
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Eivind Sjøvold

Autonomous Drilling Using
Reinforcement Learning

Master’s thesis in Industrial Cybernetics
Supervisor: Ole Morten Aamo
Co-supervisor: John-Morten Godhavn

May 2021

M
as

te
r’s

 th
es

is

Eivind Sjøvold

Autonomous Drilling Using
Reinforcement Learning

Master’s thesis in Industrial Cybernetics
Supervisor: Ole Morten Aamo
Co-supervisor: John-Morten Godhavn
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

The process of drilling wells require substantial investment. Optimization of operational
parameters to maximize rate of penetration(ROP) is therefore a natural topic of discus-
sion. Optimization on a static ROP model in advance of operations has limited appli-
cation, as modeling of drilling rate is challenging. The phenomena that affect it is not
fully understood. The model parameters are location and condition specific, and histor-
ical data therefore has limited application. Real-time optimization of ROP is emerging
as a feasible solution, with the development of measurement techniques and computa-
tional resources. There exists data-driven model-free approaches that optimize drilling
rate in real-time. An example of this is minimization of the mechanical specific energy
concept with the extremum seeking algorithm. This thesis investigates whether model-
free deep reinforcement learning algorithms can act as real-time optimization algorithms
for ROP.

The reinforcement learning framework is flexible, with a range of varying estimation tech-
niques and solution algorithms. The A2C algorithm is a model-free, on-policy, deep
reinforcement learning algorithm that utilize parallel instances to efficiently explore the
state-space. It is an actor-critc method, which utilizes artificial neural networks to main-
tain estimates of both the parameterized policy, and value function. The algorithm uses
the advantage function to evaluate the policy update. The design of the artificial neural
networks is of importance for efficient learning.

In this project, four environment with increasing complexity is implemented to evaluate
different aspects of applicability of reinforcement learning in real-time optimization. The
reinforcement learning agent manipulates the input by choosing a direction to adjust it
at each iteration to maximize output ROP. The reinforcement learning agents are trained
on one configuration of the environments, and evaluated on unseen model configurations.
The ROP model in environment 1 and 2 are simple parabolic functions, with one and
three inputs respectively. The models are convex for all parameter configurations, and the
reinforcement learning agents generalize well, so no real-time learning is required.

Environments 3 and 4 are based on Eckel’s ROP model and Bourgoyne and Young’s ROP
model. The agents generalize poorly to unseen model configurations, but when real-time

i

learning is introduced, the agents maximizes ROP through manipulating the input. The
agents handle sudden changes in model parameters. This mimics formation changes while
drilling. The agents also handle parameters that vary with depth.

As the models are simplifications of realistic drilling systems, one cannot definitely con-
clude that reinforcement learning with real-time learning is an efficient solution to solve
the drilling optimization problem. The agents did handle tests within the bounds of the
models, and can be a promising method for drilling optimization. An interesting exten-
sion to this project would be to utilize realistic drilling simulators to generate ROP as a
measurement, and have the RL algorithm minimize the mechanical specific energy con-
cept. Another interesting extension would be to generate models from drilling data, and
analyze performance on unseen data.

ii

Sammendrag

Prosessen bak brønnboring krever store investeringer. Optimalisering av operasjonelle
parametere med den henskikt å maksimere borerate(eng:rate of penetration (ROP)) er
derfor et naturlig diskusjonstema. Optimalisering av en statisk modell i forkant av bore-
operasjoner har begrenset bruksområde, da modellering av boreprossesen er utfordrende.
Fenomenene som påvirker boreraten er ikke eksakt forstått. Modellparameterene er steds-
og tilstandsspesifikke, og historisk boredata har derfor begrenset bruksområde. Sanntid-
soptimalisering av ROP fremstår som en mulig løsning, da måleteknologi og beregningska-
pasitet utvikler seg. Det eksisterer datadrevne, modellfrie tilnærminger som optimaliserer
ROP i sanntid, gjennom blant annet minimering av "mechanical specific energy(MSE)"
med "extremum-seeking(ES)"-algoritmen. Dette prosjektet undersøker om modellfri, dyp
forsterkende læring(eng:reinforcement learning(RL)) kan brukes til sanntidsoptimalisering
av ROP.

RL-rammeverket er fleksibelt, med forskjellige estimeringsteknikker og løsningsalgoritmer.
A2C-algoritmen bruker parallelle instanser for å utforske tilstandsrommet på en effektiv
måte. Det er en "actor-critic" metode, som bruker dype nevrale nettverk(ANNs) til å
estimere verdifunksjon og "policy". Algoritmen bruker "advantage function" for å evaluere
policyoppdateringen. ANN-strukturen er viktig for effektiv læring.

I dette prosjektet er fire miljø med økende kompleksitet implementert for å evaluere
forskjellige aspekter av RL i sanntidsoptimering. RL-agenten justerer pådrag ved å itera-
tivt velge en retning å justere pådraget i for å maksimere ROP. RL-agentene er trent på
en modellkonfigurasjon i miljøet, og evaluert på en annen konfigurasjon. ROP-modellene
i miljø 1 og 2 er konvekse, paraboliske funksjoner. Her generaliserer agenten godt, og
sanntidslæring er ikke nødvendig.

Miljø 3 og 4 er basert på Eckels ROP-modell og Bourgoyne og Youngs ROP-modell. Agen-
tene generaliserer dårlig på usett data. Dette løses ved sanntidslæring. Da maksimerer
agentene ROP. Agentene håndterer stegvise og gradvise parameterendringer, som er viktig
i optimalisering av ROP.

Modellene er forenklinger av faktiske boresystemer. På grunn av dette kan man ikke
definitivt konkludere med at RL med sanntidslæring er en effektiv løsning på problemet.

iii

Agentene var dog robuste innenfor rammeverket av testing, og begrensningene i modellene,
og kan være en lovende løsning på boreoptimalisering. En interessant videreføring av
dette prosjektet er å teste en RL-algoritme med mer nøyaktige simuleringer eller faktisk
boredata.

iv

Preface

This thesis is the delivery for TTK4900 - Engineering Cybernetics. It is the final project
of a two year master’s programme in Industrial Cybernetics at NTNU, from August
2019 until May 2021. The project was conducted from January through May 2021. The
programme itself has been challenging, with a steep learning curve. It has given me the
opportunity to learn topics in an interesting field of science, with excellent facilities for
learning along the way. I chose this project as it gave me an opportunity to investigate the
exciting reinforcement learning paradigm, and apply the knowledge I acquired towards
investigation of potential industrial applications.

The project has been challenging at times, as I had no code, data, models or previous
work to base my project on. Producing models, simulations and code has been time con-
suming work. I would like to thank my two supervisors, Ole Morten Aamo(NTNU) and
John-Morten Godhavn(Equinor). They have throughout this project provided me with
the insight necessary to progress in the work, and encouraged me in slower periods. Addi-
tionally I would like to thank former employers who have given me unique opportunities
to learn and develop as a person. A special thanks goes out to my colleague Ludvig G.
Tronsaune.

v

Contents

Abstract i

Sammendrag iii

Preface v

1 Introduction 1
1.1 Problem Description . 1
1.2 Software . 2

1.2.1 Stable Baselines . 2
1.2.2 PyTorch . 2
1.2.3 Gym . 2

1.3 Limitations . 3
1.4 Outline of Thesis . 3

2 The Rotary Drilling Process 4
2.1 Drilling Optimization . 5
2.2 Rate of Penetration Models . 5

2.2.1 Drilling Rate Behaviour . 6
2.2.2 Eckel’s model . 7
2.2.3 Bourguyne and Young’s model . 8

2.3 Existing Research . 9
2.3.1 Rate of Penetration Modeling Attempts 9
2.3.2 Specific Energy . 12
2.3.3 Rate of Penetration Optimization 13

3 Reinforcement Learning 16
3.1 The Reinforcement Learning Problem . 18
3.2 Return . 19
3.3 Policy . 19
3.4 Value Functions . 19
3.5 Exploration vs. Exploitation . 21

vi

3.6 Optimality . 21
3.7 Solution Methods . 22

3.7.1 Estimation Methods . 22
3.7.2 Types of Reinforcement Learning Algorithms 24

3.8 Deep Reinforcement Learning . 29
3.8.1 Artificial Neural Networks . 29
3.8.2 Value Based Methods . 33
3.8.3 Policy Gradient Methods . 34
3.8.4 Actor-Critic Methods . 35

4 Implemetation 39
4.1 Interface . 39
4.2 Environment Structure . 40
4.3 Environment 1: Single Input . 42
4.4 Enviroment 2: Multiple Input . 43
4.5 Environment 3: Eckel’s Model . 44
4.6 Environment 4: Bourgoyne and Young’s Model 46
4.7 Algorithm . 49
4.8 Evaluation of Agents . 50

5 Results and Discussion 52
5.1 Environment 1: Single Input . 53

5.1.1 Validation . 53
5.1.2 Drilling Test Case . 55

5.2 Environment 2: Multiple Input . 57
5.2.1 Validation . 57
5.2.2 Drilling Test Case . 59

5.3 Environment 3: Eckel’s model . 61
5.3.1 Validation . 61
5.3.2 Drilling Test Case . 64

5.4 Environment 4: Bourgoyne and Young’s model 67
5.4.1 Valdiation . 67
5.4.2 Drilling Test Case and Experimentation 69

5.5 Convergence . 75

6 Further Discussion 76
6.1 Solution Method . 76
6.2 Simplifications . 79
6.3 Algorithm and design . 80
6.4 Future Work . 83

vii

7 Conclusion 84

References 84
Appendix . 89

A Plots 90
A.1 Environment 2 . 90
A.2 Environment 3 . 91
A.3 Environment 4 . 92

Nomenclature

A2C Advantage Actor Critic

A3C Asynchronous Advantage Actor Critic

ANN Artificial Neural Network

BHA Bottom Hole Assembly

DDPG Deep Deterministic Policy Gradient

DOC Depth of Cut

DQN Deep Q-Networks

DSE Drilling Specific Energy

HFTO High-Frequency Torsional Oscillations

HMSE Hydromechanical Specific Energy

ML Machine Learning

MSE Mechanical Specific Energy

NN Neural Network

RL Reinforcement Learning

RMSprop Root Mean Square Prop

ROP Rate Of Penetration[ft/hr]

RPM Revolutions Per Minute[rev/min]

viii

SGD Stochastic Gradient Descent

SL Supervised Learning

WOB Weight On Bit[klbf]

List of Tables

2.1 Description of phenomena of the BY model. 9
2.2 Typical parameter range of BY model coefficients. 9

4.1 Training specific parameter for environment 1. 43
4.2 Training specific parameter for environment 2. 44
4.3 Constant parameter Values for Eckel’s modified model. 45
4.4 Training specific parameter for environment 3. 46
4.5 Constant parameter values for BY’s modified model. 49
4.6 Training specific parameter for environment 4. 49
4.7 Network specifications. 50
4.8 Hyper-parameters. 50
4.9 Adjustable parameters in agent evaluation. 51

List of Figures

2.1 Bourgoyne and Young’s illustration of the ROP-WOB relationship. Illus-
tration taken from [2]. 6

2.2 Bourgoyne and Young’s illustration of the ROP-RPM relationship. Illus-
tration taken from[2]. 6

2.3 Illustration inspired by Dupriest’s drilling curve, highlighting the three re-
gions[8]. 7

3.1 The agent-environment interaction cycle. 17

ix

3.2 Model-based reinforcement learning. 25
3.3 Model-free reinforcement learning. 25
3.4 Activation functions. 30
3.5 Representation of the structure of a fully connected feed-forward neural

network. 31

4.1 General environment structure. 42
4.2 Input-output relationships of the modified Eckel model. 45
4.3 Input-output relationships of the modified BY model. 48

5.1 Test of stationary model identical to training process. 53
5.2 Adjusted optimum to WOB∗ = 200. 54
5.3 Adjusted optimum to WOB∗ = 25. 54
5.4 Test case of 1000ft with varying model parameters. 55
5.5 Simulation of agent in environment 2 on a model configuration identical to

in training. 57
5.6 Simulation of agent in environment 2 on unseen parameters. 58
5.7 Drilling test case where optimal input varies with depth. 59
5.8 Simulation of environment 3 with a model configuration identical to training. 61
5.9 Simulation with unseen model parameters. 62
5.10 Two agents in an identical simulation. One agent learns, the other does not. 63
5.11 Drilling test case where drillability constant K changes at 200ft. 65
5.12 Simulation of agent on environment 4 training case. 67
5.13 Unseen parameters environment 4. 68
5.14 Drilling test case where all four formation specific constants change at 400ft. 70
5.15 Tuned network architecture. 71
5.16 WOB-ROP interaction coefficient varies with depth. 72
5.17 Encounter of a previously seen formation during drilling. 73
5.18 Convergence of environments 1-4 in training process. 75

A.1 Additional plot of validation of agent in environment 2. 90
A.2 Additional plot from validation test of environment 3. 91
A.3 Additional plot of learning in environment 3. 92
A.4 Drilling in a formation resembling a soft rock type. 93
A.5 Drilling in a formation resembling a hard rock type. 94
A.6 Case of three drilling segments with sub-optimal network architecture. . . . 95
A.7 Network architecture of two hidden layers with 512 neurons. 96
A.8 Network architecture of two hidden layers with 8 neurons. 97

x

1 | Introduction

Optimization of operational parameters to maximize rate of penetration during well
drilling is a topic of interest as there are large economic costs tied to the operation. An
autodriller is an algorithm that autonomously adjusts these operational parameters to
maximize rate of penetration. This project investigates whether a reinforcement learning
algorithm can act as an autodriller, and optimize rate of penetration.

1.1 Problem Description
The project is split into the following goals:

• Propose a simple simulation model for rate of penetration, where the autodriller can
adjust the operational parameters weight on bit, flow, revolutions per minute.

– Conduct a literature search on rate of penetration modeling and rate of pene-
tration optimization, and propose a model.

• Make a simulation case with varying rock properties, and constraints in input and
pressure.

– Implement environments that make the basis of simulation and training of the
reinforcement learning algorithm, and act as validation cases.

• Implement a reinforcement learning autodriller that adjusts the operational param-
eters to optimize ROP in the implemented simulation cases.

– Conduct a literature search on reinforcement learning.

– Identify a suitable algorithm.

– Experiment with a reinforcement learning agent as an autodriller in validation
cases.

1

1.2 Software
This section describes all software used in this thesis. All code is written in the Python
programming language, and some third party libraries have been used for implementa-
tion.

1.2.1 Stable Baselines

Stable Baselines is a fork from OpenAI Baselines. OpenAI is a company that researches
AI, and develops AI algorithms. They have published a reinforcement learning python li-
brary called OpenAI Baselines. Stable Baselines is a library based on further development
of OpenAI Baselines. The Stable Baselines library have a selection of RL algorithms that
are off the shelf applicable, and is well documented[1]. In this project, Stable Baselines 3
version 1.0 is used.

1.2.2 PyTorch

PyTorch is an open source machine learning framework, that features in the stable base-
lines implementation. In this project, the multiprocessing aspect of PyTorch is utilized,
in addition to artificial neural network functionalities for building networks, selecting
activation functions and hyper parameters. PyTorch version 1.7.1 is used.

1.2.3 Gym

Gym is a toolkit developed by OpenAI. It acts as a standardization of the environment
structure in the reinforcement learning process. All environments implemented in this
project follow the Gym interface. This is further described in section 4.1. Gym version
0.18.0 is used.

2

1.3 Limitations
The work done in this thesis is not based on any previous projects. The work conducted in
this project was without access to any data-sets. In addition to this, no real-world drilling
simulators were available. The ROP models applied in this thesis is found in literature,
and has no connection to pressure. As a consequence of this, the pressure constraints has
been neglected in this work.

1.4 Outline of Thesis
• chapter 2 introduces the rotary drilling process briefly. Typical phenomena that

affects drilling rate, and rate of penetration models are outlined. In addition some
relevant research is reviewed.

• chapter 3 outlines the reinforcement learning problem, important terminology, and
estimation methods and solution algorithms to the reinforcement learning. Deep
reinforcement learning is also introduced, along with the most prominent model-
free deep reinforcement learning algorithms

• chapter 4 describes the implementation of four different environments with increas-
ing complexity, and the deep reinforcement learning algorithm that are developed
and implemented to act as autodrillers.

• chapter 5 outline the results based on the implementation described in chapter 4.
The reinforcement learning algorithm is analyzed as a predictor and continual
learner on different model configurations of the four environments. Simulations
that mimic drilling through multiple rock formations and single formations are pre-
sented.

• In chapter 6, the solution method, simplifications and algorithm implementation is
further discussed.

3

2 | The Rotary Drilling Process

This chapter presents theory related to the drilling process utilized in this thesis. The
chapter is structured in the following way:

• chapter 2 presents the rotary drilling process briefly. Some of the phenomena and
equipment appearing the process is presented.

• section 2.1 outlines drilling optimization, why it is a topic of interest and why it is
a significant challenge to efficiently optimize the drilling process.

• section 2.2 presents some analytical models of rate of penetration with varying
complexity and applicability. Section 2.2.1 describes some of the most important
phenomena that affects the drilling rate when drilling in rock formations.

• section 2.3 presents important research that has been conducted on modelling and
optimization of rate of penetration. The concept of specific energy is also presented
in section 2.3.2.

The process of drilling for oil and gas require substantial investments. As a consequence of
this, only large oil and gas companies have the financials to make the investment[2]. This
section will briefly present the rotary drilling process, and some of the equipment involved.
In section 2.2, a selection of analytical Rate of Penetration models will be presented, and
lay the foundation for the mathematical models used in this thesis.

Rotary drilling rigs are used in most drilling performed. The processes are similar across
different projects, and usually consist of a rotating bit at the end of a drillstring. A
downward force is applied to the drilling bit from sections of pipe called drill collars.
The drillstring is typically rotated from the surface, which is called topside. The cuttings
generated from drilling in the rock formation needs to be removed. This is done through
circulating a fluid, called the drilling fluid, down the drillstring. This lifts the cuttings to
the surface. Here, the cuttings are separated from the drilling fluid, which is continually
reused.

4

2.1 Drilling Optimization
Drilling is an expensive process. Drilling optimization is therefore a natural topic of
discussion, as there are large economic costs to be reduced, which increases the overall
profitability of the operation. There are two main aspects to drilling optimization. The
first is designing and selecting drilling equipment for a given well structure[3]. The sec-
ond is selecting operational parameters to increase the drilling rate itself. Over the last
decades, researchers and engineers have made a substantial effort to optimize the drilling
rate parameters[4], as the drilling rate is directly related to the time spent actually drilling,
and therefore the overall cost.

One of the largest challenges in drilling rate, or rate of penetration(ROP), optimization is
formulating a sufficient ROP model. Many papers have been published on this topic. The
variables that affect ROP are not fully understood, and is therefore difficult to model[2].
As a consequence of this, no precise mathematical and dynamical model exists that is
sufficient[5]. Several approaches has been tried to fill this gap. Analytical and semi-
analytical models that combine some of the known phenomena that affects ROP has been
combined with formation and drilling specific parameters. These typically have to be
determined for specific formations and conditions. This can be done through historical
data of drilling in similar formations, or through experimental drilling to collect the
necessary data. In the former approach, sufficient model precision is rarely met, and
in the latter approach, the cost often outweighs the benefit. Data driven models have also
been tried to predict ROP. However, no model that is off-the-shelf applicable for ROP
modeling is published yet.

Although many phenomena and parameters have an impact on the ROP, only a handful
are controllable for the drilling engineer[5]. These are typically weight on bit(WOB),
which is the force applied to the drilling bit, revolutions per minute(RPM), torque and
hydraulics. Although bit type and circulation fluid choice also affects the ROP, these are
not considered controllable parameters in real-time optimization of ROP[5]. Hardness of
the formation, and other formation specific parameters are uncontrollable in the drilling
process.

2.2 Rate of Penetration Models
There exists a large number of models of rate of penetration(ROP) that have been de-
veloped from the 1950’s until present day. Typical models relate weight on bit(WOB),
revolution per minute(RPM) and hydraulics to ROP. The models typically feature forma-
tion specific constants. Maurer[6] published a paper in 1962 where he collected previous
empirical ROP models and argued that poor bottom hole cleaning was the reason for

5

the discrepancy in the results of the different models. He further argued that bottom
hole cleaning is formation dependent, and cannot be represented by an exact, applicable
model. Bingham[7] published a simple model in 1964 relating ROP to RPM, WOB and
diameter of the bit(db).

ROP = a

(
WOB

db

)b
RPM (2.1)

Binghams ROP model(Equation 2.1) was the first relationship of ROP-RPM-WOB that
featured a formation specific WOB exponent, making the model generally more applicable.
Since this, many analytical ROP models have followed, and some will be presented in this
chapter.

2.2.1 Drilling Rate Behaviour

The effect of WOB and RPM on ROP has been studied by several authors[2]. Typically,
WOB has no effect on ROP until some threshold value[2]. ROP then increases with in-
creasing WOB up to a certain value, after which the drilling rate either stalls or decreases.
This threshold is commonly referred to as founders point [8]. The effect of RPM on ROP
is typically linear for lower values of RPM, and the effect drops off at a certain value.
Figure 2.1 and Figure 2.2 highlights this behaviour.

Figure 2.1: Bourgoyne and Young’s
illustration of the ROP-WOB rela-
tionship. Illustration taken from [2].

Figure 2.2: Bourgoyne and Young’s
illustration of the ROP-RPM rela-
tionship. Illustration taken from[2].

The reason for occurrence of founders point is the presence of a dysfunction in the drilling
process[8]. Common drilling dysfunctions include vibrations, bit- or bottomhole balling
and bit dulling. Bottomhole balling is the accumulation of rock cuttings at the bottom
of the drilling hole, such that the bits interaction with the rock formation is interfered[8].
This can be caused by improper cleaning conditions. This typically occurs at hard for-
mations. Bit balling is a cause of rock formations absorbing fluids and sticking to the

6

drilling bit[9]. This typically occurs on softer formations. Vibrations are common at all
rock formations with non-optimal operational parameters. Dupriest et al.[8] presented a
drilling curve similar to that of Bourgoyne and Young(Figure 2.1), with more detail. It
is split into three regions, with different ROP-WOB relationships. Region I has a sub-
optimal drilling efficiency because of the low depth of cut(DOC), meaning the bit is not
cutting rock at its full capacity[8].Region II occurs when the WOB is sufficient to give an
optimal DOC. The ROP-WOB relationship is close to linear. Dupriest argued that there
is no environmental changes that can be made to improve ROP in this region, outside
of changing the operational parameters. Region III starts at the occurrence of founders
point, after which a dysfunction in the drilling process occurs. Dupriest’s drilling curve
is shown in Figure 2.3.

Region II: Bit efficiency

Region I: Inadequate DOC

Region III: Founder

ROP

WOB

Performance enhancing
by extending the founder point

Figure 2.3: Illustration inspired by Dupriest’s drilling curve, highlighting the three re-
gions[8].

2.2.2 Eckel’s model

Eckel published paper in 1967 where he investigated the effect of hydraulics, specifically
fluid properties, on ROP[10]. Different drilling fluids were tested, and a relationship
between ROP, WOB, RPM and hydraulics and fluid properties were developed.

ROP = KW aN b

(
kqρ

dµ

)c
, 2 <

kqρ

dµ
< 100 (2.2)

K, a, b are considered constant for a given formation, and c is constant within the given
constraints. Eckel stated the model was developed for calculating ROP and field mud
treating[10]. The usefulness of the model depends on the ability to determine K, k, a, b, c

7

from experimentation or experimental data. ρ is fluid density, and µ viscosity. In this
model, W is WOB[klbf], N is RPM [rev/min], and q is flow[gal/min]. This gives output
ROP [ft/hr].

2.2.3 Bourguyne and Young’s model

Bourgouyne and Young’s model is a popular ROP model as it is one of the most compre-
hensive analytical models that have been developed[3]. It relates ROP to eight different
phenomena.

ROP = f1 · f2 · f3 · f4 · f5 · f6 · f7 · f8 (2.3a)

f1 = e2.303a1 (2.3b)

f2 = e2.303a1(1000−D) (2.3c)

f3 = e2.303a3D
0.69(gp−9) (2.3d)

f4 = e2.303a4D(gp−ρc) (2.3e)

f5 =

(
W
db
− Wt

db

4− wt

db

)a5

(2.3f)

f6 =

(
N

60

)a6
(2.3g)

f7 = e−a7h (2.3h)

f8 =

(
Fj

1000

)a8
(2.3i)

Fj = K · ρ · q · v (2.3j)

The different equations describe the effect of phenomena encountered while drilling. Ta-
ble 2.1 describe what the different equations model[2]. ROP has units ft/hr. W is
WOB[klbf], N is RPM [rev/min], and q[gal/min].

8

Function Models
f1 Effect of formation strength and bit selection
f2 Formation strength increase through normal compaction with increasing depth
f3 Effect of abnormal pressure(undercompaction)
f4 Effect of overbalance
f5 Effect of WOB on ROP
f6 Effect of RPM on ROP
f7 Effect of bit wear
f8 Effect of bit hydraulics

Table 2.1: Description of phenomena of the BY model.

The constants a1−8 are formation and condition specific, and has to be uniquely defined
for a given formation. The constants typically lie within a range[3], given by Table 2.2.
The precision of the model is decided by the potential of defining the constants.

Constant Lower Bound Upper Bound
a1 0.5 1.9
a2 0.000001 0.0005
a3 0.000001 0.0009
a4 0.000001 0.0001
a5 0.5 2
a6 0.4 1
a7 0.3 1.5
a8 0.3 0.6

Table 2.2: Typical parameter range of BY model coefficients.

2.3 Existing Research
Precise ROP prediction has been topic for several research papers. Some rely on modeling
phenomena that has an impact on ROP, and combining these with formation specific
constants. Other approaches are data-driven, and utilize machine learning techniques to
forecast ROP, based on the data from previously drilled wells. This section will present
some attempts at modelling ROP, and some of the research in ROP optimization.

2.3.1 Rate of Penetration Modeling Attempts

As mentioned in section 2.2, Bingham published one of the first models that combined
laboratory experiments with models of the parameters that affect ROP. After this, many
similar models have been derived, some adding more phenomena to the ROP model.
Hareland and Rampersad published a model in 1994 that focused on rock interaction,
lithology coefficients and bit wear[11]. The model, given by Equation 2.4, applies con-
version of mass to describe the penetration of individual cutters of the bit[3]. The factor

9

Av describes the compressed area of rock in front of the individual cutters, and can be
modified to model any rotating bit utilizing circular motions[11].

ROP = a

(RPMbWOBc)
14.14NcRPM

db
cosα sin θAv (2.4a)

Av =

[(
dc
2

)2

cos−1
(

1− 4Wmech

π cos θd2cσc

)
−
(

2Wmech

π cos θσc
− 4W 2

mech

(π cos θdcσc)
2

)0.5(
dC
2
− Wmec

π cos θdCσC

)]
(2.4b)

Hareland et al. suggested that bit wear reduced the contact area Av as the mechani-
cal weight(Wmech), which is WOB, increased. The model uses the unaxial compressive
strength of the formation, σc to model the rock hardness. This is a constant that is known
if the rock formations are known[11]. Because of this, Hareland et al. concluded that the
model could be used in advance to optimize the drilling bit utilized in the drilling process.
In addition, the model could be used to optimize the operational parameters to reduce
drilling time[11].

In 2010, Motahhari et al. published a paper that looked into a new drilling optimization
procedure, where the drilling procedure includes positive displacement motors(PDMs)
and poly-crystalline diamond compact(PDC) bits. In the paper, a new ROP forecasting
model was developed. The model was based on Harelands approach[12], described above.
The model assumes perfect bit cleaning conditions[12], and does not explicitly feature any
hydraulics.

ROP = Wf

(
G · RPMt

γWOBα

db · S

)
(2.5)

The model, as seen in Equation 2.5, has a term that models bit wear, Wf . G represents
a bit geometry coefficient. Motahhari et al. used two examples to verify the applications
of their model. One example was selecting the optimal PDM out of a selection of three
motors. The other example was optimization of operational parameters in advance of
drilling. The results were verified with comparison of data from a well drilled in Alberta,
US[12].

The previously mentioned models are analytical or semi-analytical. Another approach
for modeling ROP is utilizing data-driven models, based on linear regression or machine
learning algorithms. When data and real-time measurements became more readily avail-
able, the research in these types of modeling attempts became more common. Bourgoyne
and Young, the formulators behind the model described in section 2.2.3 published a paper
in 1974 that aimed to determine the constants a1 to a8 with multiple regression analy-
sis[13]. The data used was based on previously drilled wells and drill-off tests. In the
later years, use of more complex machine learning techniques have been widely applied

10

in an attempt to accuratly model ROP. The most common has been applications of neu-
ral networks(NNs), trained on data from previously drilled wells, used to predict drilling
rates from a known or semi-known formation. Bilgesu et al.[14] published one of the first
papers where ROP prediction through NNs were applied. They trained neural networks
with different compositions, and different input parameters. The results were compared
to drilling data from previously drilled wells, and trained on data from a drilling sim-
ulator[14]. The predictions of ROP were comparable to the drilling data, but it was
concluded that the results were valid withing the bounds of data used in development of
the networks[14]. For data outside the bounds, new networks had to be developed.

In the 2010s and early 2020s, multiple papers investigating artificial neural networks(ANNs,
section 3.8.1) to predict ROP has been published. Moran et al. used ANNs to predict
ROP based on existing well data. They concluded that ANNs can be programmed to
extrapolate data between wells, and estimate ROP[15]. Several authors have investigated
similar problems[16, 17, 18]. Batanee et al. used ANNs to correctly relate decreasing ROP
to increasing depth, and lower drilling fluid density to increasing ROP[19]. Esmaeili et al.
used ANNs and the data from a mini-scale laboratory drilling rig to predict ROP. The
drilling rig also included vibration sensors, and the data was used for training. They com-
pared ANN models using data both with and without vibrations. They concluded that
introducing vibrations clearly increased the precision of the model[20]. Shi et al. published
a paper that focused on efficient real-time prediction of ROP in offshore drilling. They
concluded that the input parameter selection for the ANNs were non-trivial, and that
efficient parameter selection might lead to a wider application of the models[21].

Other machine learning algorithms have also been modified in an attempt to model ROP.
Mantha and Simon attempted to model ROP using the Random Forests(RF)[22] algo-
rithm. They also analysed the performance of k-nearest neighbour(KNN) and support
vector regression(SVR). They concluded that RF yielded the lowest error of the algo-
rithms, but that the others could be used if there were constraints in the parameter
selection[23].

There have also been published comparisons between analytical models and data-driven
models. Soares et al. published a comprehensive comparison between several analyti-
cal models to data-driven models based on machine learning algorithms used in previ-
ous ROP prediction papers. The analytical models analyzed were the models of Bing-
ham(section 2.2), a simplified Bourgoyne and Young model(section 2.2.3), Hareland and
Rampersad, and Motahhari(section 2.3.1). The data-driven models were random forests,
support vector machines and artificial neural networks. The data-driven machine learn-
ing models were trained on data from parameters that feature in the analytical models.
Soares et al. found that the machine learning models on average had an error that was
20% lower than the analytical models[3]. The Bourgoyne and Young model performed

11

best of the analytical models, and the RF algorithm had the lowest overall error[3].

2.3.2 Specific Energy

Mechanical specific energy(MSE) was a concept introduced by Teale in 1965. He specified
that drilling in rock formations was the breakage of fragments out of a face of a solid wall
of rock[24]. As the drilling was a case of breaking, instead of cutting small fragments, he
argued that the energy/volume relationship was of importance. He defined specific energy
as the energy required to excavate unit volume of rock[24]. He divided the work exerted
on the rock formation into two parts, thrusting and rotary, as seen in Equation 2.6b. The
thrusting makes an indentation of the bit into the rock formation, and the rotary work
breaks the rock fragments from the formation[24].

MSE =
Input Energy

Output ROP
(2.6a)

MSE =

(
g ·WOB

A

)
+

(
2 · π
A

)(
RPM · T
ROP

)
(2.6b)

MSE can be viewed as an efficiency measurement of "work in" versus "volume(of rock)
out"[25]. Dupriest viewed it as a quantification of the relationship between input energy
and ROP[8]. It is argued that the minimum MSE required to drill in rock formations
at atmospheric pressure is numerically close to the unaxial compressive strength(UCS) of
the rock[26]. This value should be constant for a given rock formation, meaning a given
amount of energy is required to break a specific rock. This leads to a close correlation
between drilling efficiency and MSE, and hence ROP. The drilling curve presented by
Dupriest described in subsection 2.2.1 visualizes this relationship. In region II, drilling is
optimal, meaning the energy put into the system is utilized in the rock drilling. However,
when the point of founder occurs, a drilling dysfunctions enter the system. This means
a portion of the input energy is lost to other phenomena, and MSE increases as ROP
decreases[8]. This logic is the base of several ROP optimization studies which revolve
around minimizing MSE. Some of these studies will be mentioned in section 2.3.3

Dupriest et al. proposed a system for real-time surveillance of drilling efficiency based
on the MSE concept in 2005. The proposed system accurately detected drilling dysfunc-
tions[25]. It could also identify and correct some issues, mainly bit balling[5]. The system
was developed for Exxon, and was implemented on most of the company’s drilling rigs
within a year. The system contained an adjusted MSE model, given by Equation 2.7.

MSEadj = MSE · EFFm (2.7)

The mechanical efficiency factor EFFm is introduced to increase the applicability of the

12

model[8]. This is done as the theoretical relationship of minimum MSE equalling the UCS
of the rock is impossible in reality[8]. This is because an energy loss due to friction of the
drillstring is present in all operations[8]. EFFm adjusts for this. This can however induce
some confusion when comparing unadjusted MSE values to adjusted ones.

Teale’s MSE concept has later been modified to include the hydraulic component of the
drilling process[27]. Drilling specific energy(DSE) describes the amount of energy to
excavate rock, and remove it from underneath the bit[28]. DSE, as given by Equation 2.8,
contains an extra term compared to MSE, that models the hydraulic energy exerted at
the bit.

DSE = MSE − 1980000 · λ ·HPb
A ·ROP

(2.8)

1980000 is a conversion factor and λ is a dimensionless, bit-specific constant, and HPb is
the hydralic horsepower.

Kshitij et al. introduced a specific energy model in 2015 that also included an hydraulic
component[29]. They argued that MSE, which was designed for rock mining, was insuf-
ficient for modeling the energy relationships in complex wells[29]. The model, as seen in
Equation 2.9, called hydromechanical specific energy(HMSE) includes the energy exerted
from the jet force onto the rock formation.

HMSE =
WOBe

Ab

+
120πNT + 1154η∆PbQ

AbROP
(2.9)

In this model, WOBe is the exerted WOB on the rock formation, as described in Equa-
tion 2.10, where Fj is the jet force from the nozzle and η is a factor for energy reduc-
tion[29]

WOBe = WOB− ηFj (2.10)

2.3.3 Rate of Penetration Optimization

Selection of operational parameters for the drilling process, with goal of increasing ROP
has been a topic in several research papers. There have been two main pathways. One is
based on pre-computations on a static ROP model, and optimizing operational parameters
in advance. Another pathway is based on real-time optimization of operational parameters
based on measurements available while drilling.

One of the most important, early attempts at ROP optimization on a static models were
conducted by Bourgoyne and Young[5]. The study, mentioned in section 2.3.1, aimed to
optimize operational parameters through multiple regression analysis, from data collected
from a minimum of 25 wells. They proposed a linear model, and concluded that drilling
rate could be improved as much as 10% through a relatively simple optimization objective
function[13].

13

Galle and Woods proposed a procedure for selecting the best constant WOB and RPM
based in relations to drilling cost[30]. The proposed procedure consisted of graphs used by
drilling engineers to select constant values based on drill-off tests. The solution took bit-
dullness and bit-hours into account, as one of the first optimization studies. Bit-dullness
and bit-hours is often called bit wear in later studies.

In 1969, Young developed an on-site drilling control computer system[31]. The system
was supposed to control WOB and RPM to reach minimal cost drilling. The model
utilized in the calculations was a very simplified ROP model, and models for bit wear
dependant on RPM. Lastly a model of drilling cost given by the above mentioned effects
was formulated.

Several authors have analyzed static ROP models and the results vary, and applicability
is constrained to the accuracy of the models. Eren analyzed several similar attempts in
his PhD dissertation in 2010[5]. Eren also proposed a method for optimizing operational
parameters based on the Bourgoyne and Young ROP model(section 2.2.3). A multiple
regression technique was used to optimize the parameters with respect to minimum drilling
cost based on data-sets from wells drilled in Mediterranean Offshore[5]. It was concluded
that the coefficients used in the model, based on drilling form different locations, were
specific to those formations, and new coefficient needed to be found at new locations,
similar to the conclusion of Bourgoyne and Young[2, 5]. It was assumed that the drilling
cost in the specific drilling case Eren analyzed would have been reduced by 22%.

The specific energy concept described in section 2.3.2 is frequently used in more recent
optimization studies based on analysis of real-time data. The advantages of specific energy
is that it relies on measurements that are available for the driller, WOB, torque, RPM,
ROP, hydraulics and bit size. In the previously mentioned study by Dupriest[8], a drill
efficiency surveillance system was proposed and later implemented at Exxon’s drilling
rigs. The real time system detected drilling dysfunctions based on the energy model with
high accuracy. Dupriest also discussed redesigning the constraints that defined founders
point to extend and increase the second region of the drilling curve in Figure 2.3[8].

Hamrick used and modified the MSE concept to optimize operational parameters in the
drilling process in his PhD dissertation in 2011[25]. The proposed optimization method
found the optimal operational parameters in test datasets, and data from a laboratory
test drilling rig[25]. The calculations were only valid for the datasets used.

In 2019, Abughaban et al. presented an intelligent drilling advisory system(IDAS), that
evaluated DSE, DOC and and torsional vibrations[32]. The DSE model was presented as
in section 2.3.2 with other conversion factors to utilize SI-units, and the torsional vibra-
tions were modeled with a dynamic state-space model. DOC was modelled in mm/rev-
olutions, and is given by Equation 2.12. The objective function for the optimization is

14

given by Equation 2.11.

Obj(ROP,DOC,DSE,SS) =
1 + ∆ROP/ROPi−1 + ∆DOC/DOCi−1

1 + ∆DSE/DSEi−1 + ∆SS/SSi−1
(2.11)

DOC = 16.66 · ROP
RPM

(2.12)

The solution was calculated through a multiple regression analysis technique called opti-
mum parameter global retrieval[32]. The direction of the optimal operational parameters
were found through gradient search. The system monitors the specific energy in relation-
ship to ROP, and detects drilling dysfunctions through this. It also detects and adjusts
for formation change[32], and mitigates damaging vibrations. The system is being tested
in a field pilot feedback[32].

Aarsnes et al. demonstrated the feasability of controling the hook load(the sum of all
downward force) to optimize ROP in real-time drilling[33]. They utilized the extremum
seeking(ES) algorithm, a model-free gradient ascent algorithm from adaptive control on a
dynamical ROP model. The founders point that sometimes induces a reduction in ROP
after an increase in WOB makes the curve convex around the founders point, making the
method feasible[33].

In 2021 Nystad et al. published a paper that also investigated the use of the ES al-
gorithm to optimize drilling efficiency[34]. The ES algorithm was utilized to minimize
the MSE in real-time. The presented algorithm was data-driven and did not require
any model. It found the operational parameters that gave minimum MSE in real-time
while keeping within the given constraints[34]. The algorithms performance was ana-
lyzed through simulations. The ES method also tracked changes in optimum WOB and
RPM[34]. In the simulated results, ROP improvements from 20-170% was found through
this method[34].

15

3 | Reinforcement Learning

This chapter presents reinforcement learning(RL), algorithms and theory applied in this
thesis. This section briefly explains the concept of reinforcement learning, as well as some
important terminology and distinctions in reinforcement learning. The chapter is outlined
in the following way:

• section 3.1 describes the reinforcement learning problem

• section 3.2 presents the concept return, which all RL algorithms uses to assess their
performance

• section 3.3 presents the term policy in RL

• section 3.4 describes value functions used in RL

• section 3.5 presents the exploration vs. exploitation dilemma which is a fundamental
principle in RL

• section 3.6 briefly outlines what optimality is in RL

• section 3.7 present different solution methods in RL. Different estimation techniques
and algorithm types are outlined.

• section 3.8 presents deep reinforcement learning, how it differs from the overall RL
concept, and algorithms that fall under the deep reinforcement learning paradigm.

Reinforcement learning is an area of machine learning. More specifically, it is the training
of machine learning algorithms to make a sequence of decisions. The decisions are made by
considering the reward, a numerical signal. The decision maker is called the reinforcement
learning agent, or simply just agent.

The term reinforcement learning, as with the rest of machine learning, contains both a
problem, a class of solutions that solves said problem, and the study of the solution solving
the problem[35]. Reinforcement learning differs from other machine learning paradigms
as it learns from its own actions. Terms like "trial and error" and "exploration" are
important in reinforcement learning. Two of the most explored areas of machine learning
are supervised- and unsupervised learning. Reinforcement learning differs these paradigms

16

in a fundamental way[36].

• Supervised learning is the task of learning a representation from labelled data.

• Unsupervised learning is the task of drawing inferences from a data-set without any
labels.

• Reinforcement learning is the task of learning to take a sequence of decisions to
maximize a cumulative reward. This learning process includes a trade off between
exploring expected sub-optimal decisions to discover better decisions.

It is important to understand some of the terminologies that defines reinforcement learn-
ing[35]. The concept of a state is central in RL. A state(St) describes the current situation
the agent finds itself in. The agent must be able to take actions that affects the state.
Based on the reward the agent evaluates if the action was a good or bad move. The
reward is a numerical signal that reflects how good the action was in regards to a prede-
fined goal. The environment describes everything that is outside the agent. The agent
interacts with the environment by choosing actions, given the states presented by the
environment. The environment also decides the reward signal. Figure 3.1 visualizes the
agent-environment interaction.

Agent

Environment

ActionState,
Reward

Figure 3.1: The agent-environment interaction cycle.

The policy of an agent is a description of its behaviour given the states it finds itself
in. Simplified, the policy is the mapping of states to actions. Less formally, it can be
viewed as the agents associations. A value function specifies the long-term desirability
of states. The value function is essential in RL, as it allows for future planning[35]. States
that are low-yielding with respect to reward in the short term can still be desirable, as
they might enable a larger cumulative long-term reward. The value is what the agent
bases the decision upon.

17

3.1 The Reinforcement Learning Problem
The reinforcement learning problem is the optimal control of incompletely known Markov
decision processes(MDPs)[35]. MDPs describe sequential decision making, and almost
all RL problems can be formalized as an MDP[35]. In an MDP, the actions taken in
a given state effects not only the immediate reward of the process. It also changes the
trajectory of the process through changing the subsequent states, and thereby the long
term reward[35]. An MDP is defined by the five-tuple (S,A, p, R, γ)[36, 37].

• S is the space that contains all valid states st of the process. It is often called
observation space in RL[37].

• A is the space that contains all valid actions that can be taken. a(s) describes all
the actions that can be taken by the decision maker in state s.

• p is the transition function. It models a probability function over all states and
actions[35]. It defines the dynamics of the MDP, and gives the probability of tran-
sitioning from state s ∈ S to state s′ ∈ S when action a ∈ A is taken in s[37].
p : S ×A× S ⇒ [0, 1]

• R defines the reward function of the process. The reward is calculated based on
the desirability of ending up in state s’ from s given a. It is an element in the
reward space R. That is it is a single value on the continuous space [Rmin,Rmax][37]
r : S ×A× S ⇒ R.

• γ is a discount factor that quantifies the desirability of immediate reward of states
vs. long term reward of states. γ ∈ [0, 1]

A property of a Markov decision process is that the state st is immediately dependant
on the previous state st−1, and not on the states prior to this. That is, all information
that impacts future states must be represented in the current state[35]. This is called the
Markov property. Put in simpler words, a process has the Markov property(is Markovian)
if the future states only depend on the current observation[36].

Most RL problems can be designed to fit the MDP framework as it is flexible. The ac-
tions taken by the decision maker can be low-level actuator control, or high-level choices
in a large system of processes[35]. The process in the RL problem does not necessar-
ily need to be Markovian, as Markovian states can be constructed from non-Markovian
states[35].

18

3.2 Return
The aim of the RL agent is to maximize reward over the course of the decision process[35].
This is formalized through the return, Gt. In most RL algorithms, the agent seeks to
maximize the expected return over the run of the episode. The episode is a finite period
of time, in which a goal, or part of a goal is achieved. The simplest possible return is
defined as in Equation 3.1, where Rt is the reward in time t.

Gt = Rt+1 +Rt+2 +Rt+3 + ...+Rtfinal
(3.1)

Equation 3.1 poses a problem when Rtfinal
is undefined or tfinal ⇒ ∞. It works well for

what is called episodic tasks.[35]. An episodic task has a finite ending time. A solution
to infinite ending time is the discounted reward as seen in Equation 3.2.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (3.2)

γ is the discount factor as described in section 3.1. This solves the issue of infinite time
steps, as the series will converge for increasing k. The discount factor gives direct value to
future reward, in the present time[35]. The return of successive time steps are connected
through this relationship, and can be rewritten as in Equation 3.3. This relationship
is called the consistency condition, and is met by returns of both finite(Equation 3.1)
and infinite(Equation 3.2) time-horizons. This property forms the basis of many RL
algorithms[35].

Gt = Rt+1 + γGt+1 (3.3)

3.3 Policy
The learning in RL is in many cases done through updating the policy, denoted π. The
policy gives a probability distribution for taking action a in state s. This probability is
denoted π(s|a). The policy can be viewed as the mapping from states to actions[35]. Up-
dating the policy is done through assessment of what states are desirable, and what actions
take the process to these states. Different RL algorithms define how the policy is updated,
and is one of the fundamental elements that separate the different algorithms[35].

3.4 Value Functions
Most RL algorithms involves estimation of a value function. Value functions quantify the
desirability for the agent of being in given states.[35]. There are two main types of value

19

functions that feature in RL. One is state-value functions, and the other is action-value
functions.

The state-value function, denoted v(s), is defined by the expected return from state
s. For this calculation to be viable, the state-value function assumes the agent follows
policy π. A state value function following policy π is denoted vπ(s), and is defined by
Equation 3.4[35].

vπ(s)
.
= Eπ [Gt | St = s] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s

]
(3.4)

The action value function, defined by Equation 3.5[35], gives the expected return after
taking action a in state s, and thereafter following policy π.

qπ(s, a)
.
= Eπ [Gt | St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s, At = a

]
(3.5)

The value functions also fulfill the recursive nature of the consistency condition[35]. Equa-
tion 3.6 is the bellman equation, and is one of the fundamental properties of value func-
tions[35]. The Bellman equation describes the relationship between the current state s
and all its possible successor states. It implicitly defines all values of all possible successor
states from s, and gives an expected value through calculating the probability of those
states occurring. The Bellman equation also describes the recursive relationship of the
action-value function, as seen in Equation 3.7[35]. Here, p is the transition function, and
r is the reward in time t.

vπ(s)
.
= Eπ [Gt | St = s] (3.6a)

= Eπ [Rt+1 + γGt+1 | St = s] (3.6b)

=
∑
a

π(a | s)
∑
e

∑
r

p (s′, r | s, a) [r + γEπ [Gt+1 | St+1 = s′]] (3.6c)

=
∑
a

π(a | s)
∑
s′,r

p (s′, r | s, a) [r + γvπ (s′)] , for all s ∈ S (3.6d)

qπ(s, a) = Eπ [Rt+1 + γGt+1 | St = s, At = a] (3.7a)

= Σs′,rp (s′, r | s, a) [r + γΣa′π (s′, a′) qπ (s′, a′) (3.7b)

Another value function that features in some RL algorithms is the advantage function.
The advantage function is defined as the action-value function subtracted the state-value
function. This value represents how good an action is compared to all other actions

20

available in that current state.

Aπ (st, at) = qπ (st, at)− vπ (st) (3.8)

3.5 Exploration vs. Exploitation
One of the challenges in reinforcement learning is the balance between exploration and
exploitation. Exploitation in RL refers to the agent taking the assumed best action in
a given state to maximize the expected return. Exploration is when the agent takes
expected sub-optimal actions to get better estimates of the state-space, and possibly
discover better actions. An agent can not exclusively explore or exploit, and some balance
needs to be found. There are different ways an RL algorithm can introduce exploration.
Some algorithms adds a random bias to the agent actions, and other algorithms draws
actions from a uniform probability distribution. These are independent factors that vary
from algorithm to algorithm, but are present in all algorithms.

One of the more intuitive examples of exploration in RL is the ε-greedy policy. The policy
is greedy with a rate of 1− ε. This means that the agent takes expected best actions with
a rate of 1− ε, and a sub-optimal action with a rate of ε ∈ [0, 1].

3.6 Optimality
If the agent can learn a policy that takes the best actions possible in a given state tra-
jectory, the RL problem is solved. This is an optimal policy. For finite MDPs, optimal
policies can be precisely defined[35]. As the number of states and actions are finite, there
exists a policy that yields a higher or equal return compared to all other policies. This is
the optimal policy. The optimal policy is denoted π∗. More formally, a policy π is optimal
if and only if vπ ≥ vπ′ for all π′. The optimal state-value function follows the optimal
policy, and gives the highest expected return, as seen in Equation 3.9[35].

v∗(s)
.
= max

π
vπ(s) (3.9)

Similarly, the optimal action-value function gives the expected of taking action a in state
s, and thereafter following an optimal policy(Equation 3.10).

q∗(s, a)
.
= max

π
qπ(s, a) (3.10)

A special case of the Bellman equations(Equation 3.6) formulated for optimal value func-
tions is called the Bellman optimality equations. The Bellman optimality equation is

21

based on that the optimal choice is taking the action giving the highest expected return
in state s[35].

v∗(s) = max
a∈A(s)

qπ∗(s, a) (3.11a)

v∗(s) = max
a

Eπ∗ [Gt | St = s, At = a] (3.11b)

v∗(s) = max
a

E [Rt+1 + γv∗ (St+1) | St = s, At = a] (3.11c)

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗ (St+1, a

′) | St = s, At = a
]

(3.11d)

In a finite MDP, the Bellman optimality equation has one unique solution[35]. If the
probability dynamics of the system is known, and the value function is know, the MDP
can then be solved by solving the Bellman Equations at each step, and simply taking the
action with the highest return. For infinite MDPs however, the Bellman equation is a
set of n equations and n unknowns, where n is the size of the state-space. In addition,
the dynamics of the system is rarely precisely known[35]. The computational resources
required to compute the value of all state-action pairs is also a limiting factor. As a conse-
quence of this, feasible RL implementations are based on estimating the value functions,
as opposed to model or calculate them. This implies that one typically has to settle for an
approximate solution, not an optimal one[35]. The RL framework contains some efficient
learning methods for estimation.

3.7 Solution Methods
This section presents solution methods and estimation techniques that feature in RL
theory. Some of the sections are included for completeness, and some sections forms basis
for decisions in algorithm implementation.

3.7.1 Estimation Methods

As mentioned in section 3.6, typically, an approximate solution involving estimation of
value functions is the only feasible solution to an RL problem. This can be because the
dynamics of the system(environment) is either unknown or only partially known. It can
also be because of constraints in computational resources. There are two main meth-
ods for estimating functions in RL, being Monte Carlo methods and temporal difference
methods.

22

3.7.1.1 Monte Carlo Methods

Monte Carlo(MC) methods do not require any model of the environment, only data from
sample sequences of states, actions and corresponding reward[35]. A collective term for
this data is experience. This experience can be real data, or simulated data. The term
Monte Carlo methods can address any method that observe some element of random-
ness[38]. In RL, MC can be used to estimate optimal policies. The underlying idea
behind MC methods is to update an average value associated with some state each time
that state occurs. As the number of occurrences, or visits, to that state increases, the
average value will converge towards the actual value for that state[35]. This value is typi-
cally the expected return(section 3.2), the value of which the RL agent assesses how good
a state is.

There are more than one way to handle the averaging of returns. Examples of these are
every-visit Monte Carlo estimation, and first-visit Monte Carlo estimation. First-visit MC
estimation only averages the first encounter of the state in the episode, while every-visit
MC averages all visits, also multiple visits in a single episode[35]. An example of the
update step in state-value estimation by MC is given in Equation 3.12a[35].

V (St)← average (Returns (St)) (3.12a)

V (St)← V (St) + α[Gt − V (St)] (3.12b)

In this example, α is the step size, Gt is the experienced return and V is the value function
the MC algorithm is estimating.

The fact that MC methods average returns means that the value estimate is not updated
until the end of the episode. That is, the RL algorithm does a full interaction with the
environment until termination, and the estimates are thereafter updated. This gives MC
methods a clear disadvantage where the terminal state is not guaranteed to occur. States
visited in this episode will not be used to update the value function estimate, even though
an optimal state might have occurred in the episode.

3.7.1.2 Temporal Difference Learning

Temporal difference(TD) learning is a combination of MC methods and dynamic program-
ming(An optimization technique that relies on recurring problem structures)[35]. TD can
learn directly from experience like MC methods. Unlike MC methods, TD methods up-
date the estimates without knowing the actual return value. TD methods update the
estimated value functions using the estimates from successor states[35]. This is called
bootstrapping. The fact that TD methods bootstrap gives a more frequent update rate.

23

TD methods can update the estimates at each iteration or time-step, or at another set
frequency. TD methods where the estimates are updated every step are called one-step
TD methods. If the estimates are updated every n steps, it is called n-step TD methods,
or n-step bootstrapping for a wider term. A simple example of the update step of an
estimate in one-step TD learning is given in Equation 3.13[35].

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] (3.13)

The one-step TD algorithm makes the update on V (St) immediately after transitioning to
St+1 and receiving the reward Rt+1. If Equation 3.12a and Equation 3.13 is compared, the
fundamental difference between MC methods and TD learning becomes apparent. Equa-
tion 3.12a updates the the value function based on the entire observed return Gt, while
Equation 3.13 updated the value function on a part estimate of the total return.

The part of Equation 3.13 in brackets models the error in the estimate. In RL, it is called
the TD error δ. The TD error is a model of the error in the estimate at that particular
time[35]. The TD-error appears in several TD learning methods[35], and is given by
Equation 3.14

δ = Rt+1 + γV (St+1)− V (St) (3.14)

3.7.2 Types of Reinforcement Learning Algorithms

There are two main classes of algorithms to solve the RL problem[39]. These are model-
based and model-free algorithms. These main classes have several sub-classes of algo-
rithms. This thesis will focus on model-free algorithms.

Model-free algorithms update the value function estimate or policy representation directly
from experience in the environment[39]. This is what is commonly denoted learning in RL.
Model-based algorithms utilize a model of the environment to predict the environments
response to the agents actions[35]. A model of the environment is anything an agent can
use for this purpose, and can vary in complexity. Models can also be used to simulate
experience. In extreme cases, the model could be used to simulate all possible outcomes
before the agent picks an action[35]. A model based RL agent can learn a model based
on experience from the environment, and use this to update value functions[39].

Similarities for model-free and model-based methods is that both rely on computation or
estimation of value functions, and all methods do some sort of forecasting of a desired
value(return/reward) to update an experience based estimate[35].Figure 3.2 shows the
basis of model-based RL, and Figure 3.3 model-free RL.

24

Update
Policy/Value
Function

Planning/Simulation

Model

Environment

Action

Experience

Agent

Figure 3.2: Model-based reinforcement learning.

Update
Policy/Value
Function

Environment

Action

Experience

Agent

Figure 3.3: Model-free reinforcement learning.

25

Model-free methods can be split into value-based methods, policy search methods and
actor-critic methods[40, 41]. In general, value-based methods estimate value functions,
policy search methods searches the policy space to improve the policy, and actor-critic
methods combine the two.

Reinforcement learning algorithms can also be split into on-policy and off-policy algo-
rithms.

• On-policy algorithms improve the policy that is used to make the sequence of deci-
sions that generate the experience.

• Off-policy algorithms follow another policy when it is learning. The experience from
following this policy is used to update a separate policy that approaches the optimal
policy.

This allows off-policy algorithms to maintain a level of exploration, while the on-policy
algorithms tend to explore less as the policy approaches the optimal policy.

3.7.2.1 Value Based Methods

Value based methods learns a value function(section 3.4) that estimates the expected
return. This is used to construct a policy, by choosing the actions that maximizes the
value function[41]. In other words, the action value function given by Equation 3.5 forms
the basis for constructing the optimal policy. To yield the highest expected return, or
state value, the action corresponding to the highest action value function can be greedily
chosen[40], giving the relationship in Equation 3.15. Greedy in this setting refers to the
concept of simply choosing the action that seems best in the current time step.

vπ(s) = max
a
qπ(s, a) (3.15)

Because of the recursive nature of the Bellman equation(Equation 3.7,Equation 3.6),
the action-value function can be updated through bootstrapping.[40]. This forms the
foundation for one of the more well-known reinforcement learning algorithms, single agent
Q-learning[42].Equation 3.15 gives the update step of the Q-learning algorithm.

qπ (st, at)← qπ (st, at) + αδ (3.16)

δ is the TD-error described in section 3.7.1.2, and α is the step size. The main trait of
all value-based methods is that they maintain estimates of a value functions, similar to
Equation 3.16.

26

3.7.2.2 Policy Search Methods

Instead of maintaining value function estimates, policy search methods directly searches
for an optimal policy. Typically, this involves learning a parameterized policy, πθ [40].
The parameter vector, θ, is updated to maximize the expected return, E[G|θ], to solve
the RL problem. Policy search methods are typically more suited for high-dimensional
action- and state space than value based methods[43]. The optimization of parameters is
done with either gradient-free or gradient-based methods[40, 43]

Gradient-free methods improve the policy by heuristic search methods in a space of prede-
fined policies, and has successful implementations for low-dimensional problems[40]. The
biggest advantage of gradient-free methods is that they can optimize non-differentiable
problems[40]

Gradient-based methods use gradients to improve a parameterized policy[40]. They up-
date the parameter vector by using gradient ascent[35], given in general form by Equa-
tion 3.17. Jθ is a scalar performance measure, and its gradient is used to update the
parameter vector. In the case of policy search gradient-methods, this performance mea-
sure is based on evaluation of how good the policy is.

θt+1 = θt + α∇J (θt) (3.17)

The policy is evaluated as in the other methods by the expected return. The expected
return is still sampled from an average of possible trajectories of states and/or actions.
In the model-based RL methods, these possible trajectories, or state-transition dynamics,
are available, and can be accurately calculated. In the model-free RL methods, these
state-transition values have to be estimated by averaging returns, like in section 3.7.1.1,
or section 3.7.1.2. This leads to a challenge as gradients cannot pass through samples
of stochastic functions[40]. This leads to many gradient-based policy search methods
estimating these gradients.

The REINFORCE update rule is commonly used for this purpose[40]. The REINFORCE
update rule is based on the policy-gradient theorem. The policy-gradient theorem, given
by Equation 3.18, gives an analytic expression of the performance measure gradient that
does not involve the unknown state-transition dynamics[35]. µ(s) is an on-policy distri-
bution the agent follows[35].

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a | s,θ) (3.18)

The policy gradient theorem can be rewritten to describe state st instead of the summation
over all states in the state-space. The resulting equation is given by Equation 3.19[35].

27

The first term of the equation models the value of taking a sequence of actions following
policy π, with the probability of taking said actions in state st. This summation gives the
return from state st, giving the rewrite in Equation 3.19b.1

∇J(θ) ∝ Eπ

[∑
a

π (a | St,θ) qπ (St, a)
∇π (a | St,θ)

π (a | St,θ)

]
(3.19a)

= Eπ
[
Gt
∇π (At | St, θ)
π (At | St, θ)

]
(3.19b)

This gives the REINFORCE update rule as given by Equation 3.20[35]. The policy
gradient methods only maintain an estimate of the policy. This means that the policy
search algorithms uses the sampled return Gt in the update step. If this return is replaced
with a value function estimate, the method would be an actor-critic method.

θt+1
.
= θt + αGt∇ log π (At | St, θ) (3.20)

The largest disadvantages of policy gradient methods are[40]:

• High variance, which makes convergence slower.

• Low sample utilization, leading to low data efficiency.

3.7.2.3 Actor-Critic Methods

Actor-critic methods involve both value function estimation and policy gradient meth-
ods[35, 36, 40]. The name "actor-critic" comes from the way the actor-critic algorithms
behave. The algorithms have an actor, that chooses actions, and a critic that evaluates
how good the action was. In this analogy, the actor is the policy, and the critic is the
value function[40]. Actor-critc methods can learn from full returns or bootstrap[40].

As an example, one-step actor-critic methods replace the experienced return in the RE-
INFORCE update rule(Equation 3.20) with a one-step temporal difference estimate, like
described in section 3.7.1.2. More specifically, it uses the TD error, the error in the cur-
rent value function estimate, to improve the policy parameter vector. In addition, the
value function estimate is updated with one-step TD learning(Equation 3.13). The policy
parameter update step is shown in Equation 3.21[35].

θt+1 = θt + α (Rt+1 + γv (st+1)− v (st))∇ log π (At | St,θ) (3.21a)

θt+1 = θt + αδt∇ log π (At | St,θ) (3.21b)

1Note that the rewrite
∇π(At|St,θ)
π(At|St,θ)

= ∇ log π (At | St,θ) is commonly used

28

3.8 Deep Reinforcement Learning
Deep reinforcement learning(DRL) is a class of reinforcement learning with function ap-
proximations done by deep learning algorithms, mainly deep artificial neural networks[35].
The theory and methods that are derived previously in this section applies equally to
RL and DRL, with DRL having a the additional introduction of deep learning algo-
rithms.

Deep learning is a class of machine learning that focuses on function approximation
through learning hierarchical representations of data through experience[44]. The method
allows a program to build complex representations from a hierarchy of simpler represen-
tations. This gives a graph structure with several layers. This is why it is labelled deep
learning[44]. All deep learning models are based on some sort of artificial neural network
structure with several layers. Deep learning popularity has excelled in recent years. The
emergence of large data-sets and computational power has been a contributing factor for
this.

Deep learning is effective in RL as it can approximate complex function from simple
parameter representations. This means that deep learning can be used to approximate
value functions and policy representations with a parameter space that is significantly
smaller that the number of states and actions.

3.8.1 Artificial Neural Networks

Artificial neural networks maps input from a data set, x ∈ X, to the target y = f ∗(x).
The goal of an artificial neural network(ANN) is to approximate the function, f ∗(x)[44].
This achieved by learning θ that gives the best parameterized function f(x;θ) ≈ f ∗, with
parameters in θ.

ANNs consist of collections of artificial neurons, which are functions that perform specific
operations[44]. These neurons apply an activation function to a linear combination of
operations. In this case, θ is made up of a set of weights, w and biases, b. The output of
a neuron, denoted h, is given by Equation 3.22.

h = φ(wTx+ b) (3.22)

φ is the activation function, which introduces the non-linearity to the function approxi-
mation[44]. Typical activation functions are rectified linear unit(ReLU)(Equation 3.23a),
hyperbolic tangent(Equation 3.23b), or the sigmoid function(Equation 3.23c)[44]. The
activation functions are shown in Figure 3.4

29

φ(z) = max(0, z) (3.23a)

φ(z) = tanh(z) =
sinh(z)

cosh(z)
=
ez − e−z

ez + e−z
(3.23b)

φ(z) =
1

1 + e−z
(3.23c)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
ReLU

(a) ReLU.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Hyperbolic Tangent

(b) Hyperbolic tangent.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Sigmoid Fucntion

(c) Sigmoid function.

Figure 3.4: Activation functions.

3.8.1.1 Feed-forward Neural Networks

Feed-forward neural networks, also called multi layered perceptors(MLPs) are a class of
ANNs. The neurons are chained, and these chains form layers. The signals flows only
forward through the chain, giving origin to the name[44]. The number of artificial neurons
in a chain form the depth of the network. Neurons that are in the same order in the chain
form a layer. The first layer is called the input layer, and contains input units which
get signals from the environment. The last layer is the output layer, with output units,
and gives the final output. All layers between input and output layers are called hidden
layers(with hidden neurons). The number of neurons in a hidden layer is the width of the

30

network. The networks can be fully connected, where all neurons in a layer receive the
output from all neurons in the previous layer, or not. Figure 3.5 shows a fully connected
feed-forward neural network with one hidden layer. This network is three layers deep,
and three neurons wide, with one hidden layer.

Figure 3.5: Representation of the structure of a fully connected feed-forward neural net-
work.

3.8.1.2 Learning in Artificial Neural Networks

The learning in ANNs, also called training, can be stated as a sum of finite optimiza-
tions[44].

min
θ
J(θ)

J(θ) =
1

n

n∑
i=1

Ji(θ)
(3.24)

Learning is the process of adjusting the weights to improve the overall performance. The
performance is measured by a loss function, J(θ). The loss function models the error
between the output from the network, and the target value from the training data-set[44].
An intuitive loss function that has limited application in ANNs is the mean square error
over the data set.

Almost all neural nets are trained with some form of gradient descent method[44]. Gra-
dient descent methods rely on the loss function gradient to update the parameters, as in
Equation 3.25. The idea behind the method is to update the parameters iteratively in the
negative direction of the gradient to gradually approach the parameter set that gives the
lowest overall loss function[45].α is the step size, and scales the magnitude of the update
step.

θk+1 ← θk − α
∂J

∂θ

∣∣∣∣
θk

(3.25)

Gradient descent methods takes a step in the direction that reduces the loss function the
most, improving the overall error in the ANN. The algorithm can compute all the gradients

31

over the entire data-set, or it can compute some gradient(s) at random. The former option
is called batch gradient descent(BGD) or deterministic gradient descent, and the latter
stochastic gradient descent(SGD)[44]. BDP require O(n · p) operations, where n is the
number of data points in the data-set, and p is the number of parameters in the network.
When either of these are two large, BGD is infeasible[44]. This is why SGD methods are
the most popular. SGD methods make the approximation given by Equation 3.26. They
make the assumption that the average over gradients can be approximated as one of the
gradients chosen at random.

1

n

n∑
i=1

∇θJi(θ) ≈ ∇θJj(θ) (3.26)

Where j ∈ 1, 2, ..., n. This reduces the number of operations to O(p). If the index i
is chosen at random, this produces an unbiased estimate of the gradient of J(θ)[44].
Algorithm 1 shows the pseudocode for SGD[44].

Algorithm 1: SGD

Require:θ0, α > 0, K > 0 ;
k ← 0;
while k < K do

j v U(1, n);
θk+1 ← θk − α∇θJj (θk);
k ← k + 1;

end

The SGD algorithm is generally well-working before the optimal region is reached, but it
struggles close to the optimum due to the simplification in Equation 3.26. As the gradient
is sampled at random, it has a high variance. A compromise between SGD and BGD is
mini-batch gradient descent(MBGD). MBGD samples b, independent samples from the
dataset, and calculates the gradient from this. This reduces the variance of the gradient,
and improves performance overall.

One of the state-of-the-art ANN optimization algorithm is Root-Mean-Square prop(RMSprop).
It is an unpublished optimization algorithm for neural networks first proposed by Geof-
frey Hinton. It is a mini-batch gradient descent algorithm that improves the standard
gradient-step iteration in the following way:

• Adaptive learning rates that scale with an exponentially decaying moving average
of past gradients.

This reduces oscillation that can occur in standard SGD algorithms[44] due to high vari-
ance, and gives possibility for large initial step-sizes that decreases when optimum is
approached[45]. Vk in Equation 3.27 is the moving average of past gradients, and is

32

referred to as the second-order momentum.

Vk = β1Vk−1 + (1− β1)(∇θJ (θk))
2 (3.27)

β1 is the decay rate, and is typically in the order of 10−3. This leads to the momentum
being most reliant on the current gradient. The parameter update-step in RMSprop is
given by Equation 3.28.

θk+1 = θk +
α∇θJ (θk)√

Vk + ε
(3.28)

α is the step size, and it is affected by the square root of the momentum. This leads to an
exponentially decaying factor that will decrease the step size as the gradients gets smaller
near the optimum. The inclusion of average previous gradients does however ensure
that the step-size never diminishes, although the gradients near optimum is near zero.
Note that the squaring-operation and summation is element-wise, as the parameter-set is
multidimensional. Algorithm 2 shows the pseudocode for RMSprop[46].

Algorithm 2: RMSprop

Require: Training Set T , Step size α, Decay rate β1, ε, Mini-batch size b;
Initialize: θ from some predefined distribution;
k ← 0;
while Not convergence do

Draw mini-batch B with size b from T ;
Compute gradient on mini-batch gk = ∇θL(θ;B) ;
Update momentum Vk = β1Vk−1 + (1− β1)(gk)2 ;
Update variable θk+1 = θk + αgk√

Vk+ε
;

k ← k + 1;

end

Learning in ANNs typically happen in as batch training. Here, all the data is available
instantaneously, and the learning consists of looping through this data and optimizing the
network. In a DRL setting, the learning happens as iterative training. The optimization
algorithm is then called as a part of another algorithm(DRL algorithm), and the net-
works parameters are updated at each iteration with a small amount of data(experience).
This data is typically gradients calculated with respect to the loss function of the DRL
algorithm.

3.8.2 Value Based Methods

Value based methods in DRL are based on the same fundamental theory as described in
section 3.7.2.1. The main goal is to build a value function, which then can be used to
define a policy[36]. In DRL, a deep learning algorithm, often an ANN features in this

33

process. One of the first DRL algorithms was introduced by Mnih et al. in 2015, when they
combined ideas from Q-learning and deep learning to form the Deep Q-Networks(DQN)-
algorithm[36, 47].

3.8.2.1 Deep Q-Networks

Using non-linear function approximatiors such as ANNs to approximate value functions
had a history of making RL algorithms unstable[47]. This was due to the correaltion
between observations, and the fact that small changes in the action-value function could
considerably change the policy[47]. Minh et al. adressed this in their paper, which
proposed a value-based DRL algorithm called Deep Q-Network(DQN). They proposed a
solution that utilized a concept called experience replay. This replayed random data from
the environment-agent interaction, reducing the number of interactions and removing the
correlation between the observations[36].

In their solution, they used a deep convolutional neural network to estimate a parame-
terized action-value function q(s, a;θ), with parameters in θ. The loss function at any
iteration i used to evaluate the network is given by Equation 3.29. All experience from the
agent-environment interaction is stored in a dataset D. During learning, the action-value
function is updated by drawing data uniformly from this dataset, and applying the Q-
learning step(Equation 3.16). This is experience replay. γ is the discount rate, θi are the
Q-network parameters at iteration i and θ−i are the network parameters used to compute
the target at iteration i[47].

Li (θi) = E(s,a,r,s)∼U(D)

[(
r + γmax

d′
Q
(
s′, a′; θ−i

)
−Q (s, a; θi)

)2]
(3.29)

The DQN algorithm outperformed every other RL algorithm at playing the games of Atari
2600, in 43/49 possible games that are difficult for humans[47]. This breaktrough made
DRL surge in popularity. The major drawback of the DQN algorithm is that it does not
support continuous state- and action spaces.

3.8.3 Policy Gradient Methods

Policy gradient methods, as described in 3.7.2.2 uses stochastic gradient ascent methods
with respect to the policy parameters to optimize the expected return. ANNs can be
used to estimate the policy, giving algorithms that fall into the sub-class of DRL. Modern
DRL algorithms typically use value functions as well as policy optimization to improve
the overall learning in the algorithm.

34

3.8.4 Actor-Critic Methods

Actor-critic methods are increasing in popularity as they combine policy search methods
and learned value functions[40]. These algorithms can learn from either full returns or
TD-methods. Actor-critic methods offer a variety of implementations of deep learning.
Artificial neural networks can be used in policy approximation, value function approxi-
mation, and typically in both.

3.8.4.1 Deep Deterministic Policy Gradient

Deep deterministic policy gradient(DDPG) is an actor-critic DRL algorithm that esti-
mates both a action-value function and a policy. It was introduced by Lillicrap et al. in
2016[48], and was based on the deterministic policy gradient algorithm, which supports
continuous action- and state spaces. The DDPG algorithm utilizes the same network
architecture, hyperparameters and learning algorithm as the DQN[48]. However, as DQN
only handle discrete and low-dimensional spaces, it has limited application in control
problems. The DDPG was developed to fill this gap.

3.8.4.2 Advantage Actor Critic

There exists several advantage actor critic algorithms. The term advantage refers to
that the algorithm uses the advantage function to evaluate the policy. The advantage
function, as defined in Equation 3.8 quantifies the value of taking an action, compared to
other available options.

One advantage actor critic algorithm was implemented by Google DeepMind scientists
Mnih et al in 2016[49]. It is called Asynchronous Advantage Actor Critic(A3C)[49].
The A3C algorithm is one of the newer state-of-the-art on-policy DRL algorithms[40]. In
the original implementation, the A3C algorithm maintains a value function estimate, and
a policy estimate. These are implemented as separate ANNs that update asynchronously.
The algorithm maintains several parallel instances of the environment with independent
agents interacting with the respective environments. The parallel environments introduce
two main factors to the algorithm:

• Parallel environments stabilize the parameter update process, as larger samples are
visited in each iteration of the algorithm[40]. It also decorrelates data, replacing the
replay buffer of DQN.

• Multiple environment instances explicitly increases exploration. Larger portions of
the state-space are explored in each iteration, leading to theoretically faster learning.
In the original implementation, the training time reduction is approximately linear
with the number of parallel workers[49].

35

In addition to this, the parallel workers allow of for more efficient use of hardware. The
algorithm can run effectively on consumer hardware that has a CPU with multiple cores.
Individual agent-environment instances are assigned to individual threads. Although this
has no effect on the algorithm learning, it is a significant factor in this thesis as all
experiments are run on consumer hardware.

The advantage function in A3C is defined by Equation 3.30a. V (s; θv) is the state-value
function estimate from an ANN, with parameters in θv. The summation of discounted
rewards is equal to the return, and can be rewritten as in Equation 3.30b.

A (st, at; θ) =
k−1∑
i=0

γirt+1 + γkV (st+k; θ)− V (st; θv) (3.30a)

A (st, at; θ) = Gt − V (st; θv) (3.30b)

The A3C algorithm bootstraps, meaning it does not wait for a full episode to finish
before it updates the value function estimate. The individual agents does k time steps
before the parameters are updated, where k can vary. This is the n-step TD learning
update described in section 3.7.1.2. The algorithm minimizes the loss function given by
Equation 3.31[50].

J(θ) = Eπ

[
∞∑
t=0

Aθ,θv (st, at) log πθ (at | st) + βHθ (π (st))

]
(3.31)

The update steps in the A3C algorithm separate two sets of parameters:

• θ and θv which are global parameters.

• θ′ and θ′v which are parameters for the individual agents.

Each agents starts with a copy of the global network parameters, θ and θv, and does k
interaction with the environment. When k interactions are reached, the individual agent
calculates the loss function. The loss function is used to calculate the gradients of the
global network with respect to the parameters from the individual agent. This update
step is shown in Equation 3.32. Note that the policy parameters are updated with the
policy gradient theorem update, scaled with the advantage function instead of the full
return.

dθ ← dθ +∇θ′ log π (at | st; θ′) (Gt − V (st; θ
′
v)) (3.32a)

dθv ← dθv +∇θv (Gt − V (st; θ
′
v))

2 (3.32b)

36

The update from the individual agents does not happen simultaneously, hence the name
asynchronous. When an agent updates the parameters, it is updated to the global pa-
rameters. As a consequence of this, the parallel agents may work with different policy
parameters, increasing exploration further.

One successor of the A3C algorithm is advantage actor critc(A2C). It is a synchronous
version of the A3C. It builds on the same principles, and minimizes the same loss function
given by Equation 3.31. Instead of updating the global networks with the individual
networks separately, it waits for all the agents to finish their n-step TD segment, and
updates the global parameters with all the computed gradients. When the A3C algorithm
was proposed, the effect of the asynchronous updates were pulled into questioning, and
the A2C implementation was a result of this[51].The A2C algorithm performed better
than the A3C algorithm overall[51].

As all the parallel agents has to wait for the others agents to finish their segment, the algo-
rithm A2C is marginally slower than the A3C. The synchronous update step contributes
to more stable updates than the asynchronous, as a larger sample of the state-transitions
are taken into consideration. The update step in the A2C algorithm can be seen in
Equation 3.33, where i denotes the individual agents[50].

dθ ← dθ +
n∑
i=1

∇θ log πθ (at,i | st,i) (Gt,i − Vθv (st,i)) (3.33a)

dθv ← dθv +
n∑
i=1

∇θv (Gt,i − Vθv (st,i))
2 (3.33b)

The original implementations of A3C and A2C use an entropy regularization term in the
loss function for improved exploration. As both algorithms are on-policy algorithms, they
can have a tendency to converge to sub-optimal deterministic policies, as both the actor
and the critic updates the network based on the same data. This makes it easier for
the actor and the critic network to optimize only a small subset of the state-space. The
entropy-term, denoted Hθ(π(st)) is given by Equation 3.34.

H (π (st)) = −
∑
a∈A

π (a | st) log π (a | st) (3.34)

The entropy term is low when the certainty in an action is high, and vice versa. The
entropy term is added to the loss function of the A2C algorithm. As a consequence
of this, actions with high uncertainty will reduce the loss function with a larger amount
than an action with high certainty. This is what explicitly encourages exploration through
entropy. Alogrithm 3 shows the A2C pseudocode. The implemented solution utilizes a
normalized advantage function, AGAE(γ,λ)

t , where γ is the discount factor for rewards as

37

in Equation 3.30a and λ is a normalization constant.

Algorithm 3: A2C

Require: Initial network weights θ, θv, number of environments n;
Initialize: Global step counter T = 0, environment step counter t = 0;
while T < Tmax do

tstart = t;
Get state st;
while (t− tstart < tmax) or (terminal observation = False) do

Sample at ∈ πθ(at|st);
for i ∈ 1...n do

Take action at,i in environment i;
Receive reward rt,i and state st+1,i;
t← t+ 1;
T ← T + 1;

end

end
if terminal observation then

Gt = 0;
end
else

Gt = Vθv(st) ;
end
for t ∈ t− 1...tstart do

Calculate TD error: δVt = rt + γVθv (st+1)− Vθv (st);
Calculate normalized advantage: AGAE(γ,λ)

t = δVt + γλA
GAE(γ,λ)
t+1 ;

Gt = A
GAE(γ,λ)
t + Vθv (st);

dθ ← dθ +
∑n

i=1∇θ log πθ (at,i | st,i) (Gt,i − Vθe (st,i));
dθv ← dθv +

∑n
i=1∇θv (Gt,i − Vθv (st,i))

2

end
Update θ, θv with the gradients dθ, dθv respectively, using the step of a network
optimizer algorithm.

end

38

4 | Implemetation

This chapter describes the implementation of the environments that simulate the drilling
process and RL agents that are trained to act as autodrillers. The implementation con-
sists of training and testing the model-free deep RL algorithm A2C(section 3.8.4.2) on
environments with increasing complexity. The two most complex environments are based
on Eckel’s ROP model and Bourgoyne and Young’s ROP model. Points to note:

• The models does not utilize SI-units, and follow the units found in literature. This
is done for simplicity, and comparability, as the point of this thesis is not to produce
a new, precise ROP model, but to implement an RL agent to optimize a drilling
model.

• The term observation in this section refers to the term state in RL terminology. The
term system state refers to states of the drilling model.

The chapter is outlined in the following way:

• section 4.1 describes the interface all environments follow.

• section 4.2 describe the common structure for all environments.

• section 4.3, section 4.4, section 4.5 and section 4.6 describes the implementation of
the different environments, and the parameters and constraints implemented in the
training process.

• section 4.7 describes the algorithm which is implemented through Stable Baselines
3.

• section 4.8 clarifies how the agents are evaluated and what parameters are configured
in the respective environments during validation.

4.1 Interface
The environments implemented in this thesis follow the OpenAI gym interface. The gym
interface generates the environment part of the RL problem, and assumes interaction with
an agent that takes in an observation from the gym environment[52]. It then assumes

39

the agent outputs an action that the environment uses to generate a new observation. In
addition to this, the environment produces a reward signal at each interaction.

The gym interface is implemented as a class in Python called Env. To customize environ-
ments, a class that inherits Env has to be implemented. To meet the interface standard
of the gym Env class, it needs the following functions:

init(): Initializes all the constant values and/or random variables in the environment
class. This includes defining the dimensions of the action and state space.

step(action): Is the main function of the Env class. It takes in a valid action from the
action space, and has to produce the following four variables:

• observation: An observation that is changed by the input action. This is what is
called state in RL theory.

• reward: A numerical signal that quantifies the desirability of the current state. The
rewards can be produced at each iteration or sparsely.

• done: A Boolean that is 1 if the environment has reached its terminal condition,
and 0 otherwise.

• info: Additional information about the agent-environment interaction that can be
empty. Typically this variable holds information of normalization statistics, etc.

reset(): The function resets the observation, and other variables that should be reset or
changed when the environment has reached terminal observation. This function can be
used to change parameters in the environment at specific conditions.

render(): A function that is used for visualization of the agent-environment interaction,
and can be as complex as graphic visualization, but can also be an empty function. The
function is typically used in evaluation of agents, and not in training.

4.2 Environment Structure
The different environments implemented in this project follow the same general structure.
The RL agent sends an action vector, at, to the environment. The action vector has the
same size as the number of input variables in the ROP model. E.g, a model that has
WOB,RPM and q as input would receive an action of size three, one for each variable.
The individual actions can either be -1, 0 or 1. This represents the direction the respective
input variables will be changed. The action vector is then scaled with a scalar λ. This
decides how much the input values are adjusted at each iteration. The system input in
time t is given by Equation 4.1.

40

ut = ut−1 + λat (4.1)

The ROP is then calculated with the ROP model implemented in the respective environ-
ments. The system states in time t, xt, holds ROP in time t, ROPt, and the input values
in time t, ut, as shown in Equation 4.2. The size of ROPt is scalar, and the size of ut is
model specific.

xt = [ROPt, ut] (4.2)

The environment updates a memory vector with past system states. The number of past
system states the memory vector holds is environment specific.

mt = [xt−1, ..., xt−n] (4.3)

The environment observation vector holds the current system states and the memory
vector. This is the output from the environment, which the agent receives at each inter-
action.

st = [xt,mt] (4.4)

The memory in the observation vector ensures that the agent receives the necessary in-
formation for evaluating ROP without knowing the model, and that the problem has
the Markov property(section 3.1). All information the agent needs to take an action is
present in one observation. Figure 4.1 shows the general structure of the environments
implemented in this project. Note that the observation vector st is what is referred to as
a state in RL theory. The system state vector, xt holds the ROP model variables.

41

Environment

Agent

Actions

Observation

Update memory Update system states

Environment observation
Calculate depth

Search direction

Increment and scale input

Calculate ROP

Figure 4.1: General environment structure.

4.3 Environment 1: Single Input
Environment 1 uses the ROP model given by Equation 4.5, where WOB∗ is the optimal
WOB that gives the maximum ROP.

ROP =
1

WOB∗
(WOB2

∗ − (WOB −WOB∗)
2) (4.5)

The agent generates an action at each time step, and the input WOB is calculated through
the input equation 4.1. As the model takes one input, WOB, the size of the action vector
at is one(scalar). The environment generates the system states xt through calculating
ROP and input. The memory vector holds one previous system state, giving mt = [xt−1].

42

This gives a total observation vector of st = [xt, xt−1]. The total size of the observation
vector is st ∈ R4.

The objective of the agent is to converge to the optimal value WOB = WOB∗ This is
reflected through the reward function rt. The reward is generated at each iteration, and
is given by Equation 4.6.

rt = ROPt −ROPt−1 (4.6)

The reward function gives a positive scalar when ROP increases, and a negative scalar
if it decreases. The agent receives reward frequently, leading to frequent policy updates.
The maximum obtainable reward for an episode occurs when the agent converges to
WOB = WOB∗.

The training process is episodic. This means that the agent interacts with the environment
until some terminal condition is met. This terminal condition is a set depth. After this,
the environment calls the reset() function, and a new episode begins. The terminal state
of the system is implemented as a set depth of 200 ft. As there is no guarantee that the
agent reaches the terminal state, the episode is ended if the agent does 10000 iterations
without reaching the end goal. Neither WOB nor ROP is constrained by any threshold in
this environment. Table 4.1 shows training specific parameters for environment 1.

Parameter Value Description
T 1e5 Finite time-step for training process

WOB∗ 100 Optimal input value during the training process
λ 1 Step length on input from action

dfinal 200 Terminal condition

Table 4.1: Training specific parameter for environment 1.

4.4 Enviroment 2: Multiple Input
Environment 2 is implemented as a multiple input version of environment 1. The ROP
model of environment 2 is given by Equation 4.7, where u = [WOB,RPM, q]

ROP =
3∑
i=1

1

ui,∗
(u2i,∗ − (ui − ui,∗)2) (4.7)

As the model takes three input variables, the size of the action vector at is three. The input
vector is updated through Equation 4.1, and ROP is calculated through Equation 4.7.
The system state vector xt = [ROPt, ut] is of size xt ∈ R4. The memory vector mt holds
one previous system state, mt = [xt−1]. This gives the environment observation vector
st = [xt,mt] ∈ R8.

43

The goal of this environment is to approach u = u∗. The reward function of environment
2 is identical of environment 1, and is given by Equation 4.6. Table 4.2 shows the training
specific values for the agent training process in environment 2.

Parameter Value Description
T 1e5 Finite time-step for training process

WOB∗ 100 Optimal input value during the training process
RPM∗ 150 Optimal input value during the training process
q∗ 200 Optimal input value during the training process

WOBmax 200 Minimum penalty value
RPMmax 300 Minimum penalty value
qmax 400 Minimum penalty value
λ 1 Step length on input from action

Table 4.2: Training specific parameter for environment 2.

4.5 Environment 3: Eckel’s Model
Environment 3 is based on Eckel’s model for ROP, described in section 2.2.2. The model,
given by equation 2.2, will increase indefinitely for increasing input parameters, as Eckel’s
model assume constant parameter values for a specific rock formation. The model has
therefore been modified to construct individually defined optimal values for the input
parameters. The modified Eckel model can be seen in Equation 4.8. The model takes
three input variables, u = [WOB,RPM, q]

ROP =K(WOBa − a11
K + 100

WOB3)

(RPM b − a22
K + 500

RPM2)

(

(
kqρ

dµ

)c
− a33
K + 1000

(
kqρ

dµ

)2

)

(4.8)

The model modification has been made to resemble the founder’s point described in section
2.2.1. The chosen values for a, b, c are a = 2, b = 1 and c = 1. These were chosen to
resemble the curve presented by Dupriest, and are held constant during experimentation.
Although Dupriest describes the WOB-ROP relationship as linear, the exponent a = 2

is chosen to make WOB the dominant input. The K value is the drillability constant.
This models the hardness of the rock formation. It is included in the negative terms in
Equation 4.8 such that the optimal input values depends on the given rock hardness. K is
the only parameter that is adjusted during experimentation. The rest of the constants are
chosen experimentally to get the desired ROP behaviour according to Dupriest’s curve.
This desired behaviour is to have ROP increase for increasing input until some threshold
value, after which it decreases. Table 4.3 shows the constant model parameter values that

44

are not adjusted during agent evaluation.

Parameter Value
k 0.1
a11 0.005
a22 0.005
a22 0.005
a 2
b 1
c 1
ρ 1000
µ 0.4
d 0.5

Table 4.3: Constant parameter Values for Eckel’s modified model.

Figure 4.2 shows the resulting input-output curves with the model given by Equation 4.8
and Table 4.3, with a drillabillity constant K = 0.5.

0 20 40 60 80 100
WOB[klbf]

0

50

100

150

200

250

300

RO
P[
ft/
hr
]

(a) ROP-WOB curve in the modified Eckel
model.

0 50 100 150 200 250 300
RPM[rev/min]

0

50

100

150

200

250

300

RO
P[
ft/
hr
]

(b) ROP-RPM curve in the modified Eckel
model.

0 50 100 150 200 250 300 350 400
q[gal/min]

0

50

100

150

200

250

300

RO
P[
ft/
hr
]

(c) ROP-q curve in the modified Eckel model.

Figure 4.2: Input-output relationships of the modified Eckel model.

45

The action vector is identical to that of environment 2, as the ROP model takes three
input variables. The system state vector, xt, the memory vector, mt and the environment
observation vector st is also identical as environment 2. This is because they share the
same number of input variables in the ROP model, and the memory vector only holds
one previous system state.

The goal of the RL agent is to adjust input to the separate input values that maxi-
mizes ROP. The input values have a soft constraint that penalizes values above some set
threshold. Equation 4.9 gives the reward function implemented in environment 3.

r1,t = ROPt −ROPt−1 (4.9a)

r2,t =

−10, if ui > ui,max

0, otherwise
(4.9b)

rt = r1,t + r2,t (4.9c)

The RL algorithm is trained on episodic instances similar to environment 1 and 2, on one
set model configuration. Table 4.4 shows the model configuration for the training process
in environment 3.

Parameter Value Description
T 2.5e6 Finite time-step for training process
K 0.5 Drillability constant

WOBmax 200 Minimum penalty value
RPMmax 300 Minimum penalty value
qmax 400 Minimum penalty value
dfinal 200 Terminal condition on episode
λ 1 Step length on input from action

Table 4.4: Training specific parameter for environment 3.

4.6 Environment 4: Bourgoyne and Young’s
Model

Environment 4 uses the ROP model described in section 2.2.3 to simulate the drilling
process. Bourgoyne and Young’s(BY) model is one of the more comprehensive analytical
models for ROP, and is therefore one of the most popular. The model has eight different
variables that effect the ROP model in some way, represented in eight individual functions.
To simplify the model, some of the functions are removed. The remaining functions

46

represent the core functions for real-time drilling optimization, except the effect of depth
on ROP. This is similar to what Soares et al. did in their ROP modeling study(section
2.3.1). The simplification removes the effect of overbalance, compaction and bit-wear. In
the model given by Equation 4.10, W is WOB[Klbf], N is RPM[rev/min]. The output
ROP is given in ft/hr. q features in the jet force Fj and has units gal/min. Although
f8 models the jet force, in this implementation, it represents all hydraulics in the model,
cleaning included.

ROP = f1 · f5 · f6 · f8 (4.10a)

f1 = e2.303∗a1 (4.10b)

f5 =

(
W
db
− Wt

db

4− wt

db

)a5

(4.10c)

f6 =

(
N

60

)a6
(4.10d)

f8 =

(
Fj

1000

)a8
(4.10e)

Fj = K · ρ · q · v (4.10f)

The implemented environment assumes constant parameter values for a given rock for-
mation. a1 represents the drillability parameter for the specific rock formation, and a5, a6
and a8 model the effect input WOB,RPM and q has on output respectively. To get
an input-output curve similar to that of Dupriest, the equations are modified to have
individual optimal values.

fmod,5 =

(
W
db
− Wt

db

4− wt

db

)a5

− a11

(
W
db
− Wt

db

4− ·wt

db

)a5+ 4
3

(4.11a)

fmod,6 =

(
N

60

)a6
− a22

(
N

60

)a6+8

(4.11b)

fmod,8 =

(
Fj

1000

)a8
− a33

(
Fj

1000

)a8+ 4
3

(4.11c)

To further align with the theory of Dupriest’s drilling curve(Figure 2.3), only non-negative
values for ROP should be viable. This results in the final ROP model implemented in
environment 4 as given by Equation 4.12

ROP = f1 ·max(0, fmod,5) ·max(0, fmod,6) ·max(0, fmod,8) (4.12)

To get the desired input-output curves, according to drilling in Region II of Dupriest’s

47

drilling curve, a5 = 1 and a6 = 0.75 is chosen for the training process. a8 = 0.4 is
chosen to represent the effect of hydraulics on output. It is chosen such that hydraulics
have a large effect up until some value. After this, cleaning is sufficient and the effect
of hydraulics diminish. The formation hardness coefficient a1 = 1 is arbitrarily chosen
within the bounds of Table 2.2. This leads to the input-output curves given by Figure 4.3.
The values chosen for the training process is less important in this model, as the formation
specific constants are modified during experimentation and evaluation.

0 50 100 150 200 250 300 350 400
WOB[klbf]

0

2

4

6

8

10

12

14

16

RO
P[
ft/
hr
]

(a) ROP-WOB curve in the modified BY
model.

0 50 100 150 200 250 300 350 400
RPM[rev/min]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RO
P[
ft/
hr
]

(b) ROP-RPM curve in the modified BY model.

0 50 100 150 200 250 300 350 400
q[gal/min]

0

1

2

3

4

RO
P[
ft/
hr
]

(c) ROP-qcurve in the modified BY model.

Figure 4.3: Input-output relationships of the modified BY model.

Table 4.5 shows the constant parameters in the BY model. The constants are chosen to
get the desired behaviour in Figure 4.3.

48

Parameter Value Description
Wt 1 Threshold WOB value to get sufficient DOC
ρ 22 Fluid density[lbs/gal]
v 10 Nozzle velocity[ft/min]
K 0.001 Constant in Fj
db 1 Diameter of bit[in]

Table 4.5: Constant parameter values for BY’s modified model.

The action vector is identical to that of environments 2 and 3. It holds three values that
represents the direction to adjust input. ut holds ut = [WOB,RPM, q]. It is updated
through Equation 4.1. The system state vector xt = [ROPt, ut] ∈ R4 is defined as in
environment 2 and 3. The memory vector, mt holds the three past system state vectors,
mt = [xt−1, xt−2, xt−3] ∈ R12. This integration of more memory is unique to environment
4, and gives the observation vector st = [xt,mt] ∈ R16.

The reward function for environment 4 is identical to that of environment 3, and is given
by Equation 4.9. The agent is rewarded for converging towards the optimal ROP, and
penalized for exceeding the constraints on input.

Parameter Value Description
T 5e6 Finite time-step for training process
a1 1 Drillability constant
a5 1 WOB interaction coefficient
a6 0.75 RPM interaction coefficient
a8 0.4 Hydraulics interaction coefficient

WOBmax 200 Minimum penalty value
RPMmax 300 Minimum penalty value
qmax 400 Minimum penalty value
dfinal 200 Terminal condition on episode
λ 1 Step length on input from action

Table 4.6: Training specific parameter for environment 4.

4.7 Algorithm
The algorithm implemented in this project is the advantage actor critic(A2C) with paral-
lel agents. It is a model-free, on-policy deep reinforcement learning algorithm. It has no
knowledge of the environment, and learns only based on observations from the environ-
ment. Discussion of algorithm choice will be presented in section 6.3. The stable baselines
A2C implementation is used, with some modifications to be more in line with the original
implementation described in section 3.8.4.2, and to stabilize learning. The parallel agents
are initialized through the PyTorch multiprocessing library, which assigns instances of the
algorithm and environment to different threads on the CPU. This is functionality present

49

in the stable baselines code. The stable baselines library was chosen as it has good doc-
umentation, which allows for easier customization, and an implementation of the desired
A2C algorithm.

The optimizer algorithm used to update the parameters in the artificial neural networks
is RMSprop(algorithm 2). The stable baselines implementation uses a different optimizer
algorithm called Adam. This made training unstable, and RMSprop was chosen. The
original implementation used RMSprop.

The artificial neural network parameters are saved using stable baselines functionality.
This allows for easy saving and loading of trained agents. All input to the ANNs, which is
the observation vector st and the reward rt, are normalized so that they are in the range
[−1, 1]. The normalization statistics for each trained agent are saved together with the
network parameters for the trained agents using stable baselines functionality.

The algorithm is entropy-regularized as with the standard implementation. This func-
tionality also exists in the stable baselines implementation, and can be modified through
the hyper-parameter β1.

The network structure of the algorithm is implemented as two separate feed-forward neural
networks, with parameters in θ and θv. The original implementation used convolutional
neural networks, which is more specialized towards pixel input. Table 4.7 shows the stable
baselines recommended network architecture, which is used for environments 1,2 and 3.
This is modified for environment 4, and is presented together with the results. Further
discussion of algorithm implementation will be presented in section 6.3.

Network Hidden Layers Input nodes Output nodes
Policy network π 64-64 Size of observation vector Size of action vector
Value network V 64-64 Size of observation vector Size of observation vector

Table 4.7: Network specifications.

Hyperparameter Value Description
γ 0.99 Return discount rate in A2C
α 10−2 Step parameter in RMSprop
ε 10−8 Numerical stability term in RMSprop
β1 0.01 Entropy regularization coefficient in A2C
β2 10−3 Weight decay in RMSprop

Table 4.8: Hyper-parameters.

4.8 Evaluation of Agents
One agent is trained for each environment. In the training process, the agents utilize
multiprocessing according to the A2C pseudo-code(algorithm 3). The training process

50

follows the environment configuration described in the respective environment sections.
To evaluate the different agents, simulations are generated from the environments. In
these simulation instances, some of the model parameters are tweaked to see how well the
different agents generalize and optimize ROP. In all simulation cases, the multiprocessing
aspect of the algorithm is disabled, and there is only one agent-environment instance
running. The multiprocessing is disabled to mimic the agent being deployed in a drilling
system.

The continuous run of the simulations for the different environments follow the same
structure. The environment produces an observation vector. The agent outputs an action
vector based on the observation. The environment then produces a new observation, as
shown in Figure 4.1. This loop runs until the terminal depth is reached. The agents can
be evaluated on a single formation(parameter configuration), or the simulation can be
looped to simulate drilling a case with several formation types.

The environments have different parameters that can be adjusted to evaluate the agent.
Table 4.9 gives an overview of which parameters are adjusted in the respective environ-
ments to assess the RL agents performance.

Parameter Environment Description
WOB∗ 1&2 Directly places the optimum of the input
RPM∗ 2 Directly places the optimum of the input
q∗ 2 Directly places the optimum of the input
K 3 Drillability constant. Affects the optimum
a1 4 Drillabillity constant. Scales ROP
a5 4 Adjusts WOB-ROP relationship
a6 4 Adjusts RPM-ROP relationship
a8 4 Adjusts q-ROP relationship

dfinal 1,2,3&5 Terminal condition

Table 4.9: Adjustable parameters in agent evaluation.

The RL agents can be evaluated as deterministic predictors, where the network parame-
ters are not further updated after the initial training process. They can also be evaluated
as continuous learners where the parameters are updated during evaluation. The agents
trained on environment 1 and 2 are evaluated as predictors, and agents trained on envi-
ronment 3 and 4 are evaluated as both predictors and continual learners. This will be
specified with the results.

51

5 | Results and Discussion

This chapter presents the results from training and experimenting with four different RL
agents on the four environments described in chapter 4. The algorithm the agents follow
is the model-free, deep RL algorithm A2C. Some points to note are:

• The output ROP is plotted as the top left plot, with the remaining three plots being
input WOB,RPM and q. In environment 1, which is single input, ROP is plotted
to the left and WOB to the right.

• One agent is trained per environment.

The chapter is outlined in the following way:

• Section 5.1 presents the results from experimentation with the RL agent trained on
environment 1. The agent acts as a predictor and does not learn.

• Section 5.2 presents the results from experimentation with the agent trained on
environment 2. The agent acts as a predictor

• Section 5.3 presents the results from experimentation with the agent trained on
environment 3. The agent is evaluated both as a predictor and a continual learner.

• Section 5.4 presents the results from experimentation with the agent trained on
environment 4. The agent is evaluated as both a predictor and continual learner. As
environment 4 contains the most comprehensive ROP model, this section contains
the most experimentation.

52

5.1 Environment 1: Single Input
Figure 5.1 shows the agent trained on environment 1. The model in the simulation has
identical parameters to the training process(WOB∗ = 100). The agent does not learn in
this simulation. This means that the agent acts as a predictor, that does not consider the
reward it receives from the environment, only the observation. The closed-loop interaction
between agent and environment results in WOB converging to the optimal input value
WOB = WOB∗. This simulation replicates an instance where the model of the system
can be accurately described in the environment. The RL agents trains a number of
simulation on the known formation, and is deployed in the real system when performance
in training is satisfactory. It does however provide little knowledge of how robust the
policy of the agent is, and how well it generalizes to slight modeling errors. To assess this,
a simulation where the model parameters are different to the training process needs to be
evaluated.

0 20 40 60 80 100
Depth[ft]

0

20

40

60

80

100

RO
P[

ft/
hr

]

Optimal Value
ROP

(a) ROP

0 20 40 60 80 100
Depth[ft]

0

20

40

60

80

100

W
OB

[K
lb

s]

Optimal value =
WOB

(b) WOB

Figure 5.1: Test of stationary model identical to training process.

5.1.1 Validation

Figure 5.2 and Figure 5.3 shows the agent evaluated in section 5.1 without any further
training. The optimal input value WOB∗ of Equation 4.5 has been modified. The agent
does not learn during the simulation. It can be seen that the agent manipulates the input
WOB to the optimal values WOB∗ = 200 and WOB∗ = 25.

53

0 25 50 75 100 125 150 175 200
Depth[ft]

0

25

50

75

100

125

150

175

200
RO

P[
ft/

hr
]

Optimal Value
ROP

(a) ROP

0 25 50 75 100 125 150 175 200
Depth[ft]

0

25

50

75

100

125

150

175

200

W
OB

[K
lb

s]

Optimal value =
WOB

(b) WOB

Figure 5.2: Adjusted optimum to WOB∗ = 200.

0 20 40 60 80 100
Depth[ft]

5

10

15

20

25

RO
P[

ft/
hr

]

Optimal Value
ROP

(a) ROP

0 20 40 60 80 100
Depth[ft]

0

5

10

15

20

25

W
OB

[K
lb

s]

Optimal value =
WOB

(b) WOB

Figure 5.3: Adjusted optimum to WOB∗ = 25.

5.1.1.1 Discussion

The agent generalizes well. Even though the model parameters are adjusted, the agent
controls the input towards the optimal WOB. The agent learns a policy that replicates
gradient ascent. The policy maps the difference in ROPt and ROPt−1 to either an increase
or decrease in input. The agent rarely maps any observations to a change in input of 0.
This is because the agent receives the same reward for holding the optimum for two
iterations as it does for adjusting input down and back up.

By construction of the model, a decrease in ROP will always lead to a worse return if
that value is held throughout the episode. As a result of this, the agent can in reality be
greedy, and never plan for future states. The action that gives the highest reward in the
current state will always yield a higher return. The policy the agent learns is valid for all
model configurations. The ROP model(section 4.3) is also convex in the entire domain.
This makes the gradient ascent policy applicable to any parameter configuration of the

54

ROP model. The behaviour of the agent is comparable to that of the extremum seeking
algorithm, which also is a model-free optimization technique that follows gradients to
reach an optimum of the model through exploration of the state-space.

5.1.2 Drilling Test Case

Figure 5.4 shows a test case where the optimal value WOB∗(d) varies with depth. The
change in WOB∗(d) occurs when the terminal depth for one formation is reached in the
environment. The environment calls the reset function, and the parameter is changed.
The agent detects formation changes through change of ROP in the observation vec-
tor, and decides what direction input is manipulated in response to the variable change.
The agent controls the input to the optimal values for each case. Every segment of the
drilling test case features previously unseen parameters. The agent does not learn in this
simulation.

0 200 400 600 800 1000
Depth[ft]

0

50

100

150

200

RO
P[

ft/
hr

]

Optimal Value
ROP

(a) ROP

0 200 400 600 800 1000
Depth[ft]

0

25

50

75

100

125

150

175

200

W
OB

[K
lb

s]

Optimal value =
WOB

(b) WOB

Figure 5.4: Test case of 1000ft with varying model parameters.

5.1.2.1 Discussion

The agent also generalizes well in the drilling test case. This test case brings three new
challenges to the agent. The first is a change in model parameters during a simula-
tion. The second is the initial observation the environment presents has when the model
parameters change. The agent is trained in an episodic environment where the initial
observation always is a vector of 0. Here the agents initial observation depends on the
ending observation of the previous section. As the policy the agent has learned still is
valid regardless of initial value, the closed-loop system converge to the optimal input for
all parameter values. The third challenge is negative values for ROP. When the model
parameters change, the initial observation for the agent can be a negative ROP value,
which can sometimes be a challenge for algorithms that rely on probability distributions.
However, the agent handles it well. Negative values for ROP is nevertheless unrealistic

55

in a drilling case. The purpose of this simulation however is not for it to be a realistic
drilling case, but to test the RL agents capabilities of applying a learned model on unseen
environment configurations. As the agent has essentially learned a gradient ascent like
policy, it should generalize well to unseen problems, which it does. Arguably, optimization
of a convex function with one input value is an easy task. In a machine learning setting
however, generalization towards unseen data is never given, and this test visualizes the
algorithms capability of generalizing well to unseen parameters. To increase complexity,
a test case with three input varaibles, which is more realistic for drilling optimization will
be analyzed.

56

5.2 Environment 2: Multiple Input
Figure 5.5 shows a simulation of an agent trained on environment 2. The model param-
eters are identical to that of the training process. The agent manipulates all three input
variables, WOB,RPM and q to approach maximum ROP, through individually choos-
ing directions to adjust the input. Note that the Y-axis is scaled down by a factor of
0.01. This simulation shows the RL agents capability to find optimum input values on
a model that can be accurately defined in an environment for training, with three input
variables.

0 200 400 600 800 1000 1200
Iterations

0

1

2

3

4

RO
P

Optimal Value
ROP

(a) ROP

0 200 400 600 800 1000 1200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

W
OB

Optimal Value
WOB

(b) WOB

0 200 400 600 800 1000 1200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RP
M

Optimal Value
RPM

(c) RPM

0 200 400 600 800 1000 1200
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Q

Optimal Value
Q

(d) q

Figure 5.5: Simulation of agent in environment 2 on a model configuration identical to in
training.

5.2.1 Validation

Figure 5.6 shows the same agent without any further training deployed on a simulation
with adjusted model parameters. The optimal values are directly placed in the model
through Equation 4.7. In this simulation, the optimal input is adjusted by 50% compared
to optimum in training, and the agent manipulates the input to a achieve ROP numerically

57

close to the optimal ROP. The agent does not learn during this simulation. The Y-axis
is scaled down by 0.01.

0 200 400 600 800 1000
Iterations

0

1

2

3

4

5

6

7

RO
P

Optimal Value
ROP

(a) ROP

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
OB

Optimal Value
WOB

(b) WOB

0 200 400 600 800 1000
Iterations

0.0

0.5

1.0

1.5

2.0

RP
M

Optimal Value
RPM

(c) RPM

0 200 400 600 800 1000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Q

Optimal Value
Q

(d) q

Figure 5.6: Simulation of agent in environment 2 on unseen parameters.

5.2.1.1 Discussion

The ROP model of environment 2(section 4.4) has a flat optimal region by construction.
This results in almost no gradients in the region close to the analytical optimum. As a
consequence of this, the agent controls the input to achieve ROP numerically close to
the optimum. The input values are however analytically not close to the optimum. The
model is defined similarly as in environment 1, but it has more input variables to control
in each iteration. The policy is still a gradient ascent policy, and due to the memory in
the observation vector, the agent can relate decrease in ROP to a change in individual
input parameters. The model is also convex for all parameter configurations.

One approach to reduce the discrepancy in the input values could be to introduce a
varying λ(Equation 4.1), which is used to scale the actions from the agent. If the agent
was allowed to take smaller or larger steps as it approached flat regions, more interesting
policies could be discovered. A realistic drilling segment could have a really flat optimal

58

region in terms of ROP, while in reality some states introduce bit wear and drilling
dysfunctions. In this environment however, the cost of excessive input is not modelled in
the reward function.

5.2.2 Drilling Test Case

Figure 5.7 shows the same agent in a simulation generated by environment 2. The opti-
mal input values, WOB∗, RPM∗ and q∗ are scaled by a constant drawn from a random
distribution K v U(0.1, 3) at an interval of 200ft. The agent manipulates the input such
that ROP is numerically close to the optimal ROP. However, it is further away from the
analytical optimum. Negative values for ROP is possible in the environment 2 model, as
seen around 5000 iterations. The agent does not learn during this simulation.

0 1000 2000 3000 4000 5000 6000 7000
Iterations

−10

−5

0

5

10

RO
P

Optimal Value
ROP

(a) ROP

0 1000 2000 3000 4000 5000 6000 7000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
OB

Optimal Value
WOB

(b) WOB

0 1000 2000 3000 4000 5000 6000 7000
Iterations

0

1

2

3

4

RP
M

Optimal Value
RPM

(c) RPM

0 1000 2000 3000 4000 5000 6000 7000
Iterations

0

1

2

3

4

5

6

Q

Optimal Value
Q

(d) q

Figure 5.7: Drilling test case where optimal input varies with depth.

5.2.2.1 Discussion

The simulation in Figure 5.7 is a very artificial case. As the optimal input values in the
model are just scaled with a scalar, the RL agent can at each parameter change control
the input values in the same direction. The purpose of this simulation is to see whether

59

or not the agent can control three input variables when the observation from the system
suddenly change. The agent generalizes well to new data, and handles three separate
input variables well. As the optimal region is flat, it is expected that a gradient ascent
policy with a set step length λ will struggle to find the exact analytic optimum.

Although the agent does not find the analytical optimum, it can be seen that it manipu-
lates the input to move ROP towards the numerical optimal ROP. The observation vector
of the model also holds only one previous sytem state in the memory vector, which could
provide difficulties for gradient search with three variables. The agent might struggle to
relate change in output ROP to a specific input variable.

60

5.3 Environment 3: Eckel’s model
Figure 5.8 shows an agent trained on environment 3 in a simulation identical to an episode
in the training process. This means K = 0.5. In Figure 5.8, the agent does not learn. The
agent controls the system to ROP values numerically close to the optimum, but has more
variation in input than the previous sections. This simulation is the first test based on a
published ROP model. It again shows that if the formations are known, and an accurate
environment can be modelled for training, the RL agent can learn a policy to optimize
the problem. The agent does not learn in this simulation.

0 200 400 600 800 1000 1200
Iterations

0

50

100

150

200

250

300

RO
P[

ft/
hr

]

ROP
Optimal Value

(a) ROP

0 200 400 600 800 1000 1200
Iterations

0

10

20

30

40

50

60

70

W
OB

[K
lb

s]

WOB
Optimal Value

(b) WOB

0 200 400 600 800 1000 1200
Iterations

0

25

50

75

100

125

150

175

RP
M

[re
v/

m
in

]

RPM
Optimal Value

(c) RPM

0 200 400 600 800 1000 1200
Iterations

0

50

100

150

200

q[
ga

l/m
in

]

q
Optimal Value

(d) q

Figure 5.8: Simulation of environment 3 with a model configuration identical to training.

5.3.1 Validation

Figure 5.9 shows the same agent interacting with a simulation where the drillability con-
stant is modified to K = 0.25. The agent generalizes poorly, and does not control the
input to a value that is in the same range as the optimal value Figure A.2 in appendix
A.2 shows another plot of poor generalization, where the agent overshoots. The agent
does not learn in this simulation.

61

0 200 400 600 800 1000 1200 1400
Iterations

0

50

100

150

200

250

300

350
RO

P[
ft/

hr
]

ROP
Optimal Value

(a) ROP

0 200 400 600 800 1000 1200 1400
Iterations

0

20

40

60

80

W
OB

[K
lb

f]

WOB
Optimal Value

(b) WOB

0 200 400 600 800 1000 1200 1400
Iterations

0

25

50

75

100

125

150

175

200

RP
M

[re
v/

m
in

]

RPM
Optimal Value

(c) RPM

0 200 400 600 800 1000 1200 1400
Iterations

0

50

100

150

200

q[
ga

l/m
in

]

q
Optimal Value

(d) q

Figure 5.9: Simulation with unseen model parameters.

Figure 5.10 shows two simulations of the same agent on identical instances of environment
3. In this simulation, K = 1. The difference between the two simulations is that the agent
trajectory plotted in orange learns during the simulation. The agent trajectory plotted
in black does not learn, and acts as a predictor like the previous sections. The simulation
starts off with identical policy and value function network parameters, but the agent that
learns updates these parameters according to the algorithm implementation. The agent
with learning controls the input towards the optimum, while the agent that does not learn
controls it to non-optimal values.

62

0 500 1000 1500 2000 2500 3000

Time[s]

-20

0

20

40

60

80

100

120

140

160

180

R
O

P
[f
t/
h
r]

Learning

Not Learning

Optimal Value

(a) ROP

0 500 1000 1500 2000 2500 3000

Time[s]

0

10

20

30

40

50

60

70

W
O

B
[K

lb
s
]

Learning

Not Learning

Optimal Value

(b) WOB

0 500 1000 1500 2000 2500 3000

Time[s]

0

20

40

60

80

100

120

140

160

180

R
P

M
[r

e
v
/m

in
]

Learning

Not Learning

Optimal Value

(c) RPM

0 500 1000 1500 2000 2500 3000

Time[s]

0

50

100

150

200

250

q
[g

a
l/
m

in
]

Learning

Not Learning

Optimal Value

(d) q

Figure 5.10: Two agents in an identical simulation. One agent learns, the other does not.

5.3.1.1 Discussion

As can be seen in Figure 5.9, the agent generalizes poorly. It has not converged to a pure
gradient ascent policy in the training process, and performs relatively bad on any model
configuration that is different to that of the training process. In a realistic setting, this
translates to poor performance when the response from drilling is not as expected. There
can be several causes of this. The reward function in environment 3(Equation 4.9), which
quantifies desirability of states, has one more element than the simpler environments 1
& 2. The soft constraints on input parameters encourage a quite complex policy. The
agent has to learn to follow gradients in some sub-sets of the state-space, and to strictly
decrease the input in other sub-sets of the state-space, while not having any knowledge of
the model it tries to optimize. This gives a policy which is different from strict gradient
ascent, and can contribute to bad generalization.

To combat this, an agent that learned throughout the simulation was evaluated. The
agent updates the policy to increase the return, and hence ROP through the definition of

63

the reward function(Equation 4.9). The agents initially follow the same policy, but as the
agent with learning experience negative reward, it searches towards the optimal input to
maximize return. When the agent learns, it maintains some degree of exploration. The
exploration is increased through the entropy regularization term in the algorithm loss
function, described in section 3.8.4.2. As the agent continually explores, it never holds
the exact optimum. It rather explores around the optimal region. This can be seen in
Figure 5.10c and Figure 5.10d. The agent does however not completely control the input
to the optimal region for WOB(Figure 5.10b). A cause of this can be that the agent
manipulates all three input variable at each time-step. The memory vector, mt in the
observation vector the agent receives from the environment holds only one previous system
state vector, xt−1. It might not be enough for the agent to follow gradients and adjust three
separate input variables. The algorithm might struggle to find a relationship between what
variables cause increase or decrease in output ROP(and therefore reward), and introducing
more memory in the observation vector can potentially solve this problem. In addition to
this, the network architecture and hyper parameters are not tuned specifically towards the
environment model, which can have huge impact. The network implementation for this
agent follows the recommended stable baselines implementation described in section 4.7.
Network architecture will be further discussed in section 6.3.

5.3.2 Drilling Test Case

Figure 5.11 shows a simulation where the drillability constant K changes with depth.

K(d) =

1, if d < 200

0.3, d ≥ 200
(5.1)

The agents are initially identical, but the agent plotted in yellow updates the network
parameters to continually learn. The learner controls the input parameters better than
the non-learner. The plot shows the time each agent uses on the simulation. The learner
finishes the drilling segment quicker than the non-learner. Note that the optimal value
curves follows the time axis of the learning agent. The learning agent quickly updates the
policy such that the input values approach optimum.

64

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time[s]

-300

-200

-100

0

100

200

300

400

R
O

P
[f

t/
h

r]

Learning

Not Learning

Optimal Value

Optimal Value

(a) ROP

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time[s]

0

10

20

30

40

50

60

70

80

90

W
O

B
[K

lb
s
]

Learning

Not Learning

Optimal Value

Optimal Value

(b) WOB

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time[s]

0

50

100

150

200

250

R
P

M
[r

e
v
/m

in
]

Learning

Not Learning

Optimal Value

Optimal Value

(c) RPM

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time[s]

0

50

100

150

200

250

300

q
[g

a
l/
m

in
]

Learning

Not Learning

Optimal Value

Optimal Value

(d) q

Figure 5.11: Drilling test case where drillability constant K changes at 200ft.

5.3.2.1 Discussion

The advantage of having the agent learn in real-time, and update the network parameters
is more apparent in Figure 5.11. The agent without learning still manipulates input in
a small range, but does not move towards values close the the analytical optimum. The
agent that does learn however, controls the system input towards the optimum. Another
property of the A2C implementation becomes apparent in this simulation. When the
uncertainty in the function estimates increases, the exploration increases, through the
entropy regularization. This is visible in the input plot. The agent adjusts the input
according to the learned policy. When the observation is previously unseen, the input
values are adjusted up and down in a region close to the optimum, to explore the state-
space further. This is also visualized in the agent that does not learn. The agent picks
actions from a more uniform probability distribution when the uncertainty in the model
increases after the formation change at 1250 seconds. When the agent does not learn, the
uncertainty in the model will not decrease, and actions are picked from a more uniform
distribution over a longer period. When the agent learns however, the agent still explores,

65

but the overall trend of the actions are towards the optimum. The same issues as above
apply here, where the network parameters are not tuned towards the model, and the agent
might have too few previous measurements in the memory vector to follow gradients with
three input values.

66

5.4 Environment 4: Bourgoyne and Young’s
model

Figure 5.12 shows the agent trained on environment 4. The simulation is the same test
case that is used for training(Table 4.6). The agent controls the system to a value close
to the numerical ROP optimum through manipulating input. The agent does not learn
in this simulation.

0 200 400 600 800 1000
Iterations

0

20

40

60

80

100

120

140

160

RO
P[

Ft
/h

r]

ROP
Optimal Value

(a) ROP

0 200 400 600 800 1000
Iterations

0

20

40

60

80

100

120

W
OB

[K
lb

s]

WOB
Optimal Value

(b) WOB

0 200 400 600 800 1000
Iterations

0

50

100

150

200

RP
M

[re
v/

m
in

]

RPM
Optimal Value

(c) RPM

0 200 400 600 800 1000
Iterations

0

50

100

150

200

250

q[
ga

l/m
in

]

q
Optimal Value

(d) q

Figure 5.12: Simulation of agent on environment 4 training case.

5.4.1 Valdiation

Figure 5.13 shows a simulation of two identical agents in environment 4. All formation
specific parameters, a1, a5, a6, a8, in the Bourgoyne and Young(BY) model have been
changed to parameters different from the training process. The yellow plot shows an agent
that updates the parameters to continue learning. The black plot shows an agent that does
not learn. The agent with learning manipulates input so that system approaches optimum,
while the agent without learning controls the system towards sub-optimal values. The

67

agent with learning finished the drilling simulation earlier through maintaining a higher
ROP.

0 1000 2000 3000 4000 5000 6000

Time[s]

0

20

40

60

80

100

120

R
O

P
[f
t/
h
r]

Learning

Not Learning

Optimal Value

(a) ROP

0 1000 2000 3000 4000 5000 6000

Time[s]

0

20

40

60

80

100

120

W
O

B
[K

lb
s
]

Learning

Not Learning

Optimal Value

(b) WOB

0 1000 2000 3000 4000 5000 6000

Time[s]

0

50

100

150

200

250

R
P

M
[r

e
v
/m

in
]

Learning

Not Learning

Optimal Value

(c) RPM

0 1000 2000 3000 4000 5000 6000

Time[s]

0

50

100

150

200

250

300

350
q
[g

a
l/
m

in
]

Learning

Not Learning

Optimal Value

(d) q

Figure 5.13: Unseen parameters environment 4.

5.4.1.1 Discussion

The BY model that is the basis of environment 4 is one of the most comprehensive
analytical ROP models that have been developed. It is the most complex model applied
in this project. It has a larger degree of flexibility than the previous models, because of the
four formation specific parameters. The modified implementation in environment 4 gives
the possibility to adjust how the input parameters affects output, and how the output
scales. Figure 5.13 illustrates a simulation where both the drillability constant a1, and
the parameters a5, a6 and a8 are adjusted to change both the input-output relationship
and the scaling of ROP from the training case.

The policy the agent learns in this environment is more complex than the previous en-
vironments. The agent has to learn gradient search in some sub-sets of the state-space,

68

while staying within the soft constraints enforced through the reward function. In ad-
dition to this, the model is forced to be zero for all non-negative values for ROP. This
leads to some sub-sets of the state-space resulting in actions not changing ROP where the
model is zero, and naturally there is no gradient to follow.

As environment 4 has a larger memory vector, mt, that holds the three previous sys-
tem states. The agent seems to be more able to relate the effect of the individual input
variables to ROP because of this, even though the model is more complex. The agent
still applies relatively large adjustments to the input, but it trends towards the optimum.
This variation can be a case of parametric bias in the artificial neural network, intro-
duces through too many or too few artificial neurons. This will be further discussed in
section 6.3.

As can be seen from Figure 5.13, the agent controls particularly WOB far above the opti-
mal value in the initial phase of the drilling segment. This is in reality not something that
is desired. Excessive application of input can cause oscillations, or other drilling dysfunc-
tions according to the study by Dupriest(section 2.2.1). This can cause irreversible damage
to the bit, which reduces the contact area between the bit and the rock formation. In
turn, this reduces ROP according to models like that of Hareland and Rampersad(section
2.3.1). The use of excessive input in this case can be a cause of slow learning through
badly designed ANNs. As the model is more complex than in the previous environments,
with a larger number of elements in the observation vector, one can imagine that different
network architectures should be used for different environment structures.

5.4.2 Drilling Test Case and Experimentation

Figure 5.14 shows a simulation where two initially identical agents are interacting with
a drilling case constructed from environment 4. The BY formation specific parameters
change at a set depth. The trajectory in yellow represents an agent with learning enabled,
while the trajectory in black represents an agent without learning. The change in model
parameters is designed to give a large step in ROP through the drillability constant a1,
while the optimal values for the input only change slightly, through small changes in a5, a6
and a8. Figure 5.14 shows that the agent without learning controls the input to a sub-
optimal state. The agent that learns does a search in the state-space before it controls
the input towards the optimum after approximately 8000s. The agents finish the drilling
simulation within 2000s of each other as a result of this.

69

0 2000 4000 6000 8000 10000 12000

Time[s]

0

200

400

600

800

1000

1200

R
O

P
[f
t/
h
r]

Learning

Not Learning

Optimal Value

(a) ROP

0 2000 4000 6000 8000 10000 12000

Time[s]

0

50

100

150

W
O

B
[K

lb
s
]

Learning

Not Learning

Optimal Value

(b) WOB

0 2000 4000 6000 8000 10000 12000

Time[s]

0

50

100

150

200

250

300

R
P

M
[r

e
v
/m

in
]

Learning

Not Learning

Optimal Value

(c) RPM

0 2000 4000 6000 8000 10000 12000

Time[s]

0

100

200

300

400

500

600

q
[g

a
l/
m

in
]

Learning

Not Learning

Optimal Value

(d) q

Figure 5.14: Drilling test case where all four formation specific constants change at 400ft.

Figure 5.15 shows the same simulation case as Figure 5.14. The only difference is a changed
network architecture for the agent. The networks are changed to better reflect the number
of output nodes, with a policy network with two hidden layers of 64-16 neurons and a
value function network with three hidden layers of 128-64-32 neurons. The agent learns
more efficiently before and after the parameter change, resulting in a finishing time around
6000s. This is significantly quicker than the non-learning agents and the learning agent
of Figure 5.14, and is a result of maintaining a higher ROP through faster learning.

70

0 2000 4000 6000 8000 10000 12000

Time[s]

0

200

400

600

800

1000

1200

R
O

P
[f
t/
h
r]

Not Learning

Learning

Optimal Value

(a) ROP

0 2000 4000 6000 8000 10000 12000

Time[s]

0

20

40

60

80

100

120

140

160

180

200

W
O

B
[K

lb
s
]

Not Learning

Learning

Optimal Value

(b) WOB

0 2000 4000 6000 8000 10000 12000

Time[s]

0

50

100

150

200

250

300

R
P

M
[r

e
v
/m

in
]

Not Learning

Learning

Optimal Value

(c) rpm

0 2000 4000 6000 8000 10000 12000

Time[s]

0

50

100

150

200

250

300

q
[g

a
l/
m

in
]

Not Learning

Learning

Optimal Value

(d) q

Figure 5.15: Tuned network architecture.

Figure 5.16 shows a simulation of environment 4 where the coefficient that decides the
input-output curve for weight on bit(a5) varies with depth. a5 as a function of depth is
given by Equation 5.2. The agent follows the trend of optimal WOB. The agent uses the
adapted network structure described above.

a5(d) = 0.75 +
d

1000
(5.2)

71

0 20 40 60 80 100 120 140 160 180 200

Depth[ft]

0

100

200

300

400

500

600

700

800

900

1000

R
O

P
[f

t/
h

r]

Not Learning

Learning

Optimal Value

(a) ROP

0 20 40 60 80 100 120 140 160 180 200

Depth[ft]

0

20

40

60

80

100

120

140

160

180

W
O

B
[K

lb
s
]

Not Learning

Learning

Optimal Value

(b) WOB

0 20 40 60 80 100 120 140 160 180 200

Depth[ft]

0

50

100

150

200

250

300

R
P

M
[r

e
v
/m

in
]

Not Learning

Learning

Optimal Value

(c) RPM

0 20 40 60 80 100 120 140 160 180 200

Depth[ft]

0

50

100

150

200

250

300

q
[g

a
l/
m

in
]

Not Learning

Learning

Optimal Value

(d) q

Figure 5.16: WOB-ROP interaction coefficient varies with depth.

Figure 5.17 shows a simulation that is similar to Figure 5.15, but the simulation has one
more drilling segment. The last drilling segment has model parameters identical to the
first drilling segment. The purpose of this test is to see whether the agent performs better
the second time it encounters a given formation. The plot also follows the depth on the
first axis to better visualize the the difference with and without learning.

72

0 200 400 600 800 1000 1200 1400

Depth[ft]

0

200

400

600

800

1000

1200

R
O

P
[f

t/
h
r]

Not Learning

Learning

Optimal Value

(a) ROP

0 200 400 600 800 1000 1200 1400

Depth[ft]

0

20

40

60

80

100

120

140

160

180

200

W
O

B
[K

lb
s
]

Not Learning

Learning

Optimal Value

(b) WOB

0 200 400 600 800 1000 1200 1400

Depth[ft]

0

50

100

150

200

250

300

R
P

M
[r

e
v
/m

in
]

Not Learning

Learning

Optimal Value

(c) RPM

0 200 400 600 800 1000 1200 1400

Depth[ft]

0

50

100

150

200

250

300

q
[g

a
l/
m

in
]

Not Learning

Learning

Optimal Value

(d) q

Figure 5.17: Encounter of a previously seen formation during drilling.

5.4.2.1 Discussion

The simulation in Figure 5.14 is designed to be difficult for the agent to handle. After
the formation change at 400ft the drillability coefficient a1 is scaled significantly, while
the input specific coefficient only change slightly. As a result of this, the optimal output
ROP is reduced to about one third, while the optimal input values only shift by a few
percentage. This is a challenge because of the large decrease in the estimated value
functions, and subsequently advantage function. This affects the policy, which can get
large parameter updates through Equation 3.33. Sudden large parameter updates make
the overall training unstable.

The learning agent in figure 5.14 spends a significant amount of time adjusting the input
values, and as a result of this finishes the drilling segment almost at the same time as the
non-learning agent. This highlights that the agent in fact learns inefficiently. The agents
in Figure 5.14 use the recommended network architecture of the stable baselines library of
two separate networks with identical structure of two hidden layers of 64 neurons.

73

Figure 5.15 shows the difference in learning when the network architecture is more tuned
towards the size of the observation and action vector. The tuned network architecture
consist of:

• Value function network: Three hidden layers with 128, 64 and 32 artificial neurons.

• Policy network: Two hidden layers with 64 and 16 artificial neurons.

All nodes in the network use the hyperbolic tangent activation function(Equation 3.23b).
During experimentation, other network architectures were tested. Smaller networks with
two layers of eight neurons diverged during training, and larger network structures general-
ized poorly and introduced unstable learning. This will be further discussed in section 6.3.
The reason for the asynchronous network architecture is the difference in the output layers
in the network. The policy network outputs three values, making up the action vector.
The value function network however, outputs a vector corresponding to the size of the
observation vector of 16. As shown in Figure 5.15, the agent learns quickly and controls
the input towards the optimum much quicker than the agent with the standard network
implementation shown in Figure 5.14. The agent with the adapted network finishes about
4000s quicker through stable learning, and maintaining a higher ROP. The agent still ini-
tially spikes both RPM and WOB past the optimum, even though the agent learns more
efficiently. This suggests that the reward functions needs a term that models the cost of
using input, to prevent excessive use of input.

All simulations that are analyzed so far in this thesis is based on formations that change
spontaneously. Figure 5.16 shows a case where the WOB coefficient a5 changes according
to Equation 5.2, giving a constant change optimal WOB. Even though the ROP models
applied in this thesis assume constant model parameters for a given rock formation, one
can imagine that in reality, a rock formation is rarely uniform. The hardness of the rock
can vary within the formation itself, and the agent shows it is capable of learning this real-
time. This simulation could also be used to illustrate the effect of depth on ROP directly.
As mentioned in section 2.3.1(Batanee et al.), ROP decreases with increasing depth. This
effect is removed from the BY model implemented in environment 4 as a simplification
measure. Figure 5.16 shows that the agent is capable of following non-stationary optimal
values over a drilling segment. This is essential both in realistic modeling of formation
hardness, and to be able to follow an optimum that is dependant on depth.

Figure 5.17 visualizes that the agent performs better the second time it encounters a
formations. The third drilling segment is identical to the first, and the large spike in input
is eliminated in the encounter. This suggests that the agents perform better as they learn.
It is however interesting to investigate how an agent would perform on a known formation
after many simulations on different parameters. A solution where the network parameters
are saved every time a new formation is encountered could be implemented. The algorithm

74

could then fetch these parameters if the formation is previously drilled.

5.5 Convergence
Figure 5.18 shows the convergence of each agent trained on the respective environemnts
in this project. Figure 5.18a shows the training of environment 1. It can be seen that
the agent achieves almost the maximum obtainable reward(Gmax = 100) in one training
episode. The other environments require more training before reaching their maximum
reward respectively. The first two environments converges steadily, as they learn to follow
gradients. Environment 3 and 4 has the inclusion of soft constraints on rewards, and
can achieve negative reward. As the model in environment 3 can be negative, the agent
can always find a direction that improves ROP, and this results in all episodes leading to
positive rewards. Environment 4 has sub-sets of the environment that have no gradients,
and as a consequence of this, the agent receives the minimum possible reward for the first
few iterations. After approximately 1000000 iterations, the agent converges.

0 20000 40000 60000 80000 100000
Iteration

98.7

98.8

98.9

99.0

99.1

99.2

99.3

Re
tu
rn

Return

(a) Environment 1

0 20000 40000 60000 80000 100000
Iteration

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Re
tu
rn

Return

(b) Environment 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration 1e6

150

160

170

180

190

200

210

Re
tu
rn

Return

(c) Environment 3

0 1 2 3 4 5
Iteration 1e6

−1000

−800

−600

−400

−200

0

200

400

Re
tu
rn

Return

(d) Environment 4

Figure 5.18: Convergence of environments 1-4 in training process.

75

6 | Further Discussion

This chapter presents further discussion of results, implementation and the project in
general. The chapter is structured in the following way:

• Section 6.1 discusses the implemented solution.

• Section 6.2 discusses simplifications in the models implemented in this project.

• Section 6.3 discusses choice of algorithm, network design and algorithm performance
based on network design.

• Section 6.4 presents future work the author would like to investigate further.

6.1 Solution Method
As presented in section 2.3.3, research of optimization of drilling rate can be split into
two categories:

• Pre-optimization on an ROP model in advance of operations.

• Real-time optimization of ROP based on data available while drilling.

Reinforcement learning is a flexible framework, that can be tailored to either of these ap-
proaches through design of the reward function and environment design for offline training.
Optimization in advance of operations require a model that is precise enough to recreate
an environment that the agent can train on. Figure 5.1, Figure 5.5, Figure 5.8 and Fig-
ure 5.12 show plots where the agent interacts with simulations where the environments
are identical to what the respective agents are trained on offline. The models have in-
creasing complexity, and the RL agents handle these cases well. However, research shows
that modeling the drilling system is one of the major challenges in ROP optimization, as
the phenomena that affect ROP is not fully understood. In addition to this, it is argued
by several authors that the data from well drilling is location and condition specific. This
limits the usefulness of data driven modeling such as ANNs and other machine learning
algorithms for ROP prediction with the purpose of accurately forecasting new drilling
segments and formation types. This limits the applicability of training an RL agent of-

76

fline in advance of operations, with the intention of teaching an RL agent the optimal
sequence of input decisions. However, as shown in section 5.1 and section 5.2, RL agents
can generalize well to previously unseen model configurations. If the drilling process could
be modeled in such a way that a learned policy is valid for all model configurations, an
agent could be trained on one model configuration, and optimize a sequence of other con-
figurations without policy updates based feed-back from the environment.. This is seen
in Figure 5.4 and Figure 5.7. According to the drilling curve presented by Dupriest, the
input-output relationships in the ROP model is convex, and if that is valid for all rock
formations, a similar approach could be used. Additionally, the reward function design
is the deciding factor in shaping the policy. This is because the value function is the
estimated expected cumulative discounted reward, and this is used to evaluate agent ac-
tions. Clever reward function design can contribute in making the RL agent more robust
to unseen model configurations.

The agents trained on environment 1 and 2 learn a universal policy based on accurate
modeling in the training process. In reality, this would be a large challenge, and a lot
of research has gone into universal modeling of ROP without any major success. In
the experiments done with environment 3 and 4, the agent generalizes poorly to unseen
model configurations. To combat this, real-time learning based on feedback from the
environment is introduced. As seen in section 5.3 and section 5.4, the agent learns quite
efficiently, and converges towards the optimal solution for several different test cases. The
agents have a pre-trained policy based on a single parameter configuration of the ROP
model. The more accurate this training environment is, the more accurate the initial
policy of the agent will be. This is a way of introducing knowledge about the system in
advance of operations, as it will limit the time the agent has to explore to discover better
policies in the initial drilling. However, as can be seen from Figure 5.13, the agent also
handles large errors in initial policy. This is visualized through the non-learning agent
plotted in black, who manipulates input to a sub-optimal solution. The agent that uses
the feedback from the environment to learn however, approaches the optimum after some
initial exploration.

The Bourgoyne and Young ROP model is quite flexible by construction. It can be modified
through changing the constants a1−8. The model has been used for optimization of drilling
rate in several studies. The studies often revolve around finding the model coefficients
that give the most precise model compared to real drilling data, and optimizing the model
in advance. In a survey done by Soares et al(section 2.3.1), a simplified Bourgoyne and
Young model was found to be the most accurate analytical model out of a selection of
other models. The modified model implemented in this thesis(section 4.6) is similar to
that of Soares, and still retains flexibility through the ability of changing the input-output
relationship with a5, a6 and a8. In addition, a1 scales the output. This allows for testing
on a model that varies significantly with changing the given parameters. The results

77

from experimentation with this model shows that the RL agent is capable of learning
ROP optimization with changes in model parameters in real-time. Additional plots from
experimentation on the BY model can be found in appendix A.3.

The primary driving factor which the agent evaluates is the reward signal. In this project,
the reward function is implemented as a simple function of the change in ROP. In addi-
tion, penalties for exceeding the input limits are implemented in environment 3 and 4.
The simple reward functions worked for the purpose, which was to approach the maxi-
mum ROP for a given model. Initially, a term for quick convergence was present in the
reward function. This was implemented as a numerically large reward signal at the end
of an episode, which decreased with the number of seconds the agent used on the drilling
segment. This sparse and large reward did however only make training more unstable,
and generalization worse. Sparse rewards require more future planning, and in turn makes
learning slower. The reward function can be formulated to reflect more comprehensive
objectives in drilling. It could feature bit-wear penalty, and the cost of applying input.
One could also directly model the monetary cost of drilling in the reward function. An
objective similar to that of Abughaban et al.(section 2.3.3, equation 2.11) could be for-
mulated, where depth of cut, drilling specific energy, vibrations and other metrics decide
the reward signal.

The agent learns different policies for the different environments. The policy the agents
learn in environment 1 and 2 is valid for all model configurations. Because of the memory
in the observation vector, the agent always maps a change in ROP to either an increase
or decrease in input. This policy is valid for the entire domain of parameter configura-
tions. However, in environment 3 and 4, the agents learn a policy that does not transfer
between model configurations. This suggests that the agents do not learn a pure gradient
ascent policy. With real-time learning however, the necessity for the agent to learn the
optimal policy in initial training is not absolute. This is demonstrated through the agents
evaluated in environment 3 and 4 continually updating the policies towards the optimal
policies. The results from environment 3 suggest that the number of past system states in
the memory vector is important. As the agent in environment 3 only has one past system
state to base the decision on, it seems unable to manipulate three separate input values
towards the optimum. When more past system states is introduced in the memory vector
of environment 4, the agent seems more able to map output to change in the correct
input.

Real-time optimization of the drilling process can be solved by model-free, data-driven
approaches. This is demonstrated through promising implementations of for example
the extremum seeking(ES) algorithm(section 2.3.3), and other data driven gradient ap-
proaches, like the Intelligent Drilling Advisory System(section 2.3.3). The ES algorithm
explores the state-space through perturbation with a sine-like function. It then follows

78

gradients to optimize ROP or specific energy. A natural question would be why RL could
be preferred as a real time optimizer compared to similar solution methods. Exploration
in ES can be inefficient and slow in high dimensional spaces, while deep RL algorithms
utilize ANNs that specialize in high dimensional function approximation. RL methods
also provide several customized ways of handling exploration, and a variety of different al-
gorithms that suit different problem types. In addition, the reward function of RL makes
for a flexible framework for objective definition. Hard constraints can be implemented in
RL algorithms through defining valid action and state spaces. This can be more difficult
in ES. The ES algorithm might be more robust and sample efficient. The challenge with
machine learning algorithms, and particularly algorithms that feature ANNs, is that they
require large data samples, and can be non-robust to changes. However, the RL imple-
mentation analyzed in this thesis has been robust within the bounds of the conducted
testing. An advantage of learning algorithms is that they continue to learn, and will get
better and better as they are applied. Another strength of RL algorithms is that they
plan for future states, and can weight long term benefit against short term reward. This
can be an advantage if the function for optimization has local optimums. As an exam-
ple, chess engines based on reinforcement learning, that continually learn during chess
matches with real players learn the players characteristic strategies, and can optimize a
policy based on this. That would be hard to model in other optimization algorithms. An
interesting extension of this work would be to compare data-driven optimizer such as the
ES algorithm to a continually learning RL agent as implemented in this project.

6.2 Simplifications
Several assumption have been made in the ROP models and environment implementation
in this project. None of the models feature any dynamics. The implementation make the
assumption that the sampling rate is large enough such that the dynamical behaviour
of the ROP model has settled between measurements. In reality, input changes would
induce oscillations, and the system would not change the input instantaneously as the
current implementation does. However, the Bourgoyne and Young model have been used
in several drilling optimization studies, where satisfactory precision for a given well is
met.

The model does also not feature any noise. For a realistic implementation, noise filtering
would be necessary. Additionally, the frequency of which the agent interacts with the
environment would have to be large enough to measure changes in the states with noise
present.

Another simplification that is made in this project is the properties of rock formations.
The implemented ROP models assume constant rock properties for a given rock. The

79

model reflects this through constant formation specific parameters for the given rock.
When the rock formation changes, these parameters change. In reality these rock prop-
erties can vary with depth. A single rock formation can as an example be softer on the
edges and harder towards the middle. Figure 5.16 shows that the RL agent is capable
of adjusting the input to compensate for constantly changing rock properties, where the
WOB interaction coefficient a5 = 0.75 + depth

1000
varies with depth.

As mentioned above, the models implemented in this thesis also assumes individual opti-
mal values for the input. Surface plots of mechanical specific energy from some articles
support this. In reality however, these optimal points could be dependant of each other,
which introduce a multiple of local maximums in the ROP model. One could however as-
sume that local optimal values are in a region that achieves satisfactory performance.

A realistic drilling case also has more constraints than featured in this implementation.
Hard constraints would be needed on the input, in addition to pressure constraints for
well stability purposes. These should not be modeled as soft constraints through reward,
as the penalty on input implemented in this work, but hard constraints in the algorithm.
Particularly pressure constraints are a limiting factor in a realistic drilling case.

6.3 Algorithm and design
In this project, the A2C algorithm was chosen for a combination of reasons, which will be
outlined in this section. When choosing a DRL algorithm, there are many considerations
to take. The A2C and A3C algorithms are more efficient on consumer hardware than its
competitors, due to the parallelization of agents, which allows multiple instances running
at once. This also completely replaces the replay buffer of the DQN algorithm, which
saves computational resources. The A2C algorithm is also flexible, as it supports both
discrete and continuous action spaces. The DQN algorithm for example only supports
discrete action spaces. It is also an advantage to use an on-policy algorithm like the
A2C for real-time optimization, as the agent has to approach optimal behaviour. When
the agent learns real-time, it is not desirable to follow another policy than the optimal
policy the agents tries to estimate. This can lead to unnecessarily much exploration as
the drilling progresses.

The drilling problem that this algorithm aims to solve has no finite ending time. One can
assume that the agent finds a non-zero value for ROP that eventually leads to a terminal
depth, but there is no guarantees. Methods that are based on MC sampling of full returns
is not ideal. Pure gradient based methods are therefore not the most robust option, as
they use experienced return without bootstrapping. If this experience never occurs, the
agent will not learn. The A2C algorithm uses an n-step temporal difference learning
update, which is flexible as the number of steps the algorithm takes before bootstrapping

80

can be adjusted.

Another challenge in the drilling problem is the sudden model changes that occur when
the drilling segment enter a new formation. This leads to a large change in the value func-
tion estimate, when suddenly the measured ROP jumps up or down. In pure value based
methods, these large jumps in value function estimates make learning unstable, as the
expected return suddenly change. This leads to large policy updates. Brief experiment-
ing with the DQN algorithm confirmed that the algorithm did not converge towards an
optimal policy. It in fact did not converge towards a policy that resulted in non-negative
ROP.

Large changes in the value functions can also cause problems for actor-critc methods.
Actor-critic methods often scale the policy update with a value-function estimate. This
problem also occured in the DDPG algorithm, that adopts the Q-learning step of DQN,
and uses this to scale the policy update. The policy update steps became too large, and the
DDPG algorithm did not learn a policy that improved initial performance. There exists
several methods for bounding the policy update in actor-critic methods. These include
clipping and kl-regularization, which both essentially limits value function estimate impact
on the policy update step.

The A2C algorithm, and advantage actor critic methods in general, uses the advantage
function for this purpose(Equation 3.30a). This is different from other methods who use
the action-value function(Equation 3.5) or state-value function(Equation 3.4). The advan-
tage function is the action-value function subtracted the state-value function. This limits
the size of the advantage function, and helps in preventing too large update steps because
of exploding or diminishing value functions. In addition to this, the A2C algorithm from
stable baselines implemented in this project normalizes the advantage function, which
acts as an additional bound in the update step.

When designing the artificial neural networks, or network architecture for short, there are
many parameters to consider. The size of the network, the type of network, and hyper-
parameters are the most essential. Recurrent neural networks carry an internal state that
essentially introduces memory. Convolutional neural networks work well for problems
with grid-like topology. This includes time series of measurements. Properties like these
can introduce more robustness to the RL algorithm. Both recurrent neural networks and
convolutional neural networks tend to perform better than feed-forward neural networks
on dynamical systems. These networks are however more complex, and require more
design and attention. The feed-forward neural networks are simpler to implement, and
modify. Because of this, the feed forward NNs were chosen in this project.

Intuitively, one would think that different network architecture should be used for the
policy and value networks, as they produce output of different dimensions. The standard

81

stable baselines implementation uses a set network architecture of two hidden layers with
64 artificial neurons. This number seems arbitrary, but works quite well for the simpler
problems. This network architecture is used for all results from environment 1,2 and 3.
However, as can be seen from Figure 5.14, when the model changes in a particular way
the agent struggles to learn the new optimal values. The simulation is designed to dras-
tically reduce the expected maximum return through lowering the optimal ROP, while
maintaining optimal input values close to the initial formation. The default network ar-
chitecture learned this new optimum quite slow, as the large changes in the advantage
function changed the policy by a large amount. In reality, the policy only needs a slight
change. When the networks were redesigned to better reflect the number of output units
the separate networks have, the agent learned more efficiently. As the policy network
only outputs 3 values, being the action vector, and the value function network outputs
16 values, it is intuitive to have more artificial neurons in the value function network. A
structure of the policy network π was found through testing to be two hidden layers of
64 and 16 neurons. For the value function network V , a structure of three hidden layers
of 128, 64 and 32 neurons was found to be best. Network structure with fewer neurons
than this learned slowly, and much larger network structures generalized poorly and was
unstable during learning. Network architecture design is based a lot on testing, but as
a rule of thumb, the width of a layer should be a number in the series 2n. Figure A.8
shows a plot of a simulation where the algorithm has two identical networks with two
layers of eight artificial neurons. The networks does not have enough neurons to repre-
sent the policy parameterization efficiently. The agent does not learn an optimal policy.
Figure A.7 shows another experiment with a network of two layers with 512 artificial
neurons. The agent has an oscillatory behaviour, and the network could be overfitted,
which is introduction of large parametric bias through too many neurons for the function
it tries to approximate.

Choosing the optimization algorithm for the problem is also important. The optimization
algorithm essentially decides how the network parameters are updated with the gradients
from the RL algorithm, and can cause learning to be either unstable or too slow. If the
initial steps taken by the optimizer algorithm are too large, the RL agent will struggle to
learn the desired behaviour. If the steps are too small, the agent will learn slowly. The
SGD algorithm(algorithm 1) was initially tested for simplicity, but the because of the
large variance from the assumption made in Equation 3.26(algorithm picks one gradient
at random), the A2C algorithm did not learn at all. The default optimization algorithm
for the stable baselines implementation is the Adam optimizer. It is a specialized optimizer
for ANNs, that combine adaptive learning rates with momentum. This did however also
make training unstable. To combat this, the RMSprop algorithm(algorithm 2), which
were used for the A2C and A3C in the original implementations was implemented. This
stabilized training, and performed remarkably better than the adam optimizer.

82

6.4 Future Work
An interesting extension of this project is to adapt the agent and environments to evaluate
the mechanical specific energy(MSE) concept(section 2.3.2). The MSE concept is more
versatile in real-time optimization than the ROP models utilized in this work. The chal-
lenge is however that the MSE model is dependant on ROP as a measurement. A real-life
simulator or laboratory scale drilling rig could be used to simulate ROP, or generate data
used for training. As the author of this thesis had no access to such tools, and limited
time, this remains an interesting future work. The formulation of the MSE forumla also
makes it more universally applicable, as it takes ROP as an input.

Another approach could be to collect data from previously drilled wells. Data from one
well could be used to generate a model for an environment to train the agent in. The
agent could then be evaluated as it learns to optimize drilling based on data from another
well with real-time learning. This will give good indication of efficiency and capabilities
in the RL as a real-time optimizer for drilling through real-time learning.

This thesis has focused on model-free RL algorithms. Implementation of a model-based
RL algorithm could be beneficial, even if the model is not a perfect representation of the
drilling process. Anything the RL agent can use to plan or simulate experience online
could improve sample-efficiency and overall learning capabilities.

It would also be interesting to investigate the sample efficiency of RL with real-time learn-
ing as an optimization method compared to other data driven optimization techniques
such as the extremum seeking algorithm.

One important point that is not implemented in this work is hard constraints. Hard
constraints needs to be implemented, both for input and pressure constraints for well
stability. The models utilized in this thesis did not have a connection to pressure, and
it was neglected from the work. Pressure constraints are however important for well
stability, and is a limiting constraint while optimizing ROP.

83

7 | Conclusion

Optimization of rate of penetration(ROP) is a can pose a challenge for several reasons.
First and foremost, the phenomena that affect ROP are not fully understood. This
makes ROP modeling difficult, which limits the usefulness of optimization of operational
parameters in advance of drilling. Research indicates that parameters for the ROP model
has to be uniquely defined for specific formations and drilling operations. Real-time
optimization of ROP is emerging as the most feasible solution.

Implementing a model-free reinforcement learning(RL) agent that is pre-trained on one
model configuration, and allowing it to continually learn during operations is a possibility.
It combines knowledge one has about the system in advance of drilling, with the possibility
of continually improving drilling rate through learning from measurements, even though
the actual system model is unknown. The A2C algorithm is a good fit for the purpose.
The RL agent shows promise on the most comprehensive ROP model implemented in this
thesis, the Bourgoyne and Young model. The agent handles validation cases where model
parameters change with step functions, and when model parameters gradually change
with depth. These are fundamental properties for ROP optimization.

The models implemented in this thesis are however simplified through ignoring dynamical
behaviour and noise, amongst other things. These are challenges in a realistic setting.
Whether an RL autodriller would be more efficient and robust than other existing solutions
cannot be definitely concluded from the work done in this project. Testing with more
realistic simulators, and/or data from previously drilled wells would be needed to analyze
this. However, the RL autodriller concept shows promise as a method to implement a
model-free, data driven optimization algorithm, with a large degree of flexibility towards
objective, exploration, and future planning.

84

Bibliography

[1] Antonin Raffin et al. Stable Baselines3. https://github.com/DLR-RM/stable-
baselines3. 2019.

[2] Adam T. Bourgoyne et al. Applied Drilling Engineering. First Printing. Richardson,
TX: Society of Petroleum Engineers, 1986.

[3] Cesar Soares and Kenneth Gray. “Real-time predictive capabilities of analytical
and machine learning rate of penetration (ROP) models.” In: Journal of Petroleum
Science and Engineering 172 (2019), pp. 934–959. doi: https://doi.org/10.
1016/j.petrol.2018.08.083. url: http://www.sciencedirect.com/science/
article/pii/S0920410518307563.

[4] Chirant Hedge et al. “Rate of Penetration(ROP) optimization in drilling with vibra-
tion control.” In: Journal of Natrual Gas Science and Engineering 67 (2019), pp. 71–
81. url: http://www.https://www.sciencedirect.com/science/article/pii/
S187551001930112X.

[5] Eren Tuna. “Real time optimization of drilling parameters during drilling opera-
tions.” PhD thesis. Middle east technical university, 2010.

[6] W.C Maurer. “The "Perfect-Cleaning" Theory of Rotary Drilling.” In: Journal of
Petroleum Technology (1962), pp. 1270–1274.

[7] Kenneth K Landes. “How rock properties are related to drilling.” In: Oil Gas Journal
(1964), pp. 94–101.

[8] Maximizing Drill Rates with Real-Time Surveillance of Mechanical Specific En-
ergy. Vol. All Days. SPE/IADC Drilling Conference and Exhibition. SPE-92194-
MS. Feb. 2005. doi: 10.2118/92194-MS. eprint: https://onepetro.org/SPEDC/
proceedings-pdf/05DC/All-05DC/SPE-92194-MS/1835404/spe-92194-ms.pdf.
url: https://doi.org/10.2118/92194-MS.

[9] Sanjit Roy and G.A. Cooper. “Prevention of Bit Balling in Shales: Some Preliminary
Results.” In: SPE Drilling & Completion 8.03 (Sept. 1993), pp. 195–200. doi: 10.
2118/23870-PA. eprint: https://onepetro.org/DC/article-pdf/8/03/195/
2088206/spe-23870-pa.pdf. url: https://doi.org/10.2118/23870-PA.

[10] John R. Eckel. “Microbit Studies of the Effect of Fluid Properties and Hydraulics
on Drilling Rate.” In: Journal of Petroleum Technology (1968), pp. 541–546.

85

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://doi.org/https://doi.org/10.1016/j.petrol.2018.08.083
https://doi.org/https://doi.org/10.1016/j.petrol.2018.08.083
http://www.sciencedirect.com/science/article/pii/S0920410518307563
http://www.sciencedirect.com/science/article/pii/S0920410518307563
http://www.https://www.sciencedirect.com/science/article/pii/S187551001930112X
http://www.https://www.sciencedirect.com/science/article/pii/S187551001930112X
https://doi.org/10.2118/92194-MS
https://onepetro.org/SPEDC/proceedings-pdf/05DC/All-05DC/SPE-92194-MS/1835404/spe-92194-ms.pdf
https://onepetro.org/SPEDC/proceedings-pdf/05DC/All-05DC/SPE-92194-MS/1835404/spe-92194-ms.pdf
https://doi.org/10.2118/92194-MS
https://doi.org/10.2118/23870-PA
https://doi.org/10.2118/23870-PA
https://onepetro.org/DC/article-pdf/8/03/195/2088206/spe-23870-pa.pdf
https://onepetro.org/DC/article-pdf/8/03/195/2088206/spe-23870-pa.pdf
https://doi.org/10.2118/23870-PA

[11] G. Hareland and P. R. Rampersad. “Drag - Bit Model Including Wear.” In: Society
of Petroleum Engineers (1994).

[12] H.R. Motahhari, G. Hareland, and J.A. James. “Improved Drilling Efficiency Tech-
nique Using Integrated PDM and PDC Bit Parameters.” In: Journal of Canadian
Petroleum Technology 49.10 (Oct. 2010), pp. 45–52. doi: 10.2118/141651- PA.
eprint: https://onepetro.org/JCPT/article-pdf/49/10/45/2147023/spe-
141651-pa.pdf. url: https://doi.org/10.2118/141651-PA.

[13] Jr. Bourgoyne A.T. and Jr. Young F.S. “A Multiple Regression Approach to Opti-
mal Drilling and Abnormal Pressure Detection.” In: Society of Petroleum Engineers
Journal 14.04 (Aug. 1974), pp. 371–384. doi: 10.2118/4238-PA. eprint: https:
//onepetro.org/spejournal/article-pdf/14/04/371/2157414/spe-4238-

pa.pdf. url: https://doi.org/10.2118/4238-PA.
[14] H.I. Bilgesu et al. “A New Approach for the Prediction of Rate of Penetration (ROP)

Values.” In: SPE Eastern Regional Meeting All Days (Oct. 1997). SPE-39231-MS.
doi: 10.2118/39231-MS. eprint: https://onepetro.org/SPEERM/proceedings-
pdf/97ERM/All- 97ERM/SPE- 39231- MS/1942900/spe- 39231- ms.pdf. url:
https://doi.org/10.2118/39231-MS.

[15] David Moran et al. “Sophisticated ROP Prediction Technologies Based on Neural
Network Delivers Accurate Drill Time Results.” In: IADC/SPE Asia Pacific Drilling
Technology Conference and Exhibition All Days (Nov. 2010). SPE-132010-MS. doi:
10.2118/132010-MS. eprint: https://onepetro.org/SPEAPDT/proceedings-
pdf/10APDT/All-10APDT/SPE-132010-MS/1719710/spe-132010-ms.pdf. url:
https://doi.org/10.2118/132010-MS.

[16] R. Jahanbakhshi, R. Keshavarzi, and A. Jafarnezhad. “Real-time Prediction of Rate
of Penetration During Drilling Operation In Oil And Gas Wells.” In: U.S. Rock Me-
chanics/Geomechanics Symposium All Days (June 2012). ARMA-2012-244. eprint:
https://onepetro.org/ARMAUSRMS/proceedings-pdf/ARMA12/All-ARMA12/

ARMA-2012-244/1600884/arma-2012-244.pdf.
[17] Seyed Babak Ashrafi et al. “Application of hybrid artificial neural networks for

predicting rate of penetration (ROP): A case study fromMarun oil field.” In: Journal
of Petroleum Science and Engineering 175 (2019), pp. 604–623. doi: https://doi.
org/10.1016/j.petrol.2018.12.013. url: https://www.sciencedirect.com/
science/article/pii/S0920410518310970.

[18] Mustafa M. Amer, Abdel Sattar DAHAB, and Abdel-Alim Hashem El-Sayed. “An
ROP Predictive Model in Nile Delta Area Using Artificial Neural Networks.” In:
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition Day
2 Tue, April 25, 2017 (Apr. 2017). D023S012R001. doi: 10.2118/187969- MS.
eprint: https://onepetro.org/SPESATS/proceedings-pdf/17SATS/2-17SATS/

86

https://doi.org/10.2118/141651-PA
https://onepetro.org/JCPT/article-pdf/49/10/45/2147023/spe-141651-pa.pdf
https://onepetro.org/JCPT/article-pdf/49/10/45/2147023/spe-141651-pa.pdf
https://doi.org/10.2118/141651-PA
https://doi.org/10.2118/4238-PA
https://onepetro.org/spejournal/article-pdf/14/04/371/2157414/spe-4238-pa.pdf
https://onepetro.org/spejournal/article-pdf/14/04/371/2157414/spe-4238-pa.pdf
https://onepetro.org/spejournal/article-pdf/14/04/371/2157414/spe-4238-pa.pdf
https://doi.org/10.2118/4238-PA
https://doi.org/10.2118/39231-MS
https://onepetro.org/SPEERM/proceedings-pdf/97ERM/All-97ERM/SPE-39231-MS/1942900/spe-39231-ms.pdf
https://onepetro.org/SPEERM/proceedings-pdf/97ERM/All-97ERM/SPE-39231-MS/1942900/spe-39231-ms.pdf
https://doi.org/10.2118/39231-MS
https://doi.org/10.2118/132010-MS
https://onepetro.org/SPEAPDT/proceedings-pdf/10APDT/All-10APDT/SPE-132010-MS/1719710/spe-132010-ms.pdf
https://onepetro.org/SPEAPDT/proceedings-pdf/10APDT/All-10APDT/SPE-132010-MS/1719710/spe-132010-ms.pdf
https://doi.org/10.2118/132010-MS
https://onepetro.org/ARMAUSRMS/proceedings-pdf/ARMA12/All-ARMA12/ARMA-2012-244/1600884/arma-2012-244.pdf
https://onepetro.org/ARMAUSRMS/proceedings-pdf/ARMA12/All-ARMA12/ARMA-2012-244/1600884/arma-2012-244.pdf
https://doi.org/https://doi.org/10.1016/j.petrol.2018.12.013
https://doi.org/https://doi.org/10.1016/j.petrol.2018.12.013
https://www.sciencedirect.com/science/article/pii/S0920410518310970
https://www.sciencedirect.com/science/article/pii/S0920410518310970
https://doi.org/10.2118/187969-MS
https://onepetro.org/SPESATS/proceedings-pdf/17SATS/2-17SATS/D023S012R001/1294866/spe-187969-ms.pdf
https://onepetro.org/SPESATS/proceedings-pdf/17SATS/2-17SATS/D023S012R001/1294866/spe-187969-ms.pdf
https://onepetro.org/SPESATS/proceedings-pdf/17SATS/2-17SATS/D023S012R001/1294866/spe-187969-ms.pdf

D023S012R001/1294866/spe-187969-ms.pdf. url: https://doi.org/10.2118/
187969-MS.

[19] M.. Bataee and S.. Mohseni. “Application of Artificial Intelligent Systems in ROP
Optimization: A Case Study in Shadegan Oil Field.” In: SPE Middle East Unconven-
tional Resources Conference and Exhibition All Days (Jan. 2011). SPE-140029-MS.
doi: 10.2118/140029-MS. eprint: https://onepetro.org/SPEUGM/proceedings-
pdf/11UGM/All-11UGM/SPE-140029-MS/1689424/spe-140029-ms.pdf. url:
https://doi.org/10.2118/140029-MS.

[20] Abdolali Esmaeili et al. “ROP Modeling Using Neural Network and Drill String Vi-
bration Data.” In: SPE Kuwait International Petroleum Conference and Exhibition
All Days (Dec. 2012). SPE-163330-MS. doi: 10.2118/163330-MS. eprint: https:
//onepetro.org/SPEKIPC/proceedings-pdf/12KIPC/All-12KIPC/SPE-163330-

MS/1661716/spe-163330-ms.pdf. url: https://doi.org/10.2118/163330-MS.
[21] Xian Shi et al. “An Efficient Approach for Real-Time Prediction of Rate of Pene-

tration in Offshore Drilling.” In: (Sept. 2016). url: https://www.hindawi.com/
journals/mpe/2016/3575380/.

[22] Leo Breinman. “Random Forests.” In: Machine Learning(SpringerLink) (2001).
[23] B.. Mantha and R.. Samuel. “ROP Optimization Using Artificial Intelligence Tech-

niques with Statistical Regression Coupling.” In: SPE Annual Technical Conference
and Exhibition Day 3 Wed, September 28, 2016 (Sept. 2016). D031S041R007. doi:
10.2118/181382-MS. eprint: https://onepetro.org/SPEATCE/proceedings-
pdf/16ATCE/3- 16ATCE/D031S041R007/1365037/spe- 181382- ms.pdf. url:
https://doi.org/10.2118/181382-MS.

[24] R. Teale. “The concept of specific energy in rock drilling.” In: International Jour-
nal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 2.1 (1965),
pp. 57–73. doi: https://doi.org/10.1016/0148- 9062(65)90022- 7. url:
https://www.sciencedirect.com/science/article/pii/0148906265900227.

[25] Todd R. Hamrick. “Optimization of Operating Parameters for Minimum Mechanical
Specific Energy in Drilling.” PhD thesis. West Virginia University, 2011.

[26] A. Ebrahimi. “Optimizing milling-ROP by applying the concept of mechanical spe-
cific energy (MSE).” In: Oil Gas European Magazine 43 (Mar. 2017), pp. 35–37.

[27] Ajmed Hassan, Salaheldin Elkatatny, and Abdulaziz Al-Majed. “Coupling rate of
penetration and mechanical specific energy to improve the efficiency of drilling gas
wells.” In: Journal of Natural Gas Sciences and Engineering 83 (2020).

[28] Miguel Armenta. “Identifying Inefficient Drilling conditions Using Drilling-Specific
Energy.” In: Society of Petroleum Engineers (2008).

[29] Kshitij Mohan, Faraaz Adil, and Robello Samuel. “Comprehensive Hydromechanical
Specific Energy Calculation for Drilling Efficiency.” In: Journal of Energy Resources
Technology 137.1 (Sept. 2014). 012904. doi: 10.1115/1.4028272. eprint: https:

87

https://onepetro.org/SPESATS/proceedings-pdf/17SATS/2-17SATS/D023S012R001/1294866/spe-187969-ms.pdf
https://onepetro.org/SPESATS/proceedings-pdf/17SATS/2-17SATS/D023S012R001/1294866/spe-187969-ms.pdf
https://onepetro.org/SPESATS/proceedings-pdf/17SATS/2-17SATS/D023S012R001/1294866/spe-187969-ms.pdf
https://doi.org/10.2118/187969-MS
https://doi.org/10.2118/187969-MS
https://doi.org/10.2118/140029-MS
https://onepetro.org/SPEUGM/proceedings-pdf/11UGM/All-11UGM/SPE-140029-MS/1689424/spe-140029-ms.pdf
https://onepetro.org/SPEUGM/proceedings-pdf/11UGM/All-11UGM/SPE-140029-MS/1689424/spe-140029-ms.pdf
https://doi.org/10.2118/140029-MS
https://doi.org/10.2118/163330-MS
https://onepetro.org/SPEKIPC/proceedings-pdf/12KIPC/All-12KIPC/SPE-163330-MS/1661716/spe-163330-ms.pdf
https://onepetro.org/SPEKIPC/proceedings-pdf/12KIPC/All-12KIPC/SPE-163330-MS/1661716/spe-163330-ms.pdf
https://onepetro.org/SPEKIPC/proceedings-pdf/12KIPC/All-12KIPC/SPE-163330-MS/1661716/spe-163330-ms.pdf
https://doi.org/10.2118/163330-MS
https://www.hindawi.com/journals/mpe/2016/3575380/
https://www.hindawi.com/journals/mpe/2016/3575380/
https://doi.org/10.2118/181382-MS
https://onepetro.org/SPEATCE/proceedings-pdf/16ATCE/3-16ATCE/D031S041R007/1365037/spe-181382-ms.pdf
https://onepetro.org/SPEATCE/proceedings-pdf/16ATCE/3-16ATCE/D031S041R007/1365037/spe-181382-ms.pdf
https://doi.org/10.2118/181382-MS
https://doi.org/https://doi.org/10.1016/0148-9062(65)90022-7
https://www.sciencedirect.com/science/article/pii/0148906265900227
https://doi.org/10.1115/1.4028272
https://asmedigitalcollection.asme.org/energyresources/article-pdf/137/1/012904/6146935/jert_137_01_012904.pdf
https://asmedigitalcollection.asme.org/energyresources/article-pdf/137/1/012904/6146935/jert_137_01_012904.pdf
https://asmedigitalcollection.asme.org/energyresources/article-pdf/137/1/012904/6146935/jert_137_01_012904.pdf

//asmedigitalcollection.asme.org/energyresources/article-pdf/137/1/

012904/6146935/jert_137_01_012904.pdf. url: https://doi.org/10.
1115/1.4028272.

[30] E.M. Galle and H.B. Woods. “Best Constant Weight and Rotary Speed for rotary
Rock Bits.” In: Drilling and Production Practice All Days (1963).

[31] Jr. Young F.S. “Computerized Drilling Control.” In: Journal of Petroleum Tech-
nology 21.04 (Apr. 1969), pp. 483–496. doi: 10.2118/2241-PA. eprint: https:
//onepetro.org/JPT/article-pdf/21/04/483/2222470/spe-2241-pa.pdf.
url: https://doi.org/10.2118/2241-PA.

[32] Optimization of Drilling Performance Based on an Intelligent Drilling Advisory
System. Vol. Day 3 Thu, March 28, 2019. IPTC International Petroleum Tech-
nology Conference. D031S069R001. Mar. 2019. doi: 10.2523/IPTC- 19269- MS.
eprint: https://onepetro.org/IPTCONF/proceedings-pdf/19IPTC/3-19IPTC/
D031S069R001/1126942/iptc-19269-ms.pdf. url: https://doi.org/10.2523/
IPTC-19269-MS.

[33] Ulf Jakob Aarsnes, Ole Aamo, and Miroslav Krstic. “Extremum seeking for real-time
optimal drilling control.” In: July 2019. doi: 10.23919/ACC.2019.8815162.

[34] Magnus Nystad, Bernt Sigve Aadnøy, and Alexey Pavlov. “Real-Time Minimization
of Mechanical Specific Energy with Multivariable Extremum Seeking.” In: Energies
14.5 (2021). doi: 10.3390/en14051298. url: https://www.mdpi.com/1996-
1073/14/5/1298.

[35] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 2020.

[36] Vincent Francois-Lavet et al. An Introduction to Deep Reinforcement Learning. now,
2018.

[37] Hyeong Soo Chang et al. Simulation-Based Algorithms for Markov Decision Pro-
cesses. Springer, 2013.

[38] J.M Hammersley and D.C. Handscomb. Monte Carlo Methods. Chapman and Hall,
1965.

[39] Todd Hester. TEXPLORE: Temporal Difference ReinforcementLearning for Robots
and Time-Constrained Domains. Springer, 2013.

[40] Kai Arulkumaran et al. “Deep Reinforcement Learning: A brief survey.” In: Deep
Learning for Visual Understanding (). url: https://doi.org/10.1109/MSP.
2017.2743240.

[41] Voot Tangkaratt, Masashi Sugiyama, and Abbas Abdolmaleki. “GUIDE ACTOR-
CRITIC FOR CONTINUOUS CONTROL.” In: ().

[42] Jang et al. Beakcheol. “Q-learning Algorithms: A Comprehensive Classification and
Applications.” In: ().

88

https://asmedigitalcollection.asme.org/energyresources/article-pdf/137/1/012904/6146935/jert_137_01_012904.pdf
https://asmedigitalcollection.asme.org/energyresources/article-pdf/137/1/012904/6146935/jert_137_01_012904.pdf
https://asmedigitalcollection.asme.org/energyresources/article-pdf/137/1/012904/6146935/jert_137_01_012904.pdf
https://asmedigitalcollection.asme.org/energyresources/article-pdf/137/1/012904/6146935/jert_137_01_012904.pdf
https://doi.org/10.1115/1.4028272
https://doi.org/10.1115/1.4028272
https://doi.org/10.2118/2241-PA
https://onepetro.org/JPT/article-pdf/21/04/483/2222470/spe-2241-pa.pdf
https://onepetro.org/JPT/article-pdf/21/04/483/2222470/spe-2241-pa.pdf
https://doi.org/10.2118/2241-PA
https://doi.org/10.2523/IPTC-19269-MS
https://onepetro.org/IPTCONF/proceedings-pdf/19IPTC/3-19IPTC/D031S069R001/1126942/iptc-19269-ms.pdf
https://onepetro.org/IPTCONF/proceedings-pdf/19IPTC/3-19IPTC/D031S069R001/1126942/iptc-19269-ms.pdf
https://doi.org/10.2523/IPTC-19269-MS
https://doi.org/10.2523/IPTC-19269-MS
https://doi.org/10.23919/ACC.2019.8815162
https://doi.org/10.3390/en14051298
https://www.mdpi.com/1996-1073/14/5/1298
https://www.mdpi.com/1996-1073/14/5/1298
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240

[43] Marc Deisenroth, Gerhard Neumann, and Jan Peters. A Survey on Policy Search
for Robotics. Vol. 2. Aug. 2013.

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[45] Shiliang Sun et al. “A Survey of Optimization Methods From a Machine Learning
Perspective.” In: IEEE Transactions on Cybernetics 50.8 (2020), pp. 3668–3681.
doi: 10.1109/TCYB.2019.2950779.

[46] Jiawei Zhang. “Gradient Descent based Optimization Algorithms for Deep Learning
Models Training.” In: CoRR abs/1903.03614 (2019). arXiv: 1903.03614. url: http:
//arxiv.org/abs/1903.03614.

[47] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning.”
In: Nature 518.7540 (Feb. 2015), pp. 529–533. url: http://dx.doi.org/10.1038/
nature14236.

[48] T. Lillicrap et al. “Continuous control with deep reinforcement learning.” In: CoRR
abs/1509.02971 (2016).

[49] Volodymyr Mnih et al. Asynchronous Methods for Deep Reinforcement Learning.
2016. arXiv: 1602.01783 [cs.LG].

[50] Kun Shao et al. “Visual Navigation with Actor-Critic Deep Reinforcement Learn-
ing.” In: 2018 International Joint Conference on Neural Networks (IJCNN). 2018,
pp. 1–6. doi: 10.1109/IJCNN.2018.8489185.

[51] OpenAI Baselines: ACKTR and A2C. https://openai.com/blog/baselines-
acktr-a2c/. Accessed: 2021-04-26.

[52] Greg Brockman et al. “OpenAI Gym.” In: CoRR abs/1606.01540 (2016). arXiv:
1606.01540. url: http://arxiv.org/abs/1606.01540.

89

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/TCYB.2019.2950779
https://arxiv.org/abs/1903.03614
http://arxiv.org/abs/1903.03614
http://arxiv.org/abs/1903.03614
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1602.01783
https://doi.org/10.1109/IJCNN.2018.8489185
https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540

A | Plots

This appendix contains additional plots from experiments that might be interesting to
see, but not directly necessary in the results section of the thesis.

A.1 Environment 2
Figure A.1 shows the agent trained on environment 2 interacting with a case where the
optimal values are scaled individually rather than with a constant K.

0 250 500 750 1000 1250 1500 1750
Iterations

0

1

2

3

4

5

6

7

RO
P

Optimal Value
ROP

(a) ROP

0 500 1000 1500 2000
Iterations

0.0

0.5

1.0

1.5

2.0

RO
P

Optimal Value
ROP

(b) WOB

0 500 1000 1500 2000
Iterations

0.0

0.2

0.4

0.6

0.8

RP
M

Optimal Value
RPM

(c) rpm

0 500 1000 1500 2000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q

Optimal Value
Q

(d) q

Figure A.1: Additional plot of validation of agent in environment 2.

90

A.2 Environment 3
Figure A.2 shows a plot where K = 1. The agent generalizes poorly, and the plot shows
that the agent passes the optimal values, and does not find the optimal values even though
ROP decreases after exceeding the optimum.

0 500 1000 1500 2000 2500 3000 3500
Iterations

0

25

50

75

100

125

150

175

RO
P[

ft/
hr

]

ROP
Optimal Value

(a) ROP

0 500 1000 1500 2000 2500 3000 3500
Iterations

0

10

20

30

40

50

60

W
OB

[K
lb

f]

WOB
Optimal Value

(b) WOB

0 500 1000 1500 2000 2500 3000 3500
Iterations

0

25

50

75

100

125

150

175

RP
M

[re
v/

m
in

]

RPM
Optimal Value

(c) rpm

0 500 1000 1500 2000 2500 3000 3500
Iterations

0

50

100

150

200

q[
ga

l/m
in

]

q
Optimal Value

(d) q

Figure A.2: Additional plot from validation test of environment 3.

Figure A.3 shows a simulation where K = 1. The agent trajectory plotted in yellow shows
an agent that continually learns, while the trajectory in black shows an agent that acts
as a predictor.

91

0 200 400 600 800 1000 1200 1400

Time[s]

0

50

100

150

200

250

300

350

400

R
O

P
[f
t/
h
r]

Learning

Not Learning

Optimal Value

(a) ROP

0 200 400 600 800 1000 1200 1400

Time[s]

0

10

20

30

40

50

60

70

80

90

100

W
O

B
[K

lb
s
]

Learning

Not Learning

Optimal Value

(b) WOB

0 200 400 600 800 1000 1200 1400

Time[s]

0

50

100

150

200

250

R
P

M
[r

e
v
/m

in
]

Learning

Not Learning

Optimal Value

(c) rpm

0 200 400 600 800 1000 1200 1400

Time[s]

0

50

100

150

200

250

q
[g

a
l/
m

in
]

Learning

Not Learning

Optimal Value

(d) q

Figure A.3: Additional plot of learning in environment 3.

A.3 Environment 4
This section contains plots from experimentation with the BY model. As the BY model
is the most flexible ROP model used in this project, plots of different model compositions
have been tested.

Figure A.4 is a simulation constructed to mimic a soft formation. The optimal input
values are high, and particularly q to resemble a large volume of cuttings who needs to be
cleaned of the bottomhole. The agent does not use the optimized network structure.

92

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time[s]

0

100

200

300

400

500

600

700

800

R
O

P
[f
t/
h
r]

Learning

Not Learning

Optimal Value

(a) ROP

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time[s]

0

50

100

150

W
O

B
[K

lb
s
]

Learning

Not Learning

Optimal Value

(b) WOB

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time[s]

0

50

100

150

200

250

R
P

M
[r

e
v
/m

in
]

Learning

Not Learning

Optimal Value

(c) RPM

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time[s]

0

100

200

300

400

500

600

q
[g

a
l/
m

in
]

Learning

Not Learning

Optimal Value

(d) q

Figure A.4: Drilling in a formation resembling a soft rock type.

Figure A.5 mimics drilling in a hard formation. The optimal input, and particularly q
is lower to resemble little cuttings to be cleaned. The agent does not use the optimized
network structure.

93

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time[s]

0

2

4

6

8

10

12

14

16

18

20

R
O

P
[f
t/

h
r]

Learning

Not Learning

Optimal Value

(a) ROP

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time[s]

0

20

40

60

80

100

120

W
O

B
[K

lb
s
]

Learning

Not Learning

Optimal Value

(b) WOB

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time[s]

0

50

100

150

200

250

R
P

M
[r

e
v
/m

in
]

Learning

Not Learning

Optimal Value

(c) RPM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time[s]

0

50

100

150

200

250

300

q
[g

a
l/
m

in
]

Learning

Not Learning

Optimal Value

(d) q

Figure A.5: Drilling in a formation resembling a hard rock type.

Figure A.6 is an extension of Figure 5.14 where the formation parameters change back
to the initial value. The experiment was done to investigate if the agent "remembers"
the previous formation after updating the policy on a different model configuration. The
agent learns adjusts quicker to the initial formation the second time, but due to the
unoptimized network architecture, the learning is inefficient.

94

0 5000 10000 15000

Time[s]

0

200

400

600

800

1000

1200

R
O

P
[f
t/
h
r]

Learning

Not Learning

Optimal Value

(a) ROP

0 5000 10000 15000

Time[s]

0

50

100

150

W
O

B
[K

lb
s
]

Learning

Not Learning

Optimal Value

(b) WOB

0 5000 10000 15000

Time[s]

0

50

100

150

200

250

300

R
P

M
[r

e
v
/m

in
]

Learning

Not Learning

Optimal Value

(c) rpm

0 5000 10000 15000

Time[s]

0

100

200

300

400

500

600

q
[g

a
l/
m

in
]

Learning

Not Learning

Optimal Value

(d) q

Figure A.6: Case of three drilling segments with sub-optimal network architecture.

Figure A.7 shows an experiment where the RL algorithm uses two identical network for
policy and value function networks. The networks have two hidden layers with 512-512
neurons. As can be seen, the learning is unstable, and the agent over adjusts the input
during the entire simulation.

95

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0

50

100

150

200

250

300

350

R
O

P
[f
t/
h
r]

Not Learning

Learning

Optimal Value

(a) ROP

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0

20

40

60

80

100

120

140

W
O

B
[K

lb
s
]

Not Learning

Learning

Optimal Value

(b) WOB

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0

50

100

150

200

250

300

R
P

M
[r

e
v
/m

in
]

Not Learning

Learning

Optimal Value

(c) RPM

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0

50

100

150

200

250

300

350

q
[g

a
l/
m

in
]

Not Learning

Learning

Optimal Value

(d) q

Figure A.7: Network architecture of two hidden layers with 512 neurons.

Figure A.8 shows an experiment where the RL algorithm uses two identical network
for policy and value function networks. The networks have two hidden layers with 8-8
neurons. The agent is not capable of learning the optimal input values over the simula-
tion

96

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0

50

100

150

200

250

300

350

R
O

P
[f
t/
h
r]

Not Learning

Learning

Optimal Value

(a) ROP

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0

50

100

150

W
O

B
[K

lb
s
]

Not Learning

Learning

Optimal Value

(b) WOB

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0

50

100

150

200

250

300

R
P

M
[r

e
v
/m

in
]

Not Learning

Learning

Optimal Value

(c) rpm

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0

100

200

300

400

500

600

q
[g

a
l/
m

in
]

Not Learning

Learning

Optimal Value

(d) q

Figure A.8: Network architecture of two hidden layers with 8 neurons.

97

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Eivind Sjøvold

Autonomous Drilling Using
Reinforcement Learning

Master’s thesis in Industrial Cybernetics
Supervisor: Ole Morten Aamo
Co-supervisor: John-Morten Godhavn

May 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Introduction
	Problem Description
	Software
	Stable Baselines
	PyTorch
	Gym

	Limitations
	Outline of Thesis

	The Rotary Drilling Process
	Drilling Optimization
	Rate of Penetration Models
	Drilling Rate Behaviour
	Eckel's model
	Bourguyne and Young's model

	Existing Research
	Rate of Penetration Modeling Attempts
	Specific Energy
	Rate of Penetration Optimization

	Reinforcement Learning
	The Reinforcement Learning Problem
	Return
	Policy
	Value Functions
	Exploration vs. Exploitation
	Optimality
	Solution Methods
	Estimation Methods
	Types of Reinforcement Learning Algorithms

	Deep Reinforcement Learning
	Artificial Neural Networks
	Value Based Methods
	Policy Gradient Methods
	Actor-Critic Methods

	Implemetation
	Interface
	Environment Structure
	Environment 1: Single Input
	Enviroment 2: Multiple Input
	Environment 3: Eckel's Model
	Environment 4: Bourgoyne and Young's Model
	Algorithm
	Evaluation of Agents

	Results and Discussion
	Environment 1: Single Input
	Validation
	Drilling Test Case

	Environment 2: Multiple Input
	Validation
	Drilling Test Case

	Environment 3: Eckel's model
	Validation
	Drilling Test Case

	Environment 4: Bourgoyne and Young's model
	Valdiation
	Drilling Test Case and Experimentation

	Convergence

	Further Discussion
	Solution Method
	Simplifications
	Algorithm and design
	Future Work

	Conclusion
	References
	Appendix

	Plots
	Environment 2
	Environment 3
	Environment 4

