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Abstract

Implementing the bipedal walk in robots will allow them to move in rougher terrain and humanoid
spaces where other robots might be inadequate. These robots are often explained with quite
complicated mathematical functions. The ultimate goal of this project is to create a bipedal robot
that is able to walk using a relatively simple mathematical function. The gait will rely heavily on
the pendulum effect to increase its energy efficiency and minimise the torque needed.

Previous to this report a master of science thesis has been written about the theory behind the
robot and two previous bachelor groups have worked directly on the robot. And we expect other
bachelor groups to keep working on the robot. Because of this it is important to make the work as
accessible and easy to understand as possible, so that future work will have an easier time at the
start of their project.

Various upgrades has been made in the hardware of the robot to add new functionality. New wires
were created to connect the servos to the BBB shield, a new bracket was created to secure the
new servos to the feet of the biped and a new shield circuit board was created to allow the BBB
to read the 5V signals from the encoders as well as send out a 5V PWM signal.

ROS is used to divide the code into packages to make it easier to develop new code or improve
existing code. this also makes it easy to implement the code in other systems as the package can
simply be added to any ROS workspace. The addition of a message package which all Biped nodes
uses also makes it so that any system with this package can easily communicate and interact with
the biped.

New IMU-code uses both acceleration measurements and gyroscope measurements and combines
them trough kalman filtering along other signal processing to get a steady and accurate measure-
ment of the leg angle. The encoders would have been a great tool to compare the IMU measure-
ments to, but we were not able to do this due to the encoders breaking unexpectedly.

New encoder code takes the angle between the legs and torso measured by the encoders along with
the leg angle measured by the IMU´s to produce a estimate of the torso angle. This is useful when
controlling the robot and is also used to visualize the robot state in Rviz. The encoders have been
incredibly unreliable and we will discuss what might be causing this and potential replacements.

Discrepancies with the motor from previous years have been corrected and documented. The wiring
into the servo controllers and the configurations have been altered so it allows for PWM readings.
The previous wiring and configurations have damaged one of the motors. The motor code has been
rewritten to the current device three overlay, and to allow a second motor. The encoder code has
also been implemented to reduce latency.

The servos has been extensively tested/troubleshooted and have been made to function using C++
code with ROS implementation. In addition they have been connected to the main board. One
of the four servos has broken, and recommendations on how to proceed with solving this problem
has been put forth.

The document also explains the theory used on the different parts of the robot. This is in order
to make it easy to understand why certain decisions have been made throughout the project. For
this purpose the use of ROS has also been explained.

Both an interface and visualization software has been made. This will make testing easier in the
future. While there is room for improvement, it more than makes for good tools to be used in the
continued development of the robot.

Lastly a github repository has been put up to be used for further development. Every relevant
folder contains README-files with walkthroughs, code explanation and other relevant information
for the specific folder. The goal of the Git is that you should be able to understand and launch
the entire system as the git as the only resource.
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Sammendrag

Tobeinte roboter kan bevege seg i røffere terreng hvor andre roboter ikke kommer til. Disse
robotene er ofte avhengige av veldig kompliserte matematiske funksjoner. Det endelige m̊alet med
dette prosjektet er å lage en robot som kan g̊a ved hjelp av en relativt enkel matematisk formel.
Roboten vil være veldig avhengig av pendel effekten for å minimalisere momentet som er nødvendig.

Før denne rapporten har en master grad blitt skrevet om teorien bak roboten, og to andre bachelor
grupper har arbeidet p̊a roboten direkte. Vi forventer at flere grupper kommer til å fortsette å
jobbe p̊a denne roboten fremover. Det var derfor viktig å dokumentere og gjøre alle resursjene
s̊a tilgjengelige som mulig slik at frentidige grupper kan bruke mindre tid p̊a å sette seg inn i
prosjektet.

Roboten har f̊att diverse hardware oppgraderinger. Nye ledninger ble lagd for å koble sammen
servoene til BBB shieldet. Nye noterings bøyler ble lagd for å feste servoene til beina og ett nytt
shield ble lagd for at BBBen skal kunne motta 5V fra enkoderne i tillegg til å kunne sende ut 5V
PWM signaler.

ROS blir brukt til å dele opp koden i pakker for å gjøre det lettere å utvikle ny kode og forbedre
eksisterende kode. Dette gjør det ogs̊a lettere å implementere koden i andre systemer siden pakken
kan enkelt legges til hvilket som helst ROS workspace. Ved å benytte en egen messages pakke
som alle ROS nodene p̊a roboten bruker kan hvilket som helst system kommunisere og kontrollere
roboten s̊a lenge systemet ogs̊a har denne pakken.

Den nye IMU koden bruker m̊alt akselerasjon samt gyroskopiske m̊alinger og kombinerer disse
gjennom Kalman filtrering langs signal prosesseringen for å f̊a en stabilt og nøyaktig m̊aling av
benvinkelen. Enkoderne hadde vært et veldig godt verktøy å sammenlikne IMU målingene med,
men vi fikk ikke gjort dette siden enkoderene ble ødelagt.

Den nye enkoder koden tar vinkelen mellom bena og kroppen som blir m̊alt av enkoderne sammen,
med benvinkelen m̊alt av IMUene, for å produsere et estimat p̊a kroppsvinkelen. Dette er nyttig
n̊ar man skal kontrollere robotoen og det brukes ogs̊a til å visualisere tilstanden til roboten i Rviz.
Enkoderne har vært utrolig up̊alitelige og det blir diskutert hva som kan være årsaken til dette og
hva som kan brukes som potensielle erstatninger.

Avvik som ang̊aende motoren som ble oppdaget fra tidligere år har blitt rettet p̊a og dokumentert.
Ledningene som g̊ar inn i servo kontrollerene og konfigurasjonene rundt har blitt endret p̊a slik
at PWM signaler kan bli lest. Det tidligere ledningsoppsettet og konfigurasjonene har skadet en
av motorene. Motor koden har blitt skrevet p̊a nytt til det n̊aværende enhets tre overlegget for å
tillate en andre motor. Enkoder koden har ogs̊a blitt implementert for å redusere ventetid.

Dokumentet forklarer ogs̊a teorien som er blitt brukt p̊a de forskjellige delene av roboten. Dette
er i hovedsak for å gjøre det lett å forst̊a hvorfor enkelte valg har blitt gjort i løpet av prosjektet.
Av samme grunn har bruken av ROS ogs̊a blitt forklart.

B̊ade et grensesnitt og et visualiserings program blitt lagd. Dette kommer til å gjøre det enklere å
teste deler av roboten i framtiden. Selv om det er rom for forbedring, er begge veldig gode verktøy
som kan bli brukt videre i utviklingen av roboten.

Til slutt har en Github-side blitt lagd til bruk for fremtidig utvikling. Hver relevante mappe har
sin egen README-fil som forklarer hvordan du installerer og utfører mappe-relevante prosesser,
forklaringer av kode og annen relevant info til den bestemte mappen. Målet til giten er at du skal
forst̊a og klare å sette i gang hele systemet med bare giten som ressurs.
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Preface

This paper documents our work done on the Bipedal Robot Prototype in the sixth and last semester
of our bachelor degree in electrical engineering with specialization in automation. The subject itself
is worth 20 study points. Working on the project has been both interesting and challenging.

We would like to thank our supervisor, P̊al Holte Mathisen, and our employer, Torleif Anstensrud,
for guiding us through this project and making time for us even in short notice. We would also
like to thank Krisitan Strøm and other employees at the department of Engineering Cybernetics
for helping with equipment and giving advice.

Trondheim, May 2021. Group E2110:

Figure 1: Group signatures
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Definitions

BBB ”Beaglebone Black”: A single board computer.

BBB shield: A circuit board designed to go on top of the BBB to add functionality.

C/C++: General-purpose programming language, often used in embedded systems and real time
programming.

Coloumb Friction: Is an approximation of dry friction which is the force two solid objects sliding
across each other.

Encoder: A device that converts angular position of a rotating joint to a digital- or analog signal.

GitHub: A code hosting platform for version control and collaboration.

GUI: Graphic User interface, allows a user to input actions using interactive visual components.

I2C: A serial communication protocol between one or several masters and one or several slaves.

IMU ”Inertia Measurement Unit”: A device capable of measuring angle, angular velocity
and its orientation.

Linux: An open source operating system used to run R.O.S. We will be using a distribution called
”Ubuntu”

Microsoft Teams: A business communication platform, we use it mostly for video meetings and
to store documents.

OS: Operating system.

PCB: Printed circuit board.

PWM: Pulse Width Modulation, mainly used in order to get analog results using digital means.
A digital controller creates square wave signals that allows a user to switch between an ”on” and
”off” state.

Radial Load: The load working perpendicular to the motor shaft.

Restoring torque: The torque which rises to return an object (twisted, rotating, etc.) to its
original orientation.

ROS ”Robot Operating System”: A framework for robot programming to run on.

Rviz: A 3D visualization tool for ROS.

SPI: Short for ”Serial Peripheral Interface”. Is a communication protocol primarily used in em-
bedded systems.

Technical documentation: Documentation about a product containing most of the relevant
information a customer needs.

Underactuated robotics: A type of robot where the number of actuators is lower than the
degrees of freedom. E.g. a bipedal with actuators in the hip.

Virtual Machine: A simulation a machine to host another or multiple OSes using the same
hardware.
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1 Introduction

1.1 Background

An increasingly large part of modern society includes some form of robotics. In most cases this
is fixed robots, however as new technologies are developed it is desirable to develop new robotics
with higher mobility that can mimic human motion and operate outside the highly controlled
environments where they are used today.

In conjunction with the desire to mimic human walk there is also a need to research and develop
energy efficient gaits. At NTNU there have been developed several mathematical models for
effective walking patterns. These models have been simulated, but has yet to be tested on a
physical model. The purpose of this robot is to do exactly that. Our bachelor thesis will look to
bring the system closer- and hopefully all the way to completion.

The robot in question is an under-actuated bipedal that is restricted to move in a 2 dimensional
plane. The robot consists of 2 stiff legs mounted to a torso at the ”hip”. With the mathem-
atical models designed to work in two dimensions we have to make sure to prevent lateral tilt,
consequently each leg has two points of contact as if you would stretch the robot sideways when
you add the third axis.

The structure of the robot is already done, and a variety of electronics and sensors have been
implemented. With most of the hardware done, the remaining work is largely software based and
will largely consist of measurement and communication as well as making sure the previous work
is still functional.[1]



1.2 The outline of the thesis

This thesis starts with introducing the robot and elucidating the problem statement. It then goes
trough fundamental theory and concepts as well as the results of early testing before digging into
the work done this semester.

The main chapters covers work related to hardware and the embedded system, which contains most
of the workload, before finishing of with ROS and visualization. These chapters follows roughly
the same model of theory, process, results, challenges.

The thesis ends with a discussion about the project and a conclusion as well as an overview of
future work that is required to reach the ultimate goal.

Note that a lot of the documentation is contained within the git and not the appendix as we don’t
consider it to be very helpful for understanding the thesis.

1.3 Preliminary design and work

1.3.1 Frame

The frame is designed using AutoCAD and was built at the department of Engineering Cybernetics
at NTNU[2]. It consist for the most part of square aluminum tubing. The tubing is constructed
so the frame has a main body and 2x2 parallel legs. This makes the the balance drastically better
than what would be achieved with only two legs. An aluminum plate is mounted on the torso
of the frame. This is where the control system for the robot is situated, mainly consisting of the
BBB and the power distribution system. The frame has pre-drilled holes on the legs which makes
it easy to mount both sensors and servos wherever desired.

1.3.2 Power supply

The BBB does not have enough power to power the servos, actuators and encoders. Hence an
external power supply is being used. This is the ”QPX600D Dual 600Watt DC Power Supply”.

1.3.3 Embedded system

The brain of the embedded system is the BeagleBone Black. A PCB-board is mounted on top of
the BeagleBone-pins and every single signal goes through this board. The motors are located at
the hip-joint, the encoders is attached to the motors, the IMUs are located on the legs and the
servos are located at the bottom of the legs. Neither servos nor IMUs have been implemented
properly prior to this year.

1.3.4 Preliminary part list

The bipedal robot itself is made up of a variety of different components. This table includes all
hardware and external physical components found connected to the robot. It is worth noting that
table 1 are based of last years part list[3], where we have found discrepancies, these have been
corrected, but we haven’t been able to check all the components.
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Description Product name Manufacturer
Flexible actuator coupler 4779823 Ruland

Hip bearings 6004-C Fag
Electric motors for leg actuation 148877 Maxon Motor

1-to-6 Gearbox for motors Planetary Gearhead Maxon Motor
Servo controllers for motors ESCON 70/10 (422969) Maxon Motor
Servos for retractable feet TGY-SC340V Turnigy

Encoders for relative leg angles 2RMHF Scancon
Inertial measurement unit chip LSM9DS1 STMicroelectronics

IMU Breakout board Breakout-LSM9DS1 Sparkfun
Power supply QPX600D Aim-TTI

BeagleBone Black BeagleBone Black BeagleBoard.org

Table 1: Equipment & Components

1.4 Problem statement

The main problem statement of this bachelor is to further develop code and wiring for the bipedal
robot. Ideally the robot would be able to take a couple of steps. The parts of the system that
would be the focus was the IMU’s, the motor, the servos and the encoders.

In order to improve upon the project it is important to finish modules in order to make continuing
easier for the next group. As such making the hardware work properly ended up being most
important. This would also require having working code in order to make sure the different
parts of the system behaved as planned. In addition this requires making easy to understand
documentation to minimize the amount of time spent testing and troubleshooting. Doing this will
make reaching the end goal of having a functional bipedal robot easier.

1.4.1 Familiarization with previous work

The robot was built in 2014 and has since then had one master of science student writing his thesis
about the theory behind the robot and two bachelor groups working directly on the robot.
This made it necessary to read and become familiar with the three previous theses, and the
developed code and documentation in the project folder. Furthermore the group will have to find
areas that needs or has potential for improvement.

1.4.2 Learning ROS and C++

In order to advance the development of the robot it is necessary to know how to use basic ROS
and C++. The group does not have a lot of experience with either. As such the a prerequisite
before starting to work on the robot will be to spend time learning about this. As ROS and C++
are quite vast subjects, a lot of this will be learning by doing throughout the project.

1.4.3 Github & Documentation

This project will have other people working on it later on, hence it is important to have all the
documentation neat and clear. It should also be explained in a fashion that is easily understood
by the new students. It is most likely other electrical engineering students that will take over. As
such the explanations will be aimed towards people with similar educational background.
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1.4.4 Implement measurement of upper body angle with IMU, including electronics
and software filtering

Currently the robot only knows the upper body’s angle relative to the legs measured by the
encoders. For it to be able to mimic the gaits mentioned in 1.1 it needs to know its position
relative to the ground as well. This will be achieved by IMUs mounted on the legs. Since an IMU
uses several sensors filtering these signals and combining them to a reliable angle will be important.

1.4.5 Motor

The actuators have not been tested since the bachelor group in 2019. Even then it was only the
inner leg that was tested. This means the group has to find out how the embedded motor system
work, troubleshoot the motors and servo-controller and test the developed code. If the developed
code doesn’t work, changes, or new code will be implemented.

1.4.6 Servo

The servos have not been properly tested for quite some time. As such making sure that both the
hardware and the code from previous groups are in working condition will be the first priority.
After that any necessary changes will be implemented. If it is discovered that the code or the
servos themselves don’t work, this will be fixed. The servos also need to be wired to the main
board.

1.4.7 ROS

After the dSpace real time system was discarded due to a ransomware infesting the computer a
decision was made to control the system using ROS. This transition was started last year and we
aim to finish it, creating a complete library to control actuators and read sensors. Ideally the robot
should be able to walk once a control algorithm is implemented.

1.4.8 Develop software for (real-time) logging and visualization of robot status based
on sensor readings

Being able to visualise and track the robots perceived state can be very helpful when debugging.
We aim to implement real time visualization of a robot model as well as tracking these values.
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2 Theoretical Framework and Preliminaries

The underlying chapters will elaborate our use of sources and methods to process these. The
chapters will also contain fundamental concepts and theory used during the project and in writing
this report.

2.1 Sources and Methods

The predominant part of this project is built on knowledge and expertise outside our syllabus,
hence it was decided early on that everyone should learn the fundamentals of what we believed
was most important to advance the project. The two main subjects to learn was coding in C++
and ROS. Since these are giant subjects on their own, it was important to not go too deep into
them and waste time. As this work took place during a pandemic and the campuses was off limits
for longer periods of the time. We decided to learn ROS and C++ mostly individually. And
since people learn differently the approach to what sources and methods people used varied. The
resources we found most useful were, Ros Wiki [4] and the comments in the ROS packages code.
During this period we also familiarized ourselves with the previous work. This includes the tree
papers, Stable Gaits for an Underactuated Compass Biped Robot with a Torso[5], Instrumentation,
actuation and model identification of bipedal robot [6] and Biped Robot Prototype - Embedded sys-
tem integration with PID controller [7], and the coding, simulations and technical documentation
attached to these.
A cumulation of sources was also used when learning the BBB and linux. One of the main
sources we depended on was Exploring Beaglebone - tools and techniques for building with embed-
ded linux [8].
A lot of work was also put into understanding and changing the wiring to the different compon-
ents. The main sources here was the hardware references. In a couple of cases we contacted the
producers.

2.2 GPIO

GPIO, also known as General Purpose Input/output is a digital pin that can function as either an
input or an output pin[9]. This means the pins allow for a lot of flexibility. Depending on what
kind of functionality is needed, the pins can be defined and programmed to behave as necessary.

2.3 PWM(Pulse Width Modulation)

Pulse Width Modulation is a powerful technique for controlling analog circuits with a processor’s
digital outputs[10]. Arguably the main advantage of using PWM is that the power loss created
when switching devices is relatively low. In addition an analog signal will vary its output over time.
Which isn’t ideal when you want to change between a ”on” and ”off” state. It is also problematic
if you are dependant on a certain percentage of input. Digital signals on the other hand can only
have a finite amount of values(usually 0V-5V). This makes using a digital signal more predictable
as well as more cost effective. Another positive trait is that PWM is less susceptible noise.

In essence PWM is a way of making analog signals digital. The method itself chops the power
delivered from a source into discrete parts. This results is a square wave signal which for all
intents and purposes can be interpreted to switch between a high and a low state. To put it in
even simpler terms a PWM signal simulates a analog signal by applying power in pulses. Which
makes controlling an analog device, for example a servo motor, easier.

When it comes to PWM signals the proportion of time when the square signal is in an ”on” state
is described by the duty cycle. The duty cycle is in other words the percentage of time when the
square signal is high. As seen in the figure below.
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Figure 2: PWM signal duty cycle

2.4 Encoder

A fundamental part of controlling the robot movement is to have an accurate reading of the legs
relative to the torso. To achieve this encoders are used. An encoder is a sensor that is used to
measure rotation. It can measure both direction of the rotation as well as the angular velocity.
The type of encoder used for this project is called an incremental encoder.

Incremental encoders does not measure absolute position, but rather change in rotation via two
signals A and B. It is made up by a rotating opaque disc with slits that can pass light through.
A light source is placed on one side with a photodetector on the other, The encoder counts the
number of flashes to know how far it has rotated. To measure the direction of the rotation another
set of slits are introduced with a relative displacement to the original ones. The encoders know
which way they are turning by measuring which signal leads the other.

Figure 3: Incremental encoder wheel

Figure 4: Incremental encoder pulse
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As the name suggest an incremental encoder displays it’s value in increments. The encoder has 4
states for each hole in the disk, A-on B-on, A-on B-off, A-off B-on and A-off B off. This means
that for every slit there is 4 counts. The resolution N is determined by the number of slits on the
disc. The angular displacement is then defined as

θ = n
360°
N ∗ 4

(1)

where N is the number of slits each revolution and n is the pulse count.

2.5 Pendulum effect

Figure 5: The forces act-
ing on a pendulum in an
ideal environment

This has been explained in great length and calculated on in the past
bachelor reports[11][12]. Thus a short summary should suffice.
A mass m hanging a length l from a pivot point P. Gravity g will make
a resting point for the mass, this is the so called equilibrium. Gravity
will always work with a force equal to m ∗ g on the mass. Changing the
angle θ will make the mass oscillate back and forth past equilibrium.
The oscillation will have a constant period T no other forces apart from
gravity acts upon the mass.
In reality frictions at the hip joint, coloumb friction, and air resistance
is present. With these two in mind, Patrick T. Squire came up with
function 2[13].

d2θ

dt2
+ a|dθ

dt
|dθ
dt

+ b
dθ

dt
+ csgn(

dθ

dt
) + ω2

0(θ − 1

6
θ3) = 0 (2)

This equation focuses on the dampening effect of the pendulum mo-

tion. d2θ
dt2 is acceleration. a|dθdt |

dθ
dt is called quadratic dampening and is

the dampening from air resistance. Under normal conditions this con-
sidered to be proportional to the square of the angular velocity. bdθdt is

linear dampening and is derived from low Reynolds number. csgn(dθdt )
is the dampening from dry friction. ω2

0(θ − 1
6θ

3) is an two term sine-
approximation of the restoring torque. This approximation holds good for angels up to 45◦. a,b
and c are dampening coefficients. sgn is a function representing the positive or negative sign of
the value dθ

dt .

2.6 IMU

Inertial measurement unit measures angular rate, force and sometimes magnetic fields[14]. The
IMU consists of a gyroscope and an accelerometer.
The accelerometer can sense both dynamic and static acceleration. The static acceleration is
almost always gravity and can help to tell the tilt of the accelerometer in respect to earth. This
capability is probably most known to be used to tell your phone if it should be in landscape or
portrait mode. The dynamic acceleration is for sensing motion.
The gyroscope measures the angular velocity. It tells the so called roll, pitch and yaw. It is not
affected by gravity, so its perfect to combine it with an accelerometer
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Figure 6: Picture depicting the combination of accelerometer and gyroscope[15].

2.7 I2C

I2C is a communication protocol. The communication can be between a master and multiple slaves
or it could be several masters controlling one or multiple slaves.
To create an I2C-message the data is divided into frames and the slave address is added to the
beginning. Before and after every data frame an acknowledgement segment is added. This allows
the system to detect if the data is accepted by the receiver and can be very important if there are
a lot of noise around the system.

Figure 7: The I2C -message[16]

The downside of I2C compared to the SPI-protocol is the slower rate of data transfer. This does
however not affect our system because the IMU can’t send data faster than 952Hz.

2.8 SSH

Secure Shell (SSH) is an encrypted network protocol for communication between devices, and what
we use to communicate with the BeagleBone. The protocol follows a client-server model, meaning
that the connection is established by the SSH client (computer) that connects to the SSH server
(BeagleBone). After the client and server are connected the protocol ensures that the information
being exchanged is encrypted.

8



Figure 8: SSH setup flow

2.8.1 SCP

Along with SSH we use the Secure Copy Protocol (SCP) to transfer files from the computer to
the BeagleBone. SCP is based on the SSH protocol and is included in most Linux distributions.
Alternatively one can use (SSH File Transfer Protocol) SFTP the main difference being that it is
more secure but slower than SCP.

2.9 Software

• Oracle VM virtualbox: Can create and load multiple guest OSes in their own virtual
machines. Used in this project to create an linux environment on Windows computers.

• Winscp: Used to transfer and edit files on the BBB from a Windows OS.

• Visual Studio Code: Used to edit source code.

• balenaEtcher: Used when flashing OS image onto the SD-card.

• ESCON studio: Used to configure and monitor the Escon Servo controllers.

• Matlab/Simulink: Used for system and function simulations.
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3 Testing previous work

Continuing on someone else’s work brings both benefits and disadvantages. These are some dis-
coveries we made while starting the project initially.

3.1 Hardware

The encoders were not outputting any signal. At first this was believed to be a software flaw from
our side, but when nothing seemed to work we realised that both encoders were broken. This is
described in greater detail in 5.3.2.

The main hardware improvements made last year was introducing a circuit board to handle all the
connections to the BeagleBone. This board did however have several problems.

• The encoder signal which is 5V was led directly into the BeagleBone pins which can only
take 3.3V. This ended up frying it. An external level shifter was implemented on top of the
PCB to solve this problem prior to us starting this project.

• Upon debugging the board we discovered that 5V was being delivered to the encoder signal
output. We are unsure if this is caused by the board itself or because of the level shifter.
This is what we believed destroyed the encoders at first.

• The main motor current was being lead through the PCB to the servo controllers.

The combination of these problems led to a decision to design a new PCB.

Figure 9: PCB with level shifter

3.2 Code

As the 2020 group mentions in their report[17] the code they developed was meant as groundwork
for future development and the ROS code was meant as a ”proof of concept”. As a consequence
none of the previous code was in complete working order from the get go, making testing it difficult.
In addition the ROS setup was lost when the BeagleBone was shorted in 2020.

With little documentation as well. The earlier code served as a starting point to work off of.
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4 Hardware design

4.1 Printed Circuit Board

Figure 10: BBB Shield

As mentioned in chapter 3.1 it was decided to design a new PCB early on as we believed it was
the cause for the encoders breaking. Unfortunately the CAD files from last year had not been
uploaded, meaning we had to start from scratch instead of modifying the existing one.

4.1.1 PWM logic level shifting

The circuit board was made with the assumption that all PWM signals on the BBB, motor control-
lers and servos worked like the standard servo PWM signal in that 2ms on is interpreted as 100%
and 1 ms on is interpreted as 0%. However we now know that the BBB can control the duty-cycle
from 0 to 100% and the servo controller interprets 10% duty-cycle as 0 and 90% duty-cycle as
100%.

When designing the circuit board we did not know whether the servo controllers and the 7.4V
servos would accept a 3.3V logic level signal. We decided to add a level shifting functionality to
the board to change the logic level of the BBB PWM outputs from 3.3V to 5V or potentially, with
a few minor changes 7.4V. Due to the relatively small space on the board and the fast switching
required, we decided to try to find the simplest solution to minimize the risk of complications. We
considered two ways of boosting the signal voltage that each only required three components.

4.1.2 Op-amp circuit

The first was to simply use a op-amp as a comparator to boost the signal. The comparators only
needed one op-amp and two resistors to work.
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Figure 11: op-amp logic level booster

However the slew-rate and the switching delay would limit the working frequency. We can calculate
the effect this would have on the signal.

Figure 12: Op-amp test

The test was done using the LM108AJ-8 op-amp, which were easily available to us at the time. We
can see from the image that the slew-rate of the op-amp is about 4V/5µs or 0.8V/µs and the delay
is about 3 ms. The 3µs delay would not really change the signal only delay it. Which means that
the maximum switching delay at 7.4 v is 7.4V

0.8V µs = 9.25µs. The Servo signal difference between 0%

and 100% is 1ms which means at most this would affect the signal 9,25µs
1000µs = 0.925%. This could

easily be corrected for in code by simply adding 12,25µs to the duty-cycle. This is also assuming
the logic switch of the servo is at 7.4V or 0V. This is not likely going to affect the signal in any
meaningful way but it is a downside worth considering.
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4.1.3 Transistor circuit

The other way is by using a transistor to boost the signal.

Figure 13: transistor logic level booster

Transistors are way faster, hence does not have the weakness of the op-amp. However in order to
use the transistor we would either have to use more parts increasing the complexity of the board,
or use an inverted signal to control the servos and motor. Knowing that the BBB can send out
any signal this would not be a problem because we can simply send the inverse signal of the signal
we actually want.

We decided to use the op-amps to boost the PWM signals and avoid having to invert the signals.
This turned out to be unnecessary since both the motor-controllers and the servos accepts 3.3V
logic levels. Therefor the op-amps are replaced with a wire allowing the signal to pass from the
op-amp input to the op-amp output.
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4.1.4 Encoder signal processing

In order for the BBB to read the signals coming from the encoders, the voltage have to be stepped
down from 5 to 3.3V. This was done using a simple voltage-divider.

Figure 14: Encoder voltage divider

When deciding what resistor values to use, we decided to use the resistors that would draw around
1mA in its on state. This will make sure we are well under the 35mA rating of the encoders
while simultaneously ensuring that any current-draw from the BBB will not pull down the voltage.
When the signals from the encoders are 5V we want 1mA current-draw, which means the total
resistance to ground will be 5V

0.001A = 5KΩ. For the voltage to be 3.3V at the BBB while the

current is 1mA, the resistance to ground must be 3.3V
0.001A = 3.3KΩ. Which means the resistance

between the encoder and the BBB must be 5KΩ − 3.3KΩ = 1.7KΩ. When considering that we
have four signals being processed(two from each encoder) which are on, an average of 50% of the
time, we can estimate a total of 4 ∗ 1mA ∗ 5V ∗ 1

2 = 10mW of power lost during operation. We
know that 1mA is probably overkill, but we decided that a reliable signal was worth ten milliwatt
wasted, which is not significant in this context.

4.1.5 Mistakes

The board was made early in the project to make sure we had a lot of time for testing. A lot of
assumptions had to be made to make the board as quickly as possible. We started with the original
board as reference and added the functionality we needed. One mistake was that one of the PWM
pins that was going to control the servo, was connected to the P8 17 pin. This pin does not have
PWM functionality, so we had to scratch of this trace and solder on a jumper from P8 19 instead.
Another error was that one of the ground pins of the op-amps on the board was not connected.
This was a simple oversight and was easily corrected with a small jumper-wire. While designing
the circuit board we forgot to include a 5V connection to the Vcc input of the BBB. This was also
solved by simply adding a jumper wire from the nearest 5V pin to the BBB. While soldering one
of the Ethernet-sockets on the board, some solder shorted one of the pins between the socket and
board which made it very hard to find. Luckily, further testing show that this did not affect the
pin that was grounded and it seems to be working fine. The pin in question is P9 18. All of these
mistakes have been fixed on the current board as well as in the CAD files in the GitHub.
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4.2 Motor wiring

The terminals for the motor power are removed as the circuit board would have been a lot more
expensive to manufacture to accommodate the large amount of current the motors are rated for.
For instance, according to Advanced circuits circuit-board calculator[18], in order to handle the
16amps the motors are rated for, the trace would have to be 542mm wide with the same copper
thickness used on this board. We see no reason why the motor current needs to run trough the
board and have decided to wire them directly to the motor-controllers.

4.3 Connecting servos

Although most of the wiring was already finished previously, new wires to connect the servos to
the PCB was needed. We soldered two pairs of wires in parallel so that two and two servos gets
the same signal and moves in unison. We also mounted 3-pin dupont connectors to make it easy
to mount a new circuit board or servos. The wires are also shrink wrapped and color coded.

4.3.1 Servo brackets

Because the Futaba s9254 servos were destroyed in 2019, last years group were tasked with ordering
new ones. They ended up with the Turnigy tgy-sc340v which has smaller dimensions and hence
does not fit in the original mounting brackets. We were tasked with designing new ones. This was
done using the Shapr3D CAD software. The models were then manufactured at the mechanical
workshop of the department of cybernetics.

Figure 15: Servo casing

Figure 16: Servo casing
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5 Embedded system

The act of making a bipedal robot walk on its own is deceptively complex. It requires processing
data from various sensors and using these in stabilizing algorithms. These algorithms do a large
amount of mathematical calculations in order to balance the biped. As such it is necessary to
control the robot using embedded hardware rather than using an external computer. There are
several different components included in this system in order to make the biped walk as desired.
It is also necessary for all the hardware to communicate effectively in order to have a complete
working system.

The system itself is controlled by a Beaglebone Black, which is a low cost open source single board
computer. Both input and output signals are handled by this board, as well as any necessary
interim computations.

5.1 Beaglebone Black

The BBB is a relatively low-cost micro computer developed by the BeagleBoard foundation[19].
The computer is one of several community developed embedded devices.

5.1.1 Device Tree Overlay

The device tree overlay describes the hardware on the embedded system, in this case the BBB.
While your PC might use BIOS to initialize the hardware when booting up, the BBB will use files
to describe the hardware[20]. These files make up the device tree overlay and are decided when
flashing the BBB. This made for some frustration early on when the PWM-pins were not available.
It is possible to change the overlays by configuring /boot/uEnv.txt, however we found that flashing
a new image would be more infallible. We have put up a walkthrough of flashing the new image
to the BBB at the Git[21].

Changing the device tree overlay can also change what the user have to do to use the hardware.
For example in the first overlay every pin you wanted to use as GPIO had to be exported before
use, while in the current overlay all pins (apart from ground) are GPIO by default. This overlay is
very important when it comes to coding the BBB. The codes makes recipes on how to write to the
different pins. Changing the overlay might make it necessary to make changes to the codes. By
making a walkthrough on how we flashed the BBB, we can make sure the same overlay is flashed
every time.

5.2 IMU’s

For the robot to walk reliably it needs to know the position of itself relative to the world. Two
inertial measuring units are used to get the angle of each leg relative to the gravitational field/
ground.

The IMU’s used in this project are the LSM9DS1. These come equipped with both an acceler-
ometer, which measures the acceleration, as well as a gyrometer which measures the rotational
speed. The accelerometer can measure the pull of gravity and can therefor calculate the angle it
is at relative to gravity. However the accelerometer is highly susceptible to noise from things like,
mechanical vibrations, centripetal force and impacts. We could use a low-pass filter to smooth out
the signal, but this would induce too much delay and would not be suitable for our application.
The Gyroscope on the other hand is not very susceptible to noise and measures the angle very
accurately. However since the gyroscope only measures the change in angle and the angle is worked
out from the integral of the gyroscopes readings. Any error will accumulate and cause the reading
to drift over time. Rendering the readings useless in a relatively short amount of time.

Since neither of these readings gives an accurate reading individually, we have to modify the
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measurements to get a better, more accurate estimate of the angle.

5.2.1 Anti drift

The first and simplest modification to the IMU signal is to reduce the amount of drift on the
gyroscope measurement. There are two ways of doing this, the first is to simply utilize the built
inn high-pass filter to filter out the static drift. However this causes another problem because it
makes the gyroscopes measurement always drift towards zero degrees. This means that if the robot
is standing in a stationary position with its legs spread apart, the BeagleBone black will eventually
think it´s standing with it´s legs straight down. What makes the drift even harder to handle, is
that the amount and direction of drift is dynamically dependent on the actual angle of the leg.

The other way is to measure the drift and try to account for it in code. Upon inspection, it was clear
that the drift of the gyroscope was quite consistent, one with around a 1 degree/sec and the other
with around 0.5 degrees pr second. We could eliminate most of this drift by simply detecting the
rate of the drift at startup and subtracting it from every subsequent measurement. This suppresses
the drift from around 1 degree/sec down to less than 0.1 degree pr second. However this would
still not make a good enough signal since the measurement could potentially be 5 degrees off in
just 50 seconds.

In order to stop the drift completely and get an accurate angle from the IMUs we have to combine
the measurement from the accelerometer and the gyroscope. This is known as sensor fusion.
There are many ways to combine sensor measurements. We will be focusing on two different ways
of filtering the signal.

5.2.2 Sensor fusion using PID

The first is a simple PID loop that controls the adjustment to the gyroscopes drift by comparing
it to the output of the accelerometer. The D gain from the measurement is practically useless
since the noise of the accelerometer data will cause the derivative of the curve to be all over the
place. The P gain will be somewhat useful, but any P-gain will essentially pass the noise straight
through. The I-gain however is very useful. This is because the output is an average of the previous
measurements and any noise will be reduced by the I gain. However this does come with a lot of
delay, since this basically functions like a low-pass filter. This is not too big of an issue since the
only thing that gets delayed is the correction of the drift, which is already a very slow process.

Figure 17: PID Sensor fusion simulink
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5.2.3 Sensor fusion using Kalman filtering

The second way is to use a Kalman filter. A Kalman filter uses a series of measurements over
time to estimate a probable position of the variable we are trying to measure. Kalman filter works
in two stages: Prediction and update. The prediction is a state estimate based on the previous
estimated state and the previous measurement.

x−
k = Fx+

k−1 ∗Buk−1 (3)

We want to measure the angle of the legs and there for let x = θ. If we approximate that the
angular acceleration between measurements is a constant, we can get a formula for the angle in
k based on the angle, speed and acceleration in k-1 by taking the double integral of the angular
acceleration.

θ(t) =

∫ ∫
α dt dt =

∫
α ∗ t+ ω0 dt =

1

2
α ∗ t2 + ω0 ∗ t+ θ0 (4)

If we transform this to a discrete formula we get:

θk = θk−1 + ωk−1 ∗∆t+
1

2
α ∗∆t2 (5)

Comparing this to formula (1) we can see that x = θ and u = ω then F = 1 and B = ∆t

θ−k = θ+k−1 ∗∆t ω̃k−1 (6)

ω̃ is the angular speed of the IMU, and the acceleration is handled as noise in the speed measure-
ment. Acceleration is handled as noise because we don’t have a sensor that measures the angular
acceleration directly. We will discuss ways of prediction the acceleration later in this report.

ω̃ = ω + e (7)

ω̃ is the measured angular speed, ω is the actual angular speed and e is the noise of the measurement

The formula for the Error covariance is

P−
k = F P+

k−1F
T +Q (8)

We know from the first formula that F = 1.

P−
k = P+

k−1 +Q (9)

Q is the covariance of the process noise given by the formula

Q = F Σ FT (10)

Σ is the mean of the noise of measurement x squared.
Since the Mean of the noise of the measurement is not exactly known and can vary from situation
to situation. Q is left as a parameter to be tuned for the specific situation.
The accelerometer is setup to measure the angle to the gravitational field directly.

zk = Hxk + vk (11)
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Where zk is the measured angle from the accelerometer, xk is the actual angle and vk is the noise
of the accelerometer measurement. H = 1.

Update :
measure residual

ỹk = zk −Hx−k (12)

kalman gain

Kk = P−
k H

T (R+HP−
k H

T )−1 (13)

Here R is the same variable as Q but for the accelerometer instead of the gyroscope. This will also
be left as a tuning parameter for the same reasons as Q. We can simplify this equation knowing H
= 1:

Kk =
P−
k

R+ P−
k

(14)

Updated state estimate

x+k = x−k +Kkỹ (15)

Updated error covariance

P+
k = (I −KkH)P−

k (16)

Knowing again that H = 1 and that all of the variables are 1x1 matrices we can simplify this down
to:

P+
k = (1−Kk)P−

k (17)

Figure 18: Sensor fusion using Kalman filtering in Simulink
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5.2.4 Simulation

The simulation was conducted using two sinus signals. One with a rational period like 1 and the
other with an irrational period like π/2. This made it so that the pattern never repeated itself. In
addition we added a custom signal that is meant to simulate a impact on the leg.

Figure 19: Simulink simulations, (Kp = 0, Ki = 1, Kd = 0, Q = 0.01, R = 100)

Figure 20: Leg angle, PID, Kalman Figure 21: Gyro/acceleration measurement

We can see from the simulated results that the two filtering methods are almost indistinguishable,
and both work very well. However this simulation does not factor in things like the centripetal
force on the gyro, impact forces on the leg or large vibrations. This might cause the two methods
to react differently and further testing on the robot could show a bigger difference between the
two filters. The plan was originally to use the encoders to find the real position from a static torso
and compare it to the two results from these methods. Since the encoders never worked reliably,
we were not able to test them thoroughly.

5.2.5 Results

The best we could do was running the two simultaneously, compare them to each other, and look
at the robot to confirm that they were not very far off the real angle.

Figure 22: PID(red), Kalman Filter(blue), (Kp = 0, Ki = 1, Kd = 0, Q = 0.01, R = 100)
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This was measured while the robot was hanging and the legs were moved back and forth sporad-
ically.
We can see that the two results are quite similar, but not quite as similar as in the simulations.
I think this is because the accelerometer has a very noisy signal when moving in this way, which
causes the I-gain of the PID to wander slightly off while the leg is swinging. It is hard to know
which method is closer to the actual angle without using an encoder.

Figure 23: PID(red), Kalman Filter(blue), (Kp = 0, Ki = 1, Kd = 0, Q = 0.01, R = 100)

This was measured while the robot was hanging, by gently kicking the leg of the robot to test the
measurements during impacts. The two filters gave quite similar results, although the measure-
ments might seem very noisy. We think this is mostly a result of the mechanical vibrations of the
leg itself, not a fault in the measurement or filtering.

Figure 24: raw accelerometer angle(blue), raw gyrometer angle(red), PID filter angle(pink), Kal-
man filter angle(turquoise) (Kp = 0, Ki = 1, Kd = 0, Q = 0.01, R = 100)

We can see here that the acceleration measurement does not look like the simulated acceleration
measurements. This is because the simulations do not take into account the tangential accelerations
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and the centripetal force due to the robot hanging. Given how little the gyroscope drifted from the
start to the finish of this test, we suspect that the actual value is pretty consistently 7-9 degrees
below the raw gyroscope angle. If this assumption is correct we can see that the Kalman and the
PID filter was quite far off at certain times. However it is worth considering that this is not taken
under normal working conditions and is rather meant as a form of stress testing to see how bad
the measurements could get.

5.2.6 IMU code

When the code initiates it configures the IMUs different parameters like filter-bandwidth, power
modes, output rate, etc. After this it observes the gyro drift over ten seconds and subtracts the
average movement from each subsequent reading. It is very important that the legs does not move
during the calibration, as this will make the gyros drift even more than they would have done
without the calibration. The code runs 60 times per second, using the Kalman filter to publish the
angle of the legs on the leg ground angles topic.

Both the Kalman filter and the PID solution are implemented as functions in the code, but only the
Kalman filter is called since this is the method that is best suited to implement the improvements
suggested in the improvements section.

5.2.7 Improvements

The biggest change needed to improve the leg angle measurements is to modify the Kalman filter
to account for accelerations. This can be done in two ways. The first is by knowing what the
motors are doing and anticipating the acceleration based on the torque they are asserting on the
legs. This method does however require some amount of information from the control-program
since the acceleration of the leg depends heavily on whether the leg is on the ground carrying the
robot, or swinging forward while the other leg is holding the robot.

The other way is by using the tangential acceleration data from the accelerometer to measure
the angular acceleration and implement that into the prediction stage of the Kalman filter. By
knowing how far the accelerometer is from the center of rotation, using the linear acceleration in
that point, we can calculate the rotational acceleration. This also relies on knowing whether or
not the leg is touching the ground since the center of rotation is going to be at the end of the foot
when the leg is touching the ground and at the hip joint when the leg is swinging forward.

Another improvement is to try and account for the centripetal acceleration by measuring the
angular speed and subtracting the radial acceleration on the radial axis of the accelerometer.
Doing this will eliminate the centripetal force´s effect on the accelerometer readings. All of these
improvements will improve the Kalman-filters ability to predict the angle of the leg, hence increase
the accuracy of the measurement.

The IMU also needs a new housing to hold it securely to the robot and provide support for the
cable. This way the BBB will have a stable connection with the IMU.

5.3 Encoder

The biped uses two Scancon-2RMHF encoders, mounted on the backside of the motors.
these encoders have 3000 pulses pr revolution which means 12000 steps per revolution. If the main
processor was tasked to keep count of all these pulses it would have to be interrupted thousands
of times pr second pr encoder. only to simply add and subtract one from an integer. This i very
inefficient and does not make sense. Instead this task is offloaded to a smaller external processor
on the BBB board which then updates the processor on the pulse count once the processor requests
it. To interface with this chip we use the Quadrature encoder Interface protocol or eQEP for short.
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5.3.1 Indexing

In order for the BBB to know the absolute position of the encoder it needs to be able to read the
index signal. The index signal is a signal the encoder sends out that pulses once every revolution.
This signal lets the encoder know the exact position of the encoder after startup. The BBB does
not have an index pin, thus it can not know the exact position after it’s turned on. It can only
know the position relative to where the encoder was when it started. This means in order for the
biped to know where the torso is, it requires a known starting position. This means that every
time the encoder code is started the Robot needs to be in a predetermined starting position. This
is a huge problem since any error on the initial setup will carry on throughout the run-time of the
program.

One option to solve this problem is to install an IMU on the torso of the biped. On startup the
robot needs to be perfectly still to make the IMU´s measurements as accurate as possible, and
then workout a starting angle from these readings. The problem with this approach is that the
encoders will only be as accurate as the initial reading from the IMU´s which is considerably less
than that of the encoders.
Another solution is to wire the index pin to one of the IO ports of the BBB and have it start the
encoders when it senses that the index pin goes high. The problem with this approach is that the
encoders might have moved slightly between the time the index pin goes high and when the eQEP
interface starts. In my opinion the second solution sounds better, it requires less setup and does
not require any additional parts.

5.3.2 Problems

By far the biggest issue with the encoders are their reliability. Out of the four encoders we had
working at the start of this project only one is still functional, and two more was broken before
the start of our project. Unfortunately all the encoders broke seemingly when no one was in the
lab, thus it is hard to say what caused them to fail.

The first encoder broke while trying to figure out if the encoder code on the BBB was working.
The encoder was connected to the small circuit boards on the side of the Robot which connects
to the encoder and an Ethernet cable which was then connected to the old BBB shield made by
the 2020 bachelor group. This shield used a level shifter to interface with the encoders since the
signal from the encoders was 5V and the BBB can only handle 3.3V. When measuring the voltage
of the level shifter input where the encoders’ signal was wired the voltmeter showed 5V without
the encoders connected. This lead us to believe that the encoders had tried to pull down this input
on the level shifter which created a 5V difference between the level shifter and the encoder which
Fried the encoder.

After designing and producing a new circuit board which used voltage-dividers instead of level
shifters. We initially thought we had fixed the problem and installed the two encoders with
sockets on the Biped. The encoders were working great for one day. The next day when we arrived
at the lab we noticed that the lab bench power supply was drawing around 500mA more than
usual. And when probing, the Encoders did not produce a signal. Before we started working
on the encoders we asked employees at the institute if they had any similar experiences. It was
suggested that encoders with this ”ABZ” type connector are very sensitive to being connected to a
live connection. However we were aware of this before any of the 3 encoders broke, hence we were
very careful not to connect or disconnect the Encoders with the power on, so this was definitely
not the cause for any of the three broken encoders.

We have been testing various things on the remaining Encoders to see what might cause them
to break. To be able to measure the different signals while the encoder was running we made a
custom cable with a connector in the middle to allow us to probe the different signals while the
encoder was running.
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Figure 25: Encoder signal tester cable

We have tried measuring the Power supply voltage on startup to see if there are any spikes, but
this does not seem to be the case. We have tried holding the encoders close to the motors while
they are running on full force to see if the induced current might have caused issues with the
encoders. We have not been able to find anything indication that this is the issue that causes the
other encoders to fail. We have also tested to see if there were any ground faults which caused the
encoders to touch a live peace of metal somewhere. However we were not able to find anywhere
the encoder might have come into contact with that was connected to higher than 5V

One of the encoders have worked throughout the whole project. The only difference between this
one and the broken ones is that the broken ones used the small circuit boards made by the 2020
group. We do however not see how these can cause an issue as they are essentially just wires going
between the different connectors.

The only abnormality we were able to find on the encoders themselves when testing it on a bread-
board was that if we spun the shaft there would be some small spikes on the encoders voltage
supply. They were never over 1Volt and should not be able to do damage as the encoders are
certified for up to 35V.

Figure 26: Encoder supply abnormality

5.3.3 Replacement

Since we now only have 1 encoder left, which does not fit on the Biped, we need to find some
replacements.We could simply buy the same encoders, but to eliminate the possibility that the
encoder models might be faulty we would recommend to try a different option. A great option
would be the AEDL series from Broadcom. These encoders come with the same mounting holes
as the existing Scancon encoders and can mount straight where the Scancon encoders were. They
also have the same connector with the same pin-out and can therefor be connected directly to the
existing connector. They come with up to 5000 pulses per revolution which is 66 percent more
than the Scancon encoders. Broadcom encoders can be ordered from Digi-key for around 50-60
dollars each. These also have a modular design which lets us just change the code wheel itself if
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we need a different amount of pulses per revolution or a different shaft diameter to accommodate
different motors.

5.3.4 Encoder code

The encoder code is largely unchanged from the one in 2020. We added configuration functionality
so that the code will automatically configure the correct pins to eQEP mode and enable the BBB´s
eQEP. The encoder code was combined with the motor code to remove the need to communicate
through ROS which will remove delay in the feedback loop for the motor controller. The motor
node publishes the leg torso angle ROS topic.

5.4 Motor

The embedded motor system consists of three parts; the servo controller, the gear and the motor.
In the previous reports and documentation there have been found some discrepancies with naming.
In the technical documentation and in the 2019 thesis when calculating the power supply[22] the
ESCON 50/5 is used as servo controller. The one mounted on the robot is the ESCON 70/10. The
differences when calculating the power supply is minimal and to be considered negligible.
In both the 2019 and 2020 thesis the product name for the motor is 14887. This is probably a
misspelling from the technical documentations 148877. The part numbers written on the imple-
mented motors are 402890. This number is not mentioned in any previous report, nor the technical
documentation. Contacting the producers, Maxon, gave us the answer. The part number 402890
stands for the motor/gearhead combination consisting of:

• DC motor RE40 GB 150W with part number 148877[23].

• Gearhead GP42C with part number 260551[24].

There is also a spare with part number 241318. It consists of the same motor but a different
gearhead with part number 203119[25].

5.4.1 Servo controller

When first testing the motor for the inner leg it did not give the power expected. When measuring
the motor input with the oscilloscope it showed periodically spikes of voltage instead of a consistent
signal. This will make the motor turn on and off really quickly. A consequence of this can be that
the brushes of the motor deteriorates, something we believe has happened to the inner leg.

”...the type of operation can significantly deteriorate the brushes if the motor is used for extreme
start/stop.”[26]

Figure 41 and figure 42 in appendix A shows the connections between the BBB and the servo-
controller after the 2019 group and the 2020 group worked on it. You can see that the PWM-signal
is connected to the analog input in both instances.
Going through the old configuration there can also be noted that the chosen GPIO inputs prevents
the use of PWM functionality, see figure 27. To use the PWM-functionality the PWM-signal has
to be connected to Digital I/O 1.

25



Figure 27: The 2019 & 2020 GPIO-inputs.

The ”set value” part of the configuration decides the mapping of input signal to output signal.
In the previous years the input was chosen as voltage, even though the signal from the Beaglebone
was PWM. This explains the spikes when measuring the motor input.

(a) 2019 & 2020 Configuration (b) 2021 Configuration

Figure 28: Configuration comparison

In the new wiring, figure 43, the GPIO-inputs on the servo-controller are moved to Digital I/O 2
and 3. This way Digital I/O 1 can be used as PWM-input. In the new configuration the input is
chosen as PWM. You can see the full servo-controller configuration and wiring in the motor folder
at the Github[27].

5.4.2 Motor code

As mentioned in 3.2 the motor code is based on the code developed in 2020[28]. Most of the
workload consisted of getting the code to work on the current device tree overlay and to make it
work on both motors simultaneously. Another important part was to implement the encoders to
enable regulation of the motors.

The purpose of the motor code is to change the direction and the torque of both motors. To control
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the direction you change the ”value” of the GPIO-pins and to manipulate the torque you change
the ”duty cycle” of the pwm-pins.

As we currently have no working encoders to be mounted on the motors, the inputs are decided
by two sliders on the rqt interface. These can be replaced by encoders without making any big
changes to the motor code. In the absence of encoders this system will only function as an open
loop. You can see the flowchart for the current motor code in figure 44 in appendix A.

The motor code can be found in the git-folder /Motor/encoder test/src/ [29]. The file is located
here because the folder encoder test contains CMakeLists.txt and package.txt, both are needed to
run the ROS-package. This way the user can upload the whole encoder test-folder and run the
motor code without setting up a new ROS environment. Another motor code can also be found in
the src-folder. This code contains a simple PD-controller, but does not contain the slider inputs.

5.4.3 Problems

When it comes to the motor there have been a few errors from previous. Last years PCB had the
motor current running through it, see chapter 4.2, the PWM-signal was fed into the analog input
and the servo controller configuration was wrong. A combination of the two last errors might have
damaged the motor for the inner leg, as this leg currently has a lot less power than the outer leg.
The reason why the outer leg is not damaged is probably because none of the previous groups
tested it. According to Torleif Anstensrud, the client, the only leg he ran tests on was the inner
leg and even then it could only reach about 15◦. Accordingly we can probably determine that the
motor has been damaged for quite some time.

Then the question arises, does the robot need a new motor or are the current capabilities good
enough?
The leg is at most capable of reaching 15◦ on its own. With the pendulum momentum it can reach
a bit farther. From the simulation of the robot’s gait we can see that 15◦ should be enough. A
mp4-file of the simulation has been uploaded to the frontpage of the git[21]. However the leg can
only reach 15◦ holding its own weight. Adding the weight of the rest of the robot when the leg is
in the foremost position will require a lot more force.
There is also the downside of the two motors acting differently making regulation a lot more com-
plex.

Ending this subchapter on a positive note; the motor code functions the way it is intended. It can
both fetch data from ROS and control the motors.
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5.5 Servo

5.5.1 General

In order to move the actuators at the end of the four legs Turnigy TGY-SC340V 7.4 volt servos
were used. These servos are controlled by the duty cycle of a PWM signal where a higher duty
cycle signals a bigger rotation.

Figure 29: illustration of using PWM to control servo (Note: the duty cycle is not based on real
values)

As the TGY-SC340V have gone out of production we were unable to find any data sheet, as a
result the information we had to work with was limited. Normally a DC motor actuates the servo
itself and a potentiometer is used to designate the position of the servos and a control circuit that
controls the motor to get it to the desired position. The control circuit also limits the movement
to a predetermined scope, on the TGY-SC340V this limit is 0°-90°.

As the only actuation needed is fully extended and retracted our code only needs to switch between
two PWM signals instead of the full range of motion.

5.5.2 Servo code

As we only need the toes to be fully retracted or extended the servo code is developed to simply use
a Boolean value as input for each pair of servos. The code, then sets up the necessary parameters
and definitions to change the value of the two PWM signals to the corresponding action.

For servos such as these the code needs to be written with the parameters that hobby servos usually
work with. The frequency these servos operate after is 50Hz, which is equivalent to a period of
2000000 nanoseconds. Using a PWM signal means the code has to be based on this period. It also
means that the maximum period we can operate the servos in is a little bit less than this due to
physical limitations.

For our purposes two pins are used as the output for the PWM signals. These pins are the BBB’s
P8 13 and P8 19. As such the code first sets up and defines these pins as the ones to operate with.
Configuring theses pins also include changing the selected pins into PWM mode. After this the
chosen pins are initialized.

In order to actually change the positions of the servo the duty cycle of the PWM signal is changed.
The previous group that worked on the servos found two duty cycles that seemingly corresponds
to fully retracted and fully extended actuators. Fully retracted corresponds to the minimum pulse
with of 820000ns, while fully extended requires setting the pulse width to 1900000ns.[30] Testing
the code also seemed to show this range to be close to optimal.
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Figure 30: Servo pos ”1”(Duty cycle
820000ns)

Figure 31: Servo pos ”0”(Duty cycle
1900000ns)

Currently we use rqt to decide the input variable as we have no way to decide the gait as of yet.
Once the walking algorithms is implemented this can be used to add this feature. The valuer is
then used to change the ducy cycle. A value of ”0” corresponds to a duty cycle of 1900000ns, if
the value is ”1” it is set to 820000ns.

5.5.3 Challenges

A lot of the work on the code went to trying to make it function as it should have. Troubleshooting
the servos took a lot more time than expected. Much of this time was spent trying to modify the
code because it was believed to be a software issue. At some point new code was written in order
to try and make the servos work, however this was in the end scrapped.

We eventually got them to work with a simple Python code mainly to make sure the servos would
function as expected. However when using the C++ code on the other hand, it took a long time
in order for the servos to function properly. Eventually the problem was solved without requiring
too much change to the code itself.

We also discovered later on that one of the servos didn’t work properly, pulling a large current while
spinning slowly. We are unsure what can have caused this and how it has affected our testing, as
the servo were still able to spin slowly. This meant that it was not apparent that it was a hardware
problem at first glance and that the code might be the problem instead. It wasn’t until we tested
several at the same time that we realised one was broken.
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6 ROS- Robotic Operating System

6.1 What is ROS?

Not to be fooled by the name, Robot Operating System (ROS) is not an operating system, but
rather a framework for development of robotics. ROS distinguish itself from most other robot
software by being open source and encouraging collaboration; this makes it ideal for education
and research which has resulted in a quickly growing user base. This community is key to ROS’s
success and it has resulted in a massive platform where you can find packages that can handle
almost every task[4].

6.1.1 How it works

In a ROS system every process is called a node and each node handles one task whether this is
reading sensor values or controlling a servo. Each node is independent from the others. These
nodes communicate by using a publish/subscribe model called ROS topics. This means that a
particular node will publish any information it wants to output through a ROS topic, other nodes
can then choose to subscribe to this topic if its relevant for the process.

With all this information being sent around ROS needs a way to manage the information flow,
this is done by ROS master. ROS master provides a service that helps the different nodes locate
each other, once this is done they use peer-to-peer communication. The ROS master runs on the
main computer, however you can connect other machines communicating through the same core.

Figure 32: ROS communication

6.2 Why use ROS for this project

There are several advantages of using ROS for this project, the main reasons are:

• Modularity: The modular nature of ROS is ideal for projects like this where components
might be changed or added later on as the different nodes are independent of each other.
This also means that you can use different programming languages for different nodes without
problem.

• Community: As mentioned before the platform has a massive community meaning you can
find packages that will take care of almost any task. The ”ROS answers” forum is also a very
helpful tool.
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• Visualization: One of the main priorities for this project is to create a system for logging
and real-time visualisation of the robot and ROS has great tools for this in the form of Rviz,
rqt and the rosbag packages. Gazebo can also be utilized if simulation of the robot is needed.

6.3 Choosing ROS distribution

Early on it was planned to make the switch from ROS to ROS 2 as it was believed that it would
be beneficial in the long run. This however turned out to be challenging as ROS 2 runs on 64
bit while the BeagleBone Black is using a 32 bit processor of the ARMv7-A/armhf architecture.
Some sources claimed that using a BeagleBone AI could work, but this was not the case during
our testing and we decided to stick to the BeagleBone Black running classic ROS.

The armhf architecture forced some decisions on the software side of the project. We ended up
using ROS melodic with Ubuntu 18.04 as our Linux distribution, several factors led to this choice.
Ideally we would use Debian as our Linux distribution as it’s most commonly used with software
development. However the latest versions of ROS is not supported on Debian running on armhf
chips. This led the decision to use Ubuntu as our Linux distribution. The choice of ROS distribution
was between Melodic (Released 2018 and supported until 2023) and Noetic (Released 2020 and
supported until 2025). Melodic ended up being the obvious choice as Noetic was recommended
with Ubuntu 20.04 which has no 32 bit image to upload to the BeagleBone. We considered looking
for an alternative way to use Noetic, but decided against it as the main trade off of using Melodic
is that it doesn’t support python 3. However as the system is mainly written in C and C++ this
shouldn’t cause any problems.

6.4 Packages

To keep all the code organized we chose to develop most of code for the different parts in separate
packages. This makes it easy to keep track, as well as to develop the different aspects independently.
The exception to this is the encoder code. This has been merged with the motor code to keep
possible latency to a minimum.

6.4.1 List of packages:

• Launch: This package handles the different files related to launching the system quickly.

• Messages: Description of the different messages being sent around. Having this in a separate
package makes it very easy to transfer to another system.

• Servo: Handles the actuation of the toes via servos. Currently the only function is to extend
and retract the toes as an algorithm to decide what toe to retract is still needed to facilitate
the robots walking ability completely.

• Motor: Interprets the encoder signals and controls the actuation of the motors to adjust
the leg angle to the desired position.

• IMU: Reads the IMUs sensor values and combines these using sensor fusion by either PID
regulation or a Kalman filter.

• Robot description: This package combines information from the different sensors to define
the robots state.

• Messenger: Handles communication between the computer and BeagleBone.
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Figure 33: Map of nodes and topics using rqt graph

Figure 33 shows the communication on the current setup and is made using the rqt graph package.
This feature maps all the running nodes and topics. This allows to show the path from the different
inputs to the final visualization in Rviz, however it somehow misses the node that handles user
input from the computer. This is shown below using the power of paint.

Figure 34: Python node for user input

The rqt gui py node node is used to enable testing from the computer and to change values while
the code is running instead of having to recompile.

Once the robot is fully functional this node structure will change as a control algorithm will handle
the actuation. That is why we created the control package. As of now this package doesn’t
do anything, but is configured to take the leg-to-ground and leg-to-torso angles as inputs and
output servo- and motor values. Once a control algorithm is ready to be tested it can be easily
implemented. Below is a diagram that shows information flow when it is.

Figure 35: Information flow with control node implemented

The node allowing for user input can of course also be included when the control algorithm has
been implemented, but this shouldn’t be necessary.
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6.5 Launching the system

Usually to start a node you use the rosrun command. However as the amount of nodes increase
this process can be confusing as well as time consuming. To tackle this problem we decided to
automate as much of the launch procedure as possible, this was done using the roslaunch package
as well as bash scripts. The roslaunch package allows you to make files that can launch multiple
nodes with a single command.

To run the visualization software it is necessary to run nodes on the computer as well as the
BeagleBone, because of this two sparate launch files are needed. In addition we chose to make
a separate launch file for Rviz in case someone wants to launch this separately, but this is of no
concern if you launch the main computer launch file as this will call the Rviz launch. The launch
sequence for the files is described in the flow charts below:

Figure 36: Launch sequence

Even with these launch files there are still some manual commands that are required, this include
sourcing setup files for ROS and the catkin workspace as well as making sure the ROS core runs
on the BeagleBone and not the computer. This is described in more detail on the GitHub.
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6.6 Challenges

ROS has a pretty steep learning curve, and with no prior experience we knew that this would be
hard. The good thing is that once you start to get the hang of it familiarizing with new packages
and features becomes increasingly easy.

Other than this the only reoccurring problem we had regarding ROS was a lot of debugging when
creating packages. Mainly the challenge was to configure the ”CMakeList.txt” and ”package.xml”
files the right way.
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7 Real time logging and visualization

After the dSpace system was abandoned in 2020 due to a ransomware infecting the computer that
ran dSpace the robot lost all its visualization capabilities. This was a big hit for the project as
a good GUI and real time visualization features makes testing and troubleshooting much easier,
hence this became an important part of our project.

7.1 Rqt

Rqt is a built in framework in ROS that makes it easy to implement various GUI tools as plugins.
One of the reasons why rqt is so powerful is its ability to interact with every node and topic in the
system, this makes it easy to observe individual parts of the robot, we mainly used it to graph the
encoder position.

In addition to graphing values, we used rqt for most of our GUI. This was done by creating a
custom rqt package that allows you publish messages to the robot. This allows the user input of
different values that includes:

• IMU: Values for sensor fusion for both PID- and Kalman values depending on which one is
in use.

• Motor: The motor controls are implemented as sliders.

• Servo: Both sets of servos can easily be extended or retracted.

Having this control panel makes it easy to test different component as well as changing values
without having to recompile which can be tedious, especially on the BeagleBone. The package
was programmed in python as we found it hard to implement it using C++. We decided on this
solution as the code runs on the computer and not the BeagleBone so any speed related issues is
negligible.

Figure 37: rqt with GUI and encoder graph
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7.2 Rviz

Rviz is a built in 3D visualization tool for ROS. Rviz allows for powerful 3d rendering in real time
which can provide important insight into how the robot perceive itself and its surroundings.

The robot model used are based on three STL files made in fusion360 to describe the different parts
of the robot. These are linked through 2 joints allowing dynamic movement. The robot publishes
messages to update this 3D-model in real time. This is useful because it tells you where the robot
thinks it is which can help us track down any errors in the measurements.

Figure 38: Rviz with piped model

Currently the robot are only using the most basic features of Rviz and simply simulating the robot
state without considering it’s environment. This could however be changed in the future, but
would require more data input regarding the robots surroundings.

7.2.1 Gazebo

Gazebo is an open source robot simulation program that could be implemented in the future.
Gazebo differentiates from Rviz in several ways, but most of all it is ideal if you don’t have a
physical model to work with. It would also allow you to simulate the gait algorithms. Using it
for this robot however would require a better model of the robot for the physics simulation as the
current one is not physically accurate. Instead it is merely a tool for visualizing its perceived state.
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7.3 Rosbag

Rosbag is a package that allows the user to record and replay data from topics. The data that is
being recorded is stored in bag files, this in turn can then be easily replayed or analysed. Currently
we have only done simple testing using the command line tools to run rosbag which is extremely
simple. There is also C++- and Python API available that could be implemented[4].

Rqt also has very good integration with rosbag using the rqt bag package. This package includes
a GUI for controlling the recording as well as different replay settings.

Figure 39: rqt bag GUI example from ROS wiki

7.4 Challenges

The main challenge was to create the custom python package as we found very little documentation
regarding this. As a result a lot of trying and error were needed until we finally got it to work.
Setting up Rviz also proved time consuming causing us to create a launch file as mentioned in 6.5.
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8 Discussion

8.1 Project management

Early on, we realised that many theoretical prerequisites needed to be met before working with
the robot itself. The group members had little to none experience using C++, BeagleBone Black
or ROS. This meant that a lot of time early on was spent researching these subjects. Our previous
experience was also quite monotone as everyone of us has studied automation. Having experience
from electronics or instrumentation would possibly have been more relevant.

As the testing done last year was very limited due to Covid restrictions, it was unclear how much
of the robot was in working order. Since we worked mainly from home and had little academic
diversity, we decided to split the tasks more or less at random to then merge them later on.
In hindsight more collaboration early on would probably have helped in the debugging process,
especially of the encoders.

We think experiencing first hand how frustrating it can be to continue badly documented work
was a good eye opener early on, and it’s something we have been very aware when creating the
GitHub and code.

8.1.1 Achievement of early goals

The final goal when starting was to see the robot stand on its own and using a PD regulator to take
a few simple steps. It did however become apparent that this was unrealistic as new challenges that
we hadn’t anticipated became apparent. Discarding this goal, we instead chose to focus on finishing
as many of the individual modules as possible. Throughout this process we had a good dialogue
with the client about what areas to prioritize and we came to the conclusion that visualization and
project organization that would make testing easier would be valuable.

8.2 Hardware

Most of the hardware design was completed in earlier stages of the project, the hardware related
challenges were mostly unforeseen problems that was discovered along the way with the exception
of the servo brackets.

The biggest unforeseen challenge was the design of a new Circuit board. That debugging would
be necessary for the sensors and actuators was expected, but the PCB was believed to have been
fixed prior to us starting the project. This proved to have great educational value as we had no
prior experience with this. As we needed the board to test the encoders this was done as fast as
possible, and hence some minor problems were discovered subsequently. If we had a longer deadline
we might have been able to eliminate some of these.

Some hardware malfunctions have been discovered on the motor, servos and encoders. We decided
not to order any new parts as these malfunctions did not impact our code development which was
our main focus, instead we have documented all our observations to prevent a repeat of this.
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8.3 Software

Developing reliable software for different aspects of the robot was the main goal for the project.

8.3.1 Programming

As mentioned in 8.1 we had no experience working in C++. As a result the development was time
consuming and had a slow start. However it also resulted in a steep learning curve and development
became much more streamlined towards the end of the project. A big focus has been to make the
different aspects of the project as modular as possible making future development easier.

As we had more experience using Python, we would probably have been able to do more using this
language. We do however believe that the increased speed and reliability that comes with using
C++ makes it worthwhile. Learning to develop in an unfamiliar language also has value in itself.

8.3.2 ROS

Using ROS to control the robot seems to be by far the best option. It allows for a very high degree
of flexibility and makes expansion very easy. The different parts of the robot can easily be worked
on independently and later be set up to communicate with each other. If it becomes necessary to
add more components or functionality in the future this can easily be achieved. As much of the
groundwork of making packages now is done future development should be fairly easy as well.

Using ROS as our middleware does however mean that for future work the code has to be developed
with ROS functionality in mind, and switching to another system would require modifying all the
existing code. Another consequence is that all the visualization its based on Rviz and rqt. While
all the other code probably could be modified to work on another middleware, all visualization and
logging would have to be developed from scratch.

8.4 GIT

One of the goals of this project is to create a well-organized GitHub repository to be used for
further development of the robot. As this is a project that builds on the work of several bachelor
groups the importance of getting everything well documented can’t be stressed enough. It is also
important that the explanations are aimed at the right target group, in this instance other electrical
engineering students. This is something that has lacked previous years.

We started with uploading the previous documentation and organized it to the best of our ability,
focusing especially on making the most relevant information such as data sheets easily accessible.
In some instances, we were unable to find desired information (e.g. data sheets for the TGY-
SC340V servos who is no longer in production). In these cases, all available information were
gathered in a document and saved to the Git.

In addition to the documentation we have also made README-files for most folders. These gives
explanations of the contents as well as other relevant information. The GitHub also contains a
thorough tutorial on getting started and setting up the BBB and other modules for this project.

We believe that most students should be able to understand and launch the entire system using
only the resources on the Git and this report.
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9 Conclusion

The primary goal of this thesis is simply to further facilitate the robots walking ability. As the
extent of previous work was partly unknown, the road was not clear from the start, but we knew
that implementing upper body measurement using IMU and real time visualization would be
important. This have been implemented with some restricting factors becoming apparent along
the way.

Code for actuation of both servos and motors have been completed, and the system is fully con-
nected using ROS as middleware. A custom GUI for control of the different actuators and other
relevant values have been implemented using rqt. Using Rviz a model for real time visualization of
the robots perceived state has also been implemented. These features serves as a very good basis
for further testing. To allow visualization, tracking of the torso angle using IMU’s were needed.
We experimented with sensor fusion using Kalman filtering as well as PID regulation with slightly
different results, most noticeable when a shock is applied. More testing is required to determine if
these results are satisfactory.

Some problems occurred along the way which is to be expected from a project of this size. As the
reason for the encoders breaking have not been unveiled, these have yet to be fully implemented
even though the code is ready. No encoders also means that a feedback loop can not be fully
implemented for motor control. Our goals also deviated slightly from the original plan to include
designing a new PCB.

Keeping the project well organized and documented has been an important area of focus as its
crucial to keep up productivity. This becomes especially important when different groups work on
the same project. To make the transition as easy as possible a GitHub was established with a lot
if extra documentation that should provide a very good basis for getting familiar with the work.

Although the robot is not completely ready to walk it has gotten a lot closer with hardware being
the main restrictor at this point. We hope and believe that a strong basis for reaching the end
goal has been made.
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10 Future work

This is an overview of work that needs to be done in order to start testing the gait algorithms it
is built for.

10.1 Replacing servos

When connecting all 4 servos we realised that one was broken, we are unsure of what caused this as
none of the servos have been exposed to voltage that should have been able to fry it, it might even
have been faulty when we started the project. This also means that there was a period where we
worked without knowing only three servos were functioning, which could possibly have impacted
troubleshooting if the faulty one was used.

After discovering this problem our first thought was to order a replacement, but this proved
problematic as we were unable to find any store that sells them. Only one Asian marketplace that
might auction them off, but we are unsure of the legitimacy of this site as it contains next to no
information. In addition to this we discovered some disadvantages with the current servos.

• The servo is only able to rotate 90◦ which is problematic as the toe is actuated via a spring
that has some backlash. This is only a problem when the toe is extended as it can collapse
with pressure. Our solution to this was to put the spring in tension when mounting the servo,
but this means the spring will have to be readjusted from time to time. Having servos that
can rotate a few degrees more could solve this issue by keeping the spring in tension.

• The servos are made for 6-7,4V. With the BeagleBone and encoders running on 5V and the
power supply only having two outlets (the other being used by the motors) you have to use
unnecessary electronics simply to get the right voltage, hence having the servos that are
certified for 5V would be a lot easier.

After consulting the client it was decided that ordering 4 new servos probably is the best course
of action. Our suggestion for new ones are the DSSERVO DS3225. This servo is certified from
4.8-6.8V and can be actuated up to 180° We also believe it would fit in the servo mounts that was
made for the Futaba s9254 (Used until 2019) as they have similar dimensions. The only downside
is that it has an operational speed of 0.15 sec/60◦ whereas the Futaba had 0.12/60° We assume
this will not affect the functionality, but it should be investigated before a final decision is made.

As the two previous sets of servos have gone out of production we would recommend waiting until
necessary to order new ones to prevent this from happening again. We would also recommend to
order some in spare in case any more gets destroyed.

10.2 Developing algorithm to extend and retract toes

As meantioned in the toe needs to retract for the leg to be able to swing. Therefore its necessary
to develop an algorithm that understands when to extend and retract the servos as the robot is
walking. Our thought was to retract the servo of the leg that is being moved forward and extend
once it has been moved sufficiently, however we did not have time to expand upon this idea.

10.3 PD-controller

A PD-controller should be implemented and tuned. With currently lack of sufficient power from
the motors and that the leg motions relays on the pendulum motion, the integration part is likely
redundant. There are two different PD-controllers on the Git. One implemented in a motor-code
and one as a standalone ROS-node.
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10.4 Feed forward

When all the wires and servos are implemented there should be conducted friction tests and
implemented a simple feed forward control to the system. In figure 40 you can see a model of the
system with implemented Coulomb Feedforward[31].

Figure 40: Simulink model by Torleif Anstensrud

10.5 Motor

A decision should be made of whether or not buying a new motor is necessary.

Considering the reserve motor; we can gather from its technical data that it can only handle half
the radial load compared to the implemented motor (150 N vs 300 N). Adjustments to the encoder
code must be made if the choice to use another gear ratio is ever made. Two different motors will
also make regulation a lot more complicated.

With no previous experience of damaged motors we would probably opt for buying a new of the
same kind. Buying a new of the same type from Maxongroup, as of writing, will cost just under
600€ and another 40€ for shipping. This is excluding value added tax (mva).

10.6 Further improvements to robot state measurement

To be able to test the different gaits on the robot the estimation of the robot state at any given
time needs to be incredibly precise. To do this more information is key, accounting for shock and
other disturbances will be important. More advanced sensor fusion algorithm and more sensors
like pressure sensors beneath the legs could help with this.

10.7 Improve IMU readings

The thought of having one IMU on each leg was that the anchored leg(the one touching the ground)
would provide the most accurate reading. As the robot is not yet ready to walk we have not had a
chance to test this, but if this is the desired strategy then an algorithm to chose what leg to read
from has to be implemented. This could possibly use input from the code to chose what servo to
extend. In addition to this a new case is required to properly secure the IMU to the leg.

Another possibility is to use multiple IMU’s at the same time e.g mounting one on the torso that
would be less susceptible to the impact from the legs.

IMU improvements is expanded upon further in 5.2.7.
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10.8 Debug encoders

We were not able to identify what caused the encoders to break and not having observed them
when the problem was caused makes debugging hard. Finding the root of this is important before
ordering new ones. Alternatively one would have to order different ones in hopes that these would
not have this problem.
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