
a class of universal approximators [1] capable of approximating any function
and dynamical system. However, as the ANNs increase complexity, the amount
of parameters rapidly grows, compromising their interpretability and reliabil-
ity. While they allow for robust predictions, their black-box nature lack trans-
parency and cannot be fully explained [2].

1



Chapter 1. Introduction

In this thesis, we investigate a physics-guided machine learning (PGML) frame-
work where ANNs are injected with simplified theories of a system at intermedi-
ate layers. Injecting the simplified theories would allow the network to relate to
or bridge the gap between the simplified theories and the complete systems. It
will also help gain insight into how the network trains and its structure, increas-
ing their interpretability. Unlike some other methods that only aid the training
phase, this framework will also support the network during prediction.

1.1.1 State of the art

Modeling dynamical systems with ANNs has had solid results for many dif-
ferent tasks, and various techniques incorporating prior scientific knowledge
about the system into the networks have also succeeded. In [3], the physical
relationships between the temperature, density, and depth of water are used to
design a custom loss function for the network to minimize when training. Al-
though the technique improves models in many cases [4, 5], designing custom
loss functions can be demanding, and it only assists the network during the
training phase.

Another technique is reduced-order models (ROM). These models project a
complete system to a system of fewer degrees of freedom (DOF) that encapsu-
lates most, if not all, of the system’s fundamental dynamics [6]. ROMs achieve
significant improvements in computational efficiency. However, it requires a
complete description of the system’s dynamics, which is frequently unknown
or insufficient for the desired purpose. Furthermore, they often lack robust-
ness regarding parameter changes and must usually be rebuilt for each param-
eter variation [7]. Nevertheless, ROMs have proved successful in many cases
[8, 9, 10, 11].

While there are others methods [12, 13, 14] than those mentioned, this thesis
builds upon the framework introduced in [15], tested on a canonical airfoil
aerodynamic problem. Typically, the flow around an airfoil can be predicted
using computational fluid dynamics (CFD). This problem is a nonlinear, high-
dimensional, and multiscale problem that becomes computationally intractable
when the design space increases. To solve this, they combined CFD and ML

2



Chapter 1. Introduction

by injecting parameters from simplified CFD theories at intermediate layers in
a NN. The method significantly reduced uncertainty in performance, showing
great potential for scientific machine learning.

1.2 Objectives

Primary Objective: Investigate the PGML framework and evaluate its perfor-
mance metrics on parts such as training, prediction, and generalization.

Doing so, the project aims to answer the following research questions:

• Does the proposed framework improve performance, in both accuracy and
interpretability?

• What types of prior knowledge must be injected before improvements
occur? Are there specific types of functions, and how much information is
needed?

1.3 Outline of Report

The report starts with the motivation to take on this thesis and introduces some
of the technology used. Chapter 2 addresses the background theory on ma-
chine learning, emphasizing neural networks. In Chapter 3, an overview of the
various experiments, including how the hyperparameters were chosen, specifi-
cations, and other options will be presented. Chapter 4 contains the results and
discussion from the experiments. Finally, Chapter 5 wraps up the thesis and
offers some suggestions for future research.

3



2 | Theory

This chapter focuses on the background theory required for this project and
justifies the methods used in Chapter 3. Machine learning is the first topic dis-
cussed, and because it is such a broad topic, only the most critical aspects are
introduced. After, the structure of artificial neural networks and their parame-
ters are discussed, validating some of the later choices.

2.1 Machine Learning

Machine learning is a subset of Artificial Intelligence where computers auto-
matically learn and improve through experience and can make decisions and
predictions without being explicitly programmed. While it has existed since the
1940s, it only gained popularity in recent years when computers’ speed and
computational power improved and larger datasets were made available.

ML algorithms can be broadly categorized as supervised and unsupervised learn-
ing, by what kind of experience they are allowed to have during the learn-
ing process [16]. In supervised learning, algorithms attempt to learn a func-
tion that maps features x to target y based on example input-output pairs
{(x1, y1), ..., (xn, yn)}. In contrast, unsupervised learning algorithms attempt to
draw inferences with unknown targets, making them less intuitive. This cate-
gorization is not decisive, as there are other categories such as semi-supervised
learning and reinforcement learning. However, supervised methods are the
most widely used [17] and the one used in this thesis.

Given the example input-output pairs (xi, yi), supervised learning attempts to
approximate the function f(xi) that can map inputs xi to outputs yi. Further-
more, the function should generalize to unseen data. So one often withholds

4



Chapter 2. Theory

a test set during the training phase to evaluate the algorithm’s ability to gener-
alize. If not, problems like overfitting occur whenever the algorithm performs
notably worse on the test set compared to the training set, simply remembering
examples instead of noticing patterns. Numerous techniques exist to avoid over-
fitting, such as early stopping or dropouts for neural networks[18, 19], which
should be chosen depending on the task.

Most machine learning algorithms are parameterized by a set of hyperparame-
ters, allowing tuning of the algorithm based on prior knowledge. Hyperparam-
eter tuning is a challenging task, often performed manually by trial and error,
testing different sets of hyperparameters on a predefined grid [20], or via rules
of thumb [21]. An algorithm’s success largely depends on the hyperparame-
ters, where small changes can lead to significant variance. Ideally, one should
minimize the number of tunable hyperparameters to avoid poor reproducibility
[22] or suffer from the curse of dimensionality [23]. It is crucial to avoid peek-
ing at the test set during the tuning process, as it would invalidate the results.
Improving the algorithm’s performance on the test set would leak information
into the algorithm, corrupting the experiment. Therefore, one often withholds
an additional part of the training set for validation, often called a validation set.

Supervised learning tasks are separated into two types, classification and re-
gression tasks. In classification tasks, the algorithm maps the input data to a
set of discrete values (e.g., “True” or “False”), labeling the data based on rec-
ognized patterns. Regression tasks involve approximating a continuous output
value (e.g., weight 0-100g), typically used in forecasting, predicting, and find-
ing a relationship between data. For both tasks, the algorithm predicts an out-
put yi = f(xi) and updates its parameters based on feedback through a loss
function L(yi, yi).

2.2 Artificial neural network

With their proofs of convergence and relatively simple designs, traditional ML
methods have many applications. However, when either the dimensionality or
complexity of the data becomes too large, their utility is limited. ANNs are mod-
eled to approximate any function to improve upon these methods, overlooking
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Chapter 2. Theory

the dimensionality and data complexity. Compared to the traditional methods,
ANNs perform better at forecasting due to their ability to capture hidden, non-
linear trends the traditional methods can not [24, 25]. As approximating com-
plex functions need large quantities of data and computational power, ANNs
were only favored in recent years when such resources were made more avail-
able.

2.2.1 Artificial neurons

An ANN can be considered a computing system vaguely inspired by the struc-
ture of biological neural networks, such as the human brain. The system com-
prises interconnected processing units called artificial neurons (AN), whose
general model consists of a summing part and an output part [26]. An arti-
ficial neuron has one or more inputs (x1, x2, ..., xn) that are separately weighted
with weights (w1, w2, ..., wn), producing a weighted sum as illustrated in Figure
2.2.1. As the network is interconnected, the inputs may come from other ANs or
external sources. The weighted sum is passed through an activation function,
which decides whether an artificial neuron is activated or not. If u =

∑n
i=1 xiwi

and ρ is the threshold for the activation function, the output y is:

y =

1 if u ≥ ρ

0 if u < ρ
(2.2.1)

xn

x2

...

x1

Sum Activation
function

Output
Input

w1

w2

wn

Figure 2.2.1: An artificial neuron

Activation functions are vital as they support understanding and learning com-
plex mappings between corresponding inputs and outputs. Linear activation
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Chapter 2. Theory

functions, like Equation 2.2.1, can only adapt to linear changes. Nonlinear acti-
vation functions are preferred over linear activation functions because errors in
the real world have nonlinear characteristics [27]. A sufficiently large ANN us-
ing nonlinear activation functions can approximate arbitrarily complex functions
[28] .

Nonlinear activation functions tend to be computationally expensive, so it is
common to select a simple nonlinear function. There are numerous good activa-
tion functions, such as the Sigmoid and Tanh functions, so the choice typically
depends on the task. However, the Rectified Linear Unit (ReLU) has recently
become very popular as it provides fast and effective training on complex data
while reducing the chance of suffering from the vanishing gradient problem. It
is relatively simple since it behaves purely linearly when the input is greater
than zero, as shown in Figure 2b. Often, a combination of activation functions
is used for a single network. For instance, a binary classification task requires
an output of 0 or 1. In that case, instead of only using ReLU, the Sigmoid would
replace it at the output. For regression tasks, the output can range between -inf
and inf; thus, the linear activation function in Figure 2a would be used for out-
put.

4 2 0 2 4
Input

4

2

0

2

4

Ac
tiv

at
io

n

Linear

(2a) Linear

4 2 0 2 4
Input

0

1

2

3

4

Ac
tiv

at
io

n

ReLU

(2b) ReLU

4 2 0 2 4
Input

0.0

0.5

1.0

Ac
tiv

at
io

n

Sigmoid

(2c) Sigmoid

Figure 2.2.2: Activation functions

2.2.2 Neural network

As illustrated in Figure 2.2.3, ANN are organized in multiple layers, with each
layer consisting of several interconnected neurons. The artificial neurons in the
input layer are activated through the initial data, ranging from raw pixels in an
image to sensor readings. The hidden layer neurons are activated via weighted
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Chapter 2. Theory

connections from the input layer and previously active neurons until they reach
the output layer. Adding more layers and neurons can help the ANN express
increasingly complex functions, and when there is more than one hidden layer,
it is often referred to as a deep neural network (DNN).

The hidden layers in a DNN are often referred to as a black box, as study-
ing the DNN’s structure provides no insight into the approximated function
structure. Understanding the relationship between the weights and the approx-
imated function remains a mystery, raising safety concerns about whether DNN
is ready to make automated decisions on critical human-related matters. How-
ever, some tools can assist in providing insight [29, 30].

Input	Layer Hidden	Layer Output	Layer

Figure 2.2.3: An artificial neural network with three hidden layers.

There are several steps that an ANN must take in order to learn. In supervised
learning, the data is passed through the network in a process known as forward
propagation, where the network attempts to process the data from input to
output. To evaluate how well the ANN has approximated the actual function, a
measure of error is necessary. Loss functions provide feedback to the network
by measuring the error between the network’s output y and the true output

8



Chapter 2. Theory

ŷ. These are typically represented as L(y, ŷ), where L: Rn → R denotes some
measure of error. For regression tasks, the mean squared error (MSE), as shown
in Equation 2.2.2, is often chosen as the loss function.

L =
1

n

n∑
i

(yi − ŷi)2 (2.2.2)

Approximating the true function is equivalent to minimizing the loss function.
Minimizing the loss can be done by gradient descent, using the gradient of the
loss ∇L(θ) with respect to the trainable parameters θ. The parameters (weights
and biases) are updated iteratively at a rate called learning rate η, as shown in
Function 2.2.3. Choosing a proper learning rate can be difficult, as too small
leads to painfully slow convergence, while too large can fluctuate around the
minimum or even diverge [31]. One solution is to compute adaptive learning
rates for each parameter where the learning rate decays over time, taking large
steps at the beginning and smaller steps towards the end.

θi+1 ← θi − η∇L(θi) (2.2.3)

2.2.3 Backpropagation

The backpropagation algorithm is the cornerstone of learning in ANNs. It ef-
ficiently computes the gradient of the loss function with respect to the local
parameters (weights and biases), in contrast to a direct computation of the gra-
dient for each parameter individually. The gradient will inform how quickly the
loss changes when the parameters are adjusted and how their changes affect
the network’s overall behavior. Most of the theory and notations for the back-
propagation algorithm are from [32].

Some notation is required to describe individual weights and biases in an ar-
bitrary ANN before deriving the relevant equations for the backpropagation
algorithm. This can be found in Table 2.2.1. Instead of using the loss L, it will
be replaced with the cost C, as L denotes the output layer here. Also, when-
ever the j subscript is removed from any of the terms, for example blj, it is in
its matrix form. For example, bl represents the vector containing biases for the
neurons in layer l.

9



Chapter 2. Theory

Term Other form Definition

wljk
The weight for the connection from the kth neuron
in the (l − 1)th layer to the jth neuron in the lth layer

zlj (
∑

k w
l
jka

l−1
j ) + blj Weighted input to the jth neuron in the lth layer

σ Activation function

alj σ(zlj) Activation of the jth neuron in the lth layer

δlj
∂C
∂zlj

Error in the jth neuron in the lth layer

blj Bias of the jth neuron in the lth layer

Table 2.2.1: Notation for backpropagation algorithm based on theory from [32].

Using the notation in Table 2.2.1, we can derive the equations for the algorithm.
For a single neuron j in the output layer L, its error can be calculated using the
chain rule as

δLj =
∂C

∂zLj
=
∂C

∂aLj

∂aLj
∂zLj

=
∂C

∂aLj
σ′(zLj ) (2.2.4)

The backpropagation algorithm requires it in its matrix-based form, which is

δL = ∇aLC � σ′(zL) (2.2.5)

where � represents the elementwise product, often called the Hadamard prod-
uct. Finding the error in the output layer makes it possible to find the error in
the previous layer, as shown below.

10
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δL−1j =
∂C

∂zL−1j

=
∑
k

∂C

∂zLk

∂zLk
∂zL−1j

=
∑
k

δLk
∂zLk
∂zL−1j

=
∑
k

wLkjδ
L
k σ
′(zL−1j )

This will also be represented in it matrix-based form as

δL−1 = ((wL)T δL)� σ′(zL−1) (2.2.6)

In equations 2.2.5 and 2.2.6 is where the vanishing gradient problem occurs. As
the error is dependent on the first derivative of the activation function, certain
activation functions can impose a problem. Take the Sigmoid Function 2c from
earlier. If the input is large enough, the output has a nearly flat slope, and the
derivative is close to zero. Multiplying these small derivatives as it backpropa-
gates the network results in a gradient that decreases exponentially. A neuron
that exhibits these characteristics is said to be saturated, and as a result, learns
very slowly. For the remaining layer, the errors are found by backpropagating
δL like:

δL−1 = ((wL)T δL)� σ′(zL−1)
δL−2 = ((wL−1)T δL−1)� σ′(zL−2)

...

δL = ((wL+1)T δL+1)� σ′(zL)

The loss across the weights and biases in the network can then be distributed
using these errors:

∂C

∂wljk
=
∂C

∂zlj

∂zlj
∂wljk

= δlja
l−1
k (2.2.7)

∂C

∂blj
=
∂C

∂zlj

∂zlj
∂blj

=
∂C

∂zlj
= δlj (2.2.8)
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Finally, the backpropagation algorithm can be defined as

Algorithm 1: Backpropagation algorithm

1 Initialize ANN with random weights and biases
2 Input x: Set the corresponding activation a1 for the input layer.
3 Feedforward: For each l ∈ {2, 3, ..., L}, compute zl = wlal−1 + bl and

al = σ(zl)

4 Output error: Compute the vector δL = ∇aC � σ′(zL)
5 Backpropagate the error: For each layer l ∈ {L− 1, L− 2, ..., 2},

compute δl = ((wl+1)T δl+1)� σ′(zl)
6 Output: The gradient of the cost function is given by δC

δwl
jk

= al−1k and
δC
δblj

= δlj

Algorithm 1 produces an output well suited for iterative optimization algo-
rithms such as gradient descent. Combined, they allow an ANN to iteratively
reduce its error and approximate a function that maps the input-output pairs.
Gradient descent will rarely find the global minimum, as nearly any ANN is
virtually guaranteed to have a vast number of local minima. Experts now sus-
pect that, for sufficiently large neural networks, most local minima have a low loss
function value, and that it is not important to find the true global minimum [16].
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3 | Method and set-up

This chapter describes the method and experiments done to achieve the re-
sults presented in Chapter 4. First, the physics-guided neural networks’ (PGNN)
framework will be introduced, as well as the data generation process. Sev-
eral systems will be tested to investigate the robustness and capabilities of
the framework in various situations. Lastly, some specifications and parame-
ter choices will be justified. The code can be found at https://github.com/
sjokkopudd/PG-NN

3.1 Physics-Guided Neural Network

Comprehensive models of dynamical systems are complex and often take exten-
sive computational run time, limiting their use in many cases where a model
run is required at each iteration. Using neural networks (NN) instead could re-
duce computational run time as long as it performs at a high enough standard.
Increasing the accuracy and reducing the training time for NN is of great im-
portance, especially when they are to model very complex systems. The PGNN
framework presented in this paper hopes to improve the accuracy, training time,
and interpretability using a simple architecture.

The basic idea of the PGNN is to use known knowledge from a dynamical sys-
tem to assist the NN by injecting it at an intermediate layer. The known knowl-
edge could be information from a simplified physics-based model of the whole
system, such as [15], or part of the actual system. Given a dynamical system
controlled by the ODE on the form

˙x(t) = f(t, x)

13
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Chapter 3. Method and set-up

Assuming f(t, x) is a very complex system, but a simplified model h(x) based
on known knowledge exists so

˙x(t) ' h(t, x)

Then it is reasonable to assume that the complex system f(x) can be described
as

f(t, x) = F (t, x, h(t, x))

where F is a function of lower complexity than f . The idea is that feeding h(x)
to the NN could assist the NN and bring interpretability to otherwise black-
box models. The proposed method, illustrated in Figure 3.1.1, is adaptable to a
wide range of physical systems and could have significant potential in scientific
machine learning.

Figure 3.1.1: The framework of a PGNN with a injection at layer 2

Unlike other approaches such as regularization based on governing equations,
the PGNN framework also incorporates the physics of the problem during the
prediction stage rather than only during training.

xn+1 = xn +∇t · f(tn, xn) (3.1.1)

14
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Real-world tasks such as financial market prediction and weather forecasting
often involve a time component. Time series forecasting is an important ap-
plication of machine learning, and several methods have been developed for
this, such as recurrent neural networks (RNN). RNNs are a generalization of
the feedforward neural networks (FNN) discussed in Chapter 2, but with an in-
ternal memory making them capable of tasks such as speech recognition [33].
However, for this paper, a FNN was used with the sliding window technique to
input a time series. The window slides over the data, capturing snippets of the
data around the current time value, as illustrated in Figure 3.1.2. Choosing the
window size is not straightforward and depends on the task, but previous stud-
ies [34] show that large sliding windows do not necessarily yield better results
and that a window size of 5 might be sufficient.

Neural Network

Figure 3.1.2: The sliding window technique with a window size of 5 during the pre-
diction phase.

3.2 Data generation process

Data processing can often be the most challenging part of machine learning
as bad input produces bad output. The curse of dimensionality was a limiting
factor when choosing the dynamical systems since a high-dimensional feature
space would require substantial data and training time. Also, the data should
be stationary, i.e., the statistical properties of the process do not change over
time, unlike stock prices and weather data. To reduce time dependency, non-
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stationary data can be transformed into stationary data by differencing. Differ-
encing computes the differences between the consecutive observations, reduc-
ing any trend and seasonality as shown below:

ẋn =
xn − xn−1
tn − tn−1

For generating the data, the Python library SciPy [35] offers functions to solve
a system of ODEs. It uses the Runge-Kutta 4(5) (RK45) method to solve the
systems accurately enough for these experiments to deem the error negligible.
The RK45 method produces a time series [x, t], where xi corresponds to the
value of the system at time step ti.

After simulating the systems, the time series from the RK45 method was divided
into snippets of window size 5. These snippets would be the input for the neural
networks, while the output would be the difference between the next element
and the latest element, as shown in Table 3.2.1.

Input Target

X0 =

[
x0 x1 ... xn

t0 t1 ... tn

]
f0(x, t) =

(xn+1 − xn)
(tn+1 − tn)

X1 =

[
x1 x2 ... xn+1

t1 t2 ... tn+1

]
f1(x, t) =

(xn+2 − xn+1)

(tn+2 − tn+1)

...
...

Table 3.2.1: Training data arrangement

3.2.1 Lotka–Volterra/Experiment 1

The first experiment tested is the Lotka-Volterra Equation 3.2.1, also known as
the predator-prey equations [36]. It is a relatively simple system with a pair of
first-order nonlinear differential equations describing the relationship between
two species interacting, where x is prey, and y is a predator. An example is
shown in Figure 3.2.1. As both equations are dependent on xy, this experiment

16



Chapter 3. Method and set-up

will compare the performance between a normal NN with a PGNN injected with
xy at various layers.

ẋ = α1x− α2xy

ẏ = α3xy − α4y
(3.2.1)

0 2 4 6 8 10 12 14
t

0

10

20

30

40

50
Prey (X)
Predator (Y)

Figure 3.2.1: Lotka-Volterra system with α1 = 0.6, α2 = 0.1, α3 = 0.1, α4 = 0.01 and
initial values x0 = 20, y0 = 2

For both training and testing, the parameters were α1 = 0.6, α2 = 0.1, α3 = 0.1,
and α4 = 0.01 Two sets of data were generated for this experiment. First was
when the initial values of the test data were inside the training data range,
also known as interpolation. The other one predicted with values outside of the
training data range, known as extrapolation, a relatively common problem in
machine learning context [37]. The simulations would run for 15 seconds with
a max time step of 0.05s, using the initial values found in Table 3.2.2.

3.2.2 Experiment 2/Duffing

The second experiment is the Duffing oscillator in Equation 3.2.2, which is a
nonlinear second-order differential equation used to model an oscillator with
both linear and nonlinear damping [38]. An example can be seen in Figure
3.2.2.
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x0 y0

Training

7
...
19
21
...
30

2
...
2
2
...
2

Testing 20 2

(a) Interpolation

x0 y0

Training

7
...
30

2
...
2

Testing 40 2

(b) Extrapolation

Table 3.2.2: Initial values for the Lotka-Volterra experiment

ẍ = β1 cos(β2t)− β3ẋ− β4x− β5x3 (3.2.2)

For this experiment, the main purpose was to investigate how changing the
injected input would affect the performance. When generating the data, the
system was simulated 25 times for 25 seconds with a max timestep of 0.05s.
Here, the initial values x0 and ẋ0 were randomly generated numbers between
-1 and 1. One of these samples were chosen as the test sample.

3.2.3 Experiment 3/Chaotic systems

The Lotka-Volterra and Duffing equations are relatively stable systems with few
parameters. To test the robustness of the PGNN framework, the following ex-
periments would test the PGNN framework on some selected chaotic systems
with more dimensions and parameters. The first system is the Lorenz system
[39], a chaotic system of the ODEs in Equation 3.2.3.

ẋ = γ1(y − x)
ẏ = x(γ2 − z)− y
ż = xy − γ3z

(3.2.3)
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Figure 3.2.2: Duffing system with β1 = 2.3, β2 = 0.2, β3 = 1, β4 = 0.5, β5 = 1 and
initial values x0 = 0.5, x′0 = −1

The next chaotic system is the Hindmarsh–Rose model [40]. It is a system of
three nonlinear ordinary differential equations representing the bursting be-
havior of the membrane potential observed in experiments made with a single
biological neuron. The system equations are in Equation 3.2.4.

ẋ = y − γ1x3 + γ2x
2 − z + γ3

ẏ = γ4 − γ5x2 − y
ż = γ6[γ7(x− γ8)− z]

(3.2.4)

The last system is the Willamowski-Rössler model [41] and is the most ad-
vanced one with 10 parameters. Its ODEs are in Equation 3.2.5, which repre-
sents chaos in chemical reactions. An example of all the systems can be seen
in Figure 3.2.3 and their parameters in Table 3.2.3. While testing robustness
was mainly the focus of this experiment, there was an ambition to find various
patterns regarding the PGNN.
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Parameter Lorenz Hindmarsh-Rose Williamowski-Rössler

γ1 10 1 30
γ2 28 3 0.25
γ3

8
3

5 1.0
γ4 N/A 1 0.0001
γ5 N/A 5 1.0
γ6 N/A 0.001 0.001
γ7 N/A 4 10
γ8 N/A -1.6 0.001
γ9 N/A N/A 16.5
γ10 N/A N/A 0.5

Table 3.2.4: Parameters and their values for the Lorenz, Hindmarsh-Rose, and
Williamowski-Rössler models.

ẋ = γ1x− γ2x2 − γ3xy + γ4y
2 − γ5xz + γ6

ẏ = γ3xy − γ4y2 − γ7y + γ8

ż = −γ5xz + γ6 + γ9z − γ10z2
(3.2.5)

3.3 Hyperparameters

Since these experiments’ focus was to investigate the effect of the PGNN, the
hyperparameters would remain mostly the same for all networks to mitigate
their effect and keep the experiments under controlled conditions. The non-
deterministic nature of NN training made it essential to choose hyperparame-
ters that would yield as stable results as possible. In earlier experiments, some
outliers would affect the results to such as degree that the results were not rep-
resentative. A network’s size can affect the stability and ability to approximate
the function to a large degree. For experiments 1 and 2, the networks had three
hidden layers with 16, 32, and 16 neurons, which should be an acceptable bal-
ance between stability and a challenge for the networks to approximate the
systems. As the systems in experiment 3 had more dimensions and parameters,
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(3a) Example of the Lorenz system with initial
values x0 = 0, y0 = 1, z0 = 0
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(3b) Example of the Hindmarsh–Rose model
with initial values x0 = 1, y0 = 0.5, z0 =

−0.3
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(3c) Example of the Williamowski-Rössler
model with initial values x0 = 0, y0 =

1, z0 = 0

Figure 3.2.3: Example plots of the chaotic systems tested.
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the networks had three layers with 32, 64, and 32 neurons.

Deciding the numbers of epochs was based on the model loss plots during train-
ing for each system individually. Figure 3.3.1 shows the training loss for the
Lotka-Volterra system for 300 epochs. However, after 50 epochs, the model’s
loss changed so slowly that the computational time would outweigh the loss
reduction. So even though training could minimize the loss even further, it had
reached a satisfactory level, and the training stopped early to reduce time and
avoid overfitting. This was done for every experiment. Another solution to avoid
overfitting would be to expand the training data, as more data is often better.

0 50 100 150 200 250 300
Epoch

10
3

10
2

10
1

10
0

10
1

Lo
ss

Model loss

Training loss
Validation loss

Figure 3.3.1: Training loss for Lotka-Volterra over 300 epochs

Instead of having a fixed learning rate, the networks utilize the Adam optimizer,
a stochastic gradient descent method that is computationally efficient and has
little memory requirement [42]. It maintains separate learning rates for each
network parameter and adapts them as learning unfolds, which is convenient
for problems with large amounts of data/parameters. Some of the hyperparam-
eters are in table 3.3.1.
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Hyperparameter Value

Activation function ReLU
Batch size 32

Validation split 0.2
Loss function MSE
Learning rate 0.001

Adam optimizer β1 = 0.9, β2 = 0.999

Table 3.3.1: Hyperparameters kept constant throughout the experiments.

3.4 Hardware/Software Specification

One of the most significant factors in the viability of ML algorithms is recent
advances in computational hardware. However, not all modern computers can
carry out such tasks efficiently. The GPU, arguably the most essential tool, is
not always present in a computer. Unfortunately for this thesis, all experiments
ran on an Intel Core i7-8550U CPU. As some run times could surpass 20 hours,
better hardware would have enabled more comprehensive experiments.

For setting up the neural network architecture, the ML library Keras [43] ver-
sion 2.4.3 was used. Keras features the functional API that allows the creation
of more flexible models with, e.g., multiple inputs at different layers, making it
suitable for this experiment. Data visualization was done by the python libraries
matplotlib [44] and seaborn [45]. Everything was done in Python 3.8.5.
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4 | Results and Discussions

This chapter presents the results from each experiment introduced in Chapter 3.
Each experiment undergoes various circumstances to test the robustness of the
PGNN framework. Experiments 1 and 2 test the Lotkav-Volterra system and the
Duffing equation, respectively. Experiment 3 focuses on three chaotic systems
to check performance on more complex systems and examine any patterns.

4.1 Lotka-Volterra

As the Lotka-Volterra system in Equation 3.2.1 is relatively simple, injecting xy
was expected to have a substantial impact on the results. Already in the training
phase, there was a clear difference between the PGNN and the normal NN. Fig-
ure 4.1.1 shows the average training loss over 100 initializations for a normal
NN and PGNN with an injection at different layers. While most PGNNs trained
better than the normal NN, the PGNN with an injection at the output layer had
almost equal training loss as the normal NN. One cause might be the backprop-
agation algorithm that needs more layers to calculate the gradient of the loss.
The output layer uses a linear activation function that returns the weighted sum
of the input without changing it, possibly making it harder for the network to
supplement the injection.

Even though there was little difference between the network injected at layers
1, 2, and 3, injection at layer 2 had slightly lower training loss. It is unclear
where it is best to inject the guided input and why, but a slight trend hints
towards the earlier layers. Looking at the predictions, shown in Figure 4.1.2,
layer 2 was also the best. Therefore, future plots where PGNN and normal NN
are compared will be PGNN injected at layer 2.

24



Chapter 4. Results and Discussions

Figure 4.1.1: Average training loss for the Lotka-Volterra system for 300 epochs. Each
type had 100 initializations each.
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(2b) Extrapolation

Figure 4.1.2: Average prediction error for the Lotka-Volterra system during interpo-
lation and extrapolation. Average is over 100 networks trained for 50
epochs.

Two sets of data were tested, interpolation and extrapolation. For the inter-
polation experiment, injecting xy mostly impacted keeping the network’s pre-
dictions more stable. Figure 4.1.3 shows the true value and the average pre-
dictions with a 95% confidence interval of the 100 initializations. The average
predictions are only slightly better with injection, as both types approximate
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the functions sufficiently. The biggest difference is how the injection decreases
the variance and keeps the predictions more stable.
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(3a) Injection of xy at layer 2
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(3b) Injection of xy at layer 2
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(3c) No injection
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Figure 4.1.3: Average predictions of the Lotka-Volterra equation over 100 networks
(Interpolation) with a 95% confidence interval.

For the extrapolation part, the training data went from x0 ∈ [7, 30] while the test
data had x0 = 40, which was well outside the training data. Here, the differ-
ence between PGNN and the normal NN was even greater, as shown in Figure
4.1.4. With the injection, the average predictions had much better accuracy, es-
pecially towards the end. Also, the confidence interval was much narrower with
the injection. It seems like the normal NN had trouble with overshooting when
there were sudden changes and diverging towards the end, while the injection
helped constrain the PGNN to a more representative result.
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(4a) Injection of xy at layer 2
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(4b) Injection of xy at layer 2
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Figure 4.1.4: Average predictions of the Lotka-Volterra equation over 100 networks
(Extrapolation) with a 95% confidence interval

Overall, there is a clear trend that injecting xy helped the PGNN during training
and predictions. While not distinct which layer gave the best results, injecting
at the earlier and middle layers was the best option. Even with the small net-
work size, a normal NN can approximate the system efficiently, especially in
the interpolation case. It starts to struggle for the extrapolation case, and it is
here that the PGNN outperforms the normal NN noticeably. Increasing the size
of the normal NN, either amount neurons or layers, would most likely improve
its performance; however, deeper networks are harder to train [46].
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4.2 /Duffing

The Duffing equation is a second-order differential equation with many dif-
ferent terms. Part of this experiment was investigating how injecting different
functions would affect the results. Figure 4.2.1 shows predictions of the Duff-
ing equation for a normal NN and PGNN with different injections at layer 2.
Comparing the different plots shows similar results to the Lotka-Volterra sys-
tem. Average prediction only slightly improved with injections, but the injec-
tions contracted the confidence interval and made the predictions more stable.
There is also a notable difference between the functions, as injecting x3 made
considerable improvements while injecting cos(β2t) barely made any improve-
ments. Injecting both simultaneously makes no difference to just injecting x3,
clearly making it the essential part to inject.

As there was a definite difference between injecting cos(β2t) and x3, it is in-
teresting to investigate why. Figure 4.2.2 shows how two NN with the same
parameters and data size predicted the functions cos(x) and x3. The results
show that NNs require much less training to approximate cos(x) than x3 at a
sufficient level. Therefore, the PGNN must most likely be injected with func-
tions NNs approximate poorly, such as x3, to be successful. Otherwise, it seems
to add little to no effect, questioning its practicality in some cases.

In real-world applications, noise is inevitable as physical sensors are limited
and can not register the values flawlessly. Sometimes noisy data result in lower
accuracy and poor prediction results [47], but can also be added to the train-
ing data to aid generalization and fault tolerance [48, 49]. To examine PGNNs
noise sensitivity, one test added Gaussian noise with a mean of 0 and a standard
deviation of 0.05 to the Duffing data. Figure 4.2.3 shows the prediction differ-
ences between a normal NN and a PGNN injected with x3, trained on noisy
data. The most significant difference was how the confidence interval of the
PGNN expanded with noise, but its average predictions remained the same. It
could suggest PGNNs being sensitive to noise, depending on the injected func-
tion. x3 grows exponentially, and slight variations in x could critically impact
the network. cos(β2t) is not dependent on x and is most likely why noise barely
affected it.
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(1a) Injection of x3
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(1b) Injection of cos(β2t)
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(1c) Injection of x3 and cos(β2t)
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Figure 4.2.1: Average predictions for Duffing equation over 100 networks with 95%
confidence interval.

The last test on the Duffing equation was how increasing the network size af-
fected the results. As stated before, increasing the network size can aid in ap-
proximating functions, but make them harder to train and interpret. Figure
4.2.4 shows how the normal NN and PGNN performed at different network
sizes, from 16, 32, and 16 neurons per layer to 64, 128, and 64 neurons per
layer. It shows that the PGNN can achieve the same results as a normal NN
with a lot smaller size, probably because the network needs to approximate
fewer parts of the function. Decreasing the network size makes it easier to an-
alyze how and why the network behaves as it does, and is a big step towards
increasing NNs interpretability.
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Figure 4.2.2: Comparison of NN with same parameters predicting two different func-
tions.
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(3a) Without injection
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Figure 4.2.3: Average predictions of Duffing with added noise to training data over
100 networks.

4.3 Chaotic systems

Three different chaotic systems were tested in the final experiment, each with
three dimensions. For the Lorenz system, the networks trained for 20 epochs
and had 50 initializations instead of 100 due to time-saving. For this system,
there was no apparent difference between the PGNN and normal NN, as shown
in Figure 4.3.1. Both networks were able to approximate the functions suitably
with no difficulties. Perhaps the system was relatively easy to approximate for
a NN, or they had an excessive amount of training. The results were similar for
all three dimensions, so it only seemed necessary to plot one dimension.
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(4a) No injection with hidden
layers of size 16, 32 and
16.
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(4b) No injection with hidden
layers of size 32, 64 and
32.
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(4c) No injection with hidden
layers of size 64, 128 and
64.
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(4d) Injecting x3 with hidden
layers of size 16, 32 and
16.
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(4e) Injecting x3 with hidden
layers of size 32, 64 and
32.
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(4f) Injecting x3 with hidden
layers of size 64, 128 and
64.

Figure 4.2.4: Average predictions of the Duffing system with increasing network sizes
for 100 networks each. Top row is normal NN, while bottom row is PGNN
injected with x3.

For the Hindmarsh-Rose model, the average predictions were almost equal,
with the only difference in the confidence interval. Similar to the Lotka-Volterra
and Duffing experiments, the PGNN’s confidence interval is slightly slimmer
than the normal NN. On this system, the PGNN was injected with x3, which is
hard to approximate for NNs, as we know from earlier. The difference is minus-
cule, but there was little to improve as the normal NN predicted very accurately.

The Willamowski-Rössler model was the most complex system, which both net-
works struggled to approximate. Unfortunately, given the nondeterministic na-
ture of NN, some of the predictions of the normal NN were unrepresentative.
Figure 4.3.3 show the predictions for the Willamowski-Rössler model, and it
is clear that some of the simulations skewed the normal NNs’ results, causing
them to diverge considerably. However, the PGNN did not experience this, indi-
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Figure 4.3.1: Average predictions of the Lorenz system with a 95% confidence interval
over 50 networks.
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Figure 4.3.2: Average prediction the Hindmarsh-Rose model with a 95% confidence
interval over 50 networks.

cating an ability to make more stable predictions over more prolonged periods.

To investigate PGNNs’ ability to make more stable predictions over more pro-
longed periods, some systems were simulated for a longer time. In Figure 4.3.4,
the Lorenz system was simulated for 15 seconds. Unlike the shorter simulations
where the normal NN and PGNN performed evenly, the PGNN had more stable
predictions in this situation. While both networks end up diverging, the normal
NN diverges quicker and to a much greater extent than the PGNN. This was also
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Figure 4.3.3: Average prediction of the Willamowski-Rössler model with a 95% confi-
dence interval over 50 networks.

the case for the Hindmarsh-Rose system with extended simulations, just not to
the same degree as the Lorenz system. Therefore, it seems likely that PGNNs
can make more stable predictions compared to normal NN when simulated over
longer periods.
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Figure 4.3.4: Average prediction of the Lorenz system simulated for 15 seconds, with
a 96% confidence interval over 50 networks
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5.1 Conclusion

From the results, there is evidence to support that the PGNN framework can en-
hance accuracy and stability. Whenever the injected information was a vital part
of the system, like xy in the Lotka-Volterra equation, the PGNN outperformed
the normal NN in many circumstances. In particular, PGNN could predict with
much greater accuracy and stability in the extrapolation case where the test
data was outside the training data range. Real-world scenarios will often have
incomplete and scarce data, so the generalizability of the PGNN could be valu-
able in such cases.

Injecting different types of functions had a noticeable impact on the results
in some cases. There was a substantial difference between injecting x3 and
cos(β2t) in the Duffing equation, where x3 drastically improved the predictions
while there was little difference when injecting cos(β2t). A big reason for that
is the required training a NN needs to approximate each function, as x3 is
much harder for a NN to approximate than cos(x). However, injecting x3 in
the Hindmarsh-Rose model did not make a prominent difference. For most of
the larger systems, the injection made no apparent effect until some time had
passed. The normal NNs tended to diverge during prediction, growing expo-
nentially with time. On the other hand, the PGNN avoided divergence much
more than a normal NN, even when the injected function was relatively simple.

In the cases where the PGNN performed better, the complexity of the networks
could be reduced by decreasing the size. For a normal NN to perform equiv-
alent to the PGNN on the Duffing equation, the number of neurons doubled.
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Reducing the size of the networks increases their interpretability and makes it
easier to conduct analyses to draw inferences about the network’s prediction
and learning ability.

Despite encouraging results in both prediction and interpretability, there are
still several uncertainties regarding the PGNN. The results have been widely
disparate, and it is unclear what defines a problem where PGNN will be helpful.
This thesis has undergone various experiments and could give further research
a more guided direction. Until now, the PGNN has only performed on systems
of ODEs, but has potential in several other fields.

5.2 Future Work

5.2.1 More advanced system

Up until now, the PGNN tested on relatively simple systems with generated
data. If the PGNN framework is to perform on a real-world application, it would
need testing on a more realistic situation, where the data is from observations
like sensor reading. As we saw in the results section, the PGNN might be sensi-
tive to noise depending on the injected function, so a comprehensive investiga-
tion is needed to see how it would perform on real-world data. Also, generated
data has little to no uncertainties as the injected equations are part of the sys-
tems. So in a realistic system, the injected functions might be certain in the
mathematical equations, but inaccurate in reality.

5.2.2 More testing

One crucial issue not addressed enough in this thesis is whether there are a
priori indicators in the system that indicate whether PGNN will be applicable.
There needs to be further comprehensive testing of the PGNN on a much larger
number of systems to look for more patterns. Looking at the results, the PGNN
was more helpful when the injected information was a substantial part of the
system, like the Lotka-Volterra equations, but for the chaotic systems, the PGNN
was less beneficial. More testing could determine the type and amount of infor-
mation that must be injected for a noticeable effect.
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5.2.3 Other network types

The proposed framework is quite adaptable and could work for many other
machine learning algorithms. Without going too far away, the framework could
be applied to a recurrent neural network. As mentioned in Chapter 3, these
networks have internal memory nodes capable of processing long sequences
of inputs. Modular neural networks have multiple networks that function in-
dependently and perform sub-tasks. Here, the networks could be injected with
information only relevant to their sub-task.
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