
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

M
artin Albertsen Brandt

Trajectory Tracking for Fixed-Base and Floating-Base Robot M
anipulators

Martin Albertsen Brandt

Trajectory Tracking for Fixed-Base
and Floating-Base Robot
Manipulators

A Gaussian Process-Based Model Predictive
Control Approach

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl
Co-supervisor: Esten Ingar Grøtli, Phillip Maree

May 2021

M
as

te
r’s

 th
es

is





Martin Albertsen Brandt

Trajectory Tracking for Fixed-Base and
Floating-Base Robot Manipulators

A Gaussian Process-Based Model Predictive Control
Approach

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl
Co-supervisor: Esten Ingar Grøtli, Phillip Maree
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of Master
of Technology in Cybernetics and Robotics at the Norwegian University of Science
and Technology. It was conducted at the Department of Engineering Cybernetics, in
collaboration with SINTEF Digital. The thesis was supervised by Professor Jan Tommy
Gravdahl, with Senior Research Scientist Esten Ingar Grøtli and Research Scientist Phillip
Maree as co-supervisors.

The thesis builds on the work done during my summer internship in the Robotics and
Control group in SINTEF Digital, as well as the project report Brandt 2020, where Model
Predictive Control (MPC) for robot manipulator trajectory tracking was investigated. In
the report, it was found that one of the main practical limitations of the method was
dependence on an accurate dynamical model. In this work, this limitation is addressed
with a learning-based MPC, which is primarily based on Carron et al. 2019 and Hewing,
Kabzan, et al. 2019.

Multiple tools and libraries were used in the implementation. Firstly, it was written
in Python and used the NumPy library presented in Harris et al. 2020 extensively for
computations. GPflow by Matthews et al. 2017 was used for training, which is built on the
machine learning framework TensorFlow in Abadi et al. 2016. The libraries CasADi from
Andersson et al. 2019, acados by Verschueren et al. 2019, and urdf2casadi by Johannessen
et al. 2019 were used in the MPC implementation. The PyBullet physics simulator from
Coumans and Bai 2016–2021 was used for simulations. Finally, access to a UR10e robot
was provided, which was interfaced with using the ur_rtde library given in Lindvig 2021.

i



Acknowledgements
I would like to thank my supervisors Jan Tommy Gravdahl, Esten Ingar Grøtli, and
Phillip Maree for all the valuable guidance they have given me these last two semesters. I
am very grateful to be given the freedom to explore this topic freely while being given
such great feedback and suggestions along the way. Furthermore, I would like to thank
Research Manager Sture Holmstrøm for allowing me to stay at the office during the past
two semesters. It has been very motivating to work on this project in such a rewarding
environment with great colleagues. I would also like to thank my office mates at campus
for great discussions. Finally, I would like to thank my family, friends, and girlfriend for
their support.

Martin Albertsen Brandt
Trondheim, May 31, 2021

ii



Abstract

Model Predictive Control (MPC) provides a useful framework for trajectory tracking for
robot manipulator arms. However, the performance is highly dependent on an accurate
model of the system dynamics, which, especially for floating-base robot manipulators, are
not necessarily easy to obtain. In this work, uncertainty in the dynamical model is handled
by adding a learned Gaussian process (GP) model to a feedback linearization-based prior
dynamics model, which aims to model the error between the prior and true dynamics.
This augmented model is added in a stochastic MPC formulation, where both joint
space and task space trajectory tracking costs are considered. Furthermore, sparse GP
methods, primarily the Sparse Variational Gaussian Process (SVGP) method, are applied.
This is used in conjunction with a sequential quadratic programming (SQP) Real-time
iteration (RTI) solver to achieve real-time feasible computation time for both fixed-base
and floating-base manipulators systems.

Specifically, results from simulations and lab tests for a 6 degrees of freedom (DOF)
fixed-base robot manipulator are presented, as well as simulation results for a free-floating
space manipulator system. The GP-based MPC was compared to a Nonlinear Model
Predictive Control (NMPC) approach using only the prior dynamics, as well as the
feedback linearization-based approach without the added GP disturbance model. It was
found that significant improvements in prediction and trajectory tracking accuracy could
be achieved with the GP-based MPC approach. However, the high prediction accuracy of
the GP was only local around the training trajectory. Yet the results showed that GP-based
MPC, and more generally NMPC approaches, can follow challenging joint and pose
trajectories with low tracking error and real-time feasible computation time, for both
fixed-base and floating-base robot manipulator systems.

iii





Sammendrag

Modellprediktiv regulering (MPC) er et nyttig rammeverk for banefølging med robot-
manipulatorer. Ytelsen er derimot avhengig av en nøyaktig model av dynamikken til
systemet, som spesielt for robotmanipulatorer med flytende base ikke nødvendigvis er lett
tilgjengelig. I dette arbeidet håndteres usikkerheten i den dynamiske modellen ved å kom-
binere en Gaussisk prosess (GP) med en tilbakekoblingslinearisert model av dynamikken.
Denne modellen anvendes i en stokastisk MPC regulator, hvor kostnadsfunksjoner i
både leddrommet og oppgaverommet blir tatt i betraktning. Sparsomme GP metoder blir
anvendt, i tillegg til en sekvensiell kvadratisk programmering (SQP) sanntidsiterasjon
(RTI) løser, for å oppnå sanntid beregningstid for systemer med både statisk og bevegelig
base.

Resultater fra simuleringer og labeksperimenter for en robotmanipulator med statisk
base og 6 frihetsgrader blir presentert. Videre blir resultater fra simuleringer av en
frittflytende robotmanipulator i verdensrommet også presentert. MPC regulatoren med
GP-dynamikk ble sammenlignet med en ulineær MPC basert på den opprinnelige modellen
og en tilbakekoblingslinearisert MPC uten GP-dynamikken. Det ble funnet at forbedringer
i prediksjonsnøyaktighet og banefølgingsfeil kunne bli oppnådd med metoden med GP-
modellen. Prediksjonsnøyaktigheten var derimot bare lokal til banen som ble brukt for å
trene GPen. Resultatene viste allikevel at GP-basert MPC, og generelt metoder basert på
ulineær MPC, kan følge kompliserte baner for leddvinkler eller posisjon og orientering
med høy nøyaktighet i sanntid, for både robotmanipulatorer med statisk base og bevegelig
base.

v





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Kinematics and dynamics of robot manipulator arms . . . . . . . . . . . 5
2.1 Rigid body rotation representations . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Rotation matrices . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Angle-axis representation . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Unit quaternions . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Manipulator kinematics and the Denavit-Hartenberg convention . . . . 10
2.2.1 Homogeneous transformation matrices . . . . . . . . . . . . . 11
2.2.2 The Denavit-Hartenberg convention . . . . . . . . . . . . . . . 12

vii



2.3 Differential kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Manipulator dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Optimal control and model predictive control . . . . . . . . . . . . . . 17
3.2 Direct numerical optimal control methods . . . . . . . . . . . . . . . . 21
3.3 Sequential quadratic programming . . . . . . . . . . . . . . . . . . . . 22
3.4 Real-time iteration scheme . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Gaussian process regression and Gaussian process-based MPC . . . . . . 27
4.1 Bayesian linear regression . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Learning the hyperparameters . . . . . . . . . . . . . . . . . . 34

4.3 Sparse GP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Fully Independent Training Conditional . . . . . . . . . . . . . 38
4.3.2 Variational Free Energy . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Sparse Variational Gaussian Process . . . . . . . . . . . . . . . 40

4.4 GP-based MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 GP disturbance model . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 Stochastic MPC problem . . . . . . . . . . . . . . . . . . . . . 43
4.4.3 State distribution propagation . . . . . . . . . . . . . . . . . . 45
4.4.4 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.5 Chance constraints . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.6 Sparse GP dynamics . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.7 Tractable MPC problem . . . . . . . . . . . . . . . . . . . . . 49

5 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1 Trajectory tracking MPC for robot manipulators . . . . . . . . . . . . . 51

5.1.1 Joint space trajectory tracking . . . . . . . . . . . . . . . . . . 51
5.1.2 Task space trajectory tracking . . . . . . . . . . . . . . . . . . 55
5.1.3 Slack variables . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Trajectory blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 Position trajectory blending . . . . . . . . . . . . . . . . . . . 59
5.2.2 Quaternion trajectory blending . . . . . . . . . . . . . . . . . . 61

viii



5.3 Space manipulator modeling and control . . . . . . . . . . . . . . . . . 62
5.3.1 Space manipulator kinematics and dynamics . . . . . . . . . . 63
5.3.2 Space manipulator MPC . . . . . . . . . . . . . . . . . . . . . 66

5.4 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.1 GPflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.2 acados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.3 urdf2casadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.4 PyBullet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 Trajectory tracking for 2 DOF planar robot manipulator . . . . . . . . . 71

6.1.1 Linear MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.2 GP training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.1.3 GP-based MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Trajectory tracking for 6 DOF robot manipulator in simulation . . . . . 85
6.2.1 Joint space trajectory tracking . . . . . . . . . . . . . . . . . . 87
6.2.2 Task space trajectory tracking . . . . . . . . . . . . . . . . . . 95

6.3 Lab tests of trajectory tracking for UR10e robot . . . . . . . . . . . . . 101
6.3.1 Task space linear MPC test . . . . . . . . . . . . . . . . . . . . 103
6.3.2 Task space GP-based MPC test . . . . . . . . . . . . . . . . . . 105
6.3.3 Task space NMPC test . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Trajectory tracking for space manipulator in simulation . . . . . . . . . 107
6.4.1 Joint space linear MPC test . . . . . . . . . . . . . . . . . . . . 109
6.4.2 Joint space GP-based MPC test . . . . . . . . . . . . . . . . . . 112
6.4.3 Joint space NMPC test . . . . . . . . . . . . . . . . . . . . . . 113

7 Discussion and further work . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Solver and computation time . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 Lab results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.4 Space manipulator results . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A Conversions between rotation representations . . . . . . . . . . . . . . . . 125

ix



B Manipulating Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C Modeling of 2 DOF planar robot manipulator . . . . . . . . . . . . . . . . 131

D Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

x



List of Tables

6.1 DH parameters for the 2 DOF planar manipulator. . . . . . . . . . . . . 72

6.2 Link parameters for the 2 DOF planar manipulator. m̂ and Îzz are the
prior mass and inertia, respectively. . . . . . . . . . . . . . . . . . . . . 73

6.3 Joint parameters for 2 DOF planar manipulator. . . . . . . . . . . . . . 73

6.4 Parameter values for joint space trajectory tracking test with 2 DOF planar
manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Comparison of trajectory tracking RMSE, prediction RMSE and com-
putation time for linear MPC and GP-MPC, on training set and test
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 DH parameters for the UR10e robot, given in Parameters for calculations
of kinematics and dynamics 2020. . . . . . . . . . . . . . . . . . . . . 85

6.7 Joint limits for the UR10e robot. The maximum joint angle qmax, joint
angular velocity q̇max and joint torque τmax are given for every joint on
the 6 DOF robot, provided in E-Series From Universal Robots 2020 and
Max. Joint Torques 2015. . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.8 True and prior parameter values for final link of UR10e model used in
simulation and controllers respectively. . . . . . . . . . . . . . . . . . . 86

6.9 Fourier coefficients for the joint space trajectory of the UR10e robot
manipulator arm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.10 Parameter values for joint space trajectory tracking test with 6 DOF
manipulator in PyBullet simulation environment. . . . . . . . . . . . . 89

6.11 Comparison of trajectory tracking RMSE, prediction RMSE and com-
putation time for linear MPC, GP-MPC and forward dynamics-based
NMPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



6.12 Parameter values for task space trajectory tracking test with 6 DOF
manipulator in simulation. . . . . . . . . . . . . . . . . . . . . . . . . 97

6.13 Comparison of task space trajectory tracking RMSE, prediction RMSE
and computation times for linear MPC, GP-MPC and forward dynamics-
based NMPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.14 Parameter values for task space trajectory tracking test on UR10e robot
in lab environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.15 Comparison of joint space trajectory tracking RMSE, prediction RMSE
and computation times for linear MPC, GP-MPC and forward dynamics-
based NMPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.16 DH parameters for anthropomorphic arm. . . . . . . . . . . . . . . . . 108
6.17 Link parameters for space manipulator system with anthropomorphic

manipulator arm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.18 Joint parameters for space manipulator system with anthropomorphic

manipulator arm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.19 Fourier coefficients for joint space trajectory for the free-floating manipu-

lator arm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.20 Parameter values for joint space trajectory tracking test of space manipu-

lator in simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.21 Comparison of trajectory tracking RMSE, prediction RMSE and com-

putation time for linear MPC, GP-MPC, and forward dynamics-based
NMPC, for space manipulator joint space trajectory tracking. . . . . . . 114

D.1 Parameter values for joint space trajectory tracking test on UR10e robot
in lab environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D.2 Comparison of joint space trajectory tracking RMSE, prediction RMSE
and computation times for linear MPC, GP-MPC and forward dynamics-
based NMPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

D.3 Parameter values for task space trajectory tracking test of space manipu-
lator in simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

D.4 Comparison of trajectory tracking RMSE, prediction RMSE and com-
putation time for linear MPC, GP-MPC, and forward dynamics-based
NMPC, for space manipulator task space trajectory tracking. . . . . . . 142

xii



List of Figures

2.1 Relation between the rotation matrix defined byx′, y′ and z′, the angle-axis
representation given by u and θ and the rotation vector θu. . . . . . . . 7

2.2 Robot manipulator arm with n DOF. The base frame and end effector
frame are indicated, as well as the joint axes ki and the position vectors pi. 10

3.1 Visualization of MPC. The state x is controlled using the control input u
in order to track the reference trajectory rx, shown both for the previous
time steps in closed loop and for the current prediction horizon. . . . . . 21

3.2 RTI loop, with Tp and Tfb denoting the preparation phase and feedback
phase respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 1-sigma, 2-sigma and 3-sigma covariance ellipses for a bivariate Gaussian
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Realization of multivariate Gaussian for 2, 4 and 13 dimensions. . . . . 31

4.3 Mean and 2-sigma limits of multivariate Gaussian conditioned on x0, x4
and x7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Mean and 2-sigma limits of GP conditioned on x0, x4 and x7. . . . . . 32

4.5 1-sigma, 2-sigma and 3-sigma bounds for a Gaussian distributed variable
x with mean µ and variance σ2. . . . . . . . . . . . . . . . . . . . . . 33

4.6 Colormap of a SE kernel matrix, for a linearly spaced dataset. . . . . . . 33

4.7 GP mean and 2-sigma variance bounds for ℓ = 0.3 (left) and ℓ = 3 (right),
with σ2

n = 0.001 and σ2
f = 0.05 fixed. The training dataset is also shown. 35

4.8 GP mean and 2-sigma variance bounds for σ2
f = 0.02 (left) and σ2

f = 0.5

(right), with σ2
n = 0.001 and ℓ = 0.8 fixed. The training dataset is also

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xiii



4.9 GP mean and 2-sigma variance bounds for σ2
n = 0.001 (left) and σ2

n =

0.02 (right), with σ2
f = 0.05 and ℓ = 0.8 fixed. The training dataset is

also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.10 True function f and sampled dataset D. . . . . . . . . . . . . . . . . . 36

4.11 Prior GP distribution with zero mean and unit variance (left), and posterior
GP predictive distribution with mean µ and variance Σ (right), visualized
with 2-sigma bounds. Samples fs from the prior and posterior distributions
are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.12 True function f and sampled dataset D. . . . . . . . . . . . . . . . . . 40

4.13 Prior (left) and posterior (right) GP distributions, with initial random
inducing point locations and final locations after training with SVGP. The
variance is indicated with 3-sigma limits. . . . . . . . . . . . . . . . . 41

4.14 Time propagation of state distribution, here shown with 50-sigma variance
bounds to exaggerate the effect. The dashed lines indicate the closed-loop
solution leading up to the current time step. . . . . . . . . . . . . . . . 46

4.15 Open loop solution of GP-MPC showing the chance constraints, here with
3.5-sigma bounds for the joint velocities of a robot manipulator. . . . . 48

5.1 Block diagram of GP-MPC loop. GPR is done offline, given a dataset
D and prior model f . GP-MPC is used in closed loop given the desired
trajectory rx and the learned GP disturbance model d. . . . . . . . . . 55

5.2 Logistic function βl and third-order exponential βe for different values of
k and α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 SLERP from q0 to ro along unit hypersphere, projected to 3 dimensions. 62

5.4 Blended position and orientation trajectories for a periodic motion with
fixed orientation reference. The blending is done by linear interpolation of
position and SLERP interpolation of the quaternion, where both a logistic
function blend and a third-order exponential blending is shown. . . . . . 62

5.5 Space manipulator system, with inertial frame coordinate system and
satellite body frame coordinate system shown. The satellite body center
of mass, link center of mass, and total space manipulator system center
of mass is indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xiv



5.6 Workflow of the GP-MPC implementation for robot manipulator trajectory
tracking. h and f are the robot kinematics and dynamics, respectively,
and θ are the hyperparameters that parametrize the GP disturbance model. 69

6.1 2 DOF planar robot manipulator arm, with joint angles q1 and q2, and
link lengths ℓ1 and ℓ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Trefoil knot curve re1(t) (left) and Lissajous curve re2(t) (right) in the
xy-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Joint acceleration input and computed joint torque for 2 DOF planar
manipulator following joint space trajectory with linear MPC. . . . . . . 75

6.4 Joint angles and joint velocities for 2 DOF planar manipulator following
joint space trajectory with linear MPC. . . . . . . . . . . . . . . . . . . 76

6.5 Trajectory of 2 DOF planar manipulator with linear MPC in blue, and
desired trajectory in red. . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.6 Joint trajectory tracking error for 2 DOF planar manipulator with linear
MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.8 Trajectory of 2 DOF planar manipulator with linear MPC in blue, and
desired trajectory in red. . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.9 Joint trajectory tracking error for 2 DOF planar manipulator with linear
MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.10 Training dataset D split into q, q̇, u and y. . . . . . . . . . . . . . . . . 78

6.11 ELBO and RMSE on training set for every output dimension. . . . . . . 79

6.12 Evolution of hyperparameter values while training. Noise variance σ2
n

is shown in the top row, signal variance σ2
f is shown in the middle row

and length scales ℓ are shown in the bottom row, for dimension 1 to the
left and dimension 2 to the right. For brevity the individual length scale
indices are not indicated. . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.13 Predicted (left) and true posterior distribution (right) on test set. . . . . 80

6.14 Average RMSE from K-fold cross-validation with K = 5 and 40 000

iterations as a function of number of inducing variables. . . . . . . . . . 81

6.15 Trajectory of 2 DOF planar manipulator with GP-MPC in blue, and
desired trajectory in red. . . . . . . . . . . . . . . . . . . . . . . . . . 81

xv



6.16 Joint trajectory tracking error on trefoil knot trajectory for 2 DOF planar
manipulator with GP-MPC. . . . . . . . . . . . . . . . . . . . . . . . . 82

6.17 True and predicted disturbance for trefoil knot trajectory. . . . . . . . . 82
6.19 Trajectory of 2 DOF planar manipulator with GP-MPC in blue, and

desired trajectory in red. . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.20 Joint trajectory tracking error on Lissajous trajectory for 2 DOF planar

manipulator with GP-MPC. . . . . . . . . . . . . . . . . . . . . . . . . 84
6.21 UR10e robot in PyBullet simulation environment. . . . . . . . . . . . . 85
6.22 End effector trajectory shown in Cartesian space. Time is indicated by

the color map from blue to yellow. . . . . . . . . . . . . . . . . . . . . 88
6.23 Joint acceleration input and computed joint torque for 6 DOF manipulator

following joint space trajectory with linear MPC. . . . . . . . . . . . . 89
6.24 Joint angles and joint velocities for 6 DOF manipulator following joint

space trajectory with linear MPC. . . . . . . . . . . . . . . . . . . . . 90
6.25 End-effector trajectory and configuration of robot at certain time steps. . 90
6.26 Joint trajectory tracking error for 6 DOF manipulator with linear MPC. . 90
6.27 Computation time with linear MPC for 6 DOF manipulator. The average

is indicated by the dotted line. . . . . . . . . . . . . . . . . . . . . . . 91
6.28 GP disturbance prediction µd and true disturbance d. . . . . . . . . . . 92
6.29 Joint trajectory tracking error for 6 DOF manipulator with GP-MPC. . . 92
6.30 Computation time with GP-MPC for 6 DOF manipulator. The average is

indicated by the dotted line. . . . . . . . . . . . . . . . . . . . . . . . . 93
6.31 Comparison of average RMSE for K-fold CV for FITC, VFE and SVGP

methods, on 6 DOF joint space training dataset. Average RMSE is given
for every output dimension, with standard deviation indicated as error bars. 93

6.32 Joint trajectory tracking error for 6 DOF manipulator with NMPC. . . . 94
6.33 Computation time with NMPC for 6 DOF manipulator. The average is

indicated by the dotted line. . . . . . . . . . . . . . . . . . . . . . . . . 94
6.34 Desired end effector pose trajectory re(t), with trefoil knot position

trajectory and fixed orientation reference. . . . . . . . . . . . . . . . . 96
6.35 Joint acceleration input and computed joint torque for 6 DOF manipulator

following joint space trajectory with linear MPC. . . . . . . . . . . . . 97

xvi



6.36 6 DOF UR10e manipulator tracking end effector pose trajectory in
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.37 Joint angles and joint velocities for 6 DOF manipulator following task
space trajectory with linear MPC. . . . . . . . . . . . . . . . . . . . . 98

6.38 Desired and actual end effector pose for 6 DOF manipulator following
task space trajectory with linear MPC. . . . . . . . . . . . . . . . . . . 98

6.39 End effector pose trajectory tracking error for 6 DOF manipulator follow-
ing task space trajectory with linear MPC. . . . . . . . . . . . . . . . . 99

6.40 GP disturbance prediction µd and true disturbance d. . . . . . . . . . . 99
6.41 End effector pose trajectory tracking error for 6 DOF manipulator follow-

ing task space trajectory with GP-MPC. . . . . . . . . . . . . . . . . . 100
6.42 End effector pose trajectory tracking error for 6 DOF manipulator follow-

ing task space trajectory with NMPC. . . . . . . . . . . . . . . . . . . 100
6.43 Lab setup with UR10e robot. . . . . . . . . . . . . . . . . . . . . . . . 102
6.44 Computed torque input for UR10e task space trajectory tracking with

linear MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.45 Joint angles and joint velocities for UR10e task space trajectory tracking

with linear MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.46 Desired and actual end effector pose with linear MPC. . . . . . . . . . . 105
6.47 End effector pose tracking error for UR10e using linear MPC. . . . . . 105
6.48 GP disturbance prediction µd and true disturbance d. . . . . . . . . . . 106
6.49 End effector pose tracking error for UR10e using GP-MPC. . . . . . . . 106
6.50 End effector pose tracking error for UR10e using NMPC. . . . . . . . . 107
6.51 Space manipulator URDF model in PyBullet simulation. . . . . . . . . 109
6.52 Joint acceleration input and computed torque using linear MPC. . . . . 110
6.53 Joint angles and joint velocities for space manipulator following joint

space trajectory with linear MPC. . . . . . . . . . . . . . . . . . . . . 111
6.54 Linear and angular velocity of satellite body with linear MPC. . . . . . 111
6.55 Position and orientation of satellite body with linear MPC. . . . . . . . 111
6.56 Joint trajectory tracking error for space manipulator with linear MPC. . 112
6.57 GP disturbance prediction µd and true disturbance d. . . . . . . . . . . 113
6.58 Joint trajectory tracking error for space manipulator with GP-MPC. . . . 113
6.59 Joint trajectory tracking error for space manipulator with NMPC. . . . . 114

xvii



D.1 Joint acceleration input and computed joint torque for joint space trajectory
tracking with UR10e using linear MPC. . . . . . . . . . . . . . . . . . 133

D.2 Joint angles and joint velocities for joint space trajectory tracking with
UR10e using linear MPC. . . . . . . . . . . . . . . . . . . . . . . . . . 134

D.3 Joint space trajectory tracking error for UR10e using linear MPC. . . . 135
D.4 Joint space trajectory tracking error for UR10e using GP-MPC. . . . . . 135
D.5 Joint space trajectory tracking error for UR10e using NMPC. . . . . . . 136
D.6 Lissajous curve in Cartesian space. Time is indicated by the colormap

from blue to yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
D.7 Joint acceleration input and computed torque using linear MPC. . . . . 138
D.8 Joint angles and joint velocities for space manipulator following task

space trajectory with linear MPC. . . . . . . . . . . . . . . . . . . . . 139
D.9 Desired and actual end effector position trajectory with linear MPC in

Cartesian space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
D.10 Space manipulator system tracking Lissajous trajectory in inertial frame. 139
D.11 Position and orientation of satellite body with linear MPC. . . . . . . . 140
D.12 Linear and angular velocity of satellite body with linear MPC. . . . . . 140
D.13 End effector position trajectory and corresponding tracking error with

linear MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
D.14 GP disturbance prediction µd and true disturbance d. . . . . . . . . . . 141
D.15 End effector position tracking error with GP-MPC. . . . . . . . . . . . 141
D.16 End effector position tracking error with NMPC. . . . . . . . . . . . . 142

xviii



Acronyms

ADCS Attitude Determination and Control System

CV Cross-validation

DH Denavit-Hartenberg

DOF Degrees of freedom

ELBO Evidence lower bound

ERK Explicit Runge-Kutta

ERK4 Explicit Runge-Kutta of 4th order

FITC Fully Independent Training Conditional

GP Gaussian process

GPR Gaussian process regression

i.i.d. Independent and identically distributed

IRK Implicit Runge-Kutta

KKT Karush-Kuhn-Tucker

KL Kullback-Leibler

LQR Linear Quadratic Regulator

MPC Model Predictive Control

NLP Nonlinear program

NMPC Nonlinear Model Predictive Control

xix



OCP Optimal Control Problem

QLB Quaternion Linear Blending

QP Quadratic program

RMSE Root mean square error

ROS Robot Operating System

RTDE Real-time Data Exchange

RTI Real-time iteration

SE Squared Exponential

SGD Stochastic gradient descent

SLERP Spherical linear interpolation

SQP Sequential quadratic programming

SVGP Sparse Variational Gaussian Process

URDF Unified Robot Description Format

VFE Variational Free Energy

xx



Notation

E [x] Expected value of random variable x

∇xf(x) Gradient of scalar function f with respect to x

∇2
xf(x) Hessian matrix of scalar function f with respect

to x

Im m×m identity matrix

Ai,· i-th row vector of matrix A

A·,j j-th column vector of matrix A

Aij Element of matrix A on row i and column j

A† Pseudoinverse of matrix A

det(A) Determinant of matrix A

diag(x) Diagonal matrix where diagonal is given by
elements of vector x

diag(A) Vector of diagonal elements of matrix A

blkdiag(. . . ) Block diagonal matrix

tr(A) Trace of matrix A

N The set of natural numbers {1, 2, . . . }

Na The set of all natural numbers up to a ∈ N, i.e.,
{1, 2, . . . , a}

N0 The set N ∪ {0} = {0, 1, 2, . . . }

∥x∥ Euclidean norm of vector x

xxi



∥x∥2Q Squared Euclidean norm of vector x weighted
by matrix Q ≻ 0, i.e., x⊤Qx

A ≻ 0 Positive definite matrix

Pr(X) Probability of event X

sgn(x) Sign function of scalarx, where sgn(x) = |x|/x,
for x ̸= 0 and sgn(x) = 0 for x = 0

[x]× Skew-symmetric matrix of vector x

xxii



1 Introduction

1.1 Motivation
The emergence of autonomous robots, specifically the increasing use of cost-effective and
collaborative robot manipulator arms, motivates the need for fast and accurate trajectory
tracking methods. Especially the rise of autonomous floating-base systems, such as
space manipulator systems and AUVs, have challenging requirements for autonomy. This
motivates the development of trajectory tracking methods that are able to plan the robot
motion in the presence of uncertainty and system constraints.

Optimal control provides a useful framework for motion planning and control for
robotic systems. Finding the optimal control policy over a future time horizon while
adhering to constraints is evidently useful for many robotics applications, especially when
solving this problem in a receding horizon manner with Model Predictive Control (MPC).
However, predictive control approaches are dependent on having an accurate model
of the system dynamics, which, especially for complex and nonlinear systems, is not
necessarily easy to obtain. Furthermore, data from tests on the system are often available.
This motivates using learning-based approaches to learn the system dynamics, such as
model-free methods built on deep learning, which have risen in popularity in recent years
for robotics applications. On the other hand, simplified models based on first principles
can still provide a decent estimate of the true dynamics. This calls into question the
necessity of completely discarding these rudimentary models in learning-based methods,
for instance, in regards to sample efficiency. This motivates learning a disturbance model
which models the residual between the first principles model and the true dynamics, rather
than the entire dynamics directly.

In this work, a Gaussian process (GP) is used to model the disturbance dynamics,
based on the approach described in Hewing, Kabzan, et al. 2019 and Carron et al. 2019.
Gaussian process regression (GPR) is a Bayesian inference method, meaning it is based

1



1 Introduction

on formulating a prior and updating this prior belief based on observed data, giving the
posterior. An advantage of learning such a disturbance model using Bayesian inference is
that the resulting model allows for quantifying the uncertainty in the model. This allows
for seamless integration with stochastic MPC, where the stochastic nature of the state can
be explicitly considered by propagating the state uncertainty over the prediction horizon.
Furthermore, this framework of including a Bayesian model in a stochastic optimization
problem allows formulating constraints in terms of the probability of constraint violation,
which enables tuning how cautious the controller is in the presence of uncertainty.

However, stochastic MPC methods typically have high computational demands. This
motivates investigating how to solve the optimization problem in a real-time feasible
fashion. How to incorporate approximate GP methods is also of interest to improve
scalability and computation time.

1.2 Objectives

The main objective of this work is to explore GP-based predictive control for trajectory
tracking applications of robot manipulator arms. This includes investigating performance
both for fixed-base manipulator systems and floating-base systems. Furthermore, the MPC
approach using a GP disturbance model, from here on referred to as GP-MPC, will be
compared to the more straightforward approach of Nonlinear Model Predictive Control
(NMPC) using the nonlinear prior dynamics model directly. The work aims to investigate
trajectory tracking with these methods with both task space and joint space trajectories.
The aforementioned objectives can be concretized in the following research questions:

• How may a GP disturbance model be included in a real-time trajectory tracking
NMPC controller for robot manipulators with a joint space or task space cost
function?

• How does GP-MPC compare to deterministic NMPC using only the prior model
for fixed-base robot manipulators, both in simulation tests and in lab tests?

• How may GP-MPC be applied to free-floating manipulators, specifically space
manipulator systems, and how does it compare to deterministic NMPC?

2



1.3 Contribution

1.3 Contribution

The GP-MPC and NMPC methods were implemented and tested to investigate the
previously stated research questions. The main contributions are a task space cost
formulation, in addition to the joint space formulation, only the latter of which is covered
in Carron et al. 2019. Furthermore, the controllers were tested on a free-floating space
manipulator system and a fixed-base 6 degrees of freedom (DOF) UR10e robot manipulator
arm in simulation. To the best of the author’s knowledge, GP-MPC has not been considered
with task space trajectory tracking costs for robot manipulators nor the application of
space manipulators. Results are presented from lab experiments of the proposed methods
on a UR10e robot as well.

The trajectory tracking MPC methods were implemented for real-time control using the
Real-time iteration (RTI) scheme for sequential quadratic programming (SQP). Finally, the
work also considers multiple sparse GP approximation methods for efficient computation,
primarily the Sparse Variational Gaussian Process (SVGP) method introduced in Hensman
et al. 2013, which builds upon the Variational Free Energy (VFE) method in Titsias 2009.
To the best of the author’s knowledge, the SVGP method has not been applied to GP-based
MPC methods in the literature.

1.4 Outline

The outline of the remainder of this text is as follows: in Chapter 2 the necessary
background theory on kinematics and dynamics for robot manipulators is given. Chapter 3
gives an overview of optimal control theory and goes in further detail on SQP and the RTI
scheme. In Chapter 4 GPR is introduced, as well as sparse GP methods. Finally, GP-based
MPC is formulated, which combines stochastic MPC with a model learned using GPR.
Chapter 5 presents the specific trajectory tracking MPC problems considered in this work.
In addition, it covers modeling and the control strategies for the space manipulator system,
as well as the software tools used to implement the discussed methods. Results from
simulations and lab experiments are presented in Chapter 6, consisting of an illustrative
toy example with a planar arm, simulations and lab results with a UR10e robot, and
simulation results with a free-floating space manipulator arm. The results are discussed,
and directions for further work are suggested in Chapter 7. Chapter 8 contains some

3



1 Introduction

concluding remarks. Finally, some supplementary material is given in the appendices.
These include additional formulas for converting between different rotation formulations
in Appendix A and for manipulating Gaussian distributions in Appendix B. Modeling of
the planar arm is presented in Appendix C for completeness, and supplementary results
from UR10e lab tests and space manipulator simulations are given in Appendix D.

4



2 Kinematics and dynamics of robot
manipulator arms†

The foundation of control design, motion planning, and simulation for robot manipulator
arms starts with how the motion of robots are described. This is done by formulating
the kinematics (motion as a purely geometric concept) and the dynamics (motion as
a consequence of applied forces and torques). This chapter will start by covering the
necessary formalisms for how to represent the position and orientation of rigid bodies in
space. Then the kinematics of robot manipulators will be formulated using the Denavit-
Hartenberg (DH) convention, and the Jacobian will be introduced to formulate the
differential kinematics. Finally, the dynamics of the system will be considered briefly.

2.1 Rigid body rotation representations

When expressing the state of a rigid body in space, it is uniquely defined by its position
and orientation, collectively referred to as its pose, relative to some reference frame. Its
position can trivially be described by the vector p ∈ R3. How a rigid body’s orientation is
represented is not quite as trivial. This section will, therefore, cover the different rotation
representations used throughout this work. The reader is referred to Siciliano et al. 2010,
Fossen 2011 and Solà 2017 for further details on rigid body rotations.

2.1.1 Rotation matrices

When describing the rotation of a rigid body in some reference frame, a possible starting
point is to look at how the axes of the reference frame are transformed under a rotation.

†This chapter is adapted from Brandt 2020.

5



2 Kinematics and dynamics of robot manipulator arms

Given the unit vectors x,y, z and the rotated unit vectors x′,y′, z′, the corresponding
rotation of an arbitrary vector v ∈ R3 can be defined as:

v′ = Rv =
[
x′ y′ z′

]
v, (2.1)

where R ∈ SO(3) is termed the rotation matrix and SO(3) is the special orthogonal
group in three dimensions, containing all rotations around the origin. When SO(3) is
parametrized using rotation matrices, its properties can be defined byR⊤R = RR⊤ = I3

and det(R) = 1, where det(R) is the determinant of R. Note that a sequence of rotations
is given by multiplication, such that R2

0 = R1
0R

2
1 describes a rotation from frame 0 to

frame 1, followed by a rotation from frame 1 to frame 2, which is equivalent to a rotation
from frame 0 to frame 2 directly.

2.1.2 Angle-axis representation

An alternative way to describe rotation in R3 is to consider a rotation about the axis
unit vector u ∈ R3 by the angle θ. The resulting representation, called the angle-axis
representation, is related to the rotation matrix by

Ru,θ = I3 + sin θ[u]× + (1− cos θ)[u]2×, (2.2)

where [u]× denotes the skew-symmetric matrix of u

[u]× =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 . (2.3)

For some applications, it may be useful to represent the rotation by the vector v = θu,
termed the rotation vector. Note that this transforms the representation from 4 parameters
to 3 parameters, which introduces a singularity in θ = 0, for which the rotation is not
defined. The angle-axis representation, rotation vector, and their relation to the rotation
matrix are visualized in Figure 2.1.

6



2.1 Rigid body rotation representations

x
y

z

x′

y′

z′

u

θuθ

θ

θ

Figure 2.1: Relation between the rotation matrix defined by x′, y′ and z′, the angle-axis
representation given by u and θ and the rotation vector θu.

2.1.3 Euler angles

Another possible minimal representation is to consider three consecutive rotations, each
around one of the coordinate axes. The Euler angles Θ = [φ θ ψ ]⊤ can then be
defined, for some combination of three rotations about X, Y, and Z. In the following, the
ZYX (roll-pitch-yaw) convention is used. Note that similarly to the rotation vector, this
representation also has a singularity. For the ZYX convention, this happens for θ = ± π/2.
For further details on rotation matrices, angle-axis and Euler angles the reader is referred
to Fossen 2011 and Siciliano et al. 2010.

2.1.4 Unit quaternions

Quaternions are a generalization of complex numbers which are often used to represent
rotations in 3-dimensional space. In the same way that a complex number on the unit
circle can represent a rotation in R2, quaternions of unit length can represent a rotation in
R3. In the section that follows, a brief overview of unit quaternions and their relation to
rotational motion is given, based on Solà 2017.

Quaternions consist of a single real element and three imaginary elements and can be
written as the vector

q =

η
ε

 , (2.4)

7



2 Kinematics and dynamics of robot manipulator arms

where η ∈ R and ε ∈ R3 are the scalar and vector parts of the quaternion respectively.

The multiplication of two quaternions q1 = [ η1 ε⊤1 ]⊤ and q2 = [ η2 ε⊤2 ]⊤ is defined
by

q1 ⊗ q2 =

 η1η2 − ε⊤1 ε2

η2ε1 + η1ε2 + [ε1]×ε2

 . (2.5)

The inverse of a quaternion is defined as

q−1 =
q∗

∥q∥2
, (2.6)

where ∥q∥ =
√
η2 + ε⊤ε is the quaternion norm and

q∗ =

 η

−ε

 (2.7)

is the quaternion conjugate.

A unit quaternion has unit norm ∥q∥ = 1, and is as previously mentioned one
of the standard representations of rigid body rotations. Going back to the axis-angle
representation, given a unit vector u and angle θ, the unit quaternion is given by

q =

 cos θ2

u sin θ
2

 , (2.8)

analogous to Euler’s formula for two-dimensional rotation using complex numbers. In the
quaternion formalism, the rotation of a vector x by the quaternion q is given by

x′ = q ⊗

0
x

⊗ q∗. (2.9)

Furthermore, the relation between the rotation matrix and the quaternion is as given in
Solà 2017

R = (η − ε⊤ε)I3 + 2εε⊤ + 2η[ε]×. (2.10)

Other conversion formulas between the different formalisms relevant to this work are

8



2.1 Rigid body rotation representations

given in Appendix A. Note that the unit quaternion representation is not unique, as q
and −q represent the same rotation. While the representation is not unique, it is however
singularity-free.

A composition of several rotations, similarly to rotation matrices, is given by the
product of these unit quaternions, i.e., qAC = qAB ⊗ qBC . The unit quaternion error can
then be defined as

δq = q∗
1 ⊗ q2, (2.11)

as this achieves q2 = q1 ⊗ δq.

Finally, the unit quaternion exponential, logarithm and power will be given, as presented
in Solà 2017. The exponential of a unit quaternion is defined as

eq = eη

 cos ∥ε∥
ε

∥ε∥ sin ∥ε∥

 , (2.12)

and the inverse operation, the unit quaternion logarithm, is defined as

log q =

 0

θu

 , (2.13)

where u and θ are defined as in Section 2.1.2. Note that the imaginary part of the
quaternion logarithm is the rotation vector, such that the logarithm defines a map from
quaternions to rotation vectors.

Finally, using the preceding definitions the unit quaternion power can be defined as

qs = exp(s log q) =

 cos sθ

u sin sθ

 , (2.14)

which creates the basis for interpolation between quaternions. This will be discussed
further in Section 5.2.2.

9



2 Kinematics and dynamics of robot manipulator arms

2.2 Manipulator kinematics and the Denavit-Hartenberg
convention

A robot manipulator is a mechanical system consisting of a chain of rigid body links
connected by joints. A robot manipulator arm with n DOF, i.e., n joints, is depicted in
Figure 2.2. One end of the chain is connected to a fixed base, while the other is connected
to the end effector, which is a general term for the tool at the end of the arm that interacts
with the environment. Let ki denote the unit norm joint axis of the i-th joint, and pi be the
translation to the i-th joint. The states of the system can be defines as x ∈ R2n, consisting
of the joint angles q ∈ Rn and the joint angular velocities q̇ ∈ Rn, i.e.,

x =

q
q̇

 . (2.15)

The space spanned by q is denoted as the joint space.

yb

zb

xb

k 1

k 2

kn

ze

xe

ye

pn
pe

Figure 2.2: Robot manipulator arm with n DOF. The base frame and end effector frame
are indicated, as well as the joint axes ki and the position vectors pi.

However, when interacting with the environment, the tasks for the robot are usually
expressed in terms of the desired end effector pose re(t), not a desired joint configuration.
The end effector position is denoted by pe and the end effector orientation is denoted

10



2.2 Manipulator kinematics and the Denavit-Hartenberg convention

as the unit quaternion Qe. The end effector pose space, spanned by the end effector
pose he = [p⊤

e Q⊤
e ]⊤, is therefore known as the task space or operational space. This

motivates the introduction of some mathematical framework for expressing the pose
of the end effector using the joint configuration of the manipulator q, which is termed
the forward kinematics. In the following, the forward kinematics equations for robot
manipulator arms will be formulated using homogeneous transformation matrices.

2.2.1 Homogeneous transformation matrices

Motivated by the goal of finding a mapping from the joint space to the task space, it is
noted how the rigid body transformation from the inertial frame to the end effector frame
is a series of rigid body transformations along the links of the manipulator. Homogeneous
coordinates and homogeneous transformations are convenient mathematical tools to
represent this chain of rigid body transformations.

As discussed in Siciliano et al. 2010, one first extends the representation of a point
p ∈ R3 by appending a unit element, i.e.,

p̃ =

p
1

 , (2.16)

which is termed homogeneous coordinates. The homogeneous transformation matrix can
then be defined as

T 0
1 =

R0
1 r01

0⊤ 1

 ∈ SE(3), (2.17)

which transforms a homogeneous coordinate vector p̃ from frame 1 to frame 0 defined by
the translation vector r01 ∈ R3 and the rotation vector R0

1 ∈ SO(3). SE(3) is termed the
special Euclidean group, and consists of all rigid body transformations. The transformation
is then written as

p̃0 = T 0
1 p̃1. (2.18)

Analogous to rotation matrices, a sequence of homogeneous transformations is given by

p̃0 = T 0
1 T 1

2 · · · T n−1
n p̃n. (2.19)

11



2 Kinematics and dynamics of robot manipulator arms

It is then straightforward to formulate the forward kinematics of the end effector using
a series of homogeneous transformations. Firstly, a fixed coordinate frame is defined in
every link. The sequence of homogeneous transformations from the end effector frame,
from every link to its parent, to the base frame, can then be considered. The homogeneous
transformation matrix describing the pose of the end effector with respect to the base
frame is then given as:

T b
e (q) = T b

0 T 0
1 (q1) T

1
2 (q2) · · · T n−1

n (qn) T
n
e , (2.20)

where T b
0 and T n

e are fixed transformations between the base frame and the first link, and
the last link and the end effector frame, respectively.

2.2.2 The Denavit-Hartenberg convention

It has been seen how the pose of the end effector is related to the base frame with
homogeneous transformations. However, how these homogeneous transformation matrices
are formulated, and therefore also the end effector pose, using the joint angles, are yet to
be seen. This task comes down to how to define the link frames and the transformations
between them. The DH convention formulates a systematic way of expressing these
transformations for any robot manipulator.

The transform from frame i+1 to frame i, for i ∈ Nn−1 = {1, 2, . . . , n−1}, following
the DH convention, is defined as

T i
i+1 =

Rz (θi) diez

0T 1

Rx (αi) aiex

0T 1


=

Rz (θi)Rx (αi) aiRz (θi) ex + diez

0T 1

 ,
(2.21)

where Rx and Rz denote simple rotations around the x-axis and z-axis, and ex =

[ 1 0 0 ]⊤ and ez = [ 0 0 1 ]⊤. The transformation consists of a translation by di and
rotation by θi about the z-axis, followed by a translation by ai and a rotation by αi about
the x-axis of the intermediate frame. Given the DH parameters for a robot manipulator,
the forward kinematics of the end effector can then be defined as a sequence of linear

12



2.3 Differential kinematics

transformations. The reader is referred to Siciliano et al. 2010 for further details regarding
homogeneous transformation matrices and the Denavit-Hartenberg convention.

2.3 Differential kinematics

In this section the Jacobian will be introduced, which provides the mapping from joint
velocities to end effector velocity, termed the differential kinematics. This is analogous to
how the kinematics gives the mapping from joint angles to end effector pose. As discussed
in Siciliano et al. 2010, the end effector velocity νe ∈ R6 is related to the joint angular
velocities q̇ ∈ Rn by the linear map given by the geometric Jacobian J(q):

νe =

ve
ωe

 = J(q)q̇, (2.22)

where ve ∈ R3 and ωe ∈ R3 are the linear and angular velocity of the end effector,
J = [J⊤

T J⊤
R ]⊤ ∈ R6×n, and JT ∈ R3×n is the Jacobian, and JR ∈ R3×n are the

translational and rotational components of the Jacobian respectively. Note that the general
case of three spatial dimensions is assumed here.

It is shown in Siciliano et al. 2010 that the geometric Jacobian for a general fixed-base
robot manipulator arm is

J =

[k1]×(pe − p1) · · · [kn]×(pe − pn)

k1 · · · kn

 . (2.23)

It is assumed that all joints are revolute, i.e., rotational, as opposed to prismatic joints,
which are translational.

The inverse problem, i.e., finding the required joint velocities needed to reach a desired
end effector velocity, is also of interest, which is termed inverse differential kinematics.
This can be achieved by inversion of the Jacobian, or more generally by the pseudoinverse
of the Jacobian:

q̇ = J†(q)νe, (2.24)

where J†(q) = J⊤(q)(J(q)J⊤(q))−1 is the pseudoinverse. In practice a damped

13



2 Kinematics and dynamics of robot manipulator arms

pseudoinverse is often used to avoid singular configurations:

q̇ = J⊤(q)
(
J(q)J⊤(q) + λ2I6

)−1
νe, (2.25)

with λ being a damping parameter.

2.4 Manipulator dynamics
For control and simulation purposes, it is useful to study not only the kinematics of the
manipulator but also the dynamics. As introduced in Section 2.2, the states of the system
are given by the joint angles q and the joint velocities q̇. The control inputs are the joint
motor torques τ . The general manipulator equations of motion can then be derived as

M(q)q̈ +C(q, q̇)q̇ + Fvq̇ + Fs sgn(q̇) + g(q) = τ − J⊤(q)he. (2.26)

Here M is the square, symmetric and positive-definite mass matrix, C is the Coriolis
and centripetal force matrix, g is the gravity term, and Fv ∈ Rn×n and Fs ∈ Rn×n are
diagonal matrices of viscous and static (Coulomb) friction coefficients respectively. The
rightmost term in Eq. (2.26) gives the joint torques from contact forces and torques on
the end effector, where he denotes the forces and torques from the end effector on the
environment. Finally sgn(·) denotes the vector of element-wise sign functions.

The equations of motion can be derived, e.g., by Lagrange’s equation or using a
Newton-Euler approach such as the recursive Newton-Euler algorithm. The specific
formulation of M(q) and C(q) are given in Siciliano et al. 2010. The formulation in
Eq. (2.26) allows for the computation of required torques for a given desired motion and
is referred to as the inverse dynamics.

From here on it is assumed that Fv = Fs = 0 and he = 0 in the models used for
control and planning, i.e., static and viscous friction terms are neglected and the robot
does not exert any forces or torques on its environment. The resulting simplified inverse
dynamics model is then

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ . (2.27)

By rewriting the equations of motion in terms of the state vector x = [ q⊤ q̇⊤ ]⊤ =

14



2.4 Manipulator dynamics

[x⊤
1 x⊤

2 ]⊤ the forward dynamics

ẋ = f(x, τ ) =

 x2

M(x1)
−1(τ −C(x1,x2)− g(x1))

 (2.28)

are obtained. They can be derived by explicitly calculating the inverse of the inertia matrix
or using a recursive forward dynamics algorithm such as the articulated body algorithm
or the composite rigid body algorithm, as detailed in Featherstone 2008.

15





3 Optimal control†

Optimal control theory considers how to find optimal control policies for dynamical
systems with respect to some cost function. This approach to motion planning and control
provides many benefits relevant for autonomous robots, one of which is how constraints
in the system, such as bounds on the robot joints, can be considered explicitly when
finding the optimal control policy. The branch of numerical optimal control is concerned
with how to apply numerical methods to approximately solve such problems. This is
of practical interest, as it has the potential to solve complex optimal control problem
(OCP)s in real-time. This chapter will give a brief introduction to optimal control, NMPC
and direct numerical optimal control methods. Additionally, the SQP method for solving
nonlinear program (NLP)s will be introduced, and the RTI scheme used for solving NLPs
in real-time in this work will be discussed.

3.1 Optimal control and model predictive control

This section will start by introducing the general infinite-horizon OCP for continuous-time
systems. It will then examine more computationally tractable formulations by discretizing
the problem and using the finite horizon approximation. Finally, the concept of closing
the loop with MPC will be discussed. The section is based on Rawlings et al. 2019, Grüne
and Pannek 2011 and Johansen 2011.

†This chapter is adapted from Brandt 2020.

17



3 Optimal control

Firstly, the continuous-time infinite horizon OCP is given as:

min
x,u

∫ ∞

0

ℓ(x,u) dt

s.t. ẋ = f(x,u),

x(t) ∈ X , ∀t,

u(t) ∈ U , ∀t,

x(0) = x0,

(3.1)

where ℓ(x,u) is the cost function, f(x,u) are the system dynamics, X and U are some
in general non-convex state and input constraint sets, and x0 ∈ Rn is the initial condition.
x ∈ Rnx and u ∈ Rnu denote the time-varying state and control input, respectively. For
the case of robot manipulators, the state and input constraint sets typically include joint
angle, joint velocity and motor torque constraints, but other nonlinear constraints may
also be considered.

It is desirable to solve Eq. (3.1) analytically and apply the optimal control input u⋆(t)
to the dynamical system. However, finding the exact solution is rarely computationally
tractable for a nonlinear OCP. Discretization is therefore necessary, and here a distinction
is made between indirect and direct methods. Indirect methods are concerned with how
to solve the continuous OCP in Eq. (3.1) and then discretize the solution, while direct
methods first discretize the problem and then solve it using numerical optimization. In
the following, direct methods will be explored further, as they provide methods that are
computationally efficient and easily applicable to a wide range of problems.

The discretized system dynamics xi+1 = fd(xi,ui) will now be considered, with a
constant time step, also referred to as sample time, of ts. How the discretized dynamics
function fd is obtained will be discussed in further detail in Section 3.2. Furthermore, the
cost function will now be a sum over the time steps instead of an integral. The resulting

18



3.1 Optimal control and model predictive control

optimization problem, termed the discrete-time infinite horizon OCP, can be written as

min
x,u

∞∑
i=0

ℓd(xi,ui) (3.2a)

s.t. xi+1 = fd(xi,ui), i = 0, . . . , N − 1, (3.2b)

xi ∈ X , i = 0, . . . , N, (3.2c)

ui ∈ U , i = 0, . . . , N − 1, (3.2d)

x0 = x̄0, (3.2e)

where ℓd is the discretized stage cost and x̄0 is the initial condition. The optimization
variables are the vector of stacked state variables x = [x⊤

0 · · · x⊤
N ]⊤ and the vector

of stacked input variables u = [u⊤
0 · · · u⊤

N−1 ]
⊤. This problem is, however, still

computationally intractable for most combinations of stage costs and dynamics, as a
consequence of the infinite horizon length.

Yet the simple case with linear time-invariant dynamics

xi+1 = Axi +Bui, (3.3)

quadratic stage cost
ℓd(xi,ui) = ∥xi∥2Q + ∥ui∥2R, (3.4)

and no state and input constraints, i.e., X = Rnx and U = Rnu , will briefly be discussed.
Here Q ≻ 0 and R ≻ 0 are the state weight matrix and input weight matrix, respectively.
Under these assumptions an analytic solution exists, termed the Linear Quadratic Regulator
(LQR), given by the control law

ui = −Kxi, (3.5)

where the LQR gain K is given by

K =
(
B⊤PB +R

)−1
B⊤PA (3.6)

and P is given by the positive definite solution of the discrete algebraic Ricatti equation:

P = Q+A⊤PA−ATPB
(
B⊤PB +R

)−1
B⊤PA. (3.7)

19



3 Optimal control

For more involved discrete-time OCPs, the infinite-horizon solution is often intractable,
as it is infinite-dimensional. In the following the study will, therefore, be restricted to the
discrete-time finite horizon OCP, with a finite horizon length T , consisting of N steps
of length ts. Considering general nonlinear costs and dynamics, the following NLP is
obtained:

min
x,u

N−1∑
i=0

ℓ(xi,ui) + ℓf (xN ) (3.8a)

s.t. xi+1 = fd(xi,ui), i = 0, . . . , N − 1, (3.8b)

gi(xi,ui) ≤ 0, i = 0, . . . , N − 1, (3.8c)

hi(xi,ui) = 0, i = 0, . . . , N − 1, (3.8d)

gN (xN ) ≤ 0, (3.8e)

hN (xN ) = 0, (3.8f)

x0 = x̄0. (3.8g)

Here the final stage cost ℓf (xN ) is introduced, in order to approximate the remaining
cost from N to infinity. Furthermore, the state and input constraints are formulated more
explicitly as a set of nonlinear inequality and equality constraints with gi(xi,ui) and
hi(xi,ui).

After formulating the discrete-time finite-horizon OCP in Eq. (3.8), the NMPC algorithm
can be formulated, as given in Algorithm 1. By solving the OCP Eq. (3.8) at every time
step with the current sampled state and applying the first control input from the solution,
one effectively closes the loop.

This concept is illustrated in Figure 3.1. MPC introduces robustness against modeling
errors and noise when compared to applying the optimal control sequence u⋆ directly in
open loop. Nevertheless, this comes at the cost of high computational demands, as the
optimization problem must be solved at every time step. Theoretical details on NMPC,
such as stability, feasibility, and robustness, will not be discussed here. See Grüne and
Pannek 2011 and Johansen 2011 for further details on NMPC theory.

20



3.2 Direct numerical optimal control methods

Algorithm 1 NMPC
1: For every time step tk:
2: Sample the current state x(tk) of the system.
3: Solve Eq. (3.8) using x̄0 = x(tk), and denote the solution as x⋆,u⋆.
4: Let u⋆0 be the control input at the current time step.

k− 1 k k+ 1 k+N

u

x

rx

Past Prediction

Figure 3.1: Visualization of MPC. The state x is controlled using the control input u in
order to track the reference trajectory rx, shown both for the previous time
steps in closed loop and for the current prediction horizon.

3.2 Direct numerical optimal control methods

In the following, a brief overview of the most relevant direct optimal control methods will
be presented, based on Johansen 2011 and Rawlings et al. 2019. Starting with direct single
shooting, the basic idea is to eliminate the state variable x by recursively substituting the
discretized system dynamics fd(xi,ui) for xi+1. One then obtains a reduced problem
where the cost and constraints are only a function of the input variable u and the initial
condition x̄0.

This implies the use of some numerical integration scheme for the cost and dynamics.
The integral of the cost function is typically evaluated using some simple quadrature
rule, such as the rectangle rule or the trapezoidal rule. The dynamics can be discretized
using a numerical integration scheme such as explicit Runge-Kutta (ERK) or implicit
Runge-Kutta (IRK) methods. One typical example is the 4th order explicit Runge-Kutta

21



3 Optimal control

(ERK4) method, which is given by

yk+1 = yk +
1

6
(k1 + 2k2 + 2k3 + k4) , where

k1 = hf (tk,yk) ,

k2 = hf

(
tk +

h

2
,yk +

k1

2

)
,

k3 = hf

(
tk +

h

2
,yk +

k2

2

)
,

k4 = hf (tk + h,yk + k3) ,

(3.9)

for k ∈ N0 = {0, 1, 2, . . . }, which is a method that will be frequently used in later
chapters.

The direct multiple shooting method is a generalization of direct shooting, where the
time horizon [0, T ] is segmented into M + 1 intervals. For every interval, the direct
shooting method is applied, and an additional constraint is added to ensure continuity
between every interval. This means additional variables have to be added for the artificial
initial condition at the start of every interval. However, the resulting NLP is sparser and
often converges faster, as stated in Rawlings et al. 2019.

Finally, with direct collocation, the general idea is to approximate the state and input as
piecewise polynomials, where the state trajectory is parametrized by a number of knot
points between every time step. While shooting methods typically assume piecewise
constant control inputs between every time step, this approach allows to approximate the
control input as a polynomial between every step. This leads to an even sparser NLP than
multiple shooting, but evidently with even more optimization variables.

3.3 Sequential quadratic programming

In order to solve the NMPC problem a nonlinear optimization solver is required, which
should be able to solve the general NLP

min
z

f(z) s.t. g(z) ≤ 0, h(z) = 0 (3.10)

22



3.3 Sequential quadratic programming

at every time step. In the following, the SQP method is presented, based on Nocedal and
Wright 2006 and Diehl et al. 2009. The reader should, however, be aware that many other
numerical methods exist, of which interior point methods are also frequently used for
numerical optimal control, which are discussed in detail in the aforementioned references.

In order to formulate the principle behind SQP, the first-order optimality conditions for
Eq. (3.10) are stated, known as the Karush-Kuhn-Tucker (KKT) conditions:

∇zL (z⋆,λ⋆,µ⋆) = 0,

g (z⋆) ≤ 0,

h (z⋆) = 0,

µ⋆ ≥ 0,

gi (z
⋆)µ⋆i = 0, i = 1, . . . , ng.

(3.11)

Here µ and λ are the Lagrange multipliers corresponding to the inequality constraints g
and the equality constraints h respectively, ng is the number of inequality constraints and
the optimal solution is denoted by (z⋆,µ⋆,λ⋆). Furthermore, the Lagrangian function L
is defined as

L(z,λ,µ) = f(z) + λ⊤h (z) + µ⊤g (z) . (3.12)

The SQP method is based on solving the KKT system Eq. (3.11) using Newton’s
method for nonlinear systems, i.e., iteratively solving the linearized system of equations. It
can be shown that this is equivalent to iteratively solving the following quadratic program
(QP):

min
z

∇zf
⊤(zk)(z − zk) +

1

2
(z − zk)

⊤∇2
zL(zk,λk,µk)(z − zk)

s.t. h(zk) +∇zh
⊤(zk)(z − zk) = 0,

g(zk) +∇zg
⊤(zk)(z − zk) ≤ 0,

(3.13)

where zk is the current iterate of the approximation of the solution z⋆. One such iteration
is termed a Newton step, as it corresponds to a single step of Newton’s method.

The Hessian∇2
zL(zk,λk,µk) typically requires high computational effort to compute

exactly, and it must be positive semidefinite for the problem Eq. (3.13) to be convex,
which is not guaranteed for z far away from the optimum. The Gauss-Newton method

23



3 Optimal control

is one possible solution to these limitations. Under the special case of a sum of squares
objective function, i.e.,

f(x) =
1

2
∥r(x)∥2, (3.14)

the Hessian is approximated by

∇2
zL(zk,λk,µk) ≈H = ∇r(x)∇r(x)⊤, (3.15)

which provides a more tractable expression. The reader is referred to Nocedal and
Wright 2006 for further details on SQP and Gauss-Newton. However, one aspect of SQP
implementations which is of vital importance to NMPC specifically are warm starts,
which will be considered in further detail in the following section.

3.4 Real-time iteration scheme
For NMPC problems, the solution at a certain time step is usually very similar to the
solution at the previous step. This motivates developing methods for warm starting the
optimization solver using the previous solution. One such method, the RTI scheme, will
be briefly presented in the following section. The section is based on Gros et al. 2016.

The RTI scheme makes use of the fact that shifting the previous SQP solution by one
time step produces an initial guess that is already close to the solution at the current time
step. When doing this shifting procedure to warm start the solver, it can, therefore, be
assumed that performing a single Newton step of the SQP algorithm provides a reasonable
approximation of the converged SQP solution. The combination of warm starts by shifting
and only doing a single Newton step is the essence of the RTI scheme. This can, in some
sense, be regarded as running normal SQP while updating the information the solver
has about the current state of the system at every iteration. Note that the Gauss-Newton
Hessian approximation given in Eq. (3.15) is usually applied in SQP RTI. One additional
trick is, however, done before arriving at the final algorithm.

A problem with the approach so far, which moreover is a general problem for all
real-time MPC solvers, is that there is a significant delay between when the system state
x(tk) is sampled and when the solver is finished, and the first control input of the solution
u⋆0 can be applied to the system. This feedback delay results in the solver using outdated
information of the system state and can reduce stability and performance of the closed

24



3.4 Real-time iteration scheme

loop system. Gros et al. 2016 refers to this issue as the real-time dilemma.
The consequences of the real-time dilemma are mitigated with the RTI scheme by

splitting the algorithm into two phases: the preparation phase and the feedback phase. In
the preparation phase, the shifting and linearization steps are executed, and the QP is
partially formed. Then in the feedback phase, the QP is fully formed and solved. Since
all the computations in the preparation phase are completely independent of the initial
condition x̄0, the system state x(tk) only needs to be sampled after the preparation step.
The basic loop of the preparation and feedback phase is visualized in Figure 3.2, which
illustrates how the RTI scheme minimizes the feedback delay. Since, in practice, the
preparation phase typically takes longer than the feedback phase, the feedback delay can
be drastically reduced, as mentioned in Diehl et al. 2009. The SQP RTI is shown in
Algorithm 2.

tk− 1 tk tk+ 1

x

x(t)

Tp

Tfb

Figure 3.2: RTI loop, with Tp and Tfb denoting the preparation phase and feedback phase
respectively.

Algorithm 2 SQP RTI
Preparation phase:

1: Shift previous solution x⋆k−1,u
⋆
k−1 to construct initial guess x0

k,u
0
k.

2: Evaluate the terms in the QP Eq. (3.13), and form the QP omitting x̄0.
Feedback phase:

3: Input x̄0 = x(tk) into the QP and solve it to get ∆x⋆k,∆u⋆k.
4: Apply the full Newton step to get the NMPC solution at the current time step:

(x⋆k,u
⋆
k)← (x0

k,u
0
k) + (∆x⋆k,∆u⋆k).

25





4 Gaussian process regression and
Gaussian process-based MPC

The following chapter will introduce GPR, a Bayesian nonlinear regression method,
and explore how to include a GP model in a stochastic MPC problem. Firstly, Bayesian
linear regression will be briefly discussed as an introduction to Bayesian inference. This
framework will then be applied to GPs, resulting in GP regression. Subsequently, sparse
GP approximation methods will be explored, motivated by the need for computationally
efficient GP methods. Finally, GP models will be applied in an optimal control context to
formulate GP-based MPC, abbreviated to GP-MPC in the following.

4.1 Bayesian linear regression

The probabilistic regression problem can be formulated as follows: given a training set
D = {X,y} of a matrix of vector inputs X = [x1 · · · xM ]⊤ ∈ RM×n, with M
realizations of x ∈ Rn, and a vector of noisy scalar outputs y = [ y1 · · · yM ]⊤ ∈ RM ,
which are assumed to be realizations of the underlying function f(x):

y = f(x) + ε, (4.1)

one wants to predict the distribution of f at new test points x∗, denoted f∗. In the
following it is assumed that the noise ε is independent and identically distributed (i.i.d.)
zero mean Gaussian distributed, i.e.,

ε ∼ N
(
0, σ2

n

)
, (4.2)

where σ2
n is the noise variance.

27



4 Gaussian process regression and Gaussian process-based MPC

In the following, the Bayesian linear regression approach to this problem is introduced,
which will then be generalized with GPR. The section is based on Tipping 2004 and
Rasmussen and Williams 2006, and the reader is referred to these for further details. In
Bayesian linear regression it is assumed that the underlying function f is linear in the
parameters w:

f(x) = x⊤w. (4.3)

The fundamental principle behind the Bayesian framework is that the parameters w are
assumed to be random variables as well as x and y. One therefore needs to specify a prior
over the parameters, which for linear Bayesian regression is a zero mean multivariate
Gaussian distribution:

w ∼ N (0,Σ) , (4.4)

with Σ being the covariance matrix.
In order to make predictions about the posterior distribution p(w | y,X), Bayes’

theorem
p(w |X,y) =

p(y | w,X)p(w)

p(y |X)
, (4.5)

can be applied, where the likelihood p(y | w,X) is given by

p(y | w,X) =

n∏
i=1

p(yi | xi,w) = N
(
Xw, σ2

nI
)
, (4.6)

with I denoting the identity matrix of appropriate size. The normalization constant
p(y |X) is given by

p(y |X) =

∫
p(y |X,w)p(w)dw (4.7)

and can effectively be ignored as it is independent of w. The posterior can then be
evaluated as

p(w |X,y) = N (σ−2
n A−1X⊤y,A−1), (4.8)

where A = σ−2
n X⊤X +Σ−1, as detailed in Rasmussen and Williams 2006. It is seen

that using the Bayesian framework by assuming a prior over the weights and using Bayes’
theorem allows to infer the distribution of w instead of only learning a single estimated
value for w. This procedure of inferring the posterior distribution given a prior model and

28



4.1 Bayesian linear regression

data can be seen as updating the prior belief using the collected dataset and is at the core
of the Bayesian framework.

Finally, the predictive distribution can be obtained by marginalizing the model over the
weights to obtain the predictive distribution:

p(f∗ | x∗,X,y) =

∫
p(f∗ | x∗,w)p(w |X,y)dw, (4.9)

which for the linear model has the closed form solution

p(f∗ | x∗,X,y) = N
(
σ−2
n (x∗)⊤A−1X⊤y, (x∗)⊤A−1x∗) . (4.10)

By assuming a linear model, the expressiveness of the resulting predictions is limited.
A remedy for this limitation is to first project the inputs into a high dimensional feature
space given by a set of basis functions ϕ : Rn 7→ Rm, and then perform linear regression
in this new space. The new generalized model can be written as

f(x) = ϕ(x)⊤w. (4.11)

Let Φ = [ϕ1(x) · · · ϕm(x) ]⊤ ∈ RM×m be the matrix of inputs in the new feature
space, analogous to X . Making the same assumptions as before, one arrives at the same
result as Eq. (4.10) with Φ substituted for X:

p(f∗ | x∗,X,y) = N
(
σ−2
n ϕ(x∗)⊤A−1Φ⊤y, ϕ(x∗)⊤A−1ϕ(x∗)

)
, (4.12)

with A = σ−2
n Φ⊤Φ + Σ−1. One now needs to invert the m × m matrix A, which

for high dimensional feature spaces may be challenging. This is solved by using the
so-called kernel trick. Firstly, it is outlined in Rasmussen and Williams 2006 that
Eq. (4.12) can be rewritten entirely in terms of what is termed the kernel or covariance
function k(x,x′) = ϕ(x)⊤Σϕ(x′), such that all the terms in feature space can be
formulated using k. Furthermore, notice that k is simply an inner product by writing
k(x,x′) = ϕ̃(x)⊤ϕ̃(x′), with ϕ̃(x) = Σ

1
2ϕ(x), such that

p(f∗ | x∗,X,y) = N
(
k(x∗,x)(K + σ2

nI)
−1y,

k(x∗,x∗)− k(x∗,x)(K + σ2
nI)

−1k(x,x∗))
)
,

(4.13)

29



4 Gaussian process regression and Gaussian process-based MPC

where the notation K = ΦΣΦ⊤ ∈ RM×M is introduced. This allows to rewrite the
computationally inefficient prediction in Eq. (4.12) in terms of inner products in input space,
which in most cases is significantly more efficient. Furthermore, this shifts the focus from
the feature space to the kernel function itself and even allows to use infinite-dimensional
kernels, which will play a central role in GPR.

4.2 Gaussian process regression

The kernelized Bayesian linear regression in the previous section provides the basis for
GPR. For GPR, a GP will be used as a prior model, which will be combined with data
to infer the posterior distribution, similarly to the previously discussed Bayesian linear
regression. However, before arriving at this point, GPs will first be introduced as a concept
to motivate its use in Bayesian regression. The following section is based on Rasmussen
and Williams 2006.

4.2.1 Gaussian processes

A GP is a set of random variables for which any finite subset has a Gaussian distribution.
It is uniquely defined by its mean function m and covariance function k and is denoted
by GP(m, k). GPs can be considered a generalization of the multivariate Gaussian
distribution, which is also uniquely defined by its mean µ and covariance Σ:

N (x | µ,Σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
. (4.14)

Whereas the multivariate Gaussian distribution is a distribution over an n-dimensional
vector x, the GP is a distribution over a function f . The mean function m and covariance
function k can therefore be thought of as an infinite-dimensional mean vector and
covariance matrix.

To demonstrate this generalization from multivariate Gaussian distribution to GP,
a bivariate Gaussian distribution is first considered, shown in Figure 4.1. For higher-
dimensional Gaussian distributions, one can instead plot the indices of the input dimensions
in relation to a single possible realization of the Gaussian variable, as shown in Figure 4.2.

By increasing the number of dimensions, it is observed how the Gaussian distribution

30



4.2 Gaussian process regression

2 1 0 1 2
x1

2

0

2

x
2

Figure 4.1: 1-sigma, 2-sigma and 3-sigma covariance ellipses for a bivariate Gaussian
distribution.

0 10
1

0

1

y

0 10
x

0 10

Figure 4.2: Realization of multivariate Gaussian for 2, 4 and 13 dimensions.

may describe a certain shape of functions, described by µ and Σ. Furthermore, taking
this concept into the Bayesian context and considering this Gaussian distribution as a
prior, one may fix some dimensions of x and calculate the conditional Gaussian on those
dimensions, given by Eq. (B.2). Figure 4.3 illustrates this concept, where the conditional
mean and covariance then defines our posterior belief given the known dimensions, which
in this case are x0, x4 and x7.

Finally, generalizing from a finite-dimensional vector space to function space, one gets
a GP. This is shown in Figure 4.4, as a GP conditioned on the same data as before, but now
with continuous mean and covariance functions. The variance of the finite-dimensional
Gaussian in Figure 4.3 and the infinite-dimensional GP in Figure 4.4 are visualized as
2-sigma limits. A 2-sigma probability refers to the probability given by the area within
2 standard deviations around the mean. This provides a convenient way of quantifying
probabilities for Gaussian variables and will be used frequently in this work. The concept

31



4 Gaussian process regression and Gaussian process-based MPC

is visualized in Figure 4.5.

0 2 4 6 8 10 12
x

1

0

1
y

Figure 4.3: Mean and 2-sigma limits of multivariate Gaussian conditioned on x0, x4 and
x7.

0 2 4 6 8 10 12
x

1

0

1

y

Figure 4.4: Mean and 2-sigma limits of GP conditioned on x0, x4 and x7.

In order to formalize this concept, a GP is used as a prior for Bayesian inference over a
real-valued function f :

f ∼ GP(m, k). (4.15)

Furthermore, a zero mean function and a Squared Exponential (SE) covariance function

m(x) = 0, k(x,x′) = σ2
f exp

(
−1

2
(x− x′)⊤L−1(x− x′)

)
, (4.16)

is assumed, where L = diag(ℓ21, . . . , ℓ2n) is a diagonal matrix of the squared length-scales

32



4.2 Gaussian process regression

−3σ −2σ −σ µ σ 2σ 3σ

x

0.0

0.2

0.4

N
(x
|µ
,σ

)

Figure 4.5: 1-sigma, 2-sigma and 3-sigma bounds for a Gaussian distributed variable x
with mean µ and variance σ2.

and σ2
f is the signal variance. Other mean and covariance functions may be used, of which

the Matérn, exponential and rational quadratic covariance are among the mentioned in
Rasmussen and Williams 2006. A zero mean and SE kernel is, however, often used in
practice to model continuous functions, and is used in this work. The SE kernel matrix is
visualized in Figure 4.6.

Figure 4.6: Colormap of a SE kernel matrix, for a linearly spaced dataset.

Like for Bayesian linear regression, Bayes’ theorem can be used to obtain the joint
posterior between the training values f ∈ RM and the test values f∗ ∈ RM∗

:

p(f ,f∗ | y) = p(f ,f∗)p(y | f)
p(y)

. (4.17)

Zero mean Gaussian noise is again assumed as for Eq. (4.2), such that the likelihood is

33



4 Gaussian process regression and Gaussian process-based MPC

given by p(y | f) = N (f , σ2
nI) and the joint GP prior is

p(f ,f∗) = N

0,

 Kx,x Kx,x∗

(Kx,x∗)⊤ Kx∗,x∗

 , (4.18)

analogous to the joint Gaussian formula in Eq. (B.1). Here the shorthand notations
Kx,x = K(X,X) ∈ RM×M , Kx,x∗ = K(X,X∗) ∈ RM×M∗

and Kx∗,x∗ =

K(X∗,X∗) ∈ RM∗×M∗
are introduced. K(X,X ′) is the covariance matrix, with

entries Kij = k(xi,x
′
j) given by the covariance function k.

Marginalizing out the training values, like in Eq. (4.9), the predictive distribution

p(f∗ | y) = N
(
K⊤
x,x∗(Kx,x + σ2

nI)
−1y,

Kx∗,x∗ −K⊤
x,x∗(Kx,x + σ2

nI)
−1Kx,x∗

) (4.19)

is obtained, which is identical to the kernelized Bayesian linear regression in Eq. (4.13).
This shows how GPR can be retrieved from kernelized Bayesian linear regression, with
infinite-dimensional kernel functions.

4.2.2 Learning the hyperparameters

How the mean and covariance functions are parameterized, and the values of those
parameters, termed hyperparameters, specify the shape of the GP. In order to get a GP that
generalizes well to the data, it is therefore important to find appropriate values for these
parameters. In the case of the SE kernel these are the squared length-scale matrix L, the
signal variance σ2

f and the noise variance σ2
n. In the following, it is briefly explored how

these hyperparameters shape the resulting predictive distribution for a one-dimensional
example, meaning that L = ℓ. In Figure 4.7 it is seen how varying the length-scale ℓ
changes the "wiggliness" of the function, while in Figure 4.8 the signal variance σ2

f

changes the vertical span of the function. Finally in Figure 4.9 the effect of varying the
noise variance σ2

n is shown. The kernel hyperparameters are usually determined by

34



4.2 Gaussian process regression

0 5 10
x

1

0

1
y

0 5 10
x

Figure 4.7: GP mean and 2-sigma variance bounds for ℓ = 0.3 (left) and ℓ = 3 (right),
with σ2

n = 0.001 and σ2
f = 0.05 fixed. The training dataset is also shown.

0 5 10
x

2

0

2

y

0 5 10
x

Figure 4.8: GP mean and 2-sigma variance bounds for σ2
f = 0.02 (left) and σ2

f = 0.5

(right), with σ2
n = 0.001 and ℓ = 0.8 fixed. The training dataset is also shown.

maximizing the log marginal likelihood

log p(y |X) =− 1

2
y⊤ (Kx,x + σ2

nI
)−1

y

− 1

2
log det

(
Kx,x + σ2

nI
)
− n

2
log 2π,

(4.20)

such that the optimal hyperparameters θ = (L, σf , σn) are given by

θ∗ = argmax
θ

log p(y |X). (4.21)

To illustrate the process of learning the hyperparameters by maximizing the log marginal
likelihood, a simple example is considered, with a dataset D of size M = 8 shown in
Figure 4.10 together with the underlying function f . The initial GP prior before training

35



4 Gaussian process regression and Gaussian process-based MPC

0 5 10
x

1

0

1

y

0 5 10
x

Figure 4.9: GP mean and 2-sigma variance bounds for σ2
n = 0.001 (left) and σ2

n = 0.02
(right), with σ2

f = 0.05 and ℓ = 0.8 fixed. The training dataset is also shown.

is shown in Figure 4.11a. A zero mean function and SE covariance function is again
assumed. After training the GP one then gets the resulting posterior shown in Figure 4.11b.
100 samples, denoted by fs, are also shown for the prior and posterior, showing how the
mean and covariance shapes the GP realizations.

0 2 4 6 8 10
x

2

0

2

y

f

D

Figure 4.10: True function f and sampled dataset D.

The computation of the inverse covariance matrix is typically done using the Cholesky
decomposition K = LL⊤, where L is lower triangular. The resulting inverse algorithm
has computation complexity O(M3), meaning learning, as well as prediction, also has
complexity O(M3). This poses major limitations for the scalability of GPR. In the next
section, it will be seen how to overcome these limitations with sparse GP approximation
methods.

36



4.3 Sparse GP methods

0.0 2.5 5.0 7.5 10.0
x

2.5

0.0

2.5

y

fs µ Σ

(a)

0.0 2.5 5.0 7.5 10.0
x

2.5

0.0

2.5

y

fs µ D Σ

(b)

Figure 4.11: Prior GP distribution with zero mean and unit variance (left), and posterior
GP predictive distribution with mean µ and variance Σ (right), visualized
with 2-sigma bounds. Samples fs from the prior and posterior distributions
are shown.

4.3 Sparse GP methods

The main limitation of exact GPR is that the computational complexity is O(M3), from
the inversion of the covariance matrix..Furthermore, even after the inverse covariance
matrix is calculated, making new predictions still scales withO(M2). Sparse GP methods
are a possible way to overcome this limitation on scalability, such that GPR can be used
on large and high-dimensional datasets.

The underlying principle behind sparse GP methods is to introduce M̃ inducing
variables f̃ , with corresponding input values x̃, where M̃ ≪ M . x̃ could either be
a subset of the training inputs or pseudo-points, and should be found such that they
summarize the complete dataset as best as possible. Therefore, for sparse GP methods,
both the already discussed hyperparameters θ = (L, σf , σn) and the inducing inputs x̃
need to be learned for sparse GP methods.

In the following, two different approaches to sparse GPs will be discussed, namely
approximating the joint distribution with Fully Independent Training Conditional (FITC)
from Snelson and Ghahramani 2005 and approximating the posterior with VFE from
Titsias 2009. The SVGP method in Hensman et al. 2013 will also be discussed, which
builds upon the principle behind the VFE method, and further improves on its scalability.

37



4 Gaussian process regression and Gaussian process-based MPC

In addition to these references the section is also based on Quiñonero-Candela and
Rasmussen 2005 and Liu et al. 2020.

4.3.1 Fully Independent Training Conditional

Many sparse GP methods, including the FITC method introduced in Snelson and
Ghahramani 2005, adds a conditional distribution q in order to approximate the joint
distribution between the training points f and the test points f∗, given previously in
Eq. (4.18). The main assumption behind this approximate distribution is that f and f∗

are assumed conditionally independent given x̃, such that

p (f∗,f) =

∫
p (f∗,f | x̃) p(x̃)dx̃

≃ q (f∗,f) =

∫
q (f∗ | x̃) q(f | x̃)p(x̃)dx̃.

(4.22)

How q (f∗ | x̃) and q(f | x̃) are formed using additional assumptions are what sets these
different sparse GP methods apart.

The FITC method uses the following approximation for the training conditional:

qFITC(f | x̃) = N
(
Kx,x̃K

−1
x̃,x̃x̃, diag(Kx,x −Qx,x)

)
, (4.23)

where the following shorthand notation is introduced: Qa,b = Ka,x̃K
−1
x̃,x̃K

⊤
b,x̃, and

Ka,b = K(a, b) with K as defined after Eq. (4.18).

This results in the following predictive distribution for a single test point f∗:

qFITC (f∗ | y) = N
(
Qx∗,x (Qx,x +Λ)

−1
y,

Kx∗,x∗ −Qx∗,x (Qx,x +Λ)
−1

Qx,x∗

)
= N

(
Kx∗,x̃Γ

−1Kx̃,xΛ
−1y,

Kx∗,x∗ −Qx∗,x∗ +Kx∗,x̃Γ
−1Kx̃,x∗

)
,

(4.24)

where Γ = Kx̃,x̃ + Kx̃,xΛ
−1Kx,x̃ and Λ = diag(Kx,x − Qx,x + σ2

nI). The latter
formulation in Eq. (4.24) avoids the inversion of the large matrix Qx,x+Λ. The resulting
computational complexity is then reduced from O(M3) to O(MM̃2).

38



4.3 Sparse GP methods

4.3.2 Variational Free Energy

The basis of the VFE method from Titsias 2009, as well as the SVGP method discussed
in the next section, is to approximate the posterior p(f , f̃ | y), instead of the prior
p (f∗,f), as was done with FITC in Eq. (4.22). A variational distribution q(f , f̃ | y)
is then introduced in order to approximate p(f , f̃ | y), and is found by minimizing the
Kullback-Leibler (KL)-divergence between the distributions. The KL-divergence can be
regarded as a (non-symmetric) distance between two distributions p and q and is defined
as

KL (p(z) ∥ q(z)) =
∑
z

p(z) log
p(z)

q(z)
. (4.25)

The KL-divergence between p(f , f̃ | y) and q(f , f̃ | y) is

KL
(
p(f , f̃ | y) ∥ q(f , f̃ | y)

)
= log p(y)− Fq, (4.26)

where

Fq =

〈
log

p
(
y,f , f̃

)
q
(
f , f̃ | y

)〉
q(f ,f̃ |y)

(4.27)

is termed the evidence lower bound (ELBO) and the shorthand notation ⟨p⟩q denotes the
expectation of p over the distribution q. It can be shown that minimizing this is equivalent
to maximizing the ELBO, discussed in detail in Titsias 2009.

Finally the predictive distribution is

p(f∗) = N
(
f∗ |Kx∗,x̃K

−1
x̃,x̃m,

Kx∗,x∗ −Kx∗,x̃K
−1
x̃,x̃K

⊤
x∗,x̃ +Kx∗,x̃K

−1
x̃,x̃SK

−1
x̃,x̃K

⊤
x∗,x̃

)
,

(4.28)

where
m = σ−2Kx̃,x̃SKx̃,xy,

S = (Kx̃,x̃ + σ−2Kx̃,xKx,x̃)
−1,

(4.29)

and m ∈ RM̃ ,S ∈ RM̃×M̃ . Evaluating the mean and covariance of the predictive
distribution again results in O(MM̃2) computational complexity.

39



4 Gaussian process regression and Gaussian process-based MPC

4.3.3 Sparse Variational Gaussian Process
The SVGP method from Hensman et al. 2013 uses stochastic variational inference to
improve the scalability of VFE. They obtain the relaxed bound of the ELBO

Fq = ⟨log p(y | f)⟩p(f |f̃)q(f̃ |y) −KL
(
q
(
f̃ | y

)
∥ p
(
f̃
))

, (4.30)

which is minimized. Furthermore, this cost is well suited for stochastic gradient descent
(SGD), such that training can be done using mini-batches, which can help accelerate
learning. Prediction is done as in Eq. (4.28), yet it is important to note that a big difference
with VFE is that m and S are now additional variational parameters in the optimization
problem.

To illustrate sparse GPR a simple example is considered with a one-dimensional
nonlinear function f , shown in Figure 4.12 together with the sampled dataset D. The GP
prior and the M̃ = 40 randomly chosen initial inducing inputs are shown in Figure 4.13a,
with initial hyperparameter values σ2

n = 0.75, σ2
f = 1.0, ℓ = 1.0.

0 2 4 6 8 10
x

2

0

2

y

D
f

Figure 4.12: True function f and sampled dataset D.

After training using the SVGP method, the predictive distribution shown in Figure 4.13b
is obtained. By optimizing the inducing inputs it is observed that they spread out to cover
the entire space more evenly.

40



4.4 GP-based MPC

0 5 10
x

2

0

2

y

D µ x̃ Σ

(a)

0 5 10
x

2

0

2

y

D µ x̃ Σ

(b)

Figure 4.13: Prior (left) and posterior (right) GP distributions, with initial random inducing
point locations and final locations after training with SVGP. The variance is
indicated with 3-sigma limits.

4.4 GP-based MPC

In the following section, the GP-MPC method will be introduced, based on Hewing,
Liniger, et al. 2018 and Hewing, Kabzan, et al. 2019. GP-MPC considers combining
an a priori dynamics model with a disturbance model given by a GP in a nonlinear
MPC controller. The GP is trained on previous trajectory tracking trials and added in the
dynamics in a stochastic MPC problem with chance constraints. How the state distribution
is propagated, as well as the cost and constraints, will be considered in detail in order to
formulate a tractable OCP.

Before going into further detail on GP-MPC, it is worth mentioning that many other
approaches exist for learning-based trajectory tracking control of robots. Reinforcement
learning is a model-free paradigm that has been widely used in recent years for robotic
manipulation tasks, e.g., in Gu et al. 2017. The approach is based on learning the control
policy directly from having the robot repeat a task in its environment. Iterative learning
control is a similar approach that also has seen frequent use for robotic manipulation, which
is more rooted in traditional control approaches, compared to reinforcement learning,
which is more rooted in optimization and machine learning. The main idea is, however,
similar in that an action is repeated and the control law is adjusted iteratively based on the
performance.

41



4 Gaussian process regression and Gaussian process-based MPC

Partly what makes including GP dynamics in an MPC controller interesting is that
uncertainty can be considered directly in the controller. Information about the uncertainty
of neural networks can, however, also be deduced, for instance, in Loquercio et al. 2020.
There are naturally also other Bayesian options, such as Bayesian linear regression,
discussed earlier in Section 4.1. These approaches are applied to MPC in McKinnon and
Schoellig 2019. However, the combination of a prior model with a learned disturbance
model, as well as how uncertainty in the model can be handled directly in the controller
in order to achieve cautiousness, makes GP-MPC an interesting approach.

4.4.1 GP disturbance model

In the following the discrete-time dynamical system given by the model

xi+1 = f (xi,ui) +Bd (g(xi,ui) +wi) , (4.31)

is considered, with system state x ∈ Rnx , control input u ∈ Rnu and i ∈ N0 denoting
the time step. The model consisting of a nominal process model f and a disturbance
model g, the latter of which describes unknown discrepancies between the nominal model
and the true model. The disturbance acts on the system through the process disturbance
matrix Bd ∈ Rnx×ny . The system is also affected by i.i.d. zero mean Gaussian process
noise w(k) ∼ N (0,Σn), where Σn = diag(σ2

n,1, . . . , σ
2
n,nx

). Furthermore, the system
is subject to general state and input constraints

xi ∈ X , ui ∈ U , (4.32)

where X is the state constraint set and U is the control input constraint set.

The basis behind GP-MPC is that a GP prior is assumed on the disturbance function g,
such that the disturbance dynamics can be inferred using GP regression. Specifically, the
input points are the state and control input measurements zi = [x⊤

i u⊤
i ]

⊤ ∈ Rnz , with
nz = nx + nu, and the outputs are the disturbances

yi = g (xi,ui) +wi = B†
d (xi+1 − f (xi,ui)) . (4.33)

The dataset is then given by D = {Z,Y }, with M inputs Z = [z⊤
0 · · · z⊤

M ]⊤ ∈ RM×nz

42



4.4 GP-based MPC

and outputs Y = [y⊤
0 · · ·y⊤

M ]⊤ ∈ RM×ny . An independent GP prior is assumed on
every output dimension of g, such that every column of Y is normally distributed with

Y·,j ∼ N (0,Kj
z,z + σ2

n,jI), (4.34)

where j ∈ Nny
denotes the j-th dimension of the output, and Kj

z,z = Kj(z, z) is the
covariance matrix, whose elements are given by the covariance function kj(x,x′). A zero
mean function and squared exponential covariance function is assumed, like in Eq. (4.16).

Eq. (4.19) is then applied to a single test point z∗, in order to obtain the predictive
distribution of every output dimension:

µdj (z
∗) = (Kj

z,z∗)
⊤ (Kj

z,z + σ2
n,jI

)−1
Y·,j ,

Σdj (z
∗) = Kj

z∗,z∗ − (Kj
z,z∗)

⊤ (Kj
z,z + σ2

n,jI
)−1

Kj
z,z∗ .

(4.35)

The resulting GP approximation for all dimensions of g is then given by

d(z∗) ∼ N
(
µd(z∗),Σd(z∗)

)
, (4.36)

with µd = [µd1 · · ·µdn]⊤ and Σd = diag(Σd1, . . . ,Σdn).
The GP approximation of the true disturbance g is used in the discrete-time dynamical

model in Eq. (4.31), such that

xi+1 = f(xi,ui) +Bd(d(xi,ui) +wi) (4.37)

describes the stochastic model.

4.4.2 Stochastic MPC problem

The model in Eq. (4.37) cannot be used directly in a deterministic OCP of the form in
Eq. (3.8), as the disturbance d is modeled by a GP and is inherently stochastic. The state
vector itself is, therefore, also a random variable with some distribution. In the following,
robust MPC and stochastic MPC will be briefly outlined to put the present problem in a
theoretical context. Then the specific stochastic MPC problem with GP dynamics will be
formulated.

Robust MPC and stochastic MPC, as discussed in Rawlings et al. 2019 and Mesbah

43



4 Gaussian process regression and Gaussian process-based MPC

2016, provide two different approaches for how to handle uncertainties in optimal control.
In brief, the fundamental assumption of robust MPC is that the uncertainty in the system
lies in some bounded set. One can then tighten the state constraints in a new MPC problem,
such that the original state constraints are guaranteed to be satisfied in the worst-case
realization of the bounded disturbance.

Stochastic MPC makes assumptions about the distribution, rather than the boundedness,
of the disturbance. Then, instead of guaranteeing constraint satisfaction, one provides
chance constraints of the form

Pr (xi ∈ X ) ≥ 1− ϵ, (4.38)

stating that the probability of constraint violation at time step i should be less than
ϵ ∈ (0, 1). Furthermore, considering the stochastic nature of the state, one typically
defines a cost function of the form

J(x,u) = E

[
N−1∑
i=0

ℓ(xi,ui) + ℓf (xN )

]
, (4.39)

i.e., as the expectation of the sum of the stage costs over the prediction horizon.
A stochastic MPC problem can then be formulated, using the stochastic model in

Eq. (4.37):

min
x,u

E

[
N−1∑
i=0

ℓ(xi,ui) + ℓf (xN )

]
(4.40a)

s.t. xi+1 = f(xi,ui) +Bd(d(xi,ui) +wi), i = 0, . . . , N − 1, (4.40b)

Pr (xi ∈ X ) ≥ 1− ϵ, i = 0, . . . , N, (4.40c)

ui ∈ U , i = 0, . . . , N − 1, (4.40d)

x0 = x̄0, (4.40e)

where ℓ is the stage cost, ℓf is the terminal cost, N is the prediction horizon, and x̄0 is
the state measurement at the current time step. Again it is used that x = [x⊤

0 · · · x⊤
N ]⊤

and u = [u⊤
0 · · · u⊤

N−1 ]
⊤ are the optimization variables. Chance constraints on the

state variable are introduced, with maximum probability ϵ of constraint violation. The
control input is considered deterministic, such that the input constraints are formulated as

44



4.4 GP-based MPC

regular deterministic constraints.

The optimization problem in Eq. (4.40) is untractable, since the time propagation
of the state variables in Eq. (4.37) renders the state distribution non-Gaussian. In the
following, several approximations will be made, in order to formulate the cost function,
chance constraints, and most importantly, the uncertainty propagation, resulting in a
computationally tractable MPC problem.

4.4.3 State distribution propagation

In order to get a tractable way of propagating the uncertainty over the prediction horizon,
the state, control input, and disturbance are approximated as jointly Gaussian at every time
step. Furthermore, a first-order Taylor approximation is applied. It is shown in Hewing,
Liniger, et al. 2018 that this results in the following propagation equations for the state
mean and variance:

µxi+1 = f(µxi ,ui) +Bdµ
d(µxi ,ui), (4.41)

Σx
i+1 =

[
∇xf(µxi ,ui) Bd

]
︸ ︷︷ ︸

Ãi

 Σx
i Σxd

i

(Σxd
i )⊤ Σd

i +Σn


︸ ︷︷ ︸

Σi

∇xf(µxi ,ui)⊤
B⊤
d


︸ ︷︷ ︸

Ã⊤
i

, (4.42)

where
Σxd
i = Σx

i∇xµd(µxi ,ui)⊤, (4.43)

Σd
i = Σd(µ

x
i ,ui) +∇xµd(µxi ,ui)Σx

i∇xµd(µxi ,ui)⊤, (4.44)

and i ∈ N0 is the time step.

The process of propagating the uncertainty over the MPC time horizon is visualized in
Figure 4.14, for the joint states of a 2 DOF robot manipulator.

4.4.4 Cost function

There are several options for how to realize the stochastic cost function in Eq. (4.40a) by
choosing the stage cost ℓ and terminal cost ℓf . Since trajectory tracking MPC is usually
accomplished with a quadratic cost function, a logical choice would be to consider the

45



4 Gaussian process regression and Gaussian process-based MPC

5.0 5.2
t [s]

0.6

0.8
µ
q
 [r

ad
]

5.0 5.2
t [s]

0.0

0.5

µ
q̇
 [r

ad
/s

]

Figure 4.14: Time propagation of state distribution, here shown with 50-sigma variance
bounds to exaggerate the effect. The dashed lines indicate the closed-loop
solution leading up to the current time step.

expectation of a quadratic form, i.e., the cost function

Je = E

[
N−1∑
i=0

(
∥xi − rxi ∥2Q + ∥ui∥2R

)
+ ∥xN − rxN∥2P

]

=

N−1∑
i=0

(
∥µxi − rxi ∥2Q + tr(QΣx

i ) + ∥ui∥2R
)
+ ∥µxN − rxN∥2P + tr(PΣx

N ),

(4.45)

where rxi is the reference trajectory at the i-th time step, Q is the state weight matrix, R
is the control input weight matrix and tr(·) denotes the trace. The control input is assumed
deterministic, which is why the additional trace term only appears for the state variable.
The reader is referred to Cao et al. 2017 for the details on the derivation of the expectation
of a quadratic form used in Eq. (4.45).

While Eq. (4.45) provides a simple and differentiable cost function, it is also possible
to take a so-called certainty equivalence approach, as mentioned in Carron et al. 2019,
where it is approximated that the expectation of the cost equals the cost evaluated in the
state mean, such that one gets a quadratic cost evaluated in the mean for the stage cost and
terminal cost:

Jc =

N−1∑
i=0

(
∥µxi − rxi ∥2Q + ∥ui∥2R

)
+ ∥µxN − rxN∥2P . (4.46)

While the certainty equivalence principle does not apply here, i.e., that the optimal solution

46



4.4 GP-based MPC

to the stochastic MPC problem is equivalent to the solution of the deterministic version
evaluated in the mean, it is still a reasonable approximation to do in practice.

4.4.5 Chance constraints
By approximating the state distribution as Gaussian and restricting the state constraint set
X to only linear constraints, one can formulate a tractable version of the chance constraints
in Eq. (4.40c). As discussed in Hewing, Kabzan, et al. 2019, under the assumption of
a Gaussian state distribution, the distribution is uniquely defined by µxi and Σx

i , such
that the state constraints can also be formulated using µxi and Σx

i alone. Not that the
dependence on the i-th time step is omitted in the following section on chance constraints
for notational clarity.

Given the above mentioned assumptions, the j-th linear chance constraint in X can be
written as

Pr (x ∈ Xj) > 1− ϵj , Xj = {x | a⊤
j x ≤ bj}, (4.47)

defined using aj ∈ Rnx and bj ∈ R, and with probability of constraint violation ϵj , for
j ∈ N = {1, 2, . . . }. The tightened constraint on the Gaussian state mean is then given in
Hewing, Kabzan, et al. 2019 as µx ∈ Z lj , where the tightened state constraint set Z lj is
given by

Z lj =
{
z | a⊤

j z ≤ bj − Φ−1(1− ϵj)
√

a⊤
j Σ

xaj

}
(4.48)

and Φ−1 is the inverse standard normal cumulative distribution.
Specifically for state bounds, i.e., xj ≤ bj , j ∈ Nnx

, the simplification that a⊤
j Σ

xaj =

Σx
j,j is obtained. These single state dimension bounds can then be stacked such that the

joint state chance constraints µxi ∈ Zb is obtained, with the set

Zb =
{
z | z ≤ b− Φ−1(1− ϵ)

√
diag(Σx)

}
, (4.49)

with b ∈ Rnx and where the square root in Eq. (4.49) is element-wise. ϵ is the violation
probability for the entire joint state chance constraint. As noted in Paulson et al. 2020, as
long as

nx∑
j=1

ϵj ≤ ϵ, (4.50)

the joint chance states constraint will be satisfied. The simple choice, which is done in this

47



4 Gaussian process regression and Gaussian process-based MPC

work, is then to let ϵi = ϵ
nx
∀ j ∈ Nnx

, i.e., let the violation probabilities be static and
split evenly over all the constraints. As stated in Paulson et al. 2020, this may, however,
result in significant conservatism in the MPC controller.

Finally, to get two-sided bounds, i.e., ∥x∥ ≤ b, one simply takes the union of the lower
bound constraint set and upper bound constraint set, defined using Eq. (4.49), and half the
violation probability in order to get an overall constraint violation probability of ϵ for the
two-sided bounds:

Z =
{
z | ∥z∥ ≤ b− Φ−1

(
1− ϵ

2

)√
diag(Σx)

}
. (4.51)

The chance constraints in Eq. (4.51) tighten the deterministic constraints based on how
certain the prediction is and how certain it is specified that the chance constraints should
be. This effectively creates an inherently cautious controller. When the system is in a
region where the GP is uncertain, the controller will be more cautious, and when the GP
produces a prediction with low variance, the controller can push the system closer to the
bounds.

This concept is illustrated in Figure 4.15, where an open-loop solution of the MPC
problem is shown. As the uncertainty of the GP prediction grows over the prediction
horizon, the controller compensates by moving further away from the state bounds.
This highlights a consequential advantage of using probabilistic regression methods in
predictive control, namely that the uncertainty estimates can be actively used to create a
cautious controller.

5.25 5.30 5.35 5.40 5.45
t [s]

0.40

0.45

0.50

µ
q̇
 [r

ad
/s

]

Figure 4.15: Open loop solution of GP-MPC showing the chance constraints, here with
3.5-sigma bounds for the joint velocities of a robot manipulator.

48



4.4 GP-based MPC

4.4.6 Sparse GP dynamics

As discussed in Section 4.3, evaluation of the GP prediction equations in Eq. (4.35) has
O(M2) complexity. For the requirements of real-time MPC this heavily restricts the size
of the dataset, which in turn means the GP prediction will be poor and prone to overfitting.
Sparse GP methods can be applied in order to use larger datasets while still keeping the
complexity low. In the following the SVGP method discussed in Section 4.3.3 is applied
to learn the inducing points and make predictions. The prediction equations, as defined
previously in Eq. (4.28), are given for a single test point and output dimension by

µdj (z) = Kj
z∗,z̃(K

j
z̃,z̃)

−1mj ,

Σdj (z) = Kj
z∗,z∗ −Kj

z∗,z̃(K
j
z̃,z̃)

−1Kj
z̃,z∗

+Kj
z∗,z̃(K

j
z̃,z̃)

−1Sj(K
j
z̃,z̃)

−1Kj
z̃,z∗ ,

(4.52)

with mj and Sj being hyperparameters and j ∈ Nnx
.

4.4.7 Tractable MPC problem

By applying the expectation of quadratic form cost function in Eq. (4.45) and the linear
two-sided chance constraint bounds in Eq. (4.51), the following tractable MPC problem is
obtained:

min
x,u

N−1∑
i=0

(
∥µxi − rxi ∥2Q + tr(QΣx

i ) + ∥ui∥2R
)
+ ∥µxN − rxN∥2P + tr(PΣx

N )

(4.53a)

s.t. µxi+1 = f(µxi ,ui) +Bdµ
d(µxi ,ui), i = 0, . . . , N − 1, (4.53b)

Σx
i+1 = ÃiΣiÃ

⊤
i , i = 0, . . . , N − 1, (4.53c)

µi ∈ Z(Σx
i ), i = 0, . . . , N, (4.53d)

ui ∈ U , i = 0, . . . , N − 1, (4.53e)

µx0 = x̄0, (4.53f)

Σx
0 = 0, (4.53g)

49



4 Gaussian process regression and Gaussian process-based MPC

where the initial state mean µx0 is set to be the current state measurement, and known
exactly, such that the initial state variance Σx

0 is assumed to be zero.
The increased dimensionality of the optimization problem in Eq. (4.53) from including

the state variance dynamics increases the computational demands significantly. Specifically,
instead of having n optimization variables, one gets 1

2n(n+ 3) optimization variables,
which, especially for higher-dimensional dynamical systems, increases dimensionality
considerably. To avoid adding the variance dynamics to the optimization problem, one
can make use of the fact that the deviation between the current solution and the previous
solution shifted one time step is presumably small. Therefore, by instead evaluating
Σx over the time horizon using the shifted previous solution trajectory, as done in
Hewing, Kabzan, et al. 2019, one obtains an approximation that decreases computation
time drastically. Furthermore, it should be noted that this approximation makes the two
discussed cost functions in Eq. (4.45) and Eq. (4.46) equivalent, since the tr(QΣx

i ) term
is now constant.

50



5 Design and implementation

In the following chapter, various design and implementation aspects will be considered.
Firstly, the MPC methods described in Chapter 3 and Chapter 4 will be applied to the
fixed-base robot manipulator model from Chapter 2 to formulate joint space and task
space trajectory tracking OCPs for robot manipulators. Trajectory blending will also be
considered, in order to generate smooth trajectories from any initial robot configuration.
The developed MPC controllers will also be applied to a free-floating space manipulator
system. Modeling and trajectory tracking MPC for this system will be presented. Finally,
the software tools used for simulation and implementation of the discussed methods will
be presented.

5.1 Trajectory tracking MPC for robot manipulators

In this section, trajectory tracking MPC for robot manipulator arms will be explored. A
feedback linearization-based MPC controller will be developed using the inverse dynamics,
and a NMPC approach based on the forward dynamics will be discussed. The GP-based
MPC approach discussed in Section 4.4 will be applied to the feedback linearized system,
as is done in Carron et al. 2019. Then corresponding formulations are also considered for
task space trajectories, i.e., end effector pose trajectories.

5.1.1 Joint space trajectory tracking

In the following, we will consider joint space trajectory tracking for robot manipulators
using feedback linearization. As outlined in Siciliano et al. 2010, by using the inverse
dynamics directly in the control law:

τ = M(q)u+C(q, q̇)q̇ + g(q), (5.1)

51



5 Design and implementation

and inserting into the dynamics Eq. (2.26), one obtains a feedback linearized system. The
resulting system, with control input u, will the be n decoupled double integrators

q̈ = u. (5.2)

The traditional approach to robot manipulator control using feedback linearization is
then to apply a variation of a PD control law, as discussed in Siciliano et al. 2010. In
the following, a linear MPC controller will instead be formulated to solve the trajectory
tracking problem with double integrator dynamics.

The double integrator system in Eq. (5.2) can be discretized exactly, assuming a
piecewise constant control input. Exact discretization results in the following discrete-time
dynamical system:

xk+1 = Axk +Buk, (5.3)

with k ∈ N0 and system matrices

A =

I ∆TI

0 I

 , B =

 1
2∆T

2I

∆TI

 , (5.4)

where ∆T is the time step of the discrete-time system. The reader is referred to Chen
1999 for details on exact discretization.

The following trajectory tracking OCP with linear dynamics and quadratic cost function
can then be formulated:

min
x,u

N−1∑
i=0

(
∥xi − rxi ∥2Q + ∥ui∥2R

)
+ ∥xN − rxN∥2P (5.5a)

s.t. xi+1 = Axi +Bui, i = 0, . . . , N − 1, (5.5b)

xmin ≤ xi ≤ xmax, i = 0, . . . , N, (5.5c)

q̈min ≤ ui ≤ q̈max, i = 0, . . . , N − 1, (5.5d)

x0 = x̄0. (5.5e)

The cost function Eq. (5.5a) penalizes a deviation from the desired state trajectory
rx = [ (rq)⊤ (rq̇)⊤ ]⊤ ∈ R2n, where rq ∈ Rn and rq̇ ∈ Rn are the joint angle and
joint angular velocity trajectories. Furthermore, a regularization term is added on the

52



5.1 Trajectory tracking MPC for robot manipulators

control input ui, such that the resulting optimization landscape will have a more well-
defined minimum. Q ∈ R2n×2n, P ∈ R2n×2n and R ∈ Rn×n are the diagonal and
constant state weight matrix, terminal cost weight matrix and control input weight matrix,
respectively. State and control input constraints are considered in Eq. (5.5c) and Eq. (5.5d)
respectively, where xmin and xmax are the constant minimum and maximum state limits,
respectively, and q̈min and q̈max are the minimum and maximum joint acceleration input
limits, respectively. x̄0 is the current sampled state vector. Since Eq. (5.5) is a linear MPC
problem, the much used approach of using the unconstrained infinite horizon cost given
by the solution of the discrete Ricatti equation Eq. (3.7) is used to find P , given Q and R.

An alternative to the feedback linearization in Eq. (5.1) is to include the forward
dynamics Eq. (2.28) directly in the OCP, such that the motor torque τ is the control input.
This approach results in the following OCP:

min
x,τ

N−1∑
i=0

(
∥xi − rxi ∥2Q + ∥q̈i∥2Ru

+ ∥τi∥2Rτ

)
+ ∥xN − rxN∥2P (5.6a)

s.t. xi+1 = fd(xi, τi), i = 0, . . . , N − 1, (5.6b)

xmin ≤ xi ≤ xmax, i = 0, . . . , N, (5.6c)

τmin ≤ τi ≤ τmax, i = 0, . . . , N − 1, (5.6d)

q̈min ≤ q̈i ≤ q̈max, i = 0, . . . , N − 1, (5.6e)

x0 = x̄0, (5.6f)

where fd refers to the discrete version of the forward dynamics f in Eq. (2.28).
Furthermore, a regularizer term and constraint on the joint acceleration q̈ are added, in
order to generate smoother motion. Ru and Rτ are then the constant and diagonal weight
matrices on the joint acceleration and joint torque, respectively. τmin and τmax are the
constant lower and upper limits on the torque input.

A primary concern with both the feedback linearization approach and the NMPC
approach is that the underlying assumption is that the system dynamics are perfectly
known. In a real system, model mismatch will always be present to some degree. For
feedback linearization, this means Eq. (5.1) will map the desired joint acceleration to a
wrong torque, which generates an error between the desired and actual joint acceleration.
For NMPC the controller will plan a torque sequence that will not generate the same

53



5 Design and implementation

motion as the prior model.

Therefore, a stochastic MPC problem with added GP disturbance dynamics will also be
formulated, as discussed in Section 4.4. This has the potential of accounting for uncertain
model parameters, as well as additional unmodeled system dynamics such as motor
friction and other actuator dynamics.

In order to apply GP-MPC to robot manipulator trajectory tracking, the discretized
vectorial double integrator dynamics are again considered, now with added disturbance
and process noise:

xk+1 = Axk +Buk +Bd(d(xk,uk) +wk). (5.7)

Following Carron et al. 2019, every dimension of d are assumed to be an independent
GP, i.e., di ∼ GP(0, ki), with SE covariance function ki. Furthermore, i.i.d. Gaussian
process noise wk ∼ N (0,Σw) is considered, with Σw = diag(σ2

w,1, . . . , σ
2
w,n) ∈ Rn×n.

Furthermore, the process noise matrix Bd ∈ R2n×n is chosen to be

Bd =

 0

∆TI

 , (5.8)

which incidentally coincides with the forward Euler discretization of the continuous B
matrix. This choice of Bd was picked over the exact discretization of B in Eq. (5.4) for
its simpler structure, such that the disturbance is only affects the discrete velocity states.

The stochastic OCP with GP dynamics can then be formulated as:

min
x,u

N−1∑
i=0

(
∥µxi − rxi ∥2Q + tr(QΣx

i ) + ∥ui∥2R
)
+ ∥µxN − rxN∥2P + tr(PΣx

N ) (5.9a)

s.t. µxi+1 = Aµxi +Bui +Bdµ
d(µxi ,ui), i = 0, . . . , N − 1, (5.9b)

Σx
i+1 = ÃiΣiÃ

⊤
i , i = 0, . . . , N − 1, (5.9c)

µi ∈ Z(Σx
i ), i = 0, . . . , N, (5.9d)

q̈min ≤ ui ≤ q̈max, i = 0, . . . , N − 1, (5.9e)

µx0 = x̄0, (5.9f)

Σx
0 = 0, (5.9g)

54



5.1 Trajectory tracking MPC for robot manipulators

with the state covariance propagation Eq. (5.9c) as previously defined in Eq. (4.42), and
Z defined in Eq. (4.51).

In Figure 5.1 a block diagram of the workflow of GP-MPC for robot manipulator
trajectory tracking is shown. Given a prior model f and a dataset D, the unknown
disturbance function d is estimated offline using GP regression. This model is then used
online for closed-loop control using GP-MPC to track the reference trajectory rx. In the
figure, the system dynamics refer to the standard forward dynamics, yet it should be noted
that additional unmodeled dynamics terms will likely also be present, which d then aims
to model.

GPR
Eq. (4.35)

GP-MPC
Eq. (5.9)

Inverse
dynamics
Eq. (2.27)

System
dynamics
Eq. (2.28)

d

u τ x
rx

D

f

Offline

Online

Figure 5.1: Block diagram of GP-MPC loop. GPR is done offline, given a dataset D and
prior model f . GP-MPC is used in closed loop given the desired trajectory rx

and the learned GP disturbance model d.

5.1.2 Task space trajectory tracking†

For many applications, it would be useful to track end effector pose trajectories directly
instead of trajectories in joint space. One approach is to use the inverse kinematics to
map the desired end effector pose to joint angles and velocities and apply the previously

†This section is adapted from Brandt 2020.

55



5 Design and implementation

discussed MPC approaches to track the computed joint space trajectory. However, it would
also be of interest to consider formulating the cost function directly in task space, using
the forward kinematics. This would avoid separating these two problems, which would be
a sub-optimal strategy compared to considering the entire task space tracking problem
directly as a single optimization problem. It would allow computation of the optimal
control torques to track the pose trajectory while simultaneously considering secondary
goals and constraints, e.g., minimizing the joint torques and accelerations or obstacle
avoidance. This would be especially beneficial for redundant manipulator arms, where an
infinite number of solutions exist to the inverse kinematics.

An in-depth discussion on different ways to formulate a task space trajectory tracking
cost function for an NMPC controller is given in Brandt 2020, and in the following a
summary is given. First let re(t) = [ rp(t)⊤ ro(t)⊤ ]⊤ be the desired end effector pose
trajectory, consisting of the position rp(t) ∈ R3 and the rotation quaternion ro(t) ∈ R4.
The actual end effector position hp(q), dependent on the joint angles q, is given by the
last column of the homogeneous transformation matrix from the robot frame to the end
effector frame T b

e (q) given in Eq. (2.20):hp(q)
1

 = T b
e (q)

[
0 0 0 1

]⊤
. (5.10)

The end effector orientation is given by the rotation matrixRb
e inT b

e (q), and is converted to
a unit quaternion by Eq. (A.11). The end effector pose is then he(q) = [hp(q) ho(q) ]⊤.

With the desired pose re(t) and actual pose he(q) defined, the pose trajectory tracking
error can be formulated. The position error is trivially

ep = rp(t)− hp(q). (5.11)

For the orientation error, however, several possible formulations exists. Firstly, consider
the quaternion error between ho(q) = [ ηh ε⊤h ]⊤ and ro(t) = [ ηr ε⊤r ]⊤:

δho = ro(t)∗ ⊗ ho(q) =

 ηrηh − ε⊤r εh

ηrεh − ηhεr − [εr]×εh

 . (5.12)

56



5.1 Trajectory tracking MPC for robot manipulators

As discussed in Siciliano et al. 2010, since the quaternion error approaches the identity unit
quaternion [±1 0 0 0 ]⊤ for perfect tracking, one possibly orientation error formulation
is simply the vector part of the quaternion error, i.e.,

eo = ηrεh − ηhεr − [εr]×εh. (5.13)

From the unit length constraint on δho it is seen that eo = 0 will then track the orientation
trajectory ro exactly.

In order to formulate the task space trajectory tracking error cost, the full pose error is
denoted as e = [ (ep)⊤ (eo)⊤ ]⊤. The new stage cost for task space trajectory tracking is
then

ℓi(xi,ui) = ∥e(xi)∥2Q + ∥ui∥2R, (5.14)

where the dependence on time is omitted for notational clarity. Here Q ∈ R6 is the
diagonal and constant pose error weight matrix. This cost function can be used directly in
the MPC based on feedback linearization in Eq. (5.5), yet it should be emphasized that
the nonlinear least squares cost turns the QP into a NLP, and will thus be harder to solve.

The task space cost Eq. (5.14) can also be used in the GP-MPC in Eq. (4.53), but
it should be noted that this is under the assumption that the forward kinematics are
known exactly and thereby deterministic. Furthermore, taking the expectation of a highly
nonlinear function with respect to the random variable is generally very difficult, so in the
following the certainty equivalence approach is taken by assuming that E [ℓi(xi,u)] ≈
ℓi(µi,u). Assuming the kinematics are deterministic is a fair assumption, but the certainty
equivalence principle does not apply here. It is, however, a necessary approximation to
get a tractable OCP. Alternatives could be to try Monte Carlo approaches or polynomial
chaos expansions to estimate the expectation, but this is not explored further in this work.

Finally, as explored in Brandt 2020, the task space trajectory tracking error can also be
included in the NMPC problem in Eq. (5.6), such that the new cost is

ℓi(xi, τi) = ∥e(xi)∥2Q + ∥q̈i∥2Ru
+ ∥τi∥2Rτ

. (5.15)

In Brandt 2020, several optional additional cost terms are discussed, one of which is
the joint jerk. Penalizing the joint jerk

...
q will force a smoother commanded acceleration

profile and thus generate safer and more natural motions. This can be achieved with several

57



5 Design and implementation

different approaches. One is to use finite differences to approximate the jerk at every time
step. However, this is not always feasible, as many solvers optimized for real-time use will
not allow cost terms with coupling between states for different time steps. One way to
circumvent this is to augment the state vector by adding the previous input ui−1, such
that costs and constraints can be formulated using the finite differences approximation of
the joint jerk u̇. However, what will be used later in this work, is to augment the state by
letting u̇ be the new input and formulate a cost term on that directly.

5.1.3 Slack variables†

Finally, we will consider extending the trajectory tracking OCPs in Section 5.1.1 and
Section 5.1.2 to use slack variables where applicable. The main concept behind slack
variables is that certain inequality constraints can be extended to be soft by adding slack
variables s, meaning that the constraints may be violated but at a high cost when violated.
Consider the slack variable extension of a general inequality constraint:

g(x,u) ≤ 0 → g(x,u)− s ≤ 0, s ≥ 0, (5.16)

where s ∈ Rns . By adding a linear and quadratic cost on the slack variable in the cost
function, i.e.,

ℓs(s) = z⊤s+ s⊤Ws, (5.17)

with z ∈ Rns and W ∈ Rns×ns being the linear and quadratic slack weights, respectively,
one can improve the feasibility of the OCPs, as the MPC problem will no longer be
infeasible if the system enters a state outside the original feasible set. Considering factors
such as uncertain dynamics, measurement noise, and feedback delay, this is likely to
happen in a practical setting.

For the trajectory tracking MPC problem specifically, the chosen limits for q̇ and q̈

are typically far lower than their actual maximum values. The slack variable principle
can then be applied to make the limits on q̇ and q̈ soft, such that s ∈ R2n in this case.
However, this approach does come at the cost of adding additional optimization variables
and complicating the tuning process with more tuning parameters, namely z and W .

†This section is adapted from Brandt 2020.

58



5.2 Trajectory blending

5.2 Trajectory blending†

In the previous section, trajectory tracking formulations of the MPC problem for robot
manipulators were considered. However, for real-world applications, the desired trajectory
might be far away from the initial joint configuration q0, which could result in an unwanted
transient before the substantial initial tracking error has been reduced. It is, therefore,
considered how to provide a smooth approach from q0 to the target trajectory. A typical
example where this is useful is pick-and-place operations of moving objects, where the
robot starts from some default configuration far away from the target. It is desirable to
smoothly and safely approach the target, especially in a collaborative setting. Feeding the
target trajectory directly into the trajectory tracking controller will create a significant
error signal, which might lead to overshoot. In this work, trajectory blending methods
are applied to solve this problem of generating smooth motion from one trajectory to
another. Note that other approaches could be considered as well, such as filtering the
desired trajectory.

5.2.1 Position trajectory blending

The position hp is blended from the initial position p0 to the desired position trajectory
rp by the interpolation

hp(s) = p0 + β(s)(rp − p0) (5.18)

at every time step. The characteristics of the blended motion are determined by the
monotonically increasing function β(s) : [0, 1] 7→ [0, 1]. The simple case β(s) = s

results in standard linear interpolation. The first such function that will be considered is
the logistic function

βl(s) =
a

1 + e−ks
− b, (5.19)

where the parameter k shapes the steepness of the blending and a and b are chosen such
that the conditions βl(0) = 0 and βl(1) = 1 are satisfied, as discussed in Myhre 2016. It
can be shown that this is satisfied for

a = 2
1 + e−k

1− e−k
, b =

1 + e−k

1− e−k
. (5.20)

†This section is adapted from Brandt 2020.

59



5 Design and implementation

This choice of blending function allows linear motion towards the target initially, and
then the motion will slow down as the end effector approaches the target. One downside of
this choice of β(s) is that it will result in a step in the initial velocity, which consequently
means an initial error spike.

A possible choice to remedy this problem is to use a third-order exponential function

βe(s) = c (1− e−(αs)3) (5.21)

as in Rymansaib et al. 2013, where α > 0 is a parameter that will change the shape of the
resulting curve and c is chosen such that βe(1) = 1. It can be shown that this is achieved
for

c =
1

1− e−α3 . (5.22)

The two blending shape functions are compared for different values of k andα in Figure 5.2.
Quintic polynomials are also frequently used for blending references, for instance, as
considered in Macfarlane and Croft 2003.

0.0 0.5 1.0
s

0.0

0.5

1.0

β
l

k= 5

k= 10

k= 20

0.0 0.5 1.0
s

0.0

0.5

1.0

β
e

α= 1.8

α= 2.25

α= 2.8125

Figure 5.2: Logistic function βl and third-order exponential βe for different values of k
and α.

It should be noted that Eq. (5.18) can also be used for blending trajectories in joint space,
for the same reason of having an initial smooth motion from the initial joint configuration
with zero velocity to the desired trajectory. Since the model-predictive trajectory tracking
controller in Eq. (5.5) naturally considers both a joint angle and a joint velocity reference,

60



5.2 Trajectory blending

the desired velocity must also be derived. This can be found to be:

ḣp(s) = β̇(s)(rp − p0) + β(s)ṙp, (5.23)

where β̇ = dβ
ds ṡ can be used. For the third-order exponential case, it can be shown that

dβ
ds = 3cα3s2e−(αs)3 .

5.2.2 Quaternion trajectory blending

Blending orientation trajectories is not quite as trivial as blending position trajectories.
The linear interpolation expression Eq. (5.18) cannot be applied directly since the rotation
quaternion is constrained by the unit length constraint. One option is to normalize the
quaternion after doing linear interpolation, as introduced in Kavan and Žára 2005, which
is referred to as Quaternion Linear Blending (QLB). This approach takes the shortest
possible path but does not result in a constant angular velocity for a linear β. In this work,
spherical linear interpolation (SLERP) is used, which linearly interpolates between the
initial quaternion and the desired quaternion along the 4-dimensional unit hypersphere. It
is defined by

ho(s) = q0 ⊗ (q−1
0 ⊗ ro) β(s), (5.24)

using the quaternion product, power, and inverse operations, as defined in Section 2.1.4.
The resulting transform results in a rotation with a constant angular velocity around a fixed
axis for β(s) = s. This is visualized in Figure 5.3, projected down in 3 dimensions. Again
by choosing a smooth, monotonically increasing β(s) such as Eq. (5.19) or Eq. (5.21)
smooth motion can be generated between the initial and desired orientation.

An equivalent expression for SLERP given in Solà 2017, which is more suited for
implementation in code, is

ho(s) =
sin((1− β(s))∆θ)

sin(∆θ)
q0 +

sin(β(s)∆θ)

sin(∆θ)
ro, (5.25)

where ∆θ = arccos(q⊤
0 r

o).
In Figure 5.4 a simple example is considered, where a periodic position trajectory is

tracked while keeping a fixed orientation reference. Both the logistic function Eq. (5.19)
and the third-order exponential Eq. (5.21) are studied. From the resulting blended reference

61



5 Design and implementation

h
o

q 0

r
o

Figure 5.3: SLERP from q0 to ro along unit hypersphere, projected to 3 dimensions.

trajectories, it is seen how the logistic function will result in a nonzero initial target
velocity. In contrast, the exponential function will start with zero velocity.

0 5 10
t [s]

0.0

0.5

h
p
 [m

]

Logistic function
Third-order exponential

0 5 10
t [s]

0.0

0.5

h
o

Logistic function
Third-order exponential

Figure 5.4: Blended position and orientation trajectories for a periodic motion with fixed
orientation reference. The blending is done by linear interpolation of position
and SLERP interpolation of the quaternion, where both a logistic function
blend and a third-order exponential blending is shown.

5.3 Space manipulator modeling and control
In the following section the kinematics and dynamics of space manipulators will be
presented, based on Wilde et al. 2018 and Nanos and Papadopoulos 2017. The resulting
model will be applied to an NMPC controller, as well as a GP-based MPC.

62



5.3 Space manipulator modeling and control

5.3.1 Space manipulator kinematics and dynamics

The space manipulator system shown in Figure 5.5 is considered. It consists of a satellite
base with position rIs and attitude quaternion QI

s = [ ηs ε⊤s ]⊤ in inertial frame, and an
n DOF manipulator arm with joint angles q. The satellite base has mass ms and inertia
Is, and the mass and inertia of the i-th link are denoted as mi and Ii, where i ∈ Nn.

k1

k 2

k 3

rbc

rb3

p
b
3

r I
s

zb

xb

yb

yI

zI

xI

Figure 5.5: Space manipulator system, with inertial frame coordinate system and satellite
body frame coordinate system shown. The satellite body center of mass, link
center of mass, and total space manipulator system center of mass is indicated.

Let pIi be the position vector to the i-th joint, and let rIi be the position of the center of
mass of the i-th link, both from the satellite body frame. The corresponding joint-fixed
and link-fixed coordinate systems are referred to as ji and ℓi, respectively. Finally, the
rotation matrix from the i-th link-fixed frame to body-fixed frame is denoted as Rb

ℓi
.

pIi , rIi , and Rb
ℓi

are found by formulating the forward kinematics of the system using
homogeneous transformation matrices as discussed in Section 2.2.

The joint axis in body frame is denoted as kbi , given by the transformation

kbi = Rb
jik

ji
i , (5.26)

where kjii is the i-th joint axis in the local joint frame, of unit length. In the DH convention
the local joint axes are always along the local z-axis.

Finally, the vector from the satellite body center of mass to the space manipulator center

63



5 Design and implementation

of mass is defined as

rbc =
1

mtot

n∑
i=1

mir
I
i , (5.27)

where mtot = ms +
∑n
i=1mi is the total mass of the space manipulator system.

The Lagrangian formalism can then be used to derive the system dynamics. Following
Wilde et al. 2018, [ (xbs)⊤ q⊤ ]⊤ are used as the generalized coordinates, where xbs =

[ (rbs)
⊤ (Qb

s)
⊤ ]⊤ is the satellite body pose in body frame. It is assumed that there are no

external forces or torques on the system, such that the potential energy is zero. Furthermore,
it is assumed that the satellite is free floating, i.e., that only the joint motors are controlled
and not the satellite body states. The Lagrangian of the system L is therefore equal to the
kinetic energy T and is given in Wilde et al. 2018 as:

L = T =
1

2

[
(ẋbs)

⊤ q̇⊤
]⊤  Ms Msm

M⊤
sm Mm

ẋbs
q̇

 , (5.28)

where the satellite mass matrix Ms is

Ms =

Mv Mvω

M⊤
vω Mω

 , (5.29)

with
Mv = mI, Mvω = −m[rc]×, (5.30)

Mω = Ibs +

n∑
i=1

(
Ibi −mi[ri]×[ri]×

)
. (5.31)

It is important to note that the link center of mass inertia matrices Ibi are given in body
frame, and can be transformed from the local link frames by

Ibi = Rb
ℓiI

ℓi
i (Rb

ℓi)
⊤. (5.32)

The mass matrix for the coupling between the manipulator and the satellite body Msm is

64



5.3 Space manipulator modeling and control

given by

Msm =

Mvm

Mωm

 , (5.33)

where

Mvm =

n∑
i=1

miJT,i, Mωm =

n∑
i=1

(
Ibi JR,i +mi[ri]×JT,i

)
. (5.34)

JT,i is the translational part of the Jacobian for the center of mass of link i in body frame:

JT,i =
[
[kb1]×(ri − p1) · · · [kbi ]×(ri − pi) 03,n−i

]
, (5.35)

and JR,i is the corresponding rotational part:

JR,i =
[
kb1 · · · kbi 03,n−i

]
, (5.36)

as derived in Siciliano et al. 2010 and similar to the end effector Jacobian discussed earlier
in Section 2.3. Finally the manipulator mass matrix Mm is given by

Mm =

n∑
i=1

(
J⊤
R,iI

b
i JR,i +miJ

⊤
T,iJT,i

)
. (5.37)

The linear and angular momenta of the space manipulator system around the system
center of mass are p

l

 = Msẋ
b
s +Msmq̇, (5.38)

and are conserved given the assumption of a free floating space manipulator system. By
assuming zero initial momentum, i.e., p0 = l0 = 0, one can show as in Wilde et al. 2018
that the reduced equations of motion are given by

M∗(q)q̈ +C∗(q, q̇)q̇ = τ , (5.39)

where only q and q̇ now appear in the dynamics. The reduced mass matrix M∗ is given

65



5 Design and implementation

by
M∗ = Mm −M⊤

smM−1
s Msm, (5.40)

and the reduced Coriolis and centripetal matrix have several forms, one of which is

C∗ =
∂(Msq̇)

∂q
− 1

2

(
∂(q̇⊤Ms)

∂q

)⊤

+
1

2

(
∂(q̇⊤M⊤

smM−1
s Msm)

∂q

)⊤

− ∂(M⊤
smM−1

s Msmq̇)

∂q
,

(5.41)

as given in Nanos and Papadopoulos 2017.
The reduced equations of motion in Eq. (5.39) are written in the same convenient form

as the fixed-base manipulator dynamics in Eq. (2.26), and provide the basis for simulation
and control of space manipulators with zero initial momenta. It would however be useful
to retrieve back the satellite base velocity and pose states. Under the assumption of zero
initial momenta, the linear and angular velocity in body frame can be retrieved by solving
Eq. (5.38) for ẋbs:

ẋbs =

vbs
ωbs

 = −M−1
s Msmq̇. (5.42)

The body velocity in body-fixed frame can be transformed to inertial frame by: ṙIs
Q̇I
s

 =

RI
b(Q

I
s) 0

0 E(QI
s)

vbs
ωbs

 , (5.43)

where
E(QI

s) =
1

2

[
−εIs ηIsI + [εIs]×

]⊤
(5.44)

provides the transformation from angular velocity to the unit quaternion derivative, as
given in Siciliano et al. 2010.

5.3.2 Space manipulator MPC
Various approaches have been proposed for control of free-floating space manipulator
systems. One frequently used approach is to formulate the generalized Jacobian for the
space manipulator system, as introduced in Umetani and Yoshida 1989, such that traditional

66



5.3 Space manipulator modeling and control

inverse kinematics methods, like the Jacobian inverse discussed in Section 2.3, can be
applied to track the desired trajectory. Alternatively, one can do feedback linearization
of Eq. (5.39), similar to fixed-base systems as discussed earlier in Section 5.1. Then
PD control laws can be formulated for the acceleration input, possibly with acceleration
feedforward, which is done in Wilde et al. 2018. Applying such a feedback linearization
with MPC is considered in Wang et al. 2016. Alternatively, NMPC with the full nonlinear
dynamics of the system is used in Rybus et al. 2017. In the following, we consider the
feedback linearized system as in Wang et al. 2016, but extend the model with a GP
disturbance model.

The system is feedback linearizated by letting

τ = M∗(q)u+C∗(q, q̇)q̇, (5.45)

such that a double integrator system is obtained with the joint acceleration u as the control
input, like in Eq. (5.3). Then a linear MPC can be used to sample a dataset, such that a
GP can be trained and used in GP-MPC control of the space manipulator system, in the
presence of unmodeled dynamics. This might include unknown joint damping, uncertain
base mass from thrusters using fuel, or unknown end effector mass from gripping space
debris or other satellites.

For joint space trajectory tracking, the same MPC problem as previously considered
with a fixed-base manipulator in Eq. (5.5) is used. For task space trajectory tracking,
it is important to note that an additional transform from body-fixed frame to inertial
frame is needed. For fixed-base systems, this transform is static or is even assumed to
coincide with the inertial frame, such that this is not a problem. However, for floating-base
systems, this means the pose of the robot body needs to be known in the inertial frame
over the MPC time horizon, meaning that the position and orientation dynamics need
to be added to the optimization problem. This increases computational complexity and
the dimensionality of the problem significantly. For instance, for the 3 DOF example,
the number of optimization variables increases from 6 to 18, and the dynamics will be
significantly more involved. While this is still possible to do, as is done in Rybus et al.
2017, a different approach is taken here to remedy this complication.

Is it assumed that since the initial momenta of the system are zero, the pose of the
satellite body will not change significantly over the current prediction horizon. This

67



5 Design and implementation

assumption is also supported by the fact that in a real-world use case, the mass of the
satellite body will be significantly larger than the total mass of the manipulator arm. Given
this assumption, the satellite body position rIs and orientation QI

s can be considered fixed
over the current MPC time horizon and is therefore treated as constant input parameters
to the MPC solver at every time step. The end effector pose in inertial frame can then
be formulated by adding one additional transform from inertial frame to body frame
T I
b (r

I
s ,Q

I
s) to the chain of homogeneous transformation matrix products in Eq. (2.20),

such that the final homogeneous transformation matrix is

T I
e = T I

b (r
I
s ,Q

I
s) T

b
e (q). (5.46)

By using this transformation in the cost function the task space MPC discussed in
Section 5.1.2 can be applied. To the best of the author’s knowledge, this approximation
has not previously been used to simplify the space manipulator trajectory tracking MPC
problem.

5.4 Software tools†

In this section, the practical implementation of the GP-MPC and NMPC controllers, and
the software tools used to implement them, will briefly be outlined. The implementation
was written in Python and uses the optimal control library acados presented in Verschueren
et al. 2019 to generate a real-time feasible SQP RTI solver, given the robot kinematics and
dynamics, and the hyperparameters of a GP. The kinematics and prior dynamics can either
be given manually or generated using the library urdf2casadi by johannessen2019robot,
given a robot model. The hyperparameters of the GP are trained using GPflow, presented
in Matthews et al. 2017. The basic workflow for the GP-MPC implementation is illustrated
in Figure 5.6. These tools and various notable implementation details will be further
explained in the following.

†This section is adapted from Brandt 2020.

68



5.4 Software tools

gpflow acados
D θ MPC solver

h,f

Figure 5.6: Workflow of the GP-MPC implementation for robot manipulator trajectory
tracking. h and f are the robot kinematics and dynamics, respectively, and θ
are the hyperparameters that parametrize the GP disturbance model.

5.4.1 GPflow

The Python package GPflow was used for learning the GP hyperparameters, both with
maximum likelihood for exact hyperparameter inference in Eq. (4.21), and for the sparse
FITC, VFE and SVGP methods, described in Section 4.3. Alternatives include the
Python libraries GPy by GPy 2021, GPyTorch by Gardner et al. 2018, and scikit-learn
by Pedregosa et al. 2011. GPflow was chosen since it has simple interfaces to all the
aforementioned sparse methods and is built on the machine learning TensorFlow given
in Abadi et al. 2016, which allows automatic gradients and GPU training. Tensorflow
provides, among others, the Adam optimizer from Kingma and Ba 2015, which was used
for training the GPs. Initial testing with the Adam optimizer on the GPU showed an
increase in training time compared to the CPU for the hardware and datasets used in this
work. This is likely because the dataset sizes and the number of variables were not large
enough to use GPU training efficiently. The GPs were therefore trained only on the CPU
in this work. The hardware used for training is mentioned later in Section 6.1.

5.4.2 acados

The MPC formulations described in Section 5.1 were implemented using the optimal
control library acados. It provides SQP and SQP RTI solvers for solving OCPs, which are
targeted for fast embedded applications. It is implemented in C and provides Python and
MATLAB interfaces that allow C code generation of solvers.

Furthermore, it allows formulating the dynamics, cost, and constraints as CasADi
expressions. CasADi is a framework for nonlinear numerical optimization based on
generating expression graphs from symbolic expressions in order to compute algorithmic

69



5 Design and implementation

derivatives. It allows for easily formulating symbolic expressions using trigonometric
functions, matrix multiplication, trace, matrix inverse, and matrix decomposition like
Cholesky decomposition, and is therefore very useful for formulating the robot kinematics,
dynamics, and the GP equations like the prediction equations in Eq. (4.35).

Alternatives for real-time optimal control frameworks include the predecessor of acados,
ACADO by Houska et al. 2011, and FORCES PRO by Zanelli et al. 2017. The latter
was also tested for this work, but initial, rudimentary tests found acados to be faster
and more stable for NMPC with GP dynamics. It was, however, used for the GP-MPC
implementations in Hewing, Liniger, et al. 2018, Hewing, Kabzan, et al. 2019 and Carron
et al. 2019, and is as such most certainly viable for GP-MPC with complex dynamics and
high sample rates.

5.4.3 urdf2casadi
urdf2casadi is a Python package for generating the kinematics and dynamics of robot
systems as CasADi expressions, given a Unified Robot Description Format (URDF) model
of the robot. The URDF format is an XML file format for representing robot models,
used in Robot Operating System (ROS). urdf2casadi was used to generate the robot
kinematics and dynamics and include them into the OCP formulation in acados. There
are alternatives, like Pinocchio by Carpentier et al. 2019, but urdf2casadi was chosen for
the ease of integration with acados using CasADi expressions.

5.4.4 PyBullet
The Python package PyBullet from Coumans and Bai 2016–2021 was used to test the
developed MPC controllers in simulation. PyBullet lets the user load robots into the
simulation environment from URDF and simulates the robot dynamics with joint limits
while allowing joint position, joint velocity, and joint torque control. Many other robotics
simulation tools exists, such as Gazebo by Koenig and Howard 2004, CoppeliaSim by
Rohmer et al. 2013, and MuJoCo by Todorov et al. 2012. PyBullet was used since it is
open-source and most of the underlying model terms, like the Jacobian and mass matrix,
are accessible.

70



6 Results

In this chapter, results from simulations and experiments of deterministic NMPC and
GP-MPC for both fixed-base and floating-base robot manipulator systems will be presented
and analyzed. Firstly, in order to illustrate the process of sampling a dataset, training a GP
and controlling a robot using GP-MPC, a 2 DOF planar manipulator is considered. During
this section, the hardware and various configurations used for training and simulation for
all the results are given. Results from experiments with a fixed-base 6 DOF UR10e robot
manipulator and a free-floating space manipulator robot are then presented. Both of these
systems were tested in simulation, and for the UR10e, the trajectory tracking methods
were also tested on a real robot. For all tests, both joint space and task space trajectories
were tested. The joint space results on the UR10e robot in the lab and the task space result
on the space manipulator simulation are given as supplementary results in Appendix D.

6.1 Trajectory tracking for 2 DOF planar robot
manipulator

In this section, trajectory tracking for the 2 DOF planar robot manipulator arm depicted
in Figure 6.1 is considered as an initial illustrative example. Modeling of the planar
manipulator is given in detail in Appendix C but follows the modeling principles for
kinematics and dynamics outlined in Chapter 2. The DH parameters for the robot
manipulator arm are given in Table 6.1, and the parameters defining the links and joints
of the robot are given in Table 6.2 and Table 6.3, respectively.

The linear MPC using feedback linearization in Eq. (5.5) is first used, in order to collect
a dataset to learn the disturbance dynamics using GPR, as well as to serve as a benchmark
for comparison with the GP-MPC controller in Eq. (5.9). It is assumed that the mass and
inertia of the links are not perfectly known, such that the prior model used by the linear

71



6 Results

x

y

q1

ℓ 1

q2

ℓ 2
Figure 6.1: 2 DOF planar robot manipulator arm, with joint angles q1 and q2, and link

lengths ℓ1 and ℓ2.

Table 6.1: DH parameters for the 2 DOF planar manipulator.

Link ai αi di θi

1 ℓ1 0 0 q1

2 ℓ2 0 0 q2

MPC differs from the true model used in simulation. Specifically, as seen in Table 6.2, the
prior mass and inertia of link 1 are scaled down by 20%, and the mass and inertia of link
2 are scaled up by 25%. While such high uncertainty in the dynamical parameters of the
model is unrealistic for most applications, it is done here to illustrate the degradation of
tracking performance with model mismatch and the capability of GP-MPC to account for
this model mismatch.

In the following an ERK4 integrator with step size ∆t = 1ms was used to simulate
the system. Zero mean Gaussian measurement noise was added to the joint velocity
measurements with standard deviation σn = 2 · 10−4 rad/s, which was used for all
subsequent simulations in the chapter. The MPC controllers were configured withN = 24

steps and sampling time ts = 10ms. In the following presented results, the acados SQP
RTI solver was used to solve the presented OCPs, using the multiple-shooting method.
The Hessian was approximated using the Gauss-Newton approximation. The resulting

72



6.1 Trajectory tracking for 2 DOF planar robot manipulator

Table 6.2: Link parameters for the 2 DOF planar manipulator. m̂ and Îzz are the prior
mass and inertia, respectively.

Link ℓ [m] m [kg] m̂ [kg] Izz [kgm
2] Îzz [kgm

2]

1 0.5 5.0 4.0 6.25 · 10−3 5.0 · 10−3

2 0.5 5.0 6.25 6.25 · 10−3 7.813 · 10−3

Table 6.3: Joint parameters for 2 DOF planar manipulator.

Joint qmax [rad] q̇max [rad/s] q̈max [rad/s
2] Fv [Nms/rad]

1 π 1.0 8.0 1.5

2 π 1.0 8.0 1.5

QPs were solved with KKT tolerance 1 · 10−5, using the interior point QP solver HPIPM
by Frison and Diehl 2020. All subsequent simulations and experiments were run on a
computer with an AMD Ryzen 9 3900X CPU with 16 GB RAM.

6.1.1 Linear MPC
The feedback linearization-based MPC Eq. (5.5) is first used to collect a training set and a
test set in order to do GPR. For the training set a planar trefoil knot curve is considered:

re1(t) = a1

sin(ω1t) + 2 sin(2ω1t)

cos(ω1t)− 2 cos(2ω1t)

+ x̄1, (6.1)

with parameters a1 = 0.14, ω1 = 0.1 and shifted by x̄1 = [ 0.9 1.1 ]⊤. For the test set a
Lissajous curve is considered:

re2(t) =

a2 cos(ω2t+ φ)

b2 sin(nω2t)

+ x̄2, (6.2)

with a2 = 0.4, b2 = 0.2, ω2 = 1, φ = π
2 , n = 1.5 and shifted by x̄2 = [ 0.9 1.2 ]⊤. Both

trajectories are shown in Cartesian space in Figure 6.2. The end effector trajectories are
mapped to joint angle and joint velocity trajectories by the inverse kinematics and the

73



6 Results

Jacobian, found in Eq. (C.2) and Eq. (C.3), respectively.

0.5 1.0
x [m]

0.8

1.0

1.2

1.4
y 

[m
]

0.5 1.0
x [m]

0.8

1.0

1.2

1.4

1.6

y 
[m

]
Figure 6.2: Trefoil knot curve re1(t) (left) and Lissajous curve re2(t) (right) in the xy-plane.

The system was simulated for T = 10 s, with simulation and control parameters such
as tuning and initial conditions given in Table 6.4. Chance constraint on q and q̇ were
added, as well as deterministic constraints on u, with the limits given earlier in Table 6.3.
The constraint violation probability for the two-sided bounds on q and q̇ was set to
ϵ = 0.0456, which corresponds to a 2-sigma probability in the one-dimensional case.
However, the state is naturally a multivariate Gaussian, so this does not directly translate
to the multivariate case, as rather the sum of the violation probabilities for every constraint
adds up to this 2-sigma probability, as explained in Section 4.4.5. However, it is a useful
way to interpret the constraint violation probability during the tuning process. For all
subsequent tests, the initial joint velocities are zero. The discrete Ricatti equation Eq. (3.7)
was used to find the terminal cost P .

In Figure 6.3 the computed joint acceleration and corresponding control torque is
shown, the latter computed using the inverse dynamics prior model. The resulting state
trajectory is presented with respect to time in Figure 6.4. The end effector trajectory in the
xy-plane is visualized in Figure 6.5, with the blue and orange lines indicating joint 1 and
joint 2 at certain equally spaced steps. A substantial tracking error is seen in Figure 6.6,
since there is model mismatch present in the system. In Figure 6.7a the computation time
is shown. Finally, the computation time of the preparation stage and the feedback stage
are shown separately in Figure 6.7b, where in this example with a linear MPC the time
taken by the two stages of the RTI algorithm are comparable in length.

74



6.1 Trajectory tracking for 2 DOF planar robot manipulator

Table 6.4: Parameter values for joint space trajectory tracking test with 2 DOF planar
manipulator.

Parameter Value

N 24

ts [ms] 10.0

q0 [deg] [10, 75]

ϵ 0.0456

Q blkdiag(102 · I2, 10 · I2)
R I2

0 5 10
t [s]

5

0

5

q̈ 
[r

ad
/s

2
]

q̈1 q̈2

0 5 10
t [s]

0

20

40

τ 
[N

m
]

τ1 τ2

Figure 6.3: Joint acceleration input and computed joint torque for 2 DOF planar manipu-
lator following joint space trajectory with linear MPC.

A training dataset was collected, with sample rate matching the MPC time step of
10ms. The datasets for all subsequent tests were collected with a sample rate matching
the MPC time step. For this example, that resulted in a dataset size of 1000 data points.

Another test was done to collect a test set, now tracking the Lissajous curve shown to
the right in Figure 6.2. This dataset was collected over 15 s, resulting in 1500 samples, and
with initial joint configuration q0 = [30 90]⊤, but is otherwise identical to the previously
used parameters in Table 6.4. This dataset was collected to analyze the performance of
the GP-MPC in a region of the state space around the training trajectory, and not just in
the training trajectory itself, i.e., to judge how well the GP generalizes. The end effector
trajectory from this test is shown in Figure 6.8, and the corresponding joint space tracking
error is shown in Figure 6.9.

75



6 Results

0 5 10
t [s]

2.5

0.0

2.5

q 
[r

ad
]

q1 q2 rq1 rq2

0 5 10
t [s]

1

0

1

q̇ 
[r

ad
/s

]

q̇1 q̇2 r q̇1 r q̇2

Figure 6.4: Joint angles and joint velocities for 2 DOF planar manipulator following joint
space trajectory with linear MPC.

0 1
x [m]

0.0

0.5

1.0

y 
[m

]

Figure 6.5: Trajectory of 2 DOF planar manipulator with linear MPC in blue, and desired
trajectory in red.

0 5 10
t [s]

0.0

2.5

∆
q 

[r
ad

]

×10 1 ∆q1 ∆q2

0 5 10
t [s]

1

0

∆
q̇ 

[r
ad

/s
]

∆q̇1 ∆q̇2

Figure 6.6: Joint trajectory tracking error for 2 DOF planar manipulator with linear MPC.

76



6.1 Trajectory tracking for 2 DOF planar robot manipulator

0 5 10
t [s]

0

10

C
om

p.
 ti

m
e 

[m
s]

(a) Computation time of linear MPC for 2 DOF
joint space trajectory tracking example. The
average is indicated by the dotted line.

0 5 10
t [s]

0.25

0.50

0.75

C
om

p.
 ti

m
e 

[m
s]

tp

tfb

(b) Computation time for preparation stage tp

and feedback stage tfb of RTI with linear
MPC in 2 DOF joint space trajectory tracking
example.

0 1
x [m]

0.0

0.5

1.0

1.5

y 
[m

]

Figure 6.8: Trajectory of 2 DOF planar manipulator with linear MPC in blue, and desired
trajectory in red.

0 5 10 15
t [s]

2

0

∆
q 

[r
ad

]

×10 1 ∆q1 ∆q2

0 5 10 15
t [s]

0.0

0.5

1.0

∆
q̇ 

[r
ad

/s
]

∆q̇1 ∆q̇2

Figure 6.9: Joint trajectory tracking error for 2 DOF planar manipulator with linear MPC.

77



6 Results

6.1.2 GP training
A GP was then trained on the training set collected using linear MPC in the previous
section. The dataset is visualized in Figure 6.10. The GP hyperparameters were trained for
50 000 iterations using the SVGP method with the Adam optimizer for M̃ = 20 inducing
variables. This and all subsequent GPs in this chapter were trained on a AMD Ryzen 9
3900X CPU with 16 GB RAM using the Adam optimizer.

Furthermore, for the SVGP method, for which SGD is possible, a minibatch size of
128 was used in this work. Finally, the training in GPflow was implemented such that
a lower limit of 1 · 10−4 was imposed on σn during training. This, in effect, makes the
noise variance act as jitter on the diagonals on the covariance matrix in Eq. (4.19), such
that the matrix remains positive definite and the inverse well-conditioned.

0.25 0.00 0.25
q1

1.0

1.5

2.0

q 2

0.5 0.0
q̇1

0.5

0.0

0.5

q̇ 2

5 0
u1

0

5

u
2

1.5 2.0 2.5
y1

4

2

y 2

Figure 6.10: Training dataset D split into q, q̇, u and y.

In Figure 6.11 the ELBO and root mean square error (RMSE) of the prediction on the
training set are shown over the training duration. The evolution of the hyperparameters
while training are shown in Figure 6.12.

78



6.1 Trajectory tracking for 2 DOF planar robot manipulator

0 20000 40000
Iterations

1.0

0.5

0.0

EL
B

O

×104

ELBO1

ELBO2

0 20000 40000
Iterations

0.1

0.2

0.3

R
M

SE

RMSE1

RMSE2

Figure 6.11: ELBO and RMSE on training set for every output dimension.

0.00

0.02

σ
2 n

0.00

0.02

2

4

σ
2 f 4

5

0 20000 40000
0

20

`

0 20000 40000
0

20

Figure 6.12: Evolution of hyperparameter values while training. Noise variance σ2
n is

shown in the top row, signal variance σ2
f is shown in the middle row and

length scales ℓ are shown in the bottom row, for dimension 1 to the left and
dimension 2 to the right. For brevity the individual length scale indices are
not indicated.

79



6 Results

Using the GP to predict the output of the test set, an RMSE of 0.0221 rad for joint 1
and 0.0223 rad for joint 2 is obtained. The resulting predicted posterior is visualized in
Figure 6.13, and compared to the true distribution of the output of the test set.

1.5 2.0 2.5
6

4

2

0

1.5 2.0 2.5
6

4

2

0

Figure 6.13: Predicted (left) and true posterior distribution (right) on test set.

To further evaluate the GP’s ability to generalize to new datasets, cross-validation (CV)
is used. Specifically, K-fold CV is considered, meaning the training set is split into K
sets of equal size, and for every set, that set is used as the test set, and the union of the
remaining K − 1 is used as the training set. Finally, the average error metric over the K
iterations, here the prediction RMSE, provides a better way of evaluating the performance
of the GP compared to only using a single test set. For the 2 DOF example considered in
this section, the training set was split into K = 5 folds. The resulting average RMSE is
0.021 59 rad/s2 for joint 1 and 0.027 58 rad/s2 for joint 2.

In order to further investigate the effect of how the number of inducing variables is
chosen, K-fold CV is again done, now repeated for different values of M . The resulting
RMSEs are shown in Figure 6.14, and it can be seen that for this system and choice of
trajectory, the RMSE seems to stop improving noticeably when M reaches about 25.

80



6.1 Trajectory tracking for 2 DOF planar robot manipulator

20 40
M

2.25

2.50

R
M

S
E

1

×10 2

20 40
M

4

6

R
M

S
E

2

×10 2

Figure 6.14: Average RMSE from K-fold cross-validation with K = 5 and 40 000
iterations as a function of number of inducing variables.

6.1.3 GP-based MPC

The GP-MPC controller Eq. (5.9) was tested with the trained GP and compared to linear
MPC, for the same parameters in Table 6.4. The resulting trajectory of the manipulator in
the xy-plane is shown in Figure 6.15, and the joint trajectory tracking error is presented
in Figure 6.16. The predicted disturbance from the GP is shown in Figure 6.17, and the
GP-MPC computation time is plotted in Figure 6.18a. These results show how the GP can
infer the disturbance dynamics to a high accuracy, and thereby reduce the tracking error.

0 1
x [m]

0.0

0.5

1.0

y 
[m

]

Figure 6.15: Trajectory of 2 DOF planar manipulator with GP-MPC in blue, and desired
trajectory in red.

Finally, the respective computation times of the preparation stage and the feedback
stage are shown in Figure 6.18b, which when compared to Figure 6.7b shows that the

81



6 Results

0 5 10
t [s]

0.0

2.5

∆
q 

[r
ad

]
×10 1

5.0 7.5
0.01
0.00
0.01

∆q1 ∆q2

0 5 10
t [s]

1

0

∆
q̇ 

[r
ad

/s
]

∆q̇1 ∆q̇2

Figure 6.16: Joint trajectory tracking error on trefoil knot trajectory for 2 DOF planar
manipulator with GP-MPC.

0 2 4 6 8 10
t [s]

5.0

2.5

0.0

2.5

d
 [r

ad
/s

2
]

µd1 d1 µd2 d2

Figure 6.17: True and predicted disturbance for trefoil knot trajectory.

preparation stage now takes the majority of the computation time, while the timing of the
feedback stage looks similar to how it was for linear MPC. This makes sense, as evaluating
the values in the approximate QP in Eq. (3.13) may take more time depending on the
complexity of the cost function, dynamics, and constraints, yet solving the resulting QP
will not differ as much in time. This shows how the preparation stage will typically take
the most time for OCPs with nonlinear dynamics.

When evaluating the GP-MPC controller on the test set with the Lissajous trajectory, a
similar performance is observed, showing how the GP generalizes from the training set.
The end effector trajectory is presented in Figure 6.19 and the state trajectory tracking
error is shown in Figure 6.20.

82



6.1 Trajectory tracking for 2 DOF planar robot manipulator

0 5 10
t [s]

0

10

C
om

p.
 ti

m
e 

[m
s]

(a) Computation time for GP-MPC for 2 DOF
joint space trajectory tracking example. The
average is indicated by the dotted line.

0 5 10
t [s]

1

2

3

C
om

p.
 ti

m
e 

[m
s]

tp

tfb

(b) Computation time for preparation stage tp

and feedback stage tfb of RTI with GP-MPC
in 2 DOF joint space trajectory tracking
example.

0 1
x [m]

0.0

0.5

1.0

y 
[m

]

Figure 6.19: Trajectory of 2 DOF planar manipulator with GP-MPC in blue, and desired
trajectory in red.

Finally, in Table 6.5 key values that summarize the performance of the controllers for
the different cases are shown. Specifically, the trajectory tracking RMSE

RMSEq =

√√√√ 1

NT

NT∑
k=0

∥qk − rqk∥2 (6.3)

is considered, whereNT is the total number of steps. The RMSE of the model predictions,
i.e., the predicted state at the next time step of the MPC prediction horizon i = 1, and the
computation time of the RTI solver are also given.

The results show how adding the GP disturbance model increases the prediction

83



6 Results

0 5 10 15
t [s]

2

0
∆
q 

[r
ad

]
×10 1

5.0 7.5
0.01
0.00
0.01

∆q1 ∆q2

0 5 10 15
t [s]

0.0

0.5

1.0

∆
q̇ 

[r
ad

/s
]

∆q̇1 ∆q̇2

Figure 6.20: Joint trajectory tracking error on Lissajous trajectory for 2 DOF planar
manipulator with GP-MPC.

Table 6.5: Comparison of trajectory tracking RMSE, prediction RMSE and computation
time for linear MPC and GP-MPC, on training set and test set.

Simulation case RMSEq[rad] RMSEpred tsolver[ms]

Linear MPC (train) 7.272 · 10−2 3.596 · 10−2 0.664

GP-MPC (train) 5.488 · 10−2 5.056 · 10−4 2.515

Linear MPC (test) 6.222 · 10−2 4.104 · 10−2 0.667

GP-MPC (test) 3.255 · 10−2 1.140 · 10−3 2.555

accuracy significantly, especially when considering that this error will be propagated N
times over the prediction horizon. This results in a somewhat lower tracking error. A
larger decrease in tracking error is likely not observed since the initial joint configuration
of the robot is far away from the target trajectory. In later sections, trajectory blending
will be used to reduce this transient error spike.

This increase in prediction accuracy does, however, come at the cost of significantly
higher computation time, as well as the added complexity of having to train the GP
hyperparameters. It was also observed that the GP could generalize to other trajectories
and provide significantly better predictions also in this case, yet not as well as for the
training trajectory itself. Finally, it must be emphasized that these are only single test cases
and, as such, do not represent how well the performance improvement will be in general.
A Monte Carlo simulation approach, where the trajectory choice and initial conditions are
randomized, would give more robust numerical results. The limitation of long training

84



6.2 Trajectory tracking for 6 DOF robot manipulator in simulation

durations made this time-consuming and was therefore not explored further in this work.

6.2 Trajectory tracking for 6 DOF robot manipulator in
simulation

For a more realistic example, trajectory tracking for a 6 DOF robot manipulator is
considered. Specifically a UR10e robot is used, with DH parameters given in Table 6.6,
and joint angle, velocity, and torque limits given in Table 6.7. Furthermore, all the limits
are symmetric, i.e., qmin = −qmax, q̇min = −q̇max, τmin = −τmax. A visualization of the
UR10e in PyBullet is shown in Figure 6.21.

Figure 6.21: UR10e robot in PyBullet simulation environment.

Table 6.6: DH parameters for the UR10e robot, given in Parameters for calculations of
kinematics and dynamics 2020.

Joint θ [rad] a [m] d [m] α [rad]

1 0 0 0.180 70 π/2

2 0 −0.612 70 0.0 0

3 0 −0.571 55 0.0 0

4 0 0 0.174 15 π/2

5 0 0 0.119 85 −π/2
6 0 0 0.116 55 0

85



6 Results

Table 6.7: Joint limits for the UR10e robot. The maximum joint angle qmax, joint angular
velocity q̇max and joint torque τmax are given for every joint on the 6 DOF robot,
provided in E-Series From Universal Robots 2020 and Max. Joint Torques
2015.

Joint qmax [deg] q̇max [deg /s] τmax [Nm]

1 360 120 330

2 360 120 330

3 360 180 150

4 360 180 56

5 360 180 56

6 360 180 56

A significant model mismatch is introduced by doubling the mass and inertia of
the last link of the manipulator arm, the values of which are detailed in Table 6.8.
Furthermore, viscous damping terms are introduced in most of the joints, which are
ignored in the prior model. The viscous damping coefficients used in simulation are
Fv = [ 8.0 6.0 0.5 0.005 0.01 0.0 ]⊤Nms/rad. Note that no friction was added to the
last joint, as the NMPC controller struggled with having both friction and unknown
mass on the last link. The changed mass and inertia of the last linkage is relevant, for
instance, when attaching something to the robot end effector with unknown dynamical
parameters, which is the case for the lab experiments in Section 6.3. Viscous friction is in
many model-based control approaches neglected and therefore a frequent source of model
mismatch. Using a GP to learn the disturbance introduced by these factors is therefore of
practical interest.

Table 6.8: True and prior parameter values for final link of UR10e model used in simulation
and controllers respectively.

Parameter True Prior

m6 [kg] 2.02 · 10−1 4.0 · 10−1

I6,xx [kgm
2] 1.444 · 10−4 3.0 · 10−4

I6,yy [kgm
2] 1.444 · 10−4 3.0 · 10−4

I6,zz [kgm
2] 2.045 · 10−4 4.0 · 10−4

86



6.2 Trajectory tracking for 6 DOF robot manipulator in simulation

6.2.1 Joint space trajectory tracking
Joint space trajectory tracking is first considered, where a trajectory is generated using the
Fourier series

q(t) = q0 +

L∑
l=1

al sin(lωf t) + bl cos(lωf t)− bl, (6.4)

where L = 5 and ωf = 0.05π were used for the tests. The q0 and −
∑L
l=1 bl terms were

added such that the trajectory is centered around the initial condition q0, i.e., q(0) = q0.
The joint velocity reference trajectory is found by the derivative

q̇(t) =

L∑
l=1

allωf cos(lωf t)− bllωf sin(lωf t). (6.5)

The Fourier coefficients al and bl were chosen to generate an appropriate trajectory that
spans a significant part of the state space while avoiding joint configurations close to
singularities and keeping reasonable required maximum joint accelerations. The Fourier
coefficients are given in Table 6.9. The trajectory, mapped to Cartesian space, is shown
in Figure 6.22. While the reference trajectory starts in the initial joint configuration of
the robot, trajectory blending was applied to avoid an initial discontinuity in the desired
velocity by blending the joint angles with Eq. (5.18) and the joint velocities with Eq. (5.23),
over a duration of Tb = 5 s.

Table 6.9: Fourier coefficients for the joint space trajectory of the UR10e robot manipulator
arm.

Joint a1 b1 a2 b2 a3 b3 a4 b4 a5 b5

1 0.8 −0.6 −0.25 0.3 0.2 0.1 −0.06 0.02 0.1 0.04

2 −0.3 −0.4 0.24 −0.1 −0.02 0.04 0.08 0.12 −0.05 0.0

3 −0.6 0.2 −0.45 0.0 0.0 0.04 −0.1 −0.05 0.03 0.09

4 0.4 0.3 −0.09 −0.03 −0.07 0.014 0.0 0.2 −0.05 0.03

5 0.31 0.36 −0.03 −0.1 0.12 −0.06 −0.01 −0.14 −0.07 0.0

6 0.3 0.2 −0.2 −0.2 0.023 0.0 −0.02 0.16 0.08 0.0

87



6 Results

x [m] 0.60.40.20.0 y [
m]

0.9
1.0

1.1
1.2

z 
[m

]

0.75
1.00
1.25
1.50
1.75
2.00

Figure 6.22: End effector trajectory shown in Cartesian space. Time is indicated by the
color map from blue to yellow.

6.2.1.1 Joint space linear MPC test

The UR10e robot manipulator arm was then simulated in the PyBullet simulation
environment and controlled using the linear MPC for joint space trajectory tracking, with
direct torque control of the joint motors with viscous damping. The system was simulated
for T = 40 s with a simulation time step of ∆t = 5ms. The configuration of the MPC
parameters are stated in Table 6.10.

In Figure 6.23 the calculated joint acceleration input and torque input are shown. The
resulting state trajectory is shown over time in Figure 6.24 and shown in the simulation
environment for specific time steps in Figure 6.25. The tracking error is given in Figure 6.26,
and a significant error is seen, especially for joint 4 and joint 5. Finally the computation
time of the SQP RTI solver is shown in Figure 6.27.

88



6.2 Trajectory tracking for 6 DOF robot manipulator in simulation

Table 6.10: Parameter values for joint space trajectory tracking test with 6 DOF manipu-
lator in PyBullet simulation environment.

Parameter Value

N 20

ts [ms] 10.0

q0 [deg] [100,−150,−50,−70,−70, 90]
qmax [rad] 2π

q̇max [rad/s] 1.0

q̈max [rad/s
2] 10.0

ϵ 0.0456

Q 103 · I12
R 10−1 · I6
RNMPC 10−2 · I12
S 5 · 10−4 · I6

0 20 40
t [s]

10

0

10

q̈ 
[r

ad
/s

2
]

q̈1 q̈2 q̈3 q̈4 q̈5 q̈6

0 20 40
t [s]

0

50

100

τ 
[N

m
]

τ1 τ2 τ3 τ4 τ5 τ6

Figure 6.23: Joint acceleration input and computed joint torque for 6 DOF manipulator
following joint space trajectory with linear MPC.

89



6 Results

0 20 40
t [s]

5

0

5

q 
[r

ad
]

q1
q2

q3
q4

q5
q6

rq1
rq2

rq3
rq4

rq5
rq6

0 20 40
t [s]

1

0

1

q̇ 
[r

ad
/s

]

q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

r q̇1

r q̇2

r q̇3

r q̇4

r q̇5

r q̇6

Figure 6.24: Joint angles and joint velocities for 6 DOF manipulator following joint space
trajectory with linear MPC.

Figure 6.25: End-effector trajectory and configuration of robot at certain time steps.

0 20 40
t [s]

2.5

0.0

2.5

∆
q 

[r
ad

]

×10 2 ∆q1 ∆q2 ∆q3 ∆q4 ∆q5 ∆q6

0 20 40
t [s]

0

1

∆
q̇ 

[r
ad

/s
]

×10 1 ∆q̇1 ∆q̇2 ∆q̇3 ∆q̇4 ∆q̇5 ∆q̇6

Figure 6.26: Joint trajectory tracking error for 6 DOF manipulator with linear MPC.

90



6.2 Trajectory tracking for 6 DOF robot manipulator in simulation

0 10 20 30 40
t [s]

0

5

10

15

C
om

p.
 ti

m
e 

[m
s]

Figure 6.27: Computation time with linear MPC for 6 DOF manipulator. The average is
indicated by the dotted line.

6.2.1.2 Joint space GP-based MPC test

A GP was trained used the dataset collected in the previous section, resulting in a total
dataset size of 2667 samples. The GP was trained for 50 000 iterations, with M̃ = 40

inducing variables. Limited success was experienced with the SVGP method, as oscillatory
behavior in the system was observed when it was controlled with the GP dynamics away
from the vicinity of the training trajectory. The VFE method was tested instead, for
which no oscillations were observed. These oscillations were likely a result of the SVGP
approximation being less accurate and thereby giving a wrong prediction in uncertain
regions of the state space, pushing the system further away from the accurate region and
thus inducing oscillations. The accuracy of the different sparse GP methods discussed in
Section 4.3 is further analyzed later in this section.

Furthermore, these oscillations, induced by the accuracy of the GP prediction being
local, were a general challenge for more complex dynamical systems, such as the present
fixed-base 6 DOF manipulator, as well as for the free-floating manipulator covered later
in Section 6.4. The implementation was tried to be made more robust by adding a cost
term on the input rate of the controller, i.e., the joint jerk, as previously discussed in
Section 5.1.2. This was formulated as ∥

...
q∥2S , with S ∈ Rnq×nq being the diagonal

jerk weight matrix. The numerical value of S for the following simulation is given in
Table 6.10. This issue of chattery behavior with GP dynamics and possibly remedies will
be discussed further in Section 7.1.

91



6 Results

GP-MPC was tested, and compared to the linear MPC. In Figure 6.28 the GP prediction
in closed-loop is shown, and it is seen that also for the considerably more complex case
of a 6 DOF manipulator arm with viscous motor friction, the prediction is close to the
true disturbance. The tracking errors are given in Figure 6.29, showing a substantial
reduction compared to the linear MPC without the added GP dynamics. However, in the
computation time plot in Figure 6.30 a substantial increase is observed, compared to
Figure 6.27.

0 10 20 30 40
t [s]

5

0

5

d
 [r

ad
/s

2
]

µd1
d1

µd2
d2

µd3
d3

µd4
d4

µd5
d5

µd6
d6

Figure 6.28: GP disturbance prediction µd and true disturbance d.

0 20 40
t [s]

2

0

∆
q 

[r
ad

]

×10 2 ∆q1 ∆q2 ∆q3 ∆q4 ∆q5 ∆q6

0 20 40
t [s]

0

1

∆
q 

[r
ad

]

×10 1 ∆q̇1 ∆q̇2 ∆q̇3 ∆q̇4 ∆q̇5 ∆q̇6

Figure 6.29: Joint trajectory tracking error for 6 DOF manipulator with GP-MPC.

Finally, in order to compare the different sparse GP approaches discussed in Section 4.3,
K-fold CV was performed on the 6 DOF joint space training dataset collected in

92



6.2 Trajectory tracking for 6 DOF robot manipulator in simulation

0 10 20 30 40
t [s]

0

5

10

15

C
om

p.
 ti

m
e 

[m
s]

Figure 6.30: Computation time with GP-MPC for 6 DOF manipulator. The average is
indicated by the dotted line.

Section 6.2.1.1 using the discussed sparse GP methods, namely FITC, VFE and SVGP.
K = 5 folds were used, each trained for 40 000 iterations with M̃ = 20 inducing points.
The resulting average RMSEs for every output dimension are presented in Figure 6.31,
with the corresponding standard deviation over the folds indicated. It was observed that
while the FITC and VFE errors are comparable in size, the errors from SVGP were
significantly higher. This is likely caused by SGD taking longer to converge. However, from
the respective average training times per dimension of TFITC = 125.66 s, TVFE = 115.85 s,
TSVGP = 49.47 s, it is evident that a significant training speed advantage is gained by
using SGD.

1 2 3 4 5 6
0.00

0.01

R
M

SE

FITC

1 2 3 4 5 6
Dimension

VFE

1 2 3 4 5 6

SVGP

Figure 6.31: Comparison of average RMSE for K-fold CV for FITC, VFE and SVGP
methods, on 6 DOF joint space training dataset. Average RMSE is given for
every output dimension, with standard deviation indicated as error bars.

93



6 Results

6.2.1.3 Joint space NMPC test

Joint space trajectory tracking for the 6 DOF manipulator was also tested with the NMPC
controller Eq. (5.6). The nonlinear dynamics were discretized using ERK4. The parameters
in Table 6.10 were used, but now using the RNMPC weight matrix, penalizing q̈ and τ .
Furthermore, a terminal cost of P = 20Q was used. Torque constraints were added with
the bounds given in Table 6.7. The joint tracking error is plotted in Figure 6.32, which is
of about the same size as the linear MPC. The computation time is shown in Figure 6.33.

0 20 40
t [s]

2.5

0.0

2.5

∆
q 

[r
ad

]

×10 2 ∆q1 ∆q2 ∆q3 ∆q4 ∆q5 ∆q6

0 20 40
t [s]

0

1

∆
q 

[r
ad

]

×10 1 ∆q̇1 ∆q̇2 ∆q̇3 ∆q̇4 ∆q̇5 ∆q̇6

Figure 6.32: Joint trajectory tracking error for 6 DOF manipulator with NMPC.

0 10 20 30 40
t [s]

0

5

10

15

C
om

p.
 ti

m
e 

[m
s]

Figure 6.33: Computation time with NMPC for 6 DOF manipulator. The average is
indicated by the dotted line.

The main results are summarized in Table 6.11, with the trajectory tracking RMSE,
prediction RMSE and solver computation time shown. It is observed that the tracking
error and prediction error are similar for linear MPC and NMPC, yet significantly smaller

94



6.2 Trajectory tracking for 6 DOF robot manipulator in simulation

for GP-MPC. Furthermore, for this problem, GP-MPC is the slowest but comparable to
NMPC. Linear MPC is much faster than the other nonlinear methods, needing little time
to generate the QPs in SQP, as the problem is already quadratic. The timing is still well
within the sample time, and thus real-time feasible. Large spikes in computation time are,
however, observed.

Table 6.11: Comparison of trajectory tracking RMSE, prediction RMSE and computation
time for linear MPC, GP-MPC and forward dynamics-based NMPC.

Test RMSEq[rad] RMSEpred tsolver[ms]

Linear MPC 2.859 · 10−2 7.673 · 10−2 1.113

GP-MPC 1.412 · 10−2 2.184 · 10−3 6.710

NMPC 2.583 · 10−2 7.715 · 10−2 5.715

6.2.2 Task space trajectory tracking

In this section, task space trajectory tracking is considered by including the forward
kinematics directly in the OCP cost function, as discussed in Section 5.1.2. Again tracking
of a trefoil knot curve is considered, now in three-dimensional space:

rp(t) = a1


sin(ωt) + 2 sin(2ωt)

cos(ωt)− 2 cos(2ωt)

−3 sin(3ωt)

+ x̄, (6.6)

with parameters w = 0.25, a = 0.1 and x̄ = [ 0.2 0.7 1.3 ]⊤. Simultaneously a fixed
desired end effector orientation is tracked, denoted by the Euler angle reference rΘ. The
desired pose trajectory is shown in Figure 6.34. The position and quaternion references
are blended from the initial pose in order to get a smooth approach towards the desired
trajectory with blending time Tb. As detailed in Section 5.2, the position is blended by
linear interpolation, and the rotation quaternion is blended by SLERP.

95



6 Results

x [m]

0.0
0.2

0.4
y [m]0.4 0.6 0.8 1.0

z 
[m

]

1.0

1.2

1.4

1.6

Figure 6.34: Desired end effector pose trajectory re(t), with trefoil knot position trajectory
and fixed orientation reference.

6.2.2.1 Task space linear MPC

Feedback linearization-based MPC was again tested first, with parameters given in
Table 6.12. Note how the terminal cost can no longer be approximated with the discrete
Ricatti equation since the cost function is now highly nonlinear. For this experiment, the
terminal cost was, therefore, tuned manually to P = 20Q. An alternative could be to
try to linearize the forward kinematics around the point at the end of the horizon and
solve a discrete Ricatti equation for this point. As these computations would have to be
done at every time step, they are, however, not as practical to implement, and the simpler
approach of manually tuning P was used instead.

The system was simulated for T = 30 s. The computed joint accelerations and control
torques are shown in Figure 6.35. A series of snapshots that visualize the trajectory of the
end effector and the robot configurations are shown in Figure 6.36. The joint angles and
joint velocities during the test are presented in Figure 6.37. The end effector pose and
pose error are shown in Figure 6.38 and Figure 6.39, respectively.

96



6.2 Trajectory tracking for 6 DOF robot manipulator in simulation

Table 6.12: Parameter values for task space trajectory tracking test with 6DOF manipulator
in simulation.

Parameter Value

N 20

ts [ms] 15.0

Tb [s] 10.0

rΘ [deg] [180, 0, 0]

q0 [deg] [80,−120,−100,−50, 70, 0]
qmax [rad] 2π

q̇max [rad/s] 1.0

q̈max [rad/s
2] 10.0

ϵ 0.0456

Q 104 · I6
R I6

RNMPC blkdiag(10−2 · I6, 10−3 · I6)
S 10−2 · I6
P 20Q

0 10 20 30
t [s]

10

0

10

q̈ 
[r

ad
/s

2
]

q̈1 q̈2 q̈3 q̈4 q̈5 q̈6

0 10 20 30
t [s]

0

50

τ 
[N

m
]

τ1 τ2 τ3 τ4 τ5 τ6

Figure 6.35: Joint acceleration input and computed joint torque for 6 DOF manipulator
following joint space trajectory with linear MPC.

97



6 Results

Figure 6.36: 6DOF UR10e manipulator tracking end effector pose trajectory in simulation.

0 10 20 30
t [s]

5

0

5

q 
[r

ad
]

q1 q2 q3 q4 q5 q6

0 10 20 30
t [s]

1

0

1

q̇ 
[r

ad
/s

]

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

Figure 6.37: Joint angles and joint velocities for 6 DOF manipulator following task space
trajectory with linear MPC.

0 20
t [s]

0

1

r 
[m

]

x
rx

y
ry

z
rz

0 20
t [s]

100

0

Θ
 [d

eg
]

θ

rθ
ϕ
rϕ

ψ

rψ

Figure 6.38: Desired and actual end effector pose for 6 DOF manipulator following task
space trajectory with linear MPC.

98



6.2 Trajectory tracking for 6 DOF robot manipulator in simulation

0 10 20 30
t [s]

0.0

0.5

1.0

Po
si

tio
n 

er
ro

r [
m

]

×10 2 |∆x| |∆y| |∆z| ||∆p||

0 10 20 30
t [s]

0.0

2.5

5.0

Eu
le

r a
ng

le
s e

rr
or

 [d
eg

] |∆θ| |∆ϕ| |∆ψ| ||∆Θ||

Figure 6.39: End effector pose trajectory tracking error for 6 DOF manipulator following
task space trajectory with linear MPC.

6.2.2.2 Task space GP-based MPC test

A GP was trained, this time with the SVGP method for 100 000 iterations, with M̃ = 40

inducing variables and a dataset of 6000 samples. The closed loop GP prediction of the
disturbance is plotted in Figure 6.40. The resulting GP-MPC pose tracking error from
simulation is shown in Figure 6.41.

0 10 20 30
t [s]

5

0

5

10

d
 [r

ad
/s

2
]

µd1
d1

µd2
d2

µd3
d3

µd4
d4

µd5
d5

µd6
d6

Figure 6.40: GP disturbance prediction µd and true disturbance d.

It is seen how the prediction is noticeably worse for the first few seconds, in which
the blending occurs. Since there are fewer data points in the dataset representing this,

99



6 Results

the prediction accuracy is lower. This highlights the issue of the GP prediction being
local, discussed previously in Section 6.2.1.2. Trying different trajectories than the one
used to train the GP also leads to chattering and, therefore, an unusable controller, further
showing this limitation.

0 10 20 30
t [s]

0

2

4

Po
si

tio
n 

er
ro

r [
m

]

×10 3 |∆x| |∆y| |∆z| ||∆p||

0 10 20 30
t [s]

0.0

0.5

1.0

Eu
le

r a
ng

le
s e

rr
or

 [d
eg

] |∆θ| |∆ϕ| |∆ψ| ||∆Θ||

Figure 6.41: End effector pose trajectory tracking error for 6 DOF manipulator following
task space trajectory with GP-MPC.

6.2.2.3 Task space NMPC test

Like for the joint space trajectory tracking problem, the NMPC controller in Eq. (5.6) is
tested and compared to feedback linearized MPC and GP-MPC. The end effector pose
trajectory tracking error is shown in Figure 6.42.

0 10 20 30
t [s]

0.0

0.5

Po
si

tio
n 

er
ro

r [
m

]

×10 2 |∆x| |∆y| |∆z| ||∆p||

0 10 20 30
t [s]

0.0

0.5

1.0

Eu
le

r a
ng

le
s e

rr
or

 [d
eg

] |∆θ| |∆ϕ| |∆ψ| ||∆Θ||

Figure 6.42: End effector pose trajectory tracking error for 6 DOF manipulator following
task space trajectory with NMPC.

100



6.3 Lab tests of trajectory tracking for UR10e robot

The position trajectory tracking RMSE

RMSEp =

√√√√ 1

NT

NT∑
k=0

∥hpk − rpk∥2, (6.7)

orientation trajectory tracking RMSE

RMSEo =

√√√√ 1

NT

NT∑
k=0

∥Θk − rΘk ∥2, (6.8)

prediction RMSE, and RTI computation times are given for the preceding tests in
Table 6.13. It is seen that GP-MPC and NMPC have similar performance for orientation,
but GP-MPC is noticeably better for the position. Again, the prediction error is much
lower by including the GP disturbance term. For the feedback linearized MPC a significant
increase in computation time is seen, which is to be expected for the added nonlinear
cost function. The computation time for GP-MPC and NMPC are quite similar for this
problem. Again, it must be emphasized that these results are only for a single test case
and therefore do not speak about the general performance of these trajectory tracking
approaches.

Table 6.13: Comparison of task space trajectory tracking RMSE, prediction RMSE and
computation times for linear MPC, GP-MPC and forward dynamics-based
NMPC.

Test RMSEp[m] RMSEo[deg] RMSEpred tsolver[ms]

Linear MPC 7.077 · 10−3 3.3013 5.437 · 10−2 1.252

GP-MPC 2.807 · 10−3 0.6902 1.598 · 10−3 6.650

NMPC 4.865 · 10−3 0.5615 5.049 · 10−2 6.267

6.3 Lab tests of trajectory tracking for UR10e robot

Similar tests were done on a UR10e robot in a lab environment. The controllers were
configured to communicate with the UR10e robot using the Real-time Data Exchange

101



6 Results

(RTDE) interface, which provides a 500Hz interface to the UR controller over an IP
connection, and is, therefore, suitable for real-time control of the robot. The ur_rtde
Python package by Lindvig 2021 was used to communicate with the robot over the
RTDE interface. Since the RTDE interface only provides rotation vectors when sampling
the end effector pose of the robot, the conversion formula between unit quaternions
and rotation vectors given in Eq. (A.3) was used. Universal Robots also provides the
simulation environment URsim for testing communication and control of the robot, which
was extensively used during testing of the control system.

The lab setup is shown in Figure 6.43, with a camera and gripper attached to the tool
flange of the UR10e, which were taken off for the subsequent tests. However, an adapter
was still attached, with unknown dynamical properties. The UR software provides an end
effector calibration procedure, which was used to give a rough estimate of the mass and
center of mass. This end effector attachment still introduced considerable uncertainty in
the model, in addition to the uncertainty in the other parameters in the URDF.

Figure 6.43: Lab setup with UR10e robot.

Several other differences between the simulation tests and the lab tests on the real robot
are worth mentioning. One is that so far, direct motor torque control has been considered,
yet UR robots do not provide a torque control interface, only joint angle and joint velocity
control. In order to overcome this limitation, the velocity control interface was used
instead. By applying the predicted velocity solution of the OCP at the next time step, i.e.,
q̇⋆1 , a similar motion can be achieved. This violates the assumption that the torque input in

102



6.3 Lab tests of trajectory tracking for UR10e robot

the discussed MPC controllers are constant during the time step and should as such be
treated as a discrepancy. This discrepancy will be discussed further in Chapter 7.

Furthermore, since the UR10e robot has active gravity compensation, the prior dynamics
were generated using a zero gravity vector, i.e., g = 0. Therefore, the computed torques
are much smaller in this section, as the large offsets in torque due to gravity are removed
and handled by the internal robot controller instead.

Both joint space and task space trajectory tracking was tested on the UR10e robot.
The joint space results are given in Appendix D, of which Table D.2 provide the main
comparison between linear MPC, GP-MPC and NMPC. In the following, the task space
results are presented.

6.3.1 Task space linear MPC test

The task space trajectory detailed in Section 6.3.1 was also tested on the real robot. The
controllers were tuned on the robot, with parameters summarized in Table 6.14. The test
duration used here was 60 s, resulting in a dataset of 4000 samples.

Table 6.14: Parameter values for task space trajectory tracking test on UR10e robot in lab
environment.

Parameter Value

N 20

ts [ms] 15.0

q0 [deg] [135,−120,−100,−50, 70, 0]
qmax [rad] 2π

q̇max [rad/s] 1.0

q̈max [rad/s
2] 1.5

ϵ 0.0456

Q 103 · I6
R I6

RNMPC blkdiag(2 · 10−6 · I6, 10−3 · I6)
S 10−2 · I6

The computed torque is shown in Figure 6.44 and the joint angles and velocities are

103



6 Results

shown in Figure 6.45 for the feedback linearized MPC. The end effector pose is given in
Figure 6.46 and the pose error is shown in Figure 6.47. Significant error spikes are seen
for both position and orientation.

0 20 40 60
t [s]

10

0

10

τ 
[N

m
]

τ1 τ2 τ3 τ4 τ5 τ6

Figure 6.44: Computed torque input for UR10e task space trajectory tracking with linear
MPC.

0 20 40 60
t [s]

5

0

5

q 
[r

ad
]

q1 q2 q3 q4 q5 q6

0 20 40 60
t [s]

1

0

1

q̇ 
[r

ad
/s

]

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

Figure 6.45: Joint angles and joint velocities for UR10e task space trajectory tracking
with linear MPC.

104



6.3 Lab tests of trajectory tracking for UR10e robot

0 25 50
t [s]

0

1

r 
[m

]

x
rx

y
ry

z
rz

0 25 50
t [s]

0

100

Θ
 [d

eg
]

θ

rθ
ϕ
rϕ

ψ

rψ

Figure 6.46: Desired and actual end effector pose with linear MPC.

0 20 40 60
t [s]

0

2

4

Po
si

tio
n 

er
ro

r [
m

]

×10 2 |∆x| |∆y| |∆z| ||∆p||

0 20 40 60
t [s]

0

2

4

Eu
le

r a
ng

le
s e

rr
or

 [d
eg

] |∆θ| |∆ϕ| |∆ψ| ||∆Θ||

Figure 6.47: End effector pose tracking error for UR10e using linear MPC.

6.3.2 Task space GP-based MPC test
The hyperparameters of a sparse GP were trained using the SVGP method, for 180 000
iterations and with M̃ = 25 inducing points. The resulting closed loop GP prediction and
end effector pose tracking error are shown in Figure 6.48 and Figure 6.49, respectively.

105



6 Results

0 20 40 60
t [s]

0

5

d
 [r

ad
/s

2
]

µd1
d1

µd2
d2

µd3
d3

µd4
d4

µd5
d5

µd6
d6

Figure 6.48: GP disturbance prediction µd and true disturbance d.

0 20 40 60
t [s]

0

2

4

Po
si

tio
n 

er
ro

r [
m

]

×10 2 |∆x| |∆y| |∆z| ||∆p||

0 20 40 60
t [s]

0

2

Eu
le

r a
ng

le
s e

rr
or

 [d
eg

] |∆θ| |∆ϕ| |∆ψ| ||∆Θ||

Figure 6.49: End effector pose tracking error for UR10e using GP-MPC.

6.3.3 Task space NMPC test
Finally, NMPC was also tested, with trajectory tracking error given in Figure 6.50.

The task space trajectory tracking errors and computation times are summarized
in Table 6.15. Significantly longer computation times are observed, compared to the
simulation case in Table 6.13, likely due to measurement noise making the warm start
less efficient. Furthermore, NMPC has significantly lower tracking error than the other
feedback linearization-based controllers.

106



6.4 Trajectory tracking for space manipulator in simulation

0 20 40 60
t [s]

0.0

2.5

5.0

Po
si

tio
n 

er
ro

r [
m

]

×10 3 |∆x| |∆y| |∆z| ||∆p||

0 20 40 60
t [s]

0

2

4

Eu
le

r a
ng

le
s e

rr
or

 [d
eg

]×10 1 |∆θ| |∆ϕ| |∆ψ| ||∆Θ||

Figure 6.50: End effector pose tracking error for UR10e using NMPC.

Table 6.15: Comparison of joint space trajectory tracking RMSE, prediction RMSE and
computation times for linear MPC, GP-MPC and forward dynamics-based
NMPC.

Test RMSEp[m] RMSEo[deg] tsolver[ms]

Linear MPC 1.439 · 10−2 1.060 2.400

GP-MPC 1.044 · 10−2 8.140 · 10−1 9.010

NMPC 1.062 · 10−3 4.818 · 10−2 9.414

6.4 Trajectory tracking for space manipulator in
simulation

So far, model-predictive approaches to trajectory tracking have been tested under the
assumption of a fixed base frame. However, MPC approaches to robot manipulator
trajectory tracking also have considerable potential for floating-base systems, such as
AUVs, drones, legged robots, and space manipulator systems. Simpler reactive approaches
only based on kinematics, which are traditionally used for fixed-base systems, become
problematic when the body frame moves in reaction to the applied control forces and
torques. Furthermore, this coupling in the dynamics might mean model mismatch will
have an even larger impact on performance. Control of a free-floating space manipulator
system is considered in this section in order to test the feasibility of GP-MPC and NMPC
for floating-base robotic systems.

107



6 Results

For the following example a space manipulator with a 3 DOF anthropomorphic
manipulator arm is used, as shown in Figure 5.5, and with DH parameters given in
Table 6.16, from Siciliano et al. 2010. The length, mass, and inertia properties of the
system are given in Table 6.17. Viscous friction is added to the motor joints, shown with
the other joint parameters in Table 6.18. The motor friction is not a part of the prior
model and thereby a source of model mismatch. The system is simulated in the PyBullet
simulation environment, with ∆t = 5ms. The URDF model of the space manipulator
used in simulation is shown in Figure 6.51.

Table 6.16: DH parameters for anthropomorphic arm.

Link ai αi di θi

1 0 π/2 0 q1

2 ℓ2 0 0 q2

3 ℓ3 0 0 q3

Table 6.17: Link parameters for space manipulator system with anthropomorphic manipu-
lator arm.

Link ℓ [m] m [kg] Ixx [kgm
2] Iyy [kgm

2] Izz [kgm
2]

Base 1.0 25.0 2.604 2.604 1.042

1 0.2 2.0 3.413 · 10−2 3.413 · 10−2 160 · 10−3

2 0.5 4.0 8.493 · 10−2 8.493 · 10−2 320 · 10−3

3 0.5 4.0 8.493 · 10−2 8.493 · 10−2 320 · 10−3

Table 6.18: Joint parameters for space manipulator system with anthropomorphic manip-
ulator arm.

Joint qmax [rad] q̇max [rad/s] q̈max [rad/s
2] τmax [Nm] Fv [Nms/rad]

1 π 1.5 4.0 10.0 0.2

2 2π 1.5 4.0 10.0 0.1

3 2π 1.5 4.0 10.0 0.1

108



6.4 Trajectory tracking for space manipulator in simulation

Figure 6.51: Space manipulator URDF model in PyBullet simulation.

In the following, joint space trajectory tracking MPC is applied for the space manipulator
system, as discussed in Section 5.3.2. The task space formulation was also tested, the
results of which are presented in Appendix D. The Fourier series trajectory Eq. (6.4) was
followed, with L = 4 and coefficients shown in Table 6.19.

Table 6.19: Fourier coefficients for joint space trajectory for the free-floating manipulator
arm.

Joint a1 b1 a2 b2 a3 b3 a4 b4

1 1.2 0.2 0.2 −0.09 −0.05 0.03 0.0 0.0

2 0.6 0.25 −0.35 0.0 0.0 0.1 −0.1 0.0

3 0.0 −0.5 −0.2 0.1 0.15 0.0 0.0 0.1

6.4.1 Joint space linear MPC test
The system was simulated for T = 50 s in PyBullet with feedback linearization-based
MPC. The simulation parameters are shown in Table 6.20. The satellite base is initialized
with position p0 and orientation represented by the Euler angles Θ0. Furthermore, the
system has zero initial momenta, i.e., vs = ωs = q̇ = 0. The joint angle, velocity and
acceleration limits in Table 6.18 were used in the state and input constraints. Quadratic
jerk costs weighted on S were used for both the linear MPC controller and the GP-MPC
controller.

In Figure 6.52, the computed joint acceleration input and torques are shown. The joint
states of the space manipulator are shown in Figure 6.53. The body velocities and pose
are given in Figure 6.54 and Figure 6.55, respectively.

109



6 Results

Table 6.20: Parameter values for joint space trajectory tracking test of space manipulator
in simulation.

Parameter Value

N 20

ts [ms] 10.0

p0 [m] [0, 0, 1.0]

Θ0 [deg] [90, 0, 0]

q0 [deg] [0.0,−20.0, 30.0]
ϵ 0.0456

Q blkdiag(103 · I3, 102 · I3)
R 10−1 · I3
RNMPC 10−2 · I6
S 10−3 · I3

0 20 40
t [s]

2.5

0.0

2.5

q̈ 
[r

ad
/s

2
]

q̈1 q̈2 q̈3

0 20 40
t [s]

0.0

0.1

τ 
[N

m
]

τ1 τ2 τ3

Figure 6.52: Joint acceleration input and computed torque using linear MPC.

110



6.4 Trajectory tracking for space manipulator in simulation

0 20 40
t [s]

1

0

1

q 
[r

ad
]

q1 q2 q3 rq1 rq2 rq3

0 20 40
t [s]

1

0

1

q̇ 
[r

ad
/s

]

q̇1 q̇2 q̇3 r q̇1 r q̇2 r q̇3

Figure 6.53: Joint angles and joint velocities for space manipulator following joint space
trajectory with linear MPC.

0 20 40
t [s]

0.01

0.00

0.01

v 
[m

/s
]

vs, x vs, y vs, z

0 20 40
t [s]

2.5

0.0

2.5

ω
 [d

eg
/s

]

ωs, x ωs, y ωs, z

Figure 6.54: Linear and angular velocity of satellite body with linear MPC.

0 20 40
t [s]

0.0

0.5

1.0

r 
[m

]

x y z

0 20 40
t [s]

0

50

100

Θ
 [d

eg
]

θ ϕ ψ

Figure 6.55: Position and orientation of satellite body with linear MPC.

111



6 Results

It is observed that the satellite body orientation, and to a lesser extent the position,
shifts around while the arm is moving. This is to be expected, as the manipulator mass is a
considerable part of the total mass of the system, such that the coupling between the base
and the arm is non-negligible. This is partly what makes the considered control problem
challenging, especially when the manipulator arm only has 3 DOF. A significant tracking
error is therefore seen in Figure 6.56.

0 20 40
t [s]

0

5

10

∆
q 

[r
ad

]

×10 3 ∆q1 ∆q2 ∆q3

0 20 40
t [s]

0

5

∆
q̇ 

[r
ad

/s
]

×10 3 ∆q̇1 ∆q̇2 ∆q̇3

Figure 6.56: Joint trajectory tracking error for space manipulator with linear MPC.

6.4.2 Joint space GP-based MPC test

A GP was trained on the training set collected in the previous section using linear MPC
with a total of 3000 samples, for 80 000 iterations using the SVGP method with M̃ = 25

inducing points. The resulting closed loop GP prediction is shown in Figure 6.57, which
is seen to follow the disturbance satisfactory. This indicates that GPR is successful
in modeling the disturbance, also for the considerable more complex dynamics of
floating-base systems.

The corresponding tracking error is given in Figure 6.58, showing an improvement
from the linear MPC without GP dynamics, mostly by reducing the severity of the error
spikes in q1. This can be understood by comparing to Figure 6.52, and seeing how the
largest tracking errors in q1 correspond to where the commanded acceleration is the
highest, meaning the model mismatch will have the largest impact, which is seen as spikes
in the disturbance in Figure 6.57.

112



6.4 Trajectory tracking for space manipulator in simulation

0 10 20 30 40 50
t [s]

1

0
d

 [r
ad

/s
2
]

µd1 d1 µd2 d2 µd3 d3

Figure 6.57: GP disturbance prediction µd and true disturbance d.

0 20 40
t [s]

0

1

∆
q 

[r
ad

]

×10 3 ∆q1 ∆q2 ∆q3

0 20 40
t [s]

0

5

∆
q̇ 

[r
ad

/s
]

×10 3 ∆q̇1 ∆q̇2 ∆q̇3

Figure 6.58: Joint trajectory tracking error for space manipulator with GP-MPC.

6.4.3 Joint space NMPC test

The simulation was repeated with NMPC control with the dynamics discretized using
ERK4. The resulting tracking error is given in Figure 6.59. It is observed that NMPC
struggles with the same error spikes for joint 1 as the linear MPC, which, as discussed,
is a consequence of the model mismatch. However, the error is lower, likely a result of
including the dynamics directly in the optimization problem, rather than doing feedback
linearization, which will be discussed further in Chapter 7.

The main results are shown in Table 6.21. It is seen how including the GP disturbance
model decreases the prediction error by about two magnitudes. Furthermore, a significant
decrease in tracking error is seen with GP-MPC.

113



6 Results

0 20 40
t [s]

0

2

4
∆
q 

[r
ad

]
×10 3 ∆q1 ∆q2 ∆q3

0 20 40
t [s]

0.0

2.5

∆
q̇ 

[r
ad

/s
]

×10 3 ∆q̇1 ∆q̇2 ∆q̇3

Figure 6.59: Joint trajectory tracking error for space manipulator with NMPC.

Table 6.21: Comparison of trajectory tracking RMSE, prediction RMSE and computation
time for linear MPC, GP-MPC, and forward dynamics-based NMPC, for
space manipulator joint space trajectory tracking.

Test RMSEq[rad] RMSEpred tsolver[ms]

Linear MPC 3.042 · 10−3 4.900 · 10−3 0.835

GP-MPC 5.830 · 10−4 4.703 · 10−5 2.979

NMPC 1.311 · 10−3 4.898 · 10−3 20.227

The average RTI computation time for NMPC is 20.83ms, which is considerably
higher than the two other approaches based on feedback linearization. This is because the
complexity of NMPC grows quickly with the complexity of the nonlinear dynamics when
it is directly added as constraints in the OCP. The other approaches, however, use double
integrator dynamics, which are independent of the complexity of the dynamics. A large
difference in computation time is observed since the floating-base dynamics Eq. (5.39) are
considerably more complex than the fixed-base dynamics Eq. (2.26). However, the space
manipulator dynamics were implemented with the general Coriolis matrix formula in
Eq. (5.41), using the algorithmic differentiation functionality of CasADi, and are, as such,
not optimized for speed. It is therefore believed that significant speed improvements could
be achieved by using a suited rigid body dynamics algorithm instead, such as RNEA,
described in Featherstone 2008.

114



7 Discussion and further work

In this chapter, the results presented in Chapter 6 will be further analyzed and discussed,
and a larger outlook on limitations, discrepancies, and further work will be given. First, the
general performance of the linear MPC, GP-MPC, and deterministic NMPC controllers
will be discussed and compared, with emphasis on the 2 DOF and 6 DOF simulations.
Then the solver strategy and computation time will be discussed before the lab results,
and space manipulator simulation results will be analyzed in detail.

7.1 General results
Firstly, the results presented in Chapter 6 and Appendix D show how, even for significant
or even arguably exaggerated model mismatch, the feedback linearization-based MPC
controller worked sufficiently. The assumption of constant joint acceleration for each time
step, which was not satisfied, seems not to be too large of a discrepancy when solving
the OCP in a receding-horizon fashion. This highlights the inherent robustness gained by
closing the loop with MPC, despite model mismatch and simplifications.

A significant improvement was, however, generally seen with the deterministic NMPC
approach compared to the linear MPC without GP dynamics, e.g., in Table 6.13, Table 6.21
and Table D.4. While the two approaches are based on the same prior model, the assumption
of a constant control input per time step is less severe for NMPC. By optimizing in the
torque domain instead of the joint acceleration domain, one no longer needs to assume
piecewise constant acceleration per time step, resulting in a more accurate approximation.
Furthermore, having the nonlinear dynamics as constraints naturally makes it easier to
plan while considering the system nonlinearity directly.

Moreover, the results showed how GP-MPC was able to achieve substantially more
accurate predictions over the prediction horizon. In Section 6.1, significantly better
predictions were also seen for a different trajectory than what was used for training.

115



7 Discussion and further work

However, for the more complex dynamics of the 6 DOF fixed-base manipulator in
Section 6.2 and the free-floating space manipulator system in Section 6.4, the accuracy of
the disturbance predictions were local to some vicinity of the training trajectory. Thus for
other test trajectories, the prediction over the prediction horizon was even worse than by
not including the GP all together, resulting in oscillatory behavior, as mentioned earlier in
Section 6.2.1.2.

There are several reasons for this local behavior of the GP predictions. Firstly, the
collected datasets only cover a limited part of the state space, and for higher-dimensional
systems, this is only amplified, known as the "curse of dimensionality." Furthermore, the
size of the datasets is somewhat small, considering the high dimensionality and highly
nonlinear dynamics. In order to achieve real-time feasible computation time, sparse GP
methods were used with a low number of inducing points, which significantly limited the
expressiveness of the resulting GPs. This resulted in a large bias in the model towards
the data it had seen, which for the 6 DOF case was so significant that the controller
only worked in a small vicinity of the target trajectory. Especially the SVGP method
suffered from this problem, likely because SGD needs more iterations to converge, and the
SVGP method has more optimization variables, leading to a more difficult optimization
problem. These discussed problems severely limited the usability of GP-MPC, as it
effectively means only this single trajectory reference could be used for complex and
high-dimensional dynamics.

There are several possible directions for further work on how to remedy this limitation.
Firstly, larger datasets could be used, possibly by concatenating several different trials,
but this comes at the expense of longer training times. This was also briefly tested by
concatenating five different trajectories, but no significant improvements were seen.

An interesting question one could then explore is how to choose test trajectories that
excite the system such that the GP generalizes the best possible way. This problem has
some similarities to traditional system identification, where one typically optimizes a
trajectory, such as a Fourier series trajectory, in order to maximize some measure of the
information content in the resulting data, for example, as seen in Swevers et al. 2007. This
does, however, seem difficult to do for learning GP models, which are non-parametric.

Another option is to explore an online learning approach, where the inducing points
are updated online. In Kabzan et al. 2019, a dictionary of active data points is updated
continuously as new measurements are collected. In Hewing, Kabzan, et al. 2019, the

116



7.1 General results

inducing points are chosen along the predicted state trajectory, which is found by shifting
the previous solution trajectory. Either of these approaches has potential to help with
these local results.

Despite the limited space where the trained model was valid for complex dynamics,
the resulting improvement in trajectory tracking error was significant for the 6 DOF
simulations. For the joint space trajectory tracking results in Table 6.11, including the GP
dynamics resulted in a 51% decrease in joint RMSE, and in the task space case a decrease
of 60% and 79% for position RMSE and Euler angle RMSE, respectively. Moreover,
the GP-MPC approach mostly outperformed deterministic NMPC in the fixed-base
simulations. However, it must be emphasized that these simulations had significant model
mismatch added to emulate applications with highly uncertain dynamics.

Furthermore, one important benefit of GP-MPC, as compared to the other deterministic
approaches, is that the stochastic nature of including a GP disturbance model in the
OCP allows to handle uncertainty. Formulating chance constraints allows creating a
controller that is inherently cautious and adjusts the state bounds based on how uncertain
the prediction currently is. However, this cautiousness assumes that the information given
by the GP is exact, which naturally is not the case. Therefore, there is no guarantee that
the chance constraints are satisfied, even if all approximations are ignored, and the OCP
is solved exactly.

For the task space trajectories, this uncertainty information was not used to its full
potential, as the forward kinematics were evaluated for the state mean in the cost function,
as discussed in Section 5.1.2. Further work could be done on propagating the uncertainty
from the joint states to the end effector pose, possibly using a Monte Carlo approach or
using chaos polynomial expansions. This information would evidently be useful, despite
the presumably high computational demands, as it would effectively tell how uncertain
the current end effector position and orientation are.

A significant limitation of stochastic MPC, and especially nonlinear stochastic MPC, is
the complicated and often even intractable optimization problems that emerge. As seen in
this work, even after applying simplifications and approximations to get a tractable and
deterministic OCP, it still has high computational demands.

117



7 Discussion and further work

7.2 Solver and computation time

Analyzing the solver computation time in further detail, it was seen that fast enough
computation times could be achieved to meet the real-time demands of most robotic
systems. For the linear trajectory tracking MPC controller, the solver computation time was
generally around the 1 kHz range, which is especially noteworthy. Since the experiments
completed in this work generally had sample frequencies in the 100Hz range, even better
performance could likely be achieved for linear MPC by lowering the sample rate further
towards this limit.

Furthermore, for both GP-MPC and NMPC real-time feasible computation times were
seen. For the 6 DOF fixed-base simulations, their respective average computation times
were comparable in size. Yet, the feedback linearization-based approach generally scales
better since the dynamics for each joint consist of a decoupled double integrator prior
and a GP prediction that amounts to a linear combination of kernel function evaluations.
So GP-MPC mainly increases in complexity from increased dimensionality and not in
how complex the prior dynamics are. The forward dynamics NMPC approach, on the
other hand, scales quickly with the nonlinearity of the dynamics model, as the nonlinear
dynamics equality constraints have to be propagated over the prediction horizon.

SQP RTI was used to achieve these real-time feasible computation times. While it
seems the sample times were low enough for the RTI approximation to work well, it must
be noted that RTI is a sub-optimal strategy. In general, RTI does not guarantee constraint
satisfaction since the QPs are only solved once per iteration and not repeatedly until
convergence. In the process, theoretical rigor is lost, yet the results show that the method
works well in practice. A related direction of further work is to investigate how suboptimal
the RTI solutions are for trajectory tracking applications, for instance, by comparing with
a standard SQP algorithm ran until convergence, or an interior point solver like IPOPT,
given in Wächter and Biegler 2006.

Even though only a QP is solved at every time step, there is a significant variation in
computation time. This is, for instance, seen in Figure 6.30, where certain outliers result
in the sample rate needing to be much lower than otherwise necessary. This highlights a
practical limitation of receding-horizon optimization-based approaches in general, in that
there might be a significant spread in the time needed to solve the optimization problem. In
this case, the outliers are likely a result of the robot reaching some configuration where the

118



7.3 Lab results

solver is struggling to find a feasible solution. This is, for instance, seen at the beginning
of the space manipulator joint space tracking results in Figure 6.58, where error spikes
are present likely as a result of the solver not finding a good solution, and thereby not
generating a smooth control input.

Another concern with non-convex nonlinear programming approaches, which the
GP-MPC and deterministic NMPC fall under, is that even if the solver finds a minimum,
it is only local and might, therefore, get stuck in a sub-optimal local minimum. This can
also be a problem while training the GP hyperparameters. A related problem, which was
seen for training in most of the tests in Chapter 6, is that the optimization landscape might
be flat near the optimum, such that the optimizer never really converges. This can be seen
in Figure 6.12, where some of the length scales do not converge, even though the ELBO
cost converges very quickly.

Another direction for further work is to look further into discretization and numerical
optimal control methods. In this work, multiple-shooting was used with uniformly spaced
nodes. It would, however, be interesting to try non-uniform spacing of nodes, as well as
alternative numerical optimal control methods, especially direct collocation methods.

7.3 Lab results
For the UR10e lab results, it was seen that NMPC generally had lower trajectory tracking
error. For this case, the advantage of the more accurate model likely did not outweigh the
benefit of planning in the torque domain over the joint acceleration domain, as the prior
model was likely accurate enough. Specifically for task space trajectory tracking, NMPC
achieved a position RMSE of about 1mm and Euler angle RMSE of about 0.05 deg, as
seen in Table 6.15, which is sufficient for many applications.

The control allocation simplification of using the predicted joint velocities as control
input did, however, seem to induce a lot of oscillations, as seen in Figure 6.45. Furthermore,
this simplification means the computed control torques are not actually the same that the
internal robot controller generates, which means the torque constraints in the deterministic
NMPC especially lose some rigidity.

This work has only considered different model-predictive approaches to trajectory
tracking based on the complete dynamics of the manipulator system. The need for such
methods, as compared to more traditional and established methods which are purely

119



7 Discussion and further work

reactive, such as the inverse differential kinematics in Eq. (2.25) or feedback linearization-
based PD control, as discussed in Eq. (5.1), should be brought into question. One could
argue the ability of predictive methods to plan into the future allows for more agile
motion. However, it is arguably not needed for most applications of fixed-base robot
manipulators. The results on the UR10e, where the forward dynamics-based NMPC
approach performed best, further supports this claim. Nevertheless, for situations with
significant model mismatch, GP-MPC is still of interest.

7.4 Space manipulator results
Model-predictive trajectory tracking approaches are arguably more interesting for floating-
base systems, where the ability to plan ahead and take the coupling between the base
pose and the link motion into account is essential. This was tested for a free-floating
space manipulator in Section 6.4, which showed how trajectory tracking MPC also works
satisfactorily for floating-base systems, both with the feedback linearization approach and
the NMPC approach. For joint space trajectories, a significant improvement was seen
by adding the GP dynamics, with GP-MPC performing better than NMPC. In the task
space case given in Appendix D, however, the reduction in trajectory tracking error was
minimal, and NMPC performed best, yet still with a position RMSE of about 11mm.
This error would likely not satisfy the requirements needed for accurately gripping an
object in a real-world scenario, like gripping another target satellite or debris. This large
error is likely caused by the arm used for simulation only having 3 DOF, which makes
the tracking problem challenging with a floating base. It would therefore be interesting
for future work to test GP-MPC and NMPC for full pose trajectory tracking with a 6 or
7 DOF free-floating manipulator arm.

Furthermore, the approximation of static base pose over the prediction horizon might
also explain this larger error. However, considering the zero initial momenta assumption,
this simplification is still reasonable. For future work, it would be interesting to compare
this approach to an NMPC approach where the body pose dynamics are included in the
optimization problem like in Rybus et al. 2017, to analyze the impact of this approximation
further.

The limitation of the zero initial momenta assumption should also be discussed
in further detail. While this certainly does pose some limitations for the use of the

120



7.4 Space manipulator results

developed controllers, it is arguably not that limiting. Suppose the manipulator arm is
used, for instance, to grasp some object. In that case, it is fair to assume that the Attitude
Determination and Control System (ADCS) of the satellite has already stabilized the spin
of the satellite before the grasping operation initiates. The ADCS is then turned off while
the grasping occurs, which fits within the given assumptions.

Further work on generalizing to non-zero initial momentum, as well as to consider
additional control torques on the satellite body from the ADCS, e.g., using magnetorquers
or reaction wheels, is, however, interesting. Adding cost terms to either minimize attitude
disturbance while following the trajectory or to track a desired attitude with body torques
simultaneously could also be done.

Finally, this work generally assumes all state variables are easily measurable, such
that no state estimation methods are needed. While this is a fair assumption for fixed-
base industrial robot manipulators, for space manipulator systems, attitude estimation is
essential. Further work could, therefore, also consider state estimation, for instance, with
a Kalman filter approach like the error-state Kalman filter or a moving-horizon estimation
approach.

121





8 Conclusion

In this work, NMPC approaches for trajectory tracking for robot manipulator systems with
uncertain dynamics were investigated. The primary discussed approach, GP-MPC, uses a
GP to learn the residual error dynamics between a prior feedback linearized dynamics
model and the true robot dynamics. Sparse GP methods were applied to reduce the
computational complexity. Moreover, the SQP RTI solver strategy was used to achieve
real-time feasible computation times. This method was compared to an NMPC approach
using the prior forward dynamics model directly, as well as the feedback linearization-
based MPC approach without the additive GP error dynamics. Results were presented for
a fixed-base 6 DOF UR10e robot, both in simulation and on a real robot, for both task
space and joint space trajectories. Results were also presented for a space manipulator
system to test the discussed predictive control methods for a floating-base system. Model
mismatch from uncertain model parameters and viscous friction was added in the test
cases to have a significant residual between the prior and true model.

It was found that a significant increase in prediction accuracy and trajectory tracking
accuracy could be achieved in the fixed-base simulations when including the learned GP
model, compared to the NMPC approach using only the prior dynamics model. However,
for the 6 DOF robot model, the accuracy of the GP prediction was only local and did not
generalize satisfactory to other trajectories. Furthermore, the FITC, VFE and SVGP sparse
GP methods were tested in the GP-MPC controller. The SVGP method was primarily
used, for its significantly faster training time compared to VFE and FITC. However, it
was observed that this came at the cost of worse prediction accuracy.

For the trajectory tracking experiments with the UR10e robot, it was found that
adding the GP disturbance model improved the prediction accuracy. Yet the deterministic
NMPC generally performed better than GP-MPC. For the simulation results with the
space manipulator, GP-MPC performed best for the joint space trajectory, while the
deterministic NMPC performed best in the task space case. However, the results have

123



8 Conclusion

generally shown that MPC approaches to robot manipulator trajectory tracking can achieve
high precision and real-time capable computation time, also for systems with uncertain
and highly nonlinear dynamics.

124



A Conversions between rotation
representations†

This appendix presents additional conversion formulas between the rotation representations
discussed in Section 2.1. The appendix is based on Diebel 2006 and Egeland and Gravdahl
2002.

A.1 Euler angles - unit quaternion conversion

The transformation from ZYX Euler angles Θ = [ϕ θ ψ ]⊤ to a unit quaternion
q = [ η ε1 ε2 ε3 ]

⊤ is given by

q(Θ) =


cφ/2cθ/2cψ/2 + sφ/2sθ/2sψ/2

sφ/2cθ/2cψ/2 − cφ/2sθ/2sψ/2
cφ/2sθ/2cψ/2 + sφ/2cθ/2sψ/2

cφ/2cθ/2sψ/2 − sφ/2sθ/2cψ/2

 , (A.1)

where the shorthand sα = sin(α), cα = cos(α) is used. The inverse transformation is
given by

Θ(q) =


atan2(2ηε1 + 2ε2ε3, η

2 − ε21 − ε22 + ε23)

− arcsin(2ε1ε3 − 2ηε2)

atan2(2ηε3 + 2ε1ε2, η
2 + ε21 − ε22 − ε23)

 . (A.2)

†This chapter is adapted from Brandt 2020.

125



A Conversions between rotation representations

A.2 Rotation vector - unit quaternion conversion

From Eq. (2.8) it is seen that a rotation vector v can be mapped to a unit quaternion q by

q =

 cos(∥v∥2 )

v
∥v∥ sin(

∥v∥
2 )

 . (A.3)

The inverse map from a unit quaternion to a rotation vector is given by

v =
2arccos(η)√

1− η2
ε. (A.4)

A.3 Rotation vector - rotation matrix conversion

The map from a rotation vector v to rotation matrix R is given by[
r1(v) r2(v) r3(v)

]
, (A.5)

where

r1(v) =
1

∥v∥2


(
v21 − v22 − v23

)
s2∥v∥

2

+ ∥v∥2c2∥v∥
2

2s ∥v∥
2

(
v1v2s ∥v∥

2
− | v∥v3c ∥v∥

2

)
2s ∥v∥

2

(
v1v3s ∥v∥

2
+ | v∥v2c ∥v∥

2

)
 , (A.6)

r2(v) =
1

∥v∥2


2s ∥v∥

2

(
v1v2s ∥v∥

2
+ | v∥v3c ∥v∥

2

)
(
v22 − v23 − v21

)
s2∥v∥

2

+ ∥v∥2c2∥v∥
2

2s ∥v∥
2

(
v2v3s ∥v∥

2
− | v∥v1c ∥v∥

2

)
 , (A.7)

r3(v) =
1

∥v∥2


2s ∥v∥

2

(
v1v3s ∥v∥

2
− | v∥v2c ∥v∥

2

)
2s∥v∥2

(
v2v3s

∥v∥
2 + | v∥v1c∥v∥2

)
(
v23 − v21 − v22

)
s2∥v∥

2

+ ∥v∥2c2∥v∥
2

 . (A.8)

126



A.4 Rotation matrix - unit quaternion conversion

The map from rotation matrix to rotation vector is given by

v =
1

2


R3,2 −R2,3

R1,3 −R3,1

R2,1 −R1,2

 . (A.9)

A.4 Rotation matrix - unit quaternion conversion
Finally, the transformation from unit quaternion q to rotation matrix R is given by

R(q) =


η2 + ε21 − ε22 − ε23 2ε1ε2 + 2ηε3 2ε1ε3 − 2ηε2

2ε1ε2 − 2ηε3 η2 − ε21 + ε22 − ε23 2ε2ε3 + 2ηε1

2ε1ε3 + 2ηε2 2ε2ε3 − 2ηε1 η2 − ε21 − ε22 + ε23

 . (A.10)

The inverse mapping is not quite as trivial, and in general four possible mappings exist.
One of these mappings is

q(R) =
1

2


(1 +R1,1 +R2,2 +R3,3)

1
2

(R2,3 −R32) / (1 +R1,1 +R2,2 +R3,3)
1
2

(R3,1 −R1,3) / (1 +R1,1 +R2,2 +R3,3)
1
2

(R1,2 −R2,1) / (1 +R1,1 +R2,2 +R3,3)
1
2

 , (A.11)

yet there exist cases where this transform is not defined, and all four mappings must be
considered in general. The reader is referred to Diebel 2006 for further details.

127





B Manipulating Gaussians

In this appendix frequently used formulas for manipulating Gaussians are given. Firstly,
given two Gaussian distributed random variables x1 ∼ N (x1 | µ1,Σ1) and x2 ∼
N (x2 | µ2,Σ2), their joint distribution is also Gaussian, with mean and covariance
according to x1

x2

 ∼ N
µ1

µ2

 ,
Σ1 Σ12

Σ⊤
12 Σ2

 , (B.1)

where Σ12 is the cross-covariance between x1 and x2. Furthermore, given such a joint
Gaussian, the conditional distribution of x1 given x2 is

p(x1 | x2 = a) ∼ N
(
µ1 +Σ12Σ

−1
2 (a− µ2),Σ1 −Σ12Σ

−1
2 Σ⊤

12

)
. (B.2)

Finally, for x ∼ N (x | µ,Σ), the linear transformation y = Ax + b is Gaussian
distributed with

y ∼ N (y | Aµ+ b,AΣA⊤). (B.3)

129





C Modeling of 2 DOF planar robot
manipulator

This appendix presents modeling of the planar 2 DOF robot manipulator arm depicted in
Figure 6.1, based on Siciliano et al. 2010 and Egeland and Gravdahl 2002. The model
was used in the illustrative example presented in Section 6.1. The mass, inertia (principal
axis in z) and length of link i are denoted as mi, Ii and ℓi, respectively, for i ∈ N2.
Furthermore, it is assumed that the distance to the link center of mass is half the link
length for all links.

Firstly, the forward kinematics of the 2 DOF manipulator arm are given by

r =

rx
ry

 =

ℓ1 cos q1 + ℓ2 cos(q1 + q2)

ℓ1 sin q1 + ℓ2 sin(q1 + q2)

 , (C.1)

and the inverse kinematics are given by

q2 = ± arccos

(
r2x + r2y − ℓ21 − ℓ22

2ℓ1ℓ2

)
,

q1 = arctan

(
ry
rx

)
∓ arccos

r2x + r2y + ℓ21 − ℓ22
2ℓ1
√
r2x + r2y

 .

(C.2)

The inverse differential kinematics are formulated using the Jacobian inverse like in
Eq. (2.24), with the Jacobian of the 2 DOF planar manipulator system being

J =

−ℓ1 sin q1 − ℓ2 sin(q1 + q2) −ℓ2 sin(q1 + q2)

ℓ1 cos q1 + ℓ2 cos(q1 + q2) ℓ2 cos(q1 + q2)

 . (C.3)

131



C Modeling of 2 DOF planar robot manipulator

The reader is referred to Siciliano et al. 2010 for details on the derivation of the kinematics
and Jacobian for the 2 DOF planar arm.

The dynamics of the system are given in Egeland and Gravdahl 2002 as

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ , (C.4)

with the mass matrix M(q) given as

M(q) =

M11 M12

M12 M22

 , (C.5)

with elements

M11 = I1 + I2 +m1

(
ℓ1
2

)2

+m2

(
ℓ21 +

(
ℓ2
2

)2

+ ℓ1ℓ2 cos q2

)
,

M12 = I2 +m2

(
ℓ2
2

)2

+m2ℓ1
ℓ2
2
cos q2,

M22 = I2 +m2

(
ℓ2
2

)2

.

(C.6)

The Coriolis and centripetal matrix C(q, q̇) is given by

C(q, q̇) =
1

2
m2ℓ1ℓ2 sin q2

−2q̇2 −q̇2

q̇1 0

 , (C.7)

and the gravity vector g(q) is given by

g(q) =

(m1
ℓ1
2 +m2ℓ1

)
g cos q1 +m2

ℓ2
2 g cos (q1 + q2)

m2
ℓ2
2 g cos (q1 + q2)

 . (C.8)

132



D Additional results

In this appendix, supplementary results, which were not included in Chapter 6, are
presented. First, results from the joint space trajectory tracking experiments with the
UR10e robot are presented. Then, simulation results from task space trajectory tracking
with the space manipulator system are presented. For both tests, like the others in Chapter 6,
the linear MPC, GP-MPC and deterministic NMPC controllers are tested.

D.1 Joint space trajectory tracking for UR10e robot

D.1.1 Joint space linear MPC test

Joint space trajectory tracking was tested on the UR10e robot, on the same trajectory as in
Eq. (6.4), but now centered around a new q0 more suited for the environment. The linear
MPC controller was tested first, with parameters given in Table D.1. The computed joint
acceleration and torque is given in Figure D.1 and the joint states are shown in Figure D.2.
The corresponding tracking error is shown in Figure D.3.

0 20 40
t [s]

1

0

1

q̈ 
[r

ad
/s

2
]

q̈1 q̈2 q̈3 q̈4 q̈5 q̈6

0 20 40
t [s]

10

0

10

τ 
[N

m
]

τ1 τ2 τ3 τ4 τ5 τ6

Figure D.1: Joint acceleration input and computed joint torque for joint space trajectory
tracking with UR10e using linear MPC.

133



D Additional results

Table D.1: Parameter values for joint space trajectory tracking test on UR10e robot in lab
environment.

Parameter Value

N 20

ts [ms] 15.0

q0 [deg] [135,−120,−100,−50, 70, 0]
qmax [rad] 2π

q̇max [rad/s] 1.0

q̈max [rad/s
2] 1.5

ϵ 0.0456

Q 103 · I12
R I6

RNMPC blkdiag(2 · 10−6 · I6, 10−2 · I6)
S 10−2 · I6

0 20 40
t [s]

5

0

5

q 
[r

ad
]

q1
q2

q3
q4

q5
q6

rq1
rq2

rq3
rq4

rq5
rq6

0 20 40
t [s]

1

0

1

q̇ 
[r

ad
/s

]

q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

r q̇1

r q̇2

r q̇3

r q̇4

r q̇5

r q̇6

Figure D.2: Joint angles and joint velocities for joint space trajectory tracking with UR10e
using linear MPC.

134



D.1 Joint space trajectory tracking for UR10e robot

0 20 40
t [s]

2

0

2

∆
q 

[r
ad

]

×10 2 ∆q1 ∆q2 ∆q3 ∆q4 ∆q5 ∆q6

0 20 40
t [s]

1

0

∆
q̇ 

[r
ad

/s
]

×10 1 ∆q̇1 ∆q̇2 ∆q̇3 ∆q̇4 ∆q̇5 ∆q̇6

Figure D.3: Joint space trajectory tracking error for UR10e using linear MPC.

D.1.2 Joint space GP-based MPC test

A GP was trained with SVGP for 180 000 iterations with M̃ = 25 inducing points and
a dataset of 3000 samples. The resulting trajectory tracking error for the experiment is
presented in Figure D.4, showing a considerable improvement by partly mitigating the
error spikes.

0 20 40
t [s]

1

0

1

∆
q 

[r
ad

]

×10 2 ∆q1 ∆q2 ∆q3 ∆q4 ∆q5 ∆q6

0 20 40
t [s]

2

0

∆
q̇ 

[r
ad

/s
]

×10 1 ∆q̇1 ∆q̇2 ∆q̇3 ∆q̇4 ∆q̇5 ∆q̇6

Figure D.4: Joint space trajectory tracking error for UR10e using GP-MPC.

D.1.3 Joint space NMPC test

NMPC was also tested, with ERK4 discretization. The trajectory tracking error for NMPC
is shown in Figure D.5.

135



D Additional results

0 20 40
t [s]

0.0

0.5

∆
q 

[r
ad

]
×10 2 ∆q1 ∆q2 ∆q3 ∆q4 ∆q5 ∆q6

0 20 40
t [s]

1

0

∆
q̇ 

[r
ad

/s
]

×10 1 ∆q̇1 ∆q̇2 ∆q̇3 ∆q̇4 ∆q̇5 ∆q̇6

Figure D.5: Joint space trajectory tracking error for UR10e using NMPC.

In Table D.2 the tracking error and solver timings are summarized for the three tests. It
is observed that all methods use significantly increased time compared to the simulation
case in Section 6.2.2. All methods are still able to stay within the limit of 15ms, given by
the sample rate. Furthermore, while the inclusion of the GP disturbance dynamics does
reduce the tracking error, NMPC performs significantly better.

Table D.2: Comparison of joint space trajectory tracking RMSE, prediction RMSE and
computation times for linear MPC, GP-MPC and forward dynamics-based
NMPC.

Test RMSEq[rad] tsolver[ms]

Linear MPC 9.888 · 10−3 2.123

GP-MPC 4.513 · 10−3 9.000

NMPC 1.669 · 10−3 8.537

D.2 Task space trajectory tracking for space
manipulator

D.2.1 Task space linear MPC test

In order to test task space trajectory tracking for the space manipulator system, a spatial

136



D.2 Task space trajectory tracking for space manipulator

Lissajous curve is considered in the inertial frame:

rp = a


sin(ωt)

sin(nωt+ φ)

sin(mωt+ ψ)

 , (D.1)

with a = 0.1, ω = 0.1, n = 1, m = 1
2 , φ = π

2 , ψ = π. The resulting Lissajous curve
is visualized in Cartesian space in Figure D.6. Note that only a position trajectory is
considered for this example.

x [m]0.100.050.000.050.10
y [m] 1.451.401.351.301.25

z [m
]

1.05

1.10

1.15

Figure D.6: Lissajous curve in Cartesian space. Time is indicated by the colormap from
blue to yellow.

The system was simulated for T = 50 s with zero initial momenta. Other initial values
and configuration parameters for the simulation are given in Table D.3. The position
trajectory was blended from the initial end effector position over a duration of Tb = 15 s.
The inertial frame transform approximation discussed in Section 5.3.2 was used.

The computed joint acceleration and torques for linear MPC are shown in Figure D.7
and the resulting joint states are shown in Figure D.8. In Figure D.9 the blended trajectory
reference and the actual end effector position is shown. Snapshots from the simulation are
shown with the URDF model in Figure D.10.

The satellite body pose and velocity are shown in Figure D.11 and Figure D.12
respectively. Finally, in Figure D.13 the end effector position and position error is shown.

137



D Additional results

Table D.3: Parameter values for task space trajectory tracking test of space manipulator
in simulation.

Parameter Value

N 20

ts [ms] 10.0

p0 [m] [0, 0, 1]

Θ0 [deg] [90, 0, 0]

q0 [deg] [0, 0, 60]

ϵ 0.0456

Q 103 · I3
R I3

RNMPC blkdiag(10−2 · I3, 10−3 · I3)
S 10−1 · I3
P 20 ·Q

0 20 40
t [s]

2.5

0.0

2.5

q̈ 
[r

ad
/s

2
]

q̈1 q̈2 q̈3

0 20 40
t [s]

0.0

0.1

τ 
[N

m
]

τ1 τ2 τ3

Figure D.7: Joint acceleration input and computed torque using linear MPC.

138



D.2 Task space trajectory tracking for space manipulator

0 20 40
t [s]

2

0

q 
[r

ad
]

q1 q2 q3

0 20 40
t [s]

1

0

1

q̇ 
[r

ad
/s

]

q̇1 q̇2 q̇3

Figure D.8: Joint angles and joint velocities for space manipulator following task space
trajectory with linear MPC.

x [m]

0.100.050.000.050.10 y [m
]1.451.401.351.301.25

z 
[m

]

0.6

0.8

1.0

1.2

Figure D.9: Desired and actual end effector position trajectory with linear MPC in
Cartesian space.

Figure D.10: Space manipulator system tracking Lissajous trajectory in inertial frame.

139



D Additional results

0 20 40
t [s]

0.0

0.5

1.0
r 

[m
]

x y z

0 20 40
t [s]

0

100

Θ
 [d

eg
]

θ ϕ ψ

Figure D.11: Position and orientation of satellite body with linear MPC.

0 20 40
t [s]

0.01

0.00

0.01

v 
[m

/s
]

vs, x vs, y vs, z

0 20 40
t [s]

0

5
ω

 [d
eg

/s
]

ωs, x ωs, y ωs, z

Figure D.12: Linear and angular velocity of satellite body with linear MPC.

0 20 40
t [s]

1

0

1

Po
si

tio
n 

[m
]

x rpx y rpy z rpz

0 20 40
t [s]

0.00

0.02

Po
si

tio
n 

er
ro

r [
m

]

|∆x| |∆y| |∆z| ||∆p||

Figure D.13: End effector position trajectory and corresponding tracking error with linear
MPC.

140



D.2 Task space trajectory tracking for space manipulator

D.2.2 Task space GP-based MPC test

A GP was trained with M̃ = 25 for 80 000 iterations using the SVGP method, with the
dataset of 10 000 samples collected in the previous section. The closed loop disturbance
prediction is shown in Figure D.14. The resulting end effector position and position error
are given in Figure D.15.

0 10 20 30 40 50
t [s]

0.4

0.2

0.0

d
 [r

ad
/s

2
]

µd1 d1 µd2 d2 µd3 d3

Figure D.14: GP disturbance prediction µd and true disturbance d.

0 10 20 30 40 50
t [s]

0.00

0.02

Po
si

tio
n 

er
ro

r [
m

]

|∆x| |∆y| |∆z| ||∆p||

Figure D.15: End effector position tracking error with GP-MPC.

D.2.3 Task space NMPC test

Finally the end effector position and position tracking error are given for deterministic

141



D Additional results

NMPC in Figure D.16.

0 10 20 30 40 50
t [s]

0.00

0.02

0.04
Po

si
tio

n 
er

ro
r [

m
]

|∆x| |∆y| |∆z| ||∆p||

Figure D.16: End effector position tracking error with NMPC.

The main numerical results are presented in Table D.4. It is observed that while the
prediction error is significantly lower for GP-MPC, the resulting improvement in tracking
error is minimal, and the NMPC strategy performs significantly better.

Table D.4: Comparison of trajectory tracking RMSE, prediction RMSE and computation
time for linear MPC, GP-MPC, and forward dynamics-based NMPC, for space
manipulator task space trajectory tracking.

Test RMSEp[m] RMSEpred tsolver[ms]

Linear MPC 1.567 · 10−2 1.239 · 10−3 0.814

GP-MPC 1.541 · 10−2 3.273 · 10−5 3.012

NMPC 1.098 · 10−2 1.944 · 10−3 21.112

142



Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.
(2016). “TensorFlow: A System for Large-Scale Machine Learning”. 12th USENIX
Symposium on Operating Systems Design and Implementation. Savannah, pp. 265–283.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2019). “CasADi –
A software framework for nonlinear optimization and optimal control”. Mathematical
Programming Computation 11.1, pp. 1–36.

Brandt, M. A. (2020). Nonlinear Model Predictive Control for Robot Manipulator
Trajectory Tracking. Project report. Norwegian University of Science and Technology,
Trondheim.

Cao, G., Lai, E. M. K., and Alam, F. (2017). “Gaussian Process Model Predictive Control
of an Unmanned Quadrotor”. Journal of Intelligent & Robotic Systems 88.1, pp. 147–
162.

Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O., and
Mansard, N. (2019). “The Pinocchio C++ library – A fast and flexible implementation
of rigid body dynamics algorithms and their analytical derivatives”. International
Symposium on System Integration. Paris.

Carron, A., Arcari, E., Wermelinger, M., Hewing, L., Hutter, M., and Zeilinger, M. N.
(2019). “Data-Driven Model Predictive Control for Trajectory Tracking With a Robotic
Arm”. IEEE Robotics and Automation Letters 4.4, pp. 3758–3765.

Chen, C.-T. (1999). Linear system theory and design. Oxford University Press, New York.

143



D Bibliography

Coumans, E. and Bai, Y. (2016–2021). PyBullet, a Python module for physics simulation
for games, robotics and machine learning. https://pybullet.org.

Diebel, J. (2006). Representing Attitude: Euler Angles, Unit Quaternions, and Rotation
Vectors. Technical report. Stanford University.

Diehl, M., Ferreau, H. J., and Haverbeke, N. (2009). “Efficient numerical methods for
nonlinear MPC and moving horizon estimation”. Nonlinear model predictive control.
Springer, Berlin, Heidelberg, pp. 391–417.

E-Series From Universal Robots (2020). Universal Robots. url: https://www.universal-
robots.com/media/1802432/e-series-brochure.pdf (visited on 11/12/2020).

Egeland, O. and Gravdahl, J. T. (2002). Modeling and Simulation for Automatic Control.
Marine Cybernetics, Trondheim.

Featherstone, R. (2008). Rigid Body Dynamics Algorithms. Springer Science & Business
Media, New York.

Fossen, T. I. (2011). Guidance and Control of Ocean Vehicles. John Wiley & Sons,
Chichester.

Frison, G. and Diehl, M. (2020). “HPIPM: a high-performance quadratic programming
framework for model predictive control”. 21th IFAC World Congress 53.2, pp. 6563–
6569.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. (2018). “GPy-
Torch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration”.
Advances in Neural Information Processing Systems, pp. 7576–7586.

GPy (2021). GPy: A Gaussian process framework in python. http://github.com/
SheffieldML/GPy.

Gros, S., Zanon, M., Quirynen, R., Bemporad, A., and Diehl, M. (2016). “From linear to
nonlinear MPC: bridging the gap via the real-time iteration”. International Journal of
Control 93.1, pp. 62–80.

144

https://pybullet.org
https://www.universal-robots.com/media/1802432/e-series-brochure.pdf
https://www.universal-robots.com/media/1802432/e-series-brochure.pdf
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy


Grüne, L. and Pannek, J. (2011). Nonlinear model predictive control: Theory and
algorithms. Springer, London.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). “Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates”. 2017 IEEE International
Conference on Robotics and Automation. Singapore, pp. 3389–3396.

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and
Oliphant, T. E. (2020). “Array programming with NumPy”. Nature 585, pp. 357–362.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). “Gaussian Processes for Big Data”.
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence.
Bellevue, pp. 282–290.

Hewing, L., Kabzan, J., and Zeilinger, M. N. (2019). “Cautious Model Predictive Control
Using Gaussian Process Regression”. IEEE Transactions on Control Systems Technology
28.6, pp. 2736–2743.

Hewing, L., Liniger, A., and Zeilinger, M. N. (2018). “Cautious NMPC with Gaussian
Process Dynamics for Autonomous Miniature Race Cars”. 2018 European Control
Conference. Limassol, pp. 1341–1348.

Houska, B., Ferreau, H., and Diehl, M. (2011). “ACADO Toolkit – An Open Source
Framework for Automatic Control and Dynamic Optimization”. Optimal Control
Applications and Methods 32.3, pp. 298–312.

Johannessen, L. M. G., Arbo, M. H., and Gravdahl, J. T. (2019). “Robot Dynamics with
URDF & CasADi”. 2019 7th International Conference on Control, Mechatronics and
Automation. Delft, pp. 185–190.

Johansen, T. A. (2011). “Introduction to nonlinear model predictive control and moving
horizon estimation”. Selected topics on constrained and nonlinear control. Slovak

145



D Bibliography

University of Technology, Bratislava, Norwegian University of Science and Technology,
Trondheim, pp. 187–240.

Kabzan, J., Hewing, L., Liniger, A., and Zeilinger, M. N. (2019). “Learning-Based Model
Predictive Control for Autonomous Racing”. IEEE Robotics and Automation Letters
4.4, pp. 3363–3370.

Kavan, L. and Žára, J. (2005). “Spherical Blend Skinning: A Real-Time Deformation of
Articulated Models”. Proceedings of the 2005 Symposium on Interactive 3D Graphics
and Games. Washington, pp. 9–16.

Kingma, D. P. and Ba, J. (2015). “Adam: A Method for Stochastic Optimization”.
International Conference on Learning Representations. San Diego.

Koenig, N. and Howard, A. (2004). “Design and use paradigms for Gazebo, an open-source
multi-robot simulator”. 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Vol. 3. Sendai, pp. 2149–2154.

Lindvig, A. P. (2021). ur_rtde. Gitlab repository. url: https : / / gitlab . com /

sdurobotics/ur_rtde (visited on 03/22/2021).

Liu, H., Ong, Y.-S., Shen, X., and Cai, J. (2020). “When Gaussian process meets big data:
A review of scalable GPs”. IEEE transactions on neural networks and learning systems
31.11, pp. 4405–4423.

Loquercio, A., Segu, M., and Scaramuzza, D. (2020). “A General Framework for
Uncertainty Estimation in Deep Learning”. IEEE Robotics and Automation Letters 5.2,
pp. 3153–3160.

Macfarlane, S. and Croft, E. A. (2003). “Jerk-bounded manipulator trajectory planning:
design for real-time applications”. IEEE Transactions on Robotics and Automation
19.1, pp. 42–52.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-
Villagrá, P., Ghahramani, Z., and Hensman, J. (2017). “GPflow: A Gaussian process
library using TensorFlow”. Journal of Machine Learning Research 18.40, pp. 1–6.

146

https://gitlab.com/sdurobotics/ur_rtde
https://gitlab.com/sdurobotics/ur_rtde


Max. Joint Torques (2015). Universal Robots. url: https://www.universal-robots.
com/articles/ur/max-joint-torques (visited on 11/12/2020).

McKinnon, C. D. and Schoellig, A. P. (2019). “Learn Fast, Forget Slow: Safe Predictive
Learning Control for Systems With Unknown and Changing Dynamics Performing
Repetitive Tasks”. IEEE Robotics and Automation Letters 4.2, pp. 2180–2187.

Mesbah, A. (2016). “Stochastic Model Predictive Control: An Overview and Perspectives
for Future Research”. IEEE Control Systems Magazine 36.6, pp. 30–44.

Myhre, T. A. (2016). “Vision-Based Control of a Robot Interacting with Moving and
Flexible Objects”. PhD thesis. Norwegian University of Science and Technology,
Trondheim.

Nanos, K. and Papadopoulos, E. G. (2017). “On the Dynamics and Control of Free-floating
Space Manipulator Systems in the Presence of Angular Momentum”. Frontiers in
Robotics and AI 4. Paper 26.

Nocedal, J. and Wright, S. (2006). Numerical optimization. 2nd ed. Springer, New York.

Parameters for calculations of kinematics and dynamics (2020). Universal Robots.
url: https://www.universal- robots.com/articles/ur/parameters-for-
calculations-of-kinematics-and-dynamics (visited on 11/30/2020).

Paulson, J. A., Buehler, E. A., Braatz, R. D., and Mesbah, A. (2020). “Stochastic model
predictive control with joint chance constraints”. International Journal of Control 93.1,
pp. 126–139.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). “Scikit-learn: Machine Learning in
Python”. Journal of Machine Learning Research 12, pp. 2825–2830.

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). “A unifying view of sparse approx-
imate Gaussian process regression”. The Journal of Machine Learning Research 6,
pp. 1939–1959.

147

https://www.universal-robots.com/articles/ur/max-joint-torques
https://www.universal-robots.com/articles/ur/max-joint-torques
https://www.universal-robots.com/articles/ur/parameters-for-calculations-of-kinematics-and-dynamics
https://www.universal-robots.com/articles/ur/parameters-for-calculations-of-kinematics-and-dynamics


D Bibliography

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.
MIT Press, London.

Rawlings, J. B., Mayne, D. Q., and Diehl, M. (2019). Model Predictive Control: Theory,
Computation, and Design. 2nd ed. Nob Hill Publishing, Santa Barbara.

Rohmer, E., Singh, S. P. N., and Freese, M. (2013). “CoppeliaSim (formerly V-REP):
a Versatile and Scalable Robot Simulation Framework”. Proc. of The International
Conference on Intelligent Robots and Systems. Tokyo.

Rybus, T., Seweryn, K., and Sąsiadek, J. Z. (2017). “Control System for Free-Floating
Space Manipulator Based on Nonlinear Model Predictive Control (NMPC)”. Journal
of Intelligent & Robotic Systems 85.3, pp. 491–509.

Rymansaib, Z., Iravani, P., and Sahinkaya, M. N. (2013). “Exponential trajectory generation
for point to point motions”. 2013 IEEE/ASME international conference on advanced
intelligent mechatronics. Wollongong, pp. 906–911.

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2010). Robotics: Modelling,
Planning and Control. Springer, London.

Snelson, E. and Ghahramani, Z. (2005). “Sparse Gaussian processes using pseudo-inputs”.
Advances in Neural Information Processing Systems 18, pp. 1257–1264.

Solà, J. (2017). “Quaternion kinematics for the error-state Kalman filter”. arXiv:1711.02508.

Swevers, J., Verdonck, W., and De Schutter, J. (2007). “Dynamic Model Identification for
Industrial Robots”. IEEE Control Systems Magazine 27.5, pp. 58–71.

Tipping, M. E. (2004). “Bayesian inference: an introduction to principles and practice in
machine learning”. In: Advanced Lectures on Machine Learning. Berlin, Heidelberg,
pp. 41–62.

Titsias, M. (2009). “Variational Learning of Inducing Variables in Sparse Gaussian
Processes”. Proceedings of the Twelth International Conference on Artificial Intelligence
and Statistics. Vol. 5. Clearwater Beach, pp. 567–574.

148



Todorov, E., Erez, T., and Tassa, Y. (2012). “MuJoCo: A physics engine for model-based
control”. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Vilamoura, pp. 5026–5033.

Umetani, Y. and Yoshida, K. (1989). “Resolved motion rate control of space manipulators
with generalized Jacobian matrix”. IEEE Transactions on Robotics and Automation
5.3, pp. 303–314.

Verschueren, R., Frison, G., Kouzoupis, D., Duijkeren, N. van, Zanelli, A., Novoselnik, B.,
Frey, J., Albin, T., Quirynen, R., and Diehl, M. (2019). “acados: a modular open-source
framework for fast embedded optimal control”. arXiv:1910.13753.

Wächter, A. and Biegler, L. T. (2006). “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming”. Mathematical
Programming 106.1, pp. 25–57.

Wang, M., Luo, J., and Walter, U. (2016). “A non-linear model predictive controller with
obstacle avoidance for a space robot”. Advances in Space Research 57.8, pp. 1737–1746.

Wilde, M., Kwok Choon, S., Grompone, A., and Romano, M. (2018). “Equations of
Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer’s Tutorial”.
Frontiers in Robotics and AI 5. Paper 41.

Zanelli, A., Domahidi, A., Jerez, J., and Morari, M. (2017). “FORCES NLP: an efficient
implementation of interior-point methods for multistage nonlinear nonconvex programs”.
International Journal of Control, pp. 1–17.

149



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

M
artin Albertsen Brandt

Trajectory Tracking for Fixed-Base and Floating-Base Robot M
anipulators

Martin Albertsen Brandt

Trajectory Tracking for Fixed-Base
and Floating-Base Robot
Manipulators

A Gaussian Process-Based Model Predictive
Control Approach

Master’s thesis in Cybernetics and Robotics
Supervisor: Jan Tommy Gravdahl
Co-supervisor: Esten Ingar Grøtli, Phillip Maree

May 2021

M
as

te
r’s

 th
es

is


	Preface
	Abstract
	Sammendrag
	Contents
	List of Tables
	List of Figures
	Acronyms
	Notation
	Introduction
	Motivation
	Objectives
	Contribution
	Outline

	Kinematics and dynamics of robot manipulator arms
	Rigid body rotation representations
	Rotation matrices
	Angle-axis representation
	Euler angles
	Unit quaternions

	Manipulator kinematics and the Denavit-Hartenberg convention
	Homogeneous transformation matrices
	The Denavit-Hartenberg convention

	Differential kinematics
	Manipulator dynamics

	Optimal control
	Optimal control and model predictive control
	Direct numerical optimal control methods
	Sequential quadratic programming
	Real-time iteration scheme

	Gaussian process regression and Gaussian process-based MPC
	Bayesian linear regression
	Gaussian process regression
	Gaussian processes
	Learning the hyperparameters

	Sparse GP methods
	Fully Independent Training Conditional
	Variational Free Energy
	Sparse Variational Gaussian Process

	GP-based MPC
	GP disturbance model
	Stochastic MPC problem
	State distribution propagation
	Cost function
	Chance constraints
	Sparse GP dynamics
	Tractable MPC problem


	Design and implementation
	Trajectory tracking MPC for robot manipulators
	Joint space trajectory tracking
	Task space trajectory tracking
	Slack variables

	Trajectory blending
	Position trajectory blending
	Quaternion trajectory blending

	Space manipulator modeling and control
	Space manipulator kinematics and dynamics
	Space manipulator MPC

	Software tools
	GPflow
	acados
	urdf2casadi
	PyBullet


	Results
	Trajectory tracking for 2 DOF planar robot manipulator
	Linear MPC
	GP training
	GP-based MPC

	Trajectory tracking for 6 DOF robot manipulator in simulation
	Joint space trajectory tracking
	Task space trajectory tracking

	Lab tests of trajectory tracking for UR10e robot
	Task space linear MPC test
	Task space GP-based MPC test
	Task space NMPC test

	Trajectory tracking for space manipulator in simulation
	Joint space linear MPC test
	Joint space GP-based MPC test
	Joint space NMPC test


	Discussion and further work
	General results
	Solver and computation time
	Lab results
	Space manipulator results

	Conclusion
	Conversions between rotation representations
	Manipulating Gaussians
	Modeling of 2 DOF planar robot manipulator
	Additional results
	Bibliography

