
M
arkus Anthony D

ørheim
 H

o-Yen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Markus Anthony Dørheim Ho-Yen

Driving Strategy Optimisation in
DNV GL Fuel Fighter

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth

February 2021

Markus Anthony Dørheim Ho-Yen

Driving Strategy Optimisation in
DNV GL Fuel Fighter

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
February 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

MASTEROPPGAVE

Kandidatens navn: Markus Anthony Dørheim Ho-Yen

Fag: TTK4900 Teknisk kybernetikk, masteroppgave

Oppgavens tittel (norsk): Kjørestrategioptimalisering i DNV GL Fuel Fighter

Oppgavens tittel (engelsk): Driving Strategy Optimisation in DNV GL Fuel Fighter

Oppgavens tekst:

Kjørestrategi er en essensiell del av å kjøre energieffektivt. Det er blitt gjort analyser av hvordan man
kan gjøre mest mulig energi- og tidseffektivt i en vanlig bil og i en racerbil på bane. Hvordan endrer
strategien seg når man skal kjøre en bil bygd for energieffektivitet på bane, men ikke trenger å
komme seg raskest mulig fram? Gjennom denne masteroppgaven skal student gjøre rede for ulike
kjørestrategier og optimaliseringer, og hvordan disse kan brukes av sjåføren i DNV GL Fuel Fighter
for å konkurrere i Shell Eco-Marathon.

Studenten skal:

- Gjøre rede for ulike kjørestrategier og optimaliseringsalgoritmer.
- Lage en matematisk modell av bilen.
- Implementere en eller flere optimaliseringsalgoritmer å finne optimal kjørestrategi, med

fleksbilitet i både baneoppsett og bilegenskaper.

Oppgaven gitt: 12. oktober 2020

Besvarelsen leveres innen: 8. mars 2021

Utført ved Institutt for teknisk kybernetikk

Veileder: Sverre Hendeth

Trondheim, 12. oktober 2020

Abstract

This thesis explores different methods to find a driving strategy
for DNV GL Fuel Fighter in Shell Eco-Marathon (SEM) competition.
The thesis goes some of the basics of path planning, driving strategy
and mathematical modeling of vehicle dynamics and its electrical sys-
tem. It also details some optimisation methods for path planning and
reinforcement learning. Reinforcement learning through Q-learning,
Rapidly-exploring Random Tree (RRT), and RRT are also imple-
mented. Human reinforcement learning is also implemented through
crowd sourcing using a simulator competition. All these methods have
shown to be useful to gain some insight in driving strategy and further
work is needed to finalise the methods for the SEM competition.

Sammendrag
Denne oppgaven utforsker forskjellige metoder for å finne en kjøre-

strategi for DNV GL Fuel Fighter i Shell Eco-Marathon (SEM) konkur-
ransen. Oppgaven g̊ar gjennom stiplanlegging, kjørestrategi og matem-
atisk modellering av kjøretøy dynamikken og det elektriske systemet.
Den g̊ar ogs̊a gjennom noen optimaliseringsmetoder for stiplanlegging
og forsterkningslæring. Forsterkningslæring ved hjelp av Q-Læring,
og Hurtig-utforskende tilfeldige trær(RRT) og RRT er implementert.
Menneskelig forsterkningslæring via nettdugnad er ogs̊a brukt, ved å
holde en konkurranse i en simulator. Alle disse metodene virker til å
være nyttig for å f̊a innsikt i kjørestrategi. Mer arbeid gjenst̊ar for å
kunne ferdigstille metodene for bruk i SEM konkurransen.

2

Contents

1 Introduction 5
1.1 Problem Formulation . 5
1.2 Contributions . 5

2 Background 6
2.1 DNV GL Fuel Fighter’s System 6
2.2 Driving Strategy . 8

2.2.1 Trajectory Planning 8
2.2.2 Racing Line . 8
2.2.3 Regenerative braking 11

2.3 Mathematical Modelling . 12
2.3.1 Vehicle Dynamics . 12
2.3.2 Electrical System . 14

2.4 Planning Algorithms . 16
2.4.1 Dynamic Programming 16
2.4.2 Rapidly-exploring Tree Planning methods 17
2.4.3 Collision Detection . 23

2.5 Reinforcement Learning . 23
2.5.1 Markov Decision Process 23
2.5.2 Policy Mapping . 24
2.5.3 Q-learning . 24
2.5.4 Reward Hacking . 25

2.6 Related Work . 25
2.6.1 The Worlds Most Fuel Efficient Vehicle - Design and

development of Pac-Car II 25

3 Implementation & Results 27
3.1 Procedural Race Track Generation and Racing Line Calculation 27
3.2 Rapidly-exploring Random Tree (RRT) Implementation 31

3.2.1 Parametrised track . 31
3.2.2 RRT* with velocity constraints 33

3.3 Reinforcement Learning . 35
3.4 Crowd Sourcing Through a Simulator Competition 41

3.4.1 Results . 46

4 Discussion 51
4.1 Optimisation Methods . 51

4.1.1 Raceline calculation . 51
4.1.2 Rapidly Exploring Random Tree 51
4.1.3 Reinforcement learning 51
4.1.4 Crowd Sourcing Simulator Compettion 51

4.2 Usefulness For DNV GL Fuel Fighter 52
4.3 My Work Method . 52

3

5 Conclusion 54

6 Bibliography 55

A Minutes of Meeting with Anastasios Lekkas 57

4

1 Introduction

Energy efficiency is becoming a more central topic in the autoindustry. As
more and more vehicles become electric, the efficiency of the vehicle becomes
increasingly more important. Even though Electric Vehicles (EVs), with an
efficiency of 94 %, are far more energy efficient than Internal Combustion
Engine (ICE) vehicles, with their efficiency of 20 %(U.S. Department of En-
ergy’s Office of Energy Efficiency and Renewable Energy 2017), the “refuel”
time of the EVs is greater. This means that the benefit of greater energy
efficiency is still significant. Travelling a greater distances on each charge
means fewer charging stops. The energy density of batteries is also much
lower than the energy density of gasoline, thus making the most out of the
energy is important.

The fuel consumption that can be reduced by driving more efficently is,
on average, up to 10%(Barkenbus 2009). In the last competition, the DNV
GL Fuel Fighter car had an energy efficiency of 183 km/kWh, meaning a 10%
increase in efficiency could lead to an efficiency of over 200 km/kWh!

This report will explore possible methods of calculating a driving strategy
and aims to give a foundation to path planning and driving strategy opti-
misation for future DNV GL Fuel Fighter members. This means that some
background material that is not relevant for the implementation is still kept
for reference for future work.

1.1 Problem Formulation

This chapter explains the problem that the driving strategy will solve. The
goal of the SEM competition is to drive the most energy efficiently. The
vehicle has to complete a predefined number of laps on a racetrack within a
certain time. As long as the car completes the number of tracks within the
given time, the time does not affect the score, only the energy efficiency. At
the end of every lap, the car has to come to a complete stop, before continuing
the next lap. This rule is in place to simulate urban city driving, with
typical stop-and-go traffic. The maximum speed allowed in the competition
is 40 km/h. As there is a human driver in the vehicle controlling it, low-level
control and obstacle avoidance is not necessary to incorporate in the driving
strategy. There are other competing vehicles driving at the same time, so
the strategy will only output an ideal path that the human driver should
follow. The driver is in control of the vehicle at all times, and will have to
take corrective actions for dynamic changes to the environment.

1.2 Contributions

While working on this thesis, I was also leading the Software group in DNV
GL Fuel Fighter. The Software group’s mission is to improve on-track per-
formance through off-track software tools. The group consists of the Driving

5

Strategy members: Benedicte Chen Vestrum and Mithila Packiyanathan,
and the Driving Simulator members: Finn Ferdinand Schjøll Sandvand and
Mohamed Barry. They have helped greatly with discussions in general, and
contributions to the simulator competition mentioned in this report.

2 Background

This background chapter will explain the theory to follow the implementa-
tion in described in section 3. The DNV GL Fuel Fighter’s system will first
be presented to understand what needs to be modeled. Driving strategy will
introduce trajectory planning, racing lines, and some mathematical calcula-
tion of racing lines. Mathematical Modeling presents the vehicle dynamics
and how to model the electrical system’s energy usage. Planning algorithms
explain some strategies common from autonomous systems, which can be
used for DNV GL Fuel Fighter’s use case. Reinforcement learning is then
explained through Markov Decision Process (MDP) and Q-learning. Related
work summarises what other publicly available research have achieved relat-
ing to driving strategies for the SEM competition.

2.1 DNV GL Fuel Fighter’s System

DNV GL Fuel Fighter is currently using the same car that competed in
2019. The telemetry recorded during the race attempts last year is limited.
We only have GPS position and velocity, and power consumption. This only
provides a rough estimate of the dynamics, as the GPS sensor data is not
very precise. This year the car will have new electronics, gear, wheels and
powertrain. It will have a Permanent Synchronous Motor (PMSM) instead
of a brushed DC-motor. Given that the car is going to undergo all these
changes, the vehicle dynamics will not be the same as when it competed in
2019. The main strategy for DNV GL Fuel Fighter up to this point has been
to accelerate quickly, before disconnecting the motor from the wheel, and
coasting for as long as possible. Thus the vehicle is designed to coast. See
fig. 1 for an image of the old drive train.

This year the gear has a different design. Instead of disconnecting the
motor with a linear actuator, the motor is connected to the wheel through
a one-way ratchet system. This means that no regeneration of energy is
possible. The motor is a PMSM from Alva Industries1, made mainly for
drones. The light weight and high efficiency are properties well suited for the
needs of DNV GL Fuel Fighter. The cars autonomous capabilities are under
development, but these sensors and actuators will not be equipped during
the race. They may, however, be equipped during testing which can gain
useful insights in how to improve the driving.

1https://alvaindustries.com/

6

https://alvaindustries.com/

Figure 1: The old drive train system where the motor disconnects with help
of a linear actuator.

7

2.2 Driving Strategy

The driving strategy can be found through trajectory planning, so this chap-
ter will first describe this. Then it will proceed to explaining the racing line,
and how to calculate the geometry of the racing line. This racing line will
be used as the path to optimise the velocity and acceleration on. Finally, a
remark on regeneration is included.

2.2.1 Trajectory Planning

The term trajectory planning refers to the problem of determining both a
path and a velocity function. First the path is calculated in the obstacle-
free space, then a velocity function is computed that fulfills the differential
constraints of the system. It may also be called kinodynamic planning, except
that trajectory planning bears a historical connotation of an approach that
first plans a path, and then the velocity(LaVelle 2006).

2.2.2 Racing Line

In motor sport, the racing line is the optimal path on a racetrack. There
are different types of racing lines that optimise for different parameters. The
most important parts of the racing line are in the turns of the racetrack.
Different factors that affect the line, e.g. the incoming speed, the angle of
the turn, the width of the road and the following section of the race track.
Turns before a straight section may sacrifice high speed in the turn, if more
time can be spent accelerating out of the turn in the right direction. In this
case to be able to have the largest possible action space, the maximum speed
throughout the curve is desirable. This means that the geometric racing line
is the most optimal. The geometric racing line provides the largest diameter
in the turn, which then means that the largest speed can be kept(Paradigm
Shift Driver Development 2017). This is shown in the following chapters.
The radii from the circles are then connected with tangent lines, which is
also described towards the end of section 2.2.2.

Maximum speed in a bend
The Critical speed equation gives the maximum speed a vehicle can travel
through a bend. This is given in eq. (1)(Brach 1997).

v =
√
rµg (1)

The derivation for this is given below. The acceleration is given by the
maximum friction the wheel can have in the lateral direction. This is Fr =
mµg, which is divided by the mass to get the acceleration.

8

Figure 2: The figure corresponding to eq. (9). W is marked in orange, r is
blue, θ is red, Rmax is green. The box is the outline of the car.

a =
v2

r
(2)

µg =
v2

r
(3)

v2 = rµg (4)

v =
√
rµg (5)

For the critical speed equation the maximum radius is needed. The sim-
plest way to do so, would be to take the outer radius minus half the vehicle
width. However, as mentioned earlier the geometric racing line increases the
radius to more than the bend itself. This larger radius, Rmax is derived in
(Neades 2007).

Rmax = W + r + (Rmax − r) cos (θ/2) (6)

Rmax = W + r +Rmax cos (θ/2)− r cos (θ/2) (7)

Rmax(1− cos (θ/2)) = W + r(1− cos (θ/2)) (8)

Rmax = r +
W

1− cos (θ/2)
(9)

where W is the width of the road minus the width of the car, r is the
inner radius of the turn plus half the vehicle width and θ is the angle of the
change in direction. See fig. 2.

Putting it together with the critical speed equation, the equation for max
speed in a bend is:

9

v =

√(
r +

W

1− cos (θ/2)

)
µg (10)

Tangent Calculation
Once the radii of the bends are determined, the circles are connected to-
gether with tangent lines. In the following the calculation tangent for two
consequtive circles, with center point (a, b) and (c, d) with radii r0 and r1
respectively, will be described. To calculate the tangent line, the intersection
point is first computed, given by the following formula if the intersecting
point is not between the two circles.

xp =
cr0 − ar1
r0 − r1

(11a)

yp =
dr0 − br1
r0 − r1

(11b)

If the intersection point is between the circles, the intersection point can
be found by:

xp =
cr0 + ar1
r0 + r1

(12a)

yp =
dr0 + br1
r0 + r1

(12b)

Tangent point for the larger circle, r0 is given by:

xt1,2 =
r20(xp − a)± r0(yp − b)

√
(xp − a)2 + (yp − b)2 − r20

(xp − a)2 + (yp − b)2
+ a (13a)

yt1,2 =
r20(yp − b)∓ r0(xp − a)

√
(xp − a)2 + (yp − b)2 − r20

(xp − a)2 + (yp − b)2
+ b (13b)

The tangent point for the smaller circle, r1 is given by:

xt3,4 =
r21(xp − c)± r1(yp − d)

√
(xp − c)2 + (yp − d)2 − r21

(xp − c)2 + (yp − d)2
+ c (14a)

yt3,4 =
r21(yp − d)∓ r1(yp − d)

√
(xp − c)2 + (xp − d)2 − r21

(xp − c)2 + (yp − d)2
+ d (14b)

The tangent line equations are then given by:

y =
(x− xt1)(yp − yt1)

xp − xt1
+ yt1 (15a)

y =
(x− xt3)(yp − yt3)

xp − xt3
+ yt3 (15b)

10

Figure 3: The envelope of regeneration force of a normal non-competitive
car.

2.2.3 Regenerative braking

The current gear design does not have the possibility for regenerative braking.
However, future cars from DNV GL Fuel Fighter may have that functionality,
so it is worth exploring. In city driving, due to the stop-and-go traffic,
the energy regain from regenerative braking can be as much as 34%(U.S.
Department of Energy’s Office of Energy Efficiency and Renewable Energy
2017). This is similar to the competition, as a complete stop has to be done
at the end of every lap.

Figure 3 is a typical envelope for regenerative braking force vs speed(Rask,
Santini, and Lohse-Busch 2013). The profile in area A is the transition from
generative braking to normal friction braking to fulfill the normal brake pedal
feel. At lower speeds, the generative force is not as high, so the friction based
brake is used to compensate for it to behave as one would expect from a
normal brake pedal. This may not be needed in the car design for the SEM
competition, as the focus on energy efficiency beats comfort. Area B is the
maximum regenrative braking force area, and is not limited by the battery
or drive train, which Area C is limited by. (Rask, Santini, and Lohse-Busch
2013) also mentions that rear-wheel braking may be more unstable, but this
is more likely at higher speeds, above the competition limit of 40 km/h/24
mph. As the maximum speed is so low, it makes sense to use the regenerative
force to make the complete stops in the race.

11

2.3 Mathematical Modelling

The mathematical modeling need is two-fold. It needs to take into account
both the vehicle dynamics when driving on a race track, and the internal elec-
trical system, to be able to judge the energy efficiency. The vehicle dynamics
provides the constraints for the optimisation problem. Having an accurate
model of the electrical system, enables creating a more correct estimate of
the cost/reward for the given actions.

2.3.1 Vehicle Dynamics

A car is a non-holonomic system, meaning it has differential constraints that
cannot be completely integrated. The state variables of the car are the
position of the midpoint of the rear axle, x and y, the velocity of the vehicle
w, the heading θ, and front wheel angle, ζ. The state equation for these
states are: 

ẋ
ẏ

θ̇
ẇ

ζ̇

 =


w cos ζ cos θ
w cos ζ sin θ
w sin ζ

0
0

+


0
0
0
1
0

u1 +


0
0
0
0
1

u2 (16)

where u1 is the accelerator, and u2 is the steering force. This model can
be simplified by considering the velocity as a control.

ẋ
ẏ

θ̇

ζ̇

 =


cos ζ cos θ
cos ζ sin θ

sin ζ
0

w +


0
0
0
1

u2 (17)

Further simplification can done, by setting v = w cos ζ and ω = w sin ζ:ẋẏ
θ̇

 =

cos θ
sin θ

0

 v +

0
0
1

ω (18)

However the constraints on v and ω are no longer independant, so the
admissable control domain is no longer convex. (Laumond, Sekhavat, and
Lamiraux 1998)

Continuing from eq. (17), some bounds on the input can be set. These
bounds are for the limit the maximum and minimum input to the car. Dubins
car restricts the speed to only forward movement, with a maximum speed of
1. There is also set in place a max steering angle, which creates a minimum
turning radius.(Dubins 1957) The Reed-Shepp Car, which builds on Dubins
car, permits both forward and backward movement, up to a maximum speed
of one.(Reeds and Shepp 1957)

12

n_1

n_2

theta

F_lateral

Figure 4: An overview of the parameters used in eq. (19). The dimensions
and scales are exaggerated for clarity. The large circle is the wheel, and the
diagonal pole is the connection to the rest of the car.

Self-centering
The self-centering property of the steering is missing from the previous mod-
els. This property is dependant on the caster angle and/or trail of the vehi-
cle. Euromotor Colleges Automotive Engineering II course(EuroMotor n.d.)
mentions a formula for the centrifugal castor force, Fcastor:

Fcastor = Flateral(n1 + n2) cos θcastor (19)

where Flateral is the lateral force, n1 is the castor offset, n2 is the wheel
castor offset and θcastor is the caster angle. See fig. 4 for overview. This
means that the lateral force needs to be calculated, if it were to be included
in the model.

Air Resistance
The formula for air resistance, FA is given by

FA =
1

2
ρCdAFv

2 (20)

where ρ = 1.225 kgm−3 is the density of air, Cd = 0.15 m2 is the aerodynamic
drag coefficient, A = 0.755 m2 is the frontal area, and v is the velocity(Kalm
2007). The numbers are from DNV GL Fuel Fighter’s own simulations and
wind tunnel tests.

Rolling Resistance

Frolling = CrrFN (21)

13

where Crr = 0.0015 and FN is the normal force of the vehicle(Transportation
Research Board 2006).

The normal force is given by:

FN = mcarg + FD (22)

where g is the gravitational acceleration and FD is the downforce. DNV
GL Fuel Fighter’s car aims to be downforce neutral, as both positive and
negative downforce increases drag. The downforce formula is very similar to
the air resistance formula, except different area and coefficient.

FD =
1

2
ρClAAv

2 (23)

where Cl ≈ 0 is the lift coefficient, and AA is the area from above, the
bird’s-eye view(Kalm 2007).

2.3.2 Electrical System

Permanent Synchronous Motor (PMSM)
The efficiency of a PMSM can be expressed as a function of the speed, N , in
rotations per minute (rpm) and the torque T :

η(N, T) =
2πN
60
T

(2πN/60)T + Pinverter(N, T) + Pmotor(N, T)
(24)

where Pinverter and Pmotor are the losses of the inverter and PMSM. Pmotor

can be found in the data sheet for the motors. However Alva Industries have
created an efficiency map specifically for DNV GL Fuel Fighter’s use case,
seen in fig. 5. The test environment is 100 kHz switching frequency, 40 °C
stator temperatur, at 48 V, max 10 A. N and T are functions of time t, so
the energy consumption of the drive system W is

W =

∫ 2πN
60
T (t)[1− η{N(t), T (t)}]
3600η{N(t), T (t)}

(25)

Efficiency maps are not mathematical functions, so it has to be replaced with
a lookup table.

W =

T0/Ts∑
n=0

{2πN/60}T (n)[1− η{N(n), T (n)}]
3600η{N(n), T (n)}

(26)

where T0 is the operation time, and Ts is the sampling time of the operation
commands.(Sato and Itoh 2015)

14

Figure 5: Efficiency map for the X100IR Permanent Synchronous Motor
(PMSM) by Alva Industries.

15

2.4 Planning Algorithms

The planning can be done in either discrete or continuous space. Discrete
planning can also be considered as graph traversal. Some of the methods
used for this are blind methods like Breadth-first or Depth-first searches.
The methods are blind(also called uninformed), because they don’t take into
account where the goal is. They search the graph until come accross the goal,
and then they report success. Informed search algorithms on the other hand,
takes the goal into account, often in the form of using a heuristic function.
The heuristic function is a measure of whether the search is getting closer or
further away from the goal. The algorithm uses this information to decide
which nodes in the graph it will search first. Some informed search algorithms
are A*, and D* Lite. This chapter will go through dynamic programming,
rapidly-exploring tree planning methods and collision detection.

2.4.1 Dynamic Programming

Dynamic programming is a general method for optimisation that stores par-
tial results to save on computation. It will first be explained in the discrete
case before expanding to the continuous space.

A cost-to-go value is calculated for every node and stored in a table. The
cost-to-go value is the minimal cost from the goal and to the current node
being calculated and is given as

cost to go(n) =

{
0 if goal(n)

min<n,m>∈A(cost(< n,m >) + cost to go(m)) otherwise

(27)
By having this cost-to-go function in a table, the optimal policy can easily

be found by going through nodes with the lowest cost-to-go value.
However, the search graph has to be finite and small enough to the the

data in a table. The goal should also not change very often.(LaVelle 2006)

Dynamic Programming for Continuous Spaces
Dynamic programming of continuous spaces can be done by using interpola-
tion. When using interpolation, G∗k is calculated and stored for a sample of
points, and all the values in between are interpolated. It is important that
some of the sample points are at the boundaries, and that the dispersion is
low. Low dispersion means that the samples are spread out across the entire
space. By having points on the boundary, you make sure that all points in
the search space are between sample points.

In the simple one-dimensional case, the interpolation formula is

G∗k+1(x) ≈ αG∗k+1(si) + (1− α)G∗k+1(si+1) (28)

where α is calulated as:

16

α = 1− x− si
r

(29)

The 2D-case can be written as:

(30)

G∗k+1(x) ≈α1α2G
∗
k+1(s(i1, i2)) (31)

+ α1(1− α2)G
∗
k+1(s(i1, i2 + 1)) (32)

+ (1− α1)α2G
∗
k+1(s(i1 + 1, i2)) (33)

+ (1− α1)(1− α2)G
∗
k+1(s(i1 + 1, i2 + 1)) (34)

where α1,2 are similarly defined as in the one-dimensional case. As the
number of interpolation neighbours grow, it is beneficial to represent them
in simplexes. This poses the challenge of finding which simplex the point x
is in. This means that it can only been done practically for dimensions up
to six.(LaVelle 2006)

2.4.2 Rapidly-exploring Tree Planning methods

For large and/or continuous search spaces, it is impractical to search through
every single point. By probing the space, either deterministically or prob-
abilisticly, large parts of the search area can be explored, but without the
great computational cost.

Basic Rapidly-exploring Tree Method
The basic structure of the rapidly-exploring planning methods are given in
algorithm 1. The Sample and Extend are what differs within the family of
the methods. In the case of Rapidly-exploring Dense Tree (RDT) the sample
sequence is deterministic, whilst it is random in Rapidly-exploring Random
Tree (RRT). (Karaman and Frazzoli 2010).

The algorithm starts by adding xinit as the root of the tree or graph,
before incrementally adding more points to the graph. The Sample function
decides which point will be attempted to be added next. For the RRT it
samples independant, indentically distributed points from the search space.
It is attempted to be added, because it may fail to add the point to the tree.
This attempt is done in the Extend function. If it fails to add the point, most
likely due to an obstacle, it will try to extend the tree towards the point as
far as it can. The Extend function will be described in more detail later in
this section. Gradually the tree will have more and more points and edges
and cover more and more of the search space.

To create a path planner between two points, the Sample function can be
modified to include the goal point at regular intervals. When the goal point
is selected for the next extension, the algorithm will attempt to connect the
goal point to the tree. The algorithm will terminate when the goal is reached,
or the max number of iterations have been made.

17

As mentioned earlier, Extend function attempts to connect the new point
to the tree or graph. The pseudocode for the function can be found in
algorithm 2. Nearest(G, xrand) finds the closest point or edge from the
graph G, to the point xrand. If an edge is closest to the xrand then a new
vertex is created on the edge, and returned. Finding the nearest edge is
computationally heavy. More on how to do this will be discussed later.

Steer creates a new point, xnew, on the line between xnearest and xrand.
It is normal to define a max distance that the line can go, from the nearest
point towards the new point.

ObstaceFree checks that the line between the between from xnearest to
xnew If the line is not in any obstacles, then the line and xnew is added to the
graph. Checking that the line is not in an obstacle is not trivial. Collision
dectection will be discusseed later on, in section 2.4.3.

Near finds the set of all vertices within the closed ball of radius rn, cen-
tered at x, which is given as expressed in eq. (35). γ is a constant.

rn = min

{(
γ log n

ζdn

) 1
d

, n

}
(35)

Algorithm 1: The basic structure of the pseudocode for rapidly-
exploring planning methods

Input : N, xinit
Output: G

1 i = 0;
2 V = xinit;
3 G = (V, E);
4 while i < N do
5 i = i+ 1;
6 xrand = Sample(i);
7 G = Extend(G, xrand);

18

Algorithm 2: The Extend method for Rapidly-exploring Random
Tree (RRT)

1 Function Extend(G, xrand):
2 xnearest = Nearest(G, xrand);
3 xnew = Steer(xnearest, xrand);
4 if ObstacleFree(xnearest, xnew) then
5 G.add vertex(xnew);
6 G.add edge((xnearest, xnew));

7 return G

Algorithm 3: The Extend method for Rapidly-exploring Random
Tree (RRT)*

1 Function Extend(G, xrand):
2 xnearest = Nearest(G, xrand);
3 xnew = Steer(xnearest,xrand);
4 if ObstacleFree(xnearest, xnew) then
5 G.add vertex(xnew);
6 xmin = xnearest;
7 Xnear = Near(G, xnew);
8 for xnear ∈ Xnear do
9 if ObstacleFree(xnear, xnew) then

10 c’ = Cost(xnear) + c(Line(xnear, xnew));
11 if c′ < Cost(xnew) then
12 xmin = xnear

13 G.add edge((xmin, xnew));
14 for xnear ∈ Xnear /∈ {xmin} do
15 if ObstacleFree(xnear, xnew)and Cost(xnear) >

Cost(xnew) + c(Line(xnew, xnew)) then
16 xparent = Parent(xnear);
17 G.remove edge((xparent, xnear));
18 G.add edge((xnew, xnear));

19 return G

RRT*
RRT* is based on RRT, but rewires the tree if it finds a more optimal path
to the point. As it is based on RRT, the base structure is the same(see algo-
rithm 1), but the Extend function differs. The pseudocode for that function
can be seen in algorithm 3. It is a fair bit more complex than the normal
RRT. This is because it has to not only find the nearest point, but also the
group of points that are near it. Then it searches through these points to
find the minimum cost edge and adds this to the graph. The next step is to

19

go through all the other near points, and check to see if the cost is lower if
it goes through the newly added point instead. If so, it will remove the old
edge connection, and establish a new one with the new edge.(Karaman and
Frazzoli 2010)

RRT*-Smart
RRT* is asymptotically optimal, meaning that it may not find a solution
in a finite time frame, and converges slowly. (Nasir et al. 2013) proposes
RRT*-Smart which is a variation that builds on RRT*. The main idea of the
algorithm is to shorten the path, and perform intelligent sampling to be more
efficient. The pseudocode for the algorithm can be seen in algorithm 4. Ini-
tially it starts of in the same manner as RRT*, sampling the space randomly,
and rewires the tree when it finds shorter paths. It differs when it has found
a path to the goal node for the first time. Then it begins the shortening(or
path optimisation) process. It starts at the goal node, and tries to connect
the parents parent node(the grandparent node) directly to the goal node.
If this is succesful(meaning no obstacles in the direct path between them),
it continues the search to try to connect directly to the great grandparent
node. The path optimisatoin is based on the concept of triangular inequality.
Triangular inequality states that for any triangle, the sum of the two lengths
must be greater than or equal to the length of the remaining side.(Khamsi
and Kirk 2001) If the path optimisation fails, the node that was not able
to be skipped is marked as a beacon node. This beacon node is used for
the intelligent sampling. The intelligent sampling is biased to sample more
points in a radius from beacons along the path. Beacons are often created
near obstacles, as skipping them would lead to obstacle collision. By increas-
ing the sampling point around these beacons, it increases the likelihood of
finding the optimal path around the obstacle.

RRT under differential constraints
In RRT under differential constraints the Steer function is replaced with
a local planner instead. Instead of calculating a state trajectory, an action
trajectory is calculated instead. As these differential constraints may cause
the local planner to fail, an additional constraint has to be applied. The
constraint prevents the planner of trying the same action, from the same point
multiple times. Smoothness and continuity of the actions can be enforced
by adding new phase variables. The local planner may also return a point
in close proximity instead. This helps the algorithm achieve completeness,
which means that it correctly identifies whether a solution exists, and returns
the solution in finite time if it exists.(LaVelle 2006) The local planner uses
a system simulator to find out if the action trajectory is viable. The system
simulator calculate:

x(t) = x(t0) +

∫ t

t0

f(x(t′), u(t′))dt′ (36)

20

Algorithm 4: The RRT*-Smart Algorithm

1 i = 0;
2 V = xinit;
3 G = (V, E);
4 zbeacons = None;
5 while i < N do
6 i = i+ 1;
7 xrand = Sample(i, zbeacons);
8 IfObstacleFree(xnearest, xnew) G.add vertex(xnew);
9 xmin = xnearest;

10 Xnear = Near(G, xnew);
11 for xnear ∈ Xnear do
12 if ObstacleFree(xnear, xnew) then
13 c’ = Cost(xnear) + c(Line(xnear, xnew));
14 if c′ < Cost(xnew) then
15 xmin = xnear

16 G.add edge((xmin, xnew));
17 for xnear ∈ Xnear /∈ {xmin} do
18 if ObstacleFree(xnear, xnew)and Cost(xnear) > Cost(xnew)

+ c(Line(xnew, xnew)) then
19 xparent = Parent(xnear);
20 G.remove edge((xparent, xnear));
21 G.add edge((xnew, xnear));

22 if ∃xgoal ∈ G then
23 G, cnew direct = PathOptimisation(G, xinit, xgoal);
24 if cnew direct < cold direct then
25 zbeacons = PathOptimisation(G, xinit, xgoal);

21

For linear systems, closed form solutions can be used, but for most systems,
a numerical method must be used. To reduce the search space in the action
space, a set of actions can be chosen to represent the action space. Dubins car
model from section 2.3.1 provides such a reduced action space. The Dubins
curves can be charaterised as

(LαRβ Lγ,)(Rα Lβ Rγ), (Lα Sd Lγ), (Lα SdRγ), (Rα Sd Lγ), (Rα SdRγ), (37)

where L,R and S are Left, Right, Straight and α, γ ∈ [0, 2π], β ∈ (π, 2π) and
d ≥ 0, which specify the length of each action. For Reed-shepps car there
are 46 different curve options, which will not be shown here.

Finding Nearest Neighbour Efficienctly
To find the nearest point can be solved in two ways, either exactly or ap-
proximately. This chapter will explain an approximate method, as it is both
easier to construct and computationally efficient. Each line is inserted with
intermediate points, such that there is no distance further than ∆q between
points on the same line. The lines can be ignored, and nearest neighbour is
then done on the vertices and intermediate points. The points can be put
into a k-d-tree which can be considered as a multi-dimensional generalisation
of binary search trees.

The pseudo code for the algoritm for the k-d-search three can be seen in
algorithm 5. For a given dimension, d, the algorithm takes the median of the
points along that dimension. This median is used to split the points in two,
above or below the median. These two groups of points are then split along
the next dimension recurively. The recursion is terminated when there are
no points left. The tree is then built as a binary tree by having each child
correspond to the higher or lower than the medium.

When finding the closest point in the graph, the tree can be searched to
like a binary search tree to find the leaf node that is closest.

22

Algorithm 5: The K-D-Tree method for dividing up the search
space to find nearest neighbours.

1 Function K-D-Tree(points, d):
2 if Length(points) == 0 then
3 return None;

4 pmedian = Median(points, d);
5 for p ∈ points do
6 if p < pmedian then
7 plower.append(p);
8 else
9 phigher.append(p);

10 dnext = (d+ 1) mod Ndimensions;
11 pmedian.pleft = K-D-Tree(plower,dnext);
12 pmedian.pright = K-D-Tree(phigher,dnext);
13 return pmedian;

2.4.3 Collision Detection

Collision detection is the computational problem of detecting the intersection
of two or more objects. The majority of the computation time in planning
algorithms are spent on collision detection. So doing this efficiently can
reduce the computational time of planning algorithms significantly. The more
complex the shape of the objects are, the more computationally expensive it
is to detect collisions. For this reason, most collision detection systems use a
two-phase approach, consisting of a broad phase, and a narrow phase. The
broad phase uses simple shapes that cover the entire object under one. The
shapes can also cover the time dimension as well, if the objects are moving.
The collision detection check if any of these simple shapes overlap with other
simple shaped objects. For objects far apart from each other, these will be
eliminated in this phase.

The narrow phase analyses the objects that were reported to be colliding
in the broad phase. Here slower, and more accurate detection algorithms are
used to determine if there truly is a collision between the objects. (Mirtich
1997)

2.5 Reinforcement Learning

Reinforcement Learning will first be explained by describing MDP, which
models the environment for Q-learning.

2.5.1 Markov Decision Process

A Markov Chain has the Markov property. The markov property is only be-
ing dependent on the current state and action, and not any previous states,

23

to know all the possible outcomes. This property greatly simplifies the prob-
lem of taking the correct action, as there is no need to calculate and store
previous states of the system. A Markov Decision Process is an extension of
the Markov Chain, augmented to include actions and rewards. It consists of:

� A set of states, S
� A set of actions, A
� A function that specifies the dynamics, written as P (s′|s, a) : S × S ×
A→ [0, 1].

� A reward function R(s, a, s′) : S × A× S → R (Poole and Mackworth
2010).

2.5.2 Policy Mapping

A policy is a mapping from states to actions. It decides what action to take
in the given state. A policy should be defined over the entire state-space,
specifying what to do in any situation. If the policy chooses the same action,
each time the specific state is visited, for all states it is called a stationary
policy. A stochastic policy chooses an action from the same probability
distribution for each state. An optimal policy yields the maximum possible
expected reward that can be achieved, starting from that state. (Watkins
1989)

2.5.3 Q-learning

Q-learning is a method to create a policy. Q-learning uses a Q-table to decide
what actions to take. The Q-table is as big as the state space times the action
space. For each possible state space and possible actions from that space,
there is a Q-value that represents the current and future reward for taking
that specific action at that state. To find the Q-values, it needs to be learned
by repeatedly exploring the environment, and updating the Q-value based
on the reward received. The equation to update the Q-value, also called the
Q-function is given in eq. (38)(Wikipedia contributors 2021).

Qnew(st, at) = Qold(st, at) + α(rt + γmax
a
Q(st+1, a)−Qold(st, at)) (38)

where Q(s, a) is the Q-value for the state s and action a. α is the learning
rate, affecting how much the Q-value can change in each iteration. γ is the
discount factor for future rewards. This adjusts how much future rewards
are taken into account. The subscript t and t + 1 indicates the current and
next time step state and action.

In Q-learning there are two modes the agent can be in: exploration and
exploitation. When exploring, the agent takes random actions to increase
the explored area. When exploiting, the Q-table in consulted, and the action
with the maximum Q-value is taken. The rate of which two modes the agent

24

is in, is ε, and is called the Epsilon-Greedy algorithm. ε is between 0 and
1, where 1 is only exploration, and 0 is only exploitation. A normal tactic,
called Epsilon-decreasing Strategy, is to have a decaying ε. This mean that ε
initial value is 1, and decreases as more iterations are completed. The agent
will be do more and more explotion, thus becoming more greedy over time.

2.5.4 Reward Hacking

Reward hacking is a challenge within artificial intelligence and game theory.
It occurs when an agent games the reward system in such a way that it gives
rewards for actions that are not intended to give reward for. OpenAI lists
reward hacking as one of the five problems discussed in “Concrete Problems
in AI Safety”(Amodei et al. 2016). Some examples of reward hacking they
give are:

� A buffer overflow in the reward function
� A cleaning robot can

– disables its vision, so it does not lose rewards for the mess
– Create mess, to get more reward to clean it.

Some counter-measures OpenAI mentions are:

� Careful Engineering, to avoid buffer overflows.
� Trip Wires, to detect attempts of reward hacking
� Multiple rewards, to make it more difficult to game.

2.6 Related Work

2.6.1 The Worlds Most Fuel Efficient Vehicle - Design and devel-
opment of Pac-Car II

The Worlds Most Fuel Efficient Vehicle - Design and development of Pac-
Car II is a book written by the Pac-Car Team. Pac-Car II is a car that
participated in SEM in 2005 and set a world record for the fuel cell prototype
class. The book describes many aspects of building the car and it includes a
chapter on driving strategy which will be summarised in this section.

The driving strategy chapter is written by Jérôme Bernard(Santin et al.
2007). Bernard have split the model into three submodels:

� Powertrain model
� Vehicle model
� Driving strategy model

The powertrain model included all the components along the car’s power
path, from fuel tank to wheel. As this car is using a hydrogen fuel cell, the
details of this path is not that relevant.

The vehicle model was modeled as a sum of five forces:

25

� Traction force Ftraction
� Aerodynamic drag −1

2
ρairAfCxV

2
car(t)

� Rolling resistance −Mcarg cos (αtrack(t))Cr
� Bearing resistance Fbearings
� Slope resistance −Mcarg sin (αtrack(t))

where:

� Mcar is vehicle mass
� ρair is air density
� Af is frontal Area
� Cx is aerodynamic drag coefficient
� g is gravity Constant
� Cr is rolling resistance coefficient
� αtrack is track slope

The driving strategy model had not progressed far at the time of writing
the book, so there are not many details about it. Bernard expected the driver
to have three data inputs to decide the current action in the track:

� Speed
� Track Position
� Time elapsed

The optimisation problem was formulated as minimise:

J =

∫ tf

0

ṁH2(Ftraction(u), Vcar(u)) du (39)

subject to:

tf ≤ tmaxf (40)

Ftraction ≤ Fmax
traction(Vcar) (41)

where ṁH2(Ftraction(u), Vcar(u)) is the change in hydrogen mass as a func-
tion of the input action, Ftraction is the force to the wheels, and Fmax

traction(Vcar)
is the maximum force the car can give.

Bernard proposed that the solution space is everything between two sce-
narios. The first scenario is driving as quickly as possible, completing the
race in the shortest time possible. The second scenario is waiting until the
last possible moment to start driving but still managing to complete the
race within the allocated time. These two scenarios define the boundary and
the space in between is sampled to reduce the search space. The dynamic
programming algorithm is then used to calculate the optimal path in the
solution space.

The result strategy was a mix between acceleration modes: boosting,
standby and cruising. They then created a custom accelerator with the three

26

Figure 6: The generated track with five lanes, created by scaling the track
within ±5%.

modes. Boosting is giving the maximum acceleration, mostly to get the
vehicle up to speed. Standby is no motor power is given, and the vehicle is
just rolling. Cruise is using a PI-controller to maintain the speed. Cruise
was engaged when the speed fell below 9 m/s.

3 Implementation & Results

3.1 Procedural Race Track Generation and Racing Line
Calculation

In order to simplify the calculations, the path is computed first, then cal-
culating the path velocity. The path we created aimed to be similar to the
racing line mention in section 2.2.2. As this needed to be done for any race
track, the track was procedurally generated. Some points were randomly gen-
erated within some thresholds, and a convex hull was created to surround
these points using ConvexHull from scipy.spatial. This convex hull was
smoothed out with splprep and splev from the scipy.interpolate li-
brary. The connection where the endpoints of the spline meet are not always
smooth, so sometimes a few attempts need to be made to be able to get a
nice result. When this track is generated, copies are created that scale ±5%
to create multiple tracks. See fig. 6 for the result.

The objective function used to calculate the racing line was the weighted

27

Xn-1,2

Xn-1,3

Xn-1,4

Xn-1,5

Xn-1,1

Xn,2

Xn,4

Xn,5

Xn+1,2

Xn+1,3

Xn+1,4

Xn+1,5

Xn+1,1

D2

P2

Xn Xn+1Xn-1

D1

P1

Figure 7: Objective function for raceline calculation. The green line(Pi) is
subtracted from the red line(Di). Lower cost is better, so i = 1 is preffered
of the two that are displayed.

difference between the total length and the dot-product of the piece-wise line
segments. See fig. 7 for illustration.

fobjective(xn−1,i, xn,j, xn+1,k) =wdD − wpP (42)

=wd(‖xn,j − xn−1,i‖+ ‖xn+1,k − xn,j‖) (43)

− wp(xn,j − xn−1,i) · (xn+1,k − xn,j)

where i, j, k are the lane numbers, n is the current line segment The objective
function is evaluated at each combination of previous, xn−1,i, current, xn,i,
and next lane, xn+1,i, for each line segment, xn. After all these paths have
been evaluated, dynamic programming is done to find the minimum path
through the lap.

The initial results were not great. The first attempt was with the angle
difference, instead of the dot product, seen in fig. 8.

A normalisation was added to balance the total distance, versus the dot
product. The normalisation was done by calculating all the values for the
total distance and dot product, and dividing them by their respective maxi-
mum. This can be seen in fig. 9. The objective function values can be seen

28

Figure 8: The first path that was generated, using the difference in angle
instead of the dot product.

in fig. 10, displayed as the difference from the mean objective function value
of that line segment.

Not any of these results are quite as expected or seems to be the most
efficient with regards to the objective of largest turning radius and shortest
distance. To verify that it at least partially works, the dot product term
was removed from the objective function. This resulted in the path seen in
fig. 11. From this we can see that the dot product term affects the decision in
the upper left and lower right turns of the path. However we would expect it
to follow the inner lane for the entire track, which is not what is happening,
as it curves out in the upper right and lower left.

29

Figure 9: The resulting path when the objective terms were normalised before
taking the weighted difference.

Figure 10: The difference from the mean objective function value of the
current line segment. The number in the legend is the lane index.

30

Figure 11: The resulting path with only the total distance term in the ob-
jective function.

3.2 Rapidly-exploring Random Tree (RRT) Implemen-
tation

To implement RRT, the first step was to create the algorithm that searched
the space, without any goal in mind. Using the pseudocode in section 2.4.2, a
jupyter notebook2 was created that explored a 2D canvas. The first iteration
did not have the Steer function to limit the max distance to draw the line.
The nearest neighbour was only calculated on the vertices, and not the lines,
causing the tree to cross itself sometimes. The resulting tree can be found in
fig. 12a.

With Steer implemented, the graph did not cross itself as much, and
it looks more like paths. See fig. 12b. A goal node was then inserted and
sampled every ten iterations. This resulted in a path found in 20 iterations,
as seen in fig. 13.

Next step is RRT*. The complicated thing here is to find the minimum
cost path, without creating loops. Sometimes the algorithm caused loops in
the tree, that needed to be prevented before this algorithm can be used. The
result of the first implementatons of RRT* can be seen in fig. 14a.

3.2.1 Parametrised track

Instead of representing the track as a set of points on a map, it can be
represented as function. The input is the distance along the track as a
proportion and the output is the radius at that point. If there are elevation
changes along the track, the inclination can also be an output of the function.
These are only two track parameters that is needed for the vehicle dynamics
discussed in section 2.3.1. For straight sections of the track, the radius can
be set to a large value to approximate a straight line.

2https://jupyter.org/

31

https://jupyter.org/

(a) First Rapidly-exploring Random Tree (RRT) implementation. This is about
100 iterations.

(b) Rapidly-exploring Random Tree (RRT) implementation with Steer function.
This is 1000 iterations.

Figure 12: Rapidly-exploring Random Tree (RRT) Implementations

32

Figure 13: RRT with goal node, marked with a red star

The largest radius where the turning radius is the limit, is calculated
below by using the critical speed equation.

40 km/h = 11.11 m/s = vmax =
√
rµg (44)

v2max = rµg (45)

r =
v2max

µg
(46)

r =
(11.11 m/s)2

0.04 · 9.81 m/s2
(47)

r = 28.313 m (48)

So this means for radii larger than 28.313 m, the maximum possible speed in
the bend is larger than the maximum speed allowed in the competition.

3.2.2 RRT* with velocity constraints

Using the parametrisation from section 3.2.1, we can redefine the search space
and set a velocity constraint. The goal is set to be 300m along the track,
at zero velocity. This corresponds to a goal in position (300, 0) in fig. 15.
The blue line is the maximum velocity constraint. The collision detection is
not implemented on the lines, only the points, which is why some paths are
crossing the velocity constraint. The differential constraints with the system
simulator is not implemented, so the optimal path is a straight line to the
point. However, this demonstrates how to implement a velocity constraint
in the search space.

33

(a) 100 iterations.

(b) With 1000 iterations.

Figure 14: Rapidly-exploring Random Tree (RRT)* Implementations. Goal
is marked with the red star and is in the same location in both plots.

34

Figure 15: RRT Implementation with velocity constraint, but without system
simulator. Goal is marked with the red star.

3.3 Reinforcement Learning

To be able to run reinforcement learning to optimise the driving strategy, we
need a reinforcement learning environment. The most simple environment
is a one dimensional path, where the speed along the path is the only thing
that can change. The reward function is given as

R = CmisMoving(x1) + Cu|u|+ CgisGoal(x0) (49)

where isMoving returns true if velocity is non-zero, and isGoal returns
true if the position is in the goal area. Cm = 2 is the reward for moving,
Cu = −1 is the cost of action, and Cg = 1000 is the reward for reach-
ing the goal. The tutorial from PythonProgramming(PythonProgramming
2019) was followed, as the goal of this was not to find a novel way of using
Reinforcement Learning, but rather see if any useful results can be found
from using it.

The results from the first run of 25000 iteratons can be seen from in fig. 16.
For each iteration, the algorithm only explores 100 steps. This means that is
has to move quickly to be able to reach the goal 500 units away. As can be
seen in the figure, the area on the right within each plot is not as explored
as the ones on the left. So the goal was moved closer to 150 units, to see if
the goal reward would be more visible in the Q-values. The Q-table for 2500
iterations and the closer goal can be seen in fig. 17. Here we can see that it
reached the goal in more of the iterations. The results from increasing the
number of iterations to 25 000 can be seen in fig. 18. Now we can clearly see

35

that there is a dark green prefered path through the state space. Another
way to depict the Q-table, is to look that the action with the highest Q-value
per state, called the policy map. This can be seen in fig. 20. Here we can see
a weak white line between the blue and the red zones, which is the optimal
path according to the Q-learning.

As mentioned, the car has to come to a complete stop at every lap. This
means that at the goal, the velocity should be low. So the reward function
was changed to only give the goal reward if the speed was below 1. The
resulting Q-table can be seen in fig. 19. The policy map can be seen in
fig. 21.

For all the three attempts, the same values for the hyperparameters were
used. A learning rate of α = 0.1 and a discount rate of γ = 0.95. The
exploration rate, ε was decaying from 1 to 0 over time span of half the
iterations. Meaning that in the second half, all the learning came from the
updating the Q-values along the maximum value path. All this values are
the same as from the original tutorial(PythonProgramming 2019).

36

Figure 16: First Q-table with 25000 iterations. The x-axis is the position
along the track, the y-axis is the velocity. Each of the subplots are the ac-
tions, in ascending column-major order where the first 5 actions are negative
acceleration actions. Color is the log of the q-value.

37

Figure 17: Q-table with 2500 iterations and closer goal. Same format as in
fig. 16, except the state space is smaller, because the goal point is closer to
the start.

38

Figure 18: Q-table with 25000 iterations. Same format as in fig. 17.

39

Figure 19: Q-table with 25000 iterations. This time, the goal reward is only
given for if the speed of the vehicle is under 1. Same format as in fig. 17.

40

Figure 20: The action with highest reward for each state, from the Q-table
in fig. 18

Figure 21: The action with highest reward for each state, from the Q-table
in fig. 18

3.4 Crowd Sourcing Through a Simulator Competition

One of DNV GL Fuel Fighter’s focus areas is the SEM communication award.
The description of this award is:

Communications and promotional activity are crucial in driving
interest in Shell Eco-marathon teams and their activities; and
potentially in driving sponsorship opportunities. This award pro-
vides the opportunity to reward the most impactful and success-
ful integrated communications campaign - showing the efforts to
promote the Team ahead of a potential Shell Eco-marathon com-
petition in 2021. The winner will be the Team that demonstrates
the best and most effective communication and promotional ac-
tivities on their Shell Eco-marathon project.(Shell Eco-Marathon
2021)

To gain attention to what DNV GL Fuel Fighter is doing, and raise
awareness of how to drive energy efficient, a simulator competition was held.
The simulator was available on a website3 for anyone to join and try to drive
a track in the most energy efficient way. When they completed the race, they
had the option to send their score to our highscore list. This competition
could also be used to gain insight in energy efficient strategies. We used

3https://metrilytics.herokuapp.com/

41

https://metrilytics.herokuapp.com/

Unity Analytics4 to retrieve the driving telemetry. We could use this to see
if there were any exploits of the simulator, or if it was a good strategy that
scored a high efficiency. To capture the driving telemetry, trigger objects
were placed with regular intervals that sent a tutorial step event5 with the
car state at that moment. Then we could infer the driving strategy based on
this.

As this was only for one specific track, the results from this can probably
not be used without further verification. It is however a good way to explore
the space of possibilities.

The Unity physics engine handled most of the vehicle dynamics. The
battery consumption, or change in charge ċ, had to be calculated. This was
done according to the formula

ċ = cbbv + caa+ ci (50)

where cb = −0.5 %/m is the “consumption” when braking, which is a neg-
ative value since it regenerates this energy. b ∈ [0, 1] is the braking action
controlled by the driver v is the velocity of the vehicle. ca = 0.02 %/s is the
acceleration consumption, with a ∈ [0, 1] being the acceleration action by
the driver. ci = 0.02 %/s is the idle consumption, that is always drawn, to
power on-board electronics. The numbers used here are based on trial and
error when playing the simulator, to make it challenging but not impossible
to complete the race.

The Unity simulator was compiled into a webGL application that is run
in a python django project6. Django REST Framework (DRF)7 was used to
communicate with the simulator, and receive scores, that are listed on the
highscore. To avoid dealing with personal information, anonymous profiles
were created with each score. These profile had a random three-word subset
of available words as their display name.

As when dealing with aritificial intelligence, reward hacking is a challenge.
Initially the Representational State Transfer (REST) Application Program-
ming Interface (API) used to submit the scores, did not have any authenti-
cation put into place, meaning anyone could submit scores through the API,
without using the simulator. During alpha-testing, this resulted in a hacked
highscore list as seen in fig. 22.

To combat this, the browsable API view from DRF was disabled to pre-
vent easily sending requests. The DRF API Key library8 was added, so
that API keys were required to send POST requests. Finally, the POST
requests also required a signature in the header to verify that the content
had not been tampered with. To achieve the signature a simple tutorial was

4https://unity3d.com/unity/features/analytics
5https://docs.unity3d.com/2018.1/Documentation/ScriptReference/

Analytics.AnalyticsEvent.TutorialStep.html
6https://www.djangoproject.com/
7https://www.django-rest-framework.org/
8https://florimondmanca.github.io/djangorestframework-api-key/

42

https://unity3d.com/unity/features/analytics
https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Analytics.AnalyticsEvent.TutorialStep.html
https://docs.unity3d.com/2018.1/Documentation/ScriptReference/Analytics.AnalyticsEvent.TutorialStep.html
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://florimondmanca.github.io/djangorestframework-api-key/

Figure 22: The reward hacked highscore list. Rank 7 is the first non-hacked
entry.

43

followed(Hosny 2018). This implementation was vulnerable to a timing at-
tack, due to the comparison being a normal python implementation(==) that
breaks out of the comparison as soon as it detects an inequality. The hmac

library has a method that compares two signatures in constant time, called
compare digest(), which eliminating the vulnerablity(Python contributors
2020).

As mentioned, Unity Analytics was used to gather the vehicle telemetry.
Unity Analytics is a service offered by Unity Technologies which gives great
insight into player behaviour and statistics. It is integrated with Unity, and
only needs to be enabled to make use of it. There are standard and custom
events that can be called in the code, that sends messages to unity analytics,
together with any custom parameters set. In the unity dashboard9 these
events are captured, aggrevated and visualised. These statistics can then
be exported from the unity dashboard for further data analysis. Originally
50 trigger objects were placed along the track, to have a high measuring
frequency. Each lap was defined as a tutorial, so the triggers activated stan-
dard unity analytics events like tutorial start(id), tutorial step(id,

step) and tutorial complete(id). And the tutorial ID corresponded to
the lap number. In fig. 23 plots the battery percentage and accerelation in-
puts for one single user driving one lap. Unfortunately, Unity Analytics have
a limited the number of request allowed to 100 requests per hour per user.
This means that after one race, the request limit is reached, meaning it’s not
possible to receive more telemetry for the next hour. A normal user session
would probably try at least a couple of times to achieve a better score. The
later attempts are more interesting, as the initial attempts are used to get
familiar with the simulator and the track. So the number of trigger points
was decreased to 6 per lap, placed in strategic locations to have a represen-
tative sampling as seen in fig. 24. The reasoning for the placement of the
triggers

1. Prehill: Placed before the hill to get the start position. Placing it
earlier would not gain more insight.

2. Hill: Placed in the top of the hill to get a sense of how they chose to
climb the hill.

3. Posthill: At this point the car is either still rolling, or accelerating
after regenerating in the hill.

4. S-turn: This point is measuring the position of where the car passes,
and at what speed.

5. Final: Do people chose to take the turn slowly, take a wider turn?
6. Finish: To see what speed they enter the finish line.

Using Unity Analytics also meant that we had to have a proper privacy
policy. The policy is inspired by MAKE NTNU’s policy10. There was also an

9https://dashboard.unity3d.com/
10https://makentnu.no/

44

https://dashboard.unity3d.com/
https://makentnu.no/

Figure 23: The battery percentage and accerelation inputs for one single user
driving one lap.

Figure 24: The track with the triggers marked in green. The sixth one is not
visible, but it is at the finish line. The orange field in the track are where
there is inclination

45

option to opt-out of data collection available in the simulator. The anony-
mous profiles does not have any have personal information connected to it,
so it can’t be used to identify the person.

3.4.1 Results

The results from the beta testing can be seen in figs. 25 to 28. Figure 25
is the position of the vehicles, overlayed with a birds-eye view of the track.
The points don’t line up with the trigger points because it triggers as soon
as any part of the car enters the trigger object, whilst the position reported
is the center of the car. As it is difficult to even complete the race, we get an
indication that the attempts that did complete must have driven more energy
efficiently. We can see that in the distribution of the red vs green lines, the
green lines tend to follow the minimum path through the track. This is most
visible in the bottom trigger point. This could be that the people who are
just exploring, are not focusing on driving efficiently and therefore not on
the minimum path.

In fig. 26a we see as expected that the hill takes a lot of energy to get
up. It is important to have enough speed to get up the hill, because to
start accelerating in the hill to prevent it from rolling down requires even
more energy. The hill is also slightly slippery, causing it to be even more
challenging to accelerate in the hill. This can explain why some had a higher
percentage before the hill, but a lower percentage at the top of the hill,
compared to those who completed the run. The best attempt manages to
keep the consumption very low after the hill, meaning they use the build
up of potential energy efficiently. When plotting battery percentage versus
time(in fig. 26b), an interesting pattern appears. The best scores are not the
ones that use the longest time. To get a clearer picture of the high efficiency
races, the uncompleted races were filtered out in fig. 27b. Completing the
race quicker than the available time may be beneficial to avoid the battery
draining due to the constant consumption, ci in eq. (50). The consumption
calculation is called 50 times a second, and is scaled with the time in between
calls. For a full duration race the idle consumption would be c = cit =
0.02 %/s · 300 s = 6 %, which is a significant consumption. Some of the data
points did not have the racetime, so this was interpolated for clarity in the
plot. This is the reason we see the vertical lines.

In fig. 28 the velocity at the trigger points are plotted. Here we clearly see
that the velocity at the hill is lower than in the rest of the track. Figure 28b
show only the completed runs. The best runs have the lowest speed at the
hill, and regains the speed it had before the hill when it passes the trigger
after the hill.

46

Figure 25: The position of the cars at the trigger points. The green lines are
attempts that were able to complete the two laps.

47

(a) The battery percentage at the trigger points. The color is the battery percent-
age at race completion, if completed.

(b) The battery percentage versus time spent. The color is the battery percentage
at race completion, if completed.

Figure 26: All races, including uncompleted races.

48

(a) The battery percentage at the trigger points. The color is the battery percent-
age at race completion.

(b) The battery percentage versus time spent. The color is the battery percentage
at race completion.

Figure 27: Only completed races.

49

(a) All races, included uncompleted races.

(b) Only completed races

Figure 28: Velocity versus trigger points
50

4 Discussion

4.1 Optimisation Methods

The methods I have used in this project are just a small subset of all possible
ways of solving this problem. In this subchapter I will discuss the methods I
chose to use and how the work can continue for the driving strategy group.
All implementations are available for the members on DNV GL Fuel Fighter’s
GitLab software group11.

4.1.1 Raceline calculation

The racing line calculation was done in the beginning to ease into the project
by solving a discrete optimisation problem with a small search space. Unfor-
tunately, the results were not great without any clear reason to why. This
task was down-prioritised as there was other areas that need to get started
on and the racing line path could also be drawn manually, and used in the
other methods. For less manual work, this task could be further developed.
The next step here is to create unit tests to make sure the program functions
correctly.

4.1.2 Rapidly Exploring Random Tree

This approach has potential, as it searches a covers the search space quickly
and works for continuous spaces. The uncertainty that still remains, is the
convergence time of RRT* with the differential constraints. The remaining
work here, is to implement the system simulator to satisfy the differential
constraints.

4.1.3 Reinforcement learning

Reinforcement learning was implemented using Q-learning, which was a good
way to be introduced to reinforcement learning, and setting up the reinforce-
ment learning environment. The next step here is to expand the environment
by adding more non-linear effects to make use of the strength of reinforce-
ment learning. The reinforcement agent can also be more complex by moving
to Deep Q-networks which are more able to represent complex environments
and rewards.

4.1.4 Crowd Sourcing Simulator Compettion

Crowd sourcing the strategy calculation by having a simulator competition
was entertaining. It was a fun project to learn new technologies, like Django
and web security with API keys and signatures. However, developing the
simulator and the belonging website took quite some time away from perhaps

11https://gitlab.stud.idi.ntnu.no/fuelfighter/software

51

https://gitlab.stud.idi.ntnu.no/fuelfighter/software

more relevant project work. The viability of this method as a whole can also
be questioned. The results from the competition are only for one specific
track, within game engine which is not optimised for real world simulation
accuracy. There was also fewer participants than expected, meaning that
the data is limited. So the conclusions one can draw from this should not
be taken to be accurate. However, the fact that the slowest race is not
necessarily the most efficient appoach is surprising. This may be because the
ratio between the consumption rates are not properly balanced. With real
data of idle consumption from the car, this may be better tuned.

The simulator competition achieved multiple objectives:

� Driving Strategy data
� Show who DNV GL Fuel Fighter is and what the team does.
� Get people thinking about how to drive energy efficiently.

Ideally there should have been more trigger points along the track. This
would greatly increase the value of the data recieved. It is possible to raise
the limit of request per user per hour by sending a support ticket to Unity
Technologies, but this was not done, as this limit was detected to late to
have time to create the support ticket in time. This should definitely be
done before future simulator competitions.

Combining this simulator with reinforcement learning would also be of
interest. The lessons learned from the reinforcment algorithm can be viewed
in the simulator, and the driver can be trained in the simulator to achieve
the same results.

4.2 Usefulness For DNV GL Fuel Fighter

As this was the first Master’s thesis within driving strategy for DNV GL Fuel
Fighter, there was not much to build on. There are many possible methods
and solutions to this problem. This project have explored some of them and
gives future members gives the background and knowledge to quickstart the
process. There are still many possible directions to expand on this work. As
mentioned, one of the objectives that were fulfilled, was to showcase DNV
GL Fuel Fighter and what DNV GL Fuel Fighter do. This contributes to our
work to focus on the communication award. This competition can be hosted
again in the future, with other tracks, or driving paramters.

4.3 My Work Method

Solving this task was challenging as I started with not much background
knowledge of the subject. Including multiple approaches to this was both
useful and more exciting. If one approached halted, I could continue on other
approaches. This may have hurted the project as well, as the approaches are
not as complete as they could have been, but that is a trade-off that is worth

52

it. Had I done the thesis again, I would start with trying to adapt the heli-
copter exercises from TTK4135 Optimization and Control. This would give
me an introduction to the problem through something I already am familiar
with. The book Planning Algorithms from Steven LaVelle was a useful re-
source for getting the project on track. I received the book recommandation
from a meeting with Anastasios Lekkas(Minutes of Meeting in appendix A). I
could have greatly benefited from contacting more people at the Department
of Engineering Cybernetics.

53

5 Conclusion

Through this report I have presented varying forms of optimisations and
driving strategies for DNV GL Fuel Fighterthrough:

� Dynamic Programming
� RRT*
� Reinforcement Learning
� Crowd sourcing through a simulator competition.

The implementation in this report is not enough to give a concrete driving
strategy for the race this summer, but it is achievable with some further work
by the driving strategy group in DNV GL Fuel Fighter. RRT* and can be fur-
ther improved to minimise convergence time and optimality. A mathematical
model of the car, vehicle dynamics, and the electrical system has been pre-
sented. The simulator competition achieved many of the objectives for DNV
GL Fuel Fighter:

� Driving Strategy data
� Show what DNV GL Fuel Fighter does
� Get people thinking about how to drive energy efficiently.

This thesis has focused on the off-track, pre-race phase. Other areas to
explore is on the on-track, mid-race phase Model Predictive Control (MPC)
algorithm to calculate the corrected optimal path.

54

6 Bibliography

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schul-
man, and Dan Mané. 2016. “Concrete Problems in Ai Safety.” http:

//arxiv.org/abs/1606.06565.
Barkenbus, Jack N. 2009. “Eco-Driving: An Overlooked Climate Change

Initiative.”
Brach, Raymond M. 1997. “An Analytical Assessment of the Critical Speed

Formula.” In SAE International Congress and Exposition. SAE Interna-
tional. https://doi.org/https://doi.org/10.4271/970957.

Dubins, L. E. 1957. “On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents.” American Journal of Mathematics, 497–516.

EuroMotor. n.d. “Castor Angle, Castor Trail in Wheel Centre,Castor Off-
set, Wheel Castor Offset and Lateral Force.” Accessed January 2, 2021.
https://www.euromotor.org/mod/resource/view.php?id=21552.

Hosny, Ahmed. 2018. “API Request Signing in Django.” July 17, 2018.
https://medium.com/elements/api-request-signing-in-django-bc9389201871.

Kalm, Elle. 2007. “Design of an Aerodynamic Green Car.” http://urn.

kb.se/resolve?urn=urn:nbn:se:ltu:diva-43779.
Karaman, Sertac, and Emilio Frazzoli. 2010. “Incremental Sampling-Based

Algorithms for Optimal Motion Planning.”
Khamsi, Mohamed A., and William A. Kirk. 2001. An Introduction to Metric

Spaces and Fixed Point Theory.
Laumond, Jean-Paul, S. Sekhavat, and Florent Lamiraux. 1998. “Robot Mo-

tion Planning and Control - Guidelines in Nonholonomic Motion Planning
for Mobile Robots,” 1–53.

LaVelle, Steven. 2006. Planning Algorithms. Cambridge University Press.
Mirtich, B. 1997. “Efficient Algorithms for Two-Phase Collision Detection.”

In.
Nasir, Jauwairia, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan,

Mushtaq Khan, and Mannan Saeed Muhammad. 2013. “RRT*-Smart:
A Rapid Convergence Implementation of Rrt*.”

Neades, Jon. 2007. “Maximum Speeds for Bends Impact Vol. 2 No 1.”
Impact Vol. 16 No. 1.

Paradigm Shift Driver Development. 2017. “THE Racing Line - Four El-
ements of a Perfect Corner.” Youtube. 2017. https://www.youtube.

com/watch?v=N8qBdOs0s1E.
Poole, David L., and Alan K. Mackworth. 2010. Artificial Intelligence:

Foundations of Computational Agents, 2nd Edition.
Python contributors. 2020. “Hmac — Keyed-Hashing for Message Authen-

tication.” May 27, 2020. https://github.com/python/cpython/blob/

db5aed931f8a617f7b63e773f62db468fe9c5ca1/Doc/library/hmac.rst.
PythonProgramming. 2019. “Q-Learning Introduction and Q Table - Rein-

forcement Learning with Python Tutorial.” https://pythonprogramming.

55

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
https://doi.org/https://doi.org/10.4271/970957
https://www.euromotor.org/mod/resource/view.php?id=21552
https://medium.com/elements/api-request-signing-in-django-bc9389201871
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-43779
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-43779
https://www.youtube.com/watch?v=N8qBdOs0s1E
https://www.youtube.com/watch?v=N8qBdOs0s1E
https://github.com/python/cpython/blob/db5aed931f8a617f7b63e773f62db468fe9c5ca1/Doc/library/hmac.rst
https://github.com/python/cpython/blob/db5aed931f8a617f7b63e773f62db468fe9c5ca1/Doc/library/hmac.rst
https://pythonprogramming.net/q-learning-reinforcement-learning-python-tutorial/
https://pythonprogramming.net/q-learning-reinforcement-learning-python-tutorial/
https://pythonprogramming.net/q-learning-reinforcement-learning-python-tutorial/

net/q-learning-reinforcement-learning-python-tutorial/.
Rask, E., D. Santini, and H. Lohse-Busch. 2013. “Analysis of Input Power,

Energy Availability, and Efficiency During Deceleration for X-Ev Vehi-
cles.” SAE Int. J. Alt. Power., 350–61.

Reeds, J. A., and L. A. Shepp. 1957. “Optimal Paths for a Car That Goes
Both Forwards and Backwards.” American Journal of Mathematics, 497–
516.

Santin, J. J., Christopher H. Onder, J. Bernard, D. Isler, P. Kobler, F. Kolb,
N. Weidmann, and L. Guzzella. 2007. The Worlds Most Fuel Efficient
Vehicle - Design and Development of Pac-Car Ii. Verlag der Fachvereine
Hochschulverlag AG an der ETH Zurich.

Sato, D., and J. Itoh. 2015. “Evaluation Method of Energy Consumption
for Permanent Magnet Synchronous Motor Drive System.” In IECON
2015 - 41st Annual Conference of the Ieee Industrial Electronics Society,
005267–72. https://doi.org/10.1109/IECON.2015.7392929.

Shell Eco-Marathon. 2021. “2021 Virtual Off-Track Awards.” 2021. https:
//www.makethefuture.shell/en-gb/shell-eco-marathon/2021-programme/

virtual-programme-2021/virtual-off-track-awards.
Transportation Research Board. 2006. “Tires and Passenger Vehicle Fuel

Economy – Special Report 286.” 2006. http://onlinepubs.trb.org/

onlinepubs/sr/sr286.pdf.
U.S. Department of Energy’s Office of Energy Efficiency and Renewable En-

ergy. 2017. https://www.fueleconomy.gov/feg/atv-ev.shtml.
Watkins, Christopher. 1989. “Learning from Delayed Rewards,” January.
Wikipedia contributors. 2021. “Q-Learning — Wikipedia, the Free Encyclo-

pedia.” https://en.wikipedia.org/w/index.php?title=Q-learning&

oldid=998305166.

56

https://pythonprogramming.net/q-learning-reinforcement-learning-python-tutorial/
https://pythonprogramming.net/q-learning-reinforcement-learning-python-tutorial/
https://pythonprogramming.net/q-learning-reinforcement-learning-python-tutorial/
https://doi.org/10.1109/IECON.2015.7392929
https://www.makethefuture.shell/en-gb/shell-eco-marathon/2021-programme/virtual-programme-2021/virtual-off-track-awards
https://www.makethefuture.shell/en-gb/shell-eco-marathon/2021-programme/virtual-programme-2021/virtual-off-track-awards
https://www.makethefuture.shell/en-gb/shell-eco-marathon/2021-programme/virtual-programme-2021/virtual-off-track-awards
http://onlinepubs.trb.org/onlinepubs/sr/sr286.pdf
http://onlinepubs.trb.org/onlinepubs/sr/sr286.pdf
https://www.fueleconomy.gov/feg/atv-ev.shtml
https://en.wikipedia.org/w/index.php?title=Q-learning&oldid=998305166
https://en.wikipedia.org/w/index.php?title=Q-learning&oldid=998305166

A Minutes of Meeting with Anastasios Lekkas

Meeting was held 2020-11-24, on Teams.

57

Minutes of Meeting
With Anastasios Lekkas(https://www.ntnu.no/ansatte/anastasios.lekkas)

Minimal distance may be enough.

Some students have used MPC for autonomous docking.

Approximate to a convex, important to look at it as the shape, not as a particle. Use MPC approach.

Include energy consumption in the objective function. Numerical methods like this are extremely

strong.

Two approaches
Warm-Started Optimized Trajectory Planning for ASVs gives a quick overview of the methods.

Road map method, give waypoints. Connect them with vehicle constraints afterwards

Difficult to formulate energy.

Optmisation control as with vehicle dynamics as constraints

Find yourself into local optmimum

Need a good problem statement. If you cannot approximate energy, go for minimum distance.

optimal control best if good models in the objective function.

Switching systems
1 model for the engine mode, and 1 for the engine free mode. Changed control mode.

Try reinforcement learning. The reinforcement model don't need a model, but a good simulator.

Formulate problem, build reward function. something close to energy consumption. Try first without

switch modes.

Other Resources
Steven LaValle - planning algorithms

hybrid systems - andrew teel

At IDI: Frank Lindset computer vision, working on autonomous car

M
arkus Anthony D

ørheim
 H

o-Yen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Markus Anthony Dørheim Ho-Yen

Driving Strategy Optimisation in
DNV GL Fuel Fighter

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth

February 2021

	Introduction
	Problem Formulation
	Contributions

	Background
	's System
	Driving Strategy
	Trajectory Planning
	Racing Line
	Regenerative braking

	Mathematical Modelling
	Vehicle Dynamics
	Electrical System

	Planning Algorithms
	Dynamic Programming
	Rapidly-exploring Tree Planning methods
	Collision Detection

	Reinforcement Learning
	Markov Decision Process
	Policy Mapping
	Q-learning
	Reward Hacking

	Related Work
	The Worlds Most Fuel Efficient Vehicle - Design and development of Pac-Car II

	Implementation & Results
	Procedural Race Track Generation and Racing Line Calculation
	 Implementation
	Parametrised track
	RRT* with velocity constraints

	Reinforcement Learning
	Crowd Sourcing Through a Simulator Competition
	Results

	Discussion
	Optimisation Methods
	Raceline calculation
	Rapidly Exploring Random Tree
	Reinforcement learning
	Crowd Sourcing Simulator Compettion

	Usefulness For
	My Work Method

	Conclusion
	Bibliography
	Minutes of Meeting with Anastasios Lekkas

