
Robust Fish Cage Hole Detection
in Challenging Environments
Rethinking Spatiotemporal Deep Learning and
Advanced Computer Vision Techniques

May 2021

M
as

te
r's

 th
es

is

M
aster's thesis

Arild Madshaven

2021
Arild M

adshaven

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Abstract

In 2019 alone, close to 300,000 Atlantic Salmon reportedly fled Norwegian aqua-
culture sites, which is more than half the number of the remaining wild stock. A
common escape route is through net holes, and frequent inspection of fish cage
integrity is therefore a necessary preventative measure. A complete algorithmic
framework has been initiated to fully automatise the search for net holes in a
video sequence captured by a remotely controlled vehicle carrying out a net
cleaning operation.

The framework presents a new strategy for net thread segmentation utilising
a U-Net variant called MultiRes U-Net. A computationally efficient alteration to
the U-Net’s input layer is proposed to encourage its spatiotemporal coherency.
The introduction of artificial intelligence for segmentation, contrary to traditional
edge detection or histogram thresholding, allows seamless discrimination of
intelligible net structure from noisy surroundings such as turbulent water, fish,
and equipment. An adaptive scheme based on morphological operations and
region growing is suggested as a frame-by-frame irregularity detector, and a
spatiotemporal filter to verify irregularities that occur in the same area over a
certain period of time. A deep convolutional neural network based on the VGG16

model has been specialised on separating net structure from fish and nonsense to
classify verified irregularities – a final barricade to prevent objects falsely included
in the segmentation from being reported as holes.

Promising results were achieved, and most holes present in a set of ten 10-
second test videos shot in challenging real-world scenes were correctly identified.
Particularly satisfactory were the performances of the deep learning approaches
to scene segmentation and irregularity classification, whilst the local irregularity
detector and the spatiotemporal filter require further work to improve the robust-
ness and the efficiency of the framework.

Sammendrag

I 2019 alene ble nesten 300.000 atlanterhavslaks rapportert rømt fra norske opp-
drettsanlegg. Dette antallet tilsvarer over halve den gjenværende villaksbestanden.
En vanlig fluktrute går gjennom hull i nota, og regelmessig kontroll av nettin-
tegriteten på et oppdrettsanlegg er derfor et nødvendig preventivt tiltak. Et
komplett algoritmisk rammeverk har blitt initiert for å automatisere søket etter
hull i nettmaskene i en videosekvens filmet av undervannsrobot under notvask.

Rammeverket presenterer en ny strategi for å segmentere nettmasker ved
hjelp av en U-Net-variant kalt MultiRes U-Net. En liten endring i U-Nettet
foreslås for å fremme koherensen til segmenteringene i både tid og rom uten å
øke behovet for regnekraft stort. Å bruke kunstig intelligens, i motsetning til
tradisjonelle metoder som kantdeteksjon eller histogramanalyse, mulliggjør en
sømløs segmenteringsporosess hvor fisk, utstyr, grumsete vann og eventuelle
fremmedlegemer ignoreres. For å oppdage uregelmessigheter i nota foreslås en
adaptiv prosedyre basert på morfologiske operasjoner og segmentsvulming, som
analyserer videosekvensen bilde-for-bilde. Et filter ser de oppdagede uregelmes-
sighetene i sammenheng med tidligere oppdagelser og verifiserer de som oppstår
på omtrentlig samme sted med omtrentlig samme utstrekning. Et dypt kon-
vulerende nevralt nettverk basert på VGG16-modellen har videre blitt spesialisert
på å se forskjell på nettstruktur, fisk, og vrøvl. Verifiserte uregelmessigheter
blir inspisert av dette nettverket, og siden hull utelukkende kan oppstå innad i
nettstruktur, avvises uregelmessigheten dersom den klassifiseres som fisk eller
vrøvl.

Lovende resultater ble oppnådd, og de fleste hullene i ti krevende 10-sekunders
testvideoer ble identifisert. Spesielt overbevisende var prestasjonene til de dype
nevrale nettverkene brukt til segmentering og klassifisering. Bilde-for-bilde-
prosedyren for uregelmessighetsdeteksjon og den påfølgende filtreringen behøver
videre arbeid for å gjøre rammeverket ytterligere robust og effektivt.

Acknowledgements

Have you ever seen the façade of Gløshaugen’s main building? It is pretty cool.
We used to call it Hogwarts. It looks as though it was raised by great figures of
the past -– intended to house something of uttermost importance. Glancing upon
it at dusk, bathed in floodlights, it feels almost sacred.

I remember philosophising on these things when I was a first-year student
in Trondheim. I felt so intimidated, as if these great figures of the past frowned
upon me as I walked by, thinking to themselves So this is what it has come down
to. This place used to have standards. Through whichever crack in the system did this
cockroach squeeze through? He could not even recall how to do division by hand in
his MAP testing. What contribution can he possibly conjure up after a mere five years
of education to justify his dwelling with us? Well — forefathers -– this document
constitutes my contribution after five years of cybernetics studies in Trondheim. I
hope you will acknowledge, perhaps, that this is not as dreadful an outcome as we
anticipated.

Here is my chance to publicly (assuming that this thesis is of interest to the
public is perhaps overly optimistic, but hey) applaud the people who, literally,
mean the world to me. To mum and dad, who produced me. This past year
has been tumultuous. The frustration I have encountered whilst training my
artificial neural networks pales in comparison to the hellish experience that is —
the degeneration of our very own neural networks. It is in times like these that
academic achievements reveal themselves to be of minuscule importance. I miss
you very much, and it is about time I return home for a little while. I know we
will come out ahead.

To my two brothers. To Inge for welcoming me to Trondheim, for helping
me with school, and for commenting on my work (also this) and sharing my
concerns with the word’s problems (but not my solutions -– yet). To Esben for
your politically incorrect group chat memes, for reminding Inge and myself that
we still belong to the countryside at heart — and for always reminding us that
academic people are just as broken (if not more) than people in general.

To Lars Olav for carrying me through university like a true champion. For
countless hours in the lab inventing useless ping-pong machines, and for many
an Arsenal game down at Three Lions. I am sure you had enough distress already
— so I am somewhat sorry for adding to the burden by making of you a Gunner.

To my fiancee, Ingvild, for dragging me out on adventure. For your excitement
at the sky’s reflection in muddy puddles, and for sticking by me even though I
spend most of my time leaping from one philosophical rabbit hole to another.
You truly are my rock, and I cannot wait to build our home and life together in
Oslo.

On a less personal note, but nevertheless of importance, I would like to thank
my supervisors, Annette and Christian, for helping me through the last year
whilst working on this subject. For your comments, suggestions, and for our
informal weekly chats. They have been very much appreciated. Thanks also for
your tremendous effort with our upcoming conference paper!

Big thanks be not least to Frøy gruppen for supplying the video material with-
out which this thesis could never have been written, and for reaching out to me
during a conference, asking me to write on this very exciting topic. I hope the out-
come of this thesis will be of utility to you. It has surely been of great utility to me.

Dear reader. You have now made it through my acknowledgements section,
are you ready for the ride?

Arild Madshaven
Trondheim, 31 May 2021

Contents

1 Introduction 2
1.1 On Caged Fish . 2

1.1.1 In Defence of Fish Consumption 3

1.1.2 Norwegian Aquaculture . 3

1.2 On Fish Cage Hole Detection . 4

1.3 On Perception . 5

1.3.1 A Brief History of Computer Vision 6

1.4 Thesis Specifics . 8

2 Previous Work 11
2.1 Theses . 12

2.1.1 Evaluation of Methods for Robust, Automatic Detection
of Net Tear with Remotely Operated Vehicle and Remote
Sensing . 12

2.1.2 Automatic Inspection of Cage Integrity with Underwater
Vehicle . 18

2.2 Articles on Net Cage Inspection . 21

2.2.1 Automated fish cage net inspection using image processing
techniques . 21

2.2.2 An integrated ROV solution for underwater net-cage in-
spection in fish farms using computer vision 22

2.2.3 An adaptive method of damage detection for fishing nets
based on image processing technology 23

2.3 Neural Network Architectures . 24

2.3.1 Spatial As Deep: Spatial CNN for Traffic Scene Understanding 24

2.3.2 3D Convolutional Neural Networks for Human Action
Recognition . 24

2.3.3 MultiResUNet: Rethinking the U-Net architecture for mul-
timodal biomedical image segmentation 25

3 Video Material 29
3.1 Flying Net Cleaner . 29

3.1.1 Challenges . 29

3.2 Manta Net Cleaner . 30

3.2.1 Challenges . 30

0.0.

3.3 Inspections . 31

3.3.1 Challenges . 32

3.4 Usage . 32

4 Attention: The U-Net 33
4.1 Where Holes Are At . 33

4.1.1 Introducing the MultiRes U-Net 34

4.2 NeNoS: Net and Nonsense Segmentation 36

4.2.1 The Bright Background Phenomenon 37

4.3 3CAS: Three-Class Attention Segmentation 38

4.3.1 Class Encoding . 38

4.3.2 Class Imbalance . 40

4.3.3 Input Image Size . 44

4.3.4 Encouraging Temporal Continuity 44

4.3.5 Finding the Ultimate Combination 48

4.4 NTS: Net Thread Segmentation . 57

4.4.1 K-Fold Training . 58

4.4.2 Data Acquisition and Production Quality Concerns 58

4.4.3 Transferring Knowledge . 60

4.4.4 Finding the Ultimate Combination 61

5 The Local Irregularity Detector 68
5.1 A Binary Reality . 68

5.1.1 A Preliminary Sidetrack: The Grayscale Image 70

5.1.2 Binarisation through Manual Pixel Intensity Thresholding 71

5.1.3 Binarisation through Otsu’s Method 73

5.1.4 Binarisation through Adaptive Thresholding 73

5.1.5 Binarisation through Edge Detection 75

5.2 Binary Correction: Coupling U-Net and Binariser 77

5.3 Detecting Irregularities . 78

5.3.1 Haugene’s Damage Detection Algorithm 80

5.3.2 Refining Haugene’s Kernel Shape 82

5.3.3 Refining Haugene’s Kernel Size 82

5.4 Tiles . 91

5.4.1 Building the Binary Image from Tiles 91

5.4.2 Denoising the Binary Image 93

5.4.3 Building the Irregularity Space 95

5.5 Introducing a Few Constants... 95

6 The Scene Interpreter 98
6.1 Constructing interpreter Data . 98

6.2 Model Architectures . 101

6.2.1 Simple Model . 101

6.2.2 Complex Model . 103

6.2.3 Something in-between: VGG16 and Transfer Learning . . . 103

Contents

7 Irregularity Tracking 110
7.1 A Spatiotemporal Irregularity Filter 110

7.1.1 Padding, Conjoinment, and Thresholds 111

7.1.2 Accumulating Votes . 112

7.1.3 The Running Irregularity Tag Number 115

7.2 Integrating the Scene Interpreter . 116

7.3 Guided Tracking . 118

7.3.1 Projected Movement . 118

8 Results 124
8.1 Scores . 124

8.2 Test Video 1: A Quick Glimpse . 128

8.3 Test Video 2: Two Holes . 128

8.4 Test Video 3: A Curious Fish . 129

8.5 Test Video 4: A Messy Clean-Up . 130

8.6 Test Video 5: Two (?) Holes . 131

8.7 Test Video 6: School of Fish and Motion Blur 131

8.8 Test Video 7: Close-Up Heavy Growth 132

8.9 Test Video 8: Surface, Cables, and... a Fish? 133

8.10 Test Video 9: Test Video 8 – But Starboard 133

8.11 Test Video 10: More Flying Algae . 134

9 Discussion 135
9.1 Segmentation . 135

9.1.1 Proposed Actions . 136

9.2 The Local Irregularity Detector . 137

9.2.1 Proposed Actions . 137

9.3 The Scene Interpreter . 137

9.3.1 Proposed Actions . 138

9.4 Spatiotemporal Filtering . 138

9.4.1 Proposed Actions . 139

9.5 Tracking . 140

9.5.1 Proposed Actions . 140

9.6 Conclusion . 141

9.7 Future Work . 141

Bibliography 142

Appendices 147

A QR Codes Hyperlinks 148
A.1 3CAS Segmentation Scores . 148

A.2 NTS Segmentation Scores . 149

A.3 Test Video Results . 149

B Scene Interpreter Architectures 150
B.1 Simple Model . 151

B.2 Complex Model . 152

B.3 VGG16 Base Model . 154

B.3.1 VGG16 Extended Model . 155

C Scene Interpreter Test Dataset 156

D Siamese Network for Scene Similarity Detection 168

Chapter 1
Introduction

A complete framework for robust fish cage hole detection in challenging environments —
rethinking spatiotemporal deep learning and advanced computer techniques.

The title of this thesis – the problem at hand – is one worthy of careful consid-
eration before engaging in discussions on implementational details. Why are fish
caged in the first place? Why desire robust hole detection in such cages? What
makes the environments challenging? What are computer vision techniques, and
more, what is spatiotemporal deep learning? What is their contribution to a
framework for hole detection in the cages of domesticated fish? The latter will
be thoroughly investigated int this thesis, but providing a sufficiently grounded
answer to the former questions can illuminate the context from which this work
springs. Specifics of the thesis, its scope, contribution, and outline, will be justi-
fied and placed within this established context to finalise the introduction.

1.1 On Caged Fish
1Some 35,000 years ago man invented the knotted fish net. Although his hunt
for fish stretches back hundreds of millennia, the ancient methods were probably
far too primitive and his likes far too few to pose a considerable threat to the
sustainability of the global marine ecosystem [2]. This has become subject to
change due to technological advancements and rapid human expansion.

Since their advent in the 14th century AD, beam trawlers have arguably
ravaged previously unbreachable depths, threatening bottom-dwelling aquatic
organisms, constantly driving fish from their habitats. Early concerns with high
levels of by-catch and the destruction of corals, sponges, and shellfish led to
demonstrations and regional bans in several European countries only years after
its invention [2]. These concerns are still prominent today. Up to 15% of marine
catches are discarded at sea; either dead, badly hurt, or dying [3, 4].

1Readers familiar with the pre-project related to this thesis [1] will recognise content from
chapter 1 and chapter 2.

Chapter 1. Introduction

The status of the global fish stocks were as of 2017 considered to be heavily
threatened by overfishing, pollution, global warming and the likes [4, 5]. One
third of all stocks were considered overfished whilst merely 6% were considered
underfished - leaving most stocks fished to a maximally sustainable degree - explain-
ing why marine catches have been more or less static the last three decades [4].

1.1.1 In Defence of Fish Consumption

Wild fish come in limited supply, but there are numerous reasons why they can
be included in a healthy human diet. Fish is highly nutritious, and generally rich
in protein, long-chained omega-3 fatty acids, and vitamins and minerals such as
vitamin A, B, and D, and zinc, selenium, and calcium. Including fish in one’s diet
can benefit one’s mental health and cognitive development, and reduce the risk
of catching cardiovascular disease, stroke, and macular degeneration [4, 6].

Ensuring a continuous access to the benefits of fish for future generations
means we need to increase production, but the wild stock capacities have been
pushed to their limits [2, 4]. A proposed solution to this apparent conundrum
is to invest in the farming of aquatic organisms — the aquaculture industry. Its
contribution to the global fish production has increased more than five-fold over
the past thirty years — now delivering even more fish for human consumption
than fisheries [4].

1.1.2 Norwegian Aquaculture

Norway’s coastline, with its deep sheltering fjords and oxygen-rich waters well-
supported by the Gulf Stream, provides an excellent marine environment for the
Atlantic Salmon which comprises more than 90% of the country’s aquaculture
activity [7]. Since the introduction of sea cages in the 1970s, the industry has
steadily grown, now producing some 1.3 million tonnes of seafood annually,
contributing in 2018 with 32 billion NOK to Norway’s GDP [7]. However, in
order for the industry to continue to grow, measures need to be made concerning
environmental challenges.

One such challenge is the impact farmed salmon has on the remaining wild
stocks. For instance, accumulation of sea lice within a densely populated salmon
farm may pose a tremendous threat to any nearby wild salmon [8–10]. Especially
so when farms have been established in and near fjords, through which vulnera-
ble juvenile salmonoids have to swim on their journey from the rivers to the sea
[9, 10].

3

1.2. On Fish Cage Hole Detection

Figure 1.1: Reported number of escaped Atlantic Salmon and Rainbow
Trout from Norwegian aquaculture sites the past two decades. Studies
from the period 2005-2011 suggest the actual number might be up
to four times the reported number [8, 10]. For comparison, the wild
salmon stock is thought to be just under half a million individuals [8].
Figure based on numbers from the Norwegian Directorate of Fisheries
[14, 15]. Reports can be up to one year late, so 2020 numbers are
tentative.

.

Another challenge is fish escapes. In addition to the economic cost of losing
fish, ecological costs can be severe in terms of interbreeding between wild and
farmed stocks [7, 8, 10]. The genetic pool of farmed fish has for decades been
directed in favour of traits desired from a farming perspective, and may alter
the genetics of wild fish to their disadvantage [8, 10]. It is therefore of immense
importance to prevent scenarios in which fish may escape from occurring.

1.2 On Fish Cage Hole Detection

Several standards and procedures were initiated in the early 2000s to lower the
number of fish escapees (see fig. 1.1). For floating aquaculture sites, most notably
the Norwegian Standard NS 9415 [11] introduced in 2003 and revised in 2009

along with the NYTEK regulations [12], which set requirements for technical de-
sign, dimensioning, and operation. Similar procedures for landbased aquaculture
were simultaneously implemented, such as NS9416 [13] from 2013, and the call
for double-secured drains from 2006 [10]. Among the demands from NS9415 is
frequent control of fish net structure integrity.

Recent studies by SINTEF suggest 64% of all escaped fish between 2014 and
2018 left through net holes. The increasing number of equipment in the cages

4

Chapter 1. Introduction

intentionally or unintentionally in contact with the net, such as cameras, bottom
rings, weights, and lice skirts, might be a leading cause for defects. Furthermore,
human handling of equipment and other operations account for a large part of
the reported incidents [16].

Net inspections are for these reasons often carried out before and after opera-
tions that may stress the structure, as well as periodically, for instance monthly.
Standard methods involve a team of divers or manual inspection of video cap-
tured by Remotely Operated Vehicles (ROVs) equipped with cameras [17]. The
former approach is usually related to higher costs and longer delays than the
latter, in addition to greater HSE concerns (for instance [18, 19]). Underwater
drones may in principle serve to completely automate the process of continuous
net integrity inspection if a robust algorithm can process its video stream and
evaluate the pictured net structure.

Automatic processing of underwater net structure is not an idea coming to
light as of recent. Significant effort has been made to design such systems (for
example, [17, 19–22]) but proposed solutions have yet to convince the industry.
The challenges are manifold; video quality might be poor, causing the net struc-
ture to appear broken. Current and waves might cause spatial deformations in
the structure, creating awkward situations for naïve algorithms. Fish regularly
swim past the camera and could be confused with holes. Not least – heavy algae
growth often covers the net structure, totally, and have in many cases hole-like
appearances. These are all reasons why proof-of-concept hole detection algorithms
in staged environments and robust hole detection algorithms intended for real
environments face difficulties of significantly different magnitude.

1.3 On Perception

Humans are incredible pattern recognisers. Perhaps did we not appreciate this
fact fully until we strived to teach our machines to see what we see. Do you fully
appreciate your ability to separate objects from background? Or your ability to
tell defect net structure from healthy net structure occluded by fish and algae?
Objects do not always have clear boundaries, in spite of which we still recognise
our relatives in a crowded street, and we wisely assume they still have feet even
if we cannot see them in the crowd. And what exactly are the rules for what
constitutes an object? Your relative is indeed one object, but they certainly consist
of smaller components: ten fingers, two palms, four limbs, one head. Even
though these components apply to most humans, those who lack a few would
never be confused for anything but people.

Furthermore, separating objects from one another is just part of the story. We
unconsciously categorise objects based on context. For instance, it is simply not
true that apples and bananas are separate entities:

1 apple+ 1 banana = 2 fruits (1.1)

5

1.3. On Perception

If you crave fruit then eq. (1.1) might suffice, but if you shop ingredients for your
significant other’s apple pie you better know the difference. Likewise, we treat
both raging bulls and sweet coconuts as life-threatening dangerous things if they
happen to approach us at high velocities. On the flip side — both are life-giving
edible things if they appear nicely garnished on a dinner plate. If a hitherto unseen
entity appears on the plate alongside your steak, you immediately place it in the
category of life-giving edible things if it roughly matches your prior knowledge
of such entities. Perhaps it is a new kind of cutlery — in which case you would
never confuse it for food. Before ever feeling it in your hands, you have already
estimated its weight, texture, and size, and perfectly formed your grip to pick it
up and start eating.

1.3.1 A Brief History of Computer Vision

The MIT scientist Jerry Lettvin famously discovered in 1959 that the eye of the
frog reports to its brain not simply arrays of pixel intensities, but rather sophis-
ticated responses of bug-detecting feature detectors [23]. The eyes were argued to
be responsible for perception, rather than mere sensation, and extracted features
such as something small and jerky has entered my visual field.

Likewise, the bulk of computer vision (CV) applications in the 20th century
were heavily dependent on handcrafted feature extraction similar to that of the
frog’s eye, based on image morphology describing geometrical and textural prop-
erties of the image content [24, 25]. By utilising simple features such as area,
perimeter, Freeman chain codes [26] and Levenshtein distance [27], Chamfer
distance [28], Fourier descriptors [29], polygon approximation, projection, rect-
angularity, moments, and axes of inertia, one might quite successfully describe
simple and semi-complex objects to the degree that they form multi-dimensional
clusters with low intra-class variance and high inter-class variance. However,
discriminating salmonoids from codfish, or Labrador Retrievers from Golden
Retrievers, may require feature extraction more sophisticated than can easily be
deduced by conscious brainpower alone.

The Neural Network: A Game Changer

Originating in the 1960s, but facilitated by the two-centuries-old work on the
linear regressor, the neural networks (NNs) made their entrance to the public
eye in the 2000s after winning several contests and achieving for the first time
super-human performance in certain domains [30, 31]. A subset of the NNs,
the convolutional neural network (CNN), especially so in the domain of CV. The
traditional CNN applies to two-dimensional arrays (being for instance the pixel
intensities of digital images) shifting convolutional units typically initialised with
random weights. These units are called filters, and a CNN usually consists of
several convolutional layers in which multiple filters are applied.

6

Chapter 1. Introduction

During a training process, the weights of the CNN and the filters are tuned
towards best-fit convergence. The paradigm-shifting beauty of this process is that
the CNN itself learns to extract features in the convolutional layers. In other words,
the CNN proved to be a really good interpreter of spatial information, capable of
identifying, itself, patterns in two-dimensional arrays. Moreover – CNNs can be
extended to shift filters in a third dimension, exceptionally useful in applications
such as magnetic resonance imaging (MRI) where two-dimensional images can
be stacked to construct three-dimensional images. In video processing, this is
analogous to stacking subsequent frames (see for instance [32]), enabling both
spatial and temporal – spatiotemporal – feature extraction.

NNs with a significantly large number of layers are commonly referred to
as deep neural networks (DNNs) and the training of such is called deep learn-
ing (DL). The granularity of the features extracted by filters in a certain layer
depends on the depth of the CNN, where deeper layers extract finer-level features.

Training, Validation, and Testing

In order for an NN to be a robust learner, a sufficiently large training dataset
needs to be organised. Likewise, a validation dataset should be used to evaluate
the NN’s performance during training, enabling learning monitoring (and, hence,
encouraging termination when learning plateaus). Lastly, a disjoint testing datasets
should be used to verify its performance on unseen data after training. Practically
speaking, it is absolutely vital that testing and training datasets are completely
separate, whereas validation datasets can be more heuristically handled. Due
to the indirect usage of the validation data (determining when learning should
terminate, in addition to comparing the performances of various architectorial
choices such as depth and breadth of layers, learning rate, activation functions
(yet to be discussed) et cetera), they are often drawn from the training data
foundation to ease the burden of data acquisition. This can be safely executed
utilising upcoming algorithms such as K-Fold cross-validation [33].

Now, if one wants to teach a CNN to recognise net structure from turbid
background, one needs to supply a set of images where one explicitly tells the
CNN what a proper ground truth looks like, and furthermore test the trained
CNN’s performance on a separate set to determine whether or not what it learned
during training was generalisable to unseen data of the same sort. Generating
such data requires significant labour. It is therefore common practice, when
evaluating the effectiveness of new image processing architectures, to utilise
available standard labelled datasets (i.e. datasets whose instances are accompanied
by ground truths). Popular datasets for bench-marking CV applications include
the MNIST dataset of handwritten digits [34] (60.000 training instances, 10.000 test
instances) and ImageNet, consisting of depicted nouns such as animals, plants,
and objects [35] (>14.000.000 labelled instances).

7

1.4. Thesis Specifics

Learning Strategies

The abovementioned philosophy of learning is called supervised learning. Other
philosophies include unsupervised learning, where one does not reveal to the
machine learning model a ground truth during training. This approach is for
instance utilised in clustering algorithms such as K-means [36] and DBSCAN [37].
Unsupervised learning might be useful to identify multi-dimensional similarity
between data instances, but is not capable of explicit classification per se, other
than assigning to the instances a cluster identity.

Another branch of learning is called reinforcement learning which takes an
evolutionary approach. Such a model might implicitly learn how to act in a
rule-governed mileu by random perturbations, and receiving rewards or penalties
based on the success of its perturbations in the environment.

In this thesis, however, the focus will be on supervised learning, developing a
deep CNNs capable of processing both spatial and temporal information. The
CNNs will play integral roles in an ecosystem with traditional computer vision
methods (but perhaps – in new clothes), aiming to achieve what the industry
truly needs: a reliable hole detection system that performs well not only in a
controlled environment.

1.4 Thesis Specifics

With a shared foundational understanding of fish as a nutritious contribution to
human diets, Norwegian aquaculture’s economical contribution to the wealth of
the nation, the ecological concerns regarding fish escapes due to net defects, and
methods of teaching computers to perceive, a proper definition of this thesis and
its contribution to fulfil all of the above can be made.

The thesis proposes an algorithm capable of discovering, highlighting, track-
ing, and reporting, on areas that depict net holes in videos captured during net
cleaning operations. The algorithm is general in nature, allowing for use on
material caught by different hardware in a wide range of environments, given
that respective DNNs are re-trained on video material suitable for the new ap-
plication. Full-length video sequences of the entire cleaning process, offering
not ideal scenarios but real-life ones, make up the data foundation for this work,
keeping results and operation rooted in reality.

This work is exploratory and has therefore not stressed real-time-usability.
However, implementational choices have been considered with future real-time-
usability in mind, and testing (chapter 8) reveals that the current implementation
of the algorithms executes on typical scenes with a speed that must be doubled
to satisfy real-time demands. Thus, real-time usage is likely within reach if
optimal implementations are considered, for instance by migrating from the
Python environment, and with effective parallelisation and hardware upgrades.

8

Chapter 1. Introduction

New Contributions

Common for researched work is usually a concern with identifying irregularities
in single video frames, often operating under ideal circumstances. This work
brings to the table a handful of new ideas. The thesis acknowledges that a realistic
video stream from a net cleaning (or inspection) operation displays more elements
than intelligible net structure. A distinct contribution is the investigation of a
U-Net approach to net segmentation, contrary to traditional binarisation schemes
such as Otsu’s method [38] or Canny’s edge detector [39].

Three different segmentation strategies were initiated, all based on the Mul-
tiRes U-Net [40]; NeNoS (Net and Nonsense Segmentation), teaching the MultiRes
U-Net to separate areas in a frame depicting net structure from irrelevant areas.
The second strategy, 3CAS (Three-Class Attention Segmentation) is a refined
version of the first, capable of separating areas of dark net structure (relative to
its background) from areas of bright net structure. Both approaches were coupled
with an adaptive thresholding algorithm [41] to achieve coherent binarisation of
net structure only, and disregard of anything else. The third method, NTS (Net
Thread Segmentation) needs not coupling with additional binarising schemes,
and yielded very favourable results not least in terms of reduced overhead as
compared to the former two strategies.

To achieve temporally consistent segmentations without compromising com-
putational efficiency was investigated a lightweight lag mask strategy. This scheme
allows the NN to peek at the previous segmentation by slightly expanding the
dimension of the first layer of the MultiRes U-Net. A training regime with specific
methods of regularisation was developed to effectively tune the model’s reliance
on the lag mask contra the current video frame. This scheme proved to stabilise
the segmentation to a remarkable degree, at the cost of less than a millisecond of
computation per frame.

The U-Nets required labelled data, all of which had to be manually con-
structed. More than one thousand images were therefore gathered by careful
analysis of several hours of raw video material, collecting a wide range of scenes
which were all manually segmented. In addition, a representative set of test videos
was extracted from real operation, including challenging scenes and several holes.
The level of difficulty in the testing material is unparalleled by comparable works
investigated in this thesis.

Another central contribution of this work is the adaptive implementation of a
hole detection module similar to that proposed by Haugene [17], based on math-
ematical morphology [42]. The proposed hole detector is capable of detecting
irregular pieces of background in a binary image by tracking the size of the local
neighbourhood with an adaptive variable called The Elbow. The scheme works
regardless of zoom level, and requires not perpendicular relationship between
the camera and the fish cage net.

9

1.4. Thesis Specifics

To enable effective filtering of sporadic (apparent) irregularities caused by
flickering or moving objects, a spatiotemporal filter is proposed, demanding both
spatial and temporal continuity in arising irregularities prior to verification. Spa-
tiotemporal consistency has not been a topic in researched work.

A deep CNN called the scene interpreter has been trained to interpret not
only the binary image, but rather the content of the actual video frame in areas
where verified irregularities occur. The scene interpreter is based on the popular
VGG16 [43] model, and specialised, through transfer learning, to separate net
structure from fish and nonsense. With this addition to the overall hole detection
framework – irregularities which occur due to occluding fish or oversegmentation
(for instance, if the MultiRes U-Net falsely includes parts of the water column
in the segmentation) are effectively ruled out. The scene interpreter was trained
on 300 images extracted from the available video material, and validated on a
separate set of 300 images.

Thesis Outline

• Articles and scientific work relevant for this work is introduced in chapter 2.

• The video foundation is presented in chapter 3.

• The exploration of net segmentation through MultiRes U-Nets takes place
in chapter 4.

• The adaptive irregularity detection scheme is discussed in chapter 5.

• The scene interpreter that separates fish and nonsense from net structure
(in which actual holes can be found) is presented in chapter 6.

• The spatiotemporal irregularity filter (which is in fact tracking of unveri-
fied irregularities), and, eventually, the tracking of verified irregularities, is
discussed in chapter 7.

• The entire framework was tested on representative sequences from real
operations in chapter 8.

• Lastly, a discussion of the achieved results followed by a conclusion and
suggested future improvements finalise this thesis in chapter 9.

If links are preferred to the QR-codes provided in this thesis, all hyperlinks to
which QR codes point are listed in appendix A.

10

Chapter 2
Previous Work

This chapter introduces key methods in CV and, specifically, methods relevant
for the work carried out in this thesis. The chapter consists of three main parts.
Firstly discussed are two Master’s theses concerned with fish cage analysis. Sec-
ondly, three peer-reviewed articles on the same topic. Lastly, a discussion of
articles on NN architectures that were either used or considered for use in this thesis.

Firstly, Haugene’s thesis from 2014 [17] discussing robust net tear detection
in fish cages. Ideas utilised by Haugene and considered (or used) by this thesis
include (i) optical flow, and, particularly mathematical morphology. Those ideas
have been elaborated on afterwards. The idea of mathematical morphology in a
hole detection module will be thoroughly investigated in chapter 5.

Subsequently, Jakobsen’s thesis from 2011 [19] and his take on net cage in-
tegrity control will be discussed. Following Jakobsen’s work is introduced a
set of edge detectors used to convert video frames into binary images. This
conversion, called binarisation, is an operation carried out by every single one
amongst researched work. A more detailed case for binarisation will also be
discussed in chapter 5, where practical aspects of the different methods as they
relate to this application will be further investigated.

The relevant articles present five different takes on fish cage hole detection.
Neither of which, it will be argued, solve the challenge to a satisfactory degree,
but all of which provide valuable insight to the diverse considerations and obsta-
cles that need be overcome.

Lastly, three interesting NN architectures; a novel CNN that promotes infor-
mation inference. The model was initially thought to segment net structure in this
thesis, perhaps enabling intact net structure inference behind occluding objects
such as fish. Secondly, an article investigating 3D CNNs, an idea seemingly
relevant because this thesis analyses videos. The architecture was ultimately not
implemented, but it contributed to motivate the development of spatial coher-
ence encouragement in the MultiRes U-Net, the final NN architecture discussed.
This model was successfully implemented in the thesis as primary segmentation
module. As coda, a short elaboration of the neuron and its activation function.

2.1. Theses

2.1 Theses

2.1.1 Evaluation of Methods for Robust, Automatic Detection
of Net Tear with Remotely Operated Vehicle and Remote
Sensing

Noting that previous theses concerning net tear detection were mainly operating
on ideal-like environments and single-image toy examples, Haugene [17] set to
develop a robust net tear detection algorithm. Robust, in the sense that the algo-
rithm should function as intended in environments with various light conditions,
and in the sense that foreground objects occluding the net, such as fish and algae,
should not be confused with net tear.

His high-level approach was the following: (i) construct a binary mask sep-
arating foreground from background, and (ii) design a structuring element s.t.
a morphological closing operation [42] fills all regular background regions, but
fails to fill sufficiently large background regions — indicative of a hole.

Haugene viewed (i) as the backbone of his thesis. To achieve this he made a
design scheme which he coined Uniform Combinatorial Design. The idea of his ap-
proach was to use a combination of three modules (edge-, temporal background-,
and optical flow based segmentation) and have them vote to create a foreground
binary mask. These three modules were working on the five image channels red,
green, blue, value and saturation, separately, and all votes were collected with a
binary OR-operation.

A substantial part of his thesis consisted of developing a sophisticated back-
ground estimate. His temporal background segmentation (see, for instance, [44])
estimated the background pixels through median historical pixel values. Pixels
whose values were relatively unchanging in time were considered part of the
background, but sometimes smoothly-textured algae and fish were incorporated in
the background model.

Haugene regarded his work as promising, but highlighted a few weaknesses:

1. His algorithm depended on a myriad of parameters which required tuning.

2. Smooth and stationary foreground elements were occasionally included in
the background model. Reflectance in fish scales were sometimes confused
with net tear.

3. The size of the structuring object (used to discriminate regular pieces of
background from net tear) was of a user-defined fixed size. In other words,
the ROV would have to analyse the net structure from a constant angle and
distance to the net in order for it to work properly.

12

Chapter 2. Previous Work

Optical Flow

The purpose of optical flow calculations is to derive, on pixel level, relative spatial
movement of brightness patterns in a sequence of images. By deducing a flow
vector for each pixel, one might be able to tell different objects from another, and
not least describe what objects move in what directions, relative to the viewer.
Several methods have been deduced to calculate optical flow. One popular itera-
tive implementation was presented by Horn & Schunck proposed in 1981 [45].

The algorithm works if several core assumptions are met; (i) the surface is
assumed to be flat, so no brightness patterns arise from shading differences. (ii)
The illumination is considered to be uniform. (iii) Patterns are assumed to move
smoothly, with no spacial discontinuities.

If so, the brightness of a point in a pattern cannot change with time. Thus, the
brightness of point (x,y) in an image at time t can be denoted E(x,y, t) and

dE

dt
= 0 (2.1)

and hence, by the chain rule:

∂E

∂x

dx

dt
+
∂E

∂y

dy

dt
+
∂E

∂t
= 0 (2.2)

By letting u = dx
dt , v = dy

dt , and Ex, Ey, Et denote the partial derivatives of the
image brightness derivatives with respect to x, y, and t, such that

Exu+ Eyv+ Et = 0 (2.3)

or, equivalently
(Ex,Ey) · (u, v) = −Et (2.4)

the optical flow in the direction of the brightness gradient (Ex,Ey) can be deduced:

−
Et√
E2x + E

2
y

(2.5)

Haugene [17], on the other hand, did not follow Horn & Schunck, but rather
utilised techniques of single- and double differencing which are simpler methods of
optical flow. The schemes subtract subsequent frames from one another, yielding
no flow vector per se, but rather highlighting areas of motion. For Haugene’s pur-
pose of identifying background as something that does not move this was sufficient.

13

2.1. Theses

(5, 6)

Visited Discovered

(5,6) (5,5)

(5,7)

(4,6)

(6,6)

Visited Discovered

(5,6)

(5,5)

(5,7)

(4,6)

(6,6)

(4,5)

(6,5)

Visited Discovered

(1,4)

(1,5)

(1,6)

(1,9)

(1,10)

(1,11)

(2,6)

(2,7)

(2,8)

(2,9)

(3,6)

(3,7)

(3,8)

(3,9)

(4,5)

(4,6)

(4,7)

(4,8)

(4,9)

(4,10)

(5,5)

(5,6)

(5,7)

(5,8)

(5,9)

(5,10)

(6,5)

(6,6)

(6,7)

(6,8)

(6,9)

(6,10)

(7,4)

(7,5)

(7,6)

(7,7)

(7,8)

(7,9)

(7,10)

(7,11)

(8,3)

(8,4)

(8,5)

(8,6)

(8,7)

(8,9)

(8,10)

(8,11)

(8,12)

(9,4)

(9,5)

(9,6)

(9,7)

(9,9)

(9,10)

(9,11)

(10,5)

(10,7)

(10,10)

(11,5)

(11,6)

(11,7)

(11,8)

(11,10)

(12,6)

(12,7)

Figure 2.1: Region growing starts from a seed point and adds to the
discovered list neighbouring pixels whose intensities satisfy an inclusion
criterion. In this instance the criterion simply demands a pixel to be
white. Pixels are iteratively moved from the discovered list to the visited
list once their neighbourhood has been assessed. Once the discovered
list is emptied, meaning the entire region has been visited, the visited
list is returned. Above are shown the first two, and the final iteration
of the algorithm starting from seed (5, 6).

Region Growing

Region growing as often discussed in this work is a simple algorithm which, from
a seed point, returns a bag of coordinates to neighbours and neighbours neigh-
bours — and so forth — of the seed which satisfy a certain inclusion criterion.
Subject to evaluation by the inclusion criterion is the pixel intensity value.

The inclusion criterion can be quite sophisticated, or simply state one or
more static thresholds which decide whether or not a pixel will be included
in the region. In this project region growing will be utilised on binary images,
exclusively, and the criterion will simply look for neighbours that are either black
or white, dependent on application. An example of a region growing algorithm
looking for the region to which seed pixel (5, 6) belongs is illustrated in fig. 2.1.

14

Chapter 2. Previous Work

Mathematical Morphology

The theory of mathematical morphology includes a set of operators that have
proven useful for image analysis [42]. Dilation, erosion, opening, and closing, are
basic operations that can be applied to binary and grayscale images (and further
extended to multi-dimensional colour spaces such as RGB) which preserve the
shape of the original objects whilst still being capable of removing noise, filling
gaps, smoothing edges, and breaking sparse connections.

The principle of dilation and erosion is to compare the pixel intensities of an
image I to a reference object with a given size and shape, called the structuring
object B. By systematically sliding B across I, one may produce output images
that are either thinned or fattened versions of the original. By combining the basic
operations of erosion and dilation, one may preserve the original shape, but
scrape off objects, or parts of objects, that are smaller than B, or, on the flip side,
fill gaps that are smaller than B. These operations are called opening and closing,
respectively, and consist of dilation and erosion in sequential order:

I dilated by B = I⊕B
I eroded by B = I	B
I closed by B = (I⊕B)	B
I opened by B = (I	B)⊕B

(2.6)

The procedures of dilation and erosion, and opening and closing, are visualised
in fig. 2.2 and fig. 2.3.

Haugene [17] utilised morphology to find holes that were larger than the
defined structuring element. One advantage to this approach, contrary to a region
growing approach, is that one can identify holes whose shape resembles that of
the structuring element, or, at least, whose shape cannot be entirely covered by
the structuring element. If, for instance, poor image quality led a large, but thin
background area to appear in a frame, a pure region growing approach could
have concluded it to be a proper hole since a large number of background pixels
were connected. However, if the hole were thinner than structuring element, it
would have been closed by a closing operation. This phenomenon is further
discussed in chapter 5.

The theory of morphology was initially developed for binary images, but an
extension to grayscale can easily be made. Whilst c (see fig. 2.2) in a binary case
would either be set to 0 or 1, it would rather be set to the smallest, or largest value
covered by B in I. This variant easily applies to RGB-images as well, where each
pixel contains an array of pixel intensities for the red, green, and blue channels,
respectively. The morphological operations would simply be carried out on each
individual colour channel as it would on a grayscale image.

15

2.1. Theses

(a) Binary image I. White pix-
els are ones, black pixels are
zeros.

•

•

•

(2, 2)

(5, 6)

(8, 8)

(b) Image I with the struc-
turing element from (c) visu-
alised.

•

(c) A 3× 3 structuring element, B, of ones. The centre is marked with a red
dot.

Figure 2.2: By sliding the structuring element B from left to right,
top to bottom in the image I we can use either dilation or erosion
to generate an output image. If we perform dilation, then the centre
pixel c (marked with a red dot) of B in I will be set to 1 in the output
image if B hits either set pixel in the neighbourhood of c in I. In (b)
both (2, 2), (5, 6), and (8, 8) will be 1 in the output image in the case of
dilation. If we perform erosion, then c in I will be set to zero if B does
not fill the neighbourhood of c in I. In (b) (2, 2) and (8, 8) will be set to
zero, whilst (5, 6) will remain 1 since B fills the neighbourhood of c in
I.

16

Chapter 2. Previous Work

• • •

• • • • • •

• •

•

• • • •

• • • • • • • •

• • • • • • •

• • • • • • •

• • •

• • • • • • •

• • • • • • • •

• • • •

• • •

• • •

(a) Erosion: I	B.

• • •

• • • • • •

• •

•

•

• • •

• • •

• • •

•

•

• • •

•

• • •

• • •

(b) Opening: (I	B)⊕B.
• • • • • • • • •

• • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • •

• • • • •

• • •

• • •

• • • • • • •

• • • •

• • • •

• • • • • • • • • •

• • • • • • • • • • •

• • • • • • •

• • • • • • • •

(c) Dilation: I⊕B.

• •

• • • • •

• • •

• •

•

•

• • • •

• •

• •

• • • •

• • • • •

(d) Closing: (I⊕B)	B.

Figure 2.3: Dilation and erosion can be used in a complimentary
manner to open an image, effectively removing elements from I that
are smaller than B, or to close an image, effectively filling gaps that are
smaller than B. Here, I and B from fig. 2.2 have been used and I has
been overlayed to better visualise the effect of the operations.

17

2.1. Theses

2.1.2 Automatic Inspection of Cage Integrity with Underwater
Vehicle

Unlike Haugene, Jakobsen’s [19] work from 2011 also considered ROV hardware
design, including a laser module to regulate the vehicle’s distance to the fish net,
and communication interfaces. His work therefore overlaps with this thesis only
in parts.

Jakobsen’s hole detection algorithm required ideal conditions: (i) the ROV is
between 15 and 60 centimetres from the net. (ii) The camera faces the net struc-
ture more or less dead on. (iii) The view of the net is free from occlusions and
disturbances such as fish and algae growth. His algorithm worked on each frame,
independently, starting by applying to the images a binarising scheme based on
histogram analysis, and, later, utilising edge detection.

Jakobsen explored the Marr-Hildreth kernel [46] (also known as the Laplacian
of Gaussian (LoG) method) which is is an edge detector based on first limiting the
impact of noise-induced false edges by smoothing the image using a Gaussian
kernel, and then detecting edge points as zero-crossings of the blurred image’s
second derivatives.

Subsequently, he found the edge detector of Canny [39] to yield better results.
This method is capable of tracking weak, but connected edges, and might sup-
press false edges more successfully than the LoG.

After constructing a binary image, Jakobsen conducted depth-first-searches to
recognise straight lines spanning across the entire frame. The net integrity was
verified by comparing the relative distances between the lines.

Jakobsen concluded that his results were promising, but never tested his
algorithm on images that depicted structural damage.

Otsu’s Method

Otsu proposed an optimal threshold selection algorithm for grayscale images [38].
By analysing the grey-level histograms, and assuming either two or more classes,
he sought to find the threshold which would maximise inter-class weighted
variance, or, equivalently, minimise intra-class weighted variance.

The first step of the algorithm normalises the histogram and treats it like a
probability distribution:

pi =
ni
N

, pi > 0,
L∑
i=1

pi = 1. (2.7)

where pi is the probability of a grey level i, N = n0 +n1 + ... +nL is the number
of pixels, and L is the number of grey levels i = [1, 2, ...,L].

18

Chapter 2. Previous Work

By assuming, for simplicity, two classes, C0 and C1 which are separable by a
threshold k, the probabilities of each class occurrence is defined by

ω0 = Pr{C0} =

k∑
i=1

pi = ω(k)

ω1 = Pr{C1} =

L∑
i=k+1

pi = 1−ω(k)

(2.8)

and their mean values are

µ0 =

k∑
i=1

iPr{i|C0} =

k∑
i=1

ipi/ω0 = µ(k)/ω(k)

µ1 =

L∑
i=k+1

iPr{i|C1} =

L∑
i=k+1

ipi/ω1 =
µT − µ(k)

1−ω(k)

(2.9)

where µT is the mean pixel value of the entire image and ω(k) and µ(k) are the
zeroth- and first-order cumulative moments up to k.

From this one can deduce the class variances

σ20 =

k∑
i=1

(i− µ0)
2Pr{i|C0} =

k∑
i=1

(i− µ0)
2pi/ω0

σ21 =

L∑
i=k+1

(i− µ1)
2Pr{i|C1} =

L∑
i=k+1

(i− µ1)
2pi/ω1

(2.10)

which can be used with the class probabilities to formulate cost function expres-
sions such as the weighted within-class variance σ2w = ω0σ

2
0 +ω1σ

2
1 and the weighted

between-class variance σ2B = ω0(µ0 − µT)
2 +ω1(µ1 − µT)

2.

Otsu noted that calculating σ2B is based merely on means and is therefore an
easier operation than calculating σ2W , and therefore favoured the cost function
η = σ2B/σT where σ2T is the total image variance, independent of k. The optimal
threshold k∗ is thus the one that maximises η and hence maximises the weighted
inter-class variance.

Otsu’s method can be generalised to multi-class problems, and will perform
well in situations where classes adhere strictly to disjoint sets of pixel values.

19

2.1. Theses

Marr-Hildreth’s Laplacian of Gaussian Method

Contrary to approximating the first derivative (through for instance a Sobel [47] or
Prewitt kernel) and finding its maxima, the Laplacian of the Gaussian [46] can be
analytically deduced with no need for approximation. The Gaussian is defined as

G(x,y) = e−
x2+y2

2σ2 (2.11)

where σ2 is the variance of the distribution. This property is set by the user. By
convoluting the original image I with G we blur the original image where the
value of σ decides the level of blurriness. The level of blurriness will further
decide how strong an edge has to be in the original image in order to come through
as an edge in the blurred image.

Due to properties of convolution, the Gaussian kernel and its Laplacian needs
only be calculated once. Hence, the Marr-Hildreth method is extremely efficient,
only requiring for each image a convolution with a pre-calculated LoG-kernel:

∇2(G(x,y) ∗ I(x,y)) = (∇2G(x,y)) ∗ I(x,y) (2.12)

where ∇2 is the Laplacian operator:

∇2f(x,y) =
∂f(x,y)
∂x2

+
∂f(x,y)
∂y2

(2.13)

Canny’s Method

Canny’s computational approach to edge detection [39] from 1986 aimed to create an
edge detector which satisfied the following criteria: (i) being a good detector in
the sense that non-existing edges will not be marked, and existing edges will not
fail to be marked. (ii) Being a good localiser in the sense that marked edges will
be as close as possible to the centre of the edge. (iii) Yielding one and only one
response to a single edge. Canny achieved this by first convoluting the original
image with a Gaussian kernel (similar to the Marr-Hildreth method) and then
approximating the first derivatives of the resulting image, Gx and Gy, for instance
by utilising the Sobel kernel in x− and y−direction. For each pixel (x,y) one can
then identify a direction θ and gradient G:

θ = tan−1(
Gy

Gx
)

G =
√
G2x +G

2
y

(2.14)

Furthermore, Canny suggested edge thinning through nonmaximum suppression:
By analysing every pixel’s neighbouring pixels in the gradient direction, a decision
would be made either to suppress the current pixel if it weren’t a local maximum,
or let it prevail. This step satisfies criterion i and ii from the checklist; representing
each edge by a single, strong response.

The remaining edge responses were further subject to double thresholding where
responses below a lower threshold Tl were suppressed and those above an upper

20

Chapter 2. Previous Work

threshold Tu were verified. Responses between Tl and Tu were verified through
hysteresis, that is, if and only if they were part of an edge with already verified
edge points. Canny’s algorithm thus allowed weaker parts of edges to be included
in the final product if other parts of the edge yielded a sufficiently strong response.

The specific values of Tl and Tu should be tuned by the user based on appli-
cation and noise properties. Canny suggested the relationship of Tu to Tl to be
approximately two or three to one.

2.2 Articles on Net Cage Inspection

2.2.1 Automated fish cage net inspection using image process-
ing techniques

Paspalakis et al. [21] proposed in a recent paper two main strategies to detect net
tear. Their first approach was designed to be easily parallelisable: the frame was
binarised using Otsu’s method [38] and then divided into an grid of overlapping
cells. The sums of pixel intensities were calculated per grid cell, and cells with
a significantly low sum were considered to be irregular. Specifically, these were
cells that failed the 0.05 p-value test under the assumption of a normal distribu-
tion.

This approach might be easily parallelisable, but fails to give anything but
a crude estimate of where a net tear might be. In addition, if images are less
than ideal, it cannot be said to be a robust method. For instance — if the net is
covered by growth in half the image, the binary interpretation of the image might
represent the net as thicker in that half, meaning cells that cover this area will
have a much higher accumulated count of net pixels than the other half.

Their second idea introduced the detection of Hough lines. After binarisation,
the Hough lines were compared to their nearest net pixel in the binary image.
The net was assumed to be intact where it closely followed the suggested Hough
line, and broken where the Hough line had no close contact with an edge point.

Paspalakis et al. considered their results to be good and promising. However,
all examples depict straight net structure spanned across the entire image, with
no noise neither in background nor in the foreground. They initially discussed
the fact that net structure rarely appears in straight lines but deforms spatially to
form curves rather than lines. Haugene also discovered this is his work [17] and
found it hard to find Hough lines under typical circumstances.

21

2.2. Articles on Net Cage Inspection

The Hough line transform

The Hough line transform [48] can be used to identify straight lines in a binary
images through a series of votes. The transform can, however, be extended to
identify any shape that can be represented mathematically, so an extension could
hypothetically be made to fit the needs of a net structure identifier.

Straight lines can be explained by y = mx+ c or, equivalently, ρ = xcos(θ) +

ysin(θ) where ρ and θ denote the length and the orientation, respectively, of the
line’s normal vector to the image origin. Since every line in the (x,y)-space can
be described by a (ρ, θ)-pair, it translates to a point in the (ρ, θ)-space, also called
the Hough space for 2D-lines.

At each edge point in the binary image, the Hough Line Finder searches
for lines by iterating through (ρ, θ)-pairs. For each edge point that such line
hits, votes accumulate. After analysing each and every point, a threshold can be
determined for which (ρ, θ)-pairs that exceed this threshold represent the most
prominent straight lines in that image.

2.2.2 An integrated ROV solution for underwater net-cage in-
spection in fish farms using computer vision

Betancourt et al. published late in 2020 a very interesting paper proposing a new
take on fish cage analysis in real-life environments.

Their approach resembled other works with respect to several aspects such as
the initial binarisation of each frame with Otsu’s method. Following binarisation,
they applied the Hough line transform to recognise the mesh structure. At this
stage, they deduced from the intersection of the detected lines the location of the
knot points in the net. From this information they reconstructed the depicted net
structure, digitally, and recognised holes where knot points lacked connections.

The authors tested their scheme on a real fish cage. However, their results
section depicts only staged test-images, on which their algorithm performed
decently – reconstructing the net structure with high accuracy and recognising
79% of present holes. Questions could though be raised as to how robust their
approach is when considering the fact that real-life video not always represents
the net structure perfectly, and that net structure will appear broken in occasional
frames. Challenges such as algae growth and occluding fish (which are indeed
crucial talking points in real-life fish cage inspection applications) are not dis-
cussed, so it remains unclear how well this framework performs under such
conditions.

22

Chapter 2. Previous Work

2.2.3 An adaptive method of damage detection for fishing nets
based on image processing technology

Zhao et al. [22] carried out recent work on fish cage damage detection utilising
two methods; one based on knot point detection (in a sense like [20], but their
knot detection schemes and their usage of the information differed), and one
based on mesh hole area comparison.

Their first method consisted firstly of a manual region of interest (ROI) selection
in the image – acknowledging that only some sub-part of the image is fit for
analysis. Their assessment philosophy originated in the idea that considering the
net structure as a whole would be too inefficient. Their solution was to reduce its
integral information to a set of features, and the most prominent net structure
descriptors, they argued, were the locations of knot points. After applying Harris
corner detection [49] to their grayscale image (an algorithm similar to an edge
detector that searches for conjoined edges) and, subsequently, analysing the
distribution of corners within the ROI.

The authors assumed that intact net would distinguish itself from damaged
net, clearly, by boasting regular patterns in corner distributions. Algae growth
caused this assumption to crumble, however, effectively hindering the detection
of corners. Realising this, they changed focus from knot points to mesh holes,
synonymously with what we later in this thesis call Background.

With their new approach, they considered clear images only, noticing that
several frames from video streams were affected by motion blur. Subsequently,
they applied some filtering and binarised the image with Otsu’s method [38].
Recognising that Otsu’s global threshold tends to misrepresent net structure in
certain scenarios (a single global threshold does not exist in complex images.
This is further discussed in chapter 5, see for instance fig. 5.4), they applied
morphological closing to the binary image to repair broken connections. After
this, they compared the area of each and every mesh hole and extracted from the
characteristics of the distribution significant deviations, if any.

Area comparison, essentially a region growing approach, has a few draw-
backs. This is further elaborated on in chapter 5 (see fig. 5.9). For instance: (i)
the algorithm breaks down if the binary image is slightly corrupt. That is why
morphological closing was applied. This will eliminate some trouble, but not all.
(ii) The counting of every pixel of every mesh hole is a tedious operation, and (iii)
if the camera is tilted, not facing the net structure dead on, significant damage
far away from the camera may have a smaller area than intact mesh holes closer
to the camera.

The proposed algorithm of Zhao et al. identified holes in test images, and
successfully so, also with some algae growth present. Their choice of mesh holes
as subject to scrutiny, as opposed to net structure directly, is interesting, but their
implementation is too immature for any robust and practical application.

23

2.3. Neural Network Architectures

2.3 Neural Network Architectures

2.3.1 Spatial As Deep: Spatial CNN for Traffic Scene Under-
standing

Pan et al. claimed in 2018 to improve the conventional CNN by enabling message
passing between pixels across columns and rows in a layer. The method provided
great results in traffic lane segmenting, where large continuous shapes may be
occluded by objects such as lamp posts, pedestrians, and cars. If this architecture
could infer information that was partly occluded, perhaps it could also identify
net structure where it is partially disrupted by fish, growth, or perhaps holes.

Their key idea was instead of sliding filters over the entire frame, to slide
filters over each column and row of the feature map and thus treat them as layers
to which convolution and the following nonlinear activation function is applied,
before it is passed on to the next layer. This architecture allowed richer informa-
tion flow between neurons in the same original layer.

The model outputs probability maps (probmaps), and pixel level targets were
used during training. Lane markings whose existence probability exceeded 0.5
were considered, and the Union over Intersection, also know as the Jaccard index,
was used for scoring.

The spatial CNN outperformed competing state-of-the-art NNs such as the
ResNet-101, the MRFNet, and the ReNet in most scenarios when tested on traffic
lane segmentation. It seemed to infer well then nature of the lane segments even
when not completely visible.

2.3.2 3D Convolutional Neural Networks for Human Action Recog-
nition

Ji et al. proposed in 2013 to expand the conventional 2D CNN to extract features
from a stream of images, instead of singular frames. Thus encompassing tempo-
ral, as well as spatial, dimensions. The material at hand was a set of surveillance
videos from which they aimed to detect human actions.

From 2D to 3D convolution

In conventional 2D convolution, the value of a unit on the coordinate (x,y) in the
jth feature map in the ith layer is given by

v
xy
ij = tanh

bij +∑
m

Pi−1∑
p=0

Qi−1∑
q=0

w
pq
ijmv

(x+p)(y+q)
(i−1)m

 (2.15)

24

Chapter 2. Previous Work

where bij is the bias of the feature map at the current layer, m is the set of
all feature maps in the previous layer (which are connected to the current), Pi
and Qi are the height and width of the kernel, wpqijm is the weight of the kernel
in the position (p,q) which is used to generate the current feature map, and
v
(x+p)(y+q)
(i−1)m

is the value of the unit on the coordinate (x + p)(y + q) in the pre-
vious layer of feature map m. The parameters b and w are typically learned
during model training. Resolution can be reduced by pooling between layers,
for instance Max Pooling. Max Pooling preserves only the largest value within a
window, and can thus be used to downscale an image whilst preserving the most
valuable information, which is considered to be carried by the most intense edges.

To capture motion, several adjacent frames were considered in a 3D convolu-
tion process:

v
xyz
ij = tanh

bij +∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

w
pqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

 (2.16)

where R denotes the third (temporal) dimension of the kernel.

Three different actions were classified: CellToEar, ObjectPut, and Pointing.
They first identified human heads using some pre-trained structure, then drew a
rectangular box encapsulating the entire human, whose size was deduced from
the scale of the head. The content of the video inside the rectangular box (they
simply required a human to keep themselves within the boundaries of the box
for some time) were collected from consecutive frames to make up a cube of data.

The results were good, but they required a lot of labelled data. The team set
to explore unsupervised 3D CNN structures later. Given that this paper is a few
years old, progress might have been made on this field. It seems, however, that
information encapsulated in the temporal dimension should be utilised in the
net cage analyser. Since video material is available, and not simply still images,
movement should be used to make the application state-of-the-art.

2.3.3 MultiResUNet: Rethinking the U-Net architecture for mul-
timodal biomedical image segmentation

Ibtehaz & Rahman reinvented in 2020 the classical U-Net widely used in biomed-
ical image analysis with their MultiRes U-Net [40]. Where CNNs typically require
vast amounts of annotated data, U-nets perform well even on scarce amounts of
training data, probably due to their ability to generalise through the decoder and
encoder architecture.

A U-Net consists of an encoder that downsamples images through convo-
lutions and MaxPooling, and a decoder where images are upsampled through
deconvolutions. A key feature of the architecture are the skip connections that
output from each of the convolutional layers of the encoder, before MaxPooling,

25

2.3. Neural Network Architectures

and connect to the respective upsampling layer where the information from the
encoder is concatenated with the feature map provided the decoder. Thus spatial
information lost in the MaxPooling might be retrieved in the upsampling process.

In the paper, Ibtehaz & Rahman remarked that — although the use of skip
connections seems clever — that it is peculiar to concatenate the output of the
first convolutional layer of the encoder (presumably detecting low level features)
with the last convolutional layer of the decoder (being much more processed and
presumably reconstructing high level features). To fix this, they applied a Res path,
a series of convolutional operations to the skip connections, to have their resolu-
tion better match the feature map in the decoder to which they were concatenated.

A series of datasets were used to train and test their architecture. Some
containing only a few dozens of images, others a few thousands. All activation
functions were Rectified Linear Units (ReLus), except for in the output layer where
they exploited the sigmoid to output a probmap. Again, the Jaccard index was
used to score the prediction versus the binary mask representing the ground truth.

This research sparked an interest with respect to net structure segmentation,
as the task of segmenting cancerous cells from healthy tissue and net structure from
turbid water may pose similar challenges. In either scenario a binary ground
truth can be supplied, and a predicted binary mask could help identify what part
of the image contains net structure and thus help discard irrelevant parts of a frame.
In addition, generating a few dozens or even a few hundred training images
might very well be a feasible task during a semester or two.

A Note on the Perceptron and its Activation Function

NNs as discussed in biology consist of neurons and their interconnections called
synapses. As we strive to learn new things, rewards in the form of dopamine kicks
strengthen those interconnections which lead to desired outcomes. Consequently,
learned behaviour and memory is stored as fine-tuned weighted nets of intercon-
nected neurons in the brain.

In machine learning, neurons are modelled as linear classifiers called percep-
trons and the synapses as weighted connections (see fig. 2.4). Adjacent perceptrons
make up layers. The first layer of a NN is called the input layer which consists
of one perceptron per input variable. For instance, one perceptron per pixel if
the input is an image. The last layer is called the output layer and consists of
one perceptron per output variable. For instance, one perceptron in a regression
problem, one perceptron per class in a classification problem, or one perceptron
per output pixel in a segmentation problem. Layers in-between the input- and the
output layers are called hidden layers.

Interconnections between layers vary depending on architecture, and so does
the number of perceptrons in the different hidden layers. If every perceptron
in layer i is connected to every perceptron in layer i+ 1, the network is called

26

Chapter 2. Previous Work

Input Layer Hidden Layers Output Layer

Perceptrons

Figure 2.4: A neural network consists of interconnected linear classi-
fiers called perceptrons. Adjacent perceptrons make up a layer, and
layers between the input- and output layers are called hidden layers.

fully connected. However, perceptrons in one layer might very well be connected
only to a subset of subsequent perceptrons, or even skip a layer or feed back to
previous layers.

The perceptron’s activation function determines the mapping between the its
inputs (x), weights (w), internal bias (b) and the resulting output. The S-shaped
sigmoid function (see fig. 2.6) which squashes its input between zero and one has
seen wide application, but is currently ruled out by the better-performing ReLu
function in deep NNs [30]. However, it still makes sense to use a sigmoid in the
output layer in [40] since the desired output is a map of probabilities.

27

2.3. Neural Network Architectures

w1

w2

w3

f(w •x + b)

x1

x2

x3

Figure 2.5: The perceptron is modelled as a linear classifier which
receives inputs x from (typically) previous perceptrons which are
weighted by their respective, trainable, weights w. The perceptron
adds a trainable bias b to the dot product of w and x, and applies to it
a non-linear activation function f.

2

-2

-2

2

(a) The ReLu function yields
zero for negative inputs and
a linear response to positive
inputs. The x-axis describes
input x, and the y-axis the re-
sponse f(x).

0

0,5

1

1,5

-5
-4
,7
4

-4
,4
8

-4
,2
2

-3
,9
6

-3
,7

-3
,4
4

-3
,1
8

-2
,9
2

-2
,6
6

-2
,4

-2
,1
4

-1
,8
8

-1
,6
2

-1
,3
6

-1
,1

-0
,8
4

-0
,5
8

-0
,3
2

-0
,0
6

0
,2

0
,4
6

0
,7
2

0
,9
8

1
,2
4

1
,5

1
,7
6

2
,0
2

2
,2
8

2
,5
4

2
,8

3
,0
6

3
,3
2

3
,5
8

3
,8
4

4
,1

4
,3
6

4
,6
2

4
,8
8

sigmoid

2

-2

-2

2

(b) The sigmoid function
squashes its input between
zero and one with its charac-
teristic S-shape.The x-axis de-
scribes input x, and the y-axis
the response f(x).

Figure 2.6: Non-linear activation functions allow the networks to learn
complex patterns. The sigmoid was traditionally favoured, but ReLus
handle better through their simple nature and positive linearity the
issue of vanishing gradients and forgetfulness in very deep networks
[30].

28

Chapter 3
Video Material

Videos contributed to this project by Frøy gruppen were captured during net
cleaning operations and inspections along the Norwegian coastline in 2018, 2019,
and 2020. The videos vary in quality and appearance, as multiple vessels each
with their distinct equipment were engaged in the different operations. In addi-
tion – weather and lighting conditions added a not negligible touch to each video.
This chapter introduces, briefly, layout and properties of the different ROVs and
their videos used in this work.

3.1 Flying Net Cleaner

The Flying Net Cleaner (FNC) [50] is produced by Sperre ROV Technology, part
of AKVA group. The ROV manoeuvres along the net with six thrusters, carefully
cleaning it with high-pressure seawater. The two videos as made accessible by
Frøy gruppen (reffered to as fnc1 and fnc2) are filmed at 30 frames per second
with a resolution of 1920 x 1080 pixels. Each frame shows parts of the ROV,
watermarks, and frequent interactions with cleaner fish along the net wall, as
can be seen in the sample frames in fig. 3.1. The cleaning operation is typically
carried out at a speed of 1 m/s.

3.1.1 Challenges

Approximately 40% of each frame is useless with respect to net inspection, con-
sisting of ROV parts. In addition, the FNC seems to attract, or, at least, not to
frighten, fish to the degree as does the Manta robot (whose nature will soon be
discussed). Interactions with cleaner fish is a pretty common sight in both clean-
ing operations with FNC analysed for this work, posing challenges which must
be met when developing a robust algorithm for net tear detection. Furthermore –
as the robot dives deep its lights turn on – which in turn alters the appearance of
the net and its surroundings in the video.

3.2. Manta Net Cleaner

Figure 3.1: Typical scenes from the FNC include parts of the ROV and
curious cleaner fish. The raw frame is tagged with date, time, and cur-
rent depth. Certain watermarks have been censored for confidentiality
reasons.

Figure 3.2: The Manta shows part of its construction in the port and
starboard views, but usually clear shots in the fore view and – more
often than not – turbulent waters in the aft view. Due to this three-
views-a-row format each view measures approximately 600 x 500

pixels. The frames are usually tagged with date and time, but not
always. Certain watermarks have been censored for confidentiality
reasons.

3.2 Manta Net Cleaner

The Manta Net Cleaner (Manta) is produced by Stranda Prolog [51] and, like
the FNC, uses thrusters for propulsion along the net, cleaning it with seawater
jets. Unlike FNC, the Manta generates videos from four different views; fore,
aft, starboard, and port. The raw frame format (see fig. 3.2) means each view
is approximately 600 x 500 pixels whilst the entire frame measures 1920 x 1080

pixels, captured at 30 frames per second. The Manta moves as quickly as the
FNC, but its footage is often clearer. The four videos granted by Frøy gruppen
are referred to as manta1, manta2, manta3, and manta4.

3.2.1 Challenges

Amongst Manta’s challenges is definitely the resolution of the input images.
Whereas inspection type videos (yet to be discussed) and FNC videos provide
1920 x 1080 pixel resolution of a single view, the Manta views are one sixth the

30

Chapter 3. Video Material

Figure 3.3: The inspection videos are primarily focused on irregularity
detection and offer thus unique close-ups of suspicious areas. The
inspection ROV is probably less invasive in the cage than the cleaner
ROVs and the presence of schools of curious fish is more common than
uncommon. Certain watermarks have been censored for confidentiality
reasons.

size. Down-scaling and resizing of input images is indeed an important part
of deep learning and image analysis, but larger input images offer in general
greater flexibility in terms of methods. An image of larger resolution could be
analysed with a sliding window making use of all information captured in that
image, whilst smaller images might already have ruined reality by compressing
large chunks of information into few pixels. This issue specifically manifested
itself when exploring the possibility of evaluating irregular parts of an image
with the scene interpreter (chapter 6), a CNN used to recognise fish or holes in
small sections of the image. If the image itself is small, then a fraction of that
image is necessarily smaller, and unnecessarily unclear.

Like the FNC, its construction occludes a substantial part of certain views,
35% in the port and starboard views. Unlike the FNC, fish rarely interact directly
with the Manta.

3.3 Inspections

Whereas tear detection comes second to cleaning during a cleaning operation,
it comes second to nothing during an inspection. The inspection video offers
slow-paced shots of the net structure, and the ROV operator clearly take their
time to investigate and zoom in on suspicious areas (see fig. 3.3). The ROV is
produced, like FNC, by Sperre ROV Technology, and the resulting frames show
no parts of the ROV, filmed at 30 frames per second. The resolution is 1920 x 1080

pixels. The single inspection video provided us is referred to as inspection1.

31

3.4. Usage

3.3.1 Challenges

The Achilles’ heel of the inspection videos is the ever-presence of fish occluding
its view of the net. Disregarding every instance of a swimming fish could be a
difficult mountain to climb. Contrary to cleaning videos (who more often than not
have a rather stable distance to the net), the zoom level varies significantly within
the inspection video; sometimes the net structure is extremely up-close, and then
extremely far away at other times. This could pose challenges to segmentation
modules and hole detection modules (NNs should at least be exposed to net
structure with very diverse zoom ratio during training).

Its strengths, however, are many; the video quality seems to be higher than
that of the cleaner robots, it is slow-paced with little motion blur, and the inspec-
tion shots tend to capture the net structure straight on, different from a cleaning
operation where the ROV, as it were, levitates on the net structure, filming the net
from the angle one would view the road when driving a car.

3.4 Usage

Certainly, access to several hours of video material caught by a wide range of
ROVs is a luxury, but lack of constraint is not the best facilitator for progress.
The Manta videos have been selected as prime target for scrutiny in this thesis.
This choice is partly motivated by the idea of killing two birds with one stone –
whereas inspection videos’ main concern is with hole detection, applying an auto-
matic hole detection module to a net cleaning operation effectively achieves more.
Additionally, these videos pose several interesting challenges that slow-paced
inspection videos do not. For instance – the presence of heavy algae growth and
flying objects. Compared to the FNC, the Manta typically yields sharper footage.

Hence, hole detection has been tested on Manta videos, specifically on
manta1 and manta4, whereas manta2 and manta3 and footage from
other ROVs have been utilised to train the NNs. It is important to note that the
ruling out of FNC and inspection type videos during testing does not mean the
developed framework is not applicable to those operations in the future.

32

Chapter 4
Attention: The U-Net

The near impossibility of perception is a well-known headache in CV history. This
mantra might eventually resemble a broken record, but it is absolutely funda-
mental as motivation for introducing the U-Net. Whereas the next chapter will
introduce the rigid, rule-based, local irregularity detector (chapter 5), this chapter
seeks to solve the much less concretisable problem of attention.

It is not indisputably evident that bottom-up approaches to object detection
duplicate well what humans do. A body of optical illusions demonstrate how
easily our brains are fooled – how it often seems to apply top-down inference
rather than bottom-up analytical calculation. For instance – a famous experiment
conducted by the cognitive scientist and psychologist Daniel J. Simons in 1999

pinpointed how detrimental lack of attention is to basic perception; Simons pre-
sented his Harvard students with a 25-second video displaying what seemed to
be a game of basketball. Two groups of three, wearing white and black t-shirts,
moved across the scene, passing the ball amongst team members. Simon’s stu-
dents’ mission was seemingly simple: they were to count the number successful
passes made by the white team. Surprisingly, whether or not the students got this
number right was of minor importance. Half failed to notice the 6-feet gorilla that
entered the scene, casually, strolling to the centre of action, beating his chest a
few times, then walking off. The gorilla acquired himself eight seconds of screen
time, but many busied themselves too much with counting passes to recognise
the unexpected [52].

Likewise, ROV operators report to first and foremost focus on their primary
job: the net cleaning operation. Their attention to algae covered cage net could
actually be inhibitory to their hole detection capabilities in sections of clean net.

4.1 Where Holes Are At

Holes cannot be found within schools of fish. They cannot be found in video
segments too pixelated to interpret, and they cannot be found within ROV parts.
A hole detection scheme should therefore, arguably, pay attention to areas within
which holes can appear, and not elsewhere. This aspect of the problem has not

4.2. NeNoS: Net and Nonsense Segmentation

Figure 4.1: The suspicious dark spot in the middle of intelligible net
structure is very apparent to a humans. However, it is perhaps not well
enough appreciated how different elements are intuitively disregarded
as uninteresting during hole detection. Parts of the ROV, the blurry
net floor, and the distant net wall, make up most of the image, but
holes cannot be detected there.

been discussed well enough in previous research, all of which concerned with
hole detection schemes, and not attention modules, implying the assumption that
interpretable net structure covers the entire screen.

Disregarding nonsense in fig. 4.1 is a necessary precondition to identify the
plausible hole in its net structure. An alien object, part of the ROV, covers more
than a third of the view. The bottom net structure is too blurry to be analysed.
Most of the net wall is too far away. Only a certain part of the image, in the
leftmost centre, depicts net structure clearly enough to conclude that the dark
spot represents an anomaly.

4.1.1 Introducing the MultiRes U-Net

Few traditional tools exist to successfully, and effectively, disregard everything
that is irrelevant. Hypothetically – edge detectors can reveal regions of sharp
transitions, which would effectively discard blurry regions. A binary mask could
be used to scrape off any static ROV parts. But what about fish, algae, and
picture corruption? These are anomalies intuitively discarded, perhaps top-down,
without there being any rigid bottom-up rules that apply.

U-Nets have been successfully exploited in applications such as biomedical
imagery to separate cancerous moles from healthy ones. If this task, appar-
ently neither comprehensible in terms of rigid rules, is analogous to detecting
analysable net detection in underwater scenes, then the U-Net could seamlessly
solve the problem of attention. Having solved this problem, if the U-Net can tell
us where to focus, the remaining task is entirely translatable to what has been
tackled by previous research, where one can assume that everything in focus is
of hole-detection relevance. This idea – this paradigm – is depicted in fig. 4.2.

34

Chapter 4. Attention: The U-Net

Net
Detector

Input Frame

Output Frame

ii

i

iii

Hole
Detector

iii

iv

v

Figure 4.2: Detecting the hole in the Input Frame (i) can be achieved
with traditional methods if one first designs a Net Detector, such as a
specialised U-Net. The suggested attention mask (ii) can be combined
with the Input Frame to produce a focused input (iii), an analysable
base image for the Hole Detector (chapter 5). Ideally, the Hole Detector
recognises the hole and produces some highlighting mask (iv) which
is applied to the Input Frame to produce the Output Frame (v).

35

4.2. NeNoS: Net and Nonsense Segmentation

Figure 4.3: The dataset prepared for the U-Net to differentiate between
Net and Nonsense consisted of 77 example views and binary masks
highlighting what parts of the view contained assessable Net.

4.2 NeNoS: Net and Nonsense Segmentation

A proof-of-concept sized training dataset was constructed from one Manta video
(manta2, see chapter 3). In total 77 images of size 600 x 500 pixels were ex-
tracted from all four available views (see fig. 3.2) and their binary attention mask
counterparts were hand-crafted with the open-source graphics editor GIMP [53]
(see fig. 4.3). The images were resized to 256 x 256 pixels, and three MultiRes
U-Net models were trained in parallel in a K-Fold [33] manner. By dividing the
relatively small dataset into three parts, and providing each model with two
parts for training and the other for validation, one could easily deduce to what
degree the problem was learnable, minimising the concern with lucky or unlucky
validation splits1.

1When validating the performance of a NN, it is common practice to withhold at least 20%
of your data for validation purposes. If your data foundation is scarce, however, undesirable
situations may occur where your small validation set is either very easy or very hard. K-fold
attempts to solve this problem.

36

Chapter 4. Attention: The U-Net

Figure 4.4: Convergence is reached relatively fast for the NeNoS 3-Fold
models training on 77 Manta images. A Jaccard validation score of 60%-
70% is not bad, considering that the ground truth is not necessarily
precisely sketched by the author. Trends mapping inputs to output
were however definitely picked up by the models, as learning and
convergence is evident in the first 20 epochs.

All three models reached validation Jaccard indices of 60 - 70% after 15-20

epochs, before showing signs of overfitting (see fig. 4.4). These results were
initially uplifting, and the models seemed to apply well to unseen scenes from
separate videos. For instance, the suggested attention mask (ii) in fig. 4.2 is
generated by one of these models, based on the Input Frame (i) which is from a
separate video from the training video (tested on manta1, trained on manta2,
chapter 3). Additionally, it is crucial to recognise the certain element of random-
ness and triviality that is introduced when a human produces ground truths for
77 images. Reaching close to 100% scores on validation data would imply some
integrity leakage between train and test data, since the mapping between input
and output cannot be unambiguously calculated for as long as a human decides
whatever mask constitutes a reasonable ground truth for a certain image.

This procedure could very well have been scaled up and claim to solve the
problem of attention completely. Perhaps it does, in some other application.
However, the idea of a two-class attention mask did not work optimally with the
proposed hole detection scheme of chapter 5, specifically, in its binarising scheme.
Problems arose with what has been coined the bright background phenomenon.

4.2.1 The Bright Background Phenomenon

Without engaging too much in what is a yet to be discussed module, it should
be quickly noted that the purpose of the attention module, in this application,
is to assist future modules in representing Net Structure and Background as a

37

4.3. 3CAS: Three-Class Attention Segmentation

binary image2. Binarising schemes will be thoroughly discussed, but the favoured
scheme inevitably misrepresents the Net if it appears darker than the Background
in a given scene. This is typical for cleaning operations where there is backlight,
for instance from the surface waters. Whereas the U-Net can easily be trained to
recognise areas of dark or bright net interchangeably, it is not necessarily a trivial
task for traditional methods to effectively tell the difference.

Instead of relying on a two-class attention (NeNoS) module, two ideas arose;
either the neural network could be set to provide a three-class output, namely
Bright Net, Dark Net, and Nonsense, or, could it segment the net threads directly?

4.3 3CAS: Three-Class Attention Segmentation

By creating a U-Net capable of separating Bright Net from Dark Net, and Non-
sense from either type of Net, one tackles well the problem posed from the
NeNoS module. A few arguments also exist why this method could be preferable
to direct net thread segmentation:

1. The 3CAS U-Nets can, perhaps, work on significantly smaller input
images without losing too much information. This because net thread
detection intuitively requires higher resolution than a rough sketch.

2. Traditional methods, such as adaptive thresholding [41], execute on
large images within milliseconds on modern GPUs. The small attention
mask can be applied to the original size image and the binarising
algorithm can effectively work with full resolution.

3. Traditional approaches to binarisation are more transparent than neu-
ral networks. Whereas one cannot be 100% confident that the neural
network represents net threads fairly, traditional methods will deliver
predictable results on areas pointed to by the neural network.

However, one should be quite aware that the cost of such implementation is a
significant increase in complexity. Net thread segmentation effectively combines
attention and binarisation, whilst this method combines (in this application) a
U-Net for attention segmentation, adaptive thresholding for binarisation, and
adaptive morphological operations to decide parameters for the adaptive thresh-
olding algorithm (chapter 5). It is, nevertheless, considered a useful experiment,
and it is believed that aspects to this upcoming approach, including the temporal
memory inclusion (yet to be discussed), can be useful also for other applications.

4.3.1 Class Encoding

The MultiRes U-Net was slightly modified to fit this application, introducing
additional filters in the final layer to obtain 3-channel outputs. Thus, instead of

2This work capitalises hereafter words that represent classes handled by machine learning
models.

38

Chapter 4. Attention: The U-Net

Figure 4.5: Approximately 250 images were constructed to train the
3CAS U-Net models. Each category was represented with an RGB
channel; red areas indicate Nonsense, green Bright Net, and blue Dark
Net.

39

4.3. 3CAS: Three-Class Attention Segmentation

binary attention masks, each pixel of the ground truth mask keeps three intensity
values; a pixel belonging to a Nonsense area was encoded as [1,0,0] (all-red in
fig. 4.5), Bright Net pixels as [0,1,0] (all-green), and Dark Net pixels as [0,0,1]
(all-blue).

One could ask why three dimensions need be introduced instead of keeping
one dimension where, say, Nonsense is encoded as -1, Bright Net as 0, and
Dark Net as 1. Conventionally, such encoding is to be avoided when working on
classification tasks (and this is indeed a classification task – where we classify each
pixel of an image). This implementation is implying that Bright Net is somehow
closer to Nonsense than Dark Net is to Nonsense since 0 is closer to -1 than 1 is to
-1. By introducing three dimensions, one for each class, the three classes can be
treated completely independently when training the neural network.

4.3.2 Class Imbalance

The production of 250 segmented images (from manta2 and manta3, see
chapter 3) resulted in a dataset with significant class imbalance. Even though the
(rather scarce) Dark Net class was disproportionately sought after during data
acquisition, the total amount of pixels belonging to the Nonsense class accounted
for approximately 70% of the data foundation, Dark Net pixels about 10%, and
Bright Net pixels the remaining 20%.

Such class imbalance typically manifests itself in semantic segmentation. After
all, most scenes in net cage cleaning operations are dominated by Nonsense,
and, resultingly, models trained on raw data will have a bias towards the most
dominant class. This could be beneficial if one wants to achieve a somewhat
conservative model, but measures are often made to even the class distribution,
or to elsewise emphasise scarce classes more by granting them higher importance
in the loss function (see for instance [54]).

Solutions to the class imbalance present in this exploratory work has not been
further investigated, and it remains unknown whether or not it is preferable to
produce less conservative models. It may very well be the case that Nonsense is a
fair expected class. However, to ensure a fair comparison of the K models trained
(in a K-Fold manner), a greedy algorithm was developed to encourage class
stratification (the algorithm is explained in fig. 4.6, and the class distributions
shown in fig. 4.7).

In total nine 3CAS-models were trained, three on each of the input image
sizes 64, 128, and 156, with datasets provided by the stratified K-Fold algorithm.
Judging from fig. 4.8, it seems that models trained on different sizes perform
almost equally well, although some improvements seem to accompany greater
input sizes.

40

Chapter 4. Attention: The U-Net

Class 0 Class 1 Class 2

Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Image 7 Image 8 Image 9

… … …

Highest Prevalence

Lowest Prevalence

Fold 0 Fold 1 Fold 2

Image 1 Image 4 Image 7

Fold 0 Fold 1 Fold 2

Image 1 Image 4 Image 7

Image 8 Image 2 Image 5

Fold 0 Fold 1 Fold 2

Image 1 Image 4 Image 7

Image 8 Image 2 Image 5

Image 6 Image 9 Image 3

First Iteration Second Iteration Third Iteration

Figure 4.6: The stratified K-Fold algorithm seeks to balance the class
contents of each fold, such that all folds have a comparable data
foundation. This specific version of the algorithm sorts first all images
based on their total number of pixels belonging to each class. Here,
Image 1 has the highest number of Class 0 pixels, and Image 4 the
second highest number of Class 0 pixels. If K=3, then, in the first
iteration, is Fold 0 dealt the Image with the highest prevalence of Class
0, Fold 1 the image with the second highest prevalence of Class 0, and
Fold 2 the image with the third highest prevalence of Class 1. The next
iteration, Fold 1 is dealt the image with the highest prevalence of Class
1, Fold 2 the image with the second highest prevalence of Class 1, and
Fold 0 the image with the third highest prevalence of Class 2. So it
goes – in a round-robin-manner – until all images have been assigned
to a fold.

41

4.3. 3CAS: Three-Class Attention Segmentation

Figure 4.7: The class distribution for each fold can be evened with
the greedy stratification algorithm proposed in fig. 4.6. The upper
figure shows the folds’ class distributions for training and validation,
respectively, with a regular randomised K-Fold algorithm. The lower
figure shows the resulting folds with stratification. Red colour is
Nonsense, white is Bright Net, and black is Dark Net. Notice that, for
instance, fold 2 is exposed to very little Dark Net in its randomised
validation dataset, whilst exposed to more Dark Net than any other
during training. With stratification, the proportion of each class is
relatively even in both training and validation.

42

Chapter 4. Attention: The U-Net

Figure 4.8: The average scores from 3-Fold 3CAS-training do not vary
much depending on what input size the models have been training
on. Seemingly, the models trained on 64 x 64 pixel images manage to
grasp the complexity of the training data entirely, whilst abstracting
that knowledge slightly worse than the other models to unseen data.
Since the complexity of the models’ hidden layers have not been
modified, it makes sense that the models working on smaller images
are relatively more complex given the task at hand than what is the
case for the models working on larger images. More complex models
typically yield better training scores, whilst worse validation scores
could indicate that the compressed images are harder to interpret.

43

4.3. 3CAS: Three-Class Attention Segmentation

4.3.3 Input Image Size

Watching a few case studies from the test dataset (fig. 4.9) reveals, surprisingly,
that 128 x 128 pixels could be a preferred input size to the larger 256 x 256 pixels,
and the smaller 64 x 64 pixel images. It could be the case that, with very fine
resolution, the models fail to include irregularities such as rather large holes in
any Net class, but rather classify those areas as Nonsense. Models working on
smaller images, however, generally provide segmentations of higher compacity
than those working on large models (see for instance in fig. 4.9 the thin left wing
of the green area in 256 px A, or the thin ridge connecting the green segmentation
in 256 px B). This is indeed a favourable trait, since misclassification of holes
as Nonsense is to be avoided at almost any cost. On the flip side, compressing
images too much seems to provoke false segmentation in both examples involving
64 x 64 pixel inputs. Hence, a good case can be made that 128 x 128 pixel models
should be further utilised.

4.3.4 Encouraging Temporal Continuity

One concern with frame-by-frame segmentation is the blindness to temporal
continuity. Assumably, segmentation masks should not vary too much from one
frame to the other – given that we are indeed analysing a video captured at 30

fps with an ROV moving approximately 1 m/s. One could, for instance, fear
that an occurring irregularity within Net Structure is misclassified as Nonsense if
the U-Net is only allowed to peek at that single frame, but if it were allowed to
look back in time, it would be more inclined to include it in whichever Net class
surrounds that irregularity.

The MultiRes U-Net authors have already created a three-dimensional coun-
terpart to their U-Net3. By stacking a series of frames, creating a time stack of
frames, one can apply convolutional operations between these frames by shifting
filters across a third dimension, thus capturing the motion feature space of the
images in the stack. This approach was initially implemented for 48, but at least
16 images per stack, which eventually made the time complexity of the operation
way too large to be feasibly implemented in a real-time application. Several
seconds were required to perform a single segmentation. It could be thought
that, since the initial application to which this architecture was designed, was
biomedical-imaging, that it is better suited MRI (making up a 3D-scan) rather
than fish cage net images stacked in time.

From available literature on spatiotemporal research, temporal consistency is
usually accompanied by a considerable increase in time complexity. For instance,
one interesting recent contribution to the field suggested pairing two CNN
architectures; one for tracking the spatial coherence and one for the temporal
[55]. The cost was 3.90 seconds per frame. Similar models include the SegFlow
which utilises optical flow in parallel with CNN networks [56]. The execution

3https://github.com/nibtehaz/MultiResUNet/blob/master/MultiResUNet3D.py

44

https://github.com/nibtehaz/MultiResUNet/blob/master/MultiResUNet3D.py

Chapter 4. Attention: The U-Net

Original image A Ground truth mask A

256 px A 128 px A 64 px A

Original image B Ground truth mask B

256 px B 128 px B 64 px B

Figure 4.9: 3CAS models working on 256 x 256 pixel inputs, 128 x 128

pixel inputs, and 64 x 64 pixel inputs provide some different takes
on segmentation. Although overall scores are quite similar, there
is an argument to be made that models working on large images
undersegment slightly, whereas models working on very small images
oversegment, identifying Dark Net where there is none and vice versa.

45

4.3. 3CAS: Three-Class Attention Segmentation

time is 7.9 seconds per frame, working on the NVIDIA Titan X GPU4. All things
considered, these operations are too heavy to be currently considered for real-time
applications.

The Lag Mask: Expanding the Input Layer

A new and more cost-efficient solution is proposed in this work to encapsulate
spatiotemporal information. This method allows the U-Net to peek at the previous
segmentation, the lag mask, by concatenating, pixel-wise, the lag mask with the
current input image, thus expanding the channels of a pixel in the input image
by three, from 3 to 6. This alteration to the architecture of the U-Net, namely
expanding the size of the input layer with 3 channels, seems not to impact the
execution time of a prediction with more than half a millisecond, running on a
standard CPU, compared to a regular 128 x 128 pixels 3CAS model.

There are, arguably, two significant pitfalls to this method. For one, the camera
may or may not be in motion. This means that the previous, ideal, segmentation
may or may not overlap completely with the ideal segmentation for the current
frame. The mapping, therefore, between the lag mask and the ideal segmentation
for the current frame varies depending on current movement. Secondly, the
model might discover, during training, that the lag mask is a very good indicator
of the current segmentation. However, in production, the model will necessarily
make a few sloppy segmentations. If these are allowed to propagate to the next
prediction, and the model assumes the lag mask always to be reliable, then one
can quickly get stuck in a deadlock situation where every new segmentation
replicates the previous, converging typically towards one class dominating the
entire scene.

Stirring It Up: Countering Movement Ambiguity

A proposed method to counter the ambiguity caused by present (or not) camera
movement, is to apply some significant blur to the lag mask before concatenation
with the current frame. The severeness of this blur justifies also to what degree
the U-Net can blindly replicate the lag mask, but it might still extract from it hints
about what classes are present in what parts of the frame. Intuitively, the blurry
borders compensate for minor movement that might have occurred from the
previous frame to the next. An example of this method is visualised in fig. 4.10.

Deliberate Corruption: Circumventing Blindness to the World

Children, and robust machine learning models, whilst learning what patterns
govern the world, both arguably benefit from exposure to a certain fraction
of corruption. The story of Siddhartha Gautama – the Buddha – is one of a
sheltered young man whose perception of reality crumbles when witnessing
poverty, illness, and old age beyond the protective walls of his father’s palace
[57]. Likewise, U-Nets always provided with rock-solid lag masks during training

4https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/

46

https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/

Chapter 4. Attention: The U-Net

[221, 34, 0],
[221, 35, 0],

[78, 100, 86],
[76, 102, 88],

[78, 100, 86,
221, 34, 0],

[76, 102, 88,
221, 35, 0],

Ⴃ

Figure 4.10: Pixel-wise concatenation of the lag mask (upper left) with
the current frame (lower left) yields an output image with six channels,
where each pixel encapsulates the RGB values of both the current
frame and the lag mask. Notice that these RGB values are visualised
on a [0, 255] interval, and not the normalised [0,1] interval which is
utilised for all training.

47

4.3. 3CAS: Three-Class Attention Segmentation

can fail miserably when entering the real world where lag masks can be all but
perfect. By injecting some corrupted masks during training, however, the models
can learn to balance the trust put in both the current frame, the world, and the lag
mask at hand.

In practice, a certain fraction of the training images were, for each epoch,
corrupted by replacing the concatenated lag mask with a mono-class mask. That
is, each pixel of the lag mask was replaced by either [0,0,1], [0,1,0], or [1,0,0]. The
idea is that, for these training instances, the models have to rely entirely on the
pixel intensities of the input image related to the current frame, and to disregard
the pixel intensities related to the lag mask, since these are nothing but noise.
This technique is a form of regularisation. The higher the fraction – the less trust
is put in the lag mask, and vice versa.

4.3.5 Finding the Ultimate Combination

Having established that 128 x 128 pixels provides a good representation for the
original 500 x 600 pixels images, it remains still unclear

1. if lag masks improve the segmentation, and, if so,

2. to what degree the lag mask should be blurred, and

3. if the training data should be regularised, and if so, to what degree.

Keeping in mind that the purpose of the lag mask is to stabilise the segmentation,
temporally, it seems that at least one metric which could monitor success is the
degree of fluctuation in the models’ segmentations during a video sequence.
However, the optimal degree of fluctuation is decisively neither zero nor one
hundred percent; the segmentations should be flexible enough to respond to
occurrences of alien objects, such as fish, and shifting scenes, but stable enough
not to flicker unnecessarily when the scene is rather stationary. Additionally, the
models should be able to pick up both Dark and Bright Net if both classes occur
within the same frame.

All these aspects have been carefully studied within the scope of four 150

frames-long test videos, on which in total 24 individual U-Nets proposed their
segmentations. Consult fig. 4.11 to properly understand the structure of the
score-sheets presented in the upcoming evaluations.

48

Chapter 4. Attention: The U-Net

lower extreme

stability scores

mean class

prevalence

fold number

model specific parameters

Figure 4.11: The scoreboards visualise the intra-class and inter-class
dynamics of the different U-Net models, executed on a single video.

The name, lag -xblur-yreg, reveals three parameters, dash-
separated: the first whether or not the model is allowed to peek at
the lag mask. This section can take on two values; l indicates that it
does peek (lag) and nl that it does not (no lag). Subsequently, xblur

tells the degree of blur applied to the lag mask. E.g., 25b means the
breadth of the Gaussian kernel used to blur is 25% the breadth of the
lag mask. The yreg section explains to what degree regularisation
has been applied when training the model. Eg., 50r means 50% of lag
masks have been swapped for noise during training.

The fold numbers reflect that for each configuration were trained
three models in a K-Fold manner. When comparing the different
configurations, it can be useful to compare fold numbers 0 to 0, 1 to
1, and 2 to 2 since these models have utilised the same training data,
thus leaving most discrepancy to configuration differences.

The barplot shows the mean proportion of that video classi-
fied as Nonsense (red), Bright Net (white), and Dark Net (black).

The scatter plot displays the intra-class dynamics for each class
for that video. For each class is measured the Jaccard index
between the current segmentation and the previous, where a
low score indicates little overlap, and therefore a high degree
of frame-by-frame fluctuation. The dots mark the mean Jaccard
score minus three standard deviations, meaning scores near 1 in-
dicate extreme stability certainly typical of deadlocking segmentations.

Above the figures are also QR-codes leading to a video show-
ing the segmentations performed the models. The segmentations have
been coupled with a binarising scheme for clarity (see chapter 5).

49

4.3. 3CAS: Three-Class Attention Segmentation

Figure 4.12: Test video 1 segmentation scores. Remember that
hyperlink-equivalents to QR-codes are available in appendix A.

Segmentation Test Video 1: A Dynamic Scene

The first test video is arguably a challenging one; the first second we observe an
equal amount of each class – then the camera moves, introducing severe motion
blur which should result in predominantly Nonsense segmentations. Then, for
approximately two seconds, we observe, yet again, all three classes. This rules
out, obviously, each fold of l -nb -nr, each fold of l -25b -25r, fold 1 (and most
likely 0) of l -100b -25r, and folds 0 and 2 of l -100b -50r (see fig. 4.12) since
they fail to include all three classes.

Judging from visual impressions (videos are available with QR-code scanners),
nl -nb -nr provides the most convincing result in fold 1, where the segmenta-
tions are mostly good, albeit more fluctuating than desirable. Amongst the six
models with 50% regularisation does l -100 -50r fold 1 stand out. Generally, the
models with severe blur seem to provide more stable segmentations during jerky
camera movement.

Even though stability scores (in the scatter plot of fig. 4.12) seem not to im-
prove from the lag-less model (nl -nb -nr), a striking edge to the lagful models
is that they build clusters of classes. Whereas models with no lag could provide
segmentations that overlapped to the same degree, the shape of those segmen-
tations could be significantly different from the previous (often identifying a
second class in the midst of another), but the models with lag shrank or grew the
clusters at contour level, preserving the core of the cluster.

With 75% regularisation, the models seem to undersegment too much, leaving
out perfectly intelligible parts of the scene. Additionally, the segmentations were
perceived as better with 50% regularisation.

The best-performing model was, comfortably, fold 1 of l -100b -50r.

50

Chapter 4. Attention: The U-Net

Figure 4.13: Test video 2 segmentation scores.

Segmentation Test Video 2: Mostly Nonsense and Dark Net

The second test video looks first at Dark Net, then surface waters, before return-
ing to a scene with mostly Nonsense, Dark Net and a fraction Bright Net. All
folds of l -nb -nr are therefore ruled out, and so are folds 0 and 2 of l -25b -25r,
fold 2 of l -100b -25r, and most likely fold 1 and 2 of l -25b -50r, fold 0 and 2 of
l -100b -50r, and fold 0 of l -100b -75r, due to little Dark Net content (fig. 4.13).

From visual impression, fold 1 of nl -nb -nr does a decent job, managing to
pick up the Bright Net fraction. Introducing lag, with 25% regularisation, effec-
tively removes tendencies to sporadic oversegmentation when analysing surface
waters. The reluctance of these models to establish segmentation clusters where
there yet are none seems to be a benefit to the lag-mask-paradigm. However,
neither model manages to pick up both Dark and Bright Net when both are
present, indicating that forming a break-out cluster might be too hard.

With 50% regularisation, four out of six models present inverted binary repre-
sentations (also very clear from fig. 4.13) and the only two potential candidates
are therefore fold 0 of l -25b -50r and fold 1 of l -100b -50r, the latter of which
clearly outperforms the former. However, neither of these models manage to
identify the tiny area of Bright Net, but l -100b -50r disregards more of that as
Nonsense than the models with 25% regularisation, therefore providing a scene
less prone to false positive hole detection.

Neither did the models with 75% regularisation manage to identify the tiny
piece of Bright Net. The segmentations are, overall, decent, but more unstable
than those with 50% regularisation.

The best model is, yet again, fold 1 of l -100b -50r. Even if failing to pick up
the small piece of Bright Net, it provided a stable and intelligible segmentation
of the other classes.

51

4.3. 3CAS: Three-Class Attention Segmentation

Figure 4.14: Test video 3 segmentation scores.

Segmentation Test Video 3: Stable Bright Net

The third test video shows a steady scene mostly consisting of Bright Net. This
reflects well in most models of fig. 4.14, where there is typically a lot of Bright
Net with very high stability scores. The only set of models to fail, miserably, are
those of l -nb -nr.

The lag-less models provide decent segmentations, but with more fluctuation
in the contours than the stable scene should imply. There are also some instances
of false Dark Net reports. With lag and 25% regularisation, the contours stabilise
significantly for all models. However, this video shows some interesting lighting
conditions on parts of the net which are disregarded by fold 1 of l -100b -25r

(and, to some degree, by fold 2 of l -25b -25r) as Nonsense. This could benefit
the hole detection algorithms as the binary representation of this area elsewise
could resemble holes. With 50% regularisation, all models perform quite similarly,
but fold 1 of l -100b -50r is more conservative in its approach (which manifests
itself in larger Nonsense proportions in fig. 4.14). Arguably, this model chooses
to segment only net that is clear enough to be intelligibly analysed, whereas
other models include net that is too far away for reliable analysis. With 75% reg-
ularisation, all models perform decently, albeit with some more contour flickering.

Most models performed well on test video 3. However, models with lag masks
outperform lag-less models with their stable contours.

52

Chapter 4. Attention: The U-Net

Figure 4.15: Test video 4 segmentation scores.

Segmentation Test Video 4: 3 Stable Classes

The last segmentation test video is almost as stable as a still-video; containing all
three classes, but predominantly Nonsense and Bright Net. This means that all
folds of l -nb -nr, fold 0 and 2 of l -25b -25r, and fold 1 and 2 of l -100b -25r

can be immediately ruled out from observing in fig. 4.15 that they lack either one
of two classes.

Amongst lag-less models are folds 1 and 2 of nl -nb -nr actually very good,
judging from visual analysis of the videos. The contours do indeed flicker some,
but the border between Bright and Dark Net is very precise. The two models
not yet discarded amongst those of 25% regularisation both perform very well
on this task. Fold 0 of l -100b -25r is slightly more conservative than fold 1 of
l -25b -25r, but overall, both are stable and good. Strikingly, all models with
50% regularisation correctly identify the three classes. One peculiarity with
fold 1 of both, however, is that they disregard the transitional area between the
classes as Nonsense. This is actually quite clever, since this area is somewhat
uninterpretable and tends to corrupt the segmentations of the other models. All
models with 75% regularisation also manage to identify the three classes, but they
introduce more noise, not suppressing well enough sporadic class clusters. There
might be some advantage to l -25r-50r over l -100b -50r due to its higher
degree of stability. This observation is confirmed by the scatter plot in fig. 4.15,
showing some more stability for Bright and Dark Net in one than the other.

Specifically favourable segmentations of test video 4 are those proposed by
fold 1 of either lagful model with 50% regularisation, with a tiny advantage to
l -25b -50r.

53

4.3. 3CAS: Three-Class Attention Segmentation

Verdict

The test videos confirm that lag masks introduce temporal continuity – specif-
ically by forcing classes to form in clusters which grow or shrink at contours,
and new classes rarely occur within already formed clusters. Without such lag
masks – the segmentation of one frame is completely decoupled from previous
segmentations. However, the clusters formed tend to be over-conservative, and a
proper way to counter this is through regularisation, incentivising confidence in
the current frame and not only the previous mask.

Granted, more regularisation leads to worsening validation scores during
training (see fig. 4.16) and indeed also more flickering contours. Nevertheless,
it seems to be absolutely vital to achieve viable results in a realistic mileu. Be it
25% regularisation or 50% regularisation, in scenes with a single type of Net both
performed well, but in complex scenes, 50% regularisation outperformed 25%,
enabling break-away class clusters where needed.

Severe or modest blur did not seem to impact validation scores to a large
degree (see fig. 4.16). From watching the videos with little motion (test videos
3 and 4), deciding which level of blur outperformed the other was not really
feasible, but, interestingly, when there was motion involved (test videos 1 and 2),
the models with severe blur typically yielded more stable segmentation. This
observation substantiates the claim that blurring assists the segmentation process
during motion (which does make the lag mask a less precise predictor of the
current).

Based on this investigation, fold 1 of l -100b -50r, a model working on 128

x 128 pixels input images – with lag masks – blurred with a Gaussian kernel of
breadth 129, trained for 50 epochs where 50% of lag masks have been swapped
for noise, is chosen as the best 3CAS model. It executes on a GPU on a typical
image in less than 7 milliseconds, which makes it very suitable for real-time
applications, depending on binarisation scheme effectiveness.

In production, the life cycle of predictions and lag mask propagation can be
seen in fig. 4.17.

54

Chapter 4. Attention: The U-Net

(a) Average scores during l -25b -yr training.

(b) Average scores during l -100b -yr training.

Figure 4.16: All models were trained for 50 epochs, after which train-
ing and validation scores diverged significantly. More regularisation
worsens validation scores, whereas more blur (upper figure being
modestly blurred and the lower, severely) has an ambiguous impact.

55

4.3. 3CAS: Three-Class Attention Segmentation

U-Net

Framet

Ⴃ

((0.14, 0.16, 0.84), (0.15, 0.51, 0.47))

((0, 0, 1), (0, 1, 0))

Delay

pixel-wise

concatenation
blurred prediction

from Framet-1

save for

next Frame

Masked Framet

input shape

(128, 128, 3)

i

ii

iii

iv

v

i

Figure 4.17: Whilst running in an unknown environment, the U-Net
utilises the input image (i) in combination with the delayed lag mask
(iv) to make the raw prediction (iii). The raw prediction is clarified
by suppressing all pixel values but the channel with the maximum
value, generating the final prediction mask (iii). This mask can be
applied to the original image to create a masked frame (v) to assist
future binarising schemes.

56

Chapter 4. Attention: The U-Net

Figure 4.18: Net Thread Segmentation makes the subsequent bina-
rising scheme redundant, if it can produce coherent binary image of
satisfactory resolution. 200 training images were constructed from the
very same video as was the 3CAS dataset.

4.4 NTS: Net Thread Segmentation

Seamlessly countering the problems of occasional Dark Net, occasional Bright
Net, and higher or lower prevalence of Nonsense, can be achieved by training an
NTS MultiRes U-Net. In principle, it utilises the same architecture as the NeNoS
network, but with finer resolution output segmentations. Instead of having the
U-Net propose a sketched area of attention, and implementing separate modules
to properly binarise that area, the U-Net is suggested to itself deliver a coherent
binarisation of the input.

For this experiment were constructed 200 images (see fig. 4.18) from the
manta2 and manta3 videos. Yet again, all four views were utilised, equally.

One very specific concern might hinder the further development of this
method. Whereas proposing a sketched area of attention can supposedly be
achieved from very compressed images, segmenting net threads intuitively requires

57

4.4. NTS: Net Thread Segmentation

a higher resolution on the input images. On the other hand, sketched attention
masks can be produced in small sizes and enlarged to fit the original frame
without losing much information. In a sense, it requires more from NTS to
succeed; it needs to produce a higher quality segmentation if the hole detector is
to perform reliably.

4.4.1 K-Fold Training

Firstly, three models were trained in a K-Fold manner with resolutions 256 x
256 pixels, similarly to the NeNoS and 3CAS models. Afterwards, three models
were trained, likewise, on 512 x 512 pixel images. Judging from fig. 4.19, the
performances of the different models were not strikingly different. However,
when enlarging the prediction masks and comparing them to ground truths of
original size (500 x 600 pixels), the models trained on small images were able
to reconstruct the original masks with 94% accuracy (in terms of Jaccard index),
and the larger models hit 96%. These scores were produced by having each fold
predict their training and validation data, then enlarging those predictions to fit
the size of the original masks. Hence, they performed so well because they had
already been exposed to the training data, but models working on smaller images
managed not to represent this knowledge with the same accuracy as models
working on larger images. The numbers might not seem too different, either,
but considering the fact that the average mask is 88% white pixels, hitting large
numbers is relatively easy, and a few percentages of score might be exactly what
separates the models which manage to represent small broken net threads, and
those that do not. Judging from case studies such as fig. 4.20, one can also notice
how the models trained on larger image capture nuances which can be crucial
when holes are present as broken meshes not directly in front of the camera.

4.4.2 Data Acquisition and Production Quality Concerns

Knowing that the 3CAS system can engage in a very powerful relationship with
subsequent binarising schemes, it is absolutely crucial that NTS proves to match
that performance. However, collecting NTS data is much more time consuming
than collecting 3CAS data (notice the complexity difference between the masks in
fig. 4.5 and fig. 4.18). It might be the case that NTS is vastly preferable to other
strategies, but only if thousands of training images are generated.

Two strategies were tested to boost the potential of NTS;

1. Transfer learning5 with base models trained on ROV images from
fnc1, fnc2, and inspection0.

2. Blurred and regularised lag masks in the same manner as 3CAS.

5Transfer learning implies specialising a pre-trained NN as opposed to training a NN with
randomly initialised weights. It is further explained in chapter 6.

58

Chapter 4. Attention: The U-Net

Figure 4.19: The two NTS models, trained on 256 x 256 pixel images
(upper scoreboard) and on 512 x 512 pixels (lower scoreboard) per-
formed similarly during training. Notice that, compared to fig. 4.3,
fig. 4.18 have a larger proportion of white pixels. On average, 88% of
the dataset masks contain white pixels, revealing why Jaccard scores
start very high. Even though the models trained on 512 x 512 pixels
seem to still be on the rise, indicating there is more to learn, the vali-
dation scores did not improve over the next 150 epochs following the
100 first.

59

4.4. NTS: Net Thread Segmentation

Figure 4.20: Leftmost images show the input, the the middle column a
256 x 256 pixel NTS model segmentation, and the rightmost column,
a 512 x 512 pixel NTS model segmentation. The typical output from
the models working on smaller input images represents the input well
when meshes are large, but nuances are lost when the Net Structure is
originally low resolution.

The main idea behind the transfer learning approach is to see whether or not
intelligible knowledge can be transferred from one type of ROV to another. If
possible, then the burden of creating training data for each ROV is lightened,
since previously created models (for other ROVs) can be reused and fine-tuned
on a limited number of training instances for the new ROV.

Introducing lag masks in the 3CAS system yielded favourable stabilisation
in the segmentation. The acquired parameters for lag and regularisation will
be reused, and, since the masks in this case are binary, we will only introduce
one additional input channel instead of three. We will also assume that the lag
mask is sufficiently similar to the current, and thus not engage in the labour of
generating brand new lag masks, but simply blur and regularise the current.

4.4.3 Transferring Knowledge

Since multiple ROVs (with different cameras and views) can be used to perform
a cleaning operation, a transfer learning approach could perhaps be a good way
to make use of hard-earned data from one model by passing it on to another.
Intuitively, all models have in common the segmentation of pixels that look like Net
Structure, so there should be a fair chance that some information acquired when
training on, say, fnc videos could be of interest to a model training on manta

videos.

60

Chapter 4. Attention: The U-Net

Figure 4.21: 190 additional images were made from fnc videos (up-
per row) and an inspection video (lower row) to investigate if
knowledge could be transferred from one set of data to another.

Practically, a total of 120 test images were generated from inspection0, 30

from fnc1, and 40 from fnc2, in addition to the 200 manta images. Three
folds of MultiRes U-Nets were trained on inspection0 images for the first 100

epochs with default learning rate (0.01) like one would if one were to build a
network specialised on inspection videos. The learning rate was then lowered
to 0.00001 and training- and validation data swapped to fnc1 for 25 epochs.
Subsequently, training- and validation data changed to that of fnc2 for the next
25 epochs before fine-tuning with the manta data foundation between epochs
150 and 200.

Score-wise, judging from fig. 4.22, this approach did not add any edge to the
original manta performance (see fig. 4.19). It could, however, be the case that
the visual impression is better.

4.4.4 Finding the Ultimate Combination

Eventually, settling with 512 x 512 pixel input images, four model philosophies
were investigated in a three-fold manner; NTS with no lag mask, NTS with
blurred lag mask and regularisation, NTS with transfer learning and no lag mask,
and NTS with transfer learning, blurred lag mask and regularisation. The best
parameters for regularisation and blur from 3CAS were utilised, and the models
were tested on the same four segmentations test videos as previously investigated
with 3CAS.

61

4.4. NTS: Net Thread Segmentation

Figure 4.22: Three MultiRes U-Nets were trained in a K-Fold manner
first on inspection images, then, lowering learning rate, on two
fnc datasets, before fine-tuning on manta images. The scores vary
depending on the complexity of the datasets, so the sole purpose of
this experiment was to see if the latter part of training, on manta2

images, could get the better of the previous models which trained on
manta images only (dotted line). They seemingly did not.

Segmentation Test Video 1: A Dynamic Scene

This video is described in the 3CAS investigation (section 4.3.5), however, briefly,
its main components are movement and Bright and Dark Net. The models with
no transfer learning applied are initially uplifting; both fold 0 and fold 2 of
nts -nt -nb -nr represent the Bright and Dark Net structures surprisingly well.
Both representations can be said to be favourable to the best-performing 3CAS-
implementation, reacting instantaneously to the presence of both classes of Net.
Especially fold 2 performs well, but it might be too eager to segment Background
where there is in fact ambiguity (see from fig. 4.23 that the proportion of Black is
larger for fold 2 than fold 0). All folds of nts -t -nb -nr perform poorly; fold
0 segments way too much Background (and is also very unstable, reflected in
its scatter plot), and folds 1 and 2 partly invert their segmentation, representing
most of what is truly Background as Net or Nonsense (reflected in their large
proportion of White class in the barplot).

With lag masks, fold 0 of nts -nt -100b -50r stands out – clearly – segment-
ing the difficult transitions in net colour perfectly (see fig. 4.24). Its main challenge
might be an overeagerness to segment ambiguous parts of the frame, thus risking
false positive detections in blurry areas. Yet again, neither model with transfer
learning manage to bring anything of interest to the table.

62

Chapter 4. Attention: The U-Net

Figure 4.23: Test video 1 NTS segmentation scores. The segmentation is
binary, including Dark Net, Bright Net and Nonsense in a single class
(white bars). The black bars indicate the proportion of Background
in the video (which is the area in-between net threads, and therefore
potential holes). The scatter-plot shows the lower extreme stability
score of the white class. t or nt translate to transfer or no transfer.
Otherwise the plot is of similar nature to fig. 4.11.

Figure 4.24: Fold 0 of nts -nt -100b -50r segments the net structure
in test video 1 almost perfectly, but segments also ambiguous areas.

63

4.4. NTS: Net Thread Segmentation

Figure 4.25: Test video 2 NTS segmentation scores.

Test Video 2: Mostly Nonsense and Dark Net

Neither 3CAS model managed to segment the tiny piece of Bright Net present at
the end of the second test video. This is seamlessly handled, however, by folds 0
and 2 of nts -nt -nb -nr. Both folds could, however, be criticised for including
too much ambiguity in the Background segmentation, potentially triggering false
hole reports. Fold 1 is too conservative in its segmentation, and the transfer
learning models replicate their behaviour in video 1, with fold 0 producing too
much Background, and the other folds tending towards inverted segmentations.

With lag masks, fold 0 of nts -nt100b -50r yet again produces the highest
quality segmentation, and the transfer learning models yet again fall short. The
main concern with the best-performing segmentation is its tendency to segment
areas far away or in other ways too blurry to be analysed. The segmentation
in the transition area between Dark and Bright net is, anyhow, impeccable and
unmatched by any other model, with fold 2 being its closest contestant. Fold 2

can though be said to be too conservative, segmenting too little Background, but
could be a viable option if fold 0 eventually raises too many false alarms.

64

Chapter 4. Attention: The U-Net

Figure 4.26: The compensation for the light reflections is fascinating
but could raise false alarms, with broken net threads reported where
there probably are none.

Figure 4.27: Test video 3 NTS segmentation scores.

Segmentation Test Video 3: Stable Bright Net

Either lag-less model but fold 0 of nts -t -nb -nr performs rather well on this
scene, with fold 1 of nts -t -nb -nr perhaps gaining the upper hand, marginally,
excluding some more unintelligible structure in its segmentations than the others.

With lag masks, fold 0 of nts -nt -100b -50r stands out – remarkably – by
compensating completely for a very intriguing reflection of light off the net
structure (see fig. 4.26). This phenomenon was not dealt with by any other model
researched, and serves to prove a remarkable asset to deep learning approaches
contrary to traditional methods; the neural networks can, implicitly, learn pat-
terns from the training data which one could never be able to describe with a
rigid set of rules.

Overall, segmentations are very stable, and any model with lag masks could
be set to replace fold 0 of nts -nt -100b -50r should a more conservative model
be desired.

65

4.4. NTS: Net Thread Segmentation

Figure 4.28: Test video 4 NTS segmentation scores.

Segmentation Test Video 4: Stable Classes

Neither NTS model matches the best-performing 3CAS model on this particular
scene. With no lag mask, folds 0 and 2 of nts -nt -nb -nr come arguably closer
than the others, but their segmentations are quite more unstable than the nature
of scene implies. They also report large pieces of Background in the transitional
area between Bright an Dark Net.

Introducing the lag mask, fold 0 of nts -nt -100b -50r produces, again, a
very good segmentation of the net threads. Its drawback is, however, its inclu-
sion of ambiguous areas in the segmentation, yielding results which will most
certainly trigger false positive reports.

Verdict

Segmenting net threads directly facilitates programs with less overhead and
sleeker information flow than counterparts relying on 3CAS segmentation inter-
weaved with traditional binarisation schemes.

Introducing lag masks, with identical parameters with regards to blur and
regularisation as discussed with 3CAS, seemed also to benefit the NTS models,
with fold 0 of nts -nt -100b -50r almost certainly being the better of the lot in
all test videos. This model proved repeatedly to deliver segmentations better than
those achieved with 3CAS in all videos but the last, falling only short because of
its generosity in terms of including parts of the frame that are really too blurry to
be analysed in the segmentation.

It is believed that, with such uplifting results achieved with a very small
training foundation of 200 images, an effort to construct a larger dataset with
NTS images will pay off in extremely robust net segmenting machine learning

66

Chapter 4. Attention: The U-Net

models. It is most certainly not necessary hereafter to pursue traditional methods
to achieve net segmentations, if sufficient hardware can be acquired to back the
computational demands of a MultiRes U-Net or similar neural networks, as the
results achieved with deep learning far supersede those of traditional methods.

However, traditional methods and 3CAS were essential components of this
work for a substantial amount of time. They will therefore be discussed in detail
in upcoming chapters. Implementational details of such systems can perhaps be
of interest for some other research, but – concerning net structure segmentation –
it seems that deep learning outperforms the traditional techniques by a significant
margin.

Complexity-wise, the 512 x 512 pixel NTS models with lag masks execute in
approximately 31 milliseconds on the NVIDIA Titan X GPU, which qualifies for
real-time, barely. However, with the additional hole detection scheme (yet to be
discussed) real-time usage is not yet an option. Considering the proof-of-concept
nature of this work, however, the numbers are not too far from the desired
threshold, and it is believed that optimisations can be made to attain this.

67

Chapter 5
The Local Irregularity Detector

What humans perceive as video is in fact an array of static images, frames, each
on display for the fraction of a second before replaced by the next. Video analysis
can simply be analogous to image analysis if one analyses each frame individu-
ally. However, our human flesh-and-bone video analysis capacities reach beyond
frame-by-frame analysis. The richness of the information more or less hidden
in-between frames, in the flow of such, is literally beyond measure but equally
harder to capture.

What is a hole? On a frame-by-frame basis, it is at least a deviation from the
regular pattern within an area of elsewise regular net structure. But so are fish,
so is floating algae, and so is temporary flickering in the midst of a perfectly
intact piece of net. Just like the U-Net in chapter 4 was tweaked to encapsulate
spatial information, so should, intuitively, the hole detection module also be able
to separate swimming fish and floating algae from actual holes.

At some point, however, needs the hole be detected, if not verified, for the
first time. This detection should take place on a frame-by-frame basis, that a
lightweight module should analyse each frame and mindlessly report sufficient
deviations from the norm. Acknowledging the inevitability of false reports from
flickering frames and alien objects such as fish and algae, additional, smarter,
modules, should be designed to put the local reports under scrutiny, but the pro-
cess of detecting and eventually verifying holes naturally springs from bottom-up,
starting on a single frame, with the Local Irregularity Detector.

5.1 A Binary Reality

Local irregularity detectors have already been investigated by Haugene [17],
Jakobsen [19], Betancourt et al. [20], and Paspalakis et al. [21], and Zhao et
al. [22], none of whom termed their algorithms local detectors, but their damage
assessment algorithms were in essence that: local frame-by-frame detectors. Hau-
gene’s damage detection algorithm found large connex pieces of Background pixels
in a binary image using morphological operations with a disk-shaped kernel of

Chapter 5. The Local Irregularity Detector

user-defined size. Jakobsen’s mesh detection looked for consistent white (mesh)
lines spanning the entire black-and-white frame using depth- and breadth-first
searches, and then compared the relative distances between the horizontal and
vertical lines. Betancourt’s damage detection process reconstructed the net pattern
from a binary image, eventually recognising knot points connections and identi-
fying damage as missing connections. Paspalakis et al. proposed two algorithms:
one based on white mesh pixel counting, and one based on Hough line detec-
tion in a binary image, and relative distance calculation (similar to Jakobsen’s
approach). Zhao et al. compared mesh hole areas and the distribution of knot
points. The common denominator? The binary representation of the original
frame.

Given the nature of the problem – detecting irregular holes in net structure –
it seems reasonable to reduce the complexity of the original frame down to the
two primary components needed for solving the problem, namely Net Structure
and Background. These terms are in a binary sense analogous to Foreground and
Background, and the least complex representation of the original frame in which
holes can be recognised is thus an image consisting of zeros and ones – in this
work representing Background and anything else, respectively. If a binary image
can be successfully created, then formulating what constitutes an irregularity can
be more easily deduced:

1. An irregularity is a deviation from the ordinary structure within
Foreground pixels, or

2. an irregular piece of Background, or

3. an irregular interplay between the two

where, generally, Olsen’s line search, Betancourt’s knot point reconstruction, and
Paspalakis’ Hough line distance comparison belong to the first school of thought,
and Zhao and Haugene’s detection of large pieces of Background to the second,
and Paspalakis’ pixel count method to the latter. Even though the pixel count
method did not count Background pixels per se, it deemed areas containing
too little Foreground irregular, and such worked with the hypothesis that each
area should contain a certain amount of Foreground, and a certain amount of
Background.

Granted, the binary image is a proper starting point for a traditional irregular-
ity detection algorithm. We have already shown that NTS can be implemented
with U-Nets to provide an excellent binary equivalence of reality. However,
traditional methods have been thoroughly investigated in this work, and it is
worthwhile understanding properly how traditional methods have been imple-
mented in earlier works (and – in fact, in this work, coupled with 3CAS) to fully
appreciate what challenges are circumvented with deep learning assistance.

How does one proceed to create the optimal binary image? The aforemen-
tioned authors favoured not the same approaches, and neither utilised the ap-
proach favoured in this work. Some of the most popular algorithms to achieve

69

5.1. A Binary Reality

binarisation have already been discussed in 2 (thresholding algorithms and edge
detectors), but their strengths and weaknesses as related to this topic deserve
investigation.

5.1.1 A Preliminary Sidetrack: The Grayscale Image

All traditional binarisation approaches to be discussed originate in a grayscale
image, and not the entire colour space of the original frame, so a brief mention of
colour to grayscale image conversion is needed.

Haugene decided to utilise all three available colour channels, in addition to
hue and saturation. His binarisation schemes were run on each channel, individu-
ally, and later combined in a single, coherent, binary image using a binary OR
operation. Jakobsen, on the other hand, attempted to work on each channel, but
wound up favouring the Red channel after trial and error.

Apart from working on single channels, one might blend the RGB-channels
to create an image I with single grayscale channel which encapsulates all in one.
OpenCV’s implementation1 is:

Igray = 0.299 · Ired + 0.587 · Igreen + 0.114 · Iblue (5.1)

Neither Paspalakis [21] nor Betancourt [20] describe their grayscale conversion,
so whether or not they operate on mixed or separate channels is down to pure
speculation. This work, however, will exclusively work on the mixed grayscale
image. The reason for which is mainly two-fold.

Firstly – analysing a single, mixed, channel, is three times faster than analysing
three channels, and six times faster than analysing six channels. If it can be rea-
sonably assumed that the mixed channel provides a sufficient representation of
the three basic channels, then it is favourable from a computational perspective.
Secondly – since this work implements the local irregularity detector as a low-cost
module which can be allowed to produce false positives (later filtered by other
modules) then it is simply not a problem if a few frames over-report irregularities.
Haugene’s [17] reasoning for utilising as many channels as possible was indeed
to attain conservatism with regard to Foreground segmentation – given his binary
OR combination of all channel evaluation outputs. And, since eq. (5.1) suppresses
the intensity of all channels, then, necessarily, will the resulting mix yield high
intensity values for only those pixels in which all channels combined yield a high
response, whereas Haugene’s combinatorial approach allowed high responses in
single channels to manifest themselves in the resulting binary image.

One could, rightly, criticise eq. (5.1) and wonder why not all channels have
been granted an equal share of the mix:

Igray =
1

3

∑
Ic, c = {red,green,blue} (5.2)

1https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html

70

https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html

Chapter 5. The Local Irregularity Detector

Figure 5.1: The leftmost images are original RGB frames, followed
by grayscale representations achieved with eq. (5.1) and eq. (5.2),
respectively. Chances are, you can not spot the difference with the
naked eye. However, a computer could.

After all, the mix is to be exploited by a computer and not to be viewed by a
human. The difference is not grand, but there might be a certain advantage
to utilising all channels equally, and given shifting underwater scenes and con-
ditions, the different colour channels will necessarily fall in and out of favour.
Monitoring which channel should be more dominant given a certain scenery has
not been investigated in this work, and it seems not perfectly clear whether such
endeavour is feasible nor significantly rewarding.

Finally, concluding this brief discussion of grayscale conversion, this work has
utilised eq. (5.2) to convert the original RGB frame to a single-channel grayscale
image. The effect of eq. (5.2) versus eq. (5.1) is marginal, as visualised in fig. 5.1.

5.1.2 Binarisation through Manual Pixel Intensity Thresholding

The simplest road from grayscale to binary image is indisputably through pixel
intensity thresholding:

Ib =

{
0, where Igray < T

255, where Igray > T
(5.3)

where Ib is the resulting binary image, Igray the grayscale image, and T a pixel
intensity threshold in [0, 255]. It should be mentioned as a side-note that a binary
image can be addressed as an image consisting of zeros and ones, or zeros and
255s, interchangeably.

Jakobsen experimented first with setting T manually, an approach which can
work very well in certain scenarios, but not so much in others. For instance,

71

5.1. A Binary Reality

Figure 5.2: The histograms of the three channels (Red, Green, Blue)
and their respective single-channel grayscale image, can be analysed
to identify an optimal binarisation intensity threshold.

the pixel intensity values in fig. 5.2 indicate that the threshold exists somewhere
between 0 and 150, whereas a brighter scenery would skew the distribution
further to the right. Deducing an intelligible optimal threshold value from these
histograms is not really feasible, since the two hypothetically present classes
(Background and Net Structure) do not separate themselves into well-behaving
clusters in the histograms. The value must therefore be approximated, then
optimised based on visual impression. See for instance how the quality of the
binary images in fig. 5.3 changes radically with perturbations to the thresholding
value. Constantly updating the thresholding value like this is very inconvenient.

72

Chapter 5. The Local Irregularity Detector

Figure 5.3: With global thresholding, the threshold value must be
carefully selected in order to achieve superior binary results. Here,
starting from the left, the threshold T has been set at 50, 75, and 100.
The original grayscale image subject to thresholding is located in the
upper right corner of fig. 5.1.

5.1.3 Binarisation through Otsu’s Method

Otsu’s method, as discussed in chapter 1, yields an effective way of automatically
choosing the optimal threshold T based on the pixel intensity histogram of a
grayscale image. However, complex scenes arise underwater where a single
threshold simply does not suffice. For instance, in fig. 5.4 it is strikingly appar-
ent how the binarisation succeeds in the upper row, but fails in the lower row.
Most of the image depicts Net Structure, but a global thresholding value fails
to include large parts of the net in the binarisation. This tendency will be fatal
to an irregularity-detection algorithm, since black areas in the binarised image
assumably indicate holes.

Otsu’s method brings to the table the very desirable unsupervised optimal
threshold selection, but falls short in complex scenes where the homogeneity
assumption of the classes is not true. Due to the observed inadequacy of Otsu’s
method in complex scenes, it is dismissed as a binarisation candidate in this work.
Otsu’s method was nevertheless favoured by Betancourt [20], Paspalakis [21], and
Zhao [22].

5.1.4 Binarisation through Adaptive Thresholding

Optimal global threshold selection, be it manual or automatic, fails when there
exists no global threshold to effectively separate Net and Background across the
entire image. So, could one achieve binarisation through local optimal threshold-
ing? The answer is yes, through adaptive thresholding [41].

With adaptive thresholding, each pixel is evaluated based on the pixel inten-
sity distribution of its neighbourhood. This is obviously an extremely desirable
trait to counter the aforementioned problems posed by complex gradients. The
block size of the local neighbourhood needs to be carefully selected, to make sure
it encapsulates local instances of Net Structure and Background.

73

5.1. A Binary Reality

Figure 5.4: Otsu’s method effectively finds the single optimal binarising
threshold value T. The problem, however, is that a single T is not
sufficient if the image is complex. In the upper row, the Net Structure
and the Background is rather homogeneous across the image, whereas
the bottom image has a complex lighting gradient which causes the
net to appear both bright, dark, and everything in between, in the
same image. This caused much of the bottom right binary image to
appear black, even though most of the grayscale image displays Net
Structure.

74

Chapter 5. The Local Irregularity Detector

Figure 5.5: The adaptive thresholding algorithms classifies each pixels
based on the distribution of its local neighbourhood. The neighbour-
hood block sizes utilised here were 21, 51, and 101, respectively.

In fig. 5.5 the leftmost image has too small a neighbourhood, whereas the
rightmost arguably has too large a neighbourhood. Too small a neighbourhood
manifests itself in the characteristic filled holes in the leftmost image: when eval-
uating Background pixels in the middle of a mesh, the neighbourhood does
not include any Net Structure pixels and so the pixel subject to classification
merely compares itself to other Background pixels. In the rightmost image, a
diagonal dark area in the middle of the net appears since the very local nu-
ances between Net Structure and Background fail to be recognised. Since each
pixel is evaluated based on the neighbourhood, both Net pixels and Background
pixels were, in that area, both relatively dark when expanding the neighbourhood.

Intuitively, the size of the neighbourhood should also, ideally, not be global,
but rather derived as a function of the local mesh size. This will be discussed in
section 5.4.1. .

5.1.5 Binarisation through Edge Detection

The binarisation schemes discussed thus far all revolve around pixel intensity
thresholding, but additional classes of such schemes exist. Edge detectors, for
instance, segment pixels based on intensity variation and transition instead of
pixel value per se. The edge detectors have one certain advantage to the thresh-
olding algorithms: notice that the Net Structures in the upper and lower row
of fig. 5.1 are bright and dark, respectively. A thresholding algorithm with no
knowledge of what it was evaluating would necessarily represent the Net as white
binary class in the upper row, and as dark binary class in the lower row. In more
complex scenarios, such as that of fig. 5.5, the Net is both dark and bright within
the very same image, and the binarising scheme would need help from other
modules in order to correct the binary representation, and make sure all Net
Structure was handed the correct white class label. An edge detector, however,
would disregard the fact that the Net was either dark or bright. It simply yields
response to the fact that there is a sharp transition in pixel intensity value where
the Net Structure occludes the Background.

75

5.1. A Binary Reality

Three different edge detection algorithms were discussed in researched work:
Jakobsen and Haugene both explored Canny’s algorithm, but neither used it.
Jakobsen stuck with intensity thresholding and Haugene introduced his own edge
detector, the Local Sharpness Detector. Jakobsen also investigated the Laplacian
of Gaussian (Marr-Hildreth), but it, also, fell out of favour with him .

Canny’s Algorithm

Canny’s algorithm [39] is an extremely popular edge detector widely used in
various application since its advent in the 1980s. The algorithm aims to provide
robust edge detection, in terms of suppressing weak or false edges, but still
incorporating edge parts that might suffer from varying illumination. However,
its reliance on edge intensity thresholds introduces need for human fine-tuning.

Such tuning might provide decent edge detection for certain scenes, whereas
shifting scene conditions, conversely, render the edge detection poor or even
useless. For instance – conditions which suffer from very low illumination will
limit the edge intensities, in which case the Canny parameters should be set
to detect very fine intensities. These thresholds ultimately lead to false edge
detections under of abundant illumination. In fig. 5.6a the parameters have been
fine-tuned for that very scenario. Apart from yielding the same response to
the (originally) dark and bright Net, it fails to segment as much Net Structure
as did the adaptive thresholding algorithm (fig. 5.5). Since Canny’s algorithm
apparently yields worse results than achievable with adaptive thresholding, in
addition to requiring very specific fine-tuning, it was not considered further in
this work.

Marr-Hildreth’s Algorithm

The Laplacian of Gaussian (also called Marr-Hildreth’s algorithm) is an image
analysis classic, proposed in the 1980s by David C. Marr and Ellen C. Hildreth
[46]. Its performance on the sample scene in fig. 5.6b is quite similar to that of
Canny’s algorithm, which was generally decent. However, it also fails to include
large parts of the Net Structure, specifically, those parts which are somewhat
blurry. The algorithm itself is designed not to respond to blurriness (given the
Gaussian part), so it will naturally respond only to the sharper parts of the image.
The severity of the blurring can be fine-tuned by humans, and the algorithm was
in this work perceived as hyper-responsive to perturbations in its parameters. As
was the case with Canny’s algorithm, shifting sceneries require shifting param-
eters to achieve acceptable binarisation results. This works aims to avoid what
Haugene called his myriad of tuning parameters, so Marr-Hildreth’s algorithm was
also left aside due to better options.

76

Chapter 5. The Local Irregularity Detector

(a) Canny’s algo-
rithm.

(b) Laplacian of
Gaussian.

(c) Haugene’s
edge detector.

Figure 5.6: The edge detectors offer a new take on binarisation. If
perfectly tuned, then both Canny’s algorithm and the Laplacian of
Gaussian detect net threads as white responses indifferently of the
net pixel intensities being dark of bright. However, Haugene’s edge
detector highlights sharp and bright pixels by nature.

Haugene’s Algorithm

The local sharpness detector proposed by Haugene [17] subtracts from the orig-
inal image its blurred equivalence. Albeit not concerned with derivatives like
the previous two edge detectors, it is an edge detector in the sense that it locates
brief instances of sharpness. In fig. 5.6c Haugene’s algorithm is, impressively, well
on par with the aforementioned edge detectors, albeit with one drawback: his
edge detector yields inverse response for dark Net Structure. His edge detector
effectively retains only those pixels in the original image which are bright, and
surrounded by a less bright neighbourhood. This is not to discard his approach
completely, the response is very similar to that of the adaptive thresholding
algorithm. However, his approach struggles when there is little sharpness in
the original image. If an image is blurry, then its blurry equivalence is, well,
also blurry. The difference is zero. These scenarios are simply better handled by
adaptive thresholding.

5.2 Binary Correction: Coupling U-Net and Binariser

An extraordinaire component of this work is the integration of the U-Net to
filter non-relevant parts of the frame. Whereas previous work on the field has
typically assumed the entire frame to be of interest to the hole detector, this
work acknowledges the fact that a real-life application needs to handle realistic
scenarios.

Recall from chapter 4 that the 3CAS U-Net identifies three classes: Bright
Net, Dark Net, and Nonsense (see for instance fig. 4.5). These three classes make
perfect sense when recognising in fig. 5.5 that parts of the binarised image are
inverted due to the appearance of Dark Net in the original image.

77

5.3. Detecting Irregularities

The first version, say, of the U-Net produced a two-class output, namely Net
and Nonsense. This type of output demanded a significant amount of work to
detect whether or not the scene in question showed Dark or Bright Net Structure.
With traditional computer vision techniques, this was effectively solved by assum-
ing there to be more disjoint Background regions than disjoint Net Structure regions.
If indeed there were more white pixel regions than black pixel regions, the binary
image was inverted. Ideally, one is faced with a single Net region and several,
smaller, Background regions. However, motion blur and poor image quality often
caused Net Structure connections to appear broken in single frames, and hence
there could exist frames in which there were in fact fewer Background regions
than there were Net Structure regions. To counter this was included a consensus
module which demanded a certain continuity in the call for binary inversion
before its application.

Other statistical attempts were implemented to make a better binary correction
module. However, even if they would succeed in scenes in which the entire binary
representation was inverted (i.e. the entire Net was dark such as in the lower row
of fig. 5.1), they would not be able to handle situations where parts of the image
contained Dark Net, and the other half Bright.

By adding an extra class to the output layer of the neural network (going from
NeNoS to 3CAS) it turned out to be largely learnable by the U-Net whether or
not the Net in question was Bright or Dark. In fig. 5.7 it is visualised how the
Binary Correction module operates with the U-Net: The three-class prediction
mask shown in fig. 4.5 is split into three separate masks; White Net Mask, Dark
Net Mask, and Nonsense Mask. Summing the product of White Net Mask and
the original binary image, the Nonsense Mask, and the product of Dark Net Mask
and the inverted binary image yields binary coherent representation where any
black pixel region can be treated as proper Background.

5.3 Detecting Irregularities

With a coherent binary image in place, regardless of its origin (either from 3CAS
and subsequent binarisation, or from NTS), irregularity detection can finally take
place. This work has specifically aimed to develop Haugene’s [17] damage detec-
tion algorithm, and thus detects irregularities as an irregular piece of Background.

Choosing one necessarily implies rejecting all else. Paspalakis’ [21] pixel count-
ing approach and Zhao’s [22] area comparison algorithm were abandoned due
to concerns with their naïveté. Broken connections in the Net Structure do not
necessarily alter the number of Background pixels in a sub-part of the image
significantly, causing significant worry for Paspalakis’ method. In addition, algae
growth and such could make the Net Structure appear fatter in the binary image,
altering the relationship between Net and Background pixels in that part of the
image.

78

Chapter 5. The Local Irregularity Detector

Figure 5.7: Five binary images combine to form a coherent binary
image in which irregularities necessarily manifest themselves in large
regions of black pixels. Starting from the top, in the leftmost column:
White Net Mask, produced by the 3CAS U-Net. The original binary
image, produced here by the adaptive thresholding algorithm. The
Nonsense Mask, produced by the U-Net. The inverted binary image.
The Dark Net Mask, produced by the U-Net.

79

5.3. Detecting Irregularities

Figure 5.8: A scene and its binary equivalence, as suggested by a U-Net.
The cleaner’s impact on the net causes it to deform, no longer depicting
even and straight lines easily analysable with Hough transforms.

Detecting Hough lines was favoured by both Betancourt [20] and, eventually,
Paspalakis [21], but rejected by Jakobsen [19] and Olsen [58]. Given perfect
circumstances, in which the net forms even and straight lines, this method is
likely to succeed. However, most scenes during cleaning operations look like
fig. 5.8, where the cleaning robot causes the net to deform. Such scenes are not
easily handled by the Hough transform. The same goes for Jakobsen’s line search
algorithm, which innately assumes lines to be parallel.

5.3.1 Haugene’s Damage Detection Algorithm

Tormod Haugene proposed morphological operations as opposed to region growing
given its capability to recognise the intactness of Net Structure which is not
necessarily entirely intact in the binary image. Typically, motion blur causes Net
Structure to appear broken in occasional frames. If one were to apply region
growing to each Background pixel, large regions would inevitably arise from such
troublesome areas. This is well visualised in fig. 5.9. Even though the quality of
the binary image was relatively good there, tiny, yet present, broken connections
bridge several Background regions to form connex regions of relatively large size.

Haugene’s approach consisted of first closing the binary image with a disk-
shaped kernel of radius 14, then opening the closed image with the same kernel,
to reconstruct the original shape of the damage. There seem to be at least one
peculiarities with this reasoning. Firstly, the radii of the kernels were designed
to exclude most false positives and include most true positives given a very small test
video (19.4 seconds, displaying 11 different scenes in an artificial net set-up). This
assumption is decent enough as proof-of-concept, but far from acceptable in a
real-life application. For instance, fig. 5.10 illustrates clearly how false positives
are detected due to the relatively large size of regular pieces of Background.
Instead, an adaptive approach should calculate what size constitutes regular
Background, and then search for pieces of Background sufficiently larger than
that. Additionally, the closing and opening operations are themselves designed
to retain the original size of the different regions. Applying opening to the closed
image in order to reconstruct the original shape of the damage makes little sense.

80

Chapter 5. The Local Irregularity Detector

Figure 5.9: Naïve region growing approaches identify false holes
where there are none due to apparent broken connections in the binary
image. The real net tear was in this image recognised as the sixth
largest region.

(a) Binary image. (b) Reported damage.

Figure 5.10: Haugene’s proposed opening with a disk-shaped kernel
of size 14 does not necessarily report true damage if the radii of the
normal Background regions in the binary image exceed 14 pixels.

81

5.3. Detecting Irregularities

Figure 5.11: Haugene’s video material depicted extremely severe dam-
age, and his choice of structuring element shape was therefore not of
critical importance.

5.3.2 Refining Haugene’s Kernel Shape

Haugene proposed a disk-shaped kernel to identify damage. From one of his
examples, fig. 5.11, it is evident that his scenarios needed no refinement of kernel
shape in order to detect his damage. The damage he analysed was virtually fifty
times the size of his ordinary pieces of Background. To identify more fine-grained
damage, however, is suggested the cross-shaped kernel as showed in fig. 5.12.

Whereas the square and circular kernels are very robust to false positive
reports (they will only highlight areas which can be completely filled by the
kernel), they tend to under-report actual damage where the shape of the damage
is not square-like or circular. Of course, the damage is reported independently of
shape when its size is of a different order of magnitude than the typical piece
of Background, but when the damage is approximately the height, say, of an
ordinary mesh, but rather broken in the horizontal direction, a circular kernel
will simply not suffice.

One could argue that flat kernels such as those of fig. 5.13 should be utilised,
but they will arguably over-report damage due to poor image quality. The cross-
shaped kernel, on the other hand, requires some substance to the damage in both
directions, whilst not the strict square- or circular shape as required by the other
symmetric kernels.

As per now, the cross-shaped kernels and the flat kernels will be tested and
considered to evaluate whether or not they provide the required alertness to
irregularities, and the desired robustness to false positive detection.

5.3.3 Refining Haugene’s Kernel Size

The results yielded by the, rather heuristically proposed, kernel size of 14 obvi-
ously depend on the characteristics of the scene. Holes will be found everywhere
if the typical piece of Background is wider than 14 pixels. Instead, this work
proposes an adaptive elbow kernel size (the Elbow), a measure of the typical
Background size in the current frame.

82

Chapter 5. The Local Irregularity Detector

(a) 22 px disk. (b) 23 px disk. (c) 24 px disk.

(d) 20 px square. (e) 21 px square. (f) 22 px square.

(g) 23 px cross. (h) 25 px cross. (i) 26 px cross.

Figure 5.12: Different kernel shapes have their distinct advantages.
The square kernel recognises well square-shape damage, but cannot
fit within thin, broken, connections. If the binary image were flipped
45 degrees, it would also struggle to fit properly within the diamond-
shaped Background pieces. The disk-shaped kernel is invariant to
rotation, but cannot fit properly within broken connections either.
The cross-shaped kernel is the only kernel to highlight the broken
connections in addition to the larger damages, and it works just as
well on diamond-shaped holes as square ones.

83

5.3. Detecting Irregularities

(a) 25 px row. (b) 26 px row. (c) 30 px row.

(d) 25 px col. (e) 27 px col. (f) 40 px col.

Figure 5.13: Toying with row-like and column-like kernels will allow
the detection of all broken connections. However, these approaches
will necessarily yield more false positives than the symmetric kernels
since poor quality can give the impression of broken connections
where there are none.

84

Chapter 5. The Local Irregularity Detector

Figure 5.14: If counting persisting regions whilst closing an image with
an incrementally increasing kernel size, irregularities can be identified
at plateaus where only a few regions persist. Hypothetically, there
exists some Elbow, a kernel size to which most regions disappear, and
to which true irregularities are some X% larger.

The Elbow (see fig. 5.14) is thought to be a grounding to which relatively
large pieces of Background can be compared. For instance, instead of recognising
irregularities as pieces of Background larger than 14 pixels, they can be recognised
as X% larger than the Elbow. This approach allows flexibility in terms of zoom,
distance to net, and angle of view.

One constant, however, which needs be set, is related to the Elbow decision.
The search for the Elbow should be as efficient, but yet as robust, as can be.
A proposed method is to define it as the largest size to which all but K pieces of
Background disappear during closing. In other words, it can be approximated by
gradually closing the binary image with a given kernel size, then looking for at
least K remaining Background regions in the resulting image. If K regions are
found, the kernel size is incremented and a new closing operation is performed.

This method could seem tedious in a high-rate demand application. The
Elbow could very well be 6 or 84, which means, intuitively, that dozens of closing
operations and regions recognising algorithms need be run per frame. This is not
true. Two very important shortcuts can be implemented, effectively reducing the
time complexity of the local irregularity detector down to a couple of milliseconds,
on an ordinary computer running on a single CPU. These are the improvements:

1. Start Elbow search at the previous frame’s Elbow.

2. Do not (necessarily) count all regions in a closed image. Stop counting and
increment kernel size once K regions have been counted.

85

5.3. Detecting Irregularities

where assumption (1) works since the spatial continuity is generally high
during cleaning operations, and arguably more so during inspection videos,
given the typically slower pace. This suspicion can be easily confirmed when
tracking the historical Elbows of cleaning videos.

Choosing K

The ideal K should ideally not fluctuate too much – enabling very efficient detec-
tion of the Elbow frame-to-frame, assuming Elbow search starts at the previous
frame’s Elbow. Additionally, there should be a decisive difference between the
Elbow and the size of irregularities – such that an intelligible X can be deduced
which effectively separates wheat from chaff.

Two kernel shapes are subject to scrutiny, namely the cross-shaped and the
flat kernels. Judging from fig. 5.15a and fig. 5.17a, based on cross-shaped kernels,
it could look as though K={3, 5, 10} yield often approximately the same Elbow,
especially so in fig. 5.17a. However, in both scenarios are the K=3 graphs more
inclined to fluctuate with K=1.

Intuitively, choosing K=3 allows one not to discover more than at most two
irregularities, since the defining characteristic of an irregularity then is based on
its size relative to the third largest piece of Background. Also, choosing K=10
increases time complexity two-fold compared to K=5, since ten regions need be
counted for each iteration, as opposed to only five. Based on these observations,
it seems that K=5 is a sufficient middle ground which allows for the detection
of four irregularities within a frame, still providing a grounding that is almost as
stable as the higher-complexity candidate K=10.

This behaviour seems to emerge also with the flat kernels, as observable in
fig. 5.16a and fig. 5.18a, where K={3, 4, 5} typically stabilise at approximately the
same value, especially when there is a clear hole present.

Choosing X

The optimal X could well be assumed to be a number that optimises the relation-
ship between false positives and false negatives, where the latter arguably carries
the heavier weight. Bear in mind, from the very start of this chapter, what the
expectations of the local irregularity detector were: [...] a lightweight module [that]
analyse[s] each frame and mindlessly report[s] any deviations from the norm.

Judging from fig. 5.17 especially, noting the hole that is doubtlessly present be-
tween frames 45 and 60 in (b), but not strikingly present as a large deviation from
the Elbow in (a), one could very well argue that X should be set as low as 10 with
a cross-shaped kernel, whereas other reports of holes in fig. 5.17a and fig. 5.15a
could justify X=50. Considering all the noisy reports (especially in fig. 5.15), one

86

Chapter 5. The Local Irregularity Detector

Hole Video 1 - Cross Kernel

(a) Analysing the Elbow for 100 consecutive frames could reveal the typical –
and the atypical – relationship between the tenth-, the fifth-, the third-, and
the single largest piece of Background in each frame.

(b) Tracking the centre coordinate of the single largest piece of Background
can help separating noise from real holes.

Figure 5.15: This specific video sequence reveals one single hole be-
tween frames 85 and 97. Judging from (a), there is some fluctuation in
K={3, 5, 10} in the former half of the time series, but relatively little in
the latter, and especially little when the actual hole appears. However,
K=1, reporting the single largest piece of Background, has an Elbow
size typically 50% to 200% larger than the others. Even though K=1
yields responses in frames 0 through 30 which could be indicative of a
hole, (b) shows no spatial continuity until frames 85 onward.

87

5.3. Detecting Irregularities

Hole Video 1 - Vertical Kernel

(a) The Elbow as deduced from flat vertical kernels is much larger than was
the case with fig. 5.15a, but with a more pronounced divergence when the
actual hole appears around frame 85.

(b) The centre coordinate of the largest irregularity per frame stabilises
distinctively around frame 85.

Figure 5.16: The single discoverable hole in Hole Video 1 is, judging
from (b) as compared to fig. 5.15b, just as spatially confirmable whether
the kernel is cross-shaped or flat. However, in order for a hole to
be confirmable, it must first be discoverable, a trait enabled by the
relationship between the Elbow and the hole. This relationship seems
to manifest itself more clearly in (a) than in fig. 5.15a, suggesting the
flat kernel is a better choice for irregularity detection in this situation.

88

Chapter 5. The Local Irregularity Detector

Hole Video 2 - Cross Kernel

(a) Every instance of K=1 indicates, in this video, an actual hole. Interestingly,
the size of the hole, relative to the typical piece of Background, fluctuates
heavily throughout the first 100 frames of the video.

(b) Tracking the centre coordinate of the largest piece of Background reveals
more temporal continuity than was the case with fig. 5.15b.

Figure 5.17: This video displays at most three holes simultaneously,
which probably explains why K=5 and K=10 are extremely consistent
whilst K=3 is relatively high in the first section of (a). Note that every
single K=1 is indicative of a true hole. This is also quite apparent in
(b), where there are more strong temporal patterns than was the case
with fig. 5.15. The relationship between K=1 and K=5, for instance,
in (a) shows that the distance is not always great between holes and
regular pieces of Background. Between frames 45 and 60, the hole
is less than 10% larger than the other pieces of Background, but (b)
clearly shows a strong temporal continuity.

89

5.3. Detecting Irregularities

Hole Video 2 - Vertical Kernel

(a) The gap between the most pronounced piece of Background in the video
compared to general pieces of Background is strikingly apparent when
utilising a vertical kernel in Hole Video 2.

(b) The trajectory of the largest piece of Background, as identified by the
vertical kernel, is impressively spatially consistent.

Figure 5.18: The vertical kernel yields an indisputable superior detec-
tion of the largest irregularity in Hole Video 2, as compared to fig. 5.17.
In (a), the size of the single largest piece of Background is almost 100%
larger than the third- and fifth largest piece of Background. More
remarkably, perhaps, is the stability in K={3, 5, 10}, as opposed to the
presumption that flat kernels would yield unstable responses.

90

Chapter 5. The Local Irregularity Detector

could argue that X should be set low and the temporal filter should be stricter.
The temporal continuity seems, at least from these observations, to be way more
stable than the deviation in Elbow. Deviation in Elbow is nevertheless a necessary
characteristic of true holes, but the size of the deviation can be assumed to be of
less critical importance than the temporal filtering of local irregularity reports.

Interestingly, the flat kernel seems to offer an additional flexibility in terms
of choosing a larger X. For instance, whereas the cross-shaped kernel showed
sporadic tracking of holes in fig. 5.17 with as little as 10% difference in Elbow
and the irregularity, the flat kernel offers under the same conditions impeccable
tracking with a margin of at least 50%. Hence, the flat kernels will be favoured,
with an X of 50, meaning irregularities will be signalised as areas that are 50%
larger than the Elbow, allowing detection of smaller irregularities than were
present in this case study, and avoiding the uncertainty of the 10% threshold
offered by the cross-shaped kernel.

5.4 Tiles

A considerably large disadvantage to the Elbow approach is the assumption that
a certain Elbow describes the typical Background size across the global frame. If
the camera is not headed straight at the Net Structure, then pieces of Background
closer to the camera will necessarily appear larger than pieces of Background
farther away. One way to handle this problem, is to apply a tiling algorithm to
the binary image, similarly to Paspalakis’ [21] pixel-counting preparations.

fig. 5.19 shows how this tiling approach can detect irregularities in parts of
the image that were previously excluded due to the relatively large pieces of
Background closer to the camera. However, this approach could also trigger
more false positives, especially so since Net Structure far away from the camera
is typically represented in poorer resolution.

Arguably, one should make a set of overlapping tiles, but since the camera is
in constant motion, it is assumed that irregularities will not reside too long on
the unfortunate border between two tiles.

Additionally, this tiling approach is easily parallelised, since each tile can be
assessed individually.

5.4.1 Building the Binary Image from Tiles

It was hinted at in section 5.1.4 that the adaptive thresholding algorithm could
be assisted in choosing the optimal neighbourhood size based on a function of
the local mesh size. A very good indicator of local mesh size is indeed the Elbow
(with a cross-kernel) in a single tile. By performing an Elbow search within each
tile, separately, one can obtain a precise description of the local neighbourhood.

91

5.4. Tiles

Figure 5.19: Dividing the binary image into tiles – tracking the Elbow
and searching for irregularities within each tile –, individually, can
increase recall if irregularities are found within neighbourhoods of
small Background pieces relative to other parts of the image. Precision,
however, will most likely also decrease as false positives tend to arise.

92

Chapter 5. The Local Irregularity Detector

Figure 5.20: The leftmost image shows the result of an adaptive thresh-
olding with a neighbourhood size twice the Elbow, and the rightmost
six times the Elbow. Centre pixels in the hole cannot access Net Struc-
ture pixels to evaluate themselves against if the neighbourhood is too
small, or the hole too big.

Keep in mind that the size of the neighbourhood evaluated by the adaptive
thresholding algorithm needs be large enough such that pixels within holes can
be correctly identified as Background. This implies that the pixel in the midst
of a hole needs to be able to see actual Net Structure, and thus the size of the
evaluated neighbourhood must be as large as the irregularities one want to be
able to detect.

Each tile has in this work performed adaptive thresholding with a neighbour-
ing size six times that of the Elbow in that tile, allowing (in principle) perfect
binary representation of holes six times wider or longer that the typical mesh. It
is worth mentioning, however, that holes larger than six times the typical mesh
will be picked up by the irregularity detector, but the binary representation of
that irregularity will have a white centre spot. This is illustrated in fig. 5.20,
where the binary representation is imprecise when the neighbourhood is too
small. Nevertheless, the area would most likely be recognised as an irregularity.

Keep in mind that these considerations are only applicable to the 3CAS
paradigm, since NTS naturally builds the binary image without explicit informa-
tion of tiling or the Elbow.

5.4.2 Denoising the Binary Image

Although the adaptive thresholding algorithm effectively produces less noise
the larger the neighbourhood, a few additional measures have been included to
ensure optimal working conditions for the Local Irregularity Detector. These also
take place on a tile-by-tile basis. Note that NTS segmentations have been left
untouched – assuming that producing denoised binary images is a trait learnable
by the U-Net if one gives the U-Net ground truths free from noise even though
the input image is noisy.

93

5.4. Tiles

(a) Opening with a kernel size 25% The Elbow includes the Net Structure in
the Background, which can break true mesh connections in the binary image
and cause false positive irregularity detection.

(b) Opening with a kernel size 150% The Elbow is a somewhat conservative
approach which could eliminate some Background noise whilst preserving
the integrity of the Net Structure representation.

(c) Opening with a kernel size 500% is an even more conservative approach
which yields similar results as 150%.

Figure 5.21: The Background subtraction approach effectively identifies
high-level patterns in an RGB image. However, the level of pattern
recognition must be carefully selected; if it is too small, then Net
Structure will be identified as Background. By selecting a size that is
significantly larger than The Elbow, it successfully denoises unclear
edges and thus facilitates unambiguous binarisation.

The first measure is Background subtraction with morphological opening
on the original RGB tile. This approach is described in fig. 5.21. Based on the
identified Elbow, this algorithm can add an additional edge to the edge detection,
by subtracting Background gradients from the original tile before edge detection
takes place. The kernel of choice for Background removal is disk-shaped, with
size 3x the Elbow, enabling a conservative filtering of images where only patterns
larger than the meshes are removed.

The second measure is a simple median filtering, as proposed also by Hau-
gene, on the binary image. Such filters are extremely efficient in removing
salt-and-pepper noise, which can be detrimental to hole detection with morpho-
logical operations. Especially dense kernels, such as squares or disks (as utilised
by Haugene), fail to fit in a hole if a single pixel within that is white. With flat-
and cross-like kernels, one obtains greater robustness towards this. However, a
simple median filter with a neighbourhood of three was utilised.

94

Chapter 5. The Local Irregularity Detector

(a) Original bi-
nary image.

(b) Salt-and-
pepper noise.

(c) Filtered noisy
image.

Figure 5.22: The median filter with a neighbourhood of three is a very
simple, yet effective, way of dealing with salt-and-pepper noise. In
this case, it restores the original image more or less perfectly.

5.4.3 Building the Irregularity Space

Detecting irregularities within local areas of the frame could lead to double
reports of irregularities localised on the border between two tiles. To finalise this
section on tiles is introduced the concept of the irregularity space.

By creating a commonspace for irregularities where they are mapped accord-
ing to their position in the original frame, one can seamlessly join irregularities
found on the borders of the tiles. In fig. 5.23, tile 4 and 7 report the same irregu-
larity, which overlap in the Irregularity Space.

Finally, the irregularity space of one frame can be stored efficiently as a set of
(x,y)- coordinates describing the bounding boxes that surround each irregularity.
This can be achieved by performing region growing on the irregularity space
with each black pixel as a potential seed, and storing the coordinate extrema
discovered for each region.

5.5 Introducing a Few Constants...

Even though this work set to eradicate as many heuristic constants as possible, a
few have proven well worthy of implementation. The most crucial constants have
been subject to investigation in this chapter, but some have not yet been explained.

For instance – it makes little sense to look for irregularities within a tile if
the Elbow within that tile is as large, say, as the tile itself. A Maximum Elbow
Size has therefore been implemented as 0.5x Tile Size. This is not to say that
irregularities larger than half the tile cannot be found. This is to say that if the
K-th largest piece of Background in that tile is as wide as half the tile, it is likely
an indicator of very poor video quality, such as motion blur.

95

5.5. Introducing a Few Constants...

Figure 5.23: The irregularity space provides a commonspace for irreg-
ularities discovered within each tile.

96

Chapter 5. The Local Irregularity Detector

Table 5.1: The local irregularity detector is constrained (or, enabled),
by a small set of constants. Constants only applicable to the 3CAS
system are written in boldface.

Name Value

Local irregularity detector constants

Elbow K 3

Elbow X 50

N Tiles 4x4

Min Elbow Size 11 px
Max Elbow Size 0.5x Tile Size
Min Kernel Width 8 px
Min Kernel Height 8 px
Median Filter Window 3 px
Background Removal Kernel Size 3x Elbow
Adaptive Threshold Neighbourhood 6x Elbow

Likewise, a Minimum Elbow Size has been implemented as 11 pixels. There is
little evidence to suggest that 11 is a magical number, but it should be noted that,
with X=50, an Elbow of 11 suggests irregularities must at least match a kernel
of size 16. However, if the Elbow were 5, a 50% increase could imply 7 as an
irregularity threshold, depending on rounding strategy. It seems fitting that some
lower tolerance level should be set, and that there should be some gap between
the Elbow and the irregularities.

A Minimum Kernel Width has been introduced alongside the Minimum
Kernel Height to effectively eliminate the problem of false positives caused by
single-row or single-column kernels working on binary images slightly misrep-
resenting reality. This threshold has been set to 8 pixels, meaning the smallest
possible column kernel is in fact 8 columns wide, and 11 rows tall. This threshold
has been set very low, consciously. Most false positives arise when there is a
channel, an apparent broken connection, a single pixel or a few pixels wide. By
requesting some small minimum breadth of such passage, one saves a tremen-
dous amount of computational power in not investigating false positives which
most likely are later filtered by the spatiotemporal filter (chapter 7).

All constants used in the Local Irregularity Detector are listed in table 5.1.
Observant readers might notice that we have utilised a K of three instead of the
previously considered five. This is because we have settled for a tiling approach
where each frame is evaluated, locally, within the scope of 16 tiles. Since El-
bow approximations at K=3 and K=5 were usually similar, the main drawback
to choosing a lower K was previously the inability to discover more than two
irregularities per frame. However, with a tiling approach, detecting more than
two irregularities within a subspace one sixteenth of the image poses no longer a
problem.

97

Chapter 6
The Scene Interpreter

It could be argued that an efficient real-time-system should have some light-
weight frame-to-frame analysis which is able to run in real-time (that is – signif-
icantly quicker than 30 frames per second if every frame is evaluated and the
frame rate is 30) backed up by heavy-weight further analysis of interesting frames.

The very popular ORB-SLAM [59] solves the task of simultaneous localisation
and mapping (SLAM) of an agent in an environment by having different threads
solve different tasks – placing different time demands on each thread. One thread
runs in real-time and extracts from each frame ORB-descriptors and calculating
the agent’s position in the local map. Building the map from the information in
the video stream is a heavier task not suitable for the real-time thread. Instead
– a second thread is triggered at a lower rate to optimise the local map if new
territories have been detected, or if enough time has passed. Likewise – a third
thread optimises the global map at an even lower rate.

Building on the philosophy of ORB-SLAM, a scene interpreter module is
suggested to reject false hole reports by the hole detection module. Assuming
that holes rarely occur, it seems reasonable have hole reports pass a second test
before they are confirmed. Due to the lack of sufficient images of holes – and the
variety of their appearance – it is suggested to train a classifier to identify whether
or not a scene depicts Fish, Nonsense, or Net, rather than have it explicitly tell if it
depicts a hole. If an irregularity is reported, then the area of the frame containing
this irregularity will be sent to the interpreter for assessment, and accepted as a
hole only if the interpreter is confident that the image depicts Net. This idea is
illustrated in fig. 6.1.

6.1 Constructing interpreter Data

Two videos from the training foundation were utilised to extract training and val-
idation data for this task; manta2 and manta3. 300 images were constructed
from parts of various frames from the videos, 150 images from each. One third
of the images were of Fish, one third of Net, and one third of Nonsense, usually
turbulent water columns or unintelligible Net. 20% of the data was used for

Chapter 6. The Scene Interpreter

Hole
Detector

Binarised Image Original Frame

Scene
Interpreter

Hole Confirmed

ii

iii

i

coordinate boundaries

of detected hole

isNetStructure

isDetectedHole

&

(True)

(True)

(True)

(a) If the local area of the discovered irregularity is
classified as Net, the hole discovery prevails.

Hole
Detector

Binarised Image Original Frame

Scene
Interpreter

Hole Confirmed

ii

iii

i

coordinate boundaries

of detected hole

isNetStructure

isDetectedHole

&

(True)

(False)

(False)

(b) If the irregularity discovery is caused by a fish
falsely included in the binarised image, the scene inter-
preter will reject it.

Figure 6.1: If the irregularity detector finds a suspiciously large black
area in the binarised image (i), then the area surrounding the hole is
selected from the original frame (ii) and the resulting snip (iii) is sent
to the scene interpreter. The interpreter classifies the image as either
Net, Fish, or Nonsense, the former of which is the only interpretation
that confirms the hole.

99

6.2. Model Architectures

Figure 6.2: The data constructed for the interpreter consisted of 100

Fish images (first row), 100 Nonsense images (second row), and 100

Net images (last row). The images vary in size to increase prediction
robustness. The idea is that valid holes can only be found within Net,
and that Net obstructed by fish does not constitute a hole.

validation – and 80% for training. K-Fold Cross Validation was not utilised at
this point, since an effective estimation of the performance of the idea was more
interesting than a precise fine-tuning.

The sizes of these images originally varied significantly (196±67 x 218±80

pixels) but were resized to 128 x 128 pixels as part of preprocessing. The general
idea is that a suspicious area will be cropped from the original frame with some
padding, before resized and sent to the classifier. Having various sizes during
training will add an additional aspect ratio robustness to the model and serve as
a form of regularisation. Example images are shown in fig. 6.2.

All three RGB channels were utilised, and pixel intensity values were nor-
malised (0.0 - 1.0 instead of 0 - 255). Each picture was accompanied with a label
encoded as an array; [0, 0, 1] if the image depicted Nonsense, [0, 1, 0] for Net,
and [1, 0, 0] for Fish. Hence, a model output of [0.2, 0.3, 0.5] means the model
is 20% confident the image depicts fish, 30% confident it depicts Net, and 50%
confident it depicts Nonsense. The label with the highest confidence is favoured
as prediction.

100

Chapter 6. The Scene Interpreter

Table 6.1: The simple model showed signs of learning during 600

epochs of training, but identified fewer than half the Fish images in the
validation set. Circa three quarters of the Net images were correctly
identified, and two thirds of the Nonsense images.

Class Precision Recall F1-Score Support

validation scores after 600 epochs

Fish 0.50 0.42 0.46 19

Net 0.61 0.77 0.68 22

Nonsense 0.76 0.65 0.70 20

6.2 Model Architectures

A few different neural network architectures were investigated and compared
during this research. All networks were heavily based on convolutional layers,
but varied significantly in complexity. The art of constructing such nets is indeed
part art, part craftsmanship, and designing them from scratch by oneself is
not necessarily a worthwhile endeavour. The three architectures have therefore
been borrowed from, or inspired by, the official documentation of Keras [60],
Tensorflow’s [61] high-level API.

6.2.1 Simple Model

The first model investigated was rather simple in it’s nature – consisting of 3

convolutional layers each followed by MaxPooling layers – and a dropout layer
for regularisation. The architecture is visualised in appendix B.1.

The simple model was trained for 600 epochs before training was terminated.
The results provoked no resounding hooray; fig. 6.3 shows how loss decreased
steadily but extremely slowly, and validation accuracy stabilised at approximately
65%, which could signalise that the model constantly misclassifies one of the
three classes.

Other scores in table 6.1 reveal how the model struggles to identify Fish
images in particular, but neither class is predicted with sufficient confidence.
The low precision scores indicate that the model is rarely very confident in its
predictions, but more so when it suggests an image to be Nonsense. The fact that
Net has higher recall than precision means the model suggests Net to be true
more often than is the case, such that 77% of the existing Net images have been
recognised, whilst the model’s prediction this is Net has only been true 61% of
the time. This makes the hole rejection conservative to some degree, which is a
favourable trait. One would rather have the model report one hole that is not
than have it overlook an actual hole. In any case, these scores are too low to be
trusted.

101

6.2. Model Architectures

Figure 6.3: The loss of the simple model steadily decreased over 600

epochs, signalising learning, though training and validation curves
diverged significantly at about 150 epochs. This could signalise over-
fitting. This is also reflected in the accuracy plot where the two curves
follow one another up to about 150 epochs. After 300 epochs, the
validation accuracy flattens at about 0.65 whilst the training accuracy
climbs marginally over the next 300 epochs.

102

Chapter 6. The Scene Interpreter

Table 6.2: The complex model showed no signs of learning during
100 epochs of training. At validation after the final epoch, it guessed
Nonsense at every image, failing to ever step into the unknown and
have a go at the other classes.

Class Precision Recall F1-Score Support

validation scores after 100 epochs

Fish 0.00 0.00 0.00 20

Net 0.00 0.00 0.00 22

Nonsense 0.31 1.00 0.47 19

6.2.2 Complex Model

Sometimes low scores reflect the need for a more complex model. Especially so
if the training scores remain low, typically signalising either lack of detectable
patterns between the images and their labels – or a model that fails to detect such
patterns. A second attempt was made with a Keras example model,1 designed to
classify cats from dogs, with significantly higher complexity: 15 convolutional
layers, MaxPooling, skip-connections, and dropout for regularisation. The archi-
tecture is visualised in appendix B.2.

This model would have optimally been training for 600 epochs as well, but
after 100 epochs of no progress but sky-rocketing validation loss, almost perfect
training accuracy, and dismal validation accuracy, it was time to terminate the
process. It is obvious from the scores in fig. 6.4 that the complexity of the model
is way beyond the required for this task. At least considering the amount and
diversity of available data. If the simple model is deemed unreliable, the complex
model is indeed a complete disaster.

6.2.3 Something in-between: VGG16 and Transfer Learning

With an underperforming simple model, and a severely overfitting complex
model, a natural next step would probably be to find something in-between.
Simonyan and Zisserman’s VGG16 [43] is one such model. Their CNN trained
for weeks with four NVIDIA Titan Black GPUs to achieve state-of-the-art perfor-
mance in the ImageNet 2014 Challenge.2

In short, their model consists of 13 convolutional layers (though much less
intricately weaved together than were the layers in the complex model: compare
appendix B.3 and appendix B.2), MaxPooling Layers, but no dropout. More
importantly for this work; the authors noted that their pre-trained model worked
as a brilliant generalised base model for different datasets.

1https://keras.io/examples/vision/image_classification_from_scratch/
2http://www.image-net.org/challenges/LSVRC/

103

https://keras.io/examples/vision/image_classification_from_scratch/
http://www.image-net.org/challenges/LSVRC/

6.2. Model Architectures

Figure 6.4: These score boards show quite brilliantly the potential
downside to complex models. The model is complex enough as to
capture the information in the training data almost perfectly, but
manages not to generalise this knowledge to the validation data. As a
result, the model has specialised in the training data, knowing exactly
what features to extract to fit that, but these features are way too
fine-grained to fit unseen data. When validation loss diverges from
training loss it is usually time to put an end to training, and it is safe
to say training could have been terminated well before 100 epochs.

Fine-Tuning the VGG16 Net

Having open access to Simonyan and Zisserman’s model and its pre-trained
weights, it is feasible to remove the top layer of their network (that which clas-
sified the 1000 ImageNet classes) and swap it for a new layer suited for three
classes, namely Fish, Net, and Nonsense, and to train it for a few epochs on this
data with very low learning rate. In addition to the new top layer, a dropout-layer
was added for regularisation. The base model architecture and its extension to fit
this new application is available in appendix B.3 and section B.3.1.

104

Chapter 6. The Scene Interpreter

Figure 6.5: With transfer learning, both training and validation accu-
racy broke old records within two epochs of training. Validation loss
decreased rather steadily at least for 6 epochs, but as training accuracy
reached 100% no more information could be learned from the training
data.

After a dozen of epochs of training with a learning rate of 0.00001, the accu-
racy of the validation data peaked at 98% (see fig. 6.5). The rapid convergence
towards 100% training accuracy could indicate the model was too complex, at
least given the modest size of the dataset. However, since validation accuracy
reached uplifting heights, it could be an indication that the net generalises well to
this specific task, but could benefit from more data. It was at this point decided
to extend the dataset using Data Augmentation.

Data Augmentation

The problem of little training data – leading to the model grasping its entire
complexity and specialising in the exact data which it is provided – generally
leads to worse performance on validation data, or data which is otherwise slightly

105

6.2. Model Architectures

Table 6.3: With transfer learning the validation scores reached very
satisfactory levels after few epochs of training. The Net class has recall
100% which means no image of Net was mistaken for anything else
but Net. This is very important in terms of not confusing images of
holes for Fish or Nonsense. Additionally, the Fish precision of 100%
indicates the model was correct every time it proposed Fish as the
true class of an image. This could indicate the model has picked up
indistinguishable Fish-features.

Class Precision Recall F1-Score Support

validation scores after 20 epochs

Fish 1.00 0.95 0.97 19

Net 0.92 1.00 0.96 22

Nonsense 0.95 0.90 0.92 20

different from the training data. A strategy to counter this without the expensive
labour of labelling thousands of new images is to generate duplicates of the
already labelled data, albeit with small (or larger) perturbations.

Since the validation accuracy is already extremely high (98%), an important
goal of the augmentation process is to delay the convergence of the training accu-
racy at 100% whilst upholding a solid validation score. Delaying this convergence
indicates that the model has been exposed to more examples during training, and
therefore be more robust. Whether or not validation accuracy reaches 100% is in
a sense a secondary issue. Had the original score been lower, say, below 90%, its
improvement would be a much more interesting watch.

With the help of a random rotation generator samples of training data were
rotated in the interval (-180

◦, 180
◦) each epoch. This introduced randomness

ensured the training data changed from epoch to epoch, a new-posed challenge
for the neural net to overcome. Still, it managed to obtain steady 100% accuracy
on the training data after approximately 35 epochs, which is circa 20 epochs
later than it did with no rotation. The validation accuracy maxed, again, at 98%.
Examples of such rotation operation is visualised in fig. 6.6.

Adding translative perturbations (see fig. 6.7) in addition to the aforemen-
tioned rotations had the model train for 100 epochs before cracking the mapping
between training input and labels completely for the first time. However, it
needed about 200 epochs before stably converging at 100% training accuracy, and
validation accuracy hit 98%, again.

Having observed a clear pattern of delayed convergence, though no increase-
ment (nor decreasement) in accuracy, it was decided to add several other pertur-
bation generators: in addition to rotational and translative operations, random
zoom, horizontal and vertical flip, and shear transformations were added. The
specifics regarding ranges are given in table 6.4. With all augmentations, training

106

Chapter 6. The Scene Interpreter

Figure 6.6: The training data was extended by applying random
rotation perturbations. The leftmost image is the original image of a
fish, followed by duplicates with rotation perturbations.

Figure 6.7: A second generator added translative perturbations to
the training data. The leftmost image is the original image of a fish,
followed by duplicates with horizontal and vertical translative pertur-
bations.

score did not show signs of stabilising at 100% during the first 300 epochs. After
100 epochs, both training and validation accuracies surpassed 90%, and spent
the next 200 epochs fluctuating between approximately 90% and 98%. Loss
simultaneously stabilised for both at just below 0.6, which is about the same as
did the loss without augmentation (fig. 6.5).

98% accuracy on 61 validation images means 59.78 images were correctly
classified. This is perfectly feasible since the model reports its confidence in the
different classes. If it suggests an image to be 90% Fish, and 10% Net, and the
true class is Fish, it is only 90% correct. However, since the performance is so
good on the validation data for either model (trained on augmented data or not)
telling which one is the better is not trivial. To enable discrimination between the
performances, a relatively large test dataset was created from a disjoint pool of
video material. 300 images (as large as the training foundation) was extracted
from different video material, some filmed by inspection robots and some by the
Manta. The approach was the following:

1. Create large test dataset

2. Train model with augmented data, validate on test dataset

3. Train model without augmented data, validate on test dataset

4. Keep the best-performing model from the best-performing epoch

107

6.2. Model Architectures

Table 6.4: Random perturbations were added to the training dataset
during training to introduce the model to variations of the modest
available dataset.

Transformation Type Random Range

data augmentation generators

Zoom [50%, 110%]
Rotation [-180

◦, 180
◦]

Vertical Flip [True, False]
Horizontal Flip [True, False]
Width Translation [-33%, 33%]
Height Translation [-33%, 33%]
Shear Transformation [0%, 20%]

5. Compare the two best-performing models

An observative critic could notice that we do validate on test data and that we do
not use K-Fold cross-validation. The reason for both is that we consider the vali-
dation data large enough such that it represents a variety of scenes and challenges.

K-Fold cross-validation is often utilised not to wound up in a situation where
the validation dataset is unrepresentable of the general data in terms of complex-
ity – either too easy (yielding unrealistically high validation scores) or too hard
(yielding unrealistically low validation scores). This technique is also often used
if one wants to get an idea of what number of epochs is optimal, such that one
can train a model on the entire data foundation afterwards. Given this tactic’s aim
to create a test set at least as large as the training dataset, it would make sense
to want to make use of this new data for training as well. After all, creating a
large pool of training data and only using half to train the model seems, at first
sight, like a waste. However, it is not necessarily obvious what constitutes the
best tactic: the larger the validation dataset – the more confidence can be put in a
keep-best-performing-model mindset. A set of model weights which perform well
on a large dataset should, after all, be quite good on a large range of data. If one
chooses to include all the data during training, and training in a K-fold manner,
one can only approximate which number of epochs constitutes the optimal – this
can never be verified unless one creates a new test dataset, in which case one
finds oneself in a never-ending cycle.

Thus, creating an equally large test dataset, and using this for validation, was
chosen to achieve trustworthy model weights.

Data Augmentation Evaluation

The model trained without data augmentation reached its highest validation
score after 22 epochs. Bear in mind that this model required only 12 epochs to
reach its high score when training on 240 images and validating on 60 (fig. 6.5).

108

Chapter 6. The Scene Interpreter

Table 6.5: The models trained with and without data augmentation
performed very similarly on the large test dataset. However, the
augmentation model generally got the better of the other, marginally.
If one assumes that every prediction was made with 100 % confidence,
the augmented model retrieved three more images of Fish (89 vs 86),
two more images of Net (91 vs 89) and one less image of Nonsense (86

vs 87).

Class Precision Recall F1-Score Support

augmentation score | no augmentation score

Fish 0.84 | 0.83 0.89 | 0.86 0.86 | 0.84 100

Net 0.91 | 0.89 0.91 | 0.89 0.91 | 0.89 100

Nonsense 0.91 | 0.91 0.86 | 0.87 0.89 | 0.89 100

Including these 60 images in the training foundation obviously induced the need
for more epochs. The augmented model, on the other hand, reached its high
score after 219 epochs, almost ten times the number of epochs required by the
non-augmented model.

These numbers reflect well the need for more patience, or, equivalently, more
computing power, when increasing the number of training instances. However,
table 6.5 reveals that patience (or computing power) pays off in results. The
augmented model performs a bit better on two out of three classes, and matches
the performance of the other on Nonsense class (if comparing F1-scores). These
results might seem trivial. Since the (relatively) large test dataset is still only 300

images large, then two percentages different scores on a single class still only
represents two misclassified images. This could be due to happenstance. But,
arguably, judging from these results, data augmentation certainly does not seem
to degrade the quality of the model. Conversely, it seems to give the model an
extra edge which would definitely be cherished if present. The implementation
of such augmentation is not expensive per se, so if patience or computational
power can be afforded during training, it should indeed be included.

The test dataset, accompanied by the predictions of the augmented and non-
augmented model, is listed in its entirety in appendix C.

109

Chapter 7
Irregularity Tracking

If an existing irregularity has been detected in one frame, chances are it will
appear in several subsequent frames as well. Ideally – one single irregularity
should only be reported once, and subsequent discoveries of that irregularity
should be mapped to the already discovered and tagged instance. This moti-
vates the investigation of irregularity tracking, a way of uniquely identifying the
individual irregularities and assigning to them a unique ID. Another equally
important motivation for this investigation, is to enable filtering of irregularities
that appear momentarily in one frame only to disappear in the next. By assuming
true irregularities to have spatiotemporal continuity, to be observable in several
subsequent frames, one might effectively reduce the impact of bad frames or
momentary bad segmentation.

7.1 A Spatiotemporal Irregularity Filter

One measure for continuity could be requiring irregularities to be observable in
approximately the same area over subsequent frames, hence encapsulating the spatial
component (a true irregularity is of approximately the same size at the same
location as previous registrations) and the temporal (overlaps are calculated based
on past discoveries of that irregularity). An implementation of this idea is to
draw a bounding box around a reported irregularity, and to compare the overlap
between that box and recently drawn boxes (see fig. 7.1). This method does not
compare the content of these boxes, but assumes that the content is the same if
they lie very close in time. An already utilised score to evaluate such overlap is
the Jaccard Index, the intersection over union. By using this score, instead of a mere
intersection score, one can punish reports not only for lack of overlap but also for
size differences even if they overlap. This is desirable, since true irregularities do
not change significantly in size from one frame to the next.

Chapter 7. Irregularity Tracking

boundaries of

past irregularity

boundaries of

current irregularity

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 4
𝑈𝑛𝑖𝑜𝑛 14

=
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 4

𝑈𝑛𝑖𝑜𝑛 9
=

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 6
𝑈𝑛𝑖𝑜𝑛 12

=

Figure 7.1: Requiring substantial intersection relative to union between
coordinate boundaries of current and past irregularities makes an
effective spatiotemporal irregularity filter. The score punishes both
over- and undersegmentation, and hence disallows the matching of
irregularities who overlap completely, but differ significantly in size.

7.1.1 Padding, Conjoinment, and Thresholds

Bearing in mind that the quickest cleaning robots of the lot (the Manta and FNC)
reach speeds of 1 m/s and capture video at 30 fps, the scene shifts roughly 3 cm
per frame, depending of course on angle, and very small holes could therefore be
missed if boxes are drawn too tightly.

It is proposed in this work to expand the bounding boxes some. By expanding
the boundaries, equally, in each direction, one automatically achieves greater Jac-
card indices (see fig. 7.3). This also means that nearby detected irregularities can
be matched even though they in fact are separate. However, due to the mentioned
problem of motion, implementing some padding proved to increase the tracking
of true irregularities significantly. Ideally – few enough local irregularities should
exist so that continuous, false, simultaneous, reports with close proximity is quite
uncommon.

A few padding strategies have been developed. Practically speaking, one
could either (i) use little padding and require little overlap from frame to frame or (ii) use
larger padding and require significant overlap from frame to frame. This work utilised
first the latter approach, but settled with the first, expanding the dimensions of
the irregularities by 25 pixels in each direction and requiring a Jaccard index
of 15% between past and current irregularities to validate a match. This is, in
a sense, respecting the principle of Occam’s razor1; the strategies might yield
similar results, but (i) is simpler. One could also argue that larger padding yields
larger boundaries, which in turn require more computational power to have their
respective overlap calculated.

1https://en.wikipedia.org/wiki/Occam%27s_razor

111

https://en.wikipedia.org/wiki/Occam%27s_razor

7.1. A Spatiotemporal Irregularity Filter

(a) (b)

Figure 7.2: The irregularity space sometimes misrepresents a single
irregularity as two or more disjoint irregularities. A conjoinment
procedure is suggested to merge irregularities of close proximity.

Immediate spatial proximity between two local irregularities (in the very same
frame) could be the result of sporadic awkward behaviour by the morphological
operation, coarse resolution in the binary image, or a combination of the two.
For example, in fig. 7.2a, a curious fish has been detected as two slightly disjoint
irregularities. A proposal is to compare the overlap (not the Jaccard index) of
irregularities in the irregularity space in a recursive manner; if two irregularities
overlap at least 70% (meaning at least 70% of either irregularity overlaps with the
other) the two form a new irregularity whose boundaries are the old boundaries’
extrema. The vote count from the irregularity with the most votes propagates
(votes will be introduced shortly). The recursive proposal means that the newly
formed super-irregularity can absorb a third nearby irregularity, and so on.

7.1.2 Accumulating Votes

Requiring a single match with the previous frame filters those odd discoveries
in single frames, but fails to identify irregularities that occur in every other
frame (for instance because of varying segmentation quality) and for assurance
one might want to have an irregularity appear more than twice before verifying it.

The problem of appearing and disappearing irregularities can be solved by
implementing a sliding window – a short-time memory that contains irregularity
reports within several previous frames. By enlarging this window one allows for
longer intervals between the irregularities. This has certain disadvantages. For
instance, matching two reports based on what part of the frame that irregularity
has been detected makes little sense if the ROV has moved to a completely
different scene. This matching strategy relies entirely on the assumed closeness in
time between the past and current frame. In this project the size this window has
been set to 3, giving the algorithm the opportunity to look at three past frames
and their irregularity reports. Building on previous logic on ROV pace, the scene
should maximally have changed by approximately 13 cm from frame three steps
back.

112

Chapter 7. Irregularity Tracking

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1
𝑈𝑛𝑖𝑜𝑛 7

=
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 9

𝑈𝑛𝑖𝑜𝑛 23
=

Figure 7.3: By padding the detected irregularity area, effectively ex-
panding the boundary boxes, one achieves a greater score in terms
of intersection over union. The padding therefore enables overlap
detection even if irregularities have moved slightly.

Having a short-time memory of three could at first sight seem to imply a max-
imum match threshold of three – requiring our current irregularity to match with
every report in the memory – and requiring the irregularity to actually appear in
every frame. Another issue with this approach is that, as the ROV moves, the
chances of overlapping with with that irregularity several frames back in time
decreases. A proposal is rather to store each report within the memory with a
number of accumulated votes. In this manner, our current irregularity can inherit
the accumulated votes of a matching irregularity in the memory, and add one to
the count. Thus – the size of the memory allows an irregularity not to appear
in a couple of frames – and the accumulation and inheritance of votes allows an
independently set vote threshold for verification. A downside to setting higher
threshold means the hole will be verified at a later point in time if the algorithm
is used in a real-time application. However – if implemented not in real-time, the
verification tag can simply back-propagate to all previously matching frames once
the threshold has been met and the verification tag assigned to the irregularity.

Again, there is a trade-off between proneness to false positive reports and
recall. Requiring fewer votes will inevitably lead to more false alarms, whereas
too high a threshold will fail to report holes which only appear for a short
moment. The count should be able to filter the false local irregularity reports
arising from corrupted image stream whilst moving at operating speed, and
perhaps should one not demand of the system to identify very obscure holes
appearing under such conditions. A threshold of 7 has been observed to disallow
the verification of the typical corrupted reports whilst allowing the detection
(hypothetically) if an irregularity in clear view for less than one-fourth of a
second.

113

7.1. A Spatiotemporal Irregularity Filter

Figure 7.4: The accumulation of votes can accelerate in a Fibonacci-like
manner as described in eq. (7.1) if previous instances of an irregularity
are not cleared as they are re-discovered in new frames. Depending
on buffer size, L, slow camera movements can cause a new discovery
to overlap with several old reports of that discovery in the buffer, and
effectively count the same votes more than once.

Beware of Accelerating Accumulation

It is, with this logic, important to clear any past version of an irregularity in
the memory once its votes have been inherited in a new frame. If not – votes
for irregularities detected every single frame will accumulate in a Fibonacci-like
fashion, whose acceleration depends on short-time memory buffer size. This
undesired effect is visualised in fig. 7.4 and described by eq. (7.1). One can observe
from fig. 7.4 that the effect is not as large if the required threshold of votes v
to verify an irregularity is very low. However, there is clearly a troublesome
difference between the exponential growth of any curve with an available memory
buffer (here visualised with L = 2 and L = 3) and the linear progression of the
curve with no memory (L = 1 depicts the desired vote accumulation – but gives
not the desired benefit of not having to observe the irregularity in each and every
frame). The proposed solution is therefore to look for matching irregularities
starting at the most recent frame, and to only let the most recent match prevail. In
this manner, old reports will eventually fade out and votes will only be counted
once.

v
[
n
]
=

0, for n = 1,
1+
∑n−1
m=1 v

[
m
]
, for 1 < n 6 L,

1+
∑n−1
m=n−L v

[
m
]
, for n > L

n,L ∈N

(7.1)

114

Chapter 7. Irregularity Tracking

Past
Irregularity

Matchmaker

Local Irregularity Report

coordinate boundaries

of detected irregularity

boundaries, tag, votes

Short-Time
Frame Memory

t-1

t-2

…

t-m

Within-Frame
Irregularities

irr 1

irr 2

…

irr n
add local report

Running
Irregularity
Tag Number

increment

Figure 7.5: The past irregularity matchmaker compares the overlap
between previous irregularities and the current. If a match is made,
the current irregularity inherits the vote count and the tag number of
the previous. If the tag is anything but zero, it means the previous
irregularity is verified and thus the current can abort its vote accu-
mulation mission. If no tag is inherited but a vote threshold is met,
the irregularity receives a running irregularity tag number before it is
stored in the short-time memory.

7.1.3 The Running Irregularity Tag Number

To enable grouping of matching irregularities, a running tag number is proposed
to be assigned to irregularities that receive enough votes to breach the verification
threshold. Once an irregularity has received such number, it can be stored with
that tag in its irregularity report in the short-time memory. If later reports match
with that irregularity, it acknowledges a match with a verified irregularity and
inherits its tag without bothering with further vote accumulation. Unverified
irregularities are simply stored with tag number 0.

In this manner, one can group matching irregularities once they have received
verification, and since new matching reports are stored with the same tag but new
boundaries, the location of the tagged irregularity can be tracked over subsequent
frames. This complete module which interacts with the short-time memory and
stores the running tag number has been named the past irregularity matchmaker
and is visualised in fig. 7.5.

115

7.2. Integrating the Scene Interpreter

7.2 Integrating the Scene Interpreter

After receiving a verification tag it seems fitting to investigate the irregularity
further. Perhaps is this where the scene interpreter (chapter 6) should come into
play (after an irregularity is verified, not after its first appearance). Recall from
that chapter how the task of the interpreter is to add a smart dimension to the
hole verification – separating reports of holes from reports of fish – or simply
reports of noisy water columns. Although the U-Net segmentation is supposed to
ignore such, they are sometimes included in the segmentation. One reason is the
spatiotemporal encouragement using lag masks. A fish that rapidly disturbs the
centre of a segmentation mask might therefore be included rather that breaking
up the mask.

From Irregularity to Hole

Whereas the matchmaker module simply requires irregularities to appear in a
continuous manner, it does not necessarily know what that irregularity is. It is
therefore consciously referred to as an irregularity, but now is the time to talk
about classified irregularities, namely Holes, Fish, or Nonsense. These classes are
best handled by their own module called the irregularity librarian. The librarian
keeps track of a register which maps tags to classes, and sends unclassified tags
to the scene interpreter for classification.

Although fig. 7.6 shows the tag: class register as a simple key -> class look-up,
it was successfully extended to achieve greater robustness. One could imagine
that the scene interpreter misclassified the first picture of an irregularity, and it
would be a pity if this classification were to sustain itself. The tag: class register
is therefore suggested to contain class votes such that the irregularity be classified
multiple frames in a row before its nature is verified. This work suggests a
threshold of three, meaning an irregularity is classified every frame it is observed
until one class has three more votes than the second most popular class. In this
manner we do at least three independent classifications of each irregularity before
confirming its class.

However, it is suggested that the irregularity is highlighted from the moment
it is verified, although awaiting class confirmation. In this work the irregularity is
presented as the current leading vote at all times. For instance – if an irregularity is
first recognised as Fish, it should be visualised as Fish in the video in the current
frame. If the irregularity is observed in the next frame and identified as Hole, it
should change visualisation to Hole. If the next frame thereafter identifies it as
Fish, then Fish leads the vote count and the irregularity is visualised accordingly.
Still, the irregularity should be classified for every subsequent frame until one
class leads by three votes.

116

Chapter 7. Irregularity Tracking

Past
Irregularity

Matchmaker

Local Irregularity Report

coordinate boundaries

of detected irregularity

boundaries, tag, votes

Short-Time
Frame Memory

t-1

t-2

…

t-m

Within-Frame
Irregularities

irr 1

irr 2

…

irr n
add local report

Running
Irregularity
Tag Number

increment

Irregularity
Librarian

{
1: Hole
2. Hole
3. Fish
4. Nonsense
5. Fish

}

tag: class
Register

update

Scene
InterpreterOriginal Frame

boundaries class

tag,

boundaries

{
2: current boundaries, remaining countdown
3: current boundaries, remaining countdown
5: current boundaries, remaining countdown

}

Active Irregularities Register

update

Figure 7.6: The matchmaker (described in fig. 7.5) coupled with the
irregularity librarian makes sure a verified irregularity is linked with a
class. The scene interpreter (see chapter 6) classifies new irregularities
as either Fish, Net, or Nonsense, and assuming holes may only occur
within Net, this is the only class which signifies trouble. Detected
irregularities which require highlighting are stored in the active irreg-
ularities register, preferably Holes (but Fish could also be highlighted).
A countdown accompanies the irregularities such that the highlighting
can last a fraction longer than the irregularity is visible.

Active Irregularities

A second register handled by the librarian contains irregularities visible in the
current frame. This register is called the active irregularities register. If an already
visible irregularity has been discovered in the current frame, its boundaries are
updated such that the new location of the irregularity is saved. In addition,
a countdown timer is proposed to accompany its report in this register. This
to give the irregularity the chance to be highlighted for a couple of frames
after its disappearance, and give the observer the chance to catch a glimpse of
the irregularity even though it only appeared in the fraction of a second. The
complete spatiotemporal irregularity filter – with its classification extension, can
be seen in fig. 7.6.

117

7.3. Guided Tracking

7.3 Guided Tracking

The naïve system for irregularity verification requires indeed little advanced
technology given a very important precondition; the irregularity needs be discov-
erable by several frames, independently. This precondition seems to be favourable
when one wishes to establish the presence of a true irregularity. However, it
could be argued that, once an irregularity has been verified, that it should be
actively tracked. If – for instance – poor segmentation leads to an irregularity
no longer being picked up by the local irregularity detector. This happened in
fig. 7.7, where the assumption an irregularity is X% larger than the k-th largest piece
of background in the segmentation did not stay true due to shadows included in
the segmentation. When the irregularity fell out of short-time memory, it had
to be re-verified, and thus, receive a new irregularity tag when re-appearing
several frames later. Such cases motivate the implementation of a guided tracking
algorithm to actively track the trajectory of verified irregularities.

7.3.1 Projected Movement

One technique might be an indirect tracking of the irregularity, namely tracking
the motion of its bounding box and project that onto subsequent frames in which
the irregularity is not detected, but hypothetically still exists. In this manner one
could continuously move the highlighting rectangle in the same direction the
irregularity has been moving either until the irregularity, hypothetically, leaves
the scene, or until some countdown expires. This could be interpreted as an ex-
tension of the already implemented countdown module which highlights the area
in which an irregularity was latest seen for some time. In addition to highlighting
that area for some time, one could also change the position of the highlighted
area. In addition – by updating the hypothetical position of an irregularity in the
current frame – one can increase the chances of achieving sufficient overlap when
the irregularity re-appears – ensuring the irregularity receives one and only one
irregularity tag.

Centre Tracking

Calculating the movement of the rectangle is done by calculating the relative
distance, δ, between the centre of the irregularity, (xc,yc), from one frame to the
next:

δx
c

t = xct − x
c
t−1

δ
yc

t = yct − y
c
t−1

(7.2)

If one wishes to project the irregularity onto a frame in which it is not directly
detected, one could simply utilise current movement, the relative distance between
the previous instance of that irregularity and the one before that. However,
this strategy tends to destabilise if the camera movement jerks or in any other
way behaves nonlinearly. Instead, it is proposed to accumulate every detected

118

Chapter 7. Irregularity Tracking

Figure 7.7: The probable hole with irregularity tag 1 is tracked from
the 17

th until the 20
th frame, before segmentation causes it not to be

identified in frame 21. When the irregularity is yet again verified – in
frame 34 – it has received a new tag.

119

7.3. Guided Tracking

movement of a single irregularity, and to calculate the projected movement at t in
time δ̂t as the median value of some number of previously detected movements
for that irregularity. If t∗ is the last K ts in which it was detected then this can be
written as

δ̂x
c

t = median(δx
c

t∗)

δ̂
yc

t = median(δy
c

t∗)
(7.3)

By utilising the median value of previous movement as projected movement, one
can counter outliers which may or may not be occur from one frame to another
based on segmentation quality. An implementation of the median movement
scheme in the case study of fig. 7.7 is shown in fig. 7.8b and fig. 7.9. Notice in
fig. 7.8 the difference between the instability of the tracking when the movement
hypothesis is based on current movement (fig. 7.8a) rather than the median
approach (fig. 7.8b).

Detected boundaries of an irregularity’s bounding box are effectively stored as
two coordinates, (xmin,ymax), (xmax,ymin), and the projected boundaries (x̂, ŷ) of
an irregularity not discovered in this frame, but hypothetically present, can thus
be deduced by adding the projected movement delta to the previous boundaries:

x̂mint = xmint−1 + δ̂x
c

t

x̂maxt = xmaxt−1 + δ̂x
c

t

ŷmint = ymint−1 + δ̂y
c

t

ŷmint = ymint−1 + δ̂y
c

t

(7.4)

Notice that the previous boundaries need not be directly detected in the previ-
ous frame, in which case xmint−1 equals x̂mint−1 et cetera. Nevertheless the median
projection δ̂ is exclusively drawn from detected movements, and not from the
accumulation of projected movements.

These lines of reasoning produced a handsome tracking of the case present
in fig. 7.7, and fig. 7.9 shows how the algorithm now follows the irregularity
from entrance to extrance. Even better – since the boundaries are continuously
updated in the active irregularities register, it keeps its irregularity tag 1 instead
of receiving a new one when re-verified in frame 34. The propagation of the
projected boundaries in the short-time memory has in addition enabled re-
discovering the irregularity in frames 28, 31, and 33 in addition to frame 34,
since the irregularity still exists in memory it needs not accumulate votes yet
another time to be picked up. The registration of discovered irregularities and
the projection of irregularities not discovered, but hypothetically present, is listed
in algorithm 1.

120

Chapter 7. Irregularity Tracking

for verified irregularity in frame do
get previous boundaries of irregularity
classify irregularity if class is unclear
calculate current movement
store movement in movement register
update detected boundaries in active irregularities register
refresh countdown in active irregularities register

end

store detected irregularities in short-time memory

for active irregularity not found in frame do
get previous boundaries of irregularity
calculate projected movement
calculate projected boundaries
update projected boundaries in active irregularities register
decrement countdown in active irregularities register

end

store projected irregularities in short-time memory

Algorithm 1: Once an irregularity has accumulated enough votes to be veri-
fied, extra measures are made to make sure the irregularity is highlighted in
every frame in which it hypothetically exists. If the irregularity is detected
directly in a frame, its movement from the previous frame is stored in the
movement register, and it is added to the active irregularities register with its
boundaries and a refreshed countdown. If irregularities exist in this register
without being directly observed in a frame, then previous observations of that
irregularity and its movement are used to calculate the hypothetical location
of that irregularity in the current frame. In this case, the countdown timer
is decremented such that the irregularity eventually dies if not re-detected.
Projected and detected boundaries are always stored in the short-time memory
to increase chances of re-detecting that irregularity in subsequent frames.

121

7.3. Guided Tracking

(a) Detected and projected centre coordinates with movement hypothesis
based on relative movement of boundaries from previous til current frame.

(b) Detected and projected centre coordinates with movement hypothesis
based on median of all previous detected movements.

Figure 7.8: A movement hypothesis based on the relative movement
between current and previous frame such as (a) suffers from occasions
where the observation does not smoothly approach the camera. Ac-
knowledging that the movement could be jerky or elsewise nonlinear,
a median hypothesis such as (b) smoothens the approximation of the
actual coordinates to overlap extremely well with the observations
when they re-occur.

122

Chapter 7. Irregularity Tracking

Figure 7.9: The probable hole with irregularity tag 1 is sporadically
observed between frames 17 and 37 (see fig. 7.8). In-between these
discoveries, the registered motion of the irregularity’s centre allows
it to be projected onto the scene (projections are visualised in pink
colour). Updating the projected boundaries of the irregularity in the
short-time memory allows it to be refreshed in later frames with the
same irregularity tag, if the projected boundaries overlap with the
newly detected boundaries.

123

Chapter 8
Results

Four main modules have now been established – all delicately intertwined to
achieve robust hole detection in realistic environments. The deep learning based
net thread segmentation module (NTS) from chapter 4 is at the heart of the
program – interpreting every video frame as a binary scene where black areas
represent the Background in-between net threads. The local irregularity detector
in chapter 5 analyses every such binary image and scans them for atypical pieces
of Background – recognised by a morphological scheme utilising an adaptive
variable called The Elbow, a measure of the typical Background in a local neigh-
bourhood. The spatiotemporal filter deduced in chapter 7 tracks local irregularity
reports and verifies only those irregularities that sustain themselves in both space
and time. Once an irregularity has been verified, the scene interpreter from
chapter 6 is brought to play with a final trial – a deep convolutional network
trained on millions of images and then specialised on hole recognition – decid-
ing whether or not the verified irregularity is indeed a Hole, a Fish, or, simply,
Nonsense. Then, eventually, a hole can be reported, highlighted, tracked, and
archived.

8.1 Scores

To investigate the effectiveness of this scheme was developed 10 ten-second test
videos drawn from the manta1 and manta4 videos. Four videos displayed
actual holes (No. 1, 2, 5, and, 9), a couple contained swimming fish (No. 8 and
9), and five videos (No. 3, 4, 6, 7, and 10) were seemingly hole- and fish-free.
Properties of especial concern during testing were the following:

1. How well-produced is the binary image? Is irrelevance correctly
ignored, and is the net structure fairly and coherently represented?

2. How robust is the local irregularity detector? The number of detected
irregularities (yet to be filtered by the spatiotemporal filter) affects
runtime, so it should be kept as low as can be without missing holes.

3. Are all true holes reported? TP (true positives) denotes the number
of correctly reported holes. FP (false positives) indicates the number

Chapter 8. Results

of false alarms raised – hole reports where there are none. Lastly,
FN (false negatives) – the number of holes present but not reported.
TN (true negatives) is not a useful metric in this application since the
number of not present holes not reported on is, practically, infinite.

4. Are fish correctly neglected? Ideally, fish are overlooked already by the
segmentation module, but if they are not – does the scene interpreter
manage to separate them from real holes? TP counts the number of
fish correctly classified by the scene interpreter, and FP the number of
irregularities falsely classified by Fish as the scene interpreter. FN is
considered not useful since the program’s main concern is with hole
detection and not fish detection. Neither is TN considered – yet again
because the number of not present fish not detected on is infinite.

5. Is Nonsense properly classified? As with Fish, we will only care for
TP and FP to measure Nonsense detection. The main concern is, yet
again, not to detect every instance of Nonsense, but rather to achieve
precision when any irregularity is classified as it.

6. How effective is the execution of the analysis? This work is at proof-
of-concept stages indeed, but are some analyses significantly halted?

Additionally, all test videos were run a second time with salt-and-pepper noise
corrupting 2% of the pixels of each frame. These tests were executed to reveal po-
tential weaknesses to noise existed, and whether or not such could be ameliorated.

table 8.1 summarises the findings of these tests, and a brief discussion of each
video follows. Each discussion is illustrated with a screenshot from the operation,
the components of which are described in fig. 8.1.

125

8.1. Scores

Irregularity Space Binary Image Output Frame

running irregularity ID

accumulated votes Nonsense

Nonsense

Figure 8.1: A scene from the noisy version of test video 1. The leftmost
image shows the irregularity space, where local irregularities appear
as blue squares with a vote count in an upper corner. Irregularities
reaching a vote count of 7 are evaluated by the scene interpreter, and
the square changes colour to black (indicative of Nonsense), green
(for Fish), or red (for Holes). The vote count is replaced by the running
irregularity number, starting at 1 and incrementing. The middle image
shows the binary representation produced by the NTS module (often
poor in noisy test runs), and the rightmost image, the original frame
with verified Holes and Fish highlighted.

126

Chapter 8. Results

Ta
bl

e
8
.1

:N
oi

sy
te

st
s

ar
e

ta
gg

ed
w

ith
N

-s
uf

fix
es

.Q
R

co
de

s
le

ad
to

vi
de

os
(o

r
vi

si
ta

pp
en

di
x

A
).

V
ie

w
s:

S(
ta

rb
oa

rd
),

P(
or

t)
,

F(
or

e)
.

N
IR

R
is

th
e

nu
m

be
r

of
lo

ca
li

rr
eg

ul
ar

it
ie

s.
Su

bs
eq

ue
nt

sh
or

t-
ha

nd
s

ar
e

Tr
ue

Po
si

ti
ve

s
(-

T
P)

,F
al

se
Po

si
ti

ve
s

(-
FP

),
an

d
Fa

ls
e

N
eg

at
iv

es
(-

FN
),

fo
r

H
ol

es
(H

-)
,F

is
h

(F
-)

,a
nd

N
on

se
ns

e
(N

-)
.S

P3
0
F

is
m

ea
n

ex
ec

ut
io

n
ti

m
e

[s
]

pe
r

3
0

fr
am

es
.

N
o.

Q
R

V
ie

w
Se

gm
en

ta
ti

on
N

IR
R

H
TP

H
FP

H
FN

FT
P

FF
P

N
TP

N
FP

SP
3
0
F

1
S

M
os

tl
y

Ex
ce

lle
nt

1
5
2

1
0

0
0

0
0

0
2

.3
8

1
N

M
os

tl
y

Po
or

6
5
9

0
0

1
0

1
7

0
2

.8
7

2
P

M
os

tl
y

Ex
ce

lle
nt

1
6
9

1
1

1
0

0
0

0
2

.4
7

2
N

D
ec

en
t

1
1
8
1

1
0

1
0

0
1
0

0
1
1

.6
3

3
P

Ex
ce

lle
nt

1
0
9

0
0

0
0

1
0

0
2

.4
3

3
N

M
os

tl
y

G
oo

d
5
2
3

0
0

0
0

0
2

0
2

.8
7

4
F

Ve
ry

G
oo

d
5
8
4

0
0

0
0

0
1

0
3

.0
6

4
N

Po
or

2
1
5
4

0
0

0
0

0
1
8

0
2
0

.3
9

5
S

Ve
ry

G
oo

d
1
4
8

2
0

0
0

0
1

0
2

.2
0

5
N

Po
or

1
4
0
9

0
1

2
0

0
1
8

0
6

.9
9

6
F

G
oo

d
7
4

0
1

0
0

0
0

0
2

.1
8

6
N

Po
or

8
8
1

0
0

0
0

0
6

0
4

.0
0

7
F

D
ec

en
t

1
7
6
9

0
0

0
0

0
1
9

0
2
2

.5
3

7
N

Po
or

2
4
1
6

0
0

0
0

0
2
5

0
2
1

.6
0

8
F

Ex
ce

lle
nt

1
2
6

0
0

0
1

0
0

0
2

.2
1

8
N

Po
or

2
7
6
4

0
0

0
0

0
3
2

0
1
7

.4
3

9
S

Ex
ce

lle
nt

2
9
1

1
0

1
2

0
1

0
2

.4
4

9
N

M
os

tl
y

G
oo

d
8
3
4

0
0

2
1

0
6

0
3

.8
8

1
0

F
V

ar
yi

ng
9
9
3

0
0

0
0

0
1
3

0
3

.1
9

1
0
N

Po
or

2
6
9
1

0
0

0
0

0
2
6

0
4
5

.6
7

127

8.3. Test Video 2: Two Holes

Figure 8.2: The scheme finds the potential hole in test video 1, even
though speed is high and net structure is deformed.

8.2 Test Video 1: A Quick Glimpse

The first test video is fetched from the Manta’s starboard view, often not priori-
tised by ROV operators during a cleaning operation. The net is clean and, mostly,
excellently segmented by the NTS module. However, it is rather impacted by the
water jets, spatially deforming in ways which could pose trouble to hole detectors.
One hole is detected (see fig. 4.12), but it is partially filled by the segmentation
module shortly after its detection – making it a short-lived discovery.

The local irregularity detector detects 152 irregularities in this video, half an
irregularity per frame, a workload comfortably handled by the program. No
other irregularities are verified in this video.

With additive noise – the segmentation module severely oversegments the
video, including not only net structure in its segmentation, but frankly, the entire
frame. This causes 659 local irregularities to arise – most of which discovered in
the water column above the net, but neither verified as Hole. This proves to show
that a dysfunctional segmentation module can be rescued by the scene interpreter
– classifying 7 verified irregularities as Nonsense and one (falsely) as Fish. The
actual Hole was reported in 3 frames, not reaching the 7 frames-threshold set for
verification.

8.3 Test Video 2: Two Holes

The second test video (fig. 8.3) is of approximately the same nature as test video 1,
showing the port view, and clean, slightly deformed net structure with two visible
holes. One is misrepresented, mostly, by the segmentation module, appearing
intact more often than not. The other hole is reported and neatly tracked for circa
two seconds. Nearing the end of the video, a whirl of turbid waters obscure the
net, causing large irregularities to (falsely) appear in the binary image. This lasts
for long enough for it to be reported as a Hole.

128

Chapter 8. Results

Figure 8.3: One of two holes in test video 2 is recognised regardless of
the additive noise. However, one hole is missed in both cases (yellow
arrow), most definitely because it is often segmented as intact. The
unreported hole is more prominent during earlier stages of the video.

With additive noise, interestingly, one hole is still recognised, albeit with some
delay as compared to the noise-free test. The second hole is still not recognised.
As with test video 1, the noise confuses the segmentation module, but this has
apparently less severe impact since more of the screen is covered by net structure
in the video. Nevertheless, 1181 local irregularities arise (compared to the noise-
free’s 169) which causes significantly computational strain on other modules. On
a positive note, no false positive hole detection takes place, because the scene
interpreter correctly identifies all other verified irregularities as Nonsense.

8.4 Test Video 3: A Curious Fish

Test video 3 (fig. 8.4) shows a stationary scene filmed from the port view where a
fish enters the scene at about 3 seconds. The fish spends the rest of the screen
time of 7 seconds swimming towards the ROV before backing up. The fish is
sometimes recognised as Foreground – white – sometimes as Background – black
– in the binary image. This problem was also encountered and discussed by
Haugene [17]. However, the scene interpreter confidently identifies the potential
Hole as nothing but Fish, and the fish is henceforth neatly tracked.

With additive noise, oversegmentation causes 523 local irregularities to arise
(as compared to 109 with no noise), of which two were verified and tracked,
correctly, as Nonsense. The fish was not identified in the noisy test video. All
things considered, the noise did not manage to cause any significant trouble but
increasing runtime due to more hefty involvement of the scene interpreter and
spatiotemporal filtering.

129

8.6. Test Video 5: Two (?) Holes

Figure 8.4: The third test video shows a quiet scene and a curious fish.

Figure 8.5: The fourth video depicts a challenging scene during a net
cleaning operation. No false positive hole reports are generated.

8.5 Test Video 4: A Messy Clean-Up

The fourth test video (fig. 8.5) shows a cleaning operation, from the fore view,
at high speed, with large chunks of algae flying in the face of the camera. The
segmentation manages to represent the net structure fairly well, but also includes
a lot of floating algae, causing 584 local irregularities to appear during noise-free
testing. However, only one of these is verified and correctly classified as Nonsense.

With salt-and-pepper noise, the segmentation is pathologically overeager,
including yet again too much irrelevance in its product, but still representing
net structure fairly well. 2154 local irregularity reports arose, of which 18 were
verified and classified as Nonsense. Implementational details can likely be
improved significantly (perhaps by migrating from Python, and parallelising
effectively) but an increased number of local irregularities is probably why the
test executes at 20 x real-time, instead of the typical 2.2 - 2.5 x real-time achieved
in noise-free videos.

130

Chapter 8. Results

Figure 8.6: A tiny hole seems to appear in the early stages of test video
5. A few seconds later appears a more prominent hole.

8.6 Test Video 5: Two (?) Holes

The hole detection scheme discovered the intended, probable, hole near the end of
the video sequence, but also a tiny yet credible contendent appearing early on in
the video (see fig. 8.6). It is surely hard to tell whether or not these two discoveries
constitute real tangible holes, but they seem to be very interesting discoveries
given the non-spectacular video quality. The non-noisy test is therefore granted
two true positive hole discoveries, and no erroneous reports.

The noise causes, again, the segmentation module to malfunction, triggering
one false hole report and neglecting the two holes actually present. Again, the
spatiotemporal filter and the scene interpreter manage to prevent 1409 local
irregularities from wreaking havoc, limiting the impact of those to 18 verified
instances of Nonsense and the aforementioned false positive hole report.

8.7 Test Video 6: School of Fish and Motion Blur

The sixth test video is one where the camera jumps, as it were, filming a school
of fish and then some net structure. The net is clean, but the video is clearly
impacted by motion blur, causing the net sporadically to appear as a set of
parallel straight lines (see fig. 8.7). This causes a false positive hole to be verified
in the very last frame of the video.

One fair criticism could be that the spatiotemporal filter does not have an
impression of the overall scene movement. In other words, if a hole is consistently
reported in the very same section of a frame, if the scene moves significantly, then
a true irregularity would move consistently with the scene and not be repeatedly
reported at the same location.

The noisy test executes like previous noisy tests, with the segmentation crum-
bling and secondary modules coming to the rescue. No false hole report is

131

8.9. Test Video 8: Surface, Cables, and... a Fish?

Figure 8.7: The video quality poses problems for the hole detector in
test video 6, eventually triggering a false hole report.

Figure 8.8: Test video 7 shows a lot of heavily grown net structure,
most of which included in the segmentation. The scene interpreter,
however, correctly identified verified irregularities as Nonsense.

generated in this case, but the program slows down due to the massive number
of local irregularities demanding attention.

8.8 Test Video 7: Close-Up Heavy Growth

The seventh video is challenging, showing first net structure extremely close-up
and completely covered by algae (see fig. 8.8). Ideally, the first seconds of the
video should therefore not be considered by the segmentation module, since the
scene is hardly interpretable. After a few seconds, clean net structure enters the
scene. This net is perfectly represented in the binary image.

The inclusion of heavily grown net structure triggers 1769 local irregularities
in the noise-free test, and 2416 during testing with noise. These numbers are
reasons for concern indeed, but despite this no false hole reports are generated.

132

Chapter 8. Results

Figure 8.9: The scene interpreter claims to have detected a fish in
test video 8. Several fish in the starboard view (see test video 9)
substantiate that claim.

8.9 Test Video 8: Surface, Cables, and... a Fish?

Test video number 8 contains a myriad of foreign objects and deformed net
structure. The segmentation is nothing but exemplary, providing subsequent
modules with easily interpretable binary representations. Nearing the end of the
video, one dark spot is reported as Fish (see fig. 8.9). This is most likely a correct
observation given the shape of the shadow. Test video 9 is the starboard view at
the same time interval, and there are indeed several fish present, substantiating
the claim that the scene interpreter makes a perfectly valid judgement (even
superhuman).

With additive noise, all alien objects are segmented, raising 2764 local irregu-
larities of which 32 are verified as Nonsense. No false positive hole reports are
generated.

8.10 Test Video 9: Test Video 8 – But Starboard

Test video 9 contains what seems to be a tiny hole that is tracked for only three
frames (through frame 69, see fig. 8.10), and therefore not attaining verification.
One hole report is generated, though it is not perfectly whether or not the de-
tected hole is in fact a hole or an old, repaired, hole. Furthermore, two fish are
correctly identified.

With additive noise, the suspected unreported hole is discovered in only two
separate frames, and neither the second hole was not consistently enough noticed
to be verified. The fish, however, was correctly classified once, and no false
positive hole reports were generated. The segmentations, however, were in a
sense better than for other videos, but mostly because net structure covered more
or less the entire frame.

133

8.11. Test Video 10: More Flying Algae

Figure 8.10: There seems to be a hole in video 9 that received too few
votes to be verified.

Figure 8.11: This particular distance to the net dominates the NTS
training dataset, hypothetically answering the question why it strug-
gles so hard to segment net structure when it is very close-up. The
segmentation of test video 10 is good at this distance to the net, but
horrific in later parts of the video.

8.11 Test Video 10: More Flying Algae

The tenth video resembles what we witnessed in test video 4; rapid movements
during cleaning of significantly algae-covered net. The segmentation is fairly
good, and early stages of the video displays both dark and bright net structure,
simultaneously (see for instance around frame 11), which is impressively well
segmented. However, it struggles with very close-up net, hypothetically due to
lack of exposure to such during training.

No video triggers more local irregularity reports than the noisy version of test
video 10: 2691 culminating in 26 verified instances of Nonsense and astonishingly
high runtime. Still no false positive hole reports arise, but the computational
effort is beyond significant.

134

Chapter 9
Discussion

“Almost all ideas are wrong. It doesn’t matter if they’re your ideas or someone
else’s ideas. They’re probably wrong – and even if they strike you with the
force of brilliance – your job is to assume, first of all, that they’re probably
wrong, and to assault them with everything you have in your arsenal and see
if they can survive.” 1

The writing of this thesis has been an adventurous journey. We have ventured
through traditional computer vision techniques and novel neural network archi-
tectures and training strategies; visiting ORB-matching, transfer learning, edge
detection, spatiotemporal U-Net segmentation, scene classification, data augmen-
tation, region growing, and mathematical morphology. All woven together in a
new and, hypothetically, interesting way to attempt solving the problem of robust
fish cage hole detection in challenging environments.

The results from the previous chapter, chapter 8, bring to the table convincing
evidence that the proposed framework is indeed capable of detecting holes in
fish cages in challenging environments, and, furthermore, showing robustness
in the sense that fish and foreign objects are discriminated from holes. However,
there are talking points which deserve scrutiny. This chapter will discuss the
achieved results, and how properties of the proposed framework have contributed
to strengthening, or weakening, the results.

9.1 Segmentation

First and foremost, the MultiRes U-Net proved to be an extraordinary segmen-
tation agent, and the temporal continuity encouragement through lag masks
evidently stabilised its product significantly. The introduction of lag masks ini-
tially lead to deadlock situations when naïvely applied to real video footage,
but the proposed blurring and regularisation scheme during training yielded
unprecedented results.

1Psychologist Jordan Peterson in debate with philosopher Slavoj Zizek in Toronto, 19 April
2019 [62].

9.1. Segmentation

Quite a few words have been written on a strategy that did not make it to the
final stage – 3CAS coupled with adaptive binarisation. 3CAS was a natural next
step from the initial NeNoS module, but it lacked, in a sense, ambition. Although
3CAS prediction could be executed at high speeds, when coupled with the bina-
risation scheme (and refinement in terms of denoising and background removal)
the advantage to NTS was lost. It was simply not expected that NTS would
provide such stable results, seamlessly combining segmentation, binarisation,
and denoising in a single operation.

It was frankly surprising to notice how sensitive the NTS algorithm was to
salt-and-pepper noise during each and every test video in the previous chapter.
Unexpected – since the testing videos were quite different from the training
material (NTS trained on manta2 and tested on manta1 and manta4), but
they were nevertheless well-segmented – even when “naturally corrupted by
noise”, i.e. by floating algae, poor video quality, or elsewise troublesome scenes.

NTS struggled not to segment the net structure per se, but it severely over-
segmented when exposed to noise, including the entire frame in its segmentation.
This was awkwardly interesting. Awkward because it showed a significant
weakness in the proposed segmentation module. Interesting because extremely few
false positive hole reports arose. It was a brilliant stress-test for the scene interpreter,
who called off every false alarm but one, in the noisy video 5. However, the
badness of the segmentation lead to significant increase in runtime due to the
extreme amount of arising local irregularities (median runtime per second of frames
was 9.31 s for noisy videos and 2.44 s for the original videos). Exactly where
this bottleneck happened is not well-mapped. Suspicions are that the recursive
deduplication of nearby irregularities in the irregularity space was not well-
designed for large numbers of irregularities. Or it could simply be the case that
matching dozens of new irregularities per frame with an equally large number of
old irregularities in short-time memory was not carried out in a manner suitable
for such numbers.

9.1.1 Proposed Actions

The input to the NTS module is a 512 x 512 x 4 image, where the first three
components of each pixel are its RGB intensity values and the latter, the binary lag
mask pixel value. We experimented successfully with corrupting the lag masks
during training and, hence, making the module less reliant on the information
of the past. A suggestion, to make the module robust also to corruption in the
input image, is to apply regularisation to the first three components of its pixels.
If the networks were trained, also, with a significant number of its inputs affected
by salt-and-pepper noise, then, intuitively, they should be better equipped to
handle such events in real-life. Naturally, the training data foundation should
be significantly extended. By exposing the NN to more examples of what a
satisfactory segmentation looks like in varying environments, it is better prepared
to handle new situations properly on its own.

136

Chapter 9. Discussion

An additional note: if parts of the frame contain static ROV parts, one
may help the algorithm by applying to each proposed segmentation a static
mask that excludes these parts. If an observant reader wonders why over-eager
segmentations in noisy videos perfectly ignored ROV parts in port and starboard
views – here is the reason.

9.2 The Local Irregularity Detector

Choosing flat kernels over square or cross kernels was a risk taken well aware
of the potential rising number of false positives triggered. The kernel shape
over-reports especially in scenes with severe motion blur. However, it is the only
kernel capable of recognising tear in single threads, creating rectangular holes
not broader than the typical mesh. Requiring some minimum kernel breadth- or
-height was absolutely vital; without such demand, single-column irregularities
appear very frequently doe to the imperfect nature of real-life video.

Tiling solved, somewhat, the problem that relatively large holes in one part of
the image are not necessarily large compared to intact net “holes” near the camera.
Tile analysis is intuitively parallelisable, and a moving camera will not let any
hole dwell on the unfortunate border between tiles for long. However, there is
something unsatisfactory with the approach due to its crude and somewhat trivial
drawing of borders. It seems that a more continuous idea would be more ideal –
more like what humans do. Exactly how one can, in a computationally efficient
manner, compare each piece of Background to its immediate neighbourhood is,
however, not clear as of yet.

9.2.1 Proposed Actions

All things considered, the flat kernels with tiling managed to identify most present
holes in the test material, in both near and far proximity to the camera. However,
the number of local irregularities arising especially when the segmentation is poor
is worrying. Perhaps is this a problem best solved by increasing the reliability
of the segmentation. Alternatively, one could choose a cross-shaped kernel in
the local irregularity detector – promoting aversion to false-positive detection,
but, equivalently, increasing blindness to small holes. In any case, it seems not
fitting to recommend this program for commercial use until the stability of the
local irregularity detector is improved, and perhaps it needs complete rethink. In
that case – there are plenty of ideas left in the framework which will, unbothered,
facilitate another hole detector.

9.3 The Scene Interpreter

The scene interpreter came into play more often than it should during testing –
due to faulty segmentations in the noisy videos. And luckily so, proving to be
incredibly reliable in its predictions. Utilising the VGG16 [43] pre-trained model
as a base model for this module turned out to be an ingenious move, ramping

137

9.4. Spatiotemporal Filtering

up results from useless to formidable. Hardly any mistakes were made by the
module during testing, and it even outperformed its maker in test video 8 where
it correctly identified a moving shadow as Fish.

9.3.1 Proposed Actions

The training foundation for the module should be increased. Even though perfor-
mance is stellar – it is absolutely vital that the module recognises a hole when it
sees one. Ideally, one should fetch as many examples of holes as possible and
include those in the Net Structure data foundation. If not, one can wound up in a
situation where it finds the appearance of holes to be more similar to that of Fish
than to Net Structure.

Additionally, one can adjust the training examples such that the scene in-
terpreter learns to classify images with severe motion blur as Nonsense. This
could work as an additional barricade to prevent motion blur from triggering
hole reports.

9.4 Spatiotemporal Filtering

The spatiotemporal filter cannot itself identify irregularities in a scene. It is en-
tirely reliant on the local irregularity detector doing its job properly and reporting
the presence of irregularities, repeatedly. However, in order to enable repeated
reports on actual irregularities, we may have to make the local irregularity sen-
sitive to the point that it engages in a certain degree of over-reporting. The
spatiotemporal filter is designed to solve this very conundrum, by evaluating
local reports in the light of past reports – searching for spatial and temporal
continuity.

The tuning of this filter inevitably affects its performance, and there are certain
parameters that should be considered; first and foremost, irregularities of spatial
proximity are being merged through a recursive algorithm. This to lower the
number of irregularities per frame, especially considering the fact that nearby
irregularities will most likely match with similar future irregularities anyways.
Irregularities with a Jaccard index surpassing 75% were merged to a single
instance, and the new bounding coordinates were simply inherited from the
extrema of the two conjoined instances. This threshold was visually satisfactory,
but it could be the case that some other threshold is better. However, lowering
the threshold could lead to the conjoinment of irregularity reports that truly do
not belong together, and, possibly, if the coordinate boundaries fluctuate too
much on a frame-to-frame basis, rendering frame-to-frame matching very diffi-
cult. Increasing the threshold, on the other hand, can put computational strain
on the matching process, since there are more matches to make. Additionally,
true irregularities can sometimes manifest themselves in two slightly disjoint
reports in the irregularity space (due to properties of the binary image and the
morphological operations) in which case a conjoinment of the two is very much

138

Chapter 9. Discussion

preferable, contrary to treating them as two different entities.

The required Jaccard index to verify a match should be tuned alongside
padding strategies and the required number of matches to verify an irregularity.
Interestingly, when working with Jaccard index, even what seems like a signif-
icant overlap can yield a pretty low score. The working thresholds have been
tuned throughout this project, and we utilised the thresholds of 15% Jaccard
index and 7 votes for the two. Even though slow-paced video can yield Jaccard
indices of up to 90% on a frame-to-frame basis, the overlap is significantly smaller
in a high-speed sequence where, for instance, we have to utilise the buffer be-
cause an irregularity is missed in one or two frames. By requiring little overlap,
but several votes, we allow high speed and sporadic blindness, but only if the
temporal consistency is high. Of course – these numbers can be tuned differently.
For instance, efficiency will increase if the required Jaccard score in increased,
because fewer irregularities will match, and, hence, fewer will sustain themselves
to accumulate votes. With a significantly large vote threshold, it is extremely
hard for false positives to make it through to verification, but chances are that
real holes will be missed as well.

The short-time memory length was set to three. It is surely not recommended
to increase this length, but perhaps, to reduce it to two. If the length were
to be reduced to one, there is no longer room for skipping a frame (which is
undesirable), but with larger buffer it is no longer certain that what you observed
in some area a long time ago is what you currently observe in that area. If the
local hole detector is good (in that it consistently reports true holes) then there
is perhaps no need for a large buffer. Shortening the buffer will surely increase
efficiency, making fewer past reports available for matching with the current
ones.

9.4.1 Proposed Actions

Investigations could be carried out to, in a scientific manner, deduce optimal
parameters for this module; Jaccard indices for irregularity conjoinment, Jaccard
indices for matchmaking, padding schemes, required number of votes to verify
irregularities, and short-time memory length. How these test should be carried
out has not been considered in this work, but a set of parameters on which all
testing has been executed is suggested.

There has been some annoyance with the spatiotemporal filter’s willingness
to match apparent stationary irregularities in a moving scene. This tendency
triggered false positive hole reports in test video 6 and 2, and is surely one of
the reasons why the framework is not yet fit for commercial use. A suggestion
is to deduce information about optical flow in the scene and to project past
irregularities accordingly. Hence, only matching current irregularities with past
ones if they occur where we expect past reports to be at in the current scene.

139

9.5. Tracking

9.5 Tracking

The tracking of verified irregularities using a median centre movement hypothesis
allowed projection of these irregularities onto frames in which they were not
identified. This projection facilitated the rediscovery of these irregularities in
future frames if irregularities in that frame were to match with the projection.
This hypothesis was successfully implemented, making holes rediscoverable (after
momentary loss of track) in videos 2 and 5. The projection of a recent irregularity
also makes short-lived discoveries such as that in test video 1 detectable by
humans, by providing a highlight that lasts for longer than the discovery.

9.5.1 Proposed Actions

More sophisticated movement hypotheses could be deduced to achieve better
tracking under circumstances when the movement is not constant. The optical
flow-proposal to improve the spatiotemporal filter could also be a viable option.
After all – projecting past unverified irregularities is completely analogous to
projecting past verified irregularities.

140

9.6 Conclusion

A complete framework has been developed, capable of reliable hole detection in a
set of ten challenging 10-second test videos. The framework is of modular nature,
and distinguishes successfully between net tear and alien obstruction such as
by-passing fish.

Two modules were particularly effective; the deep learning approaches to net
thread segmentation and scene interpretation. The local irregularity detector
combined with the spatiotemporal filter operates as intended, but concerns have
been raised with the irregularity detector’s tendency to over-report, a property
that puts considerable computational strain on the spatiotemporal filter. This is
an issue that must be addressed before real-time usage can be achieved, a goal
that requires a doubling of the suggested framework’s (in its current Python
environment) execution speed.

9.7 Future Work

The deep learning approach to net structure segmentation, specifically, the Mul-
tiRes U-Net with access to lag masks, produced outstanding binary representa-
tions of the test videos. However, more effort should be put into the creation of
large and diverse datasets to further improve the models’ robustness to noise.

The proposed local irregularity detector recognised most present holes in
the test videos. Its main drawback is a certain degree of over-reporting in noisy
environments, which in turn affects runtime. Specific parameters of the detector
can be tuned to dampen this tendency, but potentially at the cost of missing true
holes. A less rigid alternative to the tiling approach would be appreciated.

The spatiotemporal filter performed to a satisfactory degree during testing,
but it should be further improved by including a scene motion hypothesis. Fur-
thermore – alternatives to brute-force matching of past and current irregularities
should be investigated. Perhaps can R-trees [63] serve as efficient data structures
for past irregularities’ boundaries.

Some effort was carried out to make use of scene similarity measures to try and
match new discoveries with old ones. This could be relevant if the ROV operator
drives past a hole and re-visits it at some later stage. As currently implemented,
the framework will register the hole with two different tags. Limited success was
made with Siamese networks [64] to compare the similarity of two scenes (see
appendix D). Scene similarity was also attempted with ORB-matching. Underwa-
ter feature matching (specifically on homogeneous net structure) is notoriously
difficult (read, for instance, [65]) but the coupling of this hole detection frame-
work with a SLAM framework could render scene similarity research futile, since
discovered hole can then be tagged with a global coordinate.

Bibliography

[1] A. Madshaven. Pre-project: Fish Cage Net Analysis Exploting Computer Vision
Techniques. Trondheim, 2020.

[2] T. J. Pitcher and M. E. Lam. “Fish commoditization and the historical
origins of catching fish for profit”. In: Maritime Studies 14.1 (Feb. 2015).
issn: 2212-9790. url: https://doi.org/10.1186/s40152-014-0014-5.

[3] J. Gustavsson et al. “Global Food Losses and Food Waste- Extent, Causes
and Prevention”. In: International Congress SAVE FOOD! at Interpack (Jan.
2011). url: http://www.fao.org/3/a-i2697e.pdf.

[4] FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in action.
2020. url: https://doi.org/10.4060/ca9229en.

[5] J. M. Erlandson and T. C. Rick. “Archaeology Meets Marine Ecology: The
Antiquity of Maritime Cultures and Human Impacts on Marine Fisheries
and Ecosystems”. In: Annual Review of Marine Science 2.1 (2010). PMID:
21141664, pp. 231–251. url: https://doi.org/10.1146/annurev.marine.010908.
163749.

[6] VKM. Benefit-risk assessment of fish and fish products in the Norwegian diet –
an update. Scientific Opinion of the Scientific Steering Committee. 2014. url:
www.vkm.no.

[7] Skattlegging av havbruksvirksomhet : utredning fra utvalg oppnevnt ved kongelig
resolusjon 7. september 2018 : avgitt til Finansdepartementet 4. november 2019.
Oslo: Norge Havbruksskatteutvalget, 2019.

[8] Status of wild Atlantic salmon in Norway 2020. Accessed: 01.11.2020. Nor-
wegian Scientific Advisory Committee for Atlantic Salmon, 2020. url:
https://www.vitenskapsradet.no/Portals/vitenskapsradet/Pdf/Status%5C%
20of%5C%20wild%5C%20Atlantic%5C%20salmon%5C%20in%5C%20Norway%
5C%202020T.pdf?ver=5edE21dH2DFOaPNai04Uig%5C%3d%5C%3d.

[9] O. Torrissen et al. “Salmon lice - impact on wild salmonids and salmon
aquaculture”. In: Journal of fish diseases 36.3 (2013), pp. 171–194. issn: 0140-
7775.

[10] Om vern av villaksen og ferdigstilling av nasjonale laksevassdrag og laksefjorder.
Accessed: 01.11.2020. Norwegian Ministry of Climate and Environment,
2006. url: https://www.regjeringen.no/no/dokumenter/stprp-nr-32-2006-2007-
/id442061/?ch=9.

142

https://doi.org/10.1186/s40152-014-0014-5
http://www.fao.org/3/a-i2697e.pdf
https://doi.org/10.4060/ca9229en
https://doi.org/10.1146/annurev.marine.010908.163749
https://doi.org/10.1146/annurev.marine.010908.163749
www.vkm.no
https://www.vitenskapsradet.no/Portals/vitenskapsradet/Pdf/Status%5C%20of%5C%20wild%5C%20Atlantic%5C%20salmon%5C%20in%5C%20Norway%5C%202020T.pdf?ver=5edE21dH2DFOaPNai04Uig%5C%3d%5C%3d
https://www.vitenskapsradet.no/Portals/vitenskapsradet/Pdf/Status%5C%20of%5C%20wild%5C%20Atlantic%5C%20salmon%5C%20in%5C%20Norway%5C%202020T.pdf?ver=5edE21dH2DFOaPNai04Uig%5C%3d%5C%3d
https://www.vitenskapsradet.no/Portals/vitenskapsradet/Pdf/Status%5C%20of%5C%20wild%5C%20Atlantic%5C%20salmon%5C%20in%5C%20Norway%5C%202020T.pdf?ver=5edE21dH2DFOaPNai04Uig%5C%3d%5C%3d
https://www.regjeringen.no/no/dokumenter/stprp-nr-32-2006-2007-/id442061/?ch=9
https://www.regjeringen.no/no/dokumenter/stprp-nr-32-2006-2007-/id442061/?ch=9

Bibliography

[11] NS 9415:2003 (NS 9415:2009) Marine fish farms - Requirements for design,
dimensioning, production, installation and operation. Standard Norge, 2009.

[12] Forskrift om krav til teknisk standard for flytende akvakulturanlegg (NYTEK-
forskriften). nob. Accessed: 01.11.2020. Norwegian Ministry of Fisheries,
2012. url: https://lovdata.no/dokument/LTI/forskrift/2011-08-16-849.

[13] NS9416:2013 Landbased aquaculture farms for fish - Requirements for risk analy-
ses, design, execution, operation, user handbook and product data sheet. Standard
Norge, 2013.

[14] Losses in the production 1999-2019. nob. Accessed: 25.05.2021. Norwegian
Directorate of Fisheries, 2020. url: https : / /www .fiskeridir . no/English /
Aquaculture/Statistics/Atlantic-salmon-and-rainbow-trout.

[15] Rømmingsstatistikk - antall og art. Accessed: 25.05.2021. Norwegian Direc-
torate of Fisheries, 2020. url: https://www.fiskeridir.no/Akvakultur/Tall-og-
analyse/Roemmingsstatistikk.

[16] H. M. Føre et al. Tekniske årsaker til rømming av oppdrettslaks og regnbueørret.
Report no. 2019:00668. Trondheim: SINTEF Ocean AS, 2019.

[17] T. Haugene. “Evaluation of Methods for Robust, Automatic Detection of
Net Tear with Remotely Operated Vehicle and Remote Sensing”. MA thesis.
Trondheim: Norwegian University of Science and Technology, 2014.

[18] W. Haugerud. Kan ROV’er erstatte dykkere i havbruksnæringen? nob. Accessed:
01.12.2020. Nov. 2019. url: https://blog.akvagroup.com/no/kan-rover-erstatte-
dykkere-i-havbruksnaringen.

[19] R. A. H. Jakobsen. “Automatic Inspection of Cage Integrity with Underwa-
ter Vehicle”. MA thesis. Trondheim: Norwegian University of Science and
Technology, 2011.

[20] J. Betancourt, W. Coral, and J. Colorado. “An integrated ROV solution for
underwater net-cage inspection in fish farms using computer vision”. In:
SN Applied Sciences 2.12 (2020), pp. 1–15.

[21] S. Paspalakis et al. “Automated fish cage net inspection using image pro-
cessing techniques”. eng. In: IET image processing 14.10 (2020), pp. 2028–2034.
issn: 1751-9659.

[22] Y.-P. Zhao et al. “An adaptive method of damage detection for fishing
nets based on image processing technology”. In: Aquacultural Engineering
90 (2020), p. 102071. issn: 0144-8609. doi: https ://doi .org/10.1016/ j .
aquaeng.2020.102071. url: https://www.sciencedirect.com/science/article/pii/
S0144860919301876.

[23] J. Y. Lettvin et al. “What the Frog’s Eye Tells the Frog’s Brain”. In: Proceedings
of the IRE 47.11 (1959), pp. 1940–1951. issn: 0096-8390.

[24] T. S. Huang. “Computer Vision: Evolution and Promise”. In: High technology:
Imaging science and technology, International conference; 5th, High technology:
Imaging science and technology. 1996, pp. 13–20. url: https://www.tib.eu/de/
suchen/id/BLCP%5C%3ACN021986683.

143

https://lovdata.no/dokument/LTI/forskrift/2011-08-16-849
https://www.fiskeridir.no/English/Aquaculture/Statistics/Atlantic-salmon-and-rainbow-trout
https://www.fiskeridir.no/English/Aquaculture/Statistics/Atlantic-salmon-and-rainbow-trout
https://www.fiskeridir.no/Akvakultur/Tall-og-analyse/Roemmingsstatistikk
https://www.fiskeridir.no/Akvakultur/Tall-og-analyse/Roemmingsstatistikk
https://blog.akvagroup.com/no/kan-rover-erstatte-dykkere-i-havbruksnaringen
https://blog.akvagroup.com/no/kan-rover-erstatte-dykkere-i-havbruksnaringen
https://doi.org/https://doi.org/10.1016/j.aquaeng.2020.102071
https://doi.org/https://doi.org/10.1016/j.aquaeng.2020.102071
https://www.sciencedirect.com/science/article/pii/S0144860919301876
https://www.sciencedirect.com/science/article/pii/S0144860919301876
https://www.tib.eu/de/suchen/id/BLCP%5C%3ACN021986683
https://www.tib.eu/de/suchen/id/BLCP%5C%3ACN021986683

9.7. Future Work

[25] S. Gunasekaran. “Computer vision technology for food quality assurance”.
In: Trends in Food Science & Technology 7.8 (1996), pp. 245–256. issn: 0924-
2244. doi: https://doi.org/10.1016/0924-2244(96)10028-5.

[26] H. Freeman. “On the Encoding of Arbitrary Geometric Configurations”. In:
IRE Transactions on Electronic Computers EC-10.2 (1961), pp. 260–268. doi:
10.1109/TEC.1961.5219197.

[27] M. E. W. Putra and I. Supriana. “Structural offline handwriting character
recognition using levenshtein distance”. In: 2015 International Conference on
Electrical Engineering and Informatics (ICEEI). 2015, pp. 31–36. doi: 10.1109/
ICEEI.2015.7352465.

[28] M. Akmal Butt and P. Maragos. “Optimum design of chamfer distance
transforms”. In: IEEE Transactions on Image Processing 7.10 (1998), pp. 1477–
1484. doi: 10.1109/83.718487.

[29] C. T. Zahn and R. Z. Roskies. “Fourier Descriptors for Plane Closed Curves”.
In: IEEE Transactions on Computers C-21.3 (1972), pp. 269–281. doi: 10.1109/
TC.1972.5008949.

[30] J. Schmidhuber. “Deep learning in neural networks: An overview”. eng. In:
61 (2015), pp. 85–117. issn: 0893-6080.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Commun. ACM 60.6 (May
2017), pp. 84–90. issn: 0001-0782. doi: 10.1145/3065386.

[32] S. Ji et al. “3D Convolutional Neural Networks for Human Action Recogni-
tion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.1
(2013), pp. 221–231. issn: 0162-8828.

[33] R. Kohavi et al. “A study of cross-validation and bootstrap for accuracy
estimation and model selection”. In: Ijcai. Vol. 14. 2. Montreal, Canada. 1995,
pp. 1137–1145.

[34] Y. LeCun, C. Cortes, and C. J. C. Burges. THE MNIST DATABASE. Accessed:
01.12.2020. url: http://yann.lecun.com/exdb/mnist/.

[35] L. Fei-Fei et al. ImageNet. Accessed: 01.12.2020. url: http://image-net.org.

[36] J. MacQueen. “Some methods for classification and analysis of multivariate
observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics. University of California Press,
1967, pp. 281–297. url: https://projecteuclid.org/euclid.bsmsp/1200512992.

[37] M. Ester et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise”. In: AAAI Press, 1996, pp. 226–231.

[38] N. Otsu. “A Threshold Selection Method from Gray-Level Histograms”.
In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–66.
doi: 10.1109/TSMC.1979.4310076.

[39] J. Canny. “A Computational Approach to Edge Detection”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986), pp. 679–
698. doi: 10.1109/TPAMI.1986.4767851.

144

https://doi.org/https://doi.org/10.1016/0924-2244(96)10028-5
https://doi.org/10.1109/TEC.1961.5219197
https://doi.org/10.1109/ICEEI.2015.7352465
https://doi.org/10.1109/ICEEI.2015.7352465
https://doi.org/10.1109/83.718487
https://doi.org/10.1109/TC.1972.5008949
https://doi.org/10.1109/TC.1972.5008949
https://doi.org/10.1145/3065386
http://yann.lecun.com/exdb/mnist/
http://image-net.org
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TPAMI.1986.4767851

Bibliography

[40] N. Ibtehaz and M. S. Rahman. “MultiResUNet : Rethinking the U-Net ar-
chitecture for multimodal biomedical image segmentation”. eng. In: Neural
networks 121 (2020), pp. 74–87. issn: 0893-6080.

[41] “Local Adaptive Thresholding”. In: Encyclopedia of Biometrics. Ed. by S. Z. Li
and A. Jain. Boston, MA: Springer US, 2009, pp. 939–939. isbn: 978-0-387-
73003-5. doi: 10.1007/978-0-387-73003-5_506.

[42] R. M. Haralick, S. R. Sternberg, and X. Zhuang. “Image Analysis Using
Mathematical Morphology”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-9.4 (1987), pp. 532–550. doi: 10.1109/TPAMI.1987.
4767941.

[43] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. 2015. arXiv: 1409.1556.

[44] M. Cristani et al. “Background Subtraction for Automated Multisensor
Surveillance: A Comprehensive Review”. In: EURASIP J. Adv. Signal Process
2010 (Feb. 2010). issn: 1110-8657. doi: 10.1155/2010/343057. url: https:
//doi.org/10.1155/2010/343057.

[45] B. K. Horn and B. G. Schunck. “Determining optical flow”. In: Artificial
intelligence 17.1-3 (1981), pp. 185–203. issn: 0004-3702.

[46] D. Marr, E. Hildreth, and S. Brenner. “Theory of edge detection”. In: Pro-
ceedings of the Royal Society of London. Series B. Biological Sciences 207.1167

(1980), pp. 187–217. doi: 10.1098/rspb.1980.0020.

[47] I. Sobel. “An Isotropic 3x3 Image Gradient Operator”. In: Presentation at
Stanford A.I. Project 1968 (Feb. 2014).

[48] J. Illingworth and J. Kittler. “A survey of the Hough transform”. In: Com-
puter vision, graphics, and image processing 44.1 (1988), pp. 87–116.

[49] C. Harris and M. Stephens. “A combined corner and edge detector”. In: In
Proc. of Fourth Alvey Vision Conference. 1988, pp. 147–151.

[50] Flying Net Cleaner. Accessed: 23.02.2021. url: https://sperre-as.com/portfolio/
flying-net-cleaner-8/.

[51] Manta Net Cleaner. Accessed: 04.12.2020. url: https://www.stranda.net/en/
products/manta-net-cleaner.

[52] D. J. Simons and C. F. Chabris. “Gorillas in our midst: sustained inatten-
tional blindness for dynamic events”. In: Perception 28.9 (1999), pp. 1059–
1074. doi: 10.1068/p2952.

[53] The GIMP Development Team. GIMP. Version 2.10.12. June 12, 2019. url:
https://www.gimp.org.

[54] P. Bressan et al. Semantic Segmentation with Labeling Uncertainty and Class
Imbalance. Feb. 2021. doi: 10.13140/RG.2.2.21970.27846.

[55] K. Xu et al. “Spatiotemporal CNN for Video Object Segmentation”. In:
CoRR abs/1904.02363 (2019). arXiv: 1904.02363. url: http://arxiv.org/abs/
1904.02363.

145

https://doi.org/10.1007/978-0-387-73003-5_506
https://doi.org/10.1109/TPAMI.1987.4767941
https://doi.org/10.1109/TPAMI.1987.4767941
https://arxiv.org/abs/1409.1556
https://doi.org/10.1155/2010/343057
https://doi.org/10.1155/2010/343057
https://doi.org/10.1155/2010/343057
https://doi.org/10.1098/rspb.1980.0020
https://sperre-as.com/portfolio/flying-net-cleaner-8/
https://sperre-as.com/portfolio/flying-net-cleaner-8/
https://www.stranda.net/en/products/manta-net-cleaner
https://www.stranda.net/en/products/manta-net-cleaner
https://doi.org/10.1068/p2952
https://www.gimp.org
https://doi.org/10.13140/RG.2.2.21970.27846
https://arxiv.org/abs/1904.02363
http://arxiv.org/abs/1904.02363
http://arxiv.org/abs/1904.02363

[56] J. Cheng et al. SegFlow: Joint Learning for Video Object Segmentation and Optical
Flow. 2017. arXiv: 1709.06750 [cs.CV].

[57] J. J. Mark. Siddhartha Gautama. May 2021. url: https://www.worldhistory.org/
Siddhartha_Gautama/.

[58] M. E. Olsen. “Camera-assisted ROV Navigation in Sea Cages”. MA thesis.
Trondheim: Norwegian University of Science and Technology, 2013.

[59] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. “ORB-SLAM: A Versatile
and Accurate Monocular SLAM System”. In: IEEE Transactions on Robotics
31.5 (2015), pp. 1147–1163. doi: 10.1109/TRO.2015.2463671.

[60] F. Chollet et al. Keras. 2015. url: https://github.com/fchollet/keras.

[61] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. url: https://www.tensorflow.org/.

[62] J. B. Peterson and S. Zizek. Marxism: Zizek/Peterson: Official Video. Accessed:
23.05.2021. Youtube. Apr. 2019. url: https://youtu.be/lsWndfzuOc4?t=1080.

[63] A. Guttman. “R Trees: A Dynamic Index Structure for Spatial Searching”.
In: vol. 14. Jan. 1984, pp. 47–57. doi: 10.1145/971697.602266.

[64] S. Appalaraju and V. Chaoji. Image similarity using Deep CNN and Curriculum
Learning. 2018. arXiv: 1709.08761 [cs.CV].

[65] L. O. Libjå. Pre-project: Localization of defects in aquaculture fish cages. Trond-
heim, 2020.

https://arxiv.org/abs/1709.06750
https://www.worldhistory.org/Siddhartha_Gautama/
https://www.worldhistory.org/Siddhartha_Gautama/
https://doi.org/10.1109/TRO.2015.2463671
https://github.com/fchollet/keras
https://www.tensorflow.org/
https://youtu.be/lsWndfzuOc4?t=1080
https://doi.org/10.1145/971697.602266
https://arxiv.org/abs/1709.08761

Appendices

147

Appendix A
QR Codes Hyperlinks

A.1 3CAS Segmentation Scores

fig. 4.12

https://youtu.be/y9_u2UUTT64
https://youtu.be/I1kC9Ie-Yms
https://youtu.be/7YEk_GcF9Lk
https://youtu.be/lpjBi8C9PbA
fig. 4.13

https://youtu.be/d5spFNWn328
https://youtu.be/i9IA7WuHIZU
https://youtu.be/fZt2euM0pMw
https://youtu.be/1Bgf7_MMfCo
fig. 4.14

https://youtu.be/Yop6I1qZQHI
https://youtu.be/CYNEuy6HK3A
https://youtu.be/XDASdk4eJSE
https://youtu.be/MAEcAXWugog
fig. 4.15

https://youtu.be/nFWTaJuWipI
https://youtu.be/2VEn9W3c3Lc
https://youtu.be/ETgN6pKLNPk
https://youtu.be/Ak67DKiQkXs

148

https://youtu.be/y9_u2UUTT64
https://youtu.be/I1kC9Ie-Yms
https://youtu.be/7YEk_GcF9Lk
https://youtu.be/lpjBi8C9PbA
https://youtu.be/d5spFNWn328
https://youtu.be/i9IA7WuHIZU
https://youtu.be/fZt2euM0pMw
https://youtu.be/1Bgf7_MMfCo
https://youtu.be/Yop6I1qZQHI
https://youtu.be/CYNEuy6HK3A
https://youtu.be/XDASdk4eJSE
https://youtu.be/MAEcAXWugog
https://youtu.be/nFWTaJuWipI
https://youtu.be/2VEn9W3c3Lc
https://youtu.be/ETgN6pKLNPk
https://youtu.be/Ak67DKiQkXs

A.2 NTS Segmentation Scores

fig. 4.23

https://youtu.be/K_KzPQ2Pq50
https://youtu.be/a0YZytivHS8
fig. 4.25

https://youtu.be/JwUKgXxPCNs
https://youtu.be/ENc_Wcnk980
fig. 4.27

https://youtu.be/j5N9vPJni8M
https://youtu.be/6wVVJ-xnTz0
fig. 4.28

https://youtu.be/a0EwlkIdLaY
https://youtu.be/E-fqZnVfaCo

A.3 Test Video Results

table 8.1:
Test Video 1: https://youtu.be/4gsmAk-wgQI
Test Video 2: https://youtu.be/jikbSHNxkqA
Test Video 3: https://youtu.be/5vONsXaDQiU
Test Video 4: https://youtu.be/c-1wR3QSd7Y
Test Video 5: https://youtu.be/RGvdgyfO0Sg
Test Video 6: https://youtu.be/eCNNJ74jQjs
Test Video 7: https://youtu.be/1pe6VPuDMdk
Test Video 8: https://youtu.be/zA0dY0hS-hk
Test Video 9: https://youtu.be/4U0wmLrSzm8
Test Video 10: https://youtu.be/TOSdqTp4pBE

https://youtu.be/K_KzPQ2Pq50
https://youtu.be/a0YZytivHS8
https://youtu.be/JwUKgXxPCNs
https://youtu.be/ENc_Wcnk980
https://youtu.be/j5N9vPJni8M
https://youtu.be/6wVVJ-xnTz0
https://youtu.be/a0EwlkIdLaY
https://youtu.be/E-fqZnVfaCo
https://youtu.be/4gsmAk-wgQI
https://youtu.be/jikbSHNxkqA
https://youtu.be/5vONsXaDQiU
https://youtu.be/c-1wR3QSd7Y
https://youtu.be/RGvdgyfO0Sg
https://youtu.be/eCNNJ74jQjs
https://youtu.be/1pe6VPuDMdk
https://youtu.be/zA0dY0hS-hk
https://youtu.be/4U0wmLrSzm8
https://youtu.be/TOSdqTp4pBE

Appendix B
Scene Interpreter Architectures

150

Appendix B. Scene Interpreter Architectures

B.1 Simple Model

151

B.2. Complex Model

B.2 Complex Model

152

Appendix B. Scene Interpreter Architectures

153

B.3. VGG16 Base Model

B.3 VGG16 Base Model

154

B.3.1 VGG16 Extended Model

Appendix C
Scene Interpreter Test Dataset

156

C.0. VGG16 Base Model

158

Appendix C. Scene Interpreter Test Dataset

159

C.0. VGG16 Base Model

160

Appendix C. Scene Interpreter Test Dataset

161

C.0. VGG16 Base Model

162

Appendix C. Scene Interpreter Test Dataset

163

C.0. VGG16 Base Model

164

Appendix C. Scene Interpreter Test Dataset

165

C.0. VGG16 Base Model

166

Appendix C. Scene Interpreter Test Dataset

167

Appendix D
Siamese Network for Scene Similarity
Detection

Two pre-trained VGG16 models (with frozen weights) were run in parallel on
two input images. Their output layers were removed, and their feature space
before that layer were compared with a Euclidean distance measure. A single
sigmoid was trained to output 0 if the two input images were dissimilar, and 1 if
they were similar.

A relatively small dataset of 100 scenes (with at least two snapshots from
each scene) was constructed. During training, half of the images (called anchors)
were coupled with their true counterpart (called the positive), and the other half,
with a randomly chosen anchor (playing the role as the negative). See fig. D.1
for examples. Anchors from the validation set were never used as negatives for
training data, and vice versa.

After 100 epochs it seemed that further training was quite futile. Some
learning was probably achieved, especially in one fold which achieved a validation
accuracy of 88% for some epoch (see fig. D.2). Testing was merely conducted on
a preliminary stage and not further pursued.

Appendix D. Siamese Network for Scene Similarity Detection

(a) Anchor (b) Positive
(c) Negative

(d) Anchor
(e) Positive

(f) Negative

Figure D.1: Sample images from the foundation dataset.

Figure D.2: Training and validation accuracies for the first 100 epochs
of training indicated some learning, but not sufficient.

169

