
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Christofer Gilje Skjæveland

Infrastructure for Collecting and
Analysing near Real-Time Data from
Several Water Meters Using Wireless
M-Bus

Infrastruktur for innsamling og analysering av
nær sanntidsdata fra en rekke vannmålere, ved
bruk av trådløs M-Bus

Master’s thesis in Cybernetics and Robotics
Supervisor: Geir Mathisen

May 2021

M
as

te
r’s

 th
es

is

Christofer Gilje Skjæveland

Infrastructure for Collecting and
Analysing near Real-Time Data from
Several Water Meters Using Wireless
M-Bus

Infrastruktur for innsamling og analysering av nær
sanntidsdata fra en rekke vannmålere, ved bruk av
trådløs M-Bus

Master’s thesis in Cybernetics and Robotics
Supervisor: Geir Mathisen
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

NTNU
Norwegian University of
Science and Technology

Faculty of Information Technology
and Electrical Engineering

Department of Engineering Cybernetics

MASTER THESIS DESCRIPTION

Candidate: Christofer Gilje Skjæveland

Course: TTK4900 Engineering Cybernetics

Thesis title (Norwegian): Infrastruktur for innsamling og analysering av nær
sanntidsdata fra en rekke vannmålere, ved bruk av
trådløs M-Bus

Thesis title (English): Infrastructure for Collecting and Analysing near Real-
Time Data from Several Water Meters Using Wireless
M-Bus

Thesis description: By having household water meters equipped with near real-time flow
and pressure measurements and the readout of several meters are done near simultaneously,
it may be possible to analyze the condition of the water grid that connects the households.

In this thesis, we want to develop an infrastructure for wireless collection of near real-time
flow and pressure measurements from several households in a neighbourhood. The work
should include indications on how the measurements could be used for indicating leakages
in the water grid outside the buildings.

The tasks will be:

1. Conduct a literary study of systems used for wireless collection of measurements from house-
hold water meters. Also, perform a study of how such measurements can be used for leakage
detection/localization.

2. Propose an infrastructure system for collecting near real-time flow and pressure measurements
from several households in a neighbourhood. The proposal shall indicate how algorithms for
leakage detections can be included in the system.

3. As far as time permits, implement the suggested system.

Start date: January 4th, 2021
Due date: May 31th, 2021

Thesis performed at: Department of Engineering Cybernetics
Supervisor: Professor Geir Mathisen, Dept. of Eng. Cybernetics

Foreword

The work presented in this thesis was conducted for the Department of Engineering Cybernet-
ics, at the Norwegian University of Science and Technology (NTNU).

The work was performed under the supervision of Professor Geir Mathisen, from the Depart-
ment of Engineering Cybernetics. Geir has provided equipment to be used, report structure,
technical insight and general guidance throughout the process.

This thesis is a continuation of work performed in a specialization project by Skjæveland C. G.
[1]

i

Abstract

The use of Smart water meters are on the rise, and several municipals in Norway, including
Trondheim, wants every household to implement it. Wireless Meter-Bus (wM-Bus) has been
shown to be a popular standard in this process and it gives an opportunity to develop a new
infrastructure to collect all data near real-time. In addition, by adding pressure meters to work
alongside, this might give more insight of the water grid connecting the households and there-
fore give indications of leakages in the grid.

In this project, a infrastructure capable of storing real-time flow and pressure measurements in
a cloud solution from several households in a neighborhood was created. This data was then
made easily accessible through the use of an Application Programming Interface (API) and also
by using a third-party application. The data was further used to create a representational model
of the water grid, which was used to compare with real measurements to give indications of
leakages.

It is concluded that although the infrastructure works as intended, changes need to be made to
make it viable in a real setting. The analysis performed on the data showed that the uncertainty
of the model was too great to give any indications of leakages. More knowledge surrounding
the water grid is therefore needed improve the model, and therefore the leakage detection and
localization strategy.

ii

Sammendrag

Bruken av smarte vannmålere blir mer populært, og flere norske kommuner, inkludert Trond-
heim, ønker at det tas i bruk for alle husstander. Wireless Meter-Bus (wM-Bus) har vist seg
å være en populær standard i denne prosessen og det gir en mulighet til å utvikle en ny
insfrastruktur for å samle data i nær sanntid. Ved å i tillegg ha trykkmålere ved siden av så kan
det være mulig å få mer innsyn i vannettet som kobler sammen husstandene, og derfor gi en
indikasjon på lekasjer.

I dette prosjektet ble det utviklet en infrastruktur for innsamling av vannforbruk- og trykkmålinger
i nær sanntid, som lagres i en skyløsning for flere husstander i et nabolag. Denne dataen ble
dermed gjort mer tilgjengelig ved bruk av en Application Programming Interface (API) i tillegg
til en tredjeparts programvare. Dataen ble videre brukt til å lage en modell som representerer
vannettet. Denne modellen kunne da brukes til å generere trykkresidualer fra en sammenlign-
ing med ekte måleverdier, noe som er essensielt for indikasjoner av lekasjer.

Det konkluderes med at infrastrukturen fungerer som ønsket, men endringer må gjøres for
at den skal fungere i et ekte scenario. Dataanalysen viste at usikkerheten i modellen var for
stor for å gi indikasjoner for lekasjer. Mer informasjon om vannettet må dermed brukes for å
forbedre modellen, og dermed lekasjedeteksjons- og lekasjelokaliseringsstrategien.

iii

Contents

Foreword . i
Abstract . ii
Sammendrag . iii
Contents . iv
Figures . vi
Tables . vii
Code Listings . viii
Acronyms . ix
1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Limitations . 2
1.3 Disposition of the Task . 2

2 Literary Study . 4
2.1 Communication Technologies for Water Distribution Networks (WDNs) 4
2.2 Smart Water Grid Projects . 5
2.3 A Review of Leakage Detection Strategies . 6

2.3.1 Classification of Leak Detection Strategies 6
2.3.2 Mass/Volume Balance . 8
2.3.3 Negative Pressure Wave (NPW) Method . 8
2.3.4 Gradient Intersection Method . 9
2.3.5 Using Pressure Residuals From a Model-Based Approach 9
2.3.6 Mixed Model-Based/Data-Driven Approach 9

2.4 Summary . 10
3 Theory . 12

3.1 The Wireless M-Bus Standard . 12
3.1.1 Physical Layer (PHY) . 12
3.1.2 Data Link Layer (DLL) . 14
3.1.3 Extended Link Layer (ELL) . 16
3.1.4 Network Layer (NWL) . 16
3.1.5 Authentication and Fragmentation Layer (AFL) 17
3.1.6 Transport Layer (TPL) . 17
3.1.7 Application Layer (APL) . 17

3.2 The Open Metering System Standard . 19
3.3 The STACKFORCE Protocol Stack . 19
3.4 EPANET and water modelling . 20

3.4.1 The EPANET Model . 20
3.4.2 Conservation of Energy and Mass . 21

iv

Contents v

3.4.3 Analysis Algorithm to Find Total Head and Flow 23
3.4.4 Modelling Water Demand Patterns . 23

3.5 Hydraulic Properties of a Leak . 24
3.6 Generation of Pressure Residuals . 24

4 Design and Specification . 26
4.1 Functional Specification . 26
4.2 System Overview . 26

5 Implementing the Infrastructure . 29
5.1 Configuring Simulated Meters SLWSTK6220A . 29
5.2 Setting Up the Device Connectivity Layer . 32

5.2.1 WM-Bus Collector . 32
5.2.2 Serial Port Logger . 36

5.3 The Cloud Solution . 37
5.3.1 Identity and Access Management (IAM) . 37
5.3.2 Cloudwatch . 37
5.3.3 IoT Core and Rules . 38
5.3.4 Timestream . 38
5.3.5 API Gateway and Lambda . 40

5.4 Creating the EPANET Model . 43
5.4.1 Creating the Demand Pattern . 45

5.5 Data Visualization and Analysis . 47
5.5.1 Visualization Using Grafana . 47
5.5.2 Generating Pressure Residuals . 48

6 Testing and Results . 49
6.1 Receiving Correct Data and formatting Packets in the Device Connectivity Layer 49
6.2 Testing Cloud Solution Components . 50

6.2.1 Receiving data in IoT Core . 50
6.2.2 Test Query of Timestream . 51
6.2.3 Test of GET Method for API Gateway . 51

6.3 Visualization of Data using Grafana . 54
6.4 Generated Pressure Residuals . 54

7 Discussion . 58
7.1 Review of Specifications . 58
7.2 Other Improvements . 60

8 Conclusion . 61
9 Further Work . 62

9.1 Further Work for Infrastructure . 62
9.2 Further Work for Data Analysis . 63

Bibliography . 64
A M-Bus Packets . 66
B Serial Port Logging Code . 69
C CSV to IBM hex format converter . 76
D Data Analysis . 78
E Simulated Meter Code . 81

Figures

2.1 Communication technologies for smart water grid 6
2.2 Five layered architecture for water management. 7
2.3 Classification of major leak detection techniques. 7
2.4 Gradient intersect method. 9
2.5 Leak localization scheme based on a hybrid approach. 10

3.1 Architecture of the STACKFORCE wM-Bus Protocol Stack. 20
3.2 Overview of vocabulary concerning the model. 21
3.3 Total head along a pipeline. 22

4.1 An overview of the whole infrastructure. 28

5.1 The simulated meters used in the project. 33
5.2 Block diagram of the RC1180 demonstration kit. 34
5.3 Overview of MBUS-CCT program window . 34
5.4 Settings used for action associated with the AWS IoT rule. 39
5.5 Amazon Timestream architecture overview. 41
5.6 Amazon Timestream storage overview. 41
5.7 Map of the nearby water grid of the water meters. 43
5.8 EPANET model of the water grid. 44
5.9 Water demand pattern. 46
5.10 Water demand pattern in EPANET. 46

6.1 Resulting raw wM-Bus packets. 49
6.2 Resulting formatted wM-Bus packets. 50
6.3 Resulting formatted wM-Bus packets graphed. 51
6.4 Resulting JSON packets being received by IoT Core 52
6.5 Result of query for Timestream . 52
6.6 Result of GET API response. 53
6.7 Grafana panel showing the latest packets that have been registered. 54
6.8 Grafana panel showing data for all locations. 55
6.9 Grafana panel showing RSSI measurements from all meters for both collectors. . 56
6.10 Real pressure measurements plotted alongside modelled pressure estimations. . 56
6.11 Generated pressure residuals. 57

A.1 SLWSTK6220A wM-Bus packets used in this project. 67
A.2 Kamstrup M-Bus packets used in this project. 68

vi

Tables

2.1 LPWAN technologies . 5

3.1 The wM-Bus protocol as a layer model . 13
3.2 wM-Bus operating modes . 13
3.3 M-Bus frame format A. 14
3.4 M-Bus frame format B. 14
3.5 C-field data format. 15
3.6 Manufacturer ID’s used in this project. 15
3.7 Device types used in this project. 15
3.8 CI-fields used for this project. 16
3.9 Full and compact M-bus frame. 18
3.10 The data information for data records in this project. 18
3.11 The value information for data records in this project. 18

5.1 Identification for every meter used in this project. 32
5.2 Configurations for collector . 36
5.3 Values for measure_name. 40
5.4 Parameters for EPANET. 44
5.5 Modifications to Timestream record. 47

vii

Code Listings

5.1 Code modification for simulated flow meters . 31
5.2 Terminal commands for collector . 35
5.3 Lambda function for API Gateway. 42
5.4 Standard query used for Grafana. 47
B.1 Serial port logging code . 69
C.1 CSV to IBM hex formatter . 76
D.1 Script for analyzing data . 78
E.1 Main code file used for programming simulated meters. 81

viii

Acronyms

AFL Authentication and Fragmentation Layer. 12, 15–17, 19
API Application Programming Interface. ii, iii, vi, viii, 6, 19, 27, 38, 40, 42, 43, 51, 53, 58, 62
APL Application Layer. 12, 14, 15, 17, 19, 20, 29
AWS Amazon Web Services. 6, 27, 28, 37, 38, 40, 42, 60

CI Control Information. 12, 16, 49
COM Communication Port. 33
CRC Cyclic Redundancy Check. 16, 19
CSV Comma-separated values. 36, 37

DIB Data Information Block. 18
DIF Data Information Field. 18
DIFE Data Information Field Extension. 18
DK Demonstration Kit. 33
DLL Data Link Layer. 12, 14, 16, 17, 19
DMA District Metered Area. 1, 2, 8–11, 20, 21, 23–25, 59, 61, 63

ELL Extended Link Layer. 12, 15, 16, 18, 19

GA Gradient Algorithm. 23
GSM Groupe Spécial Mobile. 5

HAL Hardware Abstraction layer. 19, 20
HTTP Hypertext Transfer Protocol. 40

IAM Identity and Access Management. 27, 37, 38, 47
IoT Internet of Things. vi, 5, 27, 36–40, 50–52, 60, 75

JSON JavaScript Object Notation. vi, 36, 37, 51, 52

LoRa Long Range. 4, 5, 10
LoRaWAN Long Range Wide-Area Network. 6
LPWAN Low Power Wide Area Network. vii, 4–6, 10, 60, 62

M-Bus Meter-Bus. 12, 17, 19
MCU Microcontroller Unit. 19, 20, 33, 35
MQTT Message Queuing Telemetry Transport. 6, 27, 36–38, 50

NB-IoT Narrow-Band IoT. 4–6, 10
NPW Negative Pressure Wave. 2, 8, 9, 11, 24
NWL Network Layer. 16, 19

ix

Code Listings x

OMS Open metering system. 2, 12, 16, 19, 62
OSI Open Systems Interconnection model. 12

PHY Physical Layer. 12

REST REpresentational State Transfer. 6, 40, 42
RF Radio Frequency. 19, 30, 32
RSSI Received Signal Strength Indicator. vi, 49, 56, 59

SDK Software Development Kit. 40, 42
SQL Structured Query Language. 38, 40, 47, 48, 51

TPL Transport Layer. 12, 15–18, 20, 29, 30

UART Universal Asynchronous Receiver-Transmitter. 32
USB Universal Serial Bus. 27

VIB Value Information Block. 18
VIF Value Information Field. 18
VIFE Value Information Field Extension. 18

WDN Water Distribution Network. 1, 2, 8–11, 20–25, 43, 45, 47, 50, 63
wM-Bus Wireless Meter-Bus. ii, iii, vi, vii, 2, 4–6, 8, 10–13, 19, 20, 26, 27, 29–33, 36, 49–51,

58–60, 62

Chapter 1

Introduction

1.1 Background and Motivation

Several municipals in Norway are starting to implement smart water meters to read water
consumption in households, and this is something that Trondheim municipality also wishes
to do. A smart meter is defined to be a meter which records information near real-time and
transmits it wirelessly. This makes it possible to monitor water usage, reduce billing expenses
and give more precise estimates compared to a more traditional approach of reading the values
through manual inspection. By having the smart meters available in every household, it is
possible to create an infrastructure to gather all data in a common platform. This could be
more time and cost-effective.

As pipelines carrying water age, leakages inevitably occur. This results in increased costs in
energy and chemical expenditure. The presence of leak and a quantification of loss can be
measured straightforwardly at isolated parts of a Water Distribution Network (WDN), called
District Metered Area (DMA). This is because a DMA only has one inlet pipe, and this one is
installed with a flow meter, making it possible to detect leaks through a simple mass/volume
balance analysis.

A more challenging task is to locate the leak within the DMA, which is sometimes a complex
network of pipes. Most ways of localizing leakages has traditionally involved using some kind
of hardware-based method to inspect only a smaller part of the DMA. This can end up being
both costly and time-consuming [2]. By taking advantage of the emerging number of smart
meters, there might be a way to implement a more cost-effective and less time-consuming
way of localizing leakages. By also integrating pressure meters in combination with water
consumption meters that’s already starting to be implemented by Norwegian municipals, more
knowledge of the WDN can be gathered and the number of possible leakage detection and
localization strategies is increased.

This project seeks to solve these two challenges by suggesting an infrastructure able to collect
near real-time water consumption and pressure measurements from several households in a
neighborhood. This data will then be used to create a representational model of the DMA
which generates pressure values that is compared with real pressure measurements to create
pressure residuals. These pressure residuals are a vital step in further localization of leakages.

1

Chapter 1: Introduction 2

As Wireless Meter-Bus (wM-Bus) has been shown to be a popular European standard for smart
meters, this will be the standard of choice for this project.

Previous efforts have been made by the same department to accomplish similar tasks. Lier
H. [3] demonstrated an infrastructure for collection of wM-Bus data, but were only able to
receive simulated data as communication with real meters could not be established. Vatland
A. [4]made further efforts to establish communication with real meters, but were unsuccessful.
A specialization project by Skjæveland C. G. [1] were able to establish communication with
real meters through the use of new equipment by Radiocrafts as collector/receiver of wM-Bus
data. The project serves as a continuation from these works.

1.2 Limitations

This report assumes that a Water Distribution Network (WDN) is divided into sub-regions
called District Metered Area (DMA). Each DMA is isolated from the rest of the WDN with only
a inlet where flow measurements are known. When flow measurements are available, leaks
can be detected more easily since it is possible to establish simple mass balance in the pipes
[5]. This paper is concerned with the localization of leaks within a DMA when a leak has been
verified for the whole DMA. Here, it is assumed that both water consumption data and pressure
data at each node is available, but flow measurements between the nodes in the pipes are not.

The meters available to measure flow and pressure at a node sends data every 95 second. This
limits the applicability of leak detection methods that rely on fast transients, like the Negative
Pressure Wave (NPW) method, which is described in chapter 2.

Moreover, Leak detection and localization methods described requires a network of several
pressure and flow meters to be able to work. This project has only one real pressure meter and
one real flow meter available. This project serves therefore as a demonstration of concept for
infrastructure that is required and not as a final solution.

This project was conducted during the Covid-19 pandemic. This caused a limited availability
of equipment placed out in the field. This includes wM-Bus collectors and wM-Bus meters.
Fortunately, Professor Geir Mathisen has been of great assistance when physical intervention
of the system has been needed.

The data available for the water grid has been limited. This has caused some inaccuracies
in the implementation of the representational model of the water grid. Therefore, several
assumptions have been made where it has been required. The demonstration of generating
pressure residuals was shown, important for further leakage analysis.

1.3 Disposition of the Task

Chapter 2: Literary Study explores which communication technologies are viable for WDNs.
Other smart water grid projects are investigated and a review of promising leakage detection
strategies is performed.

Chapter 3: Theory describes the wM-Bus protocol, the OMS standard and how the STACK-
FORCE protocol stack, used by SLWSTK6220A, is implemented. The theory behind water mod-
elling done by the software EPANET is explained, properties of a leak is described and how

Chapter 1: Introduction 3

pressure residuals are used is described.

Chapter 4: Design and Specification sets up requirements for the system proposed. An over-
view of the whole system is also presented.

Chapter 5: Implementing the Infrastructure covers the implementation of all aspects of the
system, such as the whole infrastructure and how data analysis is performed.

Chapter 6: Testing and Results explains the way the system was tested and what the results
were.

Chapter 7: Discussion analyzes the results of the testing.

Chapter 8: Conclusion summarizes the main takeaways from the project.

Chapter 9: Further Work explores the ways in which this project can be built upon.

Chapter 2

Literary Study

A literary study is done to find the state-of-the-art concerning infrastructure solutions for smart
water grids, communication technologies used for smart water grids, and also viable leakage
detection and localization strategies. The findings are then summarized in the end.

2.1 Communication Technologies for Water Distribution Networks
(WDNs)

A review article by Lalle Y. et al. (2021) [6] offers an overview of prominent communica-
tion technologies for smart water grids, as shown in figure 2.1. Here, Smart Water Grids are
defined as water infrastructure integrating information and communication technologies. The
article states that a lot of the new emerging technologies are of the type Low Power Wide Area
Network (LPWAN). These promise to provide long range, low power consumption and good
penetration capabilities for a low cost.

A. Pitì et al. (2017) [7] investigated suitable communication technologies for the roll-out phase
of the Italian second generation of Smart Meters. Several use cases with various requirements
were put forward. LPWAN technologies was seen as suitable for architectures using a public
wide area network. Cellular networks, such as NB-IoT was argued to deliver higher service
availablility because of using licensed bandwidth, but required involvement from a third-party.
With a lot of users, these technologies would struggle to deliver data with a maximum sampling
rate lower than 30 seconds and a maximum latency lower than 5 seconds. Maximum sampling
rate of one minute and maximum latency of 10 seconds would be challenging, but feasible.

Even if there are many emerging LPWAN technologies, the main ones used as of 2020 are
wM-Bus, Sigfox, LoRaWAN and NB-IoT [8]. These would probably be most readily available
from manufacturers. This project uses Kamstrup as a supplier, and they do indeed provide
these technologies for water meters along with linkIQ, which is their own specification based
on wM-Bus. A comparison of these technologies are shown in table 2.1. Anani W. et al. (2019)
[9] states that a choice depends on its use case. LoRa offers regional coverage with low duty
cycle and low data rate for long battery life. it is suitable for private network without relying
on a provider and supports mobility applications. Sigfox offers regional coverage with very low
duty cycle and very low data rate for very long battery life. NB-IoT offers worlwide connectivity
with very good coverage and medium data rate. It consumes more power due to the long

4

Chapter 2: Literary Study 5

IoT Standards LoRa/LoRaWAN Sigfox NB-IoT WM-BUS

Frequency Unlicensed Sub-GHz ISM Sub-GHz ISM Licensed 700-900 MHz
Unlicensed 868 MHZ,
433 MHz or 169 MHz

Data rate 0.3-37.5 kbps 0.1 kbps(UL), 0.6 kbps(DL) 150 kbps (NB) <1 mbps 2.4/4.8/19.2 kbps
Range for
line of sight

5-15/20 km 30-50 km 22 km
500m (868MHz) and
5 km (169 MHz)

Coverage 157 dB 149 dB 164 dB 123 dB
Bandwidth 125 kHz - 250 kHz 100 Hz 180 kHz 335.5 kHz
Capacity 40,000 50,000 200,000 Not specified
Throughput 290 bps - 50 kbps 100 bps 250 kbps 4.8 - 100 kbps

Power
2µA resting,
12mA listening

0.01mA resting,
Tx: 28mA, Rx: 10.5mA

3µA resting,
Tx: 74-220mA, Rx: 46mA

0.6µA resting,
Tx: 403mA, Rx: 31mA

Initiation Node & Server Node Node Node
Scalability Medium Low High Medium
Network Topology Star Star Star Star
Dedicated Network No Yes Yes No
Mobility/
Localization

Yes
Limited Mobility,
No Localization

Limited mobility,
No localization

No

Messages unlimited 140 Message/day, 12 bytes/message Unlimited Not specified
Latency 1-2s (high downstream latency) 1-2s medium 1.5-10s -
Modulation CSS / GFSK UNB/GFSK/BPSK QPSK/OFDMA FSK/GFSK/MSK/OOK/ASK
Bidirectional Yes / Half-duplex Limited / Half-duplex Yes / Half-duplex Yes
Standardization LoRa Alliance Sigfox Co. 3GPP M-Bus

Table 2.1: A comparison of the currently most used LPWAN technologies for water infrastructure ap-
plications. Based on [9].

transmission. wM-Bus offers a large number of connectable devices, possibility for network
expansion, fail-safe characteristics/robustness, minimum power consumption, and acceptable
transmission speed. Suitable for remote meter reading, meter maintenance and configuration.

2.2 Smart Water Grid Projects

Lalle Y. et al. (2021) [6] performed a review of recent smart water grid projects in the period
from 2007 to 2017. It was identified that the communication systems were based on conven-
tional cellular networks, ZigBee and Bluetooth technologies for data communication. Because
of energy and range considerations, it was recommended to use LPWAN technologies instead.
NB-IoT was recommended for urban areas because of the large availability of cellular infra-
structure, while other LPWAN technologies would require a gateway to interface to a server
backend through cellular connection.

A unified framework for urban water management was proposed by G. Antzoulatos et al.
(2020) [8], which exploited state-of-the-art IoT solutions for remote telemetry and control
of water consumption in combination with machine learning-based processes. The solution
presents a five-layered generic architecture, as shown in figure 2.2, that contextualizes the
five goals of the architecture. The five goals are Smart Automated Metering & Remote Con-
trol, Device Connectivity & Data Management, Data Processing & Visualisation, Water Man-
agement, and Feedback of Water Usage.

The gateway, constituting the Device Connectivity Layer, is an important part of this system
as it handles the connection between end devices and a central server infrastructure. for this
project, a custom gateway was made that constitutes the backbone of a fixed wireless and
multi-protocol network that handles meter readings and makes remote control viable. This
gateway works for both wM-Bus and LoRa. This custom-made gateway came from the lack of
commercially available gateways that suited their specific needs.

Communication with a central server is handled using the wireless internet protocols GSM

Chapter 2: Literary Study 6

Figure 2.1: A classification of Smart Water Grid communication technologies. LPWANs are the ones of
interest to this project. From [6].

and NB-IoT. The messages received by the central server uses the lightweight MQTT protocol.
The packets are not decrypted/decoded until they reach the central server which is a part
of the Device & Data Management Layer. The central server is based on the cloud service
provided by Amazon Web Services (AWS). Here, a noSQL database is used for both storage
and end device management. The servers Application Programming Interface (API) is based
on a REpresentational State Transfer (REST) design with token-based authentication. This
makes it possible for consumer’s and administrator’s applications to access the necessary data
for their purposes.

The paper concludes that the gateways need to be positioned close to the end devices when
wM-Bus is used. In this regard, LoRaWAN is far superior. The processing time upon gateway
reception was less than a second on average, when serving up to 200 users in different scen-
arios.

2.3 A Review of Leakage Detection Strategies

Zaman D. et al. (2019) [2] provides a comprehensive review of different leakage detection
strategies for pressurised pipes in steady state. In addition, they provide a way to categorise
various leakage detection techniques, as shown in figure 2.3. It must be noted that in this case,
leakage detection also involves leakage localization methods as well.

2.3.1 Classification of Leak Detection Strategies

Almost all leak detection techniques may be broadly classified as direct methods, indirect
methods, and inferential methods. Most hardware-based approaches can be classified as direct
methods of leak detection, whereas software-based methods are usually indirect or inferen-

Chapter 2: Literary Study 7

Figure 2.2: Five layered architecture for making a smart water management infrastructure. As sugges-
ted by [8]

Figure 2.3: Classification of major leak detection techniques. From [2]

Chapter 2: Literary Study 8

tial [2]. Inferential methods merely indicates the probable presence of a leak and doesn’t aid
leakage detection. They are rarely used nowadays and can be considered obsolete. Hardware-
based approaches include several commercial ’in-pipe’ (intrusive or robotic) and ’out-of-pipe’
(external or non-intrusive) devices. These see a wide use today, unlike the software based,
which are of interest to this project.

Software-based leakage detection techniques uses some form of mathematical technique per-
formed by a software programming package. Most of these techniques can be considered either
indirect or inferential. The hydraulic state of the pipe is important for a leak detection system.
A technique may use either a transient-based approach, steady-state approach or a hybrid
approach.

Steady-state approaches can be divided into two broad categories as data-driven or model-
based. Model-based may be direct by using a simple and straightforward comparison of pres-
sure, or indirect using complex mathematical operations to distinguish anomaly from pressure
data. Data-driven techniques can be further divided based on type of data used, data source
used and mathematical and computational technique used to extract leak information.

Software-based leak monitoring and detection approaches are still not popularly used by utility
services as they are hugely data-intensive and require an adequate number of smart meters
to be installed in the pipeline system. Hardware-based methods are instead more widely used
[2].

Based on the classification provided by the paper, the system of this project would be most
suited to a indirect method which is software-based. Presently, almost all software-based leak
detection approaches utilised in real systems are operated under steady-state conditions [2].
Therefore, only steady-state approaches will be considered.

2.3.2 Mass/Volume Balance

When the flow data into a system is known, it is possible to apply conservation of mass prin-
ciples. By assuming that the WDN is a closed system, it is possible to compare inlet and outlet
flows. In a leak-free scenario, this should equal zero. A difference would then suggest that a
leak or a undocumented outlet is present. If the WDN is comprised of isolated areas called
DMA, then this method can be applied for only this part of the WDN. This way, a leak can be
isolated to a specific DMA contained inside a WDN.

2.3.3 Negative Pressure Wave (NPW) Method

P. Ferrari et al. (2013) [10] considers the use of the Negative Pressure Wave (NPW) method
to detect leaks in a wM-Bus meter network. the system measures the distance between two
meters and a leak using the NPW that is generated. The time delay between the reception of
the same NPW for the two meters can then be estimated. The distance between a meter 1 and
the leak can be estimated using the equation:

L1 =
L + vw∆t

2
(2.1)

where L is the distance between the two meters, vw is the speed of the wave, and ∆t is the
time delay between the detection of the NPW between the two meters.

Chapter 2: Literary Study 9

Figure 2.4: A graph of pressure drop along a pipe section. The same pressure drop occurs with and
without leak, but the line changes. Red line is the pressure drop when a leak is present, blue line is the
pressure drop without a leak present. x-axis is length and y-axis is pressure head. Based on [11]

The speed vw of a NPW depends on many factors, but can easily reach 1000 m/s. A time syn-
chronization uncertainty below 1 ms would then be required to obtain a position uncertainty
on the order of 1 m [10].

2.3.4 Gradient Intersection Method

Fiedler J. (2014) [11] covers the gradient intersect method. The method assumes a linear pres-
sure drop along a pipe section, as shown in figure 2.4. When a leak occurs, the flow increases
before the leak while decreases after. This results in a increased pressure drop before and re-
duced pressure drop after. These two pressure lines can then be used to find an intersection
which gives the location of a leak.

2.3.5 Using Pressure Residuals From a Model-Based Approach

Casillas M. V. et al. (2013) [12] describes the use of pressure residuals for leakage diagnosis,
which is the underlying philosophy for all model-based methods. Pressure residuals are the
difference in simulated and real pressure values at the same location for a simulated and real
network. Such a method requires extensive knowledge about the WDN as well as calibration
and verification of the model for it to work effectively. The residuals can be used for several
leakage detection and leakage localization methods. Cassillas M. V et al. (2013) [12] compares
five model-based leakage localization methods and concludes that the angle method increases
the capability of isolating leaks in a great number of cases. Noise was a great source of error.
Other works have noted that model errors and closed valves also obscures leak localization
[12].

2.3.6 Mixed Model-Based/Data-Driven Approach

D. Zaman et al. (2019) [2] concluded in its review of leakage detection methods that a hybrid
method provides a better performance concerning the accuracy in detection and lesser error
in terms of false alarm. Soldevila A. et al. (2016) [5] proposes such a method. The problem
of using raw pressure residuals is that leaks affect all residuals to some extent in addition to
having a high uncertainty. A classifier is therefore suggested to solve this problem. The presence
of leakage in determined for a DMA by using mass/volume balance. Then, localization of
the leakage is done by obtaining pressure residuals for the DMA. These are finally used by
a classifier, similar to a data-driven approach. Soldevila A. et al. (2016) [5] argues that a

Chapter 2: Literary Study 10

Figure 2.5: Leak localization scheme based on a hybrid approach. Pressure residuals are generated
from a comparison between a model and the WDN. These are used by a classifier to state possible leak
locations. From [5]

time horizon of 24 hours is sufficient for maximum localization accuracy of 90 percent. The
size of the leaks were 50 litres per second. A sampling rate of 10 minutes was used, were six
samples were averaged to create hourly samples with less uncertainty. K-NN nearest neighbour
was used as a classifier. Although, the paper suggests that more effective classifiers should be
investigated. This scheme is laid out in figure 2.5. This scheme will be further detailed in
chapter 3.6, as it is similar for only generating pressure residuals.

2.4 Summary

Recent papers concerning communication technologies for smart water grids calls for the use of
LPWAN to provide a solution with low energy usage and long range. There are some concerns
raised for the use of wM-Bus since it has the lowest range of the popular LPWAN technologies
[8]. Both NB-IoT and LoRa gets a lot of recommendations to be used in future smart water
grids. What wM-Bus can provide is a higher data rate with a lower power consumption. This
can be beneficial for certain leakage detection and localization strategies. The generic archi-
tecture model, proposed by G. Antzoulatos et al. [8] and shown in figure 2.2, provides a clear
view of a water management system. It will therefore be used for this project, as shown with
a system overview in chapter 4.

The literature provides a vast number of leakage detection and localization strategies, but the
best choice depends on the properties of the system. A former study of the Trondheim water
grid notes that the network is divided into 55 DMA, each one with a flow meter that measures
how much water enter by the inlet pipe [13]. For this reason, leakage detection is possible by

Chapter 2: Literary Study 11

using mass/volume balance for each DMA.

Inside the DMA, there are no flow measurements between each node, only consumption and
pressure data at each node. The choice is limited to software-based methods as it is desirable
to have a leakage localization method that is non-intrusive and can be active at all times.
In the literature, the most popular software-based ones are steady-state [2]. There is a choice
between model-driven, data-driven or hybrid methods. Data-driven techniques can be suitable
for water grids with an ample amount of meters, and it wouldn’t require extensive knowledge
about the water grid. On the other hand, it would only be able to deal with faults that have
been previously experienced by the system [5]. A model-based method would require extensive
knowledge about the system, but it would be possible to generate a lot of different leakage
scenarios to compare to real meter data. A hybrid method increases the complexity of the
leakage detection algorithm, but has shown to provide better performance.

The use of wM-Bus limits pressure wave analysis methods, such as the NPW method, since
this requires a very high sampling rate and very low time synchronization uncertainty. The
complex layout and size of WDNs increases the frictional losses, and this non-linearity makes
some detection strategies less viable. Examples are NPW method and gradient intersection,
which are more suitable for straight pipelines. From these considerations, this project will
therefore address a model-driven approach where a model of the DMA is created. The data
generated from this model will then be used for generating pressure residuals by comparing
it to real measurements. This is further described in chapter 3.6. Similarly to D. Zaman et al.
(2019) [2], about 6 samples will be averaged to create samples every 10 minutes.

Chapter 3

Theory

This chapter will present the theory needed in order to understand how the system in this
project works. The topics covered is the Wireless Meter-Bus (wM-Bus) protocol which is used
by all metering equipment, the Open metering system (OMS), which is the more specific subset
of wM-Bus used by the devices. The STACKFORCE protocol stack will be covered, which is
the wM-Bus implementation used by the SLWSTK6220A starter kit for simulated meters. The
theory behind the water model used by EPANET is covered, the hydraulic properties of a leak
is described and lastly, the generation of pressure residuals is explained.

3.1 The Wireless M-Bus Standard

The Meter-Bus (M-Bus) protocol is a European standard for remote reading of various con-
sumption meters, as well as sensors and actuators. It has a wireless implementation called
Wireless Meter-Bus (wM-Bus), which replaces the Physical Layer (PHY) and Data Link Layer
(DLL) of the M-Bus layer model. This is the version used in this project. A wM-Bus transceiver
offers low power usage because of its small overhead while also offering unidirectional modes,
which reduces power usage further by not having to worry about data being sent both ways.
It also has a long range because of frequencies being under 1 GHz. The M-Bus protocol is
described in the standard EN 13757.

The wM-Bus protocol is compliant with the Open Systems Interconnection model (OSI). Table
3.1 shows the relationship between the OSI model and the wM-Bus protocol. Physical Layer
(PHY) and Data Link Layer (DLL) is always present. Transport Layer (TPL) and the applied
Application Layer (APL) are always introduced by the TPL’s Control Information (CI) field.
Optional layers like Extended Link Layer (ELL) and Authentication and Fragmentation Layer
(AFL) are introduced by special CI-fields. In such cases the M-Bus-message contains several
CI-fields [14].

A overview of all wM-Bus packets for this project is shown in appendix A.

3.1.1 Physical Layer (PHY)

The protocol uses a half-duplex asynchronous serial transmission with a Master-Slave struc-
ture. Meters transmit metering data by RF in regular intervals that is received by a Master/-

12

Chapter 3: Theory 13

Abbrevation Layer Described in OSI model Layer

APL Application Layer EN 13757-3
Application
Presentation

TPL Transport Layer EN 13757-7 / EN 13757-3 Session
Transport

AFL
Authentication and
Fragmentation Sublayer

EN 13757-7

NWL Network Layer EN 13757-5 Network
ELL Extended Link Layer EN 13757-4

Data Link
DLL Data Link Layer EN 13757-4
PHY Physical Layer EN 13757-4 Physical

Table 3.1: The wM-Bus protocol as a layer model. As shown, the relationship between M-Bus layers
and the OSI layers is not one-to-one. Based on table 1 from [15]

Mode Frequency [MHz] Description of Use
S1 868.3 / 433 Send data a few times per day. Optimized for

battery operation and stationary operation
S2 868.3 / 433 Same as S1, but bidirectional communication
T1 868.95 / 433 Send data every few seconds. Configurable in-

terval
T2 868.95 / 868.3 / 433 Same as T1, but bi-directional
C1 868.95 / 433 Uses NRZ coding. Similar to T1 but higher data-

rate
C2 869.525 / 868.95 / 433 Same as C1, but bidirectional
N1a-f 169 Narrowband communication for long range

transmission
N2a-f 169 Same as N1a-f, but bidirectional
N1g 169 Narrowband communication for long range

transmission
N2g 169 Same as N1g, but bidirectional

Table 3.2: This table lists the most common operating modes for wM-Bus

Collector. The collector may also query data from bidirectional wireless M-Bus meters.

The wM-Bus operates under various modes, as shown in table 3.2. Only the most common
modes have been listed. The modes define the configuration of the radio channel and also the
communication flow.The various modes vary in data encoding, frequency, data rate and fre-
quency modulation. A mode can support either bidirectional or unidirectional communication.
In a unidirectional mode, less overhead is required and can give less power consumption. A
meter (slave) will then only be able to send data packets to a collector (master). In a bidirec-
tional mode, a collector is able to request data when it is required.

For mode C1, which is used by this project, all communication is NRZ-encoded. All commu-
nication from a collector to a meter is transmitted as FSK modulated data. All communication
from a meter to a collector is transmitted as GFSK modulated data. All communication is pre-
ceded by a preamble and synchronization pattern which helps the decoder determine which
mode is used.

Chapter 3: Theory 14

First block: Data Link Layer
Length Ctrl Manuf Address Version Type CRC
1 byte 1 byte 2 bytes 4 bytes 1 byte 1 byte 2 bytes

Second block: Application layer
CI Data CRC

1 byte up to 15 bytes 2 bytes

Optional block: Application layer
Data CRC

up to 16 bytes 2 bytes

Table 3.3: M-Bus frame format A.

First block: Data Link Layer
Length Ctrl Manuf Address Version Type
1 byte 1 byte 2 bytes 4 bytes 1 byte 1 byte

Second block: Application layer
CI Data CRC

1 byte up to 115 bytes 2 bytes

Optional block: Application layer
Data CRC

up to 126 bytes 2 bytes

Table 3.4: M-Bus frame format B.

3.1.2 Data Link Layer (DLL)

The Data Link Layer follows immediately after the preamble and synchronization pattern.
Two different frame formats are supported, called frame format A and frame format B. Frame
format is determined by preamble and synchronization pattern. An overview of both frame
formats are shown in table 3.3 and table 3.4 respectively. At the very least, the frame formats
consists of two blocks, one defined by DLL and one by APL. Frame format B does not have a
CRC-field for the first block while also being able to contain more data. Frame format B is used
for this project. A description of all DLL fields follows:

Length (L) Field

The L-field specifies the number of bytes contained in the data packet. For frame format A,
CRC bytes should be excluded, but not for frame format B.

Control (C) Field

The C-field is used to declare the message type. The 8 bit field is shown in table 3.5. RES is
always 0. A value of 1 for PRM means that message comes from a initiating station, while 0 is
a responding station. FCB, FCV and ACD, DFC-bit coding is described in EN 60870-5-2.

Chapter 3: Theory 15

MSBit LSBit

RES PRM
FCB FCV

Function code
Primary to secondary

ACD DFC Secondary to primary

Table 3.5: C-field data format. From [16]

M1 M2
2D 2C Kamstrup
24 48 Radiocrafts
9A CE Silicon Labs

Table 3.6: Manufacturer ID’s used in this project.

Several message types exist. For this project, the only message type used is 0x44, meaning
"Send spontaneous/periodical application data without request (Send/No Reply) from an ini-
tiating station". This is mandatory for modes like S1, T1, C1 and N1.

Manufacturer (M) Field

The M-field is a unique two-byte ID to identify the supplier of the equipment sending the data
packet. The ID’s used in this project is listed in table 3.6.

Address (A) Field

The A-field contains the address of the sender. A manufacturer needs to ensure a uniqueness
of the addresses for all produced meters [16].

Version (V) Field

V-field specifies the version of the meter. It makes sure that each version of a device has its
own unique ID.

Type (T) Field

T-field gives information about what type of meter that sent the package. The standard EN
13757-7:2018 [15] specifies various device type codes. The ones used in this project are listed
in table 3.7.

Control Information (CI) Field

The CI-field specifies the structure of the next higher protocol layer. The block declared may
be an APL, AFL, TPL or ELL. If ELL or AFL is declared, then several blocks may be chained,

Type
0x07 Water Meter
0x16 Cold water meter
0x18 Pressure Meter

Table 3.7: Device types used in this project.

Chapter 3: Theory 16

CI-field Layer TPL Header Used by Meter Description
0x78 APL None Kamstrup Send full M-Bus frame
0x79 APL None Kamstrup Send compact M-Bus frame
0x7A APL Short SLWSTK6220A Send full M-Bus frame
0x8D ELL - Kamstrup Add additional link layer of 8 bytes

Table 3.8: CI-fields used for this project. ELL can’t use a TPL header and is therefore unspecified.

and the data packet will contain several CI-fields. The values used for this project are shown
in table 3.8.

Cyclic Redundancy Check (CRC) Field

The CRC-field is used to perform a cyclic redundancy check to detect errors in the generated
data packets as they are received. It is computed over the information from the previous block.
The CRC formula used is:

x16 + x13 + x12 + x11 + x10 + x8 + x6 + x5 + x2 + 1 (3.1)

An inital value of 0 is used while the final CRC is complemented.

3.1.3 Extended Link Layer (ELL)

The Extended Link Layer (ELL) is an extension of the DLL and provides additional control
fields for wireless communication. Several ELL blocks are defined in the standard EN13737-4
[16]. For this project, the Kamstrup meters use an 8 byte block with CI value of 0x8D, which
contains the following information:

8 Byte Extended Link Layer
CC ACC SN CRC

1 byte 1 byte 4 bytes 2 bytes

The Communication Control (CC) field provides information about how a unit should re-
spond to a message, if the message is syncronized, if the message should be prioritized and if
it is a repeated message. The Access Number (ACC) field is used to synchronize transmission
from the meter. The Session Number (SN) field contains the following information:

Session Number (SN)
ENC T S
3 bits 25 bits 4 bits

The Encryption (ENC) subfield is three bits long and defines which encryption mode is used.
As of 2021, only AES-128 Counter Mode is available, which is defined by 0b001. The Time
(T) subfield is 25 bits and describes a relative time for when the packet was sent in number
of minutes. with 25 bits, it is able to count to almost 64 years. The Session (S) subfield is 4
bits and defines the session number within a minute of the T-subfield. With 4 bits, it is able to
have 16 sessions within a minute.

3.1.4 Network Layer (NWL)

An additional Network Layer (NWL) can be defined between ELL and AFL, and is described in
EN 13757-5. This is never used by OMS [14] and not implemented by any of the equipment

Chapter 3: Theory 17

in this project.

3.1.5 Authentication and Fragmentation Layer (AFL)

The standard considers Authentication and Fragmentation Layer (AFL) to be a part of TPL.
Its functions are to fragment longer messages into several packets, prove authenticity of TPL
and APL with the use of a Message Authentication Code (MAC) and a message counter for
identification and security features. This layer is added if one of these features are required.
This is not the case for any of the equipment in this project.

3.1.6 Transport Layer (TPL)

For the transport of APL information, a TPL header structure can be chosen. The header struc-
tures are:

• No TPL-header: Used for unencrypted messages. Data follows right after CI-field:
TPL
CI

1 byte

• Short TPL-header: Contains access number, status byte and configuration field. A 2 byte
sequence 0x2F 0x2F decryption verification (DV) follows:

Transport Layer (TPL) Header
CI ACC STS CF (DV)

1 byte 1 byte 1 byte 2 bytes 2 bytes
• Long TPL-header: Contains access number, status byte and configuration field. It also

contains meter identification. A 2 byte sequence 0x2F 0x2F decryption verification (DV)
follows:

Transport Layer (TPL) Header
CI Addr Manuf Ver Type ACC STS CF (DV)

1 byte 4 bytes 2 bytes 1 byte 1 byte 1 byte 1 byte 2 bytes 2 bytes

Table 3.8 shows which block types uses which TPL header format. A long header may be used
if there is a requirement of supplying a different address than what is specified in the DLL
from the manufacturer. If not, a short header is sufficient. The Access Number (ACC) field is
incremented for each packet and may be used for synchronization purposes. The Status (STS)
field gives information of errors that might arise in addition to manufacturer specific statuses.
The Configuration (CF) field gives information about the security mode used and the length
of the encrypted data.

3.1.7 Application Layer (APL)

M-Bus Frame

Data can be structured in different ways by the APL. These are as a full M-bus frame, compact
M-Bus frame or as a M-Bus format frame. The full M-Bus frame transmits data information
fields alongside the transmitted data. The compact M-Bus frame is able to reduce package size
by 40 percent by omitting this. An M-Bus format frame transmits only the data information
fields. The full and compact M-Bus frame is used in this project and is shown in figure 3.9.

Chapter 3: Theory 18

Full M-Bus Frame
CI Data header DIF[1] VIF[1] Data[1] DIF[2] VIF[2] VIFE[2] Data[2]

Compact M-Bus Frame
CI Data header Format Dignature Full-Frame-CRC Data[1] Data[2]

Table 3.9: Full and compact M-bus frame.

DIF
05 Instantaneous value. 8 digit BCD (binary coded decimal)
02 Instantaneous value. 16 bit integer/binary
04 Instantaneous value. 32 bit integer/binary
44 Stored Instantaneous value. 32 bit integer/binary
61 Minimum value. 8 bit integer/binary
22 Minimum value. 16 bit integer/binary
12 Maximum value. 16 bit integer/binary

Table 3.10: The data information for data records in this project. Stored instantaneous value is the
monthly flow which is updated at the start of every month. The values are in hex number system.

Encryption

The Wireless M-Bus standard allows for the encryption of the payload data using optimized
encryption modes like AES 128 CBC. It can be defined either by the ELL or by the TPL header.

Data and Value Information Blocks

Each data record has a Data Information Block (DIB) and a Value Information Block (VIB)
associated with it. The DIB describes the length, type and coding of the data, while the VIB
specifies the unit and multiplier of the data. The DIB contains the Data Information Field (DIF)
and the Data Information Field Extension (DIFE), while the VIB contains the Value Information
Field (VIF) and the Value Information Field Extension (VIFE). The values used for this project
are shown in table 3.10 and table 3.11.

VIF VIFE
13 Volume 10−5 m3

67 External temperature 10−1 C
69 Pressure 10−1 bar
FF 09 Manufacturer Specific
FF 0A Manufacturer Specific
FD 17 Binary Error flags
FF 20 Manufacturer Specific

Table 3.11: The value information for data records in this project. The manufacturer specific values are
unknown as no information can be found. The values are in hex number system.

Chapter 3: Theory 19

3.2 The Open Metering System Standard

The Open metering system (OMS) standard is an effort in making a manufacturer- and utilities-
independent standardization for M-Bus and ensure interoperability between all meter products.
The standard implements a subset of the highly flexible M-Bus standard as specified in EN13757.
Where the M-Bus standard leaves ambiguity, OMS offers a more precise definition. The OMS
group consists of a number of member companies, of which Kamstrup, STACKFORCE and Ra-
diocrafts are some of them. Some important requirements made by OMS are:

• The OMS standard requires the use of only S1, S2, T1, T2, C1 and C2, all operating on
frequency 868 MHz to 870 MHz.

• The modes S1, S2, T1 and T2 is considered deprecated, and therefore not recommended.
• All wireless and Programmable Logic Controller (PLC) communication have to be en-

crypted.
• The use of frame format A, as shown in table 3.3, is required.
• DLL encryption shall not be applied.
• A packet shall not transmit several datagrams. Instead, AFL shall be used to fragment

longer messages.
• Only a subset of C-fields are supported.
• The NWL shall not be used.
• Only a short ELL or a long ELL is supported.

Even though Kamstrup is a member of the OMS group, the wM-Bus packets from the Kamstrup
meters deviate from the OMS requirements in two ways: Frame format B is used instead of
frame format A, as evident by no CRC being transmitted, and an 8 byte ELL is used instead of
the two required by OMS.

3.3 The STACKFORCE Protocol Stack

The Starter Kit by Silicon Labs, called SLWSTK6220A, uses a protocol stack called STACK-
FORCE. This protocol stack implements three main parts; a Hardware Abstraction layer (HAL),
a RF driver and the wM-Bus stack [17]. An overview of the protocol stack is shown in figure
3.1. As the figure shows, the various layers are interfaced by using different APIs that are
defined.

The HAL makes an abstraction for all hardware resources that is required by the protocol.
The function E_HAL_STATUS_t wmbus_hal_init(void); declared in wmbus_hal.h initiates the
initialization routines of all required Hardware Abstraction layer (HAL) modules, including
the RF driver.

The RF driver implements the hardware abstraction for the radio driver. A choice of driver
needs to be made based upon which MCU is used, which wM-Bus mode is used, and if the
device is defined as a collector or meter. The driver is defined as a static library called librf.a.

The wM-Bus stack implements all layers of the protocol, as shown in table 3.1. It is compliant
to both the wM-Bus protocol and also the OMS standard. In addition, there is a serial interface
on top which gives access to every single function in the APL through a serial port connection.
The protocol stack is available as a static library called libstack.a. There are several imple-

Chapter 3: Theory 20

Figure 3.1: Architecture of the STACKFORCE wM-Bus protocol stack. From [18]

mentations of the protocol, based upon which MCU is used, which wM-Bus mode is used, and
if the device is defined as a collector or meter. In addition, some have APL as the top layer,
and some have TPL as the top layer. A stack with less layers implemented might be desired if
a custom layer implementation is needed.

Several IAR workspaces are provided by STACKFORCE that includes all files needed for various
use cases. A main c file is then used to initiate the wM-Bus stack and HAL.

3.4 EPANET and water modelling

EPANET is a widely used software application to model water distribution networks, both by
engineers and researchers. The software was developed by United States Environmental Pro-
tection Agency’s (EPA) and made free to download. The software uses mathematical concepts
to develop its model which will be covered in this section.

3.4.1 The EPANET Model

An EPANET model is made for a District Metered Area (DMA), which is a small part of the
Water Distribution Network (WDN), as shown in figure 3.2. A DMA is isolated from the rest of
the grid using an isolation valve where a flow meter is installed. It is therefore not necessary
to create a model of the whole WDN.

Each node is a place where there exists an outlet for water. With this model, it is not possible
to have leaks in the pipes in between, and a leak needs to be localized in one or several nodes.

Chapter 3: Theory 21

Figure 3.2: Overview of vocabulary concerning the model. The isolation valve separates the DMA from
the rest of the WDN.

The properties tied to nodes are water consumption and total head H, and the property tied
to pipes are flow Q. Head can be thought of as the energy that relates to an equivalent static
liquid column.

3.4.2 Conservation of Energy and Mass

For fluids being transported in pipes, the conservation of energy in the system from point i to
point j is taken advantage of in order to produce models of good accuracy. The relationship
between potential energy, static pressure and kinetic energy is stated in Bernoulli’s principle:

H = z +
p
ρg
+

v2

2g
, (3.2)

where H is total head, z is height over reference value, p is pressure at a chosen point, ρ is
density of a fluid, g is acceleration of gravity and v is fluid flow speed at a point on a streamline.

The velocity head is v2

2g and pressure head is p
ρg . For Water Distribution Network (WDN), the

contribution of velocity head is very small compared to pressure head and height. Therefore,
EPANET omits velocity head in its calculations:

H = z +
p
ρg

(3.3)

The contribution of friction is substantial in WDN. The head loss along a pipe from node i to
node j can be stated, using equation 3.3, as:

zi +
pi

ρg
= z j +

p j

ρg
+HL(k), (3.4)

where HL is head loss due to friction and k = index of the pipe connecting node i and node j.

EPANET offers three ways to calculate head loss, where each is an equation based on an em-
pirical relationship which relates the flow of water and pressure drop with the physical prop-
erties of the pipe. These are named Hazen-Williams equation, Darcy-Weisbach equation and

Chapter 3: Theory 22

Figure 3.3: Total head along a pipeline with contribution from height, pressure head and velocity head.
Head loss is the lost pressure due to friction. Velocity head is assumed to be zero. Inspired by [19]

the Chezy-Manning equation. In this project, the Hazen-Williams equation is used. It has the
advantage of having a coefficient that is not the function of the Reynolds number. Although, it
is only applicable for water at conventional velocities. The water is assumed to be at room tem-
perature, which is a source of error when temperatures are different from this. The equation
is:

HL(k) = RkQ1.852
k =

10.67Lk

C1.852
k d4.8704

k

Q1.852
k , (3.5)

where L is the length of a pipe section, C is the roughness coefficient, d is the diameter of the
pipe and Q is the flow through the pipe segment. R is the static resistance factor. k = index of
a pipe connecting two nodes.

By using equation 3.3, equation 3.4 and equation 3.5, the conservation of energy can be stated
as:

− RkQ0.852
k Qk +Hi −H j = 0 (3.6)

In addition to conservation of energy, the conservation of mass for a WDN is upheld by re-
quiring that each total inflow equals the total outflow for every network node. This can be
expressed as a linear set of equations:

ni
∑

k=1

Qki, j
+ qi = 0 (3.7)

where Qki, j
= flow in the pipe ki, j from node i to j, ni = number of pipes connected to node i,

and qi = known demand at node i.

Chapter 3: Theory 23

3.4.3 Analysis Algorithm to Find Total Head and Flow

Both conservation of energy [3.6] and conservation of mass [3.7] is used to represent the
WDN. The unknown variables are the flow through pipes Q and nodal heads H. To find these
unknowns, a modified Newton-Raphson method is used, called Todini’s Global Gradient Al-
gorithm (GGA) [20].

First, Todini’s modified Gradient Algorithm (GA) respresentation of WDN is used. This is simply
a restatement of equation 3.6 and equation 3.7 in a matrix notation [21]:

�

A11 A12

A21 0

��

Q
H

�

+

�

A10H0

q

�

=

�

−F1

−F2

�

(3.8)

A11 is a diagonal matrix whose elements are defined as:

A11(k, k) = Ak = RkQ0.852
k (3.9)

A12 is a [p;n] matrix which relates the pipes to the unknown head nodes, and A21 = AT
12. Q

are all the unknown pipe flows and H are all the unknown nodal heads. A10 is a [p; n0]matrix
relating the pipes to the fixed head nodes. q are the known nodal demands. F1 = F1(Q,H) and
F2 = F2(Q) indicate how far from zero the relevant equations are for any guessed solution Q
and H. Applying the Newton Raphson method to equation 3.8 results in the following system
of equations with flow and head correction for iteration τ:

�

Dτ11 A12

A21 0

��

dQ
dH

�

=

�

−Fτ1
−Fτ2

�

(3.10)

where

dQ= Qτ −Qτ+1 (3.11)

dH= Hτ −Hτ+1 (3.12)

Fτ1 = Aτ11Qτ +Aτ12Hτ +A10H0 (3.13)

Fτ2 = A21Qτ + q (3.14)

and D11 is a diagonal matrix which is the Jacobian of A11Q. The diagonal elements are:

D11(k, k) = Dk = 1.852RkQ0.852
k (3.15)

A compact expression of equation 3.10 is:

Ah= −F (3.16)

To find a solution, the system needs to be solved for h= A−1(−F). A guess for all pipeline flows
Q and nodal head H are made, and h then gives an indication of how the guess needs to be
modified. With enough iterations, an acceptable solution is found.

3.4.4 Modelling Water Demand Patterns

A Water demand pattern is a list of flow estimation Q for a certain time period defined for
the model. They are usually obtained by using water consumption data of a DMA inlet, dis-
tributed for each node based on historical billing records [5]. A better method is to use actual
measurements from each node using smart meters for water consumption.

Chapter 3: Theory 24

A problem of using volume-based meter readings, is that the duration of the water consumption
is not known when the sampling rate of the meter is lower. When the volume readings are
averaged on time to get litres per second, the flow will be much lower than in reality. As
pressure in the pipes is greatly affected by flow Q, there will be a smaller change in pressure
for a model compared to pressure readings when tapping occurs. Calibration can be performed
to match the mode. This involves adding a multiplier for the water consumption used by the
model.

The Kamstrup Pressuresensor provides a minimum and maximum pressure reading for an
interval in addition to the instant pressure reading at each interval. It is possible to use this
extra information to make assessments of the tapping event. This could be used to make better
estimations of the water demand pattern.

3.5 Hydraulic Properties of a Leak

By using smart meters, it is possible to gather information about hydraulic properties in a Water
Distribution Network (WDN). Areas of a network are usually isolated from each other in areas
called District Metered Area (DMA). The entry points may then be regulated for different
consumer demands using pressure reduction valves. The most commonly used sensors are
pressure and flow, even though several others are available [2]. Pressure in WDN may fluctuate
every hour due to the varying consumer demand [2], and an unexpected drop is a indication
of an unknown leak or un-documented demand. Features concerning a leak are presence of a
leak - leak detection, severity of the leak - leak magnitude, and determining the exact location
- leak localization.

A leak produces a decrease in the upstream pressure and downstream flow-rate for a straight
pipeline. However, for a complex pipe network, the concept of outlet and inlet pressure may
become ambiguous.

An important phenomenon for leak analysis is Negative Pressure Wave (NPW). In theory, a
leak will result in an equivalent pressure drop in its vicinity. This gives rise to pressure waves
which travel along the pipe in each direction. Its specific velocity corresponds to the leak size.

Leak induced pressure drop may be detectable only for leaks larger than a certain magnitude,
but simulations have shown that pressure gradient variations can be recognizable even for
smaller leaks (below 1 liter/min) [22]. However, such characteristics are specific to the di-
mensions of the WDN and the leak size.

Leaks also produce an acoustic signal, and can be detected by various equipments such as
acoustic sensors, accelerometers, microphones, and dynamic transducers. In some cases, such
as low-temperature regions, a change in temperature can also indicate a leak. These changes
can be detected by an optical fiber.

3.6 Generation of Pressure Residuals

Pressure residuals are the underlying philosophy of all model-based leakage analysis [2], and
the literature offers several analysis strategies that relies on residuals generated by WDN mod-
els, as mentioned in chapter 2. This section describes how the generation of pressure residuals
is performed in this project.

Chapter 3: Theory 25

The model-based approach aims to detect or locate leaks in a WDN by using pressure residuals
made by comparing pressure measurements to estimations obtained by the equivalent location
in a WDN model, in a leak-free scenario. The minimum size of a leak is related to the sensor
resolution and also the modeling and demand uncertainty. If the WDN is divided into several
DMA with known inlet flow, then only a smaller model of a certain DMA needs to be considered
instead of the whole WDN [23]. This is because leakage detection can be determined using
mass/volume balance for inlet flow and outlet consumption.

Figure 2.5 from chapter 2 shows the scheme of generating residuals. Nodal demands d can be
gathered from water meters measuring consumption for each household. leak li and noise v
are unknown parameters for the real WDN, while boundary conditions c are constraints acting
upon the system, such as reservoir pressure and flows. A demand estimation d̂ is made based
on previous demand data. Global demand dW DN measured at inlet can be used if wireless
meters measuring water demand is not available. In addition, the model needs information
about pipe diameter, pipe length, pipe roughness, nodal height, pump behaviour and reservoir
pressure/head. Estimated pressures p̂0 can then be generated for each time step with a certain
resolution where a water demand pattern changes demand over time.

Chapter 4

Design and Specification

This chapter presents a functional specification that describes what the project will accomplish
from an outside perspective. A system overview is also provided which shows how our system
is respresented in a five-layered architecture.

4.1 Functional Specification

1. The meters and collectors will use the wireless communication protocol wM-Bus with
C1 mode. This involves one way communication from the meter to the collector.

2. Two real sensors by Kamstrup will be used. One records flow data and one records pres-
sure data.

3. Six supplementary simulated meters will also be used to send data from other locations.
Three sends flow data and the three others send pressure data.

4. The collectors will only receive data packets from specified meters.
5. The wM-Bus data packets will be encrypted.
6. A gateway will receive and send data to a central storage medium.
7. The data packets need to be stored in a way that the measurements are readable.
8. The storage medium will be easily accessible in order to view data at a later time.
9. The collectors need to be able to send and receive data at distances required by a neigh-

bourhood setting.
10. The infrastructure should make analysis of leakages possible.
11. The infrastructure should be able to manage all meters in a timely manner.

4.2 System Overview

In accordance to Antzoulatos G. et al. [8] suggested generic five layered architecture for water
management systems, an architecture has been constructed, and is shown in figure 4.1.

End Device Layer handles recording and wireless transmission of pressure and flow data in
almost real time. The transmission is done over the wM-Bus protocol in C1 mode every 95
second. The meters are Kamstrup PressureSensor, Kamstrup FlowIQ, and simulated meters
implemented using Silicon Labs SLWSTK6220A. They are placed in four different locations.

Device Connectivity Layer handles connection between end devices and a central server in-

26

Chapter 4: Design and Specification 27

frastructure. This is also referred to as a gateway. The gateway receives wM-Bus packets by
using wM-Bus collectors. In this case, both collectors receive all packets in order to test range
capabilities. Each collector is connected to each their own computer through USB. Using a
Python script, The two computers read the serial port, formats the M-Bus packets, and sends
them to the AWS cloud solution through a wifi connection. the packets are sent using the
MQTT message protocol.

Device & Data Management Layer handles reception and storage of metering data. This layer
and the next one is hosted by Amazon Web Services (AWS). The IoT core service receives the
data through the MQTT protocol. Rules are defined to determine which packets are sent to
the Timestream service. The Timestream service handles both short and long term storage.
Identity and Access Management (IAM) is used to manage access to cloud resources, while
cloudwatch is used to generate logs of various actions performed by the cloud.

Data Processing & Analytics Layer processes available data in the database. In this system,
API Gateway manages requests made by an end user. The requests are then sent to Lambda
for processing. It needs to retrieve required data from the database. Finally, the result is sent
back to API gateway and then to end user. This layer would also be responsible for analytics
and preprocessing performed on the available data.

User Interaction Layer represents ways for users to interact with the gathered data. API Gate-
way is used to request data, while Grafana is used to directly access the Timestream database
through the use of a Grafana plugin for Timestream. Grafana can then be used to create dash-
boards with graphs for visualization.

Chapter 4: Design and Specification 28

Figure 4.1: An overview of the whole infrastructure. Data Processing & Analytics Layer, and Device &
Data Management Layer is contained within AWS cloud solution. The layered architecture was inspired
by [8]

Chapter 5

Implementing the Infrastructure

This chapter presents the implementation of the system architecture described in chapter 4
and also how the generation of pressure residuals was performed. The implemented system
architecture serves as a proof of concept, and not as a complete solution.

5.1 Configuring Simulated Meters SLWSTK6220A

The simulated meters were implemented using the starter kit SLWSTK6220A by Silicon Labs
with a protocol stack by STACKFORCE, which is described in chapter 3. The starter kit is
comprised of a radio board with ID BRD4502C and a wireless micro-controller unit with part
number EZR32WG330F256G60G. The protocol stack is downloaded from Silicon Labs’ own
website [24]. Once downloaded, the software provides several different IAR workspaces to
choose from. IAR Embedded Workbench is a licence based toolchain that is used to write,
compile and upload code to the simulated meters. The specific version used for this project is
IAR Embedded Workbench for Arm 8.20.2.

The IAR workspace used in this project is located at \Wireless M-BUS stack\WMBUS Tools\Firmware\TPL firmware\ide\iar\Demo_SLWSTK6220A.
This is configured for the starter kit SLWSTK6220A and implements TPL as its top layer, ex-
cluding serial interface and APL. This gives more control over how the wM-Bus packets are
defined, by making it possible to choose a different header type and change the pre-included
timestamp. This was ultimately not done, and the packet structure remained the same.

In order to implement the simulated meter, the correct configurations for the IAR workspace
needs to be selected:

1. Open the workspace "Demo_SLWSTK6220A.eww", located in mentioned folder, in IAR Em-
bedded Workbench.

2. Make sure configuration Demo_apptpl is selected.
3. Select Project→ Edit Configurations...
4. A new window will appear. Create a new configuration called "SLWSTK622A_Meter_C1",

based on SLWSTK622A_Meter_S2 with the Arm toolchain.
5. Have the root folder selected in the tree viewer
6. Select Project→ Options
7. For General Options→ Target→Device, it should be set as "SiliconLaboratories EZR32WG330F256R60".

29

Chapter 5: Implementing the Infrastructure 30

This is the specific part number for this starter kit.
8. For C/C++ Compiler→ Preprocessor→ Preinclude file, it should be set as "Meter_C1.h",

located in \src\configs.
9. For Debugger→ Setup→ Driver, it should be set as "J-Link/J-Trace"

10. Confirm these settings by clicking OK.
11. Back in the tree view, navigate to location lib/RF/SI4460C_CortexM4F_Meter_S2/. The

correct RF driver static library "librf.a" that is configured for C1 mode needs to be
selected. Right-click on the folder and choose Add → Add Files, and select librf.a
file located in \libs\rf\SI4460C\CortexM4F\Meter_C1. The other librf.a needs to be
excluded from the build by right clicking on it and choosing Options...→ Exclude from
Build.

12. The same process needs to be performed for "libstack.a" located at
/lib/Stack/CortexM4F_Meter_S2_Tpl/ in the treee view. The correct file is located in a
folder named \libs\stack\CortexM4F\Meter_C1\Tpl. This configures the build to use
a wM-Bus protocol that is configured for a meter device in C1 mode with TPL as top
layer.

13. The workspace is now correctly configured and Download and Debug can be performed
with the device connected to the computer through USB. With the default code, the
device will start automatically sending packets in C1 mode every 96 second when it is
powered on.

Changes are made to the main file main_meter.c to make a device send simulation data that is
stored in flash on the device. The code file is shown in appendix E. Two separate main_meter.c
files is used, one for simulated pressure meters, and one for simulated flow meters. Six meters
are configured in total.

the following changes were made to main_meter.c:

1. two extra header files are included at line 24-25; em_gpio.h to configure GPIO/LED
pins, and em_cmu.h to configure clock signal for peripherals.

2. Identification for each meter is shown in table 5.1, and this is entered on line 107-110.
The identification is reentered for each meter that is installed. Encryption key is kept as
is.

3. Interval is set to 95 seconds at line 205, and address is set at line 206. This should be set
by wmbus_tpl_start(&gs_start_attr) at line 209, but doesn’t work for some reason.

4. Two LEDs toggle alternately on and off when a packet is sent. Initiation of the LEDs is
handled at line 194-198.

5. The toggle of LEDs are performed at line 362-363.
6. Reading of flash and storage as static data is performed at line 236-289. Every packet

has 16 bytes of simulated data. This complies to the pressure packet shown in figure. A
slight A.1 in appendix E.

7. A slight modification is made for the code of the simulated flow meters. The code section
from 236 to 289 is instead replaced with code listing 5.1. this is because wM-Bus packets
for flow only contains 11 bytes of measurement data instead of 16. The address jumps
12 bytes instead of 11 for every loop because 4 bytes are writable at a time. This must
be taken into account by adding 1 byte of padding to every packet in the flash.

8. A prefix for day and hour is used to choose starting points for the packets loaded onto
the flash, as shown on line 146-150. An hour prefix of 12 is used for all meters to start

Chapter 5: Implementing the Infrastructure 31

the recording at the equivalent time of 12:00 during the day. A prefix of either 0, 1 or 2
is added to start reading packets representing Monday, Tuesday and Wednesday. This is
done to avoid having the meters broadcast the same values.

1 uint32_t packets = 6117;
2 uint32_t* start_addr = (uint32_t*)(FLASH_BASE + 2048*16); //location 0x8000
3 uint32_t* curr_addr = (uint32_t*)(start_addr + curr_packet * 3);
4
5 if(curr_packet != packets-1)
6 curr_packet++;
7 else
8 curr_packet = 0;
9

10 uint32_t sensor_data = *curr_addr;
11 uint8_t word_part0 = sensor_data >> (0 * BYTE_SIZE);
12 uint8_t word_part1 = sensor_data >> (1 * BYTE_SIZE);
13 uint8_t word_part2 = sensor_data >> (2 * BYTE_SIZE);
14 uint8_t word_part3 = sensor_data >> (3 * BYTE_SIZE);
15
16 sensor_data = *(curr_addr + 1);
17 uint8_t word_part4 = sensor_data >> (0 * BYTE_SIZE);
18 uint8_t word_part5 = sensor_data >> (1 * BYTE_SIZE);
19 uint8_t word_part6 = sensor_data >> (2 * BYTE_SIZE);
20 uint8_t word_part7 = sensor_data >> (3 * BYTE_SIZE);
21
22 sensor_data = *(curr_addr + 2);
23 uint8_t word_part8 = sensor_data >> (0 * BYTE_SIZE);
24 uint8_t word_part9 = sensor_data >> (1 * BYTE_SIZE);
25 uint8_t word_part10 = sensor_data >> (2 * BYTE_SIZE);
26
27 /* The periodical data includes the time. Further data can be added here
28 * to the telegram:
29 * Record 0: time information (already set automatically!)
30 * Record 1: our example data (pc_staticData[])
31 */
32 uint8_t pc_staticData[]={ word_part0,
33 word_part1,
34 word_part2,
35 word_part3,
36 word_part4,
37 word_part5,
38 word_part6,
39 word_part7,
40 word_part8,
41 word_part9,
42 word_part10};

Code listing 5.1: Code modification for simulated flow meters. 11 bytes of data are broadcast every
loop, but the address jumps 12 bytes because 4 bytes are writable at a time.

Simulated data also needed to be loaded onto the devices. This was accomplished in the fol-
lowing way:

1. A weeks worth of both pressure and flow data was recorded from the real meters Kam-
strup flowIQ and Kamstrup Pressuresensor. Implementation of local storage is described
in section 5.2.2.

2. All days of flow data packets and pressure data packets were gathered into each their
own csv file. Appendix A shows an overview of the Kamstrup wM-Bus packets, where the
blue fields are the measurement data that was gathered. Pressure data contained 6282
pressure packets with a size of 16 bytes, which resulted in a total size of about 98 KiB.

Chapter 5: Implementing the Infrastructure 32

Meter Type Manufacturer M-Bus Address Manufacturer ID Version Type Simulation day
Pressure Silicon Labs 50902542 ce9a 1d 18 Monday
Flow Silicon Labs 51705369 ce9a 1d 16 Monday
Pressure Silicon Labs 51705518 ce9a 1d 18 Tuesday
Flow Silicon Labs 51705538 ce9a 1d 16 Tuesday
Pressure Silicon Labs 50902294 ce9a 1d 18 Wednesday
Flow Silicon Labs 51705516 ce9a 1d 16 Wednesday
Pressure Kamstrup 77000424 2c2d 01 18 -
Flow Kamstrup 68826830 2c2d 1d 16 -

Table 5.1: Identification for every meter used in this project. Simulation day is the day the simulated
meter starts to simulate first

Flow data contained 6117 packets with a size of 11 bytes. The data was padded to get
packets of size 12 bytes, since only 4 bytes are writable at a time. This resulted in a size
of about 72 KiB.

3. Flash Programmer by Silicon Labs was used to load the data onto the flash storage of
the device. The CSV file would first have to be converted to the IBM HEX format.

4. A custom Python script, called csv2hex.py was made based on the intelhex Python lib-
rary, as shown in appendix C. Both csv files were converted using this script.

5. The simulated meters were loaded with either flow or pressure data on hex format, using
the flash programmer. A memory offset of 0x8000 was used to avoid overwrite of the
code loaded onto the device. The device’s flash size of 256 KiB was more than enough
to contain the data. The code size is known because IAR embedded workbench conveys
this information when the code is uploaded to the device.

With this, the simulated meters were ready to broadcast encrypted simulated meter data at
an interval of 95 seconds. One week of data is contained in the device. When the broadcast of
packets reaches the end, it is restarted and packets from the same Monday are broadcast.

Boxes were 3d-printed to protect the circuit, and they were placed at different offices in the
same building. Figure 5.1 shows the simulated meters.

5.2 Setting Up the Device Connectivity Layer

5.2.1 WM-Bus Collector

The RC1180 demonstration kit is used as wM-Bus collectors for this project. An overview
of the kit is shown in figure 5.2. The RC1180 chip implements the wM-Bus protocol stack,
and is closed source. It can be configured by using the UART connection. The UART signal
is converted to USB for easy connection to a computer, where a serial port can be used to
give commands and receive data. The chip sends and receives wM-Bus packets, as specified
by the wM-Bus protocol, using an RF signal. A config button is available that makes the chip
enter a configuration mode. A reset button is used to restart the device. To update the device,
an interface is available at P8. It is also possible to choose between battery power or power
through an USB connection.

A serial port connection is used to configure the device. There are several commands available,
and the ones used in this project are shown in table 5.2. Radiocrafts also offers two applica-
tions, called MBUS-CCT and MBUS-DEMO, that make the configuration of the device easier.

Chapter 5: Implementing the Infrastructure 33

Figure 5.1: The simulated meters used in the project. 3d-printed boxes were made to protect the circuit
while being placed at different locations to broadcast wM-Bus packets. The sides were open so that they
could be easily turned on.

This also uses the serial port connection.

The Radiocrafts RC1180-MBUS3-DK is used to implement two collectors that receive and de-
crypt packages that are broadcasted from wM-Bus meters. The company provides two software
tools which make it easier to configure and test the MCU, called MBUS-DEMO and MBUS-CCT.
Both can be downloaded as a package called RCTools MBUS on the company’s website [26].
This requires an account.

MBUS-CCT gives an interface to the MCU by connecting to a serial port. It enables easy con-
figuration of the module while also providing a terminal window to send and receive data.

MBUS-DEMO can also be used to configure the module, but to a more limited degree since its
function is to demonstrate core functionalities. it simplifies the process of demonstrating the
different functions of the MCU, such as generating packages, sniffing for packages, and simple
configuration. Both of these tools will be used because MBUS-DEMO is quicker to use to test
the system, but MBUS-CCT provides all configurations that are necessary for this project.

The collectors were connected to each their own computer with a USB cable to interface with
a serial port connection. The computers were close to each other, but one collector, called
mbus-collector-2 with address 0x24024024, had an external dipole antenna to see if it would
improve the range. The other collector, called mbus-collector-1 with address 0x30030030, had
a smaller whip antenna which was provided by the development kit.

To receive packets from meters, they need to be installed. Also, the unique encryption key for
each meter needs to be added to decrypt the packets. This is done using the terminal window
in MBUS-CCT. The following steps are performed to configure the MCU:

1. The MCU is connected to MBUS-CCT using the correct COM with a baud rate of 19200.

Chapter 5: Implementing the Infrastructure 34

Figure 5.2: Block diagram of the RC1180 demonstration kit. RC11xx is RC1180 for this project. From
[25].

Figure 5.3: Overview of MBUS-CCT program window

Chapter 5: Implementing the Infrastructure 35

2. Configuration mode needs to be entered by pressing the button "Enter configuration
mode". Sometimes the configuration button on the MCU needs to be pressed right after-
wards.

3. Afterwards the default configuration can be loaded by pressing "Load configuration from
the modules non-volatile memory".

4. The configurations in table 5.2 are used. These are entered into the configuration win-
dow shown in figure 5.3, where each address is associated with a value.

5. After changes, save them by pressing "Send configuration to the non-volatile memory".
6. Enter terminal mode by pressing its button at "Mode selection" in figure 5.3.
7. The commands listed in code listing 5.2 is used in chronological order to install the

various meters.
8. The collector is now configured and ready to be used. When connected through USB to

a serial port on a computer, it will automatically send packets it receives to the port.

1 $ B
2 $ ’1 0x24 0x04 0x00 0x77 0x2D 0x2C 0x01 0x18’
3 $ K
4 $ ’1 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX’
5 $ B
6 $ ’2 0x30 0x68 0x82 0x68 0x2D 0x2C 0x1d 0x16’
7 $ K
8 $ ’2 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX’
9 $ B

10 $ ’3 0x42 0x25 0x90 0x50 0x9a 0xce 0x1d 0x18’
11 $ K
12 $ ’3 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF’
13 $ B
14 $ ’4 0x69 0x53 0x70 0x51 0x9a 0xce 0x1d 0x16’
15 $ K
16 $ ’4 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF’
17 $ B
18 $ ’5 0x18 0x55 0x70 0x51 0x9a 0xce 0x1d 0x18’
19 $ K
20 $ ’5 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF’
21 $ B
22 $ ’6 0x38 0x55 0x70 0x51 0x9a 0xce 0x1d 0x16’
23 $ K
24 $ ’6 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF’
25 $ B
26 $ ’7 0x94 0x22 0x90 0x50 0x9a 0xce 0x1d 0x18’
27 $ K
28 $ ’7 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF’
29 $ B
30 $ ’8 0x16 0x55 0x70 0x51 0x9a 0xce 0x1d 0x16’
31 $ K
32 $ ’8 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF’

Code listing 5.2: Terminal commands used to install all meters for the collectors. Both collectors receive
all data packets in order to test signal strength. Encryption key for real meters are not shown because
of security considerations.

The ’B’ command is used to bind a meter to an address. The ’K’ command is used to specify a
unique key for the meter. The first number determines the address location. For binding, the
unique address, manufacturer address, version and type needs to be provided. Numbers need
to be enclosed in apostrophe to translate them as numbers and not ASCII symbols. The MCU
can store 64 meters in total. For every command, the terminal window will respond with 3E,
or ’>’ in ASCII, to verify that the command was received.

Chapter 5: Implementing the Infrastructure 36

Address Name Hex Value Description
0x03 MBUS Mode 0x09 Set M-Bus mode as C1
0x05 RSSI Mode 0x01 Enable logging of RSSI value for packets
0x12 Network Role 0x01 Set the device’s network role as collector
0x1B A-field ID1 0x24 Set first byte of unique ID to 0x24
0x1C A-field ID2 0x02 Set second byte of unique ID to 0x02
0x1D A-field ID3 0x40 Set third byte of unique ID to 0x40
0x1E A-field ID4 0x24 Set fourth byte of unique ID to 0x24
0x3D Install Mode 0x00 Set the device’s install mode as normal
0x3E Encrypt Flag 0x01 Enable encryption for device
0x3F Decrypt Flag 0x01 Enable decryption for device

Table 5.2: Configurations for wM-Bus collector. Other settings are kept as default. This sets it to use C1
mode, add RSSI value for packets, behave like a master/collector, sets a unique ID, operate in normal
mode and enable encrypt/decrypt. Normal mode means that only data packets from installed meters
are received.

5.2.2 Serial Port Logger

A Python script was created to perform several tasks, and is shown in appendix B. It listens
to a certain port where the wM-Bus collector transmits its received wM-Bus packets from the
installed meters. The received packets are formatted and stored locally on the office computer
in both its formatted and original state. The formatted packet is finally converted into a JSON
package to be sent to the cloud solution using the publish-subscribe protocol MQTT, which
runs over the TCP/UDP protocol.

MQTT implements a publish/subscribe pattern, instead of wM-Bus’ client-server model. In
between there is a MQTT broker which filters incoming messages based on topics defined
by publisher, and distributes them to the correct subscriber. This model makes subscriber and
publisher decoupled as they don’t have to be aware of each other to communicate. For this
architecture, the IoT Core implements the broker.

The program starts from its main function on line 47. When a wM-Bus collector is connected
through a serial port, print_ports() can be used to print out connected ports and find the
correct on. Its functionality, along with other serial port manipulations, are provided by the
serial library.

When the correct port is found, it can be logged by using log_ports() on line 294. The whole
received packet is read using a for-loop. The time it was received is saved.

The packet is then formatted using format_packet(pac) on line 181. This is done, according to
the wM-Bus standard, to make the values of the received packet understandable. Each packet
is identified by its manufacturer ID and packet type, as shown on line 199-239. The real meters
by Kamstrup transmits two types of packets, which are shown in figure A, where DIF and VIF
information are only transmitted every 10 packet. This information is stored in a dictionary at
line 33 for every meter and used for the subsequent packets, before being updated.

Both formatted packets and the raw wM-Bus packets are saved locally on the computer. The
formatted data is saved to CSV files with a file name containing the location of the data and
the current date. The location of every meter is shown in the infrastructure overview in figure

Chapter 5: Implementing the Infrastructure 37

4.1. Raw data is saved to CSV files with a file name containing the device ID and the current
date.

After saving formatted and original packet locally in a CSV format, the formatted packet data is
sent to the cloud solution. The data to send is extracted by the formatted packet, as shown on
line 370-390. This is converted into a json format on line 395. A topic for the MQTT protocol
is defined at line 394. An effort is then made to publish the JSON package to the defined topic
through the MQTT client, as shown on line 397. The MQTT client is implemented using the
library called AWSIoTPythonSDK. It is initialized at line 298-300. This requires key files from
the IoT Core service, which is covered in next section. All error information is logged in a csv
file with a timestamp, as shown on line 403-409, before continuing.

5.3 The Cloud Solution

The cloud architecture was implemented using a Amazon Web Services (AWS) cloud solution.
The reason for this choice was because AWS is one of the oldest and most popular cloud service
providers at the time of writing. This service implements the layers Device & Data Management
Layer, and Data Processing & Analytics Layer of the infrastructure shown in figure 4.1. AWS
provides services to be used as building blocks to build up a cloud infrastructure. Several
services are available and many can be used to achieve the same purpose. The ones used in
this project can be viewed in figure 4.1. How they are implemented is explained in this section.

AWS requires an account to be set up with a card payment method tied to it. The account is
then charged for the amount of usage of each service. The specific unit of measurement for
usage depends on each service. The cloud infrastructure is managed through their website on
https://eu-west-1.console.aws.amazon.com. It is possible to choose different locations all
over the world for the deployment of the cloud solution. For this project, the location eu-west-1
was chosen, which is located in Ireland. There are closer servers, for example in Sweden, but
since Ireland is one of the oldest it provides much more features than most others. Timestream
is one such feature only available at certain servers.

5.3.1 Identity and Access Management (IAM)

IAM is used extensively by AWS cloud to control the access to resources. User identities are
created to give permission to access certain resources. In this project, only one user identity
with administrator/unlimited access to the cloud was created. Roles are similar to users, only
that it is not associated to a certain entity, but rather granted to trusted users, applications or
services. Every service in the cloud has a role granted for it to access the required resources.
Policies defines permissions in a JSON format, and are attached to roles and users. It is possible
to create custom policies, but there are often default policies available to use. A policy specifies
if an action is allowed or denied, specifies which action is being allowed or denied, and specifies
on which resource the action is allowed or denied

5.3.2 Cloudwatch

Amazon Cloudwatch is used to monitor the various services in the cloud in near real time.
This is in the form of logs, events and metrics that are defined by the user. This can be used to
create alarms that activate when certain thresholds are reached. It can be used to troubleshoot
services to see if they function as expected. The metrics can also be used by other services to

Chapter 5: Implementing the Infrastructure 38

trigger logic to execute on certain conditions. For this project, it was used to troubleshoot the
API gateway in order to see if the correct events were transmitted by a lambda function.

5.3.3 IoT Core and Rules

IoT Core acts as a message broker for the MQTT protocol for this system. Messages are pub-
lished on a certain topic, and IoT Core transmits these to a certain destination based on rules.
This way, IoT Core acts as a communication interface to and from the cloud solution. Using so
called rules, simple SQL queries can be created to transfer messages to other cloud services in
AWS. The IoT Core keeps a list of things, which is a representation of a connected device in
the cloud.

A thing has to be defined to setup communication with the gateway and IoT Core. The thing
represents a physical device in the AWS cloud. At the home page of IoT Core, a thing was
created with the name mbus-collector-1. Upon creation, a IoT certificate, public key and private
key was generated. These were used as files to give the Python script for serial logging the
necessary authentication to upload its content to the cloud. The Python script also needed a CA
certificate for server authentication, which is provided from the AWS web page. The generated
IoT certificate needs a IoT policy attached to have the necessary permission to allow a device
to publish its content to a topic using MQTT. These IoT policies are similar to the IAM policy,
but act upon devices connecting to the cloud instead. With these configurations, the Python
script should be able to publish its content to the IoT core on a certain topic. The same steps
had to be done for the second collector, called mbus-collector-2, as well.

A rule was set up by going to Act→ Rules for IoT core, which sent messages to the Timestream
database. Its name was iot_timestream. Using SQL, a query statement was created:

1 SELECT min_pressure, max_pressure, inst_pressure, flow_inst, flow_max_month, flow_inst_diff,
flow_max_month_diff, temp_ambient, RSSI

2 FROM ’collectors/#’

This defines which attributes are to be extracted from a topic source. # is a wild card statement
which selects every attribute. Then an action was added to the rule. The pre-defined action
"Write a message into a Timestream table" was chosen. The settings shown in figure 5.4 were
used. This sets the desired database and table, which are described in the Timestream sec-
tion. Timestamp is added automatically based on time of upload, while dimensions represent
metadata for each measurement value. The structure of the data is explained further in next
section.

5.3.4 Timestream

Amazon Timestream is a scalable database that stores time series data. It consists of several
layers, as shown in figure 5.5. The reason for choosing Timestream is because it is optimized to
store data for several IoT devices. According to Amazon, when storing and analyzing trillions
of events per day, it is 1000 times faster and 1/10th the cost compared to their other services
providing relational databases, such as the popular DynamoDB. It provides an easy interface
both for data ingestion and extraction with querying. Also, a solution for long-term storage is
implemented, using magnetic storage. The database is referred to as serverless, since scaling
of data ingestion, storage and querying is handled automatically without intervention as the
system grows.

Chapter 5: Implementing the Infrastructure 39

Figure 5.4: Settings used for action associated with the AWS IoT rule. A created Timestream database
with a table is chosen. Dimensions are metadata that is added to every record in the Timestream table.
A new timestamp is added automatically. A role is added with the necessary permissions to access the
Timestream database.

Chapter 5: Implementing the Infrastructure 40

measure_name measure_type
flow_inst_diff measure_value::bigint
flow_max_month_diff measure_value::bigint
temp_ambient measure_value::bigint
RSSI measure_value::bigint
min_pressure measure_value::double
max_pressure measure_value::double
inst_pressure measure_value::double
flow_inst measure_value::double
flow_max_month measure_value::double

Table 5.3: All possible values for measure_name including its type in a record for Timestream series.
While one type is chosen, the other one has no value.

Data ingestion is handled by using SDKs for different programming languages or the service’s
API, which is done by the IoT rule in the former section. Data is written to and automatically
indexed in an in-memory storage. After a certain defined time duration, the data is transferred
to magnetic storage for long-term storage. The data is deleted after a certain amount of defined
time.

From here, the data is available through calls from SQL queries. Since the data is encrypted,
access needs to be granted to applications wanting to make a query.

Timestream stores data in a vertical fashion, which means every record only has one measure-
ment value tied to it. The data is stored in the convention shown in figure 5.6. The measure-
ment value of the record is defined by measure_name. The different values of measure_name
are shown in table 5.3.

A new Timestream database was created with the name sensor_data. The "Standard database"
configuration was used. A new encryption key was created and set as a Master key. Afterwards
a new table was created with the name "collector_data". The table was attached to the database
and parameters for data retention were set. For memory store retention, 1 month (30 days, 11
hours) was used. For magnetic store retention, 2 years were used. The Timestream database
is now set up.

5.3.5 API Gateway and Lambda

API Gateway was used to make third-party applications able to access data inside the cloud
solution. The type of API used was based on REpresentational State Transfer (REST), which
implements HTTP methods such as GET, POST, PUT, PATCH and DELETE. The REST API is made
up of the mentioned methods along with resources to act upon. This results in actions that
either manipulate the resources or produce a response. For this project, these API responses
could be used for an application to create graphs for analysis. The API Gateway sent its requests
to a lambda function where it was processed and returned as a result. API Gateway then
returned a response to the client that made a request.

Lambda is a service by AWS to run code snippets, called lambda functions. There are a wide
variety of available programming languages, but this project uses Python. The code snippet,
as shown in code listing 5.3, ran every time the API Gateway made a call to it. To get an API

Chapter 5: Implementing the Infrastructure 41

Figure 5.5: The layered architecture of Amazon Timestream. From [27].

Figure 5.6: Overview of how a record is stored in the database. Inspired by [28].

Chapter 5: Implementing the Infrastructure 42

to access AWS services, the SDK for Python called Boto3 was used. By using this SDK it was
possible to query the Timestream database for data.

1 import json
2 import boto3
3
4 def lambda_handler(event, context):
5 #print("Got event\n" + json.dumps(event, indent=2))
6
7 client = boto3.client(’timestream-query’)
8
9 # Static Variables

10 select = "*"
11 database = "sensor_data"
12 table = "collector_data"
13 time_start = "ago(15M)"
14 time_finish = "now()"
15
16 # Perform timestream Query
17 query_string = f"""
18 SELECT {select}
19 FROM "{database}"."{table}"
20 WHERE time between {time_start} and {time_finish}
21 ORDER BY time DESC LIMIT 10
22 """
23
24 response = client.query(
25 QueryString=query_string,
26 MaxRows=10
27)
28
29 # Construct the body of the response object
30 sensorResponse = response
31
32 # Construct http response object
33 responseObject = {}
34 responseObject[’statusCode’] = 200
35 responseObject[’headers’] = {}
36 responseObject[’headers’][’Content-Type’] = ’application/json’
37 responseObject[’body’] = json.dumps(sensorResponse)
38
39 return responseObject

Code listing 5.3: Lambda function to process requests from the API Gateway. The function structures
a query to send to Timestream, which is then returned as a response.

A new API was created through the API Gateway service, with REST being chosen as its pro-
tocol. The Endpoint type was chosen to be regional. The name of the API was "wdn-api". A
new method called GET was implemented by using the action "Create Method". Lambda func-
tion was chosen as its integration point with name of the function server location eu_west_1
provided. Lambda proxy integration was used so that details of the event are available to the
lambda handler.

A Lambda function was created with the name "sensor_data_processor". Its content is shown
in code listing 5.3. The code performed a query to the database, as shown on line 16-22. A
response was created and finally returned. This is a simple GET request to demonstrate the
functionality. Further methods could be implemented as well as more detailed responses.

The API could then be deployed to a stage. This was done by navigating to the API Gateway
main page and choosing Actions→ Deploy API. The API was then deployed to a stage which

Chapter 5: Implementing the Infrastructure 43

Figure 5.7: Map of the nearby water grid of the water meters.

was called "test". The API was then avaiable at:
https://doqhob3z60.execute-api.eu-west-1.amazonaws.com/test.

5.4 Creating the EPANET Model

An EPANET model was constructed based on a small part of the water grid layout around the
office building where the system of meters was located. This layout is pictured in figure 5.7.
On the EPANET software, in Project→ Defaults→ Hydraulics, flow units were set to Litres per
second (LPS) and headloss formula to Hazen-Williams (H-W).

The resulting created model is shown in figure 5.8. Each node [J2, ..., J9] represents a place
where there is an outlet to tap water. The meter for this project was thought to be located at
node J5. As no information of outlet locations were provided, these are made up locations
for demonstration purposes. J3, J4, J5, J7 and J8 have a demand pattern that is found by
measurements of flow from the flow meter at node J5. The demand pattern was created from
the arbitrary date of 2nd of march, 2021. This is explained in the next section. J7 is assumed
to have a multiplier of 2 for this demand pattern. J1 is assumed to be a reservoir location with
constant nodal head that provides a constant flow rate. Its total head is 60.76, which is based
on average pressure between 00:00 and 03:00 for the previously mentioned date. This time
range is assumed to have little to no consumption which affects the pressure in the WDN. The
pipe sections [a, ..., g] have properties that are listed in table 5.4.

The model can also be expressed as a system of equations by using the theory described in
chapter 3.4.3. The diagonal Jacobian matrix D11 is shown in equation 5.1. The elements are
defined in equation 3.15.

D11 =

Da 0 0 0 0 0 0
0 Db 0 0 0 0 0
0 0 Dc 0 0 0 0
0 0 0 Dd 0 0 0
0 0 0 0 De 0 0
0 0 0 0 0 Df 0
0 0 0 0 0 0 Dg

(5.1)

Chapter 5: Implementing the Infrastructure 44

Figure 5.8: Resulting EPANET model of the nearby water grid of the water meters. J1 is assumed to be
a reservoir with constant head.

Pipe Section ID Length L [m] Diameter d [mm] Hazen Coefficient C
a 52.34 150 100
b 107.13 150 100
c 80.24 150 100
d 58.39 150 100
e 53.60 150 100
f 40.02 150 100
g 188.71 150 100

Table 5.4: Parameters used for EPANET model for every pipe section. The height of nodes is kept at
zero.

Chapter 5: Implementing the Infrastructure 45

The pipes connecting unknown head nodes are expressed as following:

A12 =

1 0 0 0 0 0 0
−1 1 0 0 0 0 0
−1 0 1 0 0 0 0
−1 0 0 1 0 0 0
0 0 0 −1 1 0 0
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1

(5.2)

All iteration step differences for the model are:

dQ=

dQa
dQb
dQc
dQd
dQe
dQ f
dQg

,dQ=

dH2
dH3
dH4
dH5
dH6
dH7
dH8

(5.3)

The expressions that indicate how far from zero a guess for pipe flows Q and nodal heads H
are, is shown as:

F1 =

RaQ1.852
a +H2 −H1

RbQ1.852
b +H3 −H2

RcQ
1.852
c +H4 −H2

RdQ1.852
d +H5 −H2

ReQ
1.852
e +H6 −H5

R f Q1.852
f +H7 −H6

RgQ1.852
g +H8 −H6

,F2 =

Qa −Qb −Qc −Qd −Q2
Qb −Q3
Qc −Q4

Qd −Qe −Q5
Qe −Q f −Qg −Q6

Q f −Q7
Qg −Q8

(5.4)

These are all required equations to perform a step-wise iteration to a similar solution as the one
EPANET produces. This needs to be done for every water consumption in the water demand
pattern.

5.4.1 Creating the Demand Pattern

The water demand pattern is created from real volume readings from 2nd of march, 2021. A
time resolution of 10 minutes is used, which means averaging out the volume readings that
are made every 95 seconds to get a more accurate measurement. Since the demand pattern
needs to have a unit of litres per second (LPS), the volume reading in cubic metres also needs
to be divided based on time range. A Python script for data analysis in appendix D generates
the water demand pattern. It upsamples volume readings to every one minute, before down-
sampling to every ten minutes, as shown in function get_interpolated_flow. Then, the value
is multiplied on line 51 in get_flow_diff. First with 1000/600 to convert for cubic meter to
litres per second, and then with a multiplier of 120 to have the pressure values of the WDN
model match with the real pressure measurements.

The resulting demand pattern, generated from the analysis script, is shown as a red line in
figure 5.9, with the volume readings in litres as comparison. This demand pattern is then used
for the EPANET model to generate estimated pressure values to be used for pressure residuals.
Figure 5.10 shows the demand pattern editor with these values as input.

Chapter 5: Implementing the Infrastructure 46

Figure 5.9: The water demand pattern in red based on real volume readings shown in blue.

Figure 5.10: The water demand pattern as inputted into EPANET.

Chapter 5: Implementing the Infrastructure 47

CollectorID SerialNumber Location measure_value::bigint measure_value::double measure_name time
mbus-collector-1 770004242c2d loc-1 - 5.6 inst_pressure 2021-05-21 17:01:58
mbus-collector-1 770004242c2d loc-1 - 5.61 max_pressure 2021-05-21 17:01:58
mbus-collector-1 770004242c2d loc-1 - 5.6 min_pressure 2021-05-21 17:01:58
mbus-collector-1 770004242c2d loc-1 120 - RSSI 2021-05-21 17:01:58
mbus-collector-1 50902294ce9a loc-1 - 5.63 inst_pressure 2021-05-21 17:01:19
mbus-collector-1 50902294ce9a loc-1 - 5.64 max_pressure 2021-05-21 17:01:19
mbus-collector-1 50902294ce9a loc-1 - 5.63 min_pressure 2021-05-21 17:01:19
mbus-collector-1 50902294ce9a loc-1 86 - RSSI 2021-05-21 17:01:19

time CollectorID SerialNumber Location inst_pressure max_pressure min_pressure flow_inst_diff temp_ambient RSSI
2021-05-21 17:01:58 mbus-collector-1 770004242c2d loc-1 5.6 5.61 5.6 - - 120
2021-05-21 17:01:19 mbus-collector-1 50902294ce9a loc-1 5.63 5.64 5.63 - - 86

Table 5.5: Visualization of how the Timestream record structure needs to be changed in order to be
used by Grafana panels. Top is the Timestream records and bottom is after changes.

5.5 Data Visualization and Analysis

5.5.1 Visualization Using Grafana

Grafana is a web application by Grafana Labs to visualize and analyze data. For this project, the
Timestream database was connected, so that Grafana can make query calls to update graphs
that are created by the user. A collection of graphs is called a Dashboard. The look of the
Dashboard is saved so that it can be accessed at a later time.

To connect to the Timestream database, a Grafana plugin called "Amazon Timestream" was
used. The plugin performs queries to the Timestream database to gather data. Since the data
is encrypted, an authentication provider is required. The administrator user created with IAM
is used for this purpose. Through this user, a access key ID and secret access key is provided.
In addition, the region, name of database and name of table is provided. The configuration is
then saved.

A new dashboard is then created with the name "WDN Dashboard". Inside the dashboard, sev-
eral panels are created and will be presented in chapter 6. Each panel uses its own SQL query.
A challenge of querying the Timestream database, is that the table is vertical as it presents
a measurement value for each row. A Grafana graph would like to have the data presented
horizontally with all data points for a certain time for each row. The problem is visualized in
table 5.5. This is done through the SQL query that is used to get the data. The general struc-
ture of a query is shown in code listing 5.4. The query creates a new variable for every value
that is needed based on different criteria. This way, The vertical table can be converted to a
horizontal one. The Grafana Dashboard could then be used to visualize the required data.

1 SELECT time, CollectorID, SerialNumber,
2 MAX(CASE WHEN measure_name = ’inst_pressure’ THEN "measure_value::double" END) AS

inst_pressure,
3 MAX(CASE WHEN measure_name = ’max_pressure’ THEN "measure_value::double" END) AS max_pressure,
4 MAX(CASE WHEN measure_name = ’min_pressure’ THEN "measure_value::double" END) AS min_pressure,
5 MAX(CASE WHEN measure_name = ’flow_inst_diff’ THEN "measure_value::bigint" END) AS

flow_inst_diff,
6 MAX(CASE WHEN measure_name = ’temp_ambient’ THEN "measure_value::bigint" END) AS temp_ambient,
7 MAX(CASE WHEN measure_name = ’RSSI’ THEN "measure_value::bigint" END) AS RSSI
8 FROM
9 $__database.$__table

10 GROUP BY
11 time, CollectorID, SerialNumber
12 ORDER BY
13 time desc

Chapter 5: Implementing the Infrastructure 48

Code listing 5.4: A standard structure of a SQL query used by Grafana to get data from the Timestream
database.

5.5.2 Generating Pressure Residuals

To generate the pressure residuals, data is extracted from the created model and the real
measurements. To extract data from the EPANET model, it is first run. Then pressure/head
values for node J5 is used because this represents the location of the real water meters used in
this project. Select the node and click Table→ Time series for node J5. Then, the data for Head
(m) can be selected and copied into an excel document. The values will have to be converted
into bar from meter head by using a multiplier of 0.0980.

The real measurements for the equivalent date of 2nd of march, 2021 is used. This data is
gathered from the local files generated by the serial port logger code running on an office
computer. The data needs to be resampled into values every 10 minute. The Python script for
data analysis in appendix D is used for this purpose. The resulting data is saved to an excel
document and can then be used. The difference between these two datasets is then used to
create pressure residuals.

Chapter 6

Testing and Results

With the various components of the infrastructure implemented, it could then be tested out
according to its specification. With the infrastructure’s layered design, the various layers were
tested in a bottom-up approach. The End Device Layer was tested first and then ending with
the User Interaction Layer and then analysis of the resulting data. The serial logging code, as
shown in appendix B, was made in such a way that it could test out various parts step wise.

6.1 Receiving Correct Data and formatting Packets in the Device
Connectivity Layer

The system was first tested to see if the wM-Bus collector was able to receive packets from the
two real meters. This was done by checking if the serial port logging code was able to read any
raw wM-Bus packets on the serial port and save them to a local output file. The collector and
computer were placed in the same room as the meters to assure they were in range wirelessly.
Part of a resulting output file is shown in figure 6.1. The file saved the wM-Bus packet alongside
seconds after midnight on the first column, as specified by the code. The result also shows that
the packets are decrypted correctly, since column ’U’ gives the correct Control Information (CI)
of 78 and 79 for Kamstrup flowIQ packets. The values on the last column shows RSSI values,
as configured for the collector.

As the interface between End Device Layer and Device Connectivity Layer was working prop-
erly, the simulated meters could also be tested. To make sure that the meters themselves were

Figure 6.1: Raw wM-Bus packets saved to a local file using the serial port logging code of appendix
B. In addition, a "seconds after midnight" parameter is added upon reading which is saved for each
packet.

49

Chapter 6: Testing and Results 50

Figure 6.2: Formatted wM-Bus packets showing which meter that sent it, the time it was received,
current volume registered, volume at beginning of the month, ambient temperature, volume difference
from last read, volume difference from last read of monthly volume, minimum pressure registered, max-
imum pressure registered, instant pressure registered and lastly the received signal strength (RSSI). Top
figure are packets received by mbus-collector-1, while bottom are packets received by mbus-collector-2.

sending out packets, the toggling light, as defined in the code, was checked. This worked as
expected. In a similar manner as the real meters, the raw wM-Bus packets were inspected
in the saved local file. A comparison was made with the data used to load onto the meter’s
flash storage. Since they were identical, this confirmed that the simulated meter code and the
decryption in the collector worked as expected.

With communication between meters and collector working correctly, two collectors were then
used further and all simulated meters were placed at various locations to test signal strength.
mbus-collector-2 was located next to mbus-collector-1 at an office. Because of restrictions due
to an ongoing pandemic, the application Teamviewer was used extensively to interact with the
two computers used in the gateway. This way, changes to the code and configuration could be
made remotely.

Packet formatting was then tested. The serial port logging code formatted the received wM-Bus
packets and printed them to the console window, as well as saved them locally to a file. Figure
6.2 shows the printed results from both collectors running on each their own computer. To
make sure the values made sense, they were graphed with a simple script, as shown in figure
6.3. The graph shows that pressure values changes as there is a consumption of water. A value
range between 5 and 6 bars for pressure and a couple of litres for consumption are believable
values, and it is concluded that the formatting of packets worked as expected.

6.2 Testing Cloud Solution Components

With correct values being read from the WDN, the first two layers were working as expected.
The data could then be uploaded to the cloud solution on the Device & Data Management
Layer.

6.2.1 Receiving data in IoT Core

The last responsibility of the serial port logging code was then to transfer the data to IoT Core.
To test this out, the IoT Core provides an MQTT test client to see if data is received on a specific
MQTT topic. The topic filter ’#’ was used to subscribe to any topic being received. The result

Chapter 6: Testing and Results 51

Figure 6.3: Formatted wM-Bus packets graphed to visualize the values that was outputted by the serial
port logging code. Diff 1 is the difference in volume for two readings.

is shown in figure 6.4. The data was received by both collectors in a JSON format, as specified
by the serial port logging code.

6.2.2 Test Query of Timestream

Next step was to see if the IoT rule worked properly by transfering the JSON packets to the
Timestream database. Using the Query Editor for Timestream, the database can be queried for
its content. A simple SQL query was made:

1 SELECT *
2 FROM "sensor_data"."collector_data"
3 WHERE time between ago(15m) and now()
4 ORDER BY time DESC LIMIT 50

The result of the query is shown in figure 6.5. Several pages worth of data were stored in the
15 minute time range. This confirmed that data was being stored in the database and the third
layer therefore worked.

6.2.3 Test of GET Method for API Gateway

To test the next layer containing the lambda function and the API Gateway, it had to get a re-
quest from an end user in the last layer. An application called Postman is used for this purpose.
Postman is a specialized application for API development and can be used to send and receive
API requests. Using this application, the following GET request was made:

1 https://doqhob3z60.execute-api.eu-west-1.amazonaws.com/test/?measure_name=inst_pressure&Location=loc-1

This GET request asks the API gateway to return packets containing inst_pressure at loc-1.
The result is shown in figure 6.6. Since this only served as a demonstration, the resulting API
response is far from optimized as it sends all data as is, but this shows that all layers of the
infrastructure worked as expected. From a meter broadcasting its reading, to a third-party
application reading the value.

Chapter 6: Testing and Results 52

Figure 6.4: JSON packets being received by the IoT Core on a specific filter as shown. A new timestamp
is added to the packets.

Figure 6.5: Result of query for Timestream. Several pages worth of data is shown for a 15 minute data
extraction. The data structure is changed when it is stored to Timestream.

Chapter 6: Testing and Results 53

Figure 6.6: Result of Get API response. All data from the Timestream query was saved and returned by
Lambda.

Chapter 6: Testing and Results 54

Figure 6.7: Grafana panel showing the latest packets that have been registered.

6.3 Visualization of Data using Grafana

To visualize the data contained in the Timestream database, Grafana was used. By connecting
directly to the database through a Grafana plugin, it was able to query the Timestream database
directly. to verify packets being received, a table of the last packets was created, as shown in
figure 6.7. A graph for each location of meters were created, as shown in figure 6.8. Here, only
location 1 contains real meters, while other locations contain data from simulated meters.
Lastly, a graph for both collectors was created to show the signal strength of the received
packets from all meters, as shown in figure 6.9.

6.4 Generated Pressure Residuals

The real instant pressure and the modelled pressure from EPANET was plotted on the same
graph along with the estimated consumption flow for an arbitrary day to see how they differed.
The result is shown in figure 6.10. The difference, also called the pressure residual, was plotted
on its own graph, as shown in figure 6.11. An initial pressure at the inlet was chosen to be
5.96 bar. This is the average pressure for the time 00:00 to 03:00, which is expected to have
minimum consumption of water. The estimated water demand pattern was calibrated to give
a similar response on the modelled pressure as the real one. Several water demand patterns
had to be generated using the script in appendix D, and then tested on EPANET. After several
trials, a multiplier of 120, as shown on code line 46 in appendix D, was shown to match the
real pressures the best.

Chapter 6: Testing and Results 55

Figure 6.8: Grafana panel showing data for all locations. Location 1 contains the real Kamstrup meters,
while the others are simulated.

Chapter 6: Testing and Results 56

Figure 6.9: Grafana panel showing RSSI measurements from all meters for both collectors.

Figure 6.10: Real pressure measurements plotted alongside modelled pressure estimations. Consump-
tion flow is averaged from measured volume consumed in a time range, and is also multiplied by 120.

Chapter 6: Testing and Results 57

Figure 6.11: The pressure residual generated from a difference in real pressure value and modelled
pressure estimation.

Chapter 7

Discussion

The purpose of the project was to develop an infrastructure for Collecting and Analysing near
Real-Time Data from Several Water Meters Using Wireless M-Bus. By using a layered approach,
as suggested from the literature, the various parts were implemented step-wise. A promising
method of using pressure residuals from a model was investigated.

7.1 Review of Specifications

The collector was able to receive wM-Bus packets using C1 mode in a unidirectional manner,
therefore fulfilling specification one in chapter 4. Packets from both flow meter and pres-
sure meter by Kamstrup were received by the collector, and specification two was fulfilled.
The implemented simulated meters were able to send its content of either pressure data or
flow to the collector, which then fulfills specification three. Since the meters needed to be in-
stalled on the collectors, this fulfills specification four of only receiving wM-Bus packets from
specified meters. A key had to be provided to make the packets content readable, therefore
fulfilling specification five. A gateway was implemented and worked successfully by trans-
mitting meter data to the Timestream database, which fulfilled specification six. Since the
gateway formatted the wM-Bus packets before they were stored, this fulfilled specification
seven.

Specification eight required the data to be easily accessible at a later time, this is fulfilled
to some degree. As shown, the data is available through API requests made by API Gateway.
Both long-term magnetic storage and short-term in-memory storage is available through API
requests. The API response processing is too simple to be a complete solution, and more work
needs to be done on it. Only a GET response was implemented, which gave a non-optimal
response, as shown in figure 6.6. Grafana was used to visualize the data. This worked well for
the few meters that the infrastructure contained, but it was noticeably slow after all graphs
had been added. Each graph performed a query similar to the one shown in code listing 5.4,
and it is suspected that it is a inefficient way to do it. The query looked like this since the
flat structure of the time series data needed to be converted into one with several values for
each entry, as shown in table 5.5. Another solution would be to process the data and store it
in another type of structure in the cloud. This was not possible using the Timestream service,
which automatically used a flat structure for the data records.

58

Chapter 7: Discussion 59

Specification nine concerning range requirement is also somewhat fulfilled. The two collect-
ors are placed in the same office, where mbus-collector-2 uses an external dipole antenna,
while mbus-collector-1 uses a smaller whip antenna. The external dipole antenna shows to
improve the measured RSSI value for the signals, as shown in figure 6.9. The flow meter
688268302c2d and simulated meter 51705369 seems to have the least improvement in signal
strength. Pressure meter 770004242 seems to have an erratic, but better signal strength. it is
difficult to verify that the specification holds and more investigation needs to be conducted.
From the literary study, it is safe to assume there are some concerns with the range capabilities,
as table 2.1 shows wM-Bus to have the lowest range capability of 500m for 868MHz in line of
sight. The problem can be solved with several gateways, but this could lead to higher costs.
A lightweight and cheaper gateway alternative could be developed for this purpose and make
the solution viable. Another solution would be to use a wM-Bus mode supporting lower fre-
quencies. Since the data rate would be lower, this could hurt the viability of leakage detection
and localization strategies. The conclusion for specification nine is that more work needs to
be done.

Specification ten of making analysis of leakages possible is fulfilled to some degree. The result
of generating pressure residuals was shown to be inaccurate as expected, but the proof-of-
concept still holds. Several assumptions made the results not viable. A complete description of
a DMA was not available, and only a snapshot of nearby pipe grid was used in the construction
of the model. Accurate coefficients for the pipes were also not available. Therefore, a default
coefficient for cast-iron with a value of 100 was used. All nodes were assumed to by at a
height of 0. A pipe node J1 was assumed to be a reservoir and an assumed head based on
minimum night flow during 00:00 to 03:00 for node J5 was used as base pressure. The inlet
of a DMA is also controlled by a pressure reduction valve, and the behaviour of this valve was
not known. Node J3, J4, J5, J7 and J8 were also assumed to have a similar demand pattern
as node J5, the location of the real meters. For future work, more data of the DMA needs to be
acquired to make the model viable. The accuracy of demand data should also be improved by
introducing more flow meters to the system. By also introducing more pressure meters, several
pressure residual data sets can be generated to be used further for various leakage detection
and localization techniques.

Some things can be said about the available results of the pressure residual. From the start of
the time range, there are pressure variations which are not accounted by the water consump-
tion of the meter. This could be variations made by the pressure reduction valve at the inlet
of the DMA, or it could be an unknown water consumption. It is also shown that the model
overcompensates at certain water consumption peaks, such as at 08:00, and not on others,
such as at 04:00. This could be because of other unknown water consumption, or that the
time range of tapping differs considerably. When there is a steady consumption of water, as for
08:00 to about 16:00, the pressure is at a lower level than estimated by the model. In total,
it is suspected that big contributions to these observations are changes made to the pressure
reduction valve, other unknown consumption of water and the time range of the tapping. If
a leak occurs, a new constant flow rate will occur. This is difficult to detect if the pressure re-
duction valve adjusts itself to compensate. It is also difficult to know when every node’s water
consumption is not known.

The way the system works now, the data needs to be extracted from the infrastructure in order
to perform offline data analysis. It would be beneficial to have the model as a part of the online
system with pressure residuals being calculated automatically. As the infrastructure on figure

Chapter 7: Discussion 60

4.1 shows, the system is quite modular. With specific tasks being tied to services, extra services
can be added to implement more functionality to the cloud solution.

Specification eleven of managing all meters in a timely manner is fulfilled for this use case,
but when it is scaled up with more meters, it is uncertain. The cloud solution is said to be
serverless, so increased demands cause automatically scaling which requires no intervening.
A weakness of the infrastructure is that the serial port logger code adds a timestamp to wM-
Bus packets when received and IoT core adds another timestamp for when the cloud receives
the packet. This means that the packets have a delay from reading time to when the cloud
receives it. The wM-Bus packets has a timestamp which is sent alongside the meter data, but
the problem is that it is relative. A future solution could then implement a gateway which keep
a record of all relative times in order to improve time syncronization. As figure 6.3 shows, there
is a time delay of two seconds for some records on the different collectors. Figure 6.4 though,
shows a record that has the same time on the different collectors. This shows that the current
infrastructure might have a time uncertainty somewhere around a second, which could be
improved by using the relative time offered by the wM-Bus packets. For the Kamstrup packets,
this is a part of session number (SN), as shown in figure A.2. For the simulated meters, it is
a part of the application layer, as shown in figure A.1. The use of office computers running a
script is also not sufficient in a real system of a bigger scale. As mentioned, a more lightweight
solution for gateway would be required. To make this work, pre-processing of data might have
to be moved over to the cloud solution as the gateway might not be powerful enough to handle
all meters in a timely manner.

7.2 Other Improvements

As this project only investigated AWS as a possible central storage solution, there might be
others more suitable. Costs and privacy might be a concern which should be looked into, and
a privately hosted solution might solve these issues. This system costed about 49.53 dollars
to be hosted for about five months. It was experienced that some services on AWS brought
higher costs with it than others. It is therefore suspected that a lot of cost optimizations can be
made based on certain choices. Since the system is modular, it is possible to try out different
implementations for the various layers, as long as the interface between them holds.

As other LPWAN technologies have been shown to be promising in use for water meters, there
might arise a situation where many different communication technologies are in use for a
system. It would then be beneficial to implement a gateway able to handle several protocols.
The gateway could then send it to a common storage solution.

Chapter 8

Conclusion

In this project, an infrastructure for collecting pressure and volume measurements in near
real-time for several households in a neighbourhood was created. The data collected was then
used to generate pressure residuals necessary for several model-driven leakage detection and
localization methods. It was shown how introducing pressure meters in addition to volume
meters, as desired by many municipals in Norway, it is possible to create a system for leakage
localization inside a District Metered Area (DMA). A caveat of this approach was shown to be
the extensive knowledge required of a DMA to create a model sufficient for generating viable
pressure residuals. Although the system is working as is, several aspect may be improved in
future works.

61

Chapter 9

Further Work

A complete infrastructure for data collection and analysis has many areas of improvement that
can be looked into in further works. This chapter will lay out things mentioned in the discussion
in chapter 7. There are two main areas of improvement; either focused on infrastructure or
focused on analysis.

9.1 Further Work for Infrastructure

A major improvement would be to increase the number of real meters available for the in-
frastructure as it would make the leakage analysis more robust. More volume meters would
make the demand estimation more accurate and more pressure meters would make it possible
to generate more pressure residuals necessary for further analysis.

it is worth looking into if other LPWAN protocols offering longer range can be used for a model-
driven leakage analysis. This could increase the range capabilities limiting wM-Bus, but data
rates might be a concern. Also mode N for wM-Bus offers a longer range and might be viable,
but it is not supported by the OMS standard yet.

The gateway should be made more lightweight so that it doesn’t require a development kit
connected to a personal computer. It could be run on a smaller device instead to reduce costs
or be custom-made. This would also make it more viable to have a higher density of gateways
in a neighbourhood, making range concerns less problematic.

It might be more beneficial to perform formatting of wM-Bus packets in the cloud rather than
in the gateway layer, since the gateway might not have those capabilities when scaling up the
number of smart meters and making it more lightweight.

Better time synchronization of wM-Bus packets should be done. This project used a timestamp
given by the cloud for packets. There is a relative time associated with every packet that can
be used instead. This would improve delays associated with uploading the packets. The infra-
structure would then have to keep track of relative times of all meters. Maybe, with two-way
communication, it is possible to synchronize all meters to a common time defined by the col-
lector.

A more thorough API could be made to make meter data more available for third party applic-

62

Chapter 9: Further Work 63

ations. Data could then be downloaded directly from the cloud solution.

Security, privacy and cost considerations have not been taken into account. There might be
benefits of using another type of central storage architecture than a cloud platform hosted
by a private company. Also, a thorough comparison of other available cloud platforms can be
looked into.

9.2 Further Work for Data Analysis

The implementation of a online model is desirable so that a model-based leakage analysis
doesn’t require off-line work, and therefore make it more automated.

More information about the WDN needs to be attained for a thorough model to be made.
A model-driven approach’ accuracy is hugely dependent on how accurate the model is. This
means getting information about pipe length, pipe diameter, roughness coefficients, flow and
pressure data from entrance of a DMA.

With a robust way of generating pressure residuals in place, an investigation into viable model-
driven approaches need to be made. As concluded in the literary study, a hybrid method of
using residuals for a classifier seems to be a promising solution.

Bibliography

[1] C. G. Skjæveland, ‘Establishing communication with wireless m-bus using equipment
from different vendors,’ 2020.

[2] D. Zaman, M. K. Tiwari, A. K. Gupta and Dhrubjyoti, ‘A review of leakage detection
strategies for pressurised pipeline in steady-state,’ 2019.

[3] H. H. Lier, ‘Demonstrering av konsept for innsamling og sammenstilling av data fra flere
vannmålere ved bruk av trådløs m-bus,’ 2018.

[4] A. Vatland, ‘Wireless m-bus communication between equipment from different vendors,’
2020.

[5] A. Soldevila, J. Blesa, S. Tornil-Sin, E. Duviella, R. M. Fernandez-Canti and V. Puig, ‘Leak
localization in water distribution networks using a mixed model-based/data-driven ap-
proach,’ 2016.

[6] Y. Lalle, M. Fourati, L. C. Fourati and J. P. Barraca, ‘Communication technologies for
smart water grid applications: Overview, opportunities, and research directions,’ 2021.

[7] A. Pitì, G. Verticale, C. Rottondi, A. Capone and L. L. Schiavo, ‘The role of smart meters
in enabling real-time energy services for households: The italian case,’ 2017.

[8] G. Antzoulatos, C. Mourtzios, I.-O. K. Panagiota Stournara, N. Papadimitriou, D. Spyrou,
A. Mentes, E. Nikolaidis, A. Karakostas, D. Kourtesis, S. Vrochidis and I. Kompatsiaris,
‘Making urban water smart: The smart-water solution,’ 2020.

[9] W. Anani, A. Ouda and A. Hamou, ‘A survey of wireless communications for iot echo-
systems,’ 2019.

[10] P. Ferrari, A. Flammini, S. Rinaldi and A. Vezzoli, ‘Wireless sensor network based on
wm-bus for leakage detection in gas and water pipes,’ 2013.

[11] J. Fiedler, ‘An overview of pipeline leak detection technologies,’ 2014.
[12] M. V. Casillas, L. E. Garza-Castañón and V. Puig, ‘Model-based leak detection and loca-

tion in water distribution networks considering an extended-horizon analysis of pres-
sure sensitivities,’ 2014.

[13] L. Magenta, ‘Energy potentiality assessment by mean of intelligent pressure manage-
ment in the hydraulic network of trondheim,’ 2018.

[14] ‘Open Metering System Specification - Primary Communication,’ OMS Group, Cologne,
DE, Standard, Nov. 2019.

[15] ‘Communication systems for meters Part 7: Transport and security services,’ European
Committee for Standardization, Brussels, BE, Standard, Jul. 2018.

[16] ‘Communication systems for meters Part 4: Wireless M-Bus communication,’ European
Committee for Standardization, Brussels, BE, Standard, May 2019.

[17] Wireless M-Bus Documentation: Quick Start Guide, RCxxxxDK-USB, STACKFORCE, Mar.
2015.

64

Bibliography 65

[18] STACKFORCE. (2020). ‘Wireless M-Bus Stack,’ [Online]. Available: https : / / www .
stackforce.de/en/products/protocol-stacks/wireless-m-bus-stack (visited
on 16/12/2020).

[19] Aprova AS. (2021). ‘epanet.no,’ [Online]. Available: https://epanet.no/kom- i-
gang/teori/hydraulikk-i-epanet/ (visited on 23/04/2021).

[20] U. S. E. P. Agency. (2021). ‘EPANET documentation,’ [Online]. Available: https://
epanet22.readthedocs.io/en/latest/ (visited on 24/04/2021).

[21] E. Todini and L. A. Rossman, ‘Unified framework for deriving simultaneous equation
algorithms for water distribution networks,’ 2013.

[22] R. Ben-Mansour, M. Habib, A. Khalifa, K. Youcef-Toumi and D.Chatzigeorgiou, ‘Com-
putational fluid dynamic simulation of small leaks in water pipelines for direct leak
pressure transduction,’ 2012.

[23] A. Abdulshaheed, F. Mustapha and A. Ghavamian, ‘A pressure-based method for mon-
itoring leaks in a pipe distribution system: A review,’ 2017.

[24] S. Labs. (2020). ‘Wireless M-Bus Software,’ [Online]. Available: https://www.silabs.
com/development-tools/wireless/proprietary/ezr32wg-868-mhz-starter-kit
(visited on 09/12/2020).

[25] RCxxxxDK-USB Demonstration Kit User Manual, RCxxxxDK-USB, Radiocrafts, 2018.
[26] Radiocrafts. (2018). ‘RCTools MBUS,’ [Online]. Available: https://radiocrafts.com/

resources/supporting-software-and-software-tools/ (visited on 09/12/2020).
[27] Amazon Web Services, Inc. or its affiliates. (2021). ‘Amazon Timestream Architecture,’

[Online]. Available: https://docs.aws.amazon.com/timestream/latest/developerguide/
architecture.html (visited on 20/05/2021).

[28] Amazon Web Services, Inc. or its affiliates. (2021). ‘Amazon Timestream Concepts,’ [On-
line]. Available: https://docs.aws.amazon.com/timestream/latest/developerguide/
concepts.html (visited on 20/05/2021).

[29] M. Fagiani, S. Squartini, L. Gabrielli, M. Severini and F. Piazza, ‘A statistical framework
for automatic leakage detection in smart water and gas grids,’ 2016.

[30] P. Masek, D. Hudec, J. Krejci, A. Ometov, J. Hosek, S. Andreev, F. Kropfl and Y. Kouch-
eryavy, ‘Advanced wireless m-bus platform for intensive field testing in industry 4.0-
based systems,’ 2018.

[31] A. Sikora, P. Lehmann, N. Anantalapochai, M. Dold, D. Rahusen and A. Rohleder, ‘Recent
advances in en13757 based smart grid communication,’ 2014.

[32] S. Alshattnawi, ‘Smart water distribution management system architecture based on
internet of things and cloud computing,’ 2017.

[33] J. Guth, U. Breitenbücher, M. Falkenthal, P. Fremantle, O. Kopp, F. Leymann and L.
Reinfurt, ‘A detailed analysis of iot platform architectures: Concepts, similarities, and
differences,’ 2018.

[34] UG200: EZR32WG 868 MHz 13 dBm Wireless Starter Kit User’s Guide, SLWSTK6220A,
Rev. 2.01, Silicon Labs, Dec. 2017.

[35] Datasheet: Kamstrup PressureSensor, 58101424, Kamstrup, Aug. 2017.
[36] Kamstrup. (2021). ‘Communication Technologies for Water Meter Reading,’ [Online].

Available: https://www.kamstrup.com/en- en/water- solutions/water- meter-
reading/communication-technologies (visited on 28/04/2021).

[37] ‘Communication systems for meters Part 3:Application protocols,’ European Committee
for Standardization, Brussels, BE, Standard, Jul. 2018.

[38] ‘Open Metering System Specification - General Part,’ OMS Group, Cologne, DE, Stand-
ard, Oct. 2014.

https://www.stackforce.de/en/products/protocol-stacks/wireless-m-bus-stack
https://www.stackforce.de/en/products/protocol-stacks/wireless-m-bus-stack
https://epanet.no/kom-i-gang/teori/hydraulikk-i-epanet/
https://epanet.no/kom-i-gang/teori/hydraulikk-i-epanet/
https://epanet22.readthedocs.io/en/latest/
https://epanet22.readthedocs.io/en/latest/
https://www.silabs.com/development-tools/wireless/proprietary/ezr32wg-868-mhz-starter-kit
https://www.silabs.com/development-tools/wireless/proprietary/ezr32wg-868-mhz-starter-kit
https://radiocrafts.com/resources/supporting-software-and-software-tools/
https://radiocrafts.com/resources/supporting-software-and-software-tools/
https://docs.aws.amazon.com/timestream/latest/developerguide/architecture.html
https://docs.aws.amazon.com/timestream/latest/developerguide/architecture.html
https://docs.aws.amazon.com/timestream/latest/developerguide/concepts.html
https://docs.aws.amazon.com/timestream/latest/developerguide/concepts.html
https://www.kamstrup.com/en-en/water-solutions/water-meter-reading/communication-technologies
https://www.kamstrup.com/en-en/water-solutions/water-meter-reading/communication-technologies

Appendix A

M-Bus Packets

66

Chapter
A

:M
-Bus

Packets
67

Figure A.1: SLWSTK6220A wM-Bus packets used in this project. Yellow highlighted fields indicate the measurement data that was extracted from Kamstrup
meters. For the pressure packet, first yellow group is minimum pressure, second is maximum pressure, third is instant pressure, the two next are manufacturer
specific, and the last is error flags. For the flow packet, first yellow group is info codes, second is instant flow, third is monthly flow, and last is ambient
temperature. No data information blocks (DIB) or value information blocks (VIB) are sent. Example values are shown.

Chapter
A

:M
-Bus

Packets
68

Figure A.2: Kamstrup M-Bus packets used in this project. Yellow highlighted fields indicate the measurement data. For the pressure packet, first yellow group
is minimum pressure, second is maximum pressure, third is instant pressure, the two next are manufacturer specific, and the last is error flags. For the flow
packet, first yellow group is info codes, second is instant flow, third is monthly flow, and last is ambient temperature. Example values are shown.

Appendix B

Serial Port Logging Code

1 """
2 Required packages:
3 python3
4 Microsoft C++ Build Tools (Microsoft Visual C++ 14.0)
5 pip install requests pyserial python_jwt sseclient pycryptodome requests-toolbelt

AWSIoTPythonSDK
6 * Might have to change crypto to Crypto in

AppData\Local\Programs\Python\Python39\Lib\site-packages
7 """
8
9 from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient

10 import serial
11 import serial.tools.list_ports as list_ports
12 import csv
13 from datetime import datetime
14 import time
15 import json
16
17 ###
18 # Global variables
19 ###
20
21 # Constants for AWS cloud upload
22 clientId = "mbus-collector-2"
23 host = "a2ap02hejjfikb-ats.iot.eu-west-1.amazonaws.com"
24 cloud_port = 8883
25 rootCAPath = "root-CA.crt"
26 privateKeyPath = "mbus-collector.private.key"
27 certificatePath = "mbus-collector.cert.pem"
28
29 # Keep dictionary of sensor specific variables
30 # Prefixes are determined by VIF in M-Bus package
31 # [location, last_min_pressure_VIF, last_max_pressure_VIF, last_inst_pressure_VIF
32 # [location, last_flow1_VIF, last_flow2_VIF, last_temp_VIF, last_flow1_calc, last_flow2_calc]
33 sensor_info_dict = {
34 "770004242c2d": ["loc-1", "69", "69", "69"], # PressureSensor
35 "688268302c2d": ["loc-1", "13", "13", "67", -1, -1], # flowIQ
36 "50902542ce9a": ["loc-2", "69", "69", "69"], # Simulated PressureSensor
37 "51705369ce9a": ["loc-2", "13", "13", "67", -1, -1], # Simulated flowIQ
38 "51705518ce9a": ["loc-3", "69", "69", "69"], # Simulated PressureSensor
39 "51705538ce9a": ["loc-3", "13", "13", "67", -1, -1], # Simulated flowIQ
40 "50902294ce9a": ["loc-4", "69", "69", "69"], # Simulated PressureSensor
41 "51705516ce9a": ["loc-4", "13", "13", "67", -1, -1], # Simulated flowIQ
42 }
43

69

Chapter B: Serial Port Logging Code 70

44 ###
45 # Main function
46 ###
47 def main():
48 # print_ports()
49 log_port("COM4")
50
51
52 ###
53 # Functions
54 ###
55
56
57 def print_ports():
58 """
59 Print available data ports
60 """
61 ports = list(list_ports.comports())
62 for p in ports:
63 print(p)
64
65
66 def calculate_pressure(VIF, D1, D2):
67 """
68 Calculate pressure on M-bus format
69 """
70 # Extract bit 1 and 2 from hex number located at temp_pac[22]
71 prefix_bin = bin(int(VIF, 16))[2:].zfill(8)[6:9]
72 prefix = 10 ** (int(prefix_bin, 2) - 3)
73 hex_value = D1 + D2
74 dec_value = int(hex_value, 16) * prefix
75 return round(dec_value, 2)
76
77
78 def calculate_volume(VIF, D1, D2, D3, D4):
79 """
80 Calculate volume on M-bus format
81 """
82 # Extract bit 1 and 2 from hex number located at temp_pac[23]
83 prefix_bin = bin(int(VIF, 16))[2:].zfill(8)[5:9]
84 prefix = 10 ** (int(prefix_bin, 2) - 6)
85 hex_value = D1 + D2 + D3 + D4
86 int_value = int(hex_value, 16) * prefix
87 return round(int_value, 3)
88
89
90 def calculate_temperature(VIF, D1):
91 """
92 Calculate temperature on M-bus format
93 """
94 # Extract bit 1 and 2 from hex number located at temp_pac[22]
95 prefix_bin = bin(int(VIF, 16))[2:].zfill(8)[6:9]
96 prefix = 10 ** (int(prefix_bin, 2) - 3)
97 hex_value = D1
98 #print("variables are ", str(hex_value), " and ", str(prefix))
99 int_value = int(hex_value, 16) * prefix

100 #print("returning ", str(int_value))
101 return int(int_value)
102
103 def calculate_pressure_packet(pac_list, i1, i2, i3):
104 device_name = pac_list[8] + pac_list[7] + pac_list[6] + pac_list[5] + pac_list[4] +

pac_list[3]
105
106 # [location, last_min_pressure_VIF, last_max_pressure_VIF, last_inst_pressure_VIF
107 global sensor_info_dict

Chapter B: Serial Port Logging Code 71

108 last_min_pressure_VIF = sensor_info_dict[device_name][1]
109 last_max_pressure_VIF = sensor_info_dict[device_name][2]
110 last_inst_pressure_VIF = sensor_info_dict[device_name][3]
111
112 # Min pressure
113 press_min_calc = calculate_pressure(
114 last_min_pressure_VIF, pac_list[i1], pac_list[i1 - 1]
115)
116 pressure_pac = ";;;;;;" + str(press_min_calc)
117
118 # Max pressure
119 press_max_calc = calculate_pressure(
120 last_max_pressure_VIF, pac_list[i2], pac_list[i2 - 1]
121)
122 pressure_pac += ";" + str(press_max_calc)
123
124 # Instant pressure
125 press_inst_calc = calculate_pressure(
126 last_inst_pressure_VIF, pac_list[i3], pac_list[i3 - 1]
127)
128 pressure_pac += ";" + str(press_inst_calc)
129 return pressure_pac
130
131 def calculate_flow_packet(pac_list, i1, i2, i3):
132 device_name = pac_list[8] + pac_list[7] + pac_list[6] + pac_list[5] + pac_list[4] +

pac_list[3]
133 # [location, last_flow1_VIF, last_flow2_VIF, last_temp_VIF, last_flow1_calc,

last_flow2_calc]
134 global sensor_info_dict
135 last_flow1_VIF = sensor_info_dict[device_name][1]
136 last_flow2_VIF = sensor_info_dict[device_name][2]
137 last_temp_VIF = sensor_info_dict[device_name][3]
138 last_flow1_calc = sensor_info_dict[device_name][4]
139 last_flow2_calc = sensor_info_dict[device_name][5]
140 # flow 1
141 volume1_calc = calculate_volume(
142 last_flow1_VIF,
143 pac_list[i1],
144 pac_list[i1 - 1],
145 pac_list[i1 - 2],
146 pac_list[i1 - 3],
147)
148 flow_pac = ";" + str(volume1_calc)
149
150 # flow 2
151 volume2_calc = calculate_volume(
152 last_flow2_VIF,
153 pac_list[i2],
154 pac_list[i2 - 1],
155 pac_list[i2 - 2],
156 pac_list[i2 - 3],
157)
158 flow_pac += ";" + str(volume2_calc)
159
160 # temperature
161 #print("lets calculate som temperature with ", str(i3))
162 temp_calc = calculate_temperature(last_temp_VIF, pac_list[i3])
163 flow_pac += ";" + str(temp_calc)
164
165 # diff 1 & 2
166 if last_flow1_calc == -1:
167 flow_pac += ";" + "0"
168 flow_pac += ";" + "0"
169 sensor_info_dict[device_name][4] = volume1_calc
170 sensor_info_dict[device_name][5] = volume2_calc

Chapter B: Serial Port Logging Code 72

171 else:
172 flow1_diff = int(1000 * volume1_calc) - int(1000 * last_flow1_calc)
173 flow2_diff = int(1000 * volume2_calc) - int(1000 * last_flow2_calc)
174 flow_pac += ";" + str(flow1_diff)
175 flow_pac += ";" + str(flow2_diff)
176 sensor_info_dict[device_name][4] = volume1_calc
177 sensor_info_dict[device_name][5] = volume2_calc
178 flow_pac += ";;;"
179 return flow_pac
180
181 def format_packet(pac):
182 """
183 Format packets received on M-bus format into data that is readable
184 """
185 global sensor_info_dict
186
187 temp_pac = pac.split(";")
188 device_name = temp_pac[8] + temp_pac[7] + temp_pac[6] + temp_pac[5] + temp_pac[4] +

temp_pac[3]
189
190 new_pac = ""
191
192 # Time package was received
193 new_pac += time.strftime("%H:%M:%S", time.gmtime(int(temp_pac[0])))
194
195 packet_type = temp_pac[10]
196 man_id_1 = temp_pac[3]
197 man_id_2 = temp_pac[4]
198
199 if man_id_1 == "2d" and man_id_2 == "2c" and packet_type == "16": # Kamstrup flowIQ
200 if temp_pac[20] == "78": # VIF is transmitted
201 # last_flow1_VIF
202 sensor_info_dict[device_name][1] = temp_pac[27]
203 # last_flow2_VIF
204 sensor_info_dict[device_name][2] = temp_pac[33]
205 # last_temp_VIF
206 sensor_info_dict[device_name][3] = temp_pac[39]
207 i1 = 31
208 i2 = 37
209 i3 = 40
210 elif temp_pac[20] == "79": # VIF is not transmitted
211 i1 = 30
212 i2 = 34
213 i3 = 35
214 new_pac += calculate_flow_packet(temp_pac, i1, i2, i3)
215
216 elif man_id_1 == "2d" and man_id_2 == "2c" and packet_type == "18": # Kamstrup

PressureSensor
217 if temp_pac[20] == "78": # VIF is transmitted
218 # last_min_pressure_VIF
219 sensor_info_dict[device_name][1] = temp_pac[22]
220 # last_max_pressure_VIF
221 sensor_info_dict[device_name][2] = temp_pac[26]
222 # last_inst_pressure_VIF
223 sensor_info_dict[device_name][3] = temp_pac[30]
224 i1 = 24
225 i2 = 28
226 i3 = 32
227 elif temp_pac[20] == "79": # VIF is not transmitted
228 i1 = 26
229 i2 = 28
230 i3 = 30
231 new_pac += calculate_pressure_packet(temp_pac, i1, i2, i3)
232
233 elif man_id_1 == "9a" and man_id_2 == "ce" and packet_type == "16": # Simulated flowIQ

Chapter B: Serial Port Logging Code 73

234 i1 = 31
235 i2 = 35
236 i3 = 36
237 new_pac += calculate_flow_packet(temp_pac, i1, i2, i3)
238
239 elif man_id_1 == "9a" and man_id_2 == "ce" and packet_type == "18": # Simulated

PressureSensor
240 i1 = 27
241 i2 = 29
242 i3 = 31
243 new_pac += calculate_pressure_packet(temp_pac, i1, i2, i3)
244
245 else:
246 print("unknown␣packet")
247
248 rssi_hex = str(pac[-2]) + str(pac[-1])
249 rssi_int = int(rssi_hex, 16)
250 new_pac += ";" + str(rssi_int)
251
252 return new_pac
253
254
255 def init_aws_upload(myAWSIoTMQTTClient):
256 """
257 Initialize AWS uploading
258 """
259 myAWSIoTMQTTClient.configureEndpoint(host, cloud_port)
260 myAWSIoTMQTTClient.configureCredentials(
261 rootCAPath, privateKeyPath, certificatePath
262)
263
264 # AWSIoTMQTTClient connection configuration
265 myAWSIoTMQTTClient.configureAutoReconnectBackoffTime(1, 32, 20)
266 myAWSIoTMQTTClient.configureOfflinePublishQueueing(-1) # Set as infinite
267 myAWSIoTMQTTClient.configureDrainingFrequency(2) # Draining: 2 Hz
268 myAWSIoTMQTTClient.configureConnectDisconnectTimeout(10) # 10 sec
269 myAWSIoTMQTTClient.configureMQTTOperationTimeout(5) # 5 sec
270
271 # Connect to AWS IoT
272 myAWSIoTMQTTClient.connect()
273
274
275 def print_packet(packet):
276 """
277 Print a data packet
278 """
279 packet_list = packet.split(";")
280 for i in packet_list:
281 print(i, end="\t")
282 print("␣")
283
284
285 def save_packet(save_loc, packet):
286 """
287 Save a data packet in a csv format
288 """
289 with open(save_loc, "a", newline="") as f:
290 writer = csv.writer(f, delimiter=",")
291 writer.writerow([packet])
292
293
294 def log_port(port):
295 """
296 Read serial port and optionally save the data to file and cloud
297 """

Chapter B: Serial Port Logging Code 74

298 myAWSIoTMQTTClient = None
299 myAWSIoTMQTTClient = AWSIoTMQTTClient(clientId)
300 init_aws_upload(myAWSIoTMQTTClient)
301
302 ser = serial.Serial(port, 19200) # open serial port.
303 print(ser.name)
304 ser.reset_input_buffer() # Discard all content of input buffer
305
306 while True:
307 try:
308 ###
309 # Read all packets
310 ###
311 device_name = ""
312 ser_byte = ser.read() # Read first byte to determine length
313 in_hex = ser_byte.hex() # Convert to hex
314 packet = in_hex
315
316 # Read the rest of the bytes
317 for i in range(int(in_hex, 16)):
318 ser_byte = ser.read()
319 in_hex = ser_byte.hex()
320 packet += ";" + in_hex
321
322 if i <= 6 and i > 0: # Store all bytes for device name
323 device_name = in_hex + device_name
324
325 # Time and date calculation
326 date_today = datetime.today().strftime("%Y-%m-%d")
327 now = datetime.now()
328 seconds_since_midnight = int(
329 (
330 now - now.replace(hour=0, minute=0, second=0, microsecond=0)
331).total_seconds()
332)
333
334 timed_packet = str(seconds_since_midnight) + ";" + packet
335
336 #if timed_packet.split(";")[3] != "2d":
337 # continue
338
339 ###
340 # Format data
341 ###
342 formatted_packet = format_packet(timed_packet)
343 print_packet(device_name + ";" + formatted_packet)
344
345 ###
346 # Save raw data to file
347 ###
348 raw_save_loc = device_name + "-" + date_today + ".csv"
349 save_packet(raw_save_loc, timed_packet)
350
351 ###
352 # Save formatted data to file
353 ###
354 formatted_save_loc = sensor_info_dict[device_name][0] + "_" + date_today +

"-formatted.csv"
355 save_packet(formatted_save_loc, formatted_packet)
356
357 ###
358 # Save formatted data to cloud
359 ###
360 formatted_packet_list = formatted_packet.split(";")
361 timed_packet_list = timed_packet.split(";")

Chapter B: Serial Port Logging Code 75

362 sensor_type = "Unknown"
363 data_to_upload = {}
364
365 # Define data to be uploaded
366 if timed_packet_list[10] == "16":
367 sensor_type = "flow"
368 data_to_upload = {
369 #"Date": date_today + " " + formatted_packet_list[0],
370 "SerialNumber": device_name,
371 "CollectorID": clientId,
372 "Location": sensor_info_dict[device_name][0],
373 "flow_inst": float(formatted_packet_list[1]),
374 "flow_max_month": float(formatted_packet_list[2]),
375 "temp_ambient": int(formatted_packet_list[3]),
376 "flow_inst_diff": int(formatted_packet_list[4]),
377 "flow_max_month_diff": int(formatted_packet_list[5]),
378 "RSSI": int(formatted_packet_list[9]),
379 }
380 elif timed_packet_list[10] == "18":
381 sensor_type = "pressure"
382 data_to_upload = {
383 #"Date": date_today + " " + formatted_packet_list[0],
384 "SerialNumber": device_name,
385 "CollectorID": clientId,
386 "Location": sensor_info_dict[device_name][0],
387 "min_pressure": float(formatted_packet_list[6]),
388 "max_pressure": float(formatted_packet_list[7]),
389 "inst_pressure": float(formatted_packet_list[8]),
390 "RSSI": int(formatted_packet_list[9]),
391 }
392
393 # Define topic name
394 topic = "collectors/" + clientId + "/" + sensor_type + "/" + device_name
395 messageJson = json.dumps(data_to_upload)
396 try:
397 myAWSIoTMQTTClient.publish(topic, messageJson, 1)
398 # print(’Published topic %s: %s\n’ % (topic, messageJson))
399 except Exception as e:
400 print("Error:␣", e)
401 ###
402
403 except Exception as e:
404 error_time = datetime.today().strftime("%Y-%m-%d/%H:%M:%S")
405 print("Error␣occured␣at", error_time)
406 with open("error_log.csv", "a", newline="") as f:
407 writer = csv.writer(f, delimiter=",")
408 writer.writerow([error_time])
409 writer.writerow([e])
410 print("Continuing␣logging...")
411 continue
412
413
414 if __name__ == "__main__":
415 main()

Code listing B.1: Serial port logging code used for several tasks for the gateway. It reads values received
on a serial port, it formats the values to a readable format, it stores the data locally and it uploads the
data to IoT core.

Appendix C

CSV to IBM hex format converter

1 """
2 ===
3 Program to convert csv data to intel hex file format
4 ===
5 Hex File Format:
6
7 :llaaaatt[dd...]cc
8
9 : is the colon that starts every Intel HEX record.

10 ll is the record-length field that represents the number of data bytes (dd)
11 in the record.
12 aaaa is the address field that represents the starting address for subsequent
13 data in the record.
14 tt is the field that represents the HEX record type, which may be one of
15 the following:
16 00 - data record
17 01 - end-of-file record
18 02 - extended segment address record
19 04 - extended linear address record
20 05 - start linear address record (MDK-ARM only)
21 dd is a data field that represents one byte of data. A record may have
22 multiple data bytes. The number of data bytes in the record must match
23 the number specified by the ll field.
24 cc is the checksum field that represents the checksum of the record. The
25 checksum is calculated by summing the values of all hexadecimal digit
26 pairs in the record modulo 256 and taking the two’s complement.
27 """
28
29 from intelhex import IntelHex
30 import csv
31
32 hex_file = "test_data_hex.hex"
33 csv_file = "770004242c2d-2021-03-08_14.csv"
34
35 ih = IntelHex()
36
37 base_address = "0x8000"
38 base_address_int = int(base_address, 16)
39
40 with open(csv_file) as f:
41 csv_reader = csv.reader(f, delimiter=’;’)
42 line_count = 0
43 el_count = 0
44 for row in csv_reader:
45 for el in row:

76

Chapter C: CSV to IBM hex format converter 77

46 el = int(el, 16)
47 #print(el)
48 ih[base_address_int + el_count] = el
49 el_count += 1
50 line_count += 1
51
52 print("Elements:", el_count)
53 print("lines:", line_count)
54 print("Base␣Address:", base_address)
55
56 ih.write_hex_file(hex_file)

Code listing C.1: Script used to format CSV data to a HEX file to be used by Silicon Labs Flash
Programmer.

Appendix D

Data Analysis

1 """
2 This script has two functions:
3 - Generate a water demand pattern based on real volume measurements
4 - Resample pressure measurements to a desired interval, to be used for generating pressure

residuals
5 """
6 import matplotlib.pyplot as plt
7 import pandas as pd
8 import matplotlib.dates as mdates
9

10
11 def head2bar(head):
12 return head * 0.09804
13
14 def bar2head(bar):
15 return bar * 10.1974
16
17 def get_interpolated_pressure(source):
18 """
19 Get resampled values of pressure
20 """
21 df = pd.read_csv(source, delimiter=’;’, parse_dates=[’Time’], index_col=’Time’)
22 pressure_upsample = df[’Press␣Inst␣[bar]’].resample(’1T’).mean()
23 pressure_interpolate = pressure_upsample.interpolate()
24 pressure_downsample = pressure_interpolate.resample(’10T’).mean()
25 return pressure_downsample
26
27 def get_interpolated_flow(source):
28 """
29 Get resampled values of flow
30 """
31 df = pd.read_csv(source, delimiter=’;’, parse_dates=[’Time’], index_col=’Time’)
32 flow_upsample = df[’Flow␣1␣[m^3]’].resample(’1T’).mean()
33 flow_interpolate = flow_upsample.interpolate()
34 flow_downsample = flow_interpolate.resample(’10T’).mean()
35 return flow_downsample
36
37
38 def get_flow_rate(df):
39 """
40 Get the average flow for a time range, based on measured volume.
41 """
42 flow_rate_frame = pd.DataFrame.copy(df)
43 flow_rate_frame.iloc[0] = 0
44 for i in range(1, len(df)):

78

Chapter D: Data Analysis 79

45 # Convert from m^3 to L with 1000. Should be divided by 600 for 10 minutes
46 flow_rate_frame.iloc[i] = 120*(1000/600)*df.iloc[i] - 120*(1000/600)*df.iloc[i-1]
47 return flow_rate_frame
48
49 def graph_dataframes(dfs):
50 """
51 Graph all dataframes (dfs) that is set as input
52 """
53 first_frame = dfs[0]
54 ax = first_frame.plot(kind = ’line’,
55 title=’Water␣Demand␣Pattern␣for␣2021-03-06’,
56 figsize=(16,5))
57
58 for i in range(1, len(dfs)):
59 dfs[i].plot(ax=ax,
60 color=’r’,
61 kind = ’line’,
62 grid=True,
63 label=’Estimated␣Flow␣Rate␣[LPS]’)
64 ax.legend()
65 ax.xaxis.set_major_locator(mdates.MinuteLocator(interval=60))
66 ax.xaxis.set_major_formatter(mdates.DateFormatter("%H:%M:%S"))
67 plt.show()
68
69 def print_frame(df):
70 """
71 Set options for the printing of dataframes
72 """
73 with pd.option_context(’display.max_rows’, None, ’display.max_columns’, None): # more

options can be specified also
74 print(df)
75
76 def main():
77 """
78 - Save interpolated pressure for pressure residual generation and flow rate for EPANET model
79 - Graph flow rate and volume measurements to see difference
80 """
81 source_location = "../../data/2021/03-mar/"
82 save_location = "../../data/pressure_residual_calculation/"
83 data_file = source_location + ’2021-03-02-formatted.csv’
84
85 # Load dataframes
86 df = pd.read_csv(data_file, delimiter=’;’, parse_dates=[’Time’], index_col=’Time’)
87 df_press = pd.DataFrame(df, columns=[’Press␣Inst␣[bar]’])
88 df_flow = pd.DataFrame(df, columns=[’Flow␣1␣[m^3]’])
89 df_diff = pd.DataFrame(df, columns=[’Diff␣1␣[L]’])
90
91 # Data Preprocessing
92 df_press = df_press.dropna()
93 df_flow = df_flow.dropna()
94 df_diff = df_diff.rename(columns={’Diff␣1␣[L]’: ’Measured␣Volume␣[L]’}).dropna()
95
96 # Process dataframes
97 df_press_i = get_interpolated_pressure(data_file)
98 df_flow_i = get_interpolated_flow(data_file)
99 df_flow_rate = get_flow_rate(df_flow_i)

100
101 # Save pressure and flow rate
102 df_merge = pd.merge(df_press_i, df_flow_rate, on=’Time’)
103 df_merge.to_excel(save_location + ’out.xlsx’)
104
105 # Graph dataframes in dfs
106 dfs = [df_diff, df_flow_rate]
107 graph_dataframes(dfs)
108

Chapter D: Data Analysis 80

109 if __name__ == "__main__":
110 main()

Code listing D.1: Script used to resample flow and pressure data, as well as estimate flow from volume
measurements.

Appendix E

Simulated Meter Code

1 /**
2 @file main_meter.c
3 @copyright STACKFORCE GmbH, Heitersheim, Germany, http://www.stackforce.de
4 @author STACKFORCE
5 @brief Demo application of a meter device using the application layer.
6
7 Demo of point to point communication.
8 */
9

10 /*==*/
11
12 /*==
13 INCLUDE FILES
14 ==*/
15 #include "inc\pub\utils\wmbus_typedefs.h"
16 #include "inc\pub\utils\wmbus_clock_api.h"
17 #include "inc\pub\utils\wmbus_api.h"
18 #include "inc\prv\cfg\wmbus_config.h"
19 #include "inc\pub\dll\wmbus_dll_defines.h"
20 #include "inc\pub\tpl\wmbus_tpl_api.h"
21 #include "inc\pub\utils\wmbus_timer_api.h"
22 #include "inc\pub\hal\wmbus_hal.h"
23
24 #include "em_gpio.h"
25 #include "em_cmu.h"
26
27 /*==
28 DEFINES
29 ==*/
30 #ifndef WMBUS_CFG_DEVICE
31 #error Please define the device configuration to a METER device!
32 #elif WMBUS_CFG_DEVICE != WMBUS_CFG_DEVICE_METER
33 #error Please define the device configuration to a METER device!
34 #endif /* WMBUS_CFG_DEVICE */
35
36 /*========================= CLOCK ==*/
37 /* 7 Extracts the fields of the date format I. */
38 /*! Bit 1..6 */
39 #define CLOCK_SECOND_GET(x) ((x)[5U] & 0x3FU)
40 #define CLOCK_SECOND_SET(x,y) (x)[5U] &= ~(0x3FU); (x)[5U] += (y)
41
42 /*! Bit 9..14 */
43 #define CLOCK_MINUTE_GET(x) ((x)[4U] & 0x3FU)
44 #define CLOCK_MINUTE_SET(x,y) (x)[4U] &= ~(0x3FU); (x)[4U] += (y)
45

81

Chapter E: Simulated Meter Code 82

46 /*! Bit 17..21 */
47 #define CLOCK_HOUR_GET(x) ((x)[3U] & 0x1FU)
48 #define CLOCK_HOUR_SET(x,y) (x)[3U] &= ~(0x1FU); (x)[3U] += (y)
49
50 /*! CLOCK_DAY_MAX is defined by CLOCK_GET_DAYS_OF_MONTH */
51 #define CLOCK_DAY_GET(x) ((x)[2U] & 0x1FU)
52 #define CLOCK_DAY_SET(x,y) (x)[2U] &= ~(0x1FU); (x)[2U] += (y)
53
54 /*! Bit 33..36, 0 = not specified */
55 #define CLOCK_MONTH_GET(x) ((x)[1U] & 0x0FU)
56 #define CLOCK_MONTH_SET(x,y) (x)[1U] &= ~(0x0FU); (x)[1U] += (y)
57
58 /*! Bit 30..32+37..40, 0x7F = not specified */
59 #define APL_CLOCK_YEAR_GET(x) ((((x)[2U] & 0xE0U) >> 5U) + \
60 (((x)[1U] & 0xF0U) >> 1U))
61
62
63 #define APL_CLOCK_YEAR_SET(x,y) (x)[1U] &= (0xFU); \
64 (x)[1U] += ((((y) % 100U) & 0x78U) << 1U); \
65 (x)[2U] &= (0x1FU); \
66 (x)[2U] += ((((y) % 100U) & 0x7U) << 5U); \
67
68 /*! Bit 22..24, 0 = not specified, 1 = Monday, 7 = Sunday. */
69 #define CLOCK_DAY_OF_WEEK_NULL 0U
70
71 /*! Bit 41..46, 0 = not specified */
72 #define CLOCK_WEEK_NULL 0U
73
74 /*! Bit 22..24, 0 = not specified, 1 = Monday, 7 = Sunday. */
75 #define CLOCK_DAY_OF_WEEK_GET(x) (((x)[3U] & 0xE0U) >> 5U)
76 #define CLOCK_DAY_OF_WEEK_SET(x,y) (x)[3U] &= ~(0xE0U); (x)[3U] += ((y) << 5U)
77
78 /*! @todo Weeks are not provided yet. */
79 /*! Bit 41..46, 0 = not specified */
80 #define CLOCK_WEEK_GET(x) ((x)[0U] & 0x3FU)
81 #define CLOCK_WEEK_SET(x,y) (x)[0U] &= ~(0x3FU); (x)[4U] += (y)
82
83 /*========================= DIF and VIF=======================================*/
84 /*! Instaneous value */
85 #define DIF_FUNC_INSTANEOUS 0x00U
86 /*! 48 Bit IntegerBinary */
87 #define DIF_DATA_FIELD_48_INT 0x06U
88 /*! E110 1101 -> data field 0100b, type F
89 E110 1101 -> data field 0011b, type J
90 E110 1101 -> data field 0110b, type I */
91 #define VIF_DATE_TIME 0x6DU
92
93
94 /*========================= DIF and VIF=======================================*/
95
96 #define BYTE_SIZE 8
97
98 /*==
99 ENUMS

100 ==*/
101
102 /*==
103 VARIABLES
104 ==*/
105 /* Collector and meter address */
106 /* example meter address */
107 s_wmbus_addr_t gs_addr = {{0xce,0x9a}, /* Manufacturer (here STZ) */
108 {0x51,0x70,0x55,0x18}, /* ident number */
109 0x1d, /* version */
110 WMBUS_DEV_TYPE_PRESSURE}; /* type, here water */

Chapter E: Simulated Meter Code 83

111 /* WMBUS_DEV_TYPE_COLD_WATER 0x16*/
112 /* WMBUS_DEV_TYPE_PRESSURE 0x18*/
113
114 /* example collector address */
115 s_wmbus_addr_t gs_collector = {{0xce,0x9a}, /* Manufacturer (here STZ) */
116 {0x80,0x00,0x00,0x02}, /* ident number */
117 0x23, /* version */
118 WMBUS_DEV_TYPE_OTHER}; /* type, here other */
119
120 uint8_t gpc_key[] = {0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,
121 0x88,0x99,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF};
122
123 s_tpl_startAttr_t gs_start_attr =
124 {
125 /* Init start strucutre */
126 /* Frequency offset for the carrier. */
127 0,
128 /* Device address. */
129 &gs_addr,
130 /* Collector address. */
131 &gs_collector,
132 /* Set the device to connected. Only if the device is a meter device.
133 Otherwise this field is ignored. */
134 TRUE,
135 /* Periodical interval for sending data. Only if the device is a meter
136 device. [ms] */
137 3000U,
138 /*! Encryption key */
139 gpc_key,
140 };
141
142 /* Global acc-number */
143 uint8_t gc_acc;
144
145 /* Global day prefix. 0-6 for mon to sun */
146 #define DAY_PREFIX 1
147 /* Global hour prefix. (0-23) */
148 #define HOUR_PREFIX 12
149 /* Global packet-number */
150 uint32_t curr_packet = (DAY_PREFIX*24*60*60+HOUR_PREFIX*60*60)/95;
151
152 /*! Clock. */
153 s_clock_t gs_clock;
154 /*==
155 FUNCTION PROTOTYPES
156 ==*/
157 void loc_clockCreateData(uint8_t* pc_dst, s_clock_t* ps_src);
158 /*==
159 FUNCTIONS
160 ==*/
161
162 /*==*/
163 /*!
164 * @brief Converts the time of ps_src to telegram format.
165 * @param pc_dst Destination memory.
166 * @param ps_src Clock source.
167 */
168 /*==*/
169 void loc_clockCreateData(uint8_t* pc_dst, s_clock_t* ps_src)
170 {
171 if((pc_dst != NULL) && (ps_src != NULL))
172 {
173 CLOCK_SECOND_SET(pc_dst, ps_src->c_seconds);
174 CLOCK_MINUTE_SET(pc_dst, ps_src->c_minutes);
175 CLOCK_HOUR_SET(pc_dst, ps_src->c_hours);

Chapter E: Simulated Meter Code 84

176 CLOCK_DAY_SET(pc_dst, ps_src->c_days);
177 CLOCK_MONTH_SET(pc_dst, ps_src->c_months);
178 APL_CLOCK_YEAR_SET(pc_dst, ps_src->i_years);
179 CLOCK_DAY_OF_WEEK_SET(pc_dst, CLOCK_DAY_OF_WEEK_NULL);
180 CLOCK_WEEK_SET(pc_dst, CLOCK_WEEK_NULL);
181 } /* if */
182 } /* loc_clockCreateData() */
183 /*==*/
184 /*!
185 * @brief Main program.
186 */
187 /*==*/
188 void main(void)
189 {
190 /* Initialises the hal. */
191 if(wmbus_hal_init() == E_HAL_STATUS_SUCCESS)
192 {
193 /* Initialize LED pins */
194 CMU_ClockEnable(cmuClock_HFPER, true);
195 CMU_ClockEnable(cmuClock_GPIO, true);
196 GPIO_PinModeSet(gpioPortF, 6, gpioModePushPull, 0);
197 GPIO_PinModeSet(gpioPortF, 7, gpioModePushPull, 0);
198 GPIO_PinOutSet(gpioPortF, 6);
199 /* initialize tpl */
200 wmbus_tpl_init();
201 /* Initialisation of the clock */
202 wmbus_clock_init(&gs_clock);
203
204 /* wm-bus settings */
205 wmbus_tpl_setInterval(95000U);
206 wmbus_tpl_setAddrOwn(&gs_addr);
207
208 /* start the tpl */
209 wmbus_tpl_start(&gs_start_attr);
210 /* start the clock */
211 wmbus_clock_start(&gs_clock);
212
213 while(TRUE)
214 {
215 /* run the tpl layer */
216 wmbus_tpl_run();
217
218 /* runs the clobal clock */
219 wmbus_clock_run(&gs_clock);
220
221 } /* while */
222 }
223 } /* main() */
224
225 /*==*/
226 /*! wmbus_tpl_evt_sendUserData() */
227 /*==*/
228
229
230
231 /*==*/
232 /*! wmbus_tpl_evt_sendUserData() */
233 /*==*/
234 void wmbus_tpl_evt_mtr_sendUserData(void)
235 {
236 uint32_t packets = 6282;
237 uint32_t* start_addr = (uint32_t*)(FLASH_BASE + 2048*16); //location 0x8000
238 uint32_t* curr_addr = (uint32_t*)(start_addr + curr_packet * 4);
239
240 if(curr_packet != packets-1)

Chapter E: Simulated Meter Code 85

241 curr_packet++;
242 else
243 curr_packet = 0;
244
245 uint32_t sensor_data = *curr_addr;
246 uint8_t word_part0 = sensor_data >> (0 * BYTE_SIZE);
247 uint8_t word_part1 = sensor_data >> (1 * BYTE_SIZE);
248 uint8_t word_part2 = sensor_data >> (2 * BYTE_SIZE);
249 uint8_t word_part3 = sensor_data >> (3 * BYTE_SIZE);
250
251 sensor_data = *(curr_addr + 1);
252 uint8_t word_part4 = sensor_data >> (0 * BYTE_SIZE);
253 uint8_t word_part5 = sensor_data >> (1 * BYTE_SIZE);
254 uint8_t word_part6 = sensor_data >> (2 * BYTE_SIZE);
255 uint8_t word_part7 = sensor_data >> (3 * BYTE_SIZE);
256
257 sensor_data = *(curr_addr + 2);
258 uint8_t word_part8 = sensor_data >> (0 * BYTE_SIZE);
259 uint8_t word_part9 = sensor_data >> (1 * BYTE_SIZE);
260 uint8_t word_part10 = sensor_data >> (2 * BYTE_SIZE);
261 uint8_t word_part11 = sensor_data >> (3 * BYTE_SIZE);
262
263 sensor_data = *(curr_addr + 3);
264 uint8_t word_part12 = sensor_data >> (0 * BYTE_SIZE);
265 uint8_t word_part13 = sensor_data >> (1 * BYTE_SIZE);
266 uint8_t word_part14 = sensor_data >> (2 * BYTE_SIZE);
267 uint8_t word_part15 = sensor_data >> (3 * BYTE_SIZE);
268
269 /* The periodical data includes the time. Further data can be added here
270 * to the telegram:
271 * Record 0: time information (already set automatically!)
272 * Record 1: our example data (pc_staticData[])
273 */
274 uint8_t pc_staticData[]={ word_part0,
275 word_part1,
276 word_part2,
277 word_part3,
278 word_part4,
279 word_part5,
280 word_part6,
281 word_part7,
282 word_part8,
283 word_part9,
284 word_part10,
285 word_part11,
286 word_part12,
287 word_part13,
288 word_part14,
289 word_part15};
290 /* Header of the meter telegram */
291 s_tpl_headerShort_t s_headerShort;
292 /* Timestamp data to append. */
293 uint8_t pc_data[6U];
294 /* ID of the created telegram */
295 uint8_t c_tlgId;
296 /* boolean which cheks if the telegram must be deleted */
297 bool_t b_deleteTelegram = TRUE;
298
299 /* Creates the telegram. */
300 c_tlgId = wmbus_tpl_createTlg(DLL_FIELD_C_PRM_UD_NOREPL, /* User data / no replay */
301 NULL, /* Use default meter address */
302 TPL_FIELD_CI_HEADER_SHORT);
303 if(c_tlgId != DLL_ERR_TLG_NOT_AVAILABLE)
304 {
305 s_headerShort.e_type = E_TPL_HEADER_TYPE_SHORT;

Chapter E: Simulated Meter Code 86

306 s_headerShort.c_accNo = gc_acc;
307 s_headerShort.c_status = 0x00;
308 s_headerShort.i_signature = 0x8500;
309
310 wmbus_tpl_setHeader(c_tlgId, (s_tpl_header_t*)&s_headerShort);
311
312 wmbus_tpl_encryptPrepare(c_tlgId);
313
314 /* Add the date to the telegram */
315 *pc_data = DIF_FUNC_INSTANEOUS + DIF_DATA_FIELD_48_INT;
316 if(wmbus_tpl_writeTlg(c_tlgId, pc_data, 1U, DLL_TLG_WRITE_APPEND, TRUE) == TRUE)
317 {
318 /* Value information field (VIF) */
319 *pc_data = VIF_DATE_TIME;
320
321 if(wmbus_tpl_writeTlg(c_tlgId, pc_data, 1U, DLL_TLG_WRITE_APPEND, TRUE) == TRUE)
322 {
323 /* Data */
324 loc_clockCreateData(pc_data, &gs_clock);
325
326 wmbus_tpl_writeTlg(c_tlgId, pc_data, 6U, DLL_TLG_WRITE_APPEND, TRUE);
327
328 wmbus_tpl_writeTlg(c_tlgId, pc_staticData, sizeof(pc_staticData), DLL_TLG_WRITE_APPEND

,FALSE);
329
330 if(wmbus_tpl_encrypt(c_tlgId) == E_TPL_CRYPT_RET_OK)
331 {
332 /* Sends the telegram. */
333 if(wmbus_tpl_sendTlg(c_tlgId))
334 {
335 /* The telelgramm was send successfully */
336 b_deleteTelegram = FALSE;
337 if(gc_acc != 0xFF)
338 gc_acc++;
339 else
340 gc_acc = 0;
341 }/* if */
342 }/* if */
343 }/* if */
344 }/* if */
345 if(b_deleteTelegram == TRUE)
346 {
347 wmbus_tpl_destroyTlg(c_tlgId);
348 }/* if */
349 }/* if */
350 } /* wmbus_tpl_evt_sendUserData() */
351
352 /*==*/
353 /*! wmbus_tpl_evt_tx() */
354 /*==*/
355 void wmbus_tpl_evt_mtr_tx(uint8_t c_tlgId)
356 {
357 /*
358 * Whenever a radio telegram is sent this event is called. You can use it
359 * to toggle LEDs or count transmitted telegrams.
360 * Function can be disabled using APL_EVT_TX_ENABLED in "wmbus_global.h".
361 */
362 GPIO_PinOutToggle(gpioPortF, 6);
363 GPIO_PinOutToggle(gpioPortF, 7);
364
365 }/* wmbus_tpl_evt_tx() */
366
367 /*==*/
368 /*! wmbus_tpl_evt_getCiHeader() */
369 /*==*/

Chapter E: Simulated Meter Code 87

370 E_TPL_HEADER_TYPE_t wmbus_tpl_evt_getCiHeader(uint8_t c_ci)
371 {
372 E_TPL_HEADER_TYPE_t e_return = E_TPL_HEADER_TYPE_INVALID;
373
374 switch(c_ci)
375 {
376 case 0xA1U: /* STACKFORCE specific: Transmit string with no header. */
377 e_return = E_TPL_HEADER_TYPE_NO;
378 break;
379 case 0xA2U: /* STACKFORCE specific: Transmit string with short header. */
380 e_return = E_TPL_HEADER_TYPE_SHORT;
381 break;
382 case 0xA3U: /* STACKFORCE specific: Transmit string with long header. */
383 e_return = E_TPL_HEADER_TYPE_LONG;
384 break;
385 case 0xA4U: /* STACKFORCE specific: Transmit string with short header. */
386 e_return = E_TPL_HEADER_TYPE_SHORT;
387 break;
388 default: /* The application does not know the CI field. */
389 e_return = E_TPL_HEADER_TYPE_INVALID;
390 break;
391
392 /* please insert specific CI fields here */
393
394 } /* switch(c_ci) */
395
396 return e_return;
397 } /* wmbus_tpl_evt_getCiHeader() */
398
399 /*==*/
400 /*! wmbus_tpl_evt_tlgAvailable() */
401 /*==*/
402 void wmbus_tpl_evt_mtr_tlgAvailable(E_WMBUS_RX_t e_status, uint8_t c_tlgReqId,
403 uint8_t c_tlgId)
404 {
405 /* delete telegram after handling it */
406 wmbus_tpl_destroyTlg(c_tlgId);
407 } /* wmbus_tpl_evt_tlgAvailable() */

Code listing E.1: Main code file used for programming simulated meters. This one is for simulated
pressure meters. A slight modification is done for simulateed flow meters, as shown in code listing 5.1.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Christofer Gilje Skjæveland

Infrastructure for Collecting and
Analysing near Real-Time Data from
Several Water Meters Using Wireless
M-Bus

Infrastruktur for innsamling og analysering av
nær sanntidsdata fra en rekke vannmålere, ved
bruk av trådløs M-Bus

Master’s thesis in Cybernetics and Robotics
Supervisor: Geir Mathisen

May 2021

M
as

te
r’s

 th
es

is

	Foreword
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Background and Motivation
	Limitations
	Disposition of the Task

	Literary Study
	Communication Technologies for Water Distribution Networks (WDNs)
	Smart Water Grid Projects
	A Review of Leakage Detection Strategies
	Classification of Leak Detection Strategies
	Mass/Volume Balance
	Negative Pressure Wave (NPW) Method
	Gradient Intersection Method
	Using Pressure Residuals From a Model-Based Approach
	Mixed Model-Based/Data-Driven Approach

	Summary

	Theory
	The Wireless M-Bus Standard
	Physical Layer (PHY)
	Data Link Layer (DLL)
	Extended Link Layer (ELL)
	Network Layer (NWL)
	Authentication and Fragmentation Layer (AFL)
	Transport Layer (TPL)
	Application Layer (APL)

	The Open Metering System Standard
	The STACKFORCE Protocol Stack
	EPANET and water modelling
	The EPANET Model
	Conservation of Energy and Mass
	Analysis Algorithm to Find Total Head and Flow
	Modelling Water Demand Patterns

	Hydraulic Properties of a Leak
	Generation of Pressure Residuals

	Design and Specification
	Functional Specification
	System Overview

	Implementing the Infrastructure
	Configuring Simulated Meters SLWSTK6220A
	Setting Up the Device Connectivity Layer
	WM-Bus Collector
	Serial Port Logger

	The Cloud Solution
	Identity and Access Management (IAM)
	Cloudwatch
	IoT Core and Rules
	Timestream
	API Gateway and Lambda

	Creating the EPANET Model
	Creating the Demand Pattern

	Data Visualization and Analysis
	Visualization Using Grafana
	Generating Pressure Residuals

	Testing and Results
	Receiving Correct Data and formatting Packets in the Device Connectivity Layer
	Testing Cloud Solution Components
	Receiving data in IoT Core
	Test Query of Timestream
	Test of GET Method for API Gateway

	Visualization of Data using Grafana
	Generated Pressure Residuals

	Discussion
	Review of Specifications
	Other Improvements

	Conclusion
	Further Work
	Further Work for Infrastructure
	Further Work for Data Analysis

	Bibliography
	M-Bus Packets
	Serial Port Logging Code
	CSV to IBM hex format converter
	Data Analysis
	Simulated Meter Code

