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Abstract

In the future, it is believed that verification of autonomous ships must involve sim-
ulation based verification, due to the huge costs involved in real life testings. In
contrary to the car industry, where open source digital twin frameworks exists,
there is no equivalent solution for the maritime industry. There are also few studies
that shows if simulations can be trusted, moreover how they affect algorithms used
by autonomous agents such as target trackers. This thesis implements a digital twin
framework, capable of simulating camera and lidar data using the Unity game en-
gine, in order to test a simulation verification method, where a real and synthetic
dataset with common ground truths are compared using a Hellinger distance on the
outputs of a target tracker. The results demonstrate a metric that is capable of
measuring fidelity, establishing a quantitative method that can be used for future
improvements towards trustworthy simulation based verification for autonomous
marine vessels.
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Sammendrag

I fremtiden antas det at verifisering av autonome skip må gjøres ved simulerings-
basert verifisering på grunn av de enorme kostnadene som er involvert med ekte test-
ing. I motsetning til bilindustrien, hvor det finnes åpent tilgjengelige rammeverk for
digitale tvillinger, finnes det ingen tilsvarende løsning for den maritime industrien.
Det er også få studier som viser om simuleringer kan stoles på, og hvordan de påvirker
algoritmer som brukes av autonome agenter slik som målsporere. Denne oppgaven
implementerer et digitalt tvilling rammeverk, i stand til å simulere kamera og lidar
data med bruk av Unity spillmotoren, for å teste ut en validerings metode for simu-
leringer, med å sammenligne ett ekte og syntetisk datasett ved hjelp av en Hellinger
distanse fra utgangene til en målsporer. Resultatene viser en metrikk i stand til å
måle realismen til simuleringen, og som kan brukes for fremtidige forbedringer mot
en pålitelig simuleringsbasert verifisering for autonome marinefartøy.
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Symbols and Conventions

Conventions

Btype Total data size of type

Zd
type Depth buffer

εspacetype Error function

HFOVtype Horisontal field of view

Ntypes Resolution, e.i number of elements

VFOVtype Vertical field of view

_̂ Hat notation for estimate of variable _

Qspace
type Vector and point notation

xspacetype First vector element

yspacetype Second vector element

zspacetype Third vector element

wi
type Homogeneous normalization element in image space projection

Tto space
from space Transformation matrices

Spaces

d Discrete image space

i Image space

l Longitude, latitude, height coordinate space

n North, East, Down coordinate space

o Object space

v View space

w World space

Variable in not set in any space

Types

d Depth
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Symbols and Conventions

h Height

k Time increment

w Width

c Camera, e.i based on the Cartesian coordinate system

s Point cloud, e.i based on the Spherical coordinate system

r Reference model, e.i ground truth

sb Ship’s bow

ss Ship’s stern

gnss Ship’s stern

number Index of instance, e.g the initial time t0
g Gaussian

li Lidar

No type indicates the Generic type, e.i applies in general

Number Sets

M Natural numbers filtered by the spherical projection filter

N Natural numbers

R Real numbers

Physical Constants

e Eccentricity of the WGS-84 ellipsoid

re Equatorial radius of WGS-84 ellipsoid

RM Meridian radius of WGS-84 ellipsoid

RN Prime vertical of WGS-84 ellipsoid

vc Speed of light in a vacuum

Synthetic camera sensor

a Aspect ratio of a synthetic cameras image

Nc Camera resolution matrix

f Distance to synthetic cameras far plane

Fprod Dot product between mesh vertices and frustum normals

Fnormal Frustum normals

n Distance to synthetic cameras near plane

Synthetic point cloud sensor

Ry(θ) Rotation matrix around y-axis by θ degrees or radians
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Symbols and Conventions

θ Spherical parameterization variable longitude

φ Spherical parameterization variable latitude

r Spherical parameterization variable radius

nθ Discretized element of θ

nφ Discretized element of φ

nr Discretized element of r

Probability

P Gaussian covariance matrix

µ Gaussian expectation value

N Gaussian probability density function

p Probability density function (pdf)

X Random variable vector for tracking states

Z Random variable vector for tracking measurements

X Random variable for state

Z Random variable for state

x Realisation of X

z Realisation of Z

x Realisation of X

z Realisation of Z

h Non-linear measurement function for system observations

H Linear measurement matrix for system observations

f Non-linear transition function for system process

F Linear transition matrix for system process

V Innovation vector

S Innovation matrix

W Kalman filter weight matrix

w Gaussian measurement noise vector

R Measurement noise matrix

v Gaussian process noise vector

Q Process noise matrix

ANEES Average normal estimation error squared

NEES Normal estimation error squared
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Symbols and Conventions

RMSE Root mean squared error

k Time increment

AHED Average Hellinger distance

COVDIFF Covariance difference

HED Hellinger distance

Other Symbols

εv
beam Beam shape error

ψn Ships heading in NED space

εv Numerical error in depth buffer

εv
max Maximum numerical error in depth buffer
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Abbreviations

AA Autonomous Agent
AI Artificial intelligence
AIS Automatic Identification Systems
ANEES Average Normalized Estimation Error Squared
ANS Autonomous Navigation System
API Application Programming Interface
BD Bhattacharrya coefficient
CCD charged coupled device
CMOS complementary metal oxide semiconductor
CPU Central Processing Unit
DOF Degree Of Freedom
DOTS Data Oriented Technology Stack
EMR Electro Magnetic Radiation
FMI Functional Mockup Interface
FMU Functional Mockup Unity
G-buffering graphic-buffering
GNSS Global Navigation Satellite System
GPST Global Positioning System Time
GPU Graphic Processing Unity
gRPC g remote procedure call
HD High Definition
HDRP High Definition Render Pipeline
HED Hellinger Distance
HLSL High Level Shading Language
I2C Inter-Integrated Cicuit
iid independent and identically distributed
IMU Inertia Measurement Unit
Indie independent game developers
INS Inertial Navigation System
IP intellectual properties
IR Infrared (camera)
JIPDA Joint Integrated Probabilistic Data Association
lidar Light detection and ranging
LLH Longitude Latitude Height
LOD Level Of Detail
MCU Micro Controller Units
MSS Marine Systems Simulator
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Symbols and Conventions

NEES Normalized Estimation Error Squared
OSP Open Simulation Platform
PCB Printed Circuit Board
pdf Probability density function
PPK Post Processed Kinematic
PRNG Pseudo random number generator
Protobuf Protocol Buffers
radar Radio detection and ranging
RGB Red Green Blue (camera)
RMSE Root Mean Squared Error
ROS Robot Operating System
RTK real time kinematic
SCC Shore Control Center
SD Secure Digital (card)
UART The Universal Asynchronous Receiver/Transmitter
YOLO You Only Look Once
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Chapter 1

Introduction

1.1 Motivation and background
Thinking back on all the advancement there have been in artificial intelligence (AI),
it is hard to believe most of this have happened during the last decade. With
the deep learning revolution of 2012, the ImageNet challenge transformed the AI
industry forever, leading to breakthroughs in several fields. These breakthroughs
soon found its way into autonomous vehicles, fusing itself with cybernetics that
had traditionally dominated the field. Today, autonomous agents (AA) are used
in the deepest of oceans to the deepest of space, acting in environments that have
traditionally been operated by humans. Yet, despite these breakthroughs, we still
have little understanding of how AI work, moreover having methods that can tell
when they are safe to use.

In the coming decade, there will be an increasing focus on explainability in
AI, and its importance for safe autonomy. One of the reasons being classification
societies such as DNV seek to give trustworthy evaluations of future vehicles. This
is especially important in the maritime industry, where large risks needs to be com-
pensated for by safety. The steady increase in ship complexity regarding software
and systems, have not made these tasks any easier. All of this goes to show it has
become increasingly difficult to design, build, operate and assure maritime vessels.

When handling problems yet to see any solution, it is wise to remember oneself
of the fundamentals in the scientific method. The tradition in engineering science,
have been to gather data through experiments in order to validate methods. How-
ever, due to the complex operating environment AAs are subject to, little attention
have gone to designing experiments for reproducibility. Moreover, the lack of at-
tempts of reproducing experiments, indicates an entrance barrier where information
from the original experiments or available resources, are missing. As a consequence,
subfields within AI such as target tracking, computer vision and machine learning,
have relied on relatively low quantities of datasets in order to validate scientific find-
ings. This has resulted in a small and fragile test coverage for AAs, despite them
being sensitive to data from different operating environments [1], the risk of dataset
biases [2] and the results validity if something where to happen to the original data.
The latter being very relevant for data driven methods [3].
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1. Introduction

Since the probability of bad research have shown to increase with data biases, com-
plexity and few samples [4], a first step towards trustworthy AI, should simply be
about making tests and results easier to reproduce.

1.2 Problem description and main ideas
An approach to handle such challenges, is through simulations. This has been on
the agenda for the car industry for several years, but in resent years, the maritime
industries have started to have their take on this as well. Especially the focus have
gone to modeling scenarios based on the automatic identification systems (AIS),
prevalent in most big ships today. Here AIS have been used for both risk identi-
fication [5] and as a basis for simulation-based verification [6]. Unfortunately, as
concluded in [5], AIS data alone is not sufficient for evaluating safety of an AA,
since agents rely on data from high fidelity sensors, such as camera images, that can
be misinterpreted. In addition, not all boats of relevance uses AIS, limiting relevant
cases for safety assessments.

Several frameworks have been created to address these issues for the car indus-
try. Carla [7] is one of many car simulators that supports sensor simulations through
the use of game engines. But sensor simulations are just a piece of the puzzle. The
framework must also allow engineers and scientists to conduct studies using their
own external platforms for AA, vessel models and scenario customization. This is
known as a digital twin framework, a synthetic replica meant to substitute real life
systems for simulation based verification [6].

However, in the maritime sector there is no known digital twin framework
available for the public with such functionalities. With this said, there are multi-
ple initiatives that are driving a development towards such a framework. The open
simulation platform (OSP) makes it possible to exchange maritime models and soft-
ware packages across companies [8]. Implementation of an AA for the milliAmpere
ferry, has been done using the robot operating system (ROS) as a platform, capable
of being used in both simulations and on real hardware [9]. In addition, the same
ferry has also been virtualized into a simulated Trondheim environment, made by
students using the Unity game engine [10].

This simulator is known as Autoferry Gemini, an open source project aimed
towards creating an equivalent framework for ships as Carla is for cars. The platform
supports simulation of multiple electro magnetic radiation (EMR) sensors, through
the use of the Unity game engines render pipeline. Models of ray casting sensors,
such as lidar and radar, have been shown to run on a graphics processing unit (GPU)
using the render pipelines depth buffers [11]. At the beginning of this master thesis,
this technique was still limited as modeling errors named beam shape errors, emerged
through the use of depth buffers [12]. Ray drop modeling for lidars is also absent
in contrary to other simulators aimed at autonomous cars [13]. Camera sensors is
also modeled, but the lack of available 3D models limits the sensors possible fidelity.
However, most of these limitations have only been observed qualitatively, missing a
quantitative method to determine the different sensor models fidelity.

2



1. Introduction

This motivates the need of metrics that can be used to measure the fidelity of a
simulation, such that improvements for the sensor models can be measured. Several
methods already exist for quantifying image and video fidelity [14, 15]. Likewise,
for AA relying on sensor fusion, well established performance metrics already exist
considering target tracking [16]. Despite this, little attention have been given to
measure the AA’s change in performance, when switching between real and synthetic
datasets. This shows a severe gap in knowledge towards a future with simulation
based verification of AA.

1.3 Contributions
The main contribution of this thesis is to enhance Autoferry Gemini, reducing the
beam shape error, improving the lidar model and expanding the simulator into a
digital twin framework, capable of generating sensor data in a virtual operating envi-
ronment using scenario inputs. Based on this, a method for verifying the framework
will be done by first creating two marine dataset, one from reality, and one repro-
duced synthetically from the other. The second step will use a Hellinger distance
metric to compare the outputs of the same target tracker running on both datasets.
The belief is that since the datasets ought to be identical with respect to states, this
metric should be able to tell the degree of reproducability of sensor data between
simulation and reality, and thus quantifying the sensor models fidelity. Further,
by studying established performance metrics for the tracker, this new metric can
be contextualized and additionally analysed from known knowledge in the field of
sensor fusion. To summarize, this entails:

• Creating a digital twin framework, capable of generating sensor data for AA
from scenario inputs.

• Improving Autoferry Gemini’s lidar model, by among others reducing the beam
shape error.

• Creating two marine dataset containing lidar and camera data, one based on
reality, and one reproduced synthetically from the other.

• Introducing a metric that measures the synthetic datasets fidelity
• Study how a tracker behaves between synthetic and real datasets

3



1. Introduction

1.4 Outline of thesis
The thesis begins with describing the digital twin framework in Chapter 2, cover-
ing the platform compositions, architecture and communication that makes up the
framework. This is followed by the creation of the real dataset in Chapter 3, describ-
ing the test setups, sensor and scenario recordings before ending with ground truth
processing. The corresponding synthetic dataset is described in Chapter 4, where
a thorough analysis of the depth buffer is done to reduce the beam shape error,
before the lidar and camera models from [12] are discussed and improved. Chapter
5 starts out with explaining the theory behind target tracking, before the synthetic
data is compared to its real counterpart, using various metrics and a discussion of
their results. Finaly, Chapter 6 discusses the major findings from the thesis, before
giving a final conclusion and suggestions of topics for further work. At the end of
the thesis, 2 appendices describe the author’s involvement as a project manager for
the research group mentioned in the Acknowledgements. Appendix A shows the
project plan and divison of labour during the project, while Appendix B contains
all the workpackage descriptions the researchers where given.

4



Chapter 2

Digital twin framework

Autonomous

agent

Real

environment

Synthetic

environment

Digital twinReal application

Perceptions Perceptions

ActionsActions

Figure 2.1: In autonomy, a digital twins purpose is to determine an AAs safety
before being deployed into the real application

DNV have previously demonstrated the use of a digital twin framework for doing
simulation based verification [6], where they focused on the AAs actions in various
scenarios. In this thesis we will focus on the agents perceptions in figure 2.1, ad-
dressing the fidelity of its exteroceptive sensor models and its following influence on
the AAs behaviour. To handle this problem, several software platforms will be used
in order to simulate sensors, customize scenarios, and making the data available for
the AA. In addition, a method for validating the simulation fidelity is proposed.
To achieve this, a software architecture is made using high performant communica-
tion links between the platforms to handle the big data traffic caused by simulating
sensor data. We will start with introducing the platforms in Section 2.1, before
presenting the framework 2.2.

5



2. Digital twin framework

2.1 Platforms
When software becomes to large to be handled by a single team or person, connecting
existing software platforms together into a framework becomes a viable solution. It
is important to be aware that the resulting framework will itself be considered a
platform, but greatly abstracted with loosely connected modules making up the
functionality. In this section a brief introduction of the platforms used for creating
the Gemini frame are given in the following sections.

2.1.1 Open Simulation Platform
The open simulation platform (OSP) is an industry initiative for creating a coop-
erative simulation platform for systems engineering and testing, targeted on shar-
ing maritime models without compromising companies intellectual properties (IP).
These models can be anything from a propeller hooked to a ship engine, to dynamic
positioning systems that automatically maintains the vessel position.

The initiative started with DNV GL observing the increase of "smart" equip-
ment being installed in ships, where the assurance process became increasingly diffi-
cult to maintain and perform as technologies progressed. The interconnection these
equipment could have towards each other also created challenges in preserving IP
when designing new ship systems.

OSP handles these issues by introducing an open platform where companies
can create models in what is called functional mockup units (FMU). These can
be created by any programming language of the companies liking, where the FMU
functions as a wrapper to secure companies IP, as well as creating a standard for
software sharing. Following this standard, the units can communicate with each
other, allowing third party software to function as decoupled modules in a digital
twin framework. However, due to OSPs architecture, the units only support low data
rates, making them unsuited for transferring big data streams commonly found in
autonomous vessels.

Regardless, any digital twin framework must be able to integrate different ven-
dors equipment in the simulation process in order for being useful in the long run.
Using OSP as a bridge to existing software in the industry, makes it a crucial plat-
form to have in a digital twin framework.

2.1.2 Unity
Unity is a cross-platform game engine created and maintained by Unity technologies
since 2005. It has previously been associated with the production of low fidelity video
games from independent game developers (Indie), but in recent years it has gradually
been aiming at the high fidelity game markets, known as AAA-games. This shift
has also given the engine a reputation in the automotive simulator market.

It is often compared to the Unreal engine, where it is perceived to have lower
performance and fidelity because of its inferior c-sharp scripting language. Unity’s
investment towards a data oriented technology stack (DOTS) have in recent years
challenged this perception, even though DOTS is still only in a development phase.

6



2. Digital twin framework

Regardless, this have not stopped automotive simulators such as Carla and LGSVL
to use the engine for their digital twin frameworks.

With this said, more common AAA game engines still seems to have an edge
regarding image fidelity. With Unreal 5’s recent development of real-time Global
Illumination from their Lumen system, in conjunction to the virtual geometry im-
plementation using Nanite, Unreal 5 is capable of using high-poly 3D models, tra-
ditionally only being used for movie renderings. Cryengine is another popular game
engine, where real time ray-tracing does not require specialized GPU hardware to
function, as is still the case for both Unreal and Unity. These engines do however
lack documentation and a sizeable community when it comes to customizing the
render process. This has to do with their marketing traditionally being focused
towards professional game studios. As a consequence, the support for customizing
the engines rendering process is at the very least an entrance barrier for developers
starting outside game companies.

In comparison, Unity’s new scriptable render pipeline system is better docu-
mented, allowing developers to more freely design how and what the GPU processes.
The high definition render pipeline (HDRP) is an example of this, that demonstrates
Unity’s capability of producing similar graphics as seen from AAA game engines in
general. The engines additional support of general purpose GPU programs, allows
Autoferry Gemini to customize render pipelines for non traditional applications,
such as simulating radar and lidar sensors [11, 12].

Unity is not considered open source, but comes with a fee if the game is commer-
cially released. Another option is the Godot engine, which might be an alternative
due to it being open-source. With this said, much of the core functionalities that
comes with the commercial engines would need to be implemented from scratch.
The open-source approach would therefore require expertise not commonly found
outside the video game industries.

2.1.3 Robot Operating System
The robot operating system is a collection of robotics software customizable to fit
a vast range of robots and vehicles. It is considered to be a middleware platform,
capable of communicating with low level electronic devices, while maintaining much
of the benefits of higher level abstractions found in everyday computers. This mix-
ture makes the platform particular adequate for autonomous vessels, as high level
abstractions required for target tracking can be implemented along with low level
vessel controllers that runs with faster intervals. However it is worth noticing that
ROS is not a true real time operating system, but with the release of ROS 2.0 is
capable of supporting real-time code. ROS is currently being used for autonomous
vessels such as the milliAmpere ferry [9] as a platform for integrating a AA together
with actuators and sensors.

7



2. Digital twin framework

2.1.4 Arduino
Arduino is a low level open source electronic platform, often used for prototyping
the logic driving various printed circuit boards (PCB) with micro controller units
(MCU). The MCUs are programmed using the Arduino language, a derivation of
the C++ language, though substantially limited due to the MCU memory and
processing power.

Several PCB devices supports the Arduino platform, ranging from sensors to
data storage units. The the universal asynchronous receiver/transmitter (UART)
and the inter-integrated cicuit (I2C) are common industry standards used for com-
municating between such devices. These are known as communication protocols,
which forms a network of specialised hardware. Due to Arduinos rapid prototyp-
ing philosophy, the user is seldom exposed to the technical details communication
protocols, MCU and sensors have on the PCB devices.

Even though the Arduino platform uses various industry standards as those
mentioned, the platform is not common to use in industrial and production cases.
The ease of designing, choosing PCB devices and the rapid prototyping the platform
offers, have however been sought after in creating some of the sensor recorders we
will come back to in Section 2.2.2.

2.1.5 gRPC
For connecting the platforms used in the Gemini Frame, a general high performance
messaging system is needed to transfer both big and small data at high rates. The
g remote procedure call (gRPC) platform is a system made by Google for streaming
data across servers that uses different data systems. This is done by setting up
transmitters and receivers on an abstract level, using a shared message definition
to serialize and de-serialize data during transfers. Messages can follow multiple se-
rialisation techniques, but protocol buffers (Protobuf) are preferred due to it being
supported by multiple programming languages, and thus multiple different plat-
forms. In addition, Protobuf supports big data transfers such as raw image streams
with rates up to 30-60 frames per second [17]. To achieve this, gRPC relies on
creating specialised service programs acting as data transceivers on the client and
server side, by auto-generating code from its API language.
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2.2 Framework
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Scenario
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RGB, lidar
data

Unity
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Synthetic
EMR sensor

recorder

Digital Twin Framework

Synthetic 
ROS Bag

Vessel
transformations

Figure 2.2: The digital twins framework architecture

Connecting some of the platforms mentioned in Section 2.1 forms a digital twin
framework. In this section, we will briefly cover the composition of the framework,
before introducing a method to validate it with respect to the digital twins purpose
(Figure 2.1).

2.2.1 Composition
Previous frameworks have used AIS data to create scenarios in a low fidelity simu-
lating environment [6]. Usually this have consisted of vessel transformations such as
position and heading at sea. The same concept is used here, were transformations
are feed into a scenario generator which creates a scenario composition of boats
roaming around an environment. These vessel movements are feed into Autoferry
Gemini [12] were lidar and camera sensors are modeled and transmitted further
down the data pipelines. At the end, ROS is used to record the data, storing it
as messages in what is called a ROS bag. To create the data pipelines, gRPC is
used as a middle layer between these platforms, functioning as a glue that holds the
framework together 2.2.

2.2.2 Validation
In order to validate the digital twin framework, a method is required to address
the fidelity of the simulator. Using the framework described in Section 2.2.1, vessel
transformations create a synthetic dataset containing sensor data. Recording a real
dataset with sufficient sensors, a synthetic replica can be made from the real data.
Since the purpose of a digital twin is to check if AAs are safe for real applications,
we can test the AAs perception on the two datasets using existing algorithms. A
target tracker in this case makes it possible to evaluate several metrics considering a
AAs performance. Comparing the metrics from the two datasets tells us if analysis
of AAs made by using synthetic data can be trusted.
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Chapter 3

Real Dataset

Figure 3.1: Drone photo from scenario 4 during the experiments.
Photo: Mikael Sætereid / Fosen innovasjon

In order to validate the digital twin framework using the architecture in Section
2.2.2, the thesis required more data than existing maritime datasets had at that
time. This involved planning several maritime scenarios involving interactions with
boats and recording multiple sensors of interest to validate the framework. These
recordings needed to be setup, both by creating new equipment and by using existing
sensor rigs with exteroceptive sensors. Finally, an experiment was performed by a
research group consisting of several master and PhD students, dividing the labour of
acquiring data and processing the result. This Chapter begins with describing the
dataset content needed to validate the digital twin framework, before an insight of
the experiment setup is given. Lastly, Section 3.3 goes through the final recordings,
post processing and data validation procedures.
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3. Real Dataset

3.1 Dataset content
Since the digital twin framework is based on the synthetic sensors from Autofery
Gemini [12], this requires recordings of maritime scenarios with electro magnet-
ics radiation (EMR) sensors in order to compare real with synthetic sensor data.
Ground truth data for position, velocity, and heading of the participating boats
is also required to be able to reproduce the scenario composition, in addition to
the tracker needing target positions and velocities to produce some of the metrics
(Section 2.2.2). In order to properly validate the framework, the tracker also needs
to be subjected to several scenarios, to see how its performance varies. We begin
with introducing the essential sensors recorded in the dataset, before describing the
scenario composition in Section 3.1.2.

3.1.1 Sensors
Autoferry Gemini is capable of simulating lidar, radar, RGB and IR cameras, but
to limit the scope, we will only use the lidar and RGB cameras in this thesis. In
addition, inertia measurement units (IMU) and global navigation satellite systems
(GNSS) are needed to obtain ground truth data.
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3. Real Dataset

Lidar

Figure 3.2: Point cloud of a boat

Light detection and ranging (lidar) sends and receives infrarad light rays in an
intervall of τ in order to determine the range to a nearby object. This is done by
using the the speed of light vc in a vacuum or in the medium the lidar is operated
in to estimate the range to an object:

rli = vcτ

2 .

This tells us the range to an object for one ray instance. Usually lidars are equipped
with multiple lasers, and are rotated in order to form points of the surroundings.
Several different lidars exist, but the one presented here shoots rays in spherical
coordinates, where each point is represented with a latitude θ and longitude φ:

Qli = r

sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)

 . (3.1)

Usually lidar sensors gives a collection of points from a full rotation, creating what
is knows as a point cloud. An example of this is seen in Figure 3.2
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RGB camera
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Focal lenght

Focal point

Image chip

Field of view

Figure 3.3: Illustration of a cameras functioning

Cameras rely on collecting photons using an image chip usually made of either com-
plementary metal oxide semiconductors (CMOS) or charged coupled devices (CCD).
These chips collects photons of all wavelengths close to the visible light spectrum,
using small grid cells known as pixels to form an image. This creates what is known
as a monochrome camera. For color cameras, color filters are used to separate red,
green an blue wavelengths into individual pixels, usually forming what is known to
be a Bayer filter.

Cameras are often accompanied with objectives, composed of lenses, mirrors
or a combination of them to focus incoming light rays onto the image chip. The
objective allows the camera to see different field of views depending on its focal
length and chip size. A quick illustration of this is seen in Figure 3.3

GNSS reciever

The global navigation satellite system (GNSS) uses satellites to determine a re-
ceivers longitude, latitude and height position on the earth. It consists of several
satellite systems depending on the receivers location on the earth, but in european
waters Galileo is the most prominent. The satellites broadcasts their orbital po-
sition, timestamped with a very precise atomic clock which is synced between the
satellites. From this, the position is determined by having at least 3 different satel-
lite messages interpreted by the GNSS receiver, giving meter to millimeter precision
depending on the data processing technique and the receivers antenna. In addition
to satellites, base stations on the ground can also broadcast correction data to the
receiver to enhance its precision, using a processing technique called real time kine-
matics (RTK) [18]. Some receivers also supports logging of raw sensor data, such
as pseudorange, carrier-phase, Doppler and signal to noise. This allows for non real
time processing techniques such as post process kinematics (PPK) [18], which can
achieve an even higher precision than with RTK, by using correction and raw sensor
data after the experiments have taken place.
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3. Real Dataset

IMU

Inertial measurement units (IMU) measures a body’s spesific force, angular rate and
sometimes orientation. It consists of several sensors including accelerometers, gyro-
scopes, and occasionally magnetometers combined with micro controllers to calculate
the measurements from the sensor outputs. In navigation it is often combined with
GNSS receivers to form an inertial navigation system (INS), which combines the
high update rate from the IMU with the absolute position from the GNSS receiver
to form a more reliable and usually precise positioning system.

3.1.2 Scenario composition

Location

Ownship

Targets

Figure 3.4: Scenario setup for workpackage R2 with a spesified location, ownship
containing EMR sensor modules and targets with ground truth data available

The scenarios takes place at Ravnkloa Tronhdeim in order to make use of the ex-
iting synthetic operating environment for Autoferry Gemini [12]. Here an own-
ship equipped with EMR and positioning sensors are subjected to target boats ap-
proaching the vessel from different angles. To reproduce the scenarios, each boat is
equipped with ground truth sensors.
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3.2 Experiment Setup
From the scenario composition in Section 3.1.2, the research group acquired access
to the milliAmpere ferry [9] as ownship, accompanied by Finn and Havfruen as
target boats. Of these, milliAmpere was equipped with EMR sensors and ground
truth sensors, and the target boats with ground truth sensors. In addition, 3 base
stations where needed to log extra data of importance. The research group also
divided the experiment setup into separate responsibility areas:

• Ingunn Kjønås created scenario descriptions
• Øystein Kaarstad Helgesen configured the ownship for sensor logging
• Magne Sirnes setup a basestation from land to log additional sensor data
• The author fixed ground truth sensors for the target boats

3.2.1 Ownship
The ownship milliAmpere is an autonomous passenger ferry, designed to operate
in urban areas to transport people across rivers and channels as an alternative for
bridges. Several departments at NTNU uses the ferry for research purposes, in
addition to master and PhD projects.

Description

The ferry is bidirectional, and are steered by two azimuth thruster driven by lead-
acid batteries. On the top of the ferry, a collection of EMR sensors are attached
to a sensor rig. Under the roof, two separate computers running ROS are used to
gather data from the sensor rig and for control and navigation. Images of the ferry
can be seen in Figure 3.5, alongside with pictures of the 3D model, and dimensions.

EMR sensor rig

The sensor rig attached to milliAmpere consists of 5 RGB and IR cameras, 1 lidar
and 1 radar, seen in Figure 3.6.

The RGB cameras are evenly spread across the rigs azimuth axis, starting with
the front camera which is aligned with the vessels longitudinal axis. Each camera
consist of a FLIR BFLY-PGE-50s5C-C image sensor, attached to Kowa LM6JC
objective which is pitched 15 degrees forward. This gives each camera 2448× 2048
colored pixels with a 82◦ theoretical field of view. Due to bandwidth issues towards
milliAmperes computers, only the 3 frontal cameras are used with an update rate
of 5Hz.

For the lidar, a Velodyne VLP-16 Puck is attached upside down, rotated 57.3◦
clockwise relative to the sensor rigs front camera direction, seen from above. It
consists of 16 lasers spinning at a 10Hz revolution rate with a theoretical distance
of 100m from the lidars center.

The other sensors are listed in Figure 3.6, but are not of importance in this
thesis.
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Starboard GNSS antenna

Figure 3.5: Real and synthetic ownship model with dimensions.
Real photo: Mikael Sætereid / Fosen innovasjon

Ground truth sensors

In addition to the sensor rig, milliAmpere is equipped with sensors for INS. First,
the Xsens MTI-20-2A5G4-DK is used as the vessels IMU. This is combined with
two GNSS antennas separated 203 cm from each other, mounted at the roof of
milliAmpere seen in Figure 3.5 as red and green dots. These are connected to a
Hemisphere Vector VS330 which calculates both position and heading of the vessel.
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Item number Part Description
1 Radar Simrad 4G | Broadband radar
2 IR camera FLIR Boson 640 | 95◦ (HFOV)
3 Lidar Velodyne Puck | VLP-16
4 Image sensor FLIR Blackfly GigE | BFLY-PGE-50S5C-C, Color
5 Camera objective Kowa LM6JC | 2/3" 6mm MP C-Mount Lens

Figure 3.6: Ownship sensor rig description
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3.2.2 Target ships
Havfruen and Finn are two civilian boats hired inn to function as target ships it the
experiment. Havfruen functions as a medium sized boat while Finn functions as a
small sized boat to test the trackers performance in different target cases. The boats
are equipped with GNSS sensors to establish ground truths, but uses two different
systems with different precision.

Description

Havfruen is a cabin cruiser equipped with two high precision target sensor rigs at
its roof top, seen in Figure 3.7 as red and green dots. Finn is a small fishing vessel,
equipped with two low precision target sensor rigs at its bow and stern positions
marked in the same figure as for Havfruen.

Low precision target sensor rig

Originally the plan was to use high precision target sensor rigs for both target
ships, but due to technical issues before the experiments took place, an emergency
solution was used. Instead two Garmin eTrex 10 spaced 293cm apart was used as
a substitution.
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Figure 3.7: Real and synthetic target ship models with dimensions.
Real photos: Thomas Kaland / NTNU
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Figure 3.8: Architecture for the high precision target sensor rig

The high precision target sensor rig consists of a GNSS receiver (ZED-F9P), IMU
(BNO080 ) and a motherboard which handles communications (Figure 3.8). Both
sensors outputs raw data into two data logging units for redundancy. This allows
the use of PPK processing after experiments. In addition, a 20cm ground plate is
placed under the GNSS antenna to reduce multipath disturbances [19], increasing
the precision further. Since the IMU contains a magnetometer, components with
non-magnetic properties are mostly used, such as plastic and stainless steel. The
fully assembled target sensor rig and its bill of material can be seen in Figure 3.9.

Data logging is done via a SD card reader, in addition to a computer using a
program called RTKLIB [20, 21], storing the data in RINEX 3.0 file format. The
motherboard is used for serial communication and supplying power to the different
PCBs. This is done with I2C towards the IMU, and a UART connection towards
the GNSS receiver in order to free up bandwidth for the different serial busses.

The GNSS receiver is configured by using the manufacturers software called
U-center, while the IMU is configured through Sparkfuns IMU library for Arduino.
We set the receivers update rate to 5Hz, and enable the UBX-RXM-RAWX and
UBX-RXM-SFRBX messages which contains the sensors raw data. For the IMU
we set a update rate of 300Hz, timestamping using the GNSS receivers GPS time
(GPST) in combination with the motherboards internal clock.
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Item number Part Description
1 SD reader SparkFun OpenLog (micro SD)
2 Mounting rack 3D printed
3 GNSS reciever SparkFun GPS-RTK-SMA Breakout - ZED-F9P
4 Mother board SparkFun Pro RF - LoRa, 915MHz (SAMD21)
5 IMU SparkFun VR IMU Breakout - BNO080
6 Antenna plug SMA plug for GNNS antennas
7 GNSS antenna Multi-Band Magnetic Mount Antenna - 5m
8 Ground plate Ø20cm, 1mm thick steel plate
9 Casing IP68 graded ABS casing
10 USB USB-A cable with water proof sealing

Figure 3.9: Target ships sensor rig description

To protect the electronics, the rig uses a water tight (IP68) casing dimensioned to be
bouyant in case of an accident. To preserve the IP68 grading, blue silicone is used
for mounting the antenna plug and a waterproof sealing for the USB cable. Inside
the box, a 3D printed mounting rack secures that all connectors of the different
PCB’s are accessible during debugging.
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3.2.3 Base Stations
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Figure 3.10: Position of base stations

In conjunction with the sensor rigs attached to the boats, base stations spread
across Trondheim (Figure 3.10) is utilized to gather additional data. Firstly, GNSS
correction data is gathered for the participating boats, including the NTNU base
station for milliAmpere’s RTK positioning, and Søremsåsen base station for logging
data for PPK positioning for Havfruen. An additional basestation at Ravnkloa is
used to log additional IR and radar data from the scenarios, for Magne Sirnes’s
research of joint localization and tracking [22].
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3.2.4 Scenario descriptions
Following the scenario composition in Section 3.1.2, Ingunn Kjønås was responsible
for designing scenarios. A more detailed scenario description is therefore found
in Section 4.2.1 in her project thesis [23]. Originally 15 scenarios operating at
Ravnkloa was designed, but due to recording issues for ground truth data during
the experiments, only scenarios from the 15.09.2020 was obtained (Section 3.3).
The scenarios was intended to fulfill several topics relevant for sensor fusion, such
as obscured targets and varying target maneuvers. Figure 3.11 shows an example of
this, in addition to defining colors, stop and end positions used for the contending
ships throughout this chapter.
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Figure 3.11: Scenario example. Star icons indicates the end positions of vessels,
while circles indicates the start positions of the vessels for the scenario

In total, 9 scenarios was planed for the first day of testing, illustrated in Figure
3.12. The first two scenarios was designed to study a ferry crossing a channel. 3-4
consisted of evasive maneuvers from a halted ferry at different distances, while 5 had
the Finn boat stop to avoid collision while Havfruen performed an evasive maneuver.
6 and 8 had the target boats follow a line or a constant bearing maneuver, creating
obscured target situations. 7 had a similar purpose, where obscured targets suddenly
separated to create a surprise situation for the autonomous system. The last scenario
focused on a target suddenly appearing out of a tunnel, while a secondary target
held a constant course on the opposite side.
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Figure 3.12: Planed scenarios for the first day. The star icons indicates the end
position of the vessels during the scenarioes, while circle indicates the beginning.
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3.3 Data acquisition
Using the experiment setup described in Section 3.2, tests was conducted at Ravn-
kloa in Trondheim between 15.09.2020 and 17.09.2020, performed by a research
group of 5 peoples. Of these, Ingunn Kjønås and Øystein Kaarstad Helgesen was re-
sponsible for sensor recordings and piloting of milliAmpere during the experiments.
Finn was piloted by Michael Ernesto Lopez, while the author was responsible for the
ground truth recordings in addition to piloting Havfruen. Magne Sirnes managed
sensor recordings at Ravnkloa basestation, but with no relevance for the thesis.

3.3.1 EMR recordings
Using the ownship’s sensor rig in Figure 3.6, 4 different EMR sensor types was used
in the scenario recordings. Some issues where present during the experiments, but
sufficient for the purposes of the thesis.

It was discovered that the frontal camera was not in correct focus, in addition
to the camera specifications lacking correct calibrating parameters with regards to
the field of view. Fortunately, the other camera images had better focus, considered
to be good enough for the purposes of this thesis. The lidar data had no apparent
issues in the recordings.

3.3.2 Ground truth recordings
During the experiment, several technical issues occurred that resulted in loss of
ground truth data for the participating ships. First consisted of a malfunctioning
IMU, remedying one of the target sensor rigs useless for estimating heading with
only the IMU. Second issue involved communication error with the remaining IMU.
Fortunately all the GNSS receivers functioned well during the first day of experi-
ments.

The remaining test days, GNSS data from the Garmin units was lost due to
memory issues, and logged data from Havfruen turned out to be error messages
instead of GNSS data. Because of these issues, only sufficient datasets recorded for
scenario 3 - 9 the first day was obtained (Figure 3.13).

26



3. Real Dataset

6
3
°2

6
'N

6
3
°2

6
'0

5
"N

Latitude

1
0
°2

3
'1

5
"E

1
0
°2

3
'3

0
"E

1
0
°2

3
'4

5
"E

L
o
n
g
itu

d
e

S
c
e
n

a
rio

 3

 1
5
-s

e
p

-2
0
2
0
 1

1
:5

8
:0

5
 to

 1
2
:0

2
:4

5

E
s
ri, H

E
R

E

6
3
°2

6
'N

6
3
°2

6
'0

5
"N

Latitude

1
0
°2

3
'1

5
"E

1
0
°2

3
'3

0
"E

1
0
°2

3
'4

5
"E

L
o
n
g
itu

d
e

S
c
e
n

a
rio

 4

 1
5
-s

e
p

-2
0
2
0
 1

2
:0

8
:0

0
 to

 1
2
:1

0
:3

9

E
s
ri, H

E
R

E
6
3
°2

6
'N

6
3
°2

6
'0

5
"N

Latitude

1
0
°2

3
'1

5
"E

1
0
°2

3
'3

0
"E

1
0
°2

3
'4

5
"E

L
o
n
g
itu

d
e

S
c
e
n

a
rio

 5

 1
5
-s

e
p

-2
0
2
0
 1

2
:2

1
:1

5
 to

 1
2
:2

4
:0

0

E
s
ri, H

E
R

E
6
3
°2

6
'N

6
3
°2

6
'0

5
"N

Latitude

1
0
°2

3
'1

5
"E

1
0
°2

3
'3

0
"E

1
0
°2

3
'4

5
"E

L
o
n
g
itu

d
e

S
c
e
n

a
rio

 6

 1
5
-s

e
p

-2
0
2
0
 1

2
:3

4
:3

0
 to

 1
2
:3

6
:1

0

E
s
ri, H

E
R

E

6
3
°2

6
'N

6
3
°2

6
'0

5
"N

Latitude

1
0
°2

3
'1

5
"E

1
0
°2

3
'3

0
"E

1
0
°2

3
'4

5
"E

L
o
n
g
itu

d
e

S
c
e
n

a
rio

 7

 1
5
-s

e
p

-2
0
2
0
 1

2
:4

3
:2

8
 to

 1
2
:4

6
:2

5

E
s
ri, H

E
R

E
6
3
°2

6
'N

6
3
°2

6
'0

5
"N

Latitude

1
0
°2

3
'1

5
"E

1
0
°2

3
'3

0
"E

1
0
°2

3
'4

5
"E

L
o
n
g
itu

d
e

S
c
e
n

a
rio

 8

 1
5
-s

e
p

-2
0
2
0
 1

2
:5

1
:2

8
 to

 1
2
:5

3
:0

9

E
s
ri, H

E
R

E
6
3
°2

6
'N

6
3
°2

6
'0

5
"N

Latitude

1
0
°2

3
'1

5
"E

1
0
°2

3
'3

0
"E

1
0
°2

3
'4

5
"E

L
o
n
g
itu

d
e

S
c
e
n

a
rio

 9

 1
5
-s

e
p

-2
0
2
0
 1

3
:0

3
:4

5
 to

 1
3
:0

4
:3

9

E
s
ri, H

E
R

E

Figure 3.13: Recorded scenarios from the first day. The star icon indicates the
end position of the vessels during the scenarioes, while circle indicates the beginning
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Post processing and Validation

Since no IMU data was recorded for the participating boats, it was decided to base
the ground truth solely on the GNSS data to form a 3 degree of freedom (DOF)
ship description consisting of north coordinate yn, east coordinate xn and heading
ψn relative to Ravnkloa base station with longitude yl

0 and latitude xl
0 given in

Figure 3.10. This was done by first interpolating the GNSS data to 10 Hz to remove
the unequal update frequencies between the different receivers. Estimating heading
would then be possible as the data would be synchronized in GPST. Finally the
data was transformed from Longitude, Latitude, Height (LLH) to North, East, Down
(NED) using the Marine Systems Simulator (MSS) toolbox [24, 25]:

xn = xl − xl
0

atan2(1, RM) , (3.2)

yn = yl − yl
0

atan2(1, RN cos(xl
0)) , (3.3)

where the ships longitude yl and latitude xl were calculated for Havfruen by PPK
using the open source software package RTKLIB [20, 24], single point processed
GPX data from the handheld Garmin eTrex 10 units for the Finn boat, and RTK
data from milliAmperes Hemisphere VS-330.

As we are only interested in North and East positions, the reference ellipsoid
WGS-84 is regarded to be sufficient for satellite navigation systems instead of using
the more complex physically based Earth geoid. To account for the Earths elliptic
shape, the prime vertical RN and the meridian radius RM were calculated as [24]:

RN = re√
1− e2 sin(xl

0)
, (3.4)

RM = RN
1− e2√

1− e2 sin(xl
0)
, (3.5)

using the eccentricity e = 0.0818 and equatorial radius re = 6 378 137m parameters
from WGS-84. Finally, heading is estimated by calculating the angle between the
GNSS antenna positions, placed at the ships bow (sb) and stern (ss):

ψn = atan2(yn
sb − yn

ss , x
n
sb − xn

ss) ∈ [−π, π), (3.6)

giving an angle relative to the North direction.
To validate the GNSS accuracy, a plot of the GNSS recivers relative positions

yn
sb−yn

ss , x
n
sb−xn

ss was made for the Finn boat and Havfruen (Figure 3.14) to be able
to determine and exclude the parts where the GNSS data was likely to be corrupted.
The idea being the closer a measured point was to the ground truth circle, the higher
the accuracy for that measurement would be.
From this it was seen that Havfruen generally excelled high accuracy for all scenar-
ios except scenario 5, and small parts of 3 and 9, while Finn struggled generally
with ground truth for every recorded scenario. The size of this relative error was
quantified by:

εn
gnss =

∣∣∣∣√(yn
sb − yn

ss)2 + (xn
sb − xn

ss)2)− |Qn
r |
∣∣∣∣ , (3.7)
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Figure 3.14: GNSS distance errors for both target ships. Using the hand measured
distance between the antennas from Figure 3.7 as ground truth, we can see how well
the GNSS receivers performed during each scenario

with |Qn
r | being the ground truth distance between the GNSS antennas described

in Section 3.3, valued as 2.93m for Finn and 2.01m for Havfruen. Figure 3.15
shows that the error is most often at centimeter precision and occasionally decimeter
precision for Havfruen, while for the Finn boat (Figure 3.16) its meter precision.

As for the ownship milliAmpere, the Hemisphere VS-330 did not provide any
raw GNSS data nor did it give positional information for each GNSS antenna on the
ship, only the quality of measurement from the manufacturers GPGGA messages.
This told if the received position was in the float or fixed state, assuming the error
would be of decimeter precision for the first and centimeter precision for the latter,
seen in Figure 3.17.
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Figure 3.15: Relative error between GNSS recivers for Havfruen
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Figure 3.16: Relative error between GNSS recivers for Finn
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Figure 3.17: GNSS error from quality states for milliAmpere
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Chapter 4

Synthetic dataset

Figure 4.1: Synthetic reproduction of the real dataset illustration in Figure 3.1.
Image shows scenario 4

The synthetic dataset uses the environment and sensors created in the authors spe-
cialization project [11] and later in the published paper of Autoferry Gemini [12].
Here the lidar data and RGB camera images are generated from using depth-buffers
provided by the Unity game engine. To continue this work, we will be focusing on
improving the lidar model to address the error limitations experienced in the prior
research. Since this error comes from using depth-buffers, we begin with deriving
techniques that can improve and quantify the error for all sensor types depending on
the buffer. Using this as a baseline and using sensor information from Section 3.2,
Section 4.2 goes through the individual sensor models choosing simulation parame-
ters that minimizes the error and replicates the real EMR sensors as demonstrated
in Figure 4.1.
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4.1 Depth-buffers for sensor modeling
The papers regarding Autoferry Gemini [12, 11] described how modeling of several
EMR sensors was done using computer graphic techniques. This included among
others lidar and radar sensors, using point cloud data generated from the GPU’s
depth-buffer. However, the method for creating the point cloud, distorted the in-
dividual points depending on their position in the cloud. This resulted in an error
which was named the beam shape error in the papers. In this chapter, a technique
that removes this error is introduced in the second section, followed by a method
for determining the numerical error from using depth-buffers. The first section will
be dedicated in understanding the basics of how depth-buffers are formed

4.1.1 Introduction to Depth-buffers
In real-time rendering, techniques that balances computational complexity with fi-
delity is heavily sought after. Multiple methods have been seen over the years,
but only graphic-buffering (G-buffering) have been extensively used in real-time
rendering applications such as video games. G-buffering functions by creating mul-
tiple images containing pixel data such as colours and surface normals called buffers
(Figure 4.2), before combining them through individual computations to form a final
rendered image. One of these buffers is named the depth-buffer as it tells how far
the camera center is from the object surfaces being rendered.

Figure 4.2: The G-buffer contains several buffers seen as images at the bottom.
The last buffer is known as the depth-buffer

The process of creating a depth-buffer in video games, begins with transforming
individual vertices Q among different spaces, which will here be noted by superscript,
e.g Qv for a vertex in view space. Vertices define surface triangles seen in 3D
geometry known as a mesh, which is created in Object Space by various 3D modeling
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softwares. The first transformation happens by converting the 3D mesh vertices Qo

over from object space to the video games World Space where scenarios, events
and physics takes place. These spacial transformations happens throught matrices,
which will use the convention Tto space

from space to tell what spaces are involved and in
what direction the transformation is happening:

Qw = Tw
i Qi (4.1)

As world space is a state space of multiple 3D models, a camera model is needed to
see a portion of it. This begins with having a view space matrix Tv

w that transforms
the vertices from world space to the cameras local coordinate system called View
Space

Qv = Tv
wQw (4.2)

Within this space a pinhole camera model is introduced, creating a frustum consist-
ing of a near plane and far plane with distances n and f respectively from origin.
From Figure 4.3, it is seen that these distances follow the relationship 0 < n < f .
In Unity, the near plane is also known as the image plane, consisting of Nc,w ×Nc,h
pixels the final image is rendered to.

To give the camera perspective, the frustum is scaled by a vertical field of view
VFOVc and a horizontal field of view HFOVc, where the relationship between the
number of pixels Nc,h,Nc,w and the field of view comes from the images aspect ratio:

a = Nc,w

Nc,h
=

1
2(f − n) tan(HFOVc

2 )
1
2(f − n) tan(VFOVc

2 )
=

tan(HFOVc
2 )

tan(VFOVc
2 )

. (4.3)

The camera’s frustum serves two purposes: First is using it as a filter to tell if a
triangle should be rendered by the camera model or not, by checking the dot product
Fprod between the triangle’s vertices Qv and the frustum’s surface normals Fnormal:

Fprod = Qv · Fnormal. (4.4)
If the vertex is within all the 6 planes of the frustum, e.i the dot product with
each plane is negative, the vertex passes the test. If not, the vertices triangle is
handled through a process called clipping, where the triangle is split by the frustums
planes or filtered out if all it’s vertices lies outside the frustum. The second purpose
the frustum serves, is by providing parameters to the projection matrix Ti

v that
transforms all the vertices within the camera’s frustum to Image Space:

Ti
v :=


Nc,h
Nc,w

cot(VFOVc
2 ) 0 0 0

0 cot(VFOVc
2 ) 0 0

0 0 −f+n
f−n −2 fn

f−n
0 0 −1 0

 , (4.5)

[
Q̄i

wi

]
= Ti

v

[
Qv

1

]
, (4.6)
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Figure 4.3: The process of going from a 3D model created in an arbitrary modeling
software, to a scene view created by a synthetic camera.
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Contrary to the other projections seen so far, the transformation into image space
creates homogeneous coordinates, where wi is a normalization variable used to get
the normalized image coordinates for each vertex:

Qi = 1
wi Q̄

i = [xi, yi, zi]T , xi, yi, zi ∈ [−1, 1]. (4.7)

The last operation is to rasterize each individual triangle’s surface in image space to
Discrete Image Space through a process called scan conversion (Figure 4.4). Here
interpolation between each vertex position happens using a scan line algorithm that
rasterizes the triangle’s surface into pixels containing depth information.

This is where the depth-buffer technique comes inn, which first creates a buffer
containing the pixel value Nc,d for the far plane. This value is known as the depth
precision, usually being 16, 24 or 32 bit depending on the graphics API the operating
system supports. As the scan line algorithm creates pixels, it checks if the pixel
value it just created is less than the corresponding pixel value currently in the depth
buffer. If this is true, the pixel value is stored in the depth-buffer, if not, the
pixel value is tossed since a previous rasterized triangle has a pixel value closer to
the camera. This happens to each individual triangle, where the mentioned logic
guarantees that the final buffer contains pixel values to the closest surfaces, without
any need of sorting the triangles beforehand. From this, every vertices, triangle
surfaces and unchanged depth-buffer pixels is converted into discrete coordinates
xd ∈ [0,Nc,w − 1], yd ∈ [0,Nc,h − 1], zd ∈ [0,Nc,d − 1]:

Qd =

x
d

yd

zd

 = 1
2

Nc,w 0 0
0 Nc,h 0
0 0 Nc,d

 (1 + Qi) = 1
2Nc(1 + Qi), Qd ∈ N, (4.8)

introducing the camera resolution matrix Nc to contain all the resolution elements.
This can also be written in component form by first expanding the terms in Equation
4.5 and 4.6:

[
Q̄i

wi

]
=


x̄i

ȳi

z̄i

wi

 =


Nc,h
Nc,w

cot(VFOVc
2 ) 0 0 0

0 cot(VFOVc
2 ) 0 0

0 0 −f+n
f−n −2 fn

f−n
0 0 −1 0



xv

yv

zv

1



=


Nc,h
Nc,w

cot(VFOVc
2 )xv

cot(VFOVc
2 )yv

−f+n
f−nz

v − 2 fn
f−n

−zv

 ,

substituting these elements into Equation 4.7 gives:

Qi = 1
wi

x̄
i

ȳi

z̄i

 =


−Nc,h

Nc,w
cot(VFOVc

2 )xv

zv

− cot(VFOVc
2 )yv

zv
f+n
f−n + 2 fn

f−n
1
zv

 ,
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and finally, substituting this into Equation 4.8 gives:

Qd = 1
2

Nc,w 0 0
0 Nc,h 0
0 0 Nc,d


1 +


−Nc,h

Nc,w
cot(VFOVc

2 )xv

zv

− cot(VFOVc
2 )yv

zv
f+n
f−n + 2 fn

f−n
1
zv




=


Nc,w

2

(
1− Nc,h

Nc,w
cot

(
VFOVc

2

)
xv

zv

)
,

Nc,h
2

(
1− cot

(
VFOVc

2

)
yv

zv

)
,

Nc,d
2

(
1 + f+n

f−n + 2fnNc,d
f−n

1
zv

)
 .

Written in component form as:

xd = Nc,w

2

(
1− Nc,h

Nc,w
cot

(
VFOVc

2

)
xv

zv

)
,

yd = Nc,h

2

(
1− cot

(
VFOVc

2

)
yv

zv

)
,

zd = Nc,d

2

(
1 + f + n

f − n
+ 2fnNc,d

f − n
1
zv

)
.

(4.9)

Qd is know as the depth-buffer coordinates, but comes from the GPU in a normalized
format, giving us the 2D array Zd

c (xd, yd) = zd

Nc,d
∈ [0, 1] hereafter know as the camera

depth buffer. As its obvious that the depth buffer values and its parameters are all
in a discrete Cartesian image space, we drop the superscript for the parameters:
Zd

c (x, y) = Zd
c (xd, yd).

Contrary to offline renderers which relies on sending a ray through every pixel
in the rendered image (ray tracing), depth-buffering relies on using the individual
triangles in the scene instead. The motivation for this, is that the the number of
triangles in view space, are usually less than the number of pixels in an image. E.g
a typical scene in computer games displays 50 000 - 100 000 triangles at a time
while the number of pixels in a HD image is 1920x1080 = 2 073 600. This allows
rendering techniques that utilizes depth-buffering to use larger image formats and
faster renderings. In addition, GPUs uses dedicated graphics accelerators that do
both the transformations and scan conversion described in this section directly in
hardware, pushing the real-time performances even further.

As a final remark, the vertices that have been discussed do not only need to
contain positional data, but can also contain data regarding textures such as colours
and normal maps. Because of this, the interpolation technique used in the scan
conversion, is not only used to create the depth-buffer, but all data associated with
the vertices, creating all the buffers seen in Figure 4.2.

38



4. Synthetic dataset

Figure 4.4: The process of going from 3D models defined in a camera’s view space,
over to a depth buffer
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4.1.2 Spherical projection filter
As scene depth can be represented with depth-buffers in discrete Cartesian coor-
dinates, sensor models that uses other systems need approximation techniques to
still be able to use the depth-buffer. Autoferry Gemini [12] showed that an approx-
imation to spherical coordinates could be done by distributing Nc virtual cameras
evenly across the sensors azimuth axis (Figure 4.5), rendering individual depth-
buffers Zd

c (x, y). However, due to the discrete image space needed for scan con-
version, depth-increments propagated planarly relative to the image plane rather
than spherically from the camera origin, leading to a beam shape error between the
two coordinate systems depending on Nc. The results showed that increasing Nc
decreased the real-time performance, in addition to diminishing returns for lowering
the error. To improve this, rather than relying on approximating spherical coordi-
nates by increasing Nc, a precomputed spherical projection filter telling the best fit
pixels from the depth-buffers is created.

Camera 1

Camera 0

Camera Nc

Camera Nc-1

Camera Nc-2

Camera Nc-3

Camera c...
Camera 2

HFOVc

d'

d

      0             1           2          ....        Nc-4        Nc-3       Nc-2          Nc-1

(x,y)

Stiched Depth-Buffers

Nc,h

Nc Nc,w

ZNc-1
(x,y)

d

Figure 4.5: The Depth-buffer technique from Autoferry Gemini [12]. Virtual
cameras was used to approximate cylindrical beams with convex regular polygons.
Stitching the depth-buffers together formed a 2D depth array surrounding the sensor
location, with a beam shape error ε rising along the cameras far plane.
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The previous implementation [12] illustrated in Figure 4.5, uses polar coordinates to
describe a circle with radius d and an angle α defining a reference model to quantify
the beam shape error εv

beam. Since this error only considers the error spanned in a
plane in view space, a more general approach is to instead use a sphere from the
spherical coordinates:

Qv
s :=

x
v
s
yv

s
zv

s

 = r

−sin(θ)cos(φ)
sin(φ)

−cos(θ)cos(φ)

 , (4.10)

using latitude φ, longitude θ instead of α and radius r instead of d as parameteri-
zation variables. Note that this is the same equation as the coordinates of the lidar
points in Equation 3.1, with the difference being space and type of the vector.

Further, the previous implementation shows that the reference model (4.10)
could be used to quantify the beam error by observing that the depth buffers forms a
convex regular polygon noted as d′ seen in Figure 4.5, giving the error εv

beam = d′−d
when studying one of the polygon lines. This can be generalized into 3D aswell,
where we re-define d′ to be a vector spanning the view space coordinates calculated
from the depth buffer demonstrated in [12]. In addition, we re-define d to be the
spherical reference model d = Qv

s .
The reference model can however be used for other purposes than just quan-

tifying the beam shape error. We can also use it to selectively choose the best fit
spherical coordinates from the depth buffers Cartesian coordinates by d′ = d. This
however only applies when mapping from Cartesian to spherical coordinates in the
continuous case. Since we saw that the depth buffer went through a rasterization
process in Section 4.1.1, such a best fit filter would in worst case give us d′ = d+ εv

s
where εv

s is the numeric error from approximating the reference model from a depth
buffer. This gives us the beam shape error:

εv
beam = d′ − d = εv

s , (4.11)
leaving only the numerical error from the depth buffer’s rasterization. This error
will be discussed further in Section 4.1.3, for now we will see how such a filter can
be made.

We begin with defining a finite quantity of vertices that are going to be in the
point cloud. Ns,w will the resolution of a horizontal sweep, and Ns,h will be the
resolution in the vertical direction commonly know as "lines" or number of lasers in
lidar sensors. This gives a total of Ns,h×Ns,w points in the cloud. These vertices will
be spread across a section of Qv

s , defined by the field of views HFOVs and VFOVs
similar to what we saw for HFOVc and VFOVc in section 4.1.1. In addition the
vertices will also span a depth between a synthetic cameras farplane f and near
plane n. Using θ, φ and r as parameterization variables we get:

θ = HFOVs

(
Nc

Ns,w
nθ −

1
2

)
∈
[
−HFOVs

2 ,
HFOVs

2

]
,

φ = VFOVs

(
nφ

Ns,h
− 1

2

)
∈
[
−VFOVs

2 ,
VFOVs

2

]
,

r = (f − n) nrNc,d
+ n ∈ [n, f ] ,

(4.12)
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using the discretized elements nφ for latitude, nθ for longitude and nr for radius.
These are distributed with the resolutions we just defined, in addition to the already
defined depth puffer precision from Section 4.1.1:

nθ ∈
[
0, Ns,w

Nc

)
, nφ ∈ [0,Ns,h) , nr ∈ [0,Nc,d) , nθ, nφ, nr ∈ N. (4.13)

To ensure that no pixels in the depth-buffers are wasted, the field of views of the
point cloud and synthetic cameras are adjusted to mach each other:

HFOVc = HFOVs = 2π
Nc
. (4.14)

where 2π
Nc

comes from distributing the cameras evenly across the azimuth axis of
the point cloud such as in Figure 4.5. However, since the camera frustum have a
different vertical field of view in the middle of the far plane then on the edges as
seen in Figure 4.3, the vertical field of view needs to be adjusted relative to the
point clouds field of view. We do this by using the reciprocal of the aspect ratio
from Equation 4.3:

1
a

= Nc,h

Nc,w
=

tan(VFOVc
2 )

tan(HFOVc
2 )

, (4.15)

in addition to a trigonometric relationship between the angle spanned by one of the
far planes vertical edges relative to the camera origin, forming a isosceles triangle
seen in Figure 4.3:

Nc,h

Nc,w
=

tan(VFOVs
2 )

sin(HFOVs
2 )

. (4.16)

These relationships gives a function for adjusting the camera’s vertical field of view:

VFOVc = 2 arctan
(

tan(VFOVs
2 )

cos(HFOVs
2 )

)
. (4.17)

To define the spherical projection filter, we first need to project the view space
vertices Qv

s into discrete image space using equation 4.9:

xd
s = Nc,w

2

(
1− Nc,h

Nc,w
cot

(
VFOVc

2

)
xv

s
zv

s

)
,

yd
s = Nc,h

2

(
1− cot

(
VFOVc

2

)
yv

s
zv

s

)
,

zd
s = Nc,d

2

(
1 + f + n

f − n
+ 2fnNc,d

f − n
1
zv

s

)
.

Where we can substitute inn the reference model (4.10) to see how it gets projected
into a synthetic cameras depth buffer:

xd
s = Nc,w

2

(
1− Nc,h

Nc,w
cot

(
VFOVc

2

)
tan(θ)

)
,

yd
s = Nc,h

2

(
1 + cot

(
VFOVc

2

)
tan(φ)
cos(θ)

)
,

zd
s = Nc,d

2

(
1 + f + n

f − n
− 2fnNc,d

f − n
1

r cos(θ) cos(φ)

)
.

(4.18)
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using Equation 4.12 and 4.13 for θ, φ, r, 4.17 for VFOVc, and 4.16 for Nc,w, such
that the depth buffer is described by Ns,w, Ns,h, Nc, Nc,h, nθ, nφ, nr and VFOVs.
From this, we define the point cloud depth buffer in the same manner as we did for
Zd

c in Section 4.1.1:

Zd
s (x, y) := Zd

s (xd
s , y

d
s ) = zd

s
Nc,d

. (4.19)

Studying the parameter equations for Zd
s , we see that (x,y) only relies on constant

terms. This means that we can precompute a masked domain M ∈ NNs,w×Ns,h ⊆
NNc,h×Nc,w which defines the spherical projection filter, visualized in Figure 4.6. Us-
ing this domain creates a filtered version of the camera depth buffer since Zd

s =
Zd

c (xd
s , y

d
s ). Since we are sampling from the camera depth-buffer, this requires that

Ns,h ≤ Nc,h and Ns,w ≤ Nc,w. As we will see in Section 4.1.3 Nc,h and Nc,w is preferred
to be big to decrease the numerical error. However, since the spherical coordinate
approximation is now handled by M, Nc can be lowered to increase both perfor-
mance and accuracy in comparison to what was shown in the previous version of
Autoferry Gemini [12].
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Figure 4.6: An example of a spherical projection filter using Ns,w = 256, Ns,h = 16
and Nc = 4. The filter functions as an image mask for the cameras depth-buffer,
only allowing the white pixel positions to pass through.
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Figure 4.7: Comparison of the beam shape error for a Velodyne VLP-16 lidar
model with and without the spherical projection filter in respective order. Both
models used a Nc value of 4, with negligible differences in real-time performances.
Using the spherical projection filter creates a significantly lower beam shape error
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4.1.3 Numerical errors from Depth-Buffers
To be able to compare the performance between the spherical projection filter
method contrary to the method used in [12], moreover tell how precise sensor models
using depth-buffers are, an error function of the numerical approximation is needed.
As the beam shape error [12] relied on the specific error of approximating a circle
with polygons, a more general function is needed to account for the finite precision
of width, height and range in depth-buffers. To do this, an analysis of the numerical
error from transforming 3D coordinates in continuous view space to the discrete
image space is needed.

We begin by tranforming a point in view space Qv to a point in discrete image
space Qd using the Equations in 4.9:

xd = Nc,w

2

(
1− Nc,h

Nc,w
cot

(
VFOVc

2

)
xv

zv

)
,

yd = Nc,h

2

(
1− cot

(
VFOVc

2

)
yv

zv

)
,

zd = Nc,d

2

(
1 + f + n

f − n
+ 2fnNc,d

f − n
1
zv

)
.

From these, errors in discrete image space can be made as a function of the arbitrary
positions indexed as 1 and 0:

xd
ε = xd

1 − xd
0 = cot

(
VFOVc

2

)
Nc,h

2

(
zv

1x
v
0 − zv

0x
v
1

zv
1z

v
0

)
,

yd
ε = yd

1 − yd
0 = cot

(
VFOVc

2

)
Nc,h

2

(
zv

1y
v
0 − zv

0y
v
1

zv
1z

v
0

)
,

zd
ε = zd

1 − zd
0 = −fnNc,d

f − n
zv

1 − zv
0

zv
1z

v
0
.

(4.20)

As we are interested in errors happening in view space as a consequence of the finite
precision in discrete image space, we set xd

ε = yd
ε = zd

ε = 1. This is to study how
much error in view space one step is in discrete image space corresponds to. Using
this and the Equations in 4.20, the following can be shown:

xv
ε = xv

1 − xv
0 = zv

ε

zv
0

(
xv

0 − tan
(

VFOVc

2

)
2fnNc,d

(f − n)Nc,h

)
,

yv
ε = yv

1 − yv
0 = zv

ε

zv
0

(
yv

0 − tan
(

VFOVc

2

)
2fnNc,d

(f − n)Nc,h

)
,

zv
ε = zv

1 − zv
0 = − (zv

0)2

Nc,d
fn
f−n + zv

0
.

This means that the error from using depth-buffers depends on the location in the
camera’s frustum. As this is general for all view space coordinates, we drop the
subscript for the initial positions, to indicate that these error functions can be used
by all sensor models using depth-buffers. In addition we introduce the positive

46



4. Synthetic dataset

constants C1 = Nc,d
fn
f−n and C2 = 2 C1

Nc,h
tan

(
VFOVc

2

)
to simplify the expressions:

xv
ε = zv

ε

zv (xv − C2) ,

yv
ε = zv

ε

zv (yv − C2) ,

zv
ε = − (zv)2

C1 + zv .

(4.21)

With this, the total error in the depth buffer for a given position can be expressed
as an euclidean error function:

εv(xv, yv, zv) =
√

(xv
ε )2 + (yv

ε )2 + (zv
ε )2

=
∣∣∣∣zv
ε

zv

∣∣∣∣ √(xv − C2)2 + (yv − C2)2 + (zv)2

=
∣∣∣∣ −zv

C1 + zv

∣∣∣∣√(xv − C2)2 + (yv − C2)2 + (zv)2.

(4.22)

Whose gradient can be expressed as:

∇εv(xv, yv, zv) =
[
∂εv

∂xv ,
∂εv

∂yv ,
∂εv

∂zv

]T
, (4.23)

using the following components:

∂εv

∂xv =
∣∣∣∣ zv

C1 + zv

∣∣∣∣ xv − C2√
(xv − C2)2 + (yv − C2)2 + (zv)2

,

∂εv

∂yv =
∣∣∣∣ zv

C1 + zv

∣∣∣∣ yv − C2√
(xv − C2)2 + (yv − C2)2 + (zv)2

,

∂εv

∂zv =
∣∣∣∣ zv

C1 + zv

∣∣∣∣ (zv)2(C1 + zv) + C1[(xv − C2)2 + (yv − C2)2 + (zv)2]
zv(c1 + zv)

√
(xv − C2)2 + (yv − C2)2 + (zv)2

.

Maximum numerical error

Since εv only tells the error for a given position in a camera’s frustum, a method for
finding the position(s) that maximizes the error is needed for establishing a more
practical position independent error εv

max. Since the domain of the camera’s depth
buffer Zd

c and point cloud’s depth buffer Zd
c differs, εv

max would in reality be sensor
dependent. To simplify the analysis while conserving generality, we use the fact
that the point cloud model’s domain are a subset of the camera model’s domain, e.i
M ⊆ NNc,h×Nc,w from Section 4.1.2.

Because of the common coordinate system, the numerical error in the camera
depth buffer Zd

c can be written directly as εv
c = εv, using the camera frustum from

Section 4.1.1 as constraints. For the numerical error in the point cloud depth buffer
Zd

s , we need to use the reference models parameters εv
c(x, y) = εv(xv

s , y
v
s ) from Equa-

tion 4.18, with the constraints from Equation 4.12. Since M ⊆ NNc,h×Nc,w , εv
c would

at least be an upper-bound estimate for εv
s , leading to the following statement:
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εv
s < εv ≤ εv

max. (4.24)
By this, we restrict ourself to finding the maximum error function for the camera
model’s depth buffer, searching for the point(s) that maximizes εv

c . We note this
point as Qv

max known as the maxima, generally found by setting ∇εv to 0, in addition
to studying the sign of either ∇εv or ∇2εv. In our case this gives the maxima
candidates zv = 0 ∨ xv = yv = C2 from the first two components of ∇εv. From
the camera frustum seen in Figure 4.3 it can be seen that 0 > −n > zv > −f ,
leaving the only possible maxima at xv = yv = C2. Substituting this in the third
component of Equation 4.23 gives zv = −2C1. However, looking at Equation 4.22,
zv = −C1 gives an asymptotic value for the error if zv spans all the way to −2C1.
One could say that by letting n > C1, this could be fixed, but this would lead
to n < f(1 − Nc,d) ≤ 0, which violates n being a possitive number. To hinder
the error function from exploding at a certain value for zv, zv > −C1 is set as a
condition instead. This leaves none of the maxima candidates inside the frustum.
The maximum error must therefore be on the boundaries of εv, namely the planes
making up the camera frustum.

As the positions laying on the frustum contains several potential maxima values,
a method for finding a relevant analytical solution is by using reasonable conditions
on the parameters of the frustum. Since zv < 0, −f ≤ zv ≤ −n and −C1 < z is
already justified, the following must be true: −C1 < −f ≤ zv ≤ −n < 0. Expanding
the terms for −C1 < −f gives:

f < n(Nc,d + 1), (4.25)

giving the following gradient component for the error function:

∂εv

∂zv < 0 for − n(Nc,d + 1) < −f ≤ zv ≤ −n < 0. (4.26)

Further, boundaries for yv can be derived from the camera frustum in Figure 4.3:

|yv| ≤ |zv| tan
(

VFOVc

2

)
. (4.27)

Using the boundary condition |zv| ≤ f from Equation 4.26 it follows:

|yv| ≤ |zv| tan
(

VFOVc

2

)
≤ f tan

(
VFOVc

2

)
= Nc,h(f − n)

2Nc,dn
C2. (4.28)

This creates two boundary cases, one where Nc,h(f−n)
2Nc,dn

< 1 and one where Nc,h(f−n)
2Nc,dn

≥
1, giving additional conditions on f , in addition a condition on Nc,h such that Equa-
tion 4.25 still holds:

Nc,h(f − n)
2Nc,dn

< 1 when f < n

(
2Nc,d

Nc,h
+ 1

)
< n(Nc,d + 1) and Nc,h > 2,

Nc,h(f − n)
2Nc,dn

≥ 1 when n

(
2Nc,d

Nc,h
+ 1

)
≤ f < n(Nc,d + 1) and Nc,h > 2.
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However, since Nc,d is usually set very high such that Nc,h(f−n)
2Nc,dn

< 1, for our purposes
it is sufficient to study the first case. This gives |yv| < C2 such that:

∂εv

∂yv < 0 ∀ |yv| ≤ |zv| tan
(

VFOVc

2

)
when

f < n

(
2Nc,d

Nc,h
+ 1

)
and Nc,h > 2.

(4.29)

Similarly, boundaries for xv can be derived from the camera frustum in Figure 4.3,
using the condition |zv| ≤ f from Equation 4.26 and substituting tan

(
HFOVc

2

)
with

Nc,w
Nc,h

tan
(

VFOVc
2

)
from the aspect ratio in Equation 4.3:

|xv| ≤ |zv| tan
(

HFOVc

2

)
≤ f

Nc,w

Nc,h
tan

(
VFOVc

2

)
= Nc,w(f − n)

2Nc,dn
C2. (4.30)

This gives similar cases as we saw with the y-component:

Nc,w(f − n)
2Nc,dn

< 1 when f < n

(
2 Nc,d

Nc,w
+ 1

)
< n(Nc,d + 1) and Nc,w > 2,

Nc,w(f − n)
2Nc,dn

≥ 1 when n

(
2 Nc,d

Nc,w
+ 1

)
≤ f < n(Nc,d + 1) and Nc,w > 2,

and as we did with yv, studying the first case is sufficient in our case since Nc,d is
large, giving us |xv| < C2 such that:

∂εv

∂xv < 0 ∀ |xv| ≤ |zv| tan
(

HFOVc

2

)
when

f < n

(
2Nc,d

Nc,h
+ 1

)
and Nc,w > 2.

(4.31)

Using Equation 4.26, 4.29 and 4.31, it shows that ∇εv < 0 meaning that the maxima
Qv
max is located at the negative boundary conditions of (xv, yv, zv). Substituting this

into Equation 4.22 gives an equation for the maximum numerical error in a cameras
depth-buffer:

Qv
max = −f

[
tan

(
HFOVc

2

)
, tan

(
VFOVc

2

)
, 1
]T
,

εv
max = εv(Qv

max)
(4.32)

In addition the following parameter conditions on the frustum needs to be met in
order to use the maximum error function:

f < n arg min
[
2Nc,d

Nc,h
+ 1 , 2 Nc,d

Nc,w
+ 1

]
and Nc,w, Nc,h > 2. (4.33)
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Deciding parameters for sensor models

Several parameters are required to use the error function and maximum error func-
tion for depth-buffers. As the sensor models have different specifications, the re-
maining error parameters might become subject to interpretations, some of which
are subjective. This section is therefore created to clarify and give suggestions for
quantifying the remaining parameters for the sensor models.

For the camera models, HFOVc, VFOVc, Nc,h and Nc,w are given by the camera
specifications, leaving us with defining proper values for n, f and Nc,d.

As mentioned in Section 4.1.1, in general Nc,d are decided by the graphics APIs
the operating system supports, in addition to the video card used. However, since
the Unity game engine functions as a unified platform across operating systems,
Nc,d are limited of being 216 or 224. The former are usually associated with mobile
devices while the latter are used for desktop computers with sufficient video memory.
Usually, increasing Nc,d will improve the overall precision since the zv

ε from Equation
4.21 are directly affected by it. Nc,d also directly increases C1 which in turn decreases
εv. Because of this, setting Nc,d = 224 are preferred.

When it comes to the far plane f , the value depends on the situation. For
open sea conditions, choosing the value close to the distance to the horizon: 5km
might be sufficient. However, if subjected to hilly environments or if the cameras are
placed at high altitudes, this soon becomes a problem as observations can happen
at greater distances. In contrary, for Urban environments containing tall buildings
the distance to the horizon might be larger than necessary. It is also worth noticing
that a large faffects the error since the precision from Nc,d gets distributed across a
larger distance.

Similar statements can be done for the near plane n, which increases the error
as it approaches 0. Here one might argue that additional real life camera parameters
such as the circle of confusion and f-numbers could be used to decide the proper
near plane distance through calculating the depth of field. However, such additions
to the camera model are outside the scope of the thesis, since objects of interest
(such as the target ships) are far from the cameras. A simpler approach is to choose
n to be less than the distance to the closest object in a scenario, e.i the value of the
n also depends on the situation.

When it comes to the point cloud model, we are given n, f , and VFOVs from
the sensor specifications. In addition, since HFOVc, VFOVc and Nc,w can be calcu-
lated from the Equations 4.14, 4.17 and 4.16 respectively, this leaves us with defining
proper values for Nc,h, Nc,d and Nc.

Since we have already justified the value of Nc,d, we need to decide what to do
with Nc,h. Considering that we chose |xv|, |yv| < C2 in Section 4.1.3, decreasing C2
would decrease the numerical error from Equation 4.22. Rewriting C2 with Equation
4.17 and 4.14 to mach the point cloud sensor parameters we can see that:

C2 = 2 C1

Nc,h
tan

(
VFOVc

2

)
= 2 C1

Nc,h

tan(VFOVs
2 )

cos( π
Nc

) , (4.34)

meaning that increasing Nc,h decreases εv. It is therefore preferred to choose both
Nc,h and Nc,d as high as possible. Intuitively speaking, this can be understood as
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increasing a real photo’s resolution and color depth, giving us a more detailed image.
However, this comes with a cost in video memory, which limits the possible size such
an image could have. The total data size of the depth buffers can be written as bytes:

B = log2(Nc,d)
8 Nc,wNc,hNc,

Bs = log2(Nc,d)
8

sin( π
Nc

)
tan(VFOVs

2 )
N2

c,hNc,
(4.35)

where the binary logarithm and division by 8 comes from converting Nc,d to pixel
size in bytes, and the terms in the final equation comes from using Equation 4.14
and 4.16. The first equation is general, applying to both lidar and camera sensors,
while the latter is a special case used for lidar.

Choosing a value for the parameter Bs instead of Nc,h is far easier, since Bs can
be decided from the video cards available video memory. Therefore, by rearranging
the terms we get an equation for Nc,h as a function of the variables Bs and Nc:

Nc,h =

√√√√ 8
log2(Nc,d)

tan(VFOVs
2 )

sin( π
Nc

)
Bs

Nc
, (4.36)

Currently, Bs for commercially available GPUs are between 1 and 32 gigabytes.
Although modern hardware are able to run multiple GPUs in parallel, the real limit
of Bs would at best be a proportion of this.

Lastly, the number of cameras Nc being used to render depth buffers, are yet
another situation based parameter. As shown in [12], increasing Nc decreases the
beam shape error with diminishing returns. This is still true for the numerical
error, which can be seen from studying Equation 4.34. Increasing Nc in effect lets
the cosine term approach 1 with a decreasing pace as seen in Figure 4.8.
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Figure 4.8: Displays 1
cos( π

Nc
) . This illustrates the diminishing return of decreasing

the numerical error by increasing the number of cameras. Using more than 8 cameras
almost halves the numerical error in comparison of using 3

The figure shows that Nc ≥ 3 such that C2 does not approach infinity. In addition
it shows the diminishing returns of increasing the number of cameras in order for
the numeric error to decrease. What is also still true from [12], is that increasing Nc
increases execution time, since the computations we saw in Section 4.1.1 must be run
Nc times. With these two considerations in mind, one might want to choose Nc = 3
for situations where fast computations are needed, while Nc ≥ 8 for situations where
a doubling of precision are required and cannot be achieved solely on increasing Bs.
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4.2 EMR sensor modeling
We have until now focused on depth-buffers which plays a vital part in simulating
the EMR sensors in Autoferry Gemini. In order to replicate the real data, additional
information is needed about e.g 3D models and sensor calibrations, in addition to
addressing how we choose our simulation parameters with respect to the numerical
error we saw in Section 4.1.3. Looking back at the digital twin architecture in Figure
2.2, we also need to address how the communication between the platforms are done
in order to generate synthetic data. We will begin with looking at the camera and
lidar sensor in section 4.2.1 and 4.2.2 respectively, before we discuss how we choose
the simulation parameters based on the numerical error in Section 4.2.3. Further,
information about the 3D models is given in Section 4.2.4, before we end the chapter
with how the sensor recordings are done, using the different platforms involved in
the digital twin framework from Section 4.2.5.

4.2.1 RGB camera
The RGB camera sensor extends on previous work done in [11] and [12]. Since the
synthetic camera uses the same pin hole camera model and rasterization process as
in Section 4.1.1, this section will only cover how the images was made similar to the
real counterpart.

Camera placement and calibration

Due to the lack of camera calibration, and properly documented camera placements,
manual calibration was performed to the synthetic RGB cameras. This consisted
of choosing field of view angles HFOVc and VFOVc using real images as reference,
such as seen in Figure 4.9. In addition the cameras focal point along the cameras
image axis (cyan color) in Figure 3.6, needed to be placed 36mm from the camera
sensor instead of the 6mm specified by the camera lens manufacturer (Figure 3.6)
in order for the images to become similar.

Figure 4.9: Synthetic camera parameters was calibrated using the real image
counterpart
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Figure 4.10: Distorted images such as the one to the left is flatened using ROS’s
Plub Bob algorithm. Right image is the post processed image

Accounting for lens distortion

In contrary to real camera images that are distorted through lenses, the pinhole
camera preserves geometry, as well as having no depth of field, e.i the focus are
the same for all objects regardless of the distance from the camera. The former
is especially important to consider since object detectors are trained on flattened
images where the lens distortions are accounted for. Because of this, instead of giving
the synthetic images a distortion effect, we remove the real images distortions using
ROS’s inbuilt Plumb bob algorithm, flattening the real images to become similar to
the pinhole camera model as shown in Figure 4.10.
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4.2.2 Lidar
Using the newly introduced method in Section 4.1.2, the lidar model improves on the
numerical errors found in previous work [11, 12].Sending this sensor data to ROS,
does however put the previous work a bit out of context regarding the mathematics.
In addition, in real lidars, rays are not always returning back to the transmitter,
creating ray drops. This section seeks to enlighten the reader of how the previous
work [11, 12] can be transformed to connect with the upcoming ROS messages in
Section 4.2.5.

Generating Point cloud

Using the newly established depth-buffer Zd
s (xd, yd), the process of generating a

point cloud is done by reversing the steps in Section 4.1.1. First of we represent the
image coordinates of the depth-buffer with:

Qd
c = [xd, yd, Zd

s (xd, yd)]T (4.37)

Then converting it to image space

Qi
c = 2N−1

c Qd
c − 1. (4.38)

To project each point of the depth-buffer back to view space, the projection matrix is
first inverted: Tv

i = (Ti
v)−1. Then the steps of generating homogeneous coordinates

and denormalisation takes place.
[
Q̄v

c
w̄v

c

]
= Tv

i

[
Qi

c
1

]
, (4.39)

Qv
c = 1

w̄v
c

Q̄v
c , (4.40)

Giving us point cloud data seen from one camera. In order to cover a whole lidar
sweep as in Figure 4.5, Nc cameras are angled evenly across the lidars azimuth angle.
This gives each camera it’s own local point cloud: Qv

0, ..., Qv
Nc−2, Qv

Nc−1. These are
then united using a rotation matrix that transform each point to the first clouds
reference frame:

Ry(c) :=


cos( 2π

Nc
c) 0 sin( 2π

Nc
c) 0

0 1 0 0
− sin( 2π

Nc
c) 0 cos( 2π

Nc
c) 0

0 0 0 0

 (4.41)

Qv
li = Ry(c)Qv

c . (4.42)

Where Qv
li represents a point in the lidars point cloud, using the same reference

frame as Qv
0.
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Figure 4.11: Point cloud data from both synthetic and real datasets at scenario 6.
Notice how much more detail is present in the synthetic cloud to the left versus the
real to the right

Ray drop

Modeling a lidars ray drop is currently a field of research, especially relevant in the
car industries [13]. The paper introduces a machine-learning technique to reproduce
a lidars behaviour. This is however outside the scope of the thesis, but the paper
also mentions the use of modeling ray drops with introducing random noise. True
noise is however not reprodusible, e.i when we simulate the same scenario over again
we get different results. Since reputability is of importance for this application a
Pseudo random number generator (PRNG) is used to mimic randomness.

Usually, programming languages comes with PRNGs running on the CPU. How-
ever, GPU’s are instead programmed with shader languages [11] which usually does
not support such generators. Unfortunately for us, the High Level Shading Language
(HLSL) used for implementing the lidar is not an exception here. This comes from
a variety of reasons, but most has to do with the GPU’s parallel architecture, where
a common program are run in parallel on multiple threads. Since random numbers
are independent of each other, this means that each program running on a thread
needs a way to become independent of each other.

Since GPU applications can either aim to be fast or slow, there is no design for
PRNGs that fits every use case. Because of this, several PRNGs exists, where the
one used here are Nathan Reeds implementation [26].

Using this, we give each point Qv
li a probability of 80% to drop, e.i not return any

result. This seems high in comparison to the 10% used in [13], but when comparing
the synthetic and real point clouds in Figure 4.11, we might still be too low.

The elements in Qv
li can now be used directly into the PointCloud2 message

used by ROS.
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4.2.3 Numerical error
Each sensor has its own numerical errors depending on specifications from the sensor
manufacturer in addition to simulation parameters connected with the use of depth
buffers. Section 4.1.3 is used as a guideline for deciding the simulation parameters
for the different sensors, while the remaining parameters to calculate the numerical
errors (4.32), (4.22) and (4.21) uses information from the sensors listed in Figure
3.6. Some restrictions is also done in order for the simulation to run properly on the
hardware listed in Section 4.2.5, in addition to the current stability the digital twin
framework possesses. Table 4.1 contains all the sensor parameters used to create
the synthetic dataset, and resulting values of errors (4.32) and video memory size
(4.35) on the right hand side.

Sensors VFOVc HFOVc Nc Nc,h Nc,w Nc,d n f εv
max B

RGB 65.4 75.0 1 512 612 224 0.08 104 140 9.4 · 104

Lidar 41.5 45.0 8 3104 32768 224 0.05 100 0.04 3.3 · 108

Table 4.1: Parameters from sensor specifications and calculations from Section
4.1.3 with resulting numerical error. Opposed to using radians as in Section 4.1.3,
the field of views used here are shown as degrees
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Figure 4.12: The total, component-wise and maximum errors with respect to
distance for the camera sensor. Beware of the logarithmic axes

From Section 4.2.1, the field of views in Table 4.1 is set manually, instead of following
the sensor specifications. The number of cameras Nc = 1 in this case, not to be
confused with the number of cameras on the sensor rig. This is because the error
for one camera, applies to all cameras. Camera resolutions are set to 612 × 512
even though the real sensor specifications are 2448 × 2048. We can safely do so,
since the real images are cropped to this resolution before being used in the tracking
algorithm we will see in Chapter 5. Further, the near plane is set to 8 cm from the
focal point, in order to render outside the sensor rig containing the cameras (Figure
3.6). Meanwhile, a 10km distance is chosen for the far plane to be on the safe side
regarding background renderings.

The maximum error of ca. 140m seems big, but considering how large a pixel
projects at 10km, it does not seem unreasonable. In fact, the component errors xv

ε

and yv
ε will also be present in the real camera, since they represent pixel errors. In

contrary, the depth component error zv
ε is of bigger interest, since it is not present in

real cameras. With this said, depth information is not directly present in rendered
images either. Renderings do rely on depth information for certain effects, such as
lightning, but we will not delve further into rendering topics than what is covered
in Section 4.1.1. To justify this, the depth error is very small in comparison to the
other component errors as seen from Figure 4.12, being less than 1cm at a 100m
distance.
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Lidar error
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Figure 4.13: The total, component-wise and maximum errors with respect to
distance for the lidar sensor. Beware of the logarithmic axes

Specifications from the VLP-16 sensor tells that the vertical spread of the point cloud
is at VFOVs = 30◦ giving VFOVc = 41.5◦ from using Equation 4.17. In addition,
8 cameras are used to get the benefit of double precision (Figure 4.8). Since the
computer hardware uses video memory for other purposes than just running EMR
sensors, Nc,w and Nc,h is chosen such that B = 3.3 · 108 for the lidar according to
Equation 4.35. The far plane is set to the theoretical maximum distance for the
VLP-16, and the near plane to 5cm to get all potential blind zones coming from the
struts on the sensor rig (Figure 3.6).

This results in a maximum error of ca. 4cm (±2cm) which is within the ±3cm
accuracy seen in the VLP-16’s specifications. This might seem a bit vague, but
considering that the specification do not give any information of how the accuracy
varies with distance, moreover information about the distribution the accuracy is
based on, this becomes our best bet.

59



4. Synthetic dataset

4.2.4 3D modeling
Since all of the EMR sensors uses depth-buffers in order to work, 3D models becomes
an essential asset for sensor modeling. Good 3D models heightens the possible
fidelity a simulation can give, but it also creates challenges in obtaining models. For
the digital twin framework, the 3D models can be categorized into boats and the
environment they operate in.

Boats

Figure 4.14: 3D models of the participating boats in the scenario description
(Section 3.2.4). From left to right: milliAmpere, Havfruen and Finn

The target boats participating in the scenarios are modeled by Erik Veitch and
Thomas Kaland as replicas of their real counterpart. This was done as contributions
to the project mentioned in the acknowledgement and appendices. A 3D model of
the milliAmpere ferry already existed from previous work done by the author in a
student project at NTNU [10], a precursor to Autoferry Gemini. These models can
be seen in Figure 4.14, and are also depicted alongside their real counterparts in
Figure 3.7 and 3.5 where dimensions are given.

In addition, several open sourced 3D boats designed for academic and ed-
ucational purposes were obtained from the websites cgtrader.com and download-
free3d.com. These functioned as anchored boats at the harbour area in Trondheim,
seen in Figure 4.15.

Environment

The thesis uses the same environment of Trondheim as Autoferry Gemini, origi-
nating from Trondheim Kommune [27]. Using the boats previously mentioned, the
environment is populated with boats in areas close to where the scenarios take place
(Figure 4.15 and 4.16).
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Figure 4.15: Image of the harbour containing 3D models obtained from open
source websites

Figure 4.16: 3D city model of Trondheim, previously configured and used in the
authors specialisation project [11] and in Autoferry Gemini [12]
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4.2.5 Sensor recording
Following the digital twin architecture from Figure 2.2, the sensor recording starts by
sending scenario data from OSP to Unity. This is followed by generating synthetic
data based on the sensor models that have been discussed in the current Chapter.
Finally, the sensor data is sent to ROS to be recorded into a ROS-bag. This whole
process is done by running the digital twin framework on a computer with the
following specifications:

• OS : Windows 10 Home, 64-bit
• CPU : Intel(R) Core(TM) i5-6600K @ 3.50GHz, 4 Core(s) CPU
• Memory: 16 GB RAM, 512 GB SSD
• GPU : XFX Radeon RX 480 8GB RS
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OSP to Unity

OSP Unity
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Figure 4.17: Communication between Unity and OSP

Using the ground truths established in Section 3.3.2, each vessels position and head-
ing is read by the scenario generator implemented in OSP (Figure 2.2). The gener-
ator is made by Tobias Rye Torben, functioning as a dummy demonstration of how
scenarios in the future can be generated from software implemented in OSP. For the
sake of the thesis, it functions as scenario manager which controls Unity.

Using a gRPC API developed by Thomas Skarshaug [17], Unity halts the simu-
lation until a vessel message arrives from OSP seen in Figure 4.17. After the message
is received, the 3D models is Section 4.2.4 is translated using Unity’s scripting lan-
guage, before the sensor models creates EMR data. Finally, Unity calls on ROS to
store the data, ending with a new request to OSP for the next vessel transformations.
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Unity to ROS

At the end of the datapipeline seen in Figure 2.2, ROS records the sensor data
into a ROS-bag by using the same API as in Figure 4.17, sending sensor data
instead of vessel transformations. In order to utilize this functionality, ROS uses
a standardized set of messaging types to record sensor data, making it easier to
run third party programs from a common interface. In our case, the messages of
importance are Pointcloud2 for lidar data, and the Image type for the RGB camera
data.

In every ROS-message there exist a header, which is created by ROS itself,
containing information about when the message was received. The data is repre-
sented as a list of raw bytes known as byte strings, where the message contains the
computer systems endianness. This tells us if a single bytes most significant bit is
at the beginning or the end of the byte, which is needed to format the data correctly
between different hardware and data systems. In our case our system supports the
latter, know as little endian, the opposite of big endian format.

1 # sensor_msgs /Image.msg
2

3 Header header # Header timestamp
4

5 uint32 height # image height
6 uint32 width # image width
7

8 string encoding # Encoding of pixels --
9

10 uint8 is_bigendian # Is the data bigendian ?
11 uint32 step # Full row length in bytes
12 uint8 [] data # Image data
13

To mimic the real camera data, the encoding is set to bgr8, with image height and
width given as 612 and 512 pixels respectively. This means that the byte string
comes in as blue, green and red bytes, making up 512 × 612 × 3 elements for the
data. The step message variable in this case is an over parameterisation, not needed
for the message to function. Nevertheless, for clarity it is set to 612× 3.
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When it comes to the lidars point cloud data, each point is "encoded" according to
the PointField datatype. For the VLP-16 the encoding follows Table 4.2.

name offset datatype count
x 0 7 1
y 4 7 1
z 8 7 1

intensity 12 7 1
ring 16 4 1
time 18 7 1

Table 4.2: PointField data for Velodyne VLP-16 puck in ROS

However, since the data is generated by a GPU, the datatype of the ring element
is changed to 7 for performance reasons. Fortunately, for this application only the
positional information are of importance.

1 # sensor_msgs / PointField .msg
2

3 # Datatypes
4 uint8 INT8 = 1, uint8 UINT8 = 2, uint8 INT16 = 3,
5 uint8 UINT16 = 4, uint8 INT32 = 5, uint8 UINT32 = 6,
6 uint8 FLOAT32 = 7, uint8 FLOAT64 = 8
7

8 string name # Name of field
9 uint32 offset # Offset from start of point struct

10 uint8 datatype # Datatype enumeration , see above
11 uint32 count # How many elements in the field
12

This means that the byte string consists of 24 bytes for each point in a lidarscan,
known as point_step in the PointCloud2 message. The number of points are speci-
fied by setting the height to 1, and the width to 16×1024 corresponding to 16 lasers
with a scan resolution of 1024. Finally, the row_step and is_dense element is set
to 0 and 1 respectively to match the contents of the real dataset’s ROS-bag created
by Øystein Kaarstad Helgesen in Section 3.3.1.

1 # sensor_msgs / PointCloud2 .msg
2

3 Header header
4

5 # 2D structure of the point cloud
6 uint32 height
7 uint32 width
8

9 PointField [] fields
10

11 bool is_bigendian # Is the data bigendian ?
12 uint32 point_step # Length of a point in bytes
13 uint32 row_step # Length of a row in bytes
14 uint8 [] data # Size of point data ( row_step * height )
15

16 bool is_dense # True if there are no invalid points
17
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Chapter 5

Data Comparison

Figure 5.1: Example of synthetic and real image data for scenario 3

Comparing reality to simulation is not an easy task, especially when considering the
abundance of detail reality consists of. Generally, this is done by proposing a model
which is then validated through empirical data. Choosing how the measurement
should be compared to the model, is however not that trivial. If we aim to show
that the data are different, there is hardly any need to do much analysis at all,
which is obvious from comparing the images in Figure 5.1. On the other hand,
we can likewise see similarities, such as having an ocean, a sky, and boats passing
by. At this point, its worth remembering what the end goal of the simulation is:
"validating autonomous ships". This tells us it is not our human perception that
needs be tested. It is what the autonomous agent perceives, that is interesting.

In the field of target tracking, performance metrics already exist as measurables
to aid researchers to evaluate and improve their algorithms. Using the same metrics
for doing dataset comparison, gives us a way to improve the simulation in the future,
but it also tells us if the autonomous agent can use simulation as a substitution
to real data. This chapter begins with talking about target tracking, before the
metrics are introduced. In the last section of this chapter, the different metrics and
interpretation of some of their characteristics, are done by comparing the datasets
from Chapter 3 and 4.
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5.1 Target tracking
Since we have choosen to compare the synthetic and real datasets by studying the
performance of a target tracker, some fundamental topics are required to understand
both the tracker and how its performance are evaluated. The first section will cover
basic probability theory used throughout this chapter, before a section discussing the
use of filters to track boats is presented. This is followed by a high level explanation
of the tracker in use, and ending the section with explaining typical performance
metrics used by today’s tracking algorithms. This section is largely based on the
book: Fundamentals of Sensor Fusion by Edmund Førland Brekke [16], though
simplified in order to cover the most relevant topics.

5.1.1 Probability Theory
The target tracking used in this work relies on a probabilistic approach. Because
of this we will first cover some of the fundamentals, before describing what random
variables are and their connection to probability density functions. Lastly, we will
cover the multivariate Gaussian distribution, a cornerstone for being able to explain
the filter used in the tracker.

Fundamentals

Probability theory is about assigning numbers to events, which in turn tells us how
likely they are to happen [16]. Events in this chapter are noted as large characters,
such as A and B, while the probability of an event happening is noted with the
operator Pr{·}.

Moreover, the conventional boolean operators ∪ and ∩ are respectively know
as the union/or operator, and intersection/and operator. This is used among others
to define the independence of events:

Pr{A ∩B} = Pr{A}Pr{B}. (5.1)

Further, the conditional probability where the probability for A happening given
that B have happened, is defined by using the | operator:

Pr{A|B} = Pr{A ∩B}
Pr{B}

. (5.2)

Since the intersection operator is commutative, Pr{A ∩ B} = Pr{A|B}Pr{B} =
Pr{B|A}Pr{A}, where solving one of the conditions gives the Bayes rule:

Pr{A|B} = Pr{B|A}Pr{A}
Pr{B}

. (5.3)

Random variables and probability functions

Using events in mathematical approaches can be very cumbersome because of their
generality. Because of this, random variables are often used to give a quantitative
perspective and possibility of creating and calculating probabilistic models. Random
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variables are however still known as events. This is done by representing them as
abstract outcome spaces, functioning as sources for sampling concrete quantities
known as realisations. Realisations are represented as lowercase letters to their
event / random variable counterparts.

To describe the probability of a random variable, probability density functions
(pdf) are used, described by the operator p(·) where the realisation of the random
variable is used as parameter. It is also worth noting pdf’s are used to describe
stochastic processes from random variables, the random equivalent to functions using
real variables.

A general property of all pdf’s are that their area sum up to 1:∫ ∞
−∞

p(x)dx = 1. (5.4)

Multivariate Gaussian distribution

The most important pdf when speaking of target tracking is the Gaussian distribu-
tion. This stems from the beneficial properties it has towards linear transformations,
moreover how the central limit theorem tells us that the sum of many independent
samples, goes towards a Gaussian distribution. For multivariate settings, the Gaus-
sian distribution is defined as:

N (x;µ,P) = 1
(2π)

Ng
2 |P| 12

exp
(
−1

2(x− µ)TP−1(x− µ)
)
, (5.5)

for a vector x of size Ng subjected to the expectation value µ and covariance ma-
trix P. The distributions first property of importance is linearity. If the a linear
transformation y = Fx is subject to a random variable X by the distribution
pX(x) = N (x;µ,P) the distribution of the transformation results in:

p(y) = N (y; Fµ,FPFT ). (5.6)
Furthermore, a second property to be aware of is the product identity:

N (z; Hx,R)N (x; x̄, P̄) = N (z; z̄,S)N (x; x̂, P̂), (5.7)
given that the variables involved obey:

z̄ = Hx̄

x̂ = x̄ + W(z −Hx̄)
S = R + HP̄HT

P̂ = (I−WH)P̄
W = P̄HTS−1.

(5.8)

where H and F will be covered further in the section about the Kalman Filter.
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5.1.2 Filters
In order to track targets, information about observation and model prediction must
be handled to give good estimates of several relevant target states. This typically
consist of position and velocity, but heading can also be relevant if the ANS handles
other vessels. There are several ways to handle target tracking, but most of them
are based on the Bayesian Filter which we will cover in the first section. From this,
assumptions are made towards linear models and Gaussian processes, where the
Kalman filter is known for being the optimal solution. However, these assumptions
are often too strict to function due to the non-linearity of the real world. The
last section therefore introduces the Extended Kalman Filter, which is used in the
complete tracking algorithm.

Bayesian Filter

We begin with defining a pdf that tells us about the targets state estimates x given
all of our observations z. We define this as our belief distribution:

bel(xk) = p(xk|z1:k), (5.9)

using k to note a time instance, and the ":" operator to note a sequence of instances:

z1:k = z1, ..., zk−1, zk.

In this case, the current belief uses all previous and present observation instances
to tell what the present target states are. Using the pdf equivalent of Bayes Rule
(5.3), we can rewrite (5.9) to:

bel(xk) ∝ p(zk |xk, z1:k−1)p(xk | z1:k−1), (5.10)

where we use the proportional equal operator ∝ to ignore the normalisation terms
in Bayes Rule. Using Equation 5.4, the last term can formed as an integral, know
as the Chapman-Kolmogorov equation:

p(xk | z1:k−1) =
∫
p(xk, xk−1 | z1:k−1)dxk−1, (5.11)

This equation can be simplified further by letting the process model follow the
Markov property:

p(xk |x1, ..., xk−1, xk, z1, ..., zk−1, zk) = p(xk | xk−1), (5.12)

telling us that the stochastic processes only relies on the latest state, not the history
of states before it. Using this and the conditional probability (5.2), a Markov chain
follows:

p(xk, xk−1 | z1:k−1) = p(xk |xk−1)p(xk−1 | z1:k−1) (5.13)

This gives a simpler expression for the Chapman-Kolmogorov equation:

p(xk | z1:k−1) =
∫
p(xk |xk−1)p(xk−1 | z1:k−1)dxk−1, (5.14)
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giving us:

bel(xk) ∝ p(zk |xk, z1:k−1)
∫
p(xk |xk−1)p(xk−1 | z1:k−1)dxk−1. (5.15)

The Markov property also simplifies the measurement model:

p(zk |xk, z1:k−1) = p(zk|xk), (5.16)
which leads us to the final recursive Bayes Filter :

bel(xk) ∝ p(zk |xk)
∫
p(xk |xk−1)p(xk−1 | z1:k−1)dxk−1,

∝ p(zk |xk)
∫
p(xk |xk−1)bel(xk−1)dxk−1.

(5.17)

For reasons of intuition, this equation is often divided into recursive prediction and
correction steps:

Prediction(xk) =
∫
p(xk |xk−1) Correction(xk−1) dxk−1,

Correction(xk) ∝ p(zk |xk) Prediction(xk),
(5.18)

where the targets states is first estimated using only the process model, before being
corrected by the measurement model.

Kalman Filter

Even though the Bayes Filter creates a general technique for tracking targets, it is
not possible to use directly. In order to implement a target tracker, a specialised
version that makes further assumptions of the filter is needed. The Kalman Filter
is a closed-form solution to this problem, where we are assuming generally Gaussian
distributions for stochastic processes and initialization, in addition to linear models
that are known. To summarize, we are given:

p(xk|xk−1) = N (xk; Fxk−1,Q),
p(zk|xk) = N (zk,Hxk,R),

p(x0) = N (x0, x̂0,P0).
(5.19)

H and F are in this case known as the linear measurement and process model
matrices, with corresponding covariances R and Q driven by i.i.d white noise vector.
Using these assumptions with the product identity (5.7), one can derive from the
Bayesian Filter (5.3) a set of equations that can be implemented as an algorithm
(Algorithm 1).

This creates an recursive algorithm, that initializes with x0, P0, e.i we need to
know the initial targets state estimations and corresponding distributions in order to
track the object. After predicting the first step, the latest target state measurements
zk is used to perform the algorithms correction step, before an endless recursion is
achieved by feeding the return values into another function call. To separate the
variables time instances in the prediction step from the correction step, the notation
k|k − 1 is used for prediction.
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Algorithm 1 Kalman Filter Algorithm
Require: H,F,Q,R,x0,P0

1: procedure KalmanFilter(x̂k−1,Pk−1, zk)
2: Prediction Step:
3: x̂k|k−1 ← Fx̂k−1
4: ẑk|k−1 ← Hx̂k|k−1
5: Pk|k−1 ← FPk−1FT + Q
6: Correction Step:
7: Vk ← zk − ẑk|k−1
8: Sk ← HPk|k−1HT + R
9: Wk ← Pk|k−1HTS−1

k

10: x̂k ← x̂k|k−1 + WkVk
11: Pk ← (I−WkH)Pk|k−1
12: return x̂k,Pk,Vk,Sk

For the observant reader, many parallels between the equations in the algorithm
and the conditions from the Gaussian product identity (5.8) can be drawn. This
simply comes as a consequence when deducing the Kalman Filter equations using
the product identity, the Kalman Filter inherits similar conditions [16]. As with
the Bayesian Filter, the algorithm can also be broken down to a prediction and
correction step (5.18).

Extended Kalman Filter

Due to the nonlinear nature of target tracking, the assumptions of the Kalman Filter
is often to strict to handle real case events. An easy solution to this is to soften the
assumption regarding linear models, treating both the process and measurement
models as the nonlinear functions f(xk−1) and h(xk) respectively. There exists
several ways to linearize these functions. For the Extended Kalman Filter approach,
the previous state estimations x̂k−1 and x̂k|k−1 is used as linearization points in the
first order Taylor approximation of the nonlinear functions:

f(xk−1) ≈ f(x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1),
h(xk) ≈ h(x̂k|k−1) + H(x̂k|k−1)(xk − x̂k|k−1),

(5.20)

where the H and F becomes the Jacobians calculated from the non-linear functions:

F(x̂k−1) = ∂

∂xk−1
f(xk−1)

∣∣∣∣∣∣
xk−1=x̂k−1

H(x̂k|k−1) = ∂

∂xk

h(xk)
∣∣∣∣∣∣
xk=x̂k|k−1

(5.21)

This gives a new set of Gaussian processes:

p(xk|xk−1) = N (xk − f(x̂k−1); F(xk−1 − x̂k−1),Q),
p(zk|xk) = N (zk,h(xk),R),

p(x0) = N (x0, x̂0,P0).
(5.22)
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Since no changes are made to the Gaussian assumptions, and we still use linear mod-
els when dealing with the product identity (5.7), the Extended Kalman Filter uses
a similar deduction from the Bayesian Filter as the linear Kalman Filter. Because
of this, Algorithm 2 only differs in the prediction step of Algorithm 1

Algorithm 2 Extended Kalman Filter Algorithm
Require: h, f ,Q,R,x0,P0

1: procedure ExtendedKalmanFilter(x̂k−1,Pk−1, zk)
2: Prediction Step:
3: x̂k|k−1 ← f(x̂k−1)
4: ẑk|k−1 ← h(x̂k|k−1)
5: F← ∂

∂xk−1
f(xk−1)|xk−1=x̂k−1

6: H← ∂
∂xk

h(xk)|xk=x̂k|k−1

7: Pk|k−1 ← FPk−1FT + Q
8: Correction Step:
9: Vk ← zk − ẑk|k−1

10: Sk ← HPk|k−1HT + R
11: Wk ← Pk|k−1HTS−1

k

12: x̂k ← x̂k|k−1 + WkVk
13: Pk ← (I−WkH)Pk|k−1
14: return x̂k,Pk,Vk,Sk

5.1.3 Tracker
Kalman filters alone are not much of use for tracking without a system categorizing
where the measurements originated from. This is the purpose of a tracker, and
the problem they solve is known as a data association problem. As with the filters
there exists multiple trackers. The tracker we will be using is the Joint Integrated
Probabilistic Data Association JIPDA, made by Øystein Kaarstand Helgesen in his
masters’s thesis [28]. This is known as a multi-target tracker, which relies on a
statistical approach to solve the data association problem, by considering all the
probabilities of possible association events.

Validation gate

Since this can be a large task due to the size of the measurement space, especially
when multiple targets are present, a validation gate is used to limit the number
of possible associations. By only considering measurements in the vicinity of the
predicted measurements of the filter, a smaller space is formed by introducing the
following limit:

VTk S−1
k Vk < g2 (5.23)

In our case, g = 1 due to the small distances between targets in the Ravnkloa
channel.
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JIPDA assumptions

Further assumptions must also be made to solve the data association problem.
• Tracks are assumed to be already initialized for targets in question.
• Then by treating the existence of a targets track as an event with a calculable

probability, tracks can be either maintained or terminated. For the JIPDA,
we assume three possibilities for existences of a target: the target exists and
is visible, the target exists but is not visible, the target does not exist.

• The visibility is determined by measurements of the target, assumed to occur
with a specified probability.

• At most one measurement can be associated with a target.
• The remaining measurements is known as clutter, e.i assumed to be false

alarms.
• Clutter is i.i.d of each other.

These assumptions give rise to a multitude of formulas and tuning parameters for
the tracker. For the sake of reproducibility, the reader is referred to Table 6.5 in
Øysteins Master’s thesis [28] for these parameters, and Chapter 5.3 in the same
thesis for deriving the JIPDA formulas.

Extended Kalman Filter

JIPDA alone will only make tracks continue to live or die of, not creating new
ones. Track initialisation is quite a different topic, but is necessary to fulfill the
assumptions of both the JIPDA and the Kalman filters in order to give values to
P0 and x̂0. In our case, tracks initializes after two unassosiated measurements
within a set distance occurs. This distance depends on the targets max velocity and
measurement timestep: d = V elmax ·∆T . In our case, the max velocity is set to 10
m/s, while the time step varies around 100ms due to the sensor rates on cameras
and the lidar.

The remaining requirements for the Kalman filter are the process and mea-
surement models, respectfully, f and h. A constant velocity model is used for the
process model (Chapter 6.4.1 in [28]), a bearing model is used for the camera sen-
sor (Chapter 2.1.8 in [28]) model, while a range-bearing model is used for the lidar
sensor model (Chapter 6.4.2 in [28]). These models are tuned using the diagonal
elements of the Kalman filters noise matrices, or the single scalar for tuning the
cameras bearing model:

Q =
[
Q11 0

0 Q22

]
, Rli =

[
Rli,11 0

0 Rli,22

]
, Rc = Rc,11 (5.24)
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5.1.4 Performance Metrics
The thesis have until this point made us aware of the Kalman Filter, its role in target
trackers, and discussed some of the design parameters these entail. This leaves us
with explaining how the remaining parameters R and Q are tuned in order for the
filter outputs to give consistent errors (filter consistency). From [16], this can be
done by studying several criteria:

1. The state errors should be acceptable as zero mean.
2. The state errors should have magnitude commensurate with the state covari-

ance yielded by the filter.
3. The innovations should be acceptable as zero mean.
4. The innovations should have magnitude commensurate with the innovation

covariance yielded by the filter.
5. The innovations should be acceptable as white.

Point 3-5 handles internal consistency of the filter, namely the the prediction step,
and are often used when ground truth values for filter estimates are either unavailable
or of poor quality. In our case, Section 3.3.2 ensures a viable ground truth, at least
for Havfruen. In this case the filter consistency can be determined by point 2, by
using the normal estimation error squared (NEES) metric. In addition, the root
mean square error (RMSE) is used to determine the accuracy of the estimates x̂k

with respect to the ground truth.

RMSE

The most intuitively metric is looking on the physical distance between the state
estimates and their corresponding ground truth xr

RMSE(x̂k,xr) =
√

(x̂k − xr)T (x̂k − xr) (5.25)

NEES

NEES is based on the Mahalanobis distance squared, which can be intuitively un-
derstood as normalising the estimates on the standard deviation. This results in
values that can be interpreted as the filter confidence for its state estimations.

NEES(x̂k,xr,Pk) = (x̂k − xr)TP−1
k (x̂k − xr) (5.26)

ANEES

Often studying raw NEES values for each timestep k can be a tedious process.
Therefore when comparing the performances between two different tunings, an av-
eraged NEES value across all non-zero data elements Nk in a scenario are often
used:

ANEES = 1
Nk

Nk∑
k=0

NEES(x̂k,xr,Pk) (5.27)

A special property of ANEES and NEES, are that they form a χ2-distribution given
that the filter model are correct. Strictly speaking, a second criteria is needed for
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ANEES where the summarized NEES values ought to be a white process for this
to be true. However, the deviations from the χ2-distribution is seldom to large to
make any difference.

This distribution can be used to form an upper and lower limit of where the
values of ANEES and NEES should be present. Using a 5% confidence interval the
following boundaries can be established [16]:

ANEESupper = 1
Nk

χ2(0.975,NkNg)−1,

ANEESlower = 1
Nk

χ2(0.025,NkNg)−1,
(5.28)

where the distributions second parameter is known as the distributions degree of
freedom, found by taking the product between the filters number of states Ng and
number of non-zero data samples Nk. If ANEES is higher than the upper limit,
we say the filter is acting overconfident while it being lower the filter is acting
underconfident.

Track-Truth associations

The JIPDA tracker gives us multiple tracks coming from associating measurements
to tracks, but it does not determine which ground truth is associated with what
track. This association is done by letting each track subscribe to the closest ground
truth within 10m. The track with the closest distance to a ground truth is considered
to be the target boat. If no targets subscribe to a ground truth as time elapses, a
track loss emerges, meaning that the performance metrics at this time instance
become undefined as they cannot be calculated. For RMSE and NEES this mean
we observe fractured tracking results, but for ANEES it simply ignores the undefined
instances when summing, and letting Nk only contain the number of valid instances.
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5.2 Dataset validation
In this section we will look at how the synthetic dataset from Chapter 4 is compared
to the real dataset from Chapter 3. We will begin with describing the comparison
method that introduces a comparison metric, clarifying the evaluation settup, and
giving a evaluation strategy used throughout the chapter. In Section 5.2.2 we study
how the comparison metric maps to the target trackers performance metrics from
Section 5.1.4 using the lidar sensor. Finally, in Section 5.2.3 we give a qualitative
analysis of how the image detection from [28] performs on the synthetic dataset.

5.2.1 Comparison method
In section 5.1.4 we became familiar with the most common metrics in evaluating the
performance of target trackers. These relied on studying the output of the trackers
Kalman filters, in addition to having a ground truth as a reference of the accuracy the
filter presented. Unfortunately, the target performance metrics only study properties
of single pdfs which in itself is useful from a tuning perspective, but not that much
for comparing datasets. In order to compare the performance of a tracker running
on a synthetic versus a real dataset (Figure 5.2), a more comprehensive metric is
needed.

Synthetic

Dataset

Extended

Kalman Filter

Tracker

Hellinger

Distance

Metric

Real

Dataset

Extended

Kalman Filter

Tracker

Lidar &/ camera

detections

Estimates &

covariances

Distance from

0 to 1

Figure 5.2: Dataset comparison method
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Hellinger distance

The Hellinger distance HD is such a metric, which in its general form can be written
as [29]:

HED(p1, p2) =
√

1−BC(p1, p2), (5.29)
where p1 and p2 are two arbitrary density functions, and BC being the Bhattachar-
rya coefficient. The coefficient is special since it is both used as a metric but is
also commonly used in other multivariate metrics such as the Bhattacharrya and
Hellinger distances. If we assume the pdfs to be Gaussian, the coefficient simplifies
giving us the following Hellinger distance [29]:

HED(N1,N2) =

√√√√√√1−

√√√√√
√
|P1||P2|∣∣∣P1+P2

2

∣∣∣ exp
{
−1

8NEES
(
µ1, µ2,

P1 + P2

2

)}
, (5.30)

where µi and Pi are the respective expected value and covariance matrix of the
Gaussian pdfs Ni for i = 1, 2. Since it is based on NEES, it is easy to see the
relationship the Hellinger distance have to the performance metrics for target track-
ings. The Hellinger distance does in contrary take into account the differences in
covariances, easily seen by setting µ1 = µ2. This gives us the following term for the
covariance differences:

COVDIFF (N1,N2) =

√√√√√√1−

√√√√√
√
|P1||P2|∣∣∣P1+P2

2

∣∣∣ , (5.31)

Further, the maximum distance of 1 is achieved for both COVDIFF and HED when
either N1 or N2 gives a probability of zero while the other still has a non-zero
probability. This can happen from either the covariance matrices being different, or
from having large NEES values in HED [29]. When the distributions are equal, the
distance is 0 under the opposite conditions.

Evaluation setup

The tracker outputs x̂k and Pk for a target boat comes from Algorithm 2:

x̂k = [Posx, V elx, Posy, V ely]T ∈ R4, Pk ∈ R4×4, (5.32)
where both x, y positions and velocities of the targets are estimated states giving us
Ng = 4. To anchor these states to an absolute truth, the estimates are differentiated
with the ground truth data xr, coming from the GNSS results in Chapter 3. Further,
xr follows the same convention as (5.32), using numerical differentiation estimates
based on position to give ground truth data for the velocity states. Putting these
values into (5.25) - (5.27) we calculate the performance metrics. Since each scenario
is of different lengths, Nk is set accordingly to calculate the ANEES bounds (5.28).

For the dataset comparisons, there is no need for the ground truth as it cancels
out when comparing the pdfs using the Hellinger distance. Instead, we form the
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synthetic and real Gaussian distributions using the output parameters from the
Kalman Filters directly:

Nsynt,k = N (x; xk,synt, Pk,synt),
Nreal,k = N (x; xk,real, Pk,real),

(5.33)

where synt and real sub notation is used to separate the datasets. This is then used
to calculate the Hellinger distance from Equation 5.30 as HED(Nsynt,k,Nreal,k).

To make the comparison easier, an averaged Hellinger distance is used for each
scenario for both Havfruen and Finn:

AHED = 1
Nsynt,real

Nsynt,real∑
k=0

HED(Nsynt,k,Nreal,k) (5.34)

Such as with ANEES, invalid data may occur for AHED aswell. The difference
being that the invalid time instances, does not only come from track-truth associa-
tions as in Section 5.1.4, but also from track differences between the synthetic and
real datasets aswell. For this thesis, we choose to ignore the invalid time instances
as we did with ANEES, only considering the occasions where there are common
ground between between the datasets. This means that Nsynt,real ≤ Nk, and that
HED(Nsynt,k,Nreal,k) is only summed over valid time instances. It is worth men-
tioning that AHED values will from this not be able to determine the amount of
track losses.

Evaluation strategy camera

In addition to the Hellinger distance, camera images is compared to each other
using a YOLO4 detector [30] trained on the MS COCO dataset [31], running on
both real and synthetic images. This detector outputs bounding boxes of detected
boats in an image, where a confidence interval between 0 and 1 is given, telling how
certain the AI is of its prediction. Since the digital twin framework does not yet
support an automatic image labeling process, moreover a method to compare images
quantitatively, only a few samples are compared to give a qualitative impression of
the data comparison and reproducibility.

Evaluation strategy lidar

The evaluation is done by fusing only lidar data, where the Extended Kalman filter
is tuned based on scenario 3 from Section 3.2.4 with the help of the performance
metrics discussed in Section 5.1.4. The tuning is performed twice by Øystein Karstad
Helgesen, once using the synthetic dataset and once using the real dataset to see if
there is any noticeable differences using different parameters. Rest of the Tracker
parameters from Section 5.1.3 are kept constant.

Each tuning is given a AHED value foreach recorded Scenario, depicted in
Figure 3.13. In addition three AHED values are calculated from the datasets, one
for each tuning parameters mentioned above, and one for all tunings.
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5.2.2 Lidar evaluation
The tracker was run on both Havfruen and Finn using only lidar data from the
datasets in Figure 5.2, using tuning parameters from Table 5.1.

Tunings Q11 Q22 Rli,11 Rli,22
Synthetic 0.3 0.3 56 0.044

Real 0.2 0.2 150 0.04

Table 5.1: Tracker tunings for Lidar evaluation

From these settings, results from the Hellinger distance was obtained, depicted in
Figure 5.3. Studying the different tunings, and especially the averages, we see that
there is not much differences in the distances. There are however exceptions to this,
especially in scenario 3 for Finn, where the distance is at its lowest for the real
tuning. This leaves us with the conclusion that tuning parameters do affect how
similar the datasets are, but on average this difference is less than 1.3%.

A bigger concern is the size of the averaged distance when we disregard the
different tunings, and the spread between the worst and best case distances. On
average, we have a fairly high distance of ∼ 0.73, indicating that the datasets are
more dissimilar than similar. Further, the differences between the best and worst
case distances are respectively, the real tuning of scenario 3 for Finn, with a distance
of 0.43, and scenario 9 for Havfruen, with a distance of 0.99. Though this spread
is concerning, it is also beneficial since it gives us the opportunity to study how
different Hellinger distances affects the performance metrics.

The most similar scenario, are however 7, where both datasets agreed upon the
tracker not being able to initialize a track on either Finn or Havfruen. It is however
not much we can analyse from this, other than all the metrics being undefined at
every time instance of the scenario. Since both trackers agree on there being no
track to report, the Hellinger distance is set to 0 to indicate full agreement between
the datasets.

Other scenarios that show interesting results are scenario 6 and 8 for Havfruen,
even though this is not obvious from looking at the Hellinger distances. Instead, this
comes from studying the performance metrics for the trackers in Figure 5.12 and
5.15. Therefore, the rest of this section will cover how NEES, RMSE and ANEES
behaves for the four scenarios of interest.
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Differences between synthetic and real datasets
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                Synthetic tuning    Real tuning     Total 

                ________________    ___________    _______

    Averages        0.72294           0.73577      0.72935

Figure 5.3: Hellinger distances for each target boat using two sets of tuning pa-
rameters (Table 5.1)
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Best Case

From scenario 3 the track of the Finn boat gave the best dataset comparisons,
when the tuning was performed on the real dataset. This is controversially also
the scenario which had the biggest deviation regarding the tunings (Figure 5.3),
indicating the scenario’s sensitivity to the tuning parameters. Regardless, the NEES
and RMSE values for the real tuning seen in Figure 5.5 show an extraordinary case
where most of the functions characteristics where reproduced. This is despite the
problems the Finn boat had with establishing a trustworthy ground truth (Figure
3.16). If we have at Figure 5.4, it becomes obvious that the covariance matrices
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RMSE differences

Figure 5.4: Hellinger distance with covariance differences(5.31). NEES and RMSE
differences is calculated by using the RMSE of the corresponding synthetic and real
dataset metrics

are similar in this case. Looking at NEES and RMSE differences we see that the
Hellinger distance are driven by NEES. This is not a surprise since we know from
(5.30) that when the covariance matrices are identical, NEES dictates the distance.
This means that the remaining Hellinger distance are relatively low in this case, due
to the low difference between the NEES values. However, much of this indicates
a "lucky shoot" case, where a suitable tuning capable of disregarding the dataset
differences could be the reason. Despite this, it is encouraging to see that the
simulation in its current form is capable of producing such results.
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                         ANEES     Upper bound    Lower bound

                         ______    ___________    ___________

    Synthetic dataset    3.5353      4.6997          3.356   

    Real dataset         5.0075      4.6997          3.356   

                         ANEES     Upper bound    Lower bound

                         ______    ___________    ___________

    Synthetic dataset    8.4607      4.7341          3.327   

    Real dataset         8.2706      4.7341          3.327   

Figure 5.5: Tuning metrics for Finn at scenario 3, using only lidar measurements
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Worst Case

In contrary to the best case, the worst case shows a completely different story.
Despite of the accurate ground truth for Havfruen (Figure 3.15), scenario 9 has
by far the worst tracking results across all datasets. From the Hellinger distances
(Figure 5.3), the worst case topped with a distance near 1, telling us the multivariate
Gaussians strongly disagree with each other. In Figure 5.9 the synthetic RMSE and
NEES show little resemblance to their real conterpart, and the ANEES values are
in addition way of the χ2-distribution bounds, regardless of the tunings. Looking at
Figure 5.6 we get an impression of why this is so.
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Figure 5.6: Hellinger distance with covariance differences(5.31). NEES and RMSE
differences is calculated by using the RMSE between synthetic and real dataset
metrics

Here the Hellinger distance tells us that the synthetic and real distributions are
dissimilar for every timestep. In the beginning, we see that this has to do with the
Covariance matrices being different. Then at 13:03:55, the tracker switches target
for the synthetic dataset (Figure 5.7), creating a track jump that can be observed
as a spike or drop in both the RMSE and covariance differences respectively (Figure
5.6). At this point, the covariance matrices seems to be more similar than before,
but due to the high NEES differences, the Hellinger distance finds no similarities
between the tracker results.
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Figure 5.7: Track jump 10 seconds after first track initialisation for the synthetic
dataset. Red line is ground truth data, blue is estimated positions while green
indicates the covariance ellipses at each time instance. Track begins in the upper
right corner of the image

Studying the covariance differences further, we see that target jumps happen be-
tween 2-3 times during the scenario. A possible cause for this can be the differences
between the synthetic and real environment with respect to 3D models. Looking
at Figure 5.8, we see that there are allot of possible targets the tracker could find
interesting when trying to track Havfruen which travels closely besides the shore-
line. Figure 5.7 also confirms this, as the jump happens towards the area of an-
chored boats. Considering the selection of boats in the environment between the
two datasets are vastly different, the tracker might have jumped to a target witch
is not present in the real world, and vice versa.

85



5. Data Comparison

Figure 5.8: Synthetic and real environment from top to bottom respectively. No-
tice the difference in the types, sizes and number of boats anchored to the harbour
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                         ANEES     Upper bound    Lower bound

                         ______    ___________    ___________

    Synthetic dataset    779.97      4.1985         3.8063   
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                         ANEES     Upper bound    Lower bound

                         ______    ___________    ___________

    Synthetic dataset    1809.8      4.2042         3.8008   

    Real dataset         353.92      4.2042         3.8008   

Figure 5.9: Tuning metrics for Havfruen at scenario 9, using only lidar measure-
ments
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Range dissipation and track initialization Case

A reoccurring characteristics across most of the scenarios are the synthetic datasets
early track initialisation and late track loss in comparison to the real dataset. This
is both present in the worst case results (Figure 5.9) and in this sections Figure 5.12,
showing metrics for Havfruen at scenario 6. We see from the figure that RMSE and
NEES values initializes ∼ 10 seconds earlier with the synthetic than with the real,
causing different effects on the metrics.

The similar ANEES values between the datasets serves as a reminder of the
importance of having multiple metrics to evaluate the data. In this case, ANEES
ignores the characteristics of time, while NEES and RMSE clearly shows a difference
in the datasets. Since we know that lidar is the only sensor in use that could
influence these metrics, this means that the synthetic lidar is responsible for the
early initialization.

When studying the point clouds in both datasets (Figure 5.10), it becomes
obvious that the synthetic lidar does not model the max distance properly since
the point cloud data of Havfruen is available at a greater distance for the synthetic
than with the real. Moreover, when looking at the environment, we see that the
range dissipation of the real lidar is not similar to the synthetic. One could suggest
that this comes from inaccurate 3D modeling, which is to a certain extend true.
However the dimensions of the channel, some of the nearby buildings and boat
positions are accurate on a macro level. In addition, the 3D models of the target
boats are especially accurate since they where modeled with this project in mind
(Chapter 3). Since the lidar model uses the max distance given by the manufactures
specifications, the inevitably conclusion is that the synthetic lidar does not model
the range dissipation present in the real sensor.
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Figure 5.10: Comparison of raw point cloud data between the datasets at 12:36:20
for scenario 6. Synthetic at the top, real at the bottom. Dark blue circle shows
milliAmpere’s position, while light blue circle shows Havfruens position. The ground
truth is depicted as a green dot inside Havfruens circle. The remaining points are
raw cloud data. Notice the raw data being present in Havfruens ellipse for the
synthetic data and not in the real
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Figure 5.11: Hellinger distance with covariance differences (5.31). NEES and
RMSE differences is calculated by using the RMSE between synthetic and real
dataset metrics

Early initialization could also effect the whole track sequence, since we know from
Section 5.1.2, that theoretically the estimation and covariance matrices should be-
come more accurate as more data runs through the prediction and correction steps.
From the assumption done using the Extended Kalman filter, this might not be
completely true, but at the very least the previous calculations should affect the
next outputs of the filter. Looking at Figure 5.12 much of this is confirmed when
comparing the RMSE and NEES values for both the synthetic and real datasets,
regardless of tunings. Here the synthetic cases ends up with having lower RMSE
and more consistent NEES as time goes by. An exception from this is in the be-
ginning of the real dataset, which might be from the assumptions just mentioned
or a lucky initialization. Considering the latter case, looking back at the best case
in Figure 5.5, we see that the initialization does indeed happen simultaneously for
both datasets. If we compare the covariance differences between this case (Figure
5.11) and the best case (Figure 5.4) we see that the early initialization leads to huge
differences in covariance similarities, which in turn impacts the Hellinger distance.
This goes to show that early track initializations can be a major contributor to the
differences between the datasets.
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                         ______    ___________    ___________
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Figure 5.12: Tuning metrics for Havfruen at scenario 6, using only lidar measure-
ments
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Ground truth case
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Figure 5.13: Speed estimates using positional GNSS data for the ownship and
Havfruen from Section 3.3.2. Comparing this with Figure 5.15 servers as an example
of how abnormalities in the ground truth propagates to different evaluation metrics

Until now we have seen dissimilarities between datasets focusing on sensor modelling
of lidar. We have also seen that the best case are capable of reproducing most of the
metric characteristics. However there have not been any discussion of where these
characteristics could come from. Scenario 8 for Havfruen is an interesting case in
this matter, since it displays a similar ability to reproduce NEES characteristics as
with the best case. The discrepancy spike at 12:52:28 in Figure 5.15 is an example
of this. Since we know RMSE and NEES both relies on the ground truth data, there
is a possibility that non perfect ground truth data propagates to different evaluation
metrics.

This could cause problems when we try to evaluate the characteristics the
dataset metrics seems to show. To give an impression of what this means, the
discrepancy spike in both NEES and RMSE, comes from a velocity jump from
milliAmpere’s ground truth data seen in Figure 5.13. This means that the char-
acteristics seen in the best case from Figure 5.5 might just as well be the result of
inconsistent ground truth data obtained from Finn (Figure 3.14). This opens up yet
another question: If the characteristics we perceive from the metrics is just a result
of inaccurate ground truths, how can we tell if a dataset comparison is any worse
than another?
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Figure 5.14: Hellinger distance with covariance differences (5.31). NEES and
RMSE differences is calculated by using the RMSE between synthetic and real
dataset metrics

Luckily, in comparison to NEES the Hellinger distance does not depend on the
ground truth directly, which can be seen from the absent spike in Figure 5.14,
meaning that some discrepancies coming from the ground truth does not affect
the evaluation of the dataset similarities. Since the best case has a relatively low
Hellinger distance, there is evidence that the similar characteristics comes from a
successful dataset reproduction. With this said, its worth to keep in mind even if the
Hellinger distance is not affected by the ground truth directly, it is affected by the
synthetic data being generated from the ground truth. Taking this into account, the
remaining differences we see in NEES for the best case, might be a result of Finn’s
poor ground truth containing more prevalent biases (Figure 3.16).
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Figure 5.15: Tuning metrics for Havfruen at scenario 8, using only lidar measure-
ments
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5.2.3 Camera evaluation
The tracker was run using both lidar and camera data, using the same tuning pa-
rameters for Lidar as from Table 5.1, with the only addition of a bearing parameter
for the camera model (Table 5.2)

Tunings Q11 Q22 Rli,11 Rli,22 Rc,11
Synthetic 0.3 0.3 56 0.044 0.09

Real 0.2 0.2 150 0.04 0.0026

Table 5.2: Tracker tunings for Lidar and EO fusion evaluation

Studying the differences in Hellinger distances between Figure 5.3 and 5.16 shows a
overall worsening of the Hellinger distance by 0.1. This goes to show the introduction
of a camera detector made the dataset similarities even worse, raising the question
if this has something to do with the sensor fidelity of the camera sensor.

To answer this question the image detector from Section 5.2.1 was run on mul-
tiple scenarios where several interesting observations where made. Both similarities
and differences between the datasets was found, using a qualitative analysis consid-
ering both the AI’s bounding box perception, and geometry of the content in the
scene.
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Figure 5.16: Hellinger distances for each target boat using two sets of tuning
parameters (Table 5.2)
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Low confidence case

The camera detection of the target boats, is observed to have a generally lower
confidence score for synthetic vs real images for most of the scenarios. Figure 5.17
shows an example of this, where Havfruen is detected with a confidence score of
0.35 and 0.64 for the synthetic and real datasets respectively. As lower confidence
score does not necessary have an impact on what is being observed (e.i we still
have a correct detection), the problem arises with the confidence threshold, used
to determine if we have a detection or not. This might unfavorably drop more
detections on the synthetic datasets, than the real. The generally high Hellinger
distances across the scenarios seems to support this. An solution to this might just
be to lower the treshold for synthetic data. This problem is however not always
present, as seen on the confidence values on the two target boats on the left side of
Figure 5.18.

Since the detector being used is only trained on real data, one might say this is
an unfair comparison, and that the detector should have been trained on synthetic
data as well. However, the purpose of this comparison, is to show that the real model
the AI is based on, perceives missing features in the synthetic dataset. This shows
that there are still room for improvements regarding the rendering process. Some
of these differences might have something to do with the lightning conditions, as
we see the synthetic images being considerably brighter than the real, while others
might come from missing features in the 3D models.

Camera calibration and 3D model accuracy case

From both Figure 5.18 and 5.17, we see to a large degree the geometry of the target
boats and environment to be well in sync with each other. After the calibration
process mentioned in Section 4.2.1, there are however still differences, the first being
the camera rotation. By using milliAmpere’s antenna as a reference, we see the real
image being slightly rotated clockwise. This is also observed by comparing the
shorelines of Figure 5.17.

It is also questionable if the manual calibration of the cameras field of view is
accurate, which can be seen by comparing the bounding box positions of the Finn
boat in Figure 5.18. Comparing these images, it seems like the the synthetic have
a slightly lower field of view in comparison to the real. We know from before that
data from the Finn boat is not reliable, considering its inconsistent ground truths
from Figure 3.16. With this said, if we compare the roof of the building in the upper
left image corners in Figure 5.17, we see the same tendency of a slightly lower field
of view. However, doing the same roof comparison to the red houses to the right,
the field of view seems almost pixel perfect.

An answer to this could be insufficient accuracy in the 3D models of the en-
vironment, which does not come as a surprise as we can clearly see several missing
buildings, trees, and other features in the synthetic images. This lack of content
does however not seem to affect the detection of target boats.
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Figure 5.17: Images taken of Havfruen from scenario 8 using the front left camera.
The confidence values shows that the image detector have a poorer performance at
detecting boats from the synthetic dataset.

Figure 5.18: Images taken from scenario 6 using the front right camera. In this
case, the detection probability is higher than in Figure 5.17. From left to right in
each image: Finn, Havfruen, dummy boats

98



5. Data Comparison

5.2.4 Results from a digital twins perspective
We have now seen the Hellinger distance been used to measure the similarities be-
tween datasets for multiple cases, interpreting some of the results from a target
tracking perspective. In effect, Hellinger measures the degree we are able to repro-
duce the scenarios when comparing sensor data from the lidar and camera sensors,
but also the accuracy of ship positions and surroundings. In effect, this is the whole
simulated perception fidelity. However, from a digital twins point of view, being
able to reproduce a scenario is not the biggest of interest. Rather, the motivation
of using the digital twins in the first place, is to test AAs safety by simulating a
large quantity of scenarios one would normally not be able to do in real life. This
puts requirements on the sensor models fidelity rather than the whole simulated
perception fidelity the Hellinger distance have measured. Since the sensor models
are considered to be a part of the whole simulated perception, this leads to the
question if the Hellinger distance is able to measure the sensor models fidelity.

From evaluating the different sensors in Section 5.2.2 and 5.2.3, it is apparent
this is true to some degree. By fusing camera and lidar data in Section 5.2.3, the
Hellinger distance increases in comparison from only using the lidar. This tells us
that the camera data is sufficiently different to increase the difference between the
datasets. Analysing the differences further, we observed a noticeable difference in
the detectors confidence between real and synthetic data, indicating the rise of the
Hellinger distance could come from a measurement of the cameras fidelity.

However, other cases that increases the Hellinger distance, such as track jumps
and early initialisation seems to differ. The latter case was shown to be caused by
improper modeling of the range dissipation for the lidar, meaning this was indeed
a fidelity case concerning sensor modeling. The former case on the other hand, can
not be connected to sensor modeling since it was likely caused by poor reproduction
of the environment. This gives us an interesting weakness of the Hellinger distance,
where large Hellinger distances can come from not reproducing the surroundings
accurately, rather than being linked to the sensor models fidelity. On the contrary,
when the surroundings are reproduced accurately, much indicates that the remaining
Hellinger distance is a measurement of the sensor models fidelity. Unfortunately,
we are not able to tell when we are met with the former or latter, without using
other metrics such as NEES and RMSE in combination with studying raw data and
scenario play-troughs.

Despite this, we are still able to analyse performance differences of the AA
when considering the whole simulated perception fidelity. From Figure 5.16 and
5.3 we have seen that different tuning parameters causes differences in how the
AA compares synthetic and real data. In other words, we are able to change its
perception of what is similar and what is different between the datasets, just as
we humans could do with the introduction images (Figure 5.1). This is especially
noticeable when looking at the best case in Figure 5.5, where NEES and RMSE
differences are small for the real tuning and large for the synthetic tuning. A point
of further interest is therefore if we are able to design the AA perspective to pay less
attention to the dataset differences, to rely less on the digital twins sensor model
fidelity.
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Chapter 6

Closing Remarks

6.1 Discussion
Simulation based verification is expected to play a vital role in certifying autonomous
vessels in the coming decade. This is due to its scalability in test coverage, safe test
environments, and cost effectiveness towards designing and assuring AA. In order for
this to work, the simulation must show similar behaviour as one would expect from
a real world implementation, this including exteroceptive sensors. There are today
few ways of measuring the fidelity of these sensor models, moreover the differences
they play in the behaviour of AA, in order to tell if a high fidelity digital twin
framework could one day substitute the role of conventional verification.

The work demonstrated here, shows the implementation of a new digital twin
framework, created for testing AA by using high fidelity sensor models. This was
done by merging several platforms from existing work in the maritime field [12,
28, 8] to meet a similar standard as seen in automotive simulators [7], leading to
a new test ground for marine applications driven by scenario inputs. In addition,
this framework was designed with the intention to reproduce real world data by
simulating EMR sensors using the Unity game engine, giving a way to measure
the fidelity of sensor models. This is believed to be a step towards a trustworthy
simulation based verification system.

To give a first impression of this process, recording of a real life dataset was
done in Trondheim, including data from several EMR and ground truth sensors with
the purpose of reproducing the experiment. In total 7 scenarios was recorded for
test coverage, while ground truth data was analysed for establishing a notion of
accuracy of the individual boats participating. The ground truth variation for the
participating boats, equipment failure during testing that reduced the number of
scenarios, and cameras being out of focus when later analysed, goes to show some
of the imperfections of the recorded experiment.

From these recordings, a synthetic dataset was created in the same environ-
ment based on the ground truth data. We also improved the beam shape error by
introducing a spherical projection filter, and implemented a simple ray drop model
[13] to improve the lidar model in Autoferry Gemini [12]. From studying the depth
buffer technique used in these simulations, a general error formula of the remaining
numerical error was derived. By analysing the formula and making reasonable as-
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sumptions, an equation for maximum error was obtained, which allowed us to make a
guide in choosing good simulation parameters to minimize the error based on sensor
type and use case. From this, the synthetic dataset recording was setup considering
the real life sensor specifications and the hardware running the simulation. Due to a
lack of proper documentation and calibration parameters regarding RGB cameras,
some differences between synthetic and real images was seen. Similarly, with no
documentation of the lidars characteristics towards ray drops and range dissipation,
reproduced data was observed to be more perfect and precise in contrary to it real
world counterpart.

Using the synthetic dataset and real dataset, a comparison was made by study-
ing the outputs of a JIPDA tracker [28]. A Hellinger metric was used to compare
the distributions coming from the Extended Kalman filter outputs, in addition to a
YOLO detector running over synthetic and real images in order to give additional
qualitative information of the similarities and differences. Using these evaluation
tools, several different cases were observed involving both lidar and lidar-camera
fusion. These cases showed that the Hellinger distance could be linked to measuring
sensor fidelity, but that it was highly dependent on the surroundings being well re-
produced. Different tuning parameters also seemed to change the AA perception of
the dataset similarities, potentially giving large Hellinger differences for scenarios.
In the end, the average distances across tunings and scenarios ranged from 0 to 1,
ended up at 0.73 for lidar only fusion, and 0.83 for lidar-camera fusion.

6.2 Conclusion
In this thesis we have implemented a digital twin framework by enhancing Auto-
ferry Gemini with better lidar models and connecting it towards other platforms
to generate sensor data from scenario inputs. The framework have been tested by
reproducing a synthetic dataset from a real life recording, studying the behaviour
of a AA to compare several metrics in order to measure fidelity. From this we have
seen how sensitive AA are towards synthetic data, and the difficulties in using this
to determine sensor fidelity. This have shown that there are still work to be done in
order to trust simulation of AA, but that we are now capable of measuring different
aspects of fidelity, a stepping stone towards being able to improve the simulation.
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6.3 Further work
The large Hellinger distances opens up many different paths for further work. Find-
ing ways to lower the Hellinger distance is of utmost importance in order to trust
simulations, but also analysing more what and how the Hellinger distance measures
fidelity is just as important. The list below shows some of the potential directions
future research can choose to address these concerns:

• The thesis have only considered the perspective of a JIPDA tracker which was
shown to be sensitive to synthetic data. In order for a high fidelity simulator
to have any validity, multiple perspectives from different AA algorithms must
be tested as well.

• The Hellinger distance shows indications of being able to model sensor fidelity,
but depends on how well the environment is reproduced. This leads to the
question if the Hellinger distance is subject to other factors as well, such as
biases in ground truth data used to create the synthetic dataset. Because of
this, the Hellinger distance might not be used in an optimal manner. A step
towards removing some of these factors, is to create new datasets which is
recorded and reproduced synthetically, where the surrounding environment is
not of any concern. This can typically be done in open waters. In addition,
gathering a more precise and consistent ground truth off all ships can remove
some of the potential biases or discrepancies from the participating ships.
Preferably the same ground truth sensors should be used across all ships, with
raw GNSS data available to obtain the best precision.

• Another reason for the large Hellinger distances comes from the lidar model.
The range dissipation happening as light rays travels out in space is currently
not modeled in the lidar. Improving the lidar model further is crucial in this
case. This can be done by utilizing more information from the render pipeline
to improve the fidelity of lidar rays, such as using the surface normals and
reflection parameters in order to model the returned laser beams intensity
and/or return rate. Empirical studies of the real lidar might also be necessary
to see if any characteristics can be used in the simulator.

• The increase in Hellinger distance when using synthetic images has much to do
with the dataset used to train the YOLO detector. Since the AAs behaviour
depends both on its tuning parameters and the simulation fidelity, this open
up the question if we should design the AA to have a more robust perception
towards dataset differences, e.i focusing more on the dataset similarities in
order to rely less on the sensor model fidelity. A first step to study this question
is by creating an automated image and labeling pipeline for the digital twin
framework, where synthetic data could be used for making the detector more
confident in detecting boats from synthetic images.

• Another use case of the pipeline mentioned above, is to give ground truth data
for bounding boxes. This can give quantitative measurements of the differences
in the bounding box predictions for the synthetic and real datasets, instead of
only relying on qualitative judgements done in the thesis.
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Appendix A

Project Management

Due to the required expertise in implementing the architecture chart in Section
2.2.2, it was decided in order for the project to succeed in the given amount of time
it needed to involve multiple researcher with both domain expertise and knowledge
of the platforms in Section 2.1. This involved one PhD student with expertise in
target tracking and ROS, one PhD student with expertise in OSP, and the last PhD
student with expertise in ship design, all of which had a direct or indirect interest
of the project outcome in their research. In addition 2 employees from both NTNU
and Zeabuz would be assisting in the development of the framework, and two master
students and a PhD student in recording an experiment.

In order to manage the project, work packages describing each contributors
participation, together with a chart showing their dependency to each other was
created. An introduction and reference to the work packages will be covered in the
first section, followed by a description of AON-network used as a tool for making
the project plan in the last section.

A.1 Work package
A work package is the smallest unit of work a project can be broken down to, and are
one of the project managers (in this case the author) primary tool in organising the
workers. They contain information necessary for finishing and defining completion
of a job. There is however no complete standard of their content since jobs vary
between different projects. With this said, there are some recurring topics which
will be covered in this section.

Multiple workers can be assigned to the same work package, but there must
always be one package owner representing the workers in a work package. The
package owner has the primary responsibility of reporting the work progress to the
project manager and finishing what is in the work package description. In order to
know when a work package is finished, each package must have a statement that can
be tested, known as a deliverable. The deliverable functions both as a safeguard for
when it is proper to start the next work package, in addition to giving the project
manager a view of the project progression, giving hints if adjustments to the plan
must be made to reach the project goals in time.

To calculate the total project time, each work package is given an estimated time
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from discussions with the assigned workers for the package. This is then recalculated
into dates based on the projects point of view: early start and finish, late start and
finish. These timespans describes respectfully the best and worst case scenarios for
when a work package can start and finish without beginning prematurely or delaying
the project.

At last, additional data for clarifying the plan for the manager and workers
can be added, such as the owner organisation and receivables. The latter is usually
added such that the workers do not need to look up the deliverables of previous
work packages.

A.2 AON-Network
To determine the timespans of early start and finish, and late start and finish for
the workpackages, the interconnection between work packages must be described,
something which can be done by using AON-networks. This is done by representing
each work package with a box containing a short title of the package followed by an
index for reference, and surrounding numbers representing the early start and finish
from left to right at the top, and likewise for the late start and finish at the bottom.
These numbers indicate the week number from when the project started.

The common practise is to first chain the work packages together with arrows
to define both the workflow and dependencies. From this, one can decide based
on the work package descriptions if the work can start before the previous package
or must start after its completion. These cases are indicated by either placing the
arrow heads at the right portion of the work package for the former, or placing them
at the left portion for the latter. In addition to this, numbers can be placed on the
arrows to indicate delays in week, if its believed that slack is needed to loosen up
uncertainties from certain work packages.

The leaf nodes at the left side of the AON-network must now initialize their
early start, depending on the workers time schedule or as early as possible. Early
finish is found by adding the early start with the work package’s estimated time
described in the previous section. The early start of the next work package inherits
the latest earliest finish from the preceding work packages in the chain, added by
potential delays. At this point, the early start and finish for each work package can
be filled in by repeating this procedure until the last work package has it earliest
finish.

The last work package’s latest finish can now be set equal to it’s earliest finish,
or adding project slack to accommodate for project uncertainties. For this project no
such slack where given due to the time contraints. To find the remaining early start
and finish, the previous procedure is reversed, decrementing instead of incrementing
numbers and working from right to left. In addition the late finish inherits the
earliest latest start of the succeeding work packages, subtracted by potential delays.
For more information of these procedures see [32].
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A.3 Project plan
Before Project start, a plan incorporating work packages and a AON-network was
given to the project contributors. The plan was based on the architecture defined
in Section 2.2.2, defining work packages in cooperation with the contributors. This
resulted in 19 work packages described in Appendix B. From these packages, the
creation of a AON-network with respect to the contributors time schedules gave a
total project time of 13 weeks starting at 01.09.2020 and ending 30.11.2020. During
the project timespan, the plan was open to changes through revisions.

The final revision of the AON network on the next page shows all the work
packages involved, using colors to acknowledge each participants contribution to the
project and to separate the authors contribution from the rest. Due to the overall
size of the project, chapters in the thesis will be focusing on the work packages of
the author (colored brown), but give short summaries of the other contributors work
when possible. Most of the work packages are also categorized and indexed with the
thesis chapters if a deeper understanding is needed when reading the work packages
in Appendix B.
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Appendix B

Work package descriptions

R 1 Target sensor Rigs
Package Owner Kjetil V
Owner Org. NTNU
Participants Kjetil V
Early start & finish 07.09.2020 - 13.09.2020
Late start & finsih 14.09.2020 - 20.09.2020
Description: Make or find suitable sensor rigs for the target boats in
Figure 3.4
Deliverables: 2 sensor rigs containing sensors for measuring:
• Heading
• Position
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R 2 Real Dataset
Package Owner Kjetil V
Owner Org. NTNU
Participants Kjetil V, Øystein H, Ingunn K, Magne S, Ernesto L
Early start & finish 14.09.2020 - 20.09.2020
Late start & finsih 21.09.2020 - 27.09.2020
Description: Gather or create a real-life dataset consisting of a location,
ownship and targets as in Figure 3.4:
Location
• Available terrain data
Ownship
• EMR sensors: Radar, optical camera
• Ground truth sensors for positioning and orientation
• Sensor specifications, positions and orientations
• Ground truth sensors for positioning and orientation
• Available pictures and dimensions of vessel
Targets
• Ground truth sensors for positioning and orientation
• Sensor specifications, positions and orientations
• Available pictures and dimensions of vessel
and optionally:
Location
• Specified time of day
• Near Trondheim / Trondheimsfjorden
• Weather specified or shown from picture
Ownship
• Additional EMR sensors: lidar and IR camera
• Available 3D model
Targets
• Available 3D model
Deliverables:
• Deliver raw heading and positional data for both the ownship and
targets in whatever format the sensors use
• Record the ownship’s EMR sensor data by creating ROS topics in a
ROS-bag

114



B. Work package descriptions

R 3 Post process sensor data
Package Owner Kjetil V
Owner Org. NTNU
Participants Kjetil V
Early start & finish 21.09.2020 - 27.09.2020
Late start & finish 28.09.2020 - 04.10.2020
Receivables: Raw GNSS and IMU data
Description: Process sensor data
Deliverables: A CSV files containing heading and positional informa-
tion for both the ownship and the target ships

R 4 Create content
Package Owner Erik V
Owner Org. NTNU
Participants Erik V, Thomas K
Early start & finish 21.09.2020 - 08.11.2020
Late start & finish 28.09.2020 - 15.11.2020
Description: Gather information to create 3D models of the target
boats in Figure 3.4
Deliverables: Create two 3D models with textures of the target boats,
and import them inn to Unity

S 1 Open simulation platform scenario
Package Owner Tobias T
Owner Org. NTNU
Participants Tobias T
Early start & finish 28.09.2020 - 04.10.2020
Late start & finish 05.10.2020 - 11.10.2020
Receivables: CSV files containing heading and position of the target
ships and ownship, such as shown in Figure 4.17
Description: Create a scenario in OSP from the received CSV files, and
send them to Gemini
Deliverables: Deliver OSP FMU-modules that reads from the CSV files
line by line and prepare it for delivery via Gemini’s API interface. The
procedure are decribed in Figure 4.17

115



B. Work package descriptions

S 2 Open simulation platform to Gemini
Package Owner Thomas S
Owner Org. Zeabus
Participants Thomas S
Early start & finish 05.10.2020 - 11.10.2020
Late start & finish 12.10.2020 - 18.10.2020
Receivables: OSP FMU’s and CSV files containing heading and posi-
tions
Description: Receive OSP-messages on the format described on the top
of Figure 4.17. Deliver the OSP-messages to Gemini via Gemini’s API
Deliverables: Update Gemini’s gRPC API to handle the protobuf in-
terface defined in OSP’s FMU’s. Print the messages in Unity’s debug
log.

S 3 1.Build of the OSP-Gemini platform
Package Owner Kjetil V
Owner Org. NTNU
Participants Kjetil V
Early start & finish 05.10.2020 - 11.10.2020
Late start & finish 12.10.2020 - 18.10.2020
Receivables: An updated Gemini version ready for communication with
OSP’s FMU’s
Description: Recreate the scenario from Figure 3.4 in Gemini
Deliverables: Spawn and create a state driven control system of the 3
vessels using the incoming OSP messages to Gemini. Use the Trondheim
city model and three 3D dummy boats, when running the scenario from
OSP to verify the implementation.

S 4 Sensor interface
Package Owner Kjetil V
Owner Org. NTNU
Participants Kjetil V
Early start & finish 12.10.2020 - 18.10.2020
Late start & finish 19.10.2020 - 25.10.2020
Receivables: OSP-Gemini build
Description: Deliver sensor formats for lidar, radar and VL cameras,
and prepare their data for delivery to ROS
Deliverables: Structure the sensor information into native arrays, for-
matting the arrays with respect to angles for lidar and radar.
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S 5 Gemini to ROS
Package Owner Thomas S
Owner Org. Zeabus
Participants Thomas S
Early start & finish 12.10.2020 - 18.10.2020
Late start & finish 26.10.2020 - 01.11.2020
Receivables:
• OSP-Gemini build
• Rosbag with real sensor data for lidar, radar and VL cameras
• Formated sensor data for lidar, radar and VL cameras
Description: Send sensor data from Gemini to ROS
Deliverables:
Deliver a Gemini API system towards ROS, consisting of:
• A gRPC server at ROS that publishes timestamped sensor data on the
same ROS topics as for the real dataset
• A gRPC client in Gemini that collects sensor data according to the
sensor format
Verify the implementation by listening on one of the created ROS topics
for sensor data

S 6 2.Build OSP-Gemini
Package Owner Kjetil V
Owner Org. NTNU
Participants Kjetil V
Early start & finish 19.10.2020 - 08.11.2020
Late start & finish 26.10.2020 - 15.11.2020
Description: Improve the sensor models from Workpackage R3
Receivables:
• Updated Gemini version ready for communication with OSP
• Sensor formats for lidar, radar and VL cameras
Deliverables:
• Improved sensor models that reduces the beam shape error [12] for
lidar and radar
• Optional: Improve the radar model to take into account the radar
cross section area
• Replace dummy vessels with 3D models from Workpackage R4
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C 1 Sensor fusion algorithms
Package Owner Øystein H
Owner Org. NTNU
Participants Øystein H
Early start & finish 01.09.2020 - 20.09.2020
Late start & finish 28.09.2020 - 18.10.2020
Description: Create and tune several tracking algorithms, with suitable
metrics for measuring performance
Deliverables:
• JPDA-algorithm implemented in matlab/python
• Tracker outputs: estimates, covariance matrices
Tune and verify the Implementation by using an existing dataset or by
using simulated data.

C 2 lidar clustering
Package Owner Øystein H
Owner Org. NTNU
Participants Øystein H
Early start & finish 21.09.2020 - 04.10.2020
Late start & finish 05.10.2020 - 18.10.2020
Description: Setup lidar clustering algorithm from aFerry code.
Deliverables:
• A lidar clustering algorithm from lidar point cloud
Validate by using a separate dataset or from simulated data

C 3 VL Detector
Package Owner Øystein H
Owner Org. NTNU
Participants Øystein H
Early start & finish 05.10.2020 - 11.10.2020
Late start & finish 12.10.2020 - 18.10.2020
Description: Implement an image detection algorithm for boats.
Deliverables: Implement an existing object detection algorithm such as
Yolo with pretrained weights, and validate the results by testing object
detection on a separate dataset containing boats.
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C 4 1.Build of OSP-aFerry-Gemini
Package Owner Øystein H
Owner Org. NTNU
Participants Øystein H, Audun G H
Early start & finish 19.10.2020 - 08.11.2020
Late start & finish 19.10.2020 - 08.11.2020
Description: Setup different autonomy systems in ROS to run on both
synthetic and real data.
Receivables:
• RBG image detector trained on boats
• Clustering algorithms
• JIPDA tracking algorithms with suitable performance metrics
• Synthetic sensor data on specified ROS topics from Workpackage S5
• Real sensor data from specified ROS topics from Workpackage R2
Deliverables: Implement the autonomy systems from C1 in ROS with
the clustering algorithms in C2, and VL detector in C3, using repositories
in aFerry as aid. This consists of:
• A lidar fusion
• A lidar-camera fusion
• Filter outputs as specified in C1
Save the recorded data for the autonomy systems above for both the
synthetic (S5) and real datasets (R2).

C 5 1.Dataset comparison
Package Owner Kjetil V
Owner Org. NTNU
Participants Kjetil V
Early start & finish 09.11.2020 - 15.11.2020
Late start & finish 09.11.2020 - 15.11.2020
Description: Evaluate the filter outputs by creating performance met-
rics for the different datasets, and come up with a list of implementation
improvements
Receivables: Filter outputs for the synthetic and real datasets
Deliverables: List of proposed improvements regarding both the per-
formance metrics and sensor models
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C 6 2.Build OSP-aFerry-Gemini
Package Owner Øystein H
Owner Org. NTNU
Participants Øystein H
Early start & finish 16.11.2020 - 22.11.2020
Late start & finish 16.11.2020 - 22.11.2020
Description: Implement suggested improvements
Receivables:
• List of improvements
• Final OSP-Gemini build
Deliverables:
• As far as possible, try to implement the proposed improvements if any
• Save a new set of recorded data metrics for the autonomy systems in
C4 above for both the synthetic (S5) and real datasets (R2)

C 7 2.Dataset comparison
Package Owner Kjetil V
Owner Org. NTNU
Participants Kjetil V
Early start & finish 23.11.2020 - 29.11.2020
Late start & finish 23.11.2020 - 29.11.2020
Description: Final analysis of results
Receivables: Final filter recordings for the synthetic and real datasets
for the improved sensor models
Deliverables: Check if there have been any change in the performance
metrics since C5. Give a final conclusion of the results

A 1 OSP time synchronization between ROS and Gemini
Package Owner Tobias R T
Owner Org. NTNU
Participants Tobias R T
Early start & finish 09.11.2020 - 22.11.2020
Late start & finish 16.11.2020 - 29.11.2020
Description: Create a time synchronization system that guarantees
synchronization between Unity and ROS
Receivables: Build of OSP-aFerry-Gemini
Deliverables: FMU’s on OSP’s side, as well as integration with Mil-
liampere’s low level control system used in communication with aFerry
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A 2 Release OSP-aFerry-Gemini
Package Owner Thomas S
Owner Org. Zeabus
Participants Thomas S
Early start & finish 09.11.2020 - 29.11.2020
Late start & finish 09.11.2020 - 29.11.2020
Description: Create a final release of OSP-aFerry-Gemini
Receivables: Last OSP-aFerry-Gemini build, in addition to the time
synchronization system between ROS and Gemini.

Deliverables: Script that takes a scenario file (CSV) and a Rosbag in
as argument, and runs the complete OSP-aFerry-Gemini build.
Verify implementation by testing the released version on existing Rosbags
and scenario files used in C6
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