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Abstract

Collaborative multi-robot systems show great promise in extending the capabilities of a
robotic system beyond the abilities of any single robot. This is particularly evident in the
case of heterogeneous robot teams, where the strengths of individual robotic platforms are
combined to mitigate their corresponding weaknesses. This thesis presents a system that
coordinates a team of sensor-equipped quadrotor Unmanned Aerial Vehicles (UAVs) acting
as mobile range sensors for an Unmanned Ground Vehicle (UGV). The robot team operates
in an unmapped, static environment populated by obstacles. Communication constraints
between the UGV and the individual UAVs are imposed to ensure an adequate throughput
of sensor data from the UAVs. Several path planning algorithms are presented which
enable collaborative and communication constrained planning. A collaborative exploration
planner is presented which combines the results from individual view-based exploration
planners. Two variants of formation-based planners are also presented; one which uses a
set of predefined formation poses and another which continuously reshapes the formation
through sampling. Elements of the aforementioned planners are also merged to create two
types of combined planners. The systems are implemented within the Robot Operating
System (ROS) framework and tested in the Gazebo simulation environment. Results from
testing the planning systems in several scenarios show that each planning algorithm has
unique strengths and weaknesses. While the collaborative exploration planner excels in total
information gain, the formation-based planners are observed to be more robust and efficient
in gathering information.



Sammendrag

Samarbeidende multirobotsystemer utnyttes i større grad fordi de kan utvide mulighetene til
et robotsystem utover evnene som hver enkelt robot innehar. Dette er spesielt tydelig når det
gjelder heterogene robotlag, der stryken til individuelle robotplattformer kan kombineres for
å dempe svakhetene hos de enkelte robotene. Denne oppgaven presenterer et system som
koordinerer et lag med sensorutstyrte «quadrotor» ubemannede luftfartøy (UAVs) som skal
fungere som mobile sensorer for et ubemannet bakkekjøretøy (UGV). Robotlaget opererer
i et ukjent, stillestående miljø som er fylt med hindringer. Kommunikasjons-relaterte be-
grensninger mellom UGV og de enkelte UAV-ene pålegges systemet for å sikre tilstrekkelig
gjennomstrømning av sensordata fra UAV-ene. Flere algoritmer presenteres for å muliggjøre
samarbeidende og kommunikasjonsbegrenset planlegging. En algoritme presenteres som
kombinerer resultatene fra individuelle utsiktsbaserte planleggingsalgoritmer. To typer for-
masjonsbaserte algoritmer presenteres: en som baserer seg på et forhåndsdefinert sett med
formasjoner og en om kontinuerlig endrer formasjonen gjennom prøvetaking. Elementer
av disse planleggingsalgoritmene blir også slått sammen for å skape to typer kombinerte
planleggere. Systemene er implementert innenfor ROS-rammeverket (Robot Operating Sys-
tem) og testet i Gazebo-simuleringsmiljøet. Resultater fra testing av planleggingssystemene i
simulerte scenarier viser at hver planleggingsalgoritme har unike styrker og svakheter. Mens
den algoritmen som kombinerer individuelle planleggingsalgoritmer utmerker seg i total
informasjonsgevinst, observeres det at de formasjonsbaserte algoritmene er mer robuste og
effektive i å samle informasjon.





Preface

This project was conducted during the fall semester of 2020 at the Norwegian University of
Science and Technology (NTNU) in Trondheim, Norway. The project and thesis work are the
author’s contribution to the course "TTK4900 - Engineering Cybernetics, Master’s Thesis".
The author’s chosen specialization is within "Roboter og fartøystyring - Autonome systemer".

The implemented systems were developed and tested on a computer equipped with an AMD
Ryzen™ 5 3600 CPU clocked at 3.6/4.2GHz, an Nvidia GeForce®GTX 1060 GPU clocked
at 1506/1708 MHz, 32 GB of RAM clocked at 3200 MHz and running Ubuntu 18.04 (Bionic).

Several open source libraries and frameworks were used, which are presented in detail in
Chapter 3. A brief summary of these follows:

• C++ was the main programming language used for the implemented systems.

• Robot operating system (ROS)1 Melodic Morenia provided the framework for the
robotics systems.

• Gazebo2 v9.0.0 was the simulation environment used for the implemented systems.

• OctoMap3 v1.9.1 was used to create and interact with a 3D voxel representation of
the robots’ environment.

• PX4 autopilot software4 v1.10 provides the software architecture for the aerial vehicle
simulator. This includes the mavlink5 messaging protocol.

• Several ROS-packages were used, outside of the packages available in the ROS core
components6 and in the desktop installation of ROS7:

1https://www.ros.org/
2http://gazebosim.org/
3https://octomap.github.io/
4https://docs.px4.io/v1.10/en/index.html
5https://mavlink.io/en/
6https://www.ros.org/core-components/
7http://wiki.ros.org/melodic/Installation/Ubuntu#Installation-1



vi

– The common packages for the Husky UGV system8.

– The common packages for the Navigation stack9.

– The teb_local_planner10 package plugin.

– The mavros11 package.

– The common packages for interfacing ROS with OctoMap12, specifically the
octomap_ros13, octomap_msgs14 and octomap_server15 packages.

An overview of the contributions in this thesis are presented in Section 1.3, with the design
and implementation of the systems presented in Chapter 4 and an analysis of the results
presented in Chapter 5. The contributions stemming from previous work performed by the
author in the Specialization project [1] are presented in Chapter 3.

All graphics and images featured in this thesis were made by the author, except when explic-
itly stated otherwise.

The code used in this project is available on the author’s personal github in the following
repository: https://github.com/kevinmey/mipp_project.

Additionally, a video presenting some of the main results from this project is available on
the following web address: https://youtu.be/XLopOdeN_Ks. It can also be found by
scanning the QR code:

Fig. 1 Scannable QR code for the project video.

8http://wiki.ros.org/Robots/Husky
9http://wiki.ros.org/navigation

10http://wiki.ros.org/teb_local_planner
11http://wiki.ros.org/mavros
12http://wiki.ros.org/octomap
13http://wiki.ros.org/octomap_ros
14http://wiki.ros.org/octomap_msgs
15http://wiki.ros.org/octomap_server
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Chapter 1

Introduction

Artificial intelligence and robot systems are gaining a greater presence in the lives of people
and society. While artificial intelligence now has a permanent presence in the worlds of
finance, data analysis and media, robot systems have only recently begun transitioning from
research labs and factories to ordinary life. The mental image of robots as precise but
relatively "dumb" robotic manipulators which populate manufacturing lines is giving way to
complex systems which interact with us more directly. This includes vacuum cleaning robots
in peoples homes, self driving cars on the roads and unmanned drones patrolling the skies.

Robot systems show great promise in situations where human operation is difficult, dan-
gerous or otherwise undesirable. Ground based robots, also known as Unmanned Ground
Vehicles (UGVs), have been applied to the fields of emergency response in disaster scenes
[2], structural health inspection [3] and for extraterrestrial exploration [4]. The aerial coun-
terpart to these robots, Unmanned Aerial Vehicles (UAVs), have been used extensively for
environmental monitoring [5, 6] and industrial inspection [7, 8]. Systems have also been
implemented which leverage both UGVs and UAVs in cooperative teams. Such systems have
been applied to the issues of precision agriculture [9], humanitarian demining operations
[10], wildfire detection and fighting [11] and mapping disaster areas [12].

The goal of this project is to investigate and implement solutions for coordinating sensor-
equipped UAVs around a UGV in operation. The UAVs will be tasked with investigating
and mapping areas around the UGV while maintaining certain communication constraints
to the UGV. Several methods will be implemented, presented and have their performance
compared in multiple simulated scenarios.
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In the rest of this chapter, the motivation for implementing such a system will first be
presented. This motivation is accompanied by a review of related literature to present the
current state of the field. Following this, a definite problem formulation is given to illustrate
the objectives of this project work. Finally, an overview of the contributions made in this
project is presented, along with an outline of the project thesis.

1.1 Motivation and related work

This project is a continuation of the Specialization Project [1] completed prior to the com-
mencement of the master thesis work, in which a simulation framework for Multi-robot
Informative Path Planning (MIPP) was implemented. The work centered on a robotic team
of one UGV and multiple UAVs which were equipped with sensors and which could plan
and move in an unknown environment populated by obstacles. The systems showcased in the
specialization project centered on exploration of the unknown environment by the individual
robots.

In this thesis, the focus has been shifted to the coordination of the UAVs around the UGV such
that they aid the UGV continuously as mobile sensors. This is more in line with the scenario
that was originally presented and discussed in [1]. A central theme of this scenario is the
UGV-platforms superior payload and computing capabilities compared to the UAV-platforms
superior mobility. Offloading the data processing aspect of the UAV to the UGV would
place requirements on the communication between individual vehicles. Therefore it was
desirable to investigate solutions which could take into account communication constraints
when coordinating the UAVs as mobile sensors around the UGV.

This problem can be categorized as a Communication Constrained Multi-robot Informative
Path Planning (CCMIPP) problem applied to a UGV-UAV system. With this initial, broad
problem formulation in mind, a literature review was conducted to investigate similar prob-
lems and potential solutions within the space of UGV-UAV cooperative systems. The review
of these systems is presented here, while a more general review of related fields is presented
in Chapter 2.

UGV systems have been extensively researched in robotics, as ground based systems are
able to carry heavier computing and sensor payloads. While sufficient computing and sens-
ing power to enable autonomous operation is now available in lighter payloads, the ability
for UGV systems to carry heavier payloads still translates to the ability to analyze more
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data. Systems which enable autonomous operation of UGVs also have the added benefit
of abstracting planning from the three-dimensional world to two-dimensional representations.

UAV systems are often characterized by their ability to operate in all three spatial dimensions,
and to do so at higher speeds and maneuverability than their ground-based counterparts.
Different classes of UAV systems exist, which influences the type of problems the UAV
system can be applied to. Fixed-wing UAVs mainly operate outdoors and over long distances.
Research into multirotor UAVs has advanced in recent years as they are able to operate
both indoors and outdoors and can easily switch between maintaining a stable hover and
performing acrobatic maneuvers. This thesis will mainly be concerned with the latter of the
two, and the term UAV will generally refer to multirotor systems unless stated otherwise.

UGV-UAV cooperative systems which exploit the strengths and weaknesses of each vehi-
cle platform have been applied to many challenges. In [13], application areas and current
challenges for such systems are presented. Included is the use of UAVs as mobile sensors to
provide relative tracking for state estimation augmentation [14, 15], aid in UGV formation
keeping [16, 17], provide terrain classification data for UGV navigation [18, 19] and to detect
targets [20]. Most relevant for this thesis is the use of UAVs as range sensors to sense the
immediate vicinity of the UGV, and literature from this field has therefore been given more
attention.

Early examples of UGV-UAV cooperation for mobile range sensing usually revolve around
the coordination of fixed-wing UAVs around groups of UGVs. In [21], a system for coordinat-
ing fixed-wing UAV orbits around a UGV group and its estimated centroid is demonstrated
for a surveillance scenario. Though the advantages of having aerial sensors above the UGV
formation are implied in the scenario, they are not explicitly considered. Such considerations
are taken in the systems presented in [22] for a similar scenario. Here, an area is investigated
to localize targets using decentralized control of the vehicles. The vehicles are driven by
information gain gradients on a shared probabilistic map, with the UAVs providing an initial
map that the UGVs later refine with better sensors.

Usage of multirotor UAVs as mobile sensors to aid a UGV system have also been demon-
strated. In [23], a UGV equipped with a helipad and UAV is used in a periodic indoor
surveillance scenario. The UGV drives along a predefined path, stopping at inspection
points to allow the UAV to take off and survey an area before landing again. Similarly, [24]
demonstrates a group of UAVs following a group of UGVs in a three dimensional exploration
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scenario. Exploration tasks in the form of frontiers are assigned using Integer Programming
methods, with a distinction made between frontiers which are explorable by UGVs and UAVs.
The UAVs passively follow the UGVs until an area is detected which the UGVs cannot map
(such as the top of an obstacle), following which the method will assign a UAV to map the
area. A visibility constraint for the UAV frontiers is used to ensure the UAVs are always
visible to at least one UGV, while the general communication constraint problem is tackled
by using a distributed system approach.

Systems have also been demonstrated where UAV surveillance precedes UGV operation.
In [25], a UAV is used to map a mock-up disaster area populated with fixed and movable
obstacles before a UGV can plan a path to a spotted victim. To provide the initial map, a
UAV equipped with a downward-facing camera flies in a Boustrophedon path [26], also
known as a lawn mower pattern, to cover the entire predefined area. Alternatively, [27]
demonstrates a system which more intelligently chooses areas for the UAV to explore prior
to UGV operation in a search and rescue mission. The UAV exploration algorithm, which
is a modification of the D* algorithm, performs a search over candidate paths to minimize
the total response time of both vehicles. Candidate paths are investigated considering both
explored and unexplored space (and points on the boundary between them), the total time it
would take for the UAV to explore these paths and the time saved should a better path for the
UGV be found in the unexplored area.

Systems exist which coordinate the UAVs to aid the UGV system in a more continuous
manner. The method presented in [28] utilizes the advantages of each platform in a continu-
ous exploration scenario. Similar to the method used in [24], two different frontier regions
are detected which are assigned to either the UGV or the UAV. The vehicles are however
allowed to operate independently of each other, meaning their primary collaborative feature
comes in the form of building a combined map and exploring different areas. A similar
strategy is proposed in [29], where a UAV either provides fine-grained data to complement a
coarse-grained map built by a UGV, or augments the UGV sensor data in real time. While
the former resembles the two-phased strategies presented earlier, the latter can be extended
to the continuous collaborative case.

Research has also been done on systems where the UAV continuously aids a UGV with
sensor data while being constrained by the UGV location or planned path. A simple example
of this is presented in [30] where a UAV hovers over the UGV in operation, providing an
aerial image of the UGV and it’s surroundings while also performing relative tracking for
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localization. The images can either be used by a teleoperator driving the UGV, or by image
processing algorithms to help plan trajectories in rough terrain. A similar approach for
indoor search and rescue is demonstrated in [31]. Here, a UAV provides a birds-eye view
for the UGV and localizes itself by using a visual tag on the UGV that is visible at all times.
Likewise, the UAV is localized using a visual tag visible from the UGV camera, and relative
localization is achieved.

In [32], a UAV assists a UGV by performing dynamic area coverage of the area around a
moving UGV. The UAV motion control is constrained by a requirement to maintain visibility
to the UGV, expressed as a range constraint. Two methods are analyzed, one utilizing a naive
orbital trajectory for the UAV, and another optimization-based coverage technique. Both
techniques are analyzed and evaluated using an information gain represented by the area that
is covered by the UAV and an effective coverage radius around it.

A system for the surveillance of the path ahead of the UGV has also been presented in [33].
Here, a UAV is tasked with exploring the area around the immediate future path of the UGV
before the UGV is able to come within a certain distance of unmapped area. This is solved
by having the UAV utilize a Conformal Lawn Mower coverage plan of the area ahead of the
UGV, which is a Boustrophedon path that conforms to the contours of the UGV path.

Physical constraints in UGV-UAV systems have also been investigated, with the primary
example being tethered systems. Modelling and design of such systems is presented in [34],
without considerations for the planning implications of the tether. Usage of the tether as a
tool to scale difficult terrain along with having the UAV as a mobile sensor for the UGV was
presented in [35], though tether constrained planning is likewise not considered.

In [36] the complementary sensors of the UGV and UAV in a tethered system are considered
in a navigation scenario. Collaborative control is achieved by having the UGV first construct
a plan using a Rapidly-exploring Random Tree Star (RRT*) planner and having the UAV
scout ahead along future waypoints of the UGV path. A fixed maximum tether length to
constrain the scout ahead distance and a fixed UAV altitude simplify the problem. A tethered
UAV acting as a visual assistant for UGV is presented in [37], where the goal is to place the
UAV to maximize the quality of its viewpoint for a teleoperator while minimizing risk. The
risk is calculated taking into account the path leading to the viewpoint and its effects on the
tether length, tortuosity, azimuth and contact points.
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Having reviewed the literature, the CCMIPP problem presented earlier can be compared
to existing solutions. Early solutions using fixed-wing UAVs have been applied to similar
problems [21, 22], but are not directly applicable to the multirotor case. Systems exist where
the usage of each vehicle type is split into phases, such as UAV deployment from a UGV-
mounted helipad [23] or UAV mapping prior to UGV operation [25, 27]. For situations where
more continuous collaboration is desired, systems either focus on independent operation of
both vehicles without constraints between them [28, 29], simplify the problem by having
the UAV maintain a stable hover over the UGV [30, 31] or apply constraints in simplified
scenarios with point-mass vehicle models and obstacle free environments [32, 33].

Two promising directions for further investigation in UGV-UAV collaborative systems have
been identified by the author. The system presented in [24] applies a UAV swarm to aid
UGVs in sensing areas that are unreachable to the UGVs while constraining the UAV motion
through a visibility constraint. Allowing the UAVs to investigate areas independently under
constraints to the UGVs would be an interesting direction for investigation, but no such
works have been identified by the author. Tethered UGV-UAV systems are also interesting to
analyze, as the constraints of the physical tether can in some cases emulate communication
constraints. The work in [37] in particular is interesting, as the risk calculation related to
the tether includes elements that are relevant to communication constraints (which will be
presented in Section 2.3.4) and comparing this risk to the utility of certain viewpoints can
potentially be adapted to the CCMIPP scenario.

Outside of the examples presented here, the author has investigated concepts from other
related fields. Relevant literature for communication constrained exploration was a main
focus for the review done in the specialization project, and is presented in Section 2.3.2 and
Section 2.3.4. The former section also includes a review of methods within the related field
of Collaborative Visual Area Coverage (CVAC). For the case of multiple UAVs acting as
mobile sensors over the UGV, theory and solutions found in formation control were also
investigated and are presented in Section 2.3.3.

From the review of the literature presented here, as well as the related literature which is
presented in Chapter 2, the author has been unable to identify existing solutions which
are applicable to the general CCMIPP problem presented earlier in this section. The exact
contributions in regard to filling that gap are presented in Section 1.3. Following the literature
review, the problem to be solved can be presented in greater detail.
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1.2 Problem formulation and objectives

The primary goal of this project is to implement a multi-robot planning system which
can coordinate a set of sensor-equipped UAVs around a UGV. The individual UAVs are
to maintain communication constraints with the UGV while they operate in an unknown
three-dimensional environment occupied by obstacles. The effectiveness of the developed
system(s) will be determined by information-based metrics, with the basic goal of maxi-
mizing information gained about the unknown environment over time. A more detailed
description of the performance metrics can be found in Section 5.1. The developed system(s)
will be tested in multiple realistic simulation scenarios that resemble the intended use-case of
outdoor operation in relatively large environments.

The problem is in large part formulated as a continuation of the specialization project work
presented in [1], with the primary motivation stemming from a proposed cooperation that
was discussed in the formulation of the aforementioned project. Though a formal cooperation
never came to fruition, the problem to be solved is still rooted in a problem that was identified
by entities in the industry. As such, the author still sees relevance in investigating the problem.

With both the problem, the initial findings from the specialization project and the review of
related works in mind, two directions for investigation are identified which can potentially
solve the problem. These two directions can be formulated as two research questions:

• Can the Informative Path Planning (IPP) systems made for the UAV vehicle platforms
be extended to solve the UGV-UAV CCMIPP problem in an effective manner?

• How would the aforementioned multi-robot system compare with systems developed
explicitly for the purpose of CCMIPP in the same UGV-UAV scenario?

The first task highlights the continuation of the work done in [1], where the individual
UAV systems were observed to be effective when applied to the unconstrained (in terms
of communication constraints with the UGV) single-robot case. Though the single-robot
systems were not developed explicitly with the cooperative and communication constrained
multi-robot use-case in mind, it is interesting to analyze its effectiveness in such a scenario
and what emergent behaviours the system displays as a result.

The second task is motivated by the intention of solving the underlying goal in the most
effective manner, rather than being wed to the idea of extending the already implemented
systems and making them as efficient as possible. As presented in Section 1.1, the author has
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been unable to identify existing and accessible systems which are applicable to this exact
problem. Therefore, one or multiple systems must be created as a part of this thesis work
which can be compared to the extension of the work done in [1].

As the focus has been shifted to coordinating the UAVs around a UGV in operation, a
relevant performance metric must be defined. As the exact UGV operation is not a part of the
problem formulation, an exploration-focused performance metric such as "time to explore
an environment" can not be used outside of the case where the UGV operation involves
exploration of the environment. Though this case is presented in Section 5.6, cases of pure
UGV path planning operations are also presented.

Since the systems will be building on and tested in the framework developed in [1], the sys-
tems will have to interface with multiple robotics subsystems implemented using the Robot
Operating System (ROS) framework. This includes sensor-, localization and control-systems,
which in turn interface with the realistic simulation environment Gazebo. Therefore, the
primary goal is complemented by the goal of making the system run in real time in the
existing robotic system, and to make modifications on the existing system to accommodate
the new system.

The author acknowledges that testing the developed systems in a realistic robot architecture
requires the use of a multitude of other robot systems. These systems include perception
systems to localize the vehicles and process the sensor data into maps, as well as low-level
control systems to guide vehicles towards high level navigation goals. As implementing these
systems would constitute large works on their own, the focus is placed on implementing
the high-level planning systems which give navigational goals to the UAVs. The systems
which make up the robot architecture and framework are presented in Chapter 3, while the
contributions of the author will be presented in the next section.

1.3 Contributions

This work expands on the work done during the specialization project, where a simulation
and robotics framework for testing CCMIPP systems was developed. This included the
development of single-robot exploration systems for both the UGV and the UAVs. These
contributions are elaborated in the specialization project thesis [1]. This work has also relied
on the work done by countless other parties in developing robotics frameworks and systems,
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and the author has made an effort to give credit to these parties where possible.

The main contributions of this work will be presented in Chapter 4 and Chapter 5, while
some minor contributions that expand more directly on the work done in the specialization
project are presented in Chapter 3. While the contributions include specific methods and
systems which implement these methods, the creation of the system as a whole is also a
contribution of this work.

Several systems have been developed which, to the authors best knowledge, are novel in
some way when compared to the surveyed literature. These novel contributions include:

• Systems that enables the coordination of a team of UAVs around a UGV operating in a
unknown obstacle-filled environment in a high fidelity simulator, including recovery
behaviour for UAVs that break range or Line-of-Sight (LoS) communication constraints
to the UGV.

• A method for coordinating UAVs in an asynchronous, real-time manner using indi-
vidual sampling-based exploration algorithms such that individual UAVs maintain
range and LoS communication constraints to a UGV operating in the aforementioned
environment.

• A method for sampling UAV-formations above a UGV operating in the aforementioned
environment such that individual UAVs maintain range and LoS communication
constraints to the UGV while also reshaping the formation to increase information
gain.

A simplified overview of the system is presented in Figure 1.1. The contributions of this
work are largely centered on the systems presented in blue. Systems presented in red were
primarily implemented by the author in the Specialization project, but were heavily mod-
ified for use in this project. The other systems for both the UGV and UAV platforms are
presented in greater detail in Chapter 3, along with the general robotics framework they are
implemented in.
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Fig. 1.1 Simplified overview of the systems making up the main system architecture of the
CCMIPP system. Blue systems were primarily implemented for this project work . Red
systems were made by the author in the Specialization project, but were heavily modified for
use in this project. Systems which may have multiple instances running, such as the UAV
Systems, are indicated as a stack of system blocks. Inputs from and outputs to the mapping
(OctoMap) and simulation (Gazebo) systems are also visualized.
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1.4 Report structure

This project thesis is divided into six main chapters:

Chapter 1 introduced the general problem formulation that is to be tackled in this thesis. A
review of existing systems and solutions for the general problem formulation was presented,
and a gap in the research was identified that this project work could address. A more defined
problem formulation was then presented, along with the objectives of this project work. The
contributions made by this project work were also presented, along with an overview of the
implemented system structure.

Chapter 2 presents background material for the systems that are implemented in this project.
This includes both theory and related literature work. The chapter begins by illustrating some
general concepts within robotic sensing, planning and motion control. Following this, several
concepts within robot path planning will be introduced, including the central path planning
algorithms used in this project. These concepts are then extended to the multi-robot case,
with some additional theory on formation control and communication constrained planning.

Chapter 3 covers the software frameworks and systems used in this project. First, both the
robotic software framework and the simulation software are covered. Following this, the
sensor- and control-systems for the simulated vehicle platforms are presented. The systems
developed during the Specialization project are also covered in this chapter, including the
implemented single-robot exploration planners.

Chapter 4 presents the design and implementation of the main systems created for this project.
The overall system architecture which enables collaborative robot planning is presented first.
The chapter then presents the invidiual planning methods and algorithms implemented for
this project work.

Chapter 5 presents the results from testing the implemented systems in multiple simulated
scenarios. First, the performance metrics used to assess the systems’ performance are defined,
followed by a presentation of the simulated environments that the systems will be tested in.
Four different scenarios are then presented, along with the results of running the implemented
systems in these environments. These results are briefly commented on.

Chapter 6 concludes this thesis. The chapter includes a summary of the material presented in
the preceding chapters, as well as a more general discussion of the thesis results. Potential
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improvements and future work are presented at the end of the chapter to illustrate what
remains to be done and what can be achieved with the foundation created in this project
work.



Chapter 2

Background

This chapter presents background information and theory that was considered and utilized
when solving the problem presented in Section 1.2, as well as some literature from the
relevant fields. Since the systems which had to be implemented cover a broad spectrum of
robotics fields, the chapter will have to cover a range of topics in a concise manner. Concepts
from this chapter will be referenced in Chapter 4 when motivating the choices that were
made when designing the system.

This chapter contains a substantial amount of information that was gathered during the
Specialization project [1], which has been condensed in this work. In general, the author
has chosen to summarize information on single-robot concepts and expand on multi-robot
concepts, as these concepts are more relevant to the work done in this project. A detailed list
of the information taken from the Specialization project is presented below.

• Section 2.1.1 summarizes Section 2.2 of [1].

• Section 2.1.3 summarizes Section 2.3 of [1].

• Section 2.2.1 summarizes Section 2.1 of [1].

• Section 2.2.2 summarizes Section 2.4 of [1].

• Section 2.2.3 summarizes Section 2.5 of [1].

• Section 2.2.4 expands on Sections 2.7.1-3 of [1].

• Section 2.3.1 summarizes on Section 2.6 of [1].

• Section 2.3.2 expands on Section 2.7.4 of [1].
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• Section 2.3.4 expands on Section 2.8 of [1].

This chapter begins by presenting information that is necessary to understand the framework
of modern robotics systems, and which influences the choices made when designing planning
systems. Path planning concepts for single-robot systems are then presented, both for the pure
path planning case and for information based variants. These concepts are then expanded to
the multi-robot case, with an emphasis on multi-robot planning for information gathering.
Other concepts related to multi-robot planning, like formation control and communication
constraints, are briefly discussed.

2.1 Modern robotics

Modern robotics systems often use the Sense-Plan-Act (SPA) methodology when operating
autonomously. Robotic sensing is the act of taking measurements and creating a represen-
tation of the environment which can be used for higher level robot planning. Included in
this is the act of localizing the robot itself in this environment. With the environmental
measurements, also known as percepts, a robot can make plans given the current state of the
world and with knowledge about how its actions affect the achievement of a goal. Given an
environment and a plan, robots use lower level motion controllers to actuate the system and
follow the given plan.

As a contribution of this thesis includes the assembly of a robotics system which encompasses
all of these areas, some fundamental theory will be presented in this section. The systems
that make use of the theory covered in this section are largely not the contribution of the
author, and enable the assumptions made about the problem to be solved in Section 1.2.
Theory and background relevant to the implementation of the planning systems making up
the main contributions of this thesis are addressed in later sections of this chapter.

2.1.1 Sensing and representing the environment

Before any plans or actions can be made and enacted by a robot, it must have a representation
of the environment and its place in it. Range-based sensors mounted on the robots can provide
information about the robot’s surroundings. In the case of Light Detection And Ranging
(LiDAR)-sensors, this sensing is done by measuring the Time of Flight (ToF) of emitted and
reflected laser pulses to get a range to the reflective surface [38, §31.2.2]. Cameras are also a
form of range sensor which provide rich visual information to autonomous system processes.
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Cameras in particular setups can also provide range information, either through triangulation
in the case of stereo cameras [38, §31.2.4] or through detecting a structured light pattern that
is emitted onto objects in front of the camera [38, §31.2.5].

Localizing the robot can also be done using robot-mounted sensors. Robotic systems applied
to outdoor use-cases often make use of Global Navigation Satellite System (GNSS) receivers
to provide a global position. Measurements from robot-mounted proprioceptive sensors such
as Inertial Measurement Units (IMUs) or wheel odometers provide data about the robots
immediate acceleration and velocity. Fusing position, velocity and acceleration measure-
ments can be done by using a Kalman Filter [39], together with a model describing the robot.
Data from the the aforementioned range-based sensors can also be used to localize the robot
by comparing measurements over time, such as through visual odometry and Simultaneous
Localization And Mapping (SLAM) strategies [40].

A map of the environment can be built using a collection of range points and localization
data relating these range points to three-dimensional coordinates in the environment. Such
point-cloud representations of the environment preserve the original distribution of the data
and place no restrictions on the world geometry. but are in general difficult to use for higher
level planning [38, §31.4.1]. Common abstractions include discretization of the data into
cells of a specific spatial resolution representing areas of the environment. Occupancy grid
maps are a common way of abstracting 3D point clouds into a 2D grid cells, each with a
probability of being free or occupied or being unmapped [41, 42, §45.2.1]. Other methods
which preserve more of the 3D data include occupancy grid maps which assign an average
elevation to each cell (also referred to as 2.5D maps) [42, §45.3.1] or 3D occupancy maps
where 3D space is divided into voxels with occupancy probabilities [42, §45.3.2].

2.1.2 Planning robot behaviour

Once a robot has a representation of the world, along with information on how its actions will
affect the world, robotic systems can plan their actions in order to achieve a given goal. When
discussing planning models one can refer to robots as agents, ie. entities that perceive their
environment and can act upon the environment with actuators. Agents range in complexity
from simple reflex agents to complex utility-based or learning agents. One way to describe
the mapping from a set of sensed data to its appropriate robot action is through the agent
function, with the implementation of this function being the agent program [43, §2.1].
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The design of the agent-program reflects what information is taken into account during the
planning and decision process. In a simple reflex agent, only the current or latest percept is
taken into account and mapped directly to an action. This can for example be an autonomous
vehicle that has the instruction to drive forward at all times, but stop if it detects something in
front of it. Model-based reflex agents take this further by maintaining an internal world state
which has information that is not directly evident in the current percept. Goal- and utility-
based agents also consider how the robot action will affect given goal or utility functions
which are to be achieved or maximized. The most complex of these are the learning-based
agents, which analyze the performance of the agents through time and learn behaviours
which achieve the goal or maximize the utility more effectively [43, §2.4].

The states and behaviours making up the agent-program can be organized using several
models, one of which is the Finite-State Machine (FSM). An FSM is a model of computation
containing a set amount of states and state transitions, where the system can only be in one
state at any time. In robotics, a state can describe a set of behaviours that the robot exhibits
which is unique to that state. For example, a robot may be in a planning state after having
received some percepts, and once a plan has been computed it will transition to an enacting
state. If no such plan can be made with the current percepts, the robot may transition to a
information gathering state. As such, complex behaviour can arise from simple definitions of
robot states and transitions between the states [44].

2.1.3 Vehicle models and motion control

Motion control addresses the issue of controlling the robot actuators such that the robot
follows the given plan. Constraints from the robot kinematics, dynamics and actuators must
be considered to determine which motions are feasible for the robot, and are usually also
taken into account during the higher level planning covered earlier. Kinematic constraints in
robotics are often referred to as being holonomic or non-holonomic. Holonomic constraints
depend only on system coordinates and potentially time, meaning that a system with only
holonomic constraints can be accelerated in any direction [45, §1.3]. Non-holonomic con-
straints may depend on derived system states, such as speed or acceleration. An example of a
non-holonomic constraint is the no-slip constraint on wheels, leading to cars not being able
to instantaneously move sideways. Such constraints complicate motion control and must be
accounted for.

Various vehicle models exist to represent these constraints on vehicle systems. For wheeled
ground vehicles, the kinematic properties and constraints of the system usually revolve
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around the wheel configuration and actuation. Popular models include the differential-drive
model and the bicycle model. In the former, two actuated wheels placed with a shared
axis can provide forwards and rotational motion, with additional non-actuated wheels to
stabilize the platform. The latter relies on one wheel for actuation and the other for steering,
prohibiting rotations of the body in place. These two models are illustrated in Figure 2.1.
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(b) Bicycle model.

Fig. 2.1 Two wheeled vehicle models. (a) The differential drive model has two actuated
wheels with a common wheel axle provide forwards/backwards and rotational movement.
A third spherical wheel is added for stability. Motion control achieved through simple PID
controller on position and orientation (discussed below). (b) The bicycle model has an
actuated back-wheel and steerable front-wheel, closely resembling key characteristics of
car-like robots (no instantaneous lateral movement, no turning in place). Motion control and
planning can be achieved by parameterizing the path into lines and arcs[46, 47].

Aerial systems differ from their ground-based counterparts in that they must more actively
consider all three dimensions, whereas ground systems can usually abstract away the z-
dimension and only consider movement on the ground plane. A typical quadrotor aerial
model is shown in fig. 2.2a. The quadrotor consists of four individual rotors fixed to a rigid
cross-shaped frame, in pairs of clockwise- and anticlockwise-rotating rotors. Motion is
achieved by controlling the thrust provided by each rotor. How thrust (upwards/downwards
motion), roll and pitch are controlled is easily conceptualized. Yaw motion is achieved by
adjusting the average speed of the clockwise and anticlockwise rotating rotors [48, §52.2.2].
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Control strategies include feedback control of measurements to the vehicle model to mini-
mize errors between reference and measured system states. In some systems, for example in
quadrotor systems, feedback controllers may be layered such that an outer layer controlling
position gives reference states to inner attitude controllers. An example of such a multi-
layered control strategy is shown in fig. 2.2b. These feedback controllers often come in the
form of Proportional–Integral–Derivative (PID)-controllers. Another control methodology
includes the use of Model Predictive Control (MPC), where the motion control problem
formulated as an optimization problem. Kinematic constraints on the body can then be
directly accounted for by including them in the optimization problem.
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(a) Quadrotor model.
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(b) Hierarchical quadrotor control.

Fig. 2.2 The quadrotor UAV model: (a) Body model with propeller forces F , angular velocity
ω and direction of spin denoted with arrows. Coordinate frames are denoted I for the inertial
frame and R for the robot/body frame. (b) Illustration of hierarchical control of the quadrotor
position using two controllers. Figure adapted and simplified from Figure 52.6 in [48].

2.2 Path planning

Robot path planning represents a large portion of problems within robotics. The general path
planning problem can be formulated as the issue of planning collision-free paths that allow a
complex body to move from one initial state to a goal state. Within this formulation it is un-
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derstood that the environment can be populated by obstacles, and that an intersection between
the complex body and these obstacles constitutes a collision which is to be avoided [49, §7.1].

Many formulations and additions to this problem exist which modify the path planning
problem to cover other fields in robotics, such as exploration, formation holding, etc. These
topics will be covered in later sections. Path planning is made distinct from the related
problems of motion- or trajectory planning. The former results in a list of waypoints and/or
geometric paths, while the latter two include the translations and rotations necessary to move
a complex body along this path and how to respect the mechanical limitations of the body
while doing so respectively[50, §1.1].

2.2.1 The path planning problem

First, a formal definition of the path planning problem is presented. A classical example
which can be used in this definition is the mover’s problem1 [51]. Here, a polyhedron is to be
moved through Euclidean space while avoiding polyhedral obstacles. The basic definition of
the problem follows [49, §7.2.2].

Given:

1. A workspaceW , where eitherW = R2 orW = R3:
The physical space the robots operate in, which is usually abstracted to two dimensions
for ground robots.

2. An obstacle region O ⊂W:
The parts of the workspace occupied by obstacles which the robots must avoid.

3. One or several robots A1, A2, ..., Am defined inW:
Robots, or agents, which can occupy space in the workspace and which move under
certain constraints.

4. A configuration space C = C f ree∪Cobs (Cobs and C f ree are defined later):
The space of all possible robot configurations, with a configuration q being a complete
specification of the location of every point on the robot geometry.

5. An initial configuration qI ∈ C f ree.

1Also referred to as the Piano mover’s problem
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6. A goal configuration qG ∈ C f ree. The initial and goal configurations are often called a
query (Cobs, C f ree).

Problem: Compute a (continuous) path, τ : [0,1]→C f ree, such that τ(0) = qI and τ(1) = qG.
The obstacle region O ⊂W , which can be a collection of polyhedra, three-dimensional
triangles, or piecewise-algebraic surfaces, is used to define the C-space obstacle region
Cobs. By letting A(q)⊂W represent the set of points occupied by a robot A when it is in
configuration q, the C-space obstacle region Cobs is defined as:

Cobs = {q ∈ C |A(q)∩O ̸= /0}.

From this definition, the free space C f ree = C \Cobs is easily defined [49, §7.2.1].

2.2.2 Path planning algorithms

There exist a multitude of path planning algorithms to solve the aforementioned path planning
problem, the choice of which will depend on the task environment and other characteristics
such as complexity, processing time, etc. Algorithms can be divided into several broad
categories, depending on how they formulate and solve the problem.

Optimization-based planning has already been mentioned in the context of motion planning
covered in 2.1. Optimization methodologies such as MPC can be applied to the general
path planning problem in continuous space by formulating the problem as an optimization
problem, with the option of including obstacles and robot kinematics as constraints. How-
ever, in most formulations of planning, computing the optimal solution is given little or no
importance. Factors that contribute to this are that the optimal path may potentially not be
desirable, may be excessively long or might have a computational complexity which is far
higher than their (not necessarily optimal) counterparts [49, §7.6.7].

Graph-based planning is an alternative to optimization-based planning which first transforms
the environment into an appropriate graph-based representation, then plans a path through
the graph. The graph G will consist of vertices V ∈ C f ree, representing discrete configura-
tions, and edges E ∈ C f ree connecting the vertices. Such a graph-based representation of
the environment can be created by partitioning the free configuration space C f ree into cells
through cell decomposition. Each cell is then represented by a graph vertex, and neighboring
cells are connected with graph edges. One example is the uniform cell decomposition created
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by discretizing C f ree into equally sized cells (in either 2D or 3D) [50, §6.3].

Once a graph has been constructed, there exist many classical algorithms which can traverse
the graph from a given initial- and goal-vertex to find the shortest path. Examples include
Dijkstra’s algorithm [52] and the A* algorithm [53]. Though these algorithms are efficient
on the constructed graphs, the construction of the graphs require that C f ree be known a
priori. Not only is this not always the case, especially with dynamically changing environ-
ments, it is in some scenarios a central issue of the problem, such as for exploration scenarios.

Sampling-based planning algorithms are similar to graph-based planning algorithms in that a
graph over C f ree is constructed and used to find a collision-free route. However, sampling-
based planners iteratively construct the graph by sampling individual configurations and
potentially adding them to the graph. The standard goal for sampling-based planners is to
provide a weaker, yet interesting, form of completeness: if a solution path exists, the planner
will eventually find it [49, §7.3].

The Probabilistic Roadmap Method (PRM) is one such algorithm, in which a graph is con-
structed by sampling configurations in C f ree, adding them as vertices and connecting them
to other nodes in graph that are in the neighborhood2 and that have an edge that is entirely
within C f ree. Though this provides a computationally efficient way to construct a graph that
can avoid some of the downfalls of cell decomposition, it is still mainly a preprocessing step
that runs before a graph-based planner finds the shortest path through it [49, §7.3.1].

Another family of sampling-based algorithms solves both the graph-construction and shortest-
path problem simultaneously by constructing trees rather than graphs. A tree T is, like a
graph, comprised of vertices and edges T = {V,E} ∈ C f ree. However, a tree can not be
disconnected and must be acyclic. Each tree-vertex also has a unique parent-vertex, but may
have any number of child-vertices which it is the parent of. The exception is the initial vertex
in the tree, which is referred to as the root-vertex, which does not have another vertex as a
parent. This results in a natural hierarchy arising from the distance (in nr. of vertices) to the
root-vertex, and only one unique path from a given vertex to the root-vertex.

2Vertices that are under a certain distance threshold, in some metric defined in configuration space, are said
to be in the same neighborhood.
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α(i)
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CobsCobs

C f reeC f ree

New sample

Roadmap vertex

Fig. 2.3 Illustration of a possible roadmap created with the PRM. A sample α(i) is taken.
Vertices in the neighborhood of α(i) are checked for collision free edges.

2.2.3 Rapidly-exploring Random Trees

The Rapidly-exploring Random Tree (RRT) algorithm constructs a tree from a given root-
vertex by sampling new configurations α(i) and only connecting resulting vertices to one
tree-vertex [54]. In the case of path planning, the initial configuration qinit is usually chosen
as the root-vertex, and a tree is grown that attempts to have a tree-vertex end up within
an acceptable neighborhood of the goal configuration qgoal

3. Planners using RRT usually
sample qgoal at set intervals or with a given probability.

In the classical RRT algorithm, the tree-vertex qnearest that is closest to the new sampled
configuration α(i) is chosen for expansion. CLoseness can be defined in multiple ways, but
is often related to euclidean distance. A state transition equation of the form q̇ = f (q,u),
which can express nonholonomic constraints for the robot given a configuration q and input
u, is integrated over a given time to steer the robot from qnearest towards α(i). The integration
results in a configuration qnew, which may or may not be the same as α(i), which is added to
the tree with an edge to qnearest . The RRT algorithm is shown in Algorithm 2 and Algorithm 3,
and a graphic illustrating the algorithm is shown in Figure 2.4.
The original formulation of the RRT algorithm has several properties which make it ideally
suited for path planning problems: It is relatively simple to implement, can include non-

3RRT is a single-query planning method, as opposed to the multi-query methods presented earlier that can
answer the path planning problem for multiple combinations of initial- and goal-vertices [49, §7.3.2].
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(a) RRT sampling.
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(b) RRT tree connection.

Fig. 2.4 The RRT algorithm grows a tree in the free configuration space by sampling new
configurations and adding them to the closest tree-vertex. The tree is initialized with only
one vertex, known as the root-vertex. (a) A sample configuration α(i) is taken. Tree-vertices
in the neighborhood of α(i) are checked for collision free connection. (b) α(i) is connected
to the closest tree-vertex in its neighborhood with which it can make a collision free edge.

holomic constraints in the planning through q̇ = f (q,u)4, and the algorithm is able to find a
feasible solution relatively quickly. Whether or not the algorithm could improve the initial
solution was a subject of debate, and it was proven that the probability of the algorithm
improving the initial solution to an optimal one was actually zero [55]. This lead to the
development of RRT variants which could improve the initial result.

The RRT* variant of the RRT algorithm modifies the way new configurations are connected
to the tree to make it an anytime algorithm, meaning it is able to quickly find a solution
and to improve upon the solution with further processing [55]. The key modification is the
inclusion of costs for each tree-vertex and the connection of qnew to the tree-vertex within its
neighborhood that would result in the lowest cost for the new vertex. This cost is classically
chosen as the distance within the tree from the tree-vertex to the root-vertex. An additional
rewiring step is then performed by checking tree-vertices in the neighborhood of qnew and
assigning qnew as the parent-vertex of these vertices if their resulting cost is reduced.

In algorithmic terms the RRT* algorithm modifies the EXTEND procedure of Algorithm 2,
shown in Algorithm 4. A graphical illustration of the modification is shown in Figure 2.5.
The RRT* algorithm is proven to be asymptotically optimal, meaning that is is able to
converge to the optimal path between a given initial- and goal-configuration given that such a

4If the robot is considered holonomic the function returns the collision-free endpoint of a ray within C f ree.
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(a) RRT* sampling.
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(b) RRT* tree connection.

Fig. 2.5 The RRT* algorithm grows a tree in the free configuration space by sampling new
configurations and adding them to the tree-vertex with the lowest cost. The tree is initialized
with only one vertex, known as the root-vertex. (a) A sample configuration α(i) is taken.
Tree-vertices in the neighborhood of α(i) are checked for collision free connection. (b)
α(i) is connected to the tree-vertex in its neighborhood that has the lowest cost (distance to
root-vertex) and with which it has a collision free edge.

path exists. The additional steps required by the RRT* algorithm also do not incur substantial
computational overhead when compared to the original RRT, meaning that asymptotic opti-
mality can be ensured without losing the benefits of finding an initial feasible solution quickly.

Other parts of the algorithm can also be modified to improve convergence. The Informed-
RRT* algorithm applies a heuristic to the way new configurations α(i) are sampled to
improve convergence-time to the optimal path [56]. It does this by constraining the sampling-
region after an initial path is found, such that new samples are taken within a prolate
hyperspheroid including the initial-and goal-configurations. The dimensions of the hyper-
spheroid depend on the current best path length, such that new samples will only be able
to improve on the current best path. The modified sampling function is shown in Algorithm 5.

Variants of the basic RRT method exist outside of the pure robot path planning case. In
Informative Path Planning (IPP) problems, the RRT algorithm can be used to detect interesting
regions to explore. The algorithm is also easily extended to multi-robot scenarios since each
robot can maintain its own tree. However, ensuring effective collaboration and avoiding
collision in such scenarios is a much broader topic that will be covered in Section 2.3.
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2.2.4 Informative path planning

Informative Path Planning (IPP) tackles the issue of maximizing the information collected by
a sensor-equipped robot, subject to budget constraints on the planned paths [57]. Like the is-
sue of path planning, solving IPP problems involves searching over large and complex spaces
of possible paths, with particular formulations being NP-hard [58] or even PSPACE-hard [51].
In fact, the IPP problem is often compared to and formulated as a variant of the travelling
salesman problem, where a robot must visit all unexplored places while minimizing the total
travelled distance. This has lead to several methods which use heuristics to solve the problem
in non-complete ways.

Frontier-based exploration is one such method, which can be summarised as: To gain the most
new information about the world, move to the boundary between open space and uncharted
territory [59]. Here, the IPP problem is considered in the exploration scenario, where the
goal is to cover unmapped areas of the environment until the environment is sufficiently
mapped5. The boundary regions between mapped and unmapped space, known as frontiers,
are chosen as navigation goals for the underlying robot path planner, with the assumption
being that these regions will be explored once a robot is moved in the vicinity of it. This
results in the identification of frontier regions being the main IPP problem to be solved.

Another method which tackles the IPP problem more directly is to consider the information
that can be gathered along a path. If one considers a robot equipped with directional sensors,
such as cameras, the path can be seen as a sequence of views related to the direction the sen-
sors are facing. The goal then becomes to determine the sequence of views which adequately
cover the scene [61]. This method is similar to the frontier region method in that views with
high levels of information gain will be views that cover the frontier regions.

Solutions to the issue of estimating information gain from each configuration/view will
depend on the sensor characteristics and environmental representation. Omni-directional
sensors allow the estimation of information gain as the size of unmapped, visible space
within a sensor radius of the robot. In the case of an occupancy grid representation of the
environment, this translates to the amount of unmapped, visible grid cells within the radius of
the robot sensors. For directional depth sensors one must consider the Field of View (FOV)
and maximum depth. Information gain can then be estimated through ray-casting within the

5Robotic exploration is closely related to the field of robotic mapping, and the terms are sometimes used
interchangeably [60].
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FOV and counting intersections with unmapped polygons [62, 63].

The RRT algorithm can be applied to make systems which utilize both frontier-based and
view-based methods. Classically, image processing edge detection methods have been used
on occupancy grids representing the robot environment to detect frontier regions. However,
frontiers can also be detected in the tree produced by the RRT algorithm by detecting if
edges cross from mapped to unmapped space [64]. This method also scales beyond the two
dimensional case of occupancy grids. A visualization of frontier detection and exploration
using the RRT algorithm is presented in fig. 2.6 for a robot equipped with an omni-directional
sensor.
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(a) A tree is grown using the RRT algorithm and
frontiers are detected where edges cross from
mapped to unmapped space. A navigation goal
for the robot is chosen when the RRT algorithm
ends.
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(b) The robot moves to the navigation goal, map-
ping unmapped space as it approaches the frontier.
When the navigation goal is reached, the RRT
frontier detection algorithm is repeated. Explo-
ration continues until no new frontiers are found.

Fig. 2.6 The RRT can be used in frontier exploration to detect frontier points. Here, a tree is
grown from the robot location represented by the root-vertex. Mapped space is represented
by white areas, and unmapped space in gray. Space is mapped by moving the robot close to
unmapped space, assuming that the robot sensors map the area directly around it.

The RRT algorithm can also be applied for view-based exploration by considering the orien-
tation of the robot at each tree-vertex configuration. The information gain of the tree-vertices
can then be estimated through the aforementioned methods, and the vertex with the highest
amount of information gain can be chosen as the navigation goal. After navigating the robot
to the first view in the sequence, the tree can be regrown from the new location. Resampling
the previously selected path leads to a receding horizon behaviour for IPP [65]. This variant
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of RRT-based exploration is visualized in fig. 2.7.
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(a) A tree is grown using the RRT algorithm and
robot FOVs and information gain are calculated
at each vertex. A navigation goal for the robot is
chosen when the RRT algorithm ends.
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(b) The robot moves to the navigation goal, as-
suming the orientation that is associated with
the vertex. When the navigation goal is reached,
the RRT view-based algorithm is repeated. Ex-
ploration continues until no FOVs covering un-
mapped space are found.

Fig. 2.7 The RRT can be used in view-based exploration to find configurations with a high
information gain. Here, a tree is grown from the robot location represented by the root-vertex.
Mapped space is represented by white areas, and unmapped space in gray. Space is mapped
by moving the robot close to unmapped space, such that the robot FOV covers unmapped
space. The robot FOV is here represented by triangles, as if seen from above.

Other IPP methods which utilize tree-like datastructures similar to that used in the RRT
algorithm have also been demonstrated. The Sensor-based Random Tree (SRT) method
applies the RRT concept to robots with omnidirectional ball- or ray-based sensors, such that
a robot can be moved along an incrementally growing tree in C f ree and backtrack on the tree
once no local frontiers are available [66]. The Gap Navigation Tree (GNT) method attempts to
map an area using a minimal representation based on sensor measurement events, utilizing a
tree data structure made up of these events. Central in the method is the use of discontinuities
in the depth measurements with respect to the heading of the robot, known as gaps, which in
some senses resembles the frontiers presented earlier [67]. Other methods based on sampling
roadmaps, trees and graphs for IPP have also been developed for environments where the
information quality can be extracted as a function of the environment [57].
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2.3 Multi-robot planning

The motivations for multi-robot systems largely depend on the task environment the system
is applied to (whether they are inherently distributed or depend on multiple robots). Their
usage can also be motivated by the added robustness of having multiple robots. Multi-robot
systems and the problems they are applied to can be characterized along several attributes
[50, §7.2]:

Centralized or decentralized, relating to whether decisions are made by one centralized
controller or by each individual robot using global or local data respectively.

Homogeneous or heterogeneous, relating to the differences in robot capabilities within the
group, such as motion constraints or sensing abilities.

Unlabeled, k-color or labeled, relating to whether tasks can be done by any arbitrary robot
in the group, if there is a number (k) of different tasks and robot types, or if each task
must be accomplished by a particular robot.

Systems which are highly decentralized and homogeneous can be characterized as collective
swarm systems. In such systems, each robot has a high degree of independence and operates
without explicit communication with other robots, often merely treating other robots as
dynamic obstacles in the environment. Such systems can achieve an emergent global
behaviour, such as flocking or coverage, using relatively simple control laws for the individual
robots. However, some tasks require or benefit from explicit coordination and communication
between robots.

2.3.1 Intentionally cooperative systems

Intentionally cooperative systems can solve a broader range of problems at the expense of
requiring communication and explicit coordination between the robots. Strongly cooperative
systems tackle tasks that are not trivially distributed and where coordination is essential,
while weakly coordinated systems allow robots to operate with periods of independence
following coordination phases.

Planning and coordination can be done in a centralized manner given that the planner has all
the relevant information from all the robots. The concept of the configuration space presented
in Section 2.2.1 can be extended to multi-robot systems by concatenating the individual
robot configuration spaces and planning in the joint configuration space [49, §7.6.4]. This
method quickly suffers from the curse of dimensionality as more robots are considered, with
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the number of vertices required to cover each dimension with a certain density growing
exponentially with the number of robots.

Another centralized planning methodology involves the assignment of priorities to each
robot [68]. Each robot can then make its plans individually in a sequence following the
priorities, having to only consider the plans of the robots with higher priority (for example
by treating them as dynamic obstacles in the path planning case). Though the curse of
dimensionality is avoided since the planning algorithm now scales linearly with the number
of robots, the scheme used to assign priorities can still cause issues. This is evident in the
example presented in Figure 2.8. Some schemes include random priorities or priorities which
arise naturally based on the importance of individual robots or their tasks. Other priority
schemes can be generated using genetic algorithms, like hill climbing [69], or graph based
heuristics [70].

A1 A2

G2 G1

Fig. 2.8 An example scenario where prioritization significantly influences the result. If robot
A1 has the highest priority when planning its path, robot A2 can only start moving after A1
has reached its goal configuration qg1. If robot A2 has priority, A1 can use the cavity to let
A2 pass, thereby giving a better (less time used) result. Example adapted from [70].

Decentralizing the coordination in an intentionally cooperative system places emphasis on
the networked communication between robots, as each robot is able to make more informed
local decisions by knowing the global situation communicated by other robots. The field
of networked robotics tackles this problem by analyzing the propagation of information
through a robotic network and its effects on control, planning and perception [71, §53.4].
Game-theoretic methods, such as voting, can be used in such systems to communicate and
come to agreement on a global solution from each robot’s local solution [72]. By formulating
the multi-robot system communication topology as a graph, graph-based algorithms like
consensus can be utilized to reach a common solution despite communication delays and noise
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[73]. Planning robot motions taking communication constraints explicitly into consideration
is another field of robotics which has been studied extensively, and which will be discussed
in section 2.3.4.

2.3.2 Multi-robot Informative Path Planning

Multi-robot Informative Path Planning (MIPP) concerns the extension of IPP to the multi-
robot case, which can be achieved with various levels of cooperation and coordination.
Simply running individual IPP systems on each robot and ensuring collision avoidance
between robots is likely to improve the speed at which information is gathered. For example,
running frontier-based exploration on multiple robots sharing a common map which they can
localize themselves in improves on the performance done by a single robot running the same
system [74]. However, IPP and robotic exploration present a scenario where coordination
can intuitively improve performance, simply by considering that the same region cannot be
explored twice.

Coordinating exploration frontiers through task assignment is a simple way to add a col-
laborative element to the system. Assigning a priority to each robot and considering them
sequentially allows each robot to choose its best exploration frontier, and then weight the
information gained on that frontier negatively for other robots who have yet to choose a
frontier [75]. Frontiers can also be assigned more intelligently to avoid the downsides of fixed
priority planning, such as through bidding in market economies [76] or through assignment
algorithms such as the Hungarian Algorithm [77].

Expanding beyond the basic frontier exploration paradigm, methods have also been devel-
oped to divide the remaining unexplored space between the robots. Unsupervised clustering
algorithms, such as the K-Means algorithm [78], can be used to partition the unmapped cells
of an occupancy grid into as many clusters as there are robots, outperforming the greedy-like
frontier approaches [79]. Other partitioning methods have been presented where the structure
of the environment is taken into account, such as by using Voronoi Graphs to detect rooms
and hallways for exploration in indoor scenarios [80].

Sampling-based techniques have also been applied to the MIPP field. The SRT algorithm for
single-robots has been expanded to include multiple robots [81]. SRTs are built in parallel by
each robot, with the ability for robots to expand on other robot trees once their own trees are
fully expanded. This concept is extended to include bridge-connections between trees such
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that the trees are connected into a Sensor-based Random Graph (SRG) [82].

Concepts from the related field of Collaborative Visual Area Coverage (CVAC) can also
be utilized for MIPP systems, particularly in the domain of collaborative IPP where sensor
coverage and overlap is to be considered. The CVAC problem concerns placing sensor-
equipped robots such that the sensors cover a predefined area adequately, and can usually
be split into two categories: blanket- or sweep-coverage [83]. In the former, the area is
statically defined and the result is a static placement of the robots. The latter, also known as
dynamic coverage, tasks the robots with covering a changing objective, potentially resulting
in constant movement for the robots [84, 85].

Many methods within CVAC abstract sensor coverage over the environment into simple
shapes, such as circles, rectangles or trapezoids [86]. Calculating the region of overlap
between different robot sensors can then be simplified to a geometric problem. Once a region
of overlap has been found, some systems systems choose to only account for information
gain in that region from the sensor with the best coverage quality [87]. Systems which utilize
camera sensors can also consider overlap through an area pr. pixel metric, allowing (and in
some cases encouraging) sensor overlap [88].

x

y

z

Fig. 2.9 Robots in a coverage scenario may have to tackle overlapping sensor coverages. For
the case of UAVs, altitude might alter the scale and quality of coverage.

Attaching the sensors to mobile robot which are able to move in three dimensions allows
for the deformation of the sensor coverage over the two dimensional ground plane. This is
evident in the example of UAVs with downward facing cameras that have an FOV of the
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ground plane proportional to their altitude. Systems which consider this usually apply an
information quality metric to disencourage the robots from placing themselves unrealistically
high [87]. The ability to manipulate the sensors position and/or orientation on the robot
further complicates the issue. Camera sensors with controllable pan- and tilt-angles are an
example of this [89].

The CVAC problem can be translated to solve exploration tasks by having unmapped space
be the area selected for coverage. Naturally, this area will shrink as unmapped areas are
covered and subsequently mapped by the robots. Robots which are in some way constrained
in their planning, such as being made to maintain a formation or maintain communication
constraints with other robots in the group, can have this area reduced to the unmapped space
that can be sensed given the robot constraints.

2.3.3 Formation control

Path planning in multi-robot systems can also be considered by requiring the robots to main-
tain a formation and considering the movement of the robots as one group. The advantages
of this approach depend on the use-case. For MIPP and exploration, maintaining a static for-
mation allows for path planning of the whole group as if it were one robot equipped with all
the sensors of the individual robot (this naturally makes assumptions on the communication
between robots).

Several metrics exist which characterize robot formations [90]:

Rigid or flexible, relating to whether inter-robot distances are fixed or are allowed to vary
over time.

Point-referenced or neighbour-referenced, relating to whether robots reference their posi-
tion in the formation to some common reference point or to if they position themselves
relative to one or more neighbors.

Rigid formation systems are usually applied when there are physical restrictions involved,
such as the robots having to carry or manipulate a physical object by holding the object’s
corners. When such restrictions are not in place, flexible systems allow robots to make
local control decisions that deviate from their formation position. Relaxing the formation
constraints even further leads to flocking type systems, where robots are required to move
together along some path with only minimal requirements for the paths taken by specific
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robots (usually only collision avoidance, such as in swarm systems) [71, §53.10.2].

Neighbor-referenced formations rely only on the robots’ ability to sense and locate them-
selves relative to their immediate neighbors. This is ideal for robots with limited sensing and
control capabilities where one wants to achieve a certain behaviour with simple control laws
[91]. Despite this, intentionally cooperative multi-robot systems are usually point-referenced,
as this allows for more complex and coordinated behaviour. The reference point can be some
arbitrary point on the trajectory that is to be followed or the position of one of the robots, the
latter being an example of a leader-follower type formation system.

For point-referenced systems where the point to be followed travels along a curving trajectory,
the formation could also be maintained within a curvilinear coordinate system rather than
the normal rectilinear one. Such a coordinate system has an axis that curves along with the
reference trajectory, as shown in Figure 2.10. This takes advantage of the nonholonomic
constraints present in some robot systems and ensures collision avoidance if the turn is not
sharper than a threshold curvature [90].

C T

(a) Square formation while moving straight.

C T

(b) Square formation while turning.

Fig. 2.10 Curvilinear coordinates applied to four robots maintaining a square formation
relative to the reference point C while following a trajectory T . Adapted from Figure 1 in
[90].

Robot position and distance relative to the reference point can be maintained by the local
control laws of the robots. For holonomic robots, maintaining the formation is trivial as
simple control laws can be applied to drive the robots to the desired formation position. Sev-
eral methods have been investigated for nonholonomic robots that have to follow a specific
trajectory. These include the aforementioned curvilinear formation specification and path
synchronization algorithms [92]. However, local controllers for nonholonomic systems can
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in many cases be relied upon to drive the individual robots to their desired positions such
that these constraints don’t have to be considered globally.

Some situations may also benefit from having the formation itself change over time, such as
in environments populated with obstacles where maintaining a predefined formation would
lead to collisions. One alternative is to scale the predefined formation, such that it can
shrink to pass through narrow corridors and grow to sweep larger unoccupied areas [90].
Formations can also be selected from a predefined set of formations, potentially preferring
certain formations and weighting this preference against the need to avoid collisions [93].
The utility of keeping a formation may also be weighted against other utilities, such as
information gain, such that a formation adapts to gather more information while still keeping
group cohesion and tracking a trajectory. This specific use-case has been touched upon in the
previous section on MIPP.

For both static and varying formations, tracking a trajectory in an environment populated by
obstacles remains a challenging task. Systems which calculate the required robot trajectories
offline may make use of optimization techniques, such as reformulating the problem as a
Mixed Integer Linear problem [94]. Systems which must calculate these trajectories online
may make use of heuristics, such as adapting the sampling-based RRT algorithm to apply to
formations of robots [95].

Another direction for online collision free formation control is the formation-containment
control problem, where a convex region of free space is calculated around the formation
within which the formation must reside. This is usually applied to leader-follower type
systems where the convex region is defined with respect to the leader position [96]. Methods
exist which can quickly calculate such regions in two- and three-dimensional space [97].
Finding collision free trajectories within these well-defined regions can then potentially be
done through constrained optimization and consensus [98] or random sampling [99].

2.3.4 Communication constrained planning

In Section 2.3.1, the requirements for communication in intentionally cooperative networked
robotics systems was mentioned. Multi-robot planning methods which don’t consider com-
munication constraints explicitly have been widely studied [100], and a majority of the
previously presented systems fall into this category. Systems which do take such considera-
tions have been investigated less, though they have been gaining attention in recent years. A
key implication of communication constrained planning is that robots rely on communication



2.3 Multi-robot planning 35

with other robots to share information, often about the environment they are operating in.
This is especially applicable to collaborative exploration scenarios where a shared map is
assumed, as presented in Section 2.3.2. This section will present some such Communication
Constrained Multi-robot Informative Path Planning (CCMIPP) systems, while also presenting
general background theory on communication constrained planning.

Communication constrained robot systems can be classified in several ways [101]. The
first way to differentiate such systems is in what communication models they use. These
models define the circumstances under which two or more robots are considered to be
in communication. Though such models may not accurately model the signal bandwidth
between robots, they are usually designed to be conservative enough such that a certain
level of communication is ensured when robots fulfill the requirements. Some common
communication models include:

None: Communication between robots is not considered during planning, and robots rely
on communication occurring due to robot encounters.

Range: Communication is possible between robots that are within a set range of each other.

Line-of-Sight (LoS): Communication is possible between robots that have an unobstructed
line of sight between each other, meaning the line between the robots lies entirely in
free space.

Signal: Communication is possible between robots according to a probability function that
estimates the signal power between their respective positions. A possible equation
for the signal power P(d) at distance d, based on empirical relations, is the Floor
Attenuation Factor propagation model shown in Equation (2.1) [102]. Here, P(d0) is
the reference signal value at distance d0, n indicates the rate at which the path loss
increases with distance, nW is the number of walls/obstructions between the locations
and C is the maximum number of walls/obstructions before wall attenuation factors
WAF make a difference.

P(d) = P(d0)−10nlog10

(
d
d0

)
−

nW ∗WAF, for nW <C

C ∗WAF, for nW ≥C
(2.1)

For range and LoS constrained systems, location pairs can be determined as either fulfilling
or breaking the communication constraints. As such, with knowledge about the environ-
ment for the LoS case, robot paths can easily be checked such that they conform with the



36 Background

constraints. Range and LoS constraints are usually chosen in communication constrained
planning systems, since such hard constraints can be checked and included relatively easily
to existing systems while also emulating more realistic communication constraints [101].

Signal models may also be used as binary models when they are considered with a threshold,
or they can be added in the utility function of the planner. For CCMIPP problems, some
systems factor in the signal strength to assess the information quality that can be transmit-
ted from a robot location to a fixed Base Station (BS) [103]. The signal communication
model can also be combined with other models, such as by assuming that high-priority short
messages can be passed without major loss to robots within a certain range while one must
account for loss when sending dense data such as maps [104].

Beyond the communication model used, communication constrained planning systems also
differ in when they require communication to be in place. Communication constrained
systems can broadly be categorized into two categories depending on when communication
constraints are enforced:

Event-based connectivity: Connectivity must be established according to an event-based
policy. Such events include the discovery of new information that must be commu-
nicated, chance meetings with other robots in the system or can be tied to a fixed
time or rate. Outside of these events the robots may operate independently without
communication constraints.

Continuous connectivity: Connectivity must be maintained continuously with other robots
in the group, either directly or in a multi-hop fashion through other robots. Losing
communication may trigger backup- or recovery behaviour to regain communication.

Requiring only event-based connectivity allows for path planning that is "more free". A naive
solution demonstrating this is to ignore communication constraints until the event is triggered,
at which point the relevant robots are tasked with rendezvousing at a set location to regain
connectivity. This can be exploited in the exploration scenario where a fixed non-mobile
BS is present, as robots can return to relay newly discovered information to the base station
once a sufficient amount of information has been gathered by a robot [105]. Coordination in
systems with event-based connectivity requirements can also be beneficial, such as through
coordinating robot paths where connectivity is regained in the final path configuration [106].

Requiring continuous connectivity between the robots imposes higher levels of restriction to
robot movement. Such requirements may be necessary where continuous streams of data need
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to flow in the system, such as video streams from robot cameras to human operators at a BS.
Some systems use a "milder" form of continuous connection by not taking connection into
account when planning but immediately reverting to recovery behaviours once connection is
lost [107]. However, a majority of continuously constrained systems plan their actions such
that connection is maintained. This can however lead to deadlock situations, such as when
multiple robots move in opposing directions to reach their respective exploration frontiers
[108].

The most restrictive form of continuous communication occurs when communication must
be maintained with a fixed BS. Systems where each robot must have a direct connection to
the BS are limited to moving in an area close to the BS, such as within the communication
radius of the BS in the range constraint case. This problem can be overcome by allowing
robots to act as relays, and many such systems have been investigated. One solution is to
specifically assign robots as being relay- or explorer robots, with the former maintaining a
communication network to the BS while the latter explore the frontiers [109]. The problem
may also be considered as a static formation control problem, where the formation to be
held is one which allows communication between the BS and the robot group [110]. Online
switching of robots to act either as explorers or relays has also been investigated [111].

2.4 Conclusion

This chapter presented theory and background which is relevant to the systems that were
implemented for this project. The first section covered some supplementary material which
is relevant in understanding model robotics systems and their components. This background
knowledge is needed to contextualize the next section, which covered path planning theory
for single-robot systems. Special emphasis was placed on sampling-based path planning
algorithms such as RRT, and on path planning in information-related scenarios such as
exploration.

The last section covered both theory and literature on multi-robot systems, which is the
main focus for this thesis. Metrics to classify multi-robot systems were presented, along
with common applications of multi-robot systems in informative path planning, formation
control and communication constrained planning. Special attention was given to systems
in the literature which can be applied to the problem presented in Section 1.2, beyond the
systems presented in section 1.1 which focussed mainly on UGV-UAV collaborative systems
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specifically.

The material presented in this chapter will be referenced when presenting and justifying
the design and implementation of the system, which is presented in Chapter 4. In the next
chapter, background material related to the robotics framework and previously implemented
systems will be covered.



Chapter 3

Framework

This chapter presents the software frameworks that have been used to actualize the systems
created in this project. The frameworks include open-source robotics frameworks, simulator
software and robotics systems which drive the individual robots. These topics will however
not be covered in depth. Most of the work in setting up and creating the necessary framework
was conducted in the Specialization project prior to this master thesis. Any minor changes to
the general framework which were necessary to create the new project systems, but which do
not constitute a main contribution of this project, are presented within this chapter. For more
details the reader is referred to the Specialization project thesis [1]. This includes information
on the implementation of the RRT algorithms, detailed descriptions of the provided systems
and the specific changes made to these systems.

The chapter begins by presenting the main overarching software frameworks that enable
the development and testing of the project systems. These frameworks do not constitute a
contribution from the author, but an understanding of them is necessary when presenting the
authors contributions. The subsequent sections present the robotics systems used for each
vehicle platform, which are a combination of open-source software and systems developed
by the author in the Specialization project. This includes the individual exploration planners
that will be utilized in some of the planners presented in Chapter 4.

3.1 General robotics framework

Modern robotics have trended towards standardized frameworks and a growing collaborative
community. Central in this trend are open-source frameworks such as the Robot Operating
System and the accompanying ecosystem. Simulation software such as Gazebo has also been
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critical in testing systems safely and quickly. Both of these frameworks are central in this
project work.

3.1.1 The Robot Operating System

The ROS is a collection of tools, libraries and conventions which make up an open source
robotics framework. The goal of ROS is to simplify the creation of complex and robust
robotics systems for many platforms and use-cases1. A key element of ROS is collaboration,
and a wide variety of robotics systems are available as ROS packages in the ROS Ecosystem.
The core packages available in the default ROS installation handle monitoring of processes
and message passing between systems2, while packages for sensor data processing, Graphical
User Interfaces (GUIs), control, hardware interfacing, etc. can be installed by the user.

ROS processes are typically contained within ROS Nodes3, which can communicate with
other nodes through communication channels such as Topics4, Services5 or Actions 6. A
Topic can be advertised and published to by one Node, while other Nodes can subscribe to
the topic to receive the data that is published there. Services and Actions operate with a
client-server structure, with the former being used for short queries and the latter being able
to handle queries which require a longer time to fulfill. As Nodes only interface with other
Nodes through these communication channels, the ROS structure can be very modular as
packages can switch out Nodes so long as the communication interface is maintained.

The core functionalities of ROS are augmented by a suite of tools and libraries. The tf
library maintains the relationships of transformations between coordinate frames, allowing
sensor data captured in one frame to be related and represented in other frames efficiently
7 [112]. Process introspection can be achieved using the rqt package, which allows the
viewing of the ROS Node graph and tf transformation tree. RViz is a 3D visualization tool
which allows users to view ROS data graphically, and is the standard GUI for viewing sensor
data, the robots representation of the environment, its plans and its current state8.

1https://www.ros.org/about-ros/
2https://www.ros.org/core-components/
3http://wiki.ros.org/Nodes
4http://wiki.ros.org/Topics
5http://wiki.ros.org/Services
6http://wiki.ros.org/actionlib
7http://wiki.ros.org/tf
8http://wiki.ros.org/rviz
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Fig. 3.1 Example of the ROS Node and Topic graph, here for the UGV system [1].

Fig. 3.2 RViz interface for the combined Specialization project system [1].



42 Framework

During the Specialization project, a multitude of the presented tools and frameworks were
used when implementing the multi-robot simulation framework. All systems were written to
interface with ROS. A selection of these systems are presented later in this chapter.

3.1.2 Simulation and representation

The Gazebo simulation environment is an open source 3D robotics simulator which makes
use of high fidelity physics engines to simulate rigid body dynamics of robots and envi-
ronments. Support code allows for the simulation of sensors and robot actuators, with an
interface to ROS through the gazebo_ros_pkgs package group.

The Gazebo GUI allows for the creation of custom world environments for the robots to
operate in. These can be populated by realistic objects with complex collision geometries,
or simple shapes like cubes and cylinders. Several worlds were developed for this project,
both in the Specialization project and in this project work. The worlds created for the
Specialization project are shown in Figure 3.3. The worlds created for this project are shown
in Section 5.2.
The OctoMap framework, and its interface with ROS through the octomap_ros package, are
used extensively in this project. The framework can generate and represent a 3D volumetric
environment using point cloud data from the simulated robot sensors [113]. A hierarchical
octree-structure is used by the framework to recursively subdivide 3D cubic volumes into
subcubes down to a fixed minimum voxel-resolution. Each cube will have a value represent-
ing either a binary or probabilistic occupancy value. Unmapped space is not registered with
the tree, such that no value exists for unmapped voxels. Cubes which share occupancy values
may be merged into larger cubes for efficiency. As the cubes are stored as vertices in a tree,
traversal of the octree will have a logarithmic complexity.

For path planning, collision checking for points of interest in the OctoMap can be done both
with an occupancy check and with ray casting. By defining a bounding box around the robot
of interest, one can iterate through the leaf-vertices of the OctoMap contained within the
bounding box and check their occupancies. The OctoMap API also has efficient methods for
ray casting, where a ray intersection query is made from a point in a direction with a given
maximum ray distance. If the ray intersects with an obstacle the collision can be detected,
and this method is useful for checking the occupancy of straight-lines sections of the robot
paths.
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(a) Maze: A 30x30 meter maze with walls of vary-
ing heights.

(b) Shapes: A 60x60 meter world with shapes of
varying heights and sizes.

(c) Outdoor: A 60x60 meter world simulating an
outdoor scene, with trees and some buildings.

(d) Disaster: A 60x60 meter world simulating a
disaster scene, with buildings and rubble.

Fig. 3.3 Gazebo worlds developed for the Specialization project [1].
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3.2 UGV systems

The Clearpath™ Robotics Husky9 is a four-wheel UGV. It has the possibility to be equipped
with a multitude of sensors and is relatively simple to control due to the differential-drive
nature of the platform. The Husky was chosen to simulate a general UGV system due to
the availability of software to simulate it and interface it with ROS, as well as having a real
life counterpart that is suitable for outdoor operations. A render of the UGV is shown in
Figure 3.4, together with its simulated Gazebo counterpart. Software for simulating the UGV
in Gazebo are provided, along with demo use-cases.

(a) Render of the Husky UGV without sensor load-
out.

(b) Gazebo visualization of the Husky UGV, with
2D and 3D LiDARs.

Fig. 3.4 The Husky UGV by Clearpath Robotics. A medium sized four-wheel differential
drive robotic development platform.

3.2.1 Sensors and planning

The UGV is by default equipped with sensors for both localization and range sensing. Data
from a GNSS module, IMU and wheel odometers are fused by an Extended Kalman Filter
(EKF) to provide the estimated UGV pose10. The default range sensor for collision avoidance
is a 270 degree 2D LiDAR mounted to the front of the UGV. For the Specialization project,
the depth camera mounted on the sensor arch was replaced by a 360 degree 3D LiDAR which
could provide a point cloud measurement of the UGV surroundings for mapping.

9https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
10EKF implemented in the robot_localization package[114]:

http://docs.ros.org/melodic/api/robot_localization/html/index.html
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UGV motion is controlled using the move_base ROS packages. Motion control and path
planning systems are structured as a Navigation Stack11 [115] made up of move_base
packages. Planning is split into a global- and a local-level. Global planning makes use of
a static user-provided map or a map constructed during run-time, and plans higher level
paths in this map. The paths generated by the global planner are then followed by a lo-
cal planner which uses a local map of the environment directly around the robot to plan
around obstacles. Both maps come in the form of 2D occupancy grids and make use of
the robot geometry and localization uncertainty to inflate occupied cells, assigning costs
to having the robot center close to obstacles. The Navigation Stack is visualized in Figure 3.5.

Fig. 3.5 The ROS structure of the 2D move_base Navigation Stack nodes and topics. Im-
age taken from the ROS Wiki http://wiki.ros.org/navigation, licensed under the Creative
Commons Attribution 3.0.

For the Specialization project, the default local planner was replaced with the teb_local_planner
plugin for car-like robots [116]. The planner optimizes local trajectories with respect to
execution time, obstacle separation and compliance with kinodynamic constraints using an
underlying method called Timed-Elastic-Band (TEB). A global planner using the Informed
RRT* algorithm presented in Section 2.2.3 was made for UGV path planning. The planner
returns a collection of straight-line paths from the current UGV location to the inputed goal,
if one such path is found before a timeout occurs. This is then used by the aforementioned
local planner to to drive the robot along the path.

In this project, two major changes were made to the UGV path planner. First, a post process-
ing step was added to optimize the paths. This involves iterating through the path nodes in a

11http://wiki.ros.org/navigation

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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(a) An informed-RRT* tree is grown from the
UGV to the goal, visualized by a red sphere.

(b) A path to the goal is found by the global plan-
ner, visualized by a green path.

Fig. 3.6 Running the implemented RRT Global Planner on a UGV in a 3D environment
populated by obstacles. The algorithm tree is visualized in blue. The chosen navigation goal
is behind an obstacle, and an Informed-RRT* tree is grown to find a path. Obstacle-voxels
displayed in real time by OctoMap. The teb_local_planner trajectory is visualized in red
[1].

pairwise fashion and attempting to replace segments of the path with collision-free straight
line segments. A dynamic collision detection and replanning system was also implemented
which would periodically check the current global path for collisions, which may occur if
obstacles are discovered on the path that were not present during planning.

For the majority of the scenarios covered in this project, the 3D LiDAR was removed such
that all mapping would be done by the UAVs flying above the UGV. The 2D LiDAR and
localization sensors are however still in use to provide local path planning and collision
avoidance.

3.2.2 Frontier exploration

A system to conduct frontier exploration was made for the UGV system during the Special-
ization project. The system makes use of the RRT* algorithm to detect frontier points in
the global map that is constructed during run-time. To achieve this, a tree is grown from the
UGV position. When a potential tree vertex is made which lies within unmapped space, it
is flagged as a frontier vertex and not added to the tree. The potential parent vertex of the
frontier vertex, which will be in mapped free space since it is a part of the tree, is used as the
navigation goal should its frontier vertex be chosen.
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Several different methods of processing the results of the frontier detecting RRT algorithm
were experimented with, both during the Specialization project and in this project work.
The choice of which frontier vertex to navigate to can be determined simply by the vertices
distance to the UGV position, either the straight line distance or the distance recorded as the
cost in the RRT* algorithm. One could also factor in the orientation of the UGV, taking into
account the time it takes for the platform to turn to face frontiers, or the density of frontier
points.

(a) The closest frontier point is chosen and its
parent node is selected as the UGV navigation
waypoint.

(b) Upon reaching the frontier, the search is re-
peated and a new frontier is selected.

Fig. 3.7 Running the implemented Frontier RRT exploration planner on a UGV in a 3D
environment populated by obstacles. The tree i visualized in blue, while frontier nodes are
visualized as blue spheres in unmapped space [1]

In this project, a major change was made to the frontier exploration algorithm such that
the tree was not discarded after each run, only the frontier vertices. This made the use of
euclidean distances instead of RRT* costs necessary for deciding which frontier to explore
next. It did however lead to a big speedup in frontier detection time, especially for frontier
points far away from the current UGV position.

3.3 UAV systems

The criteria of ROS and Gazebo support as well as ease of transfer to outdoor applications
on a real quadrotor UAV were central when deciding on which UAV systems to expand on
for the Specialization project. Due to its popularity and support in the autonomous vehicle
community, the PX4 autopilot system was chosen as the base for the UAV simulation and
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systems. An included demo of the Iris quadrotor equipped with a forward facing depth
camera was chosen and heavily modified during the Specialization project to allow multi-
robot simulation.

3.3.1 Autopilot software and interface

The choice of using the PX4 autopilot system informed the rest of the decisions regard-
ing UAV software12. The open-source autopilot system consists of a flight stack for state
estimation and control of multiple types of vehicle platforms, as well as general robotics
middleware for communication, hardware integration and support for autonomous behaviour.
The system is designed to run on a physical or simulated Flight Controller Unit (FCU), which
handles motor control and sensor data from a physical or simulated drone system respectively.

External connectivity is provided using the MAVLink communication protocol13, which is
in turn used by the mavros package to provide an interface to ROS. The mavros package
allows flight control data, such as the UAV status, current pose and position goal, to be
exposed as ROS topics and services. The package also allows the UAV to be given pose- and
body velocity goals which the flight controller software translates to motor commands. More
intelligent control can be achieved using the built in Obstacle Avoidance (OA) software,
which is an advanced feature that allows the UAV to drive around obstacles to reach given
goals.

The PX4 system includes Gazebo models for many different platforms, such as quadrotor
UAVs, ground vehicles and underwater vehicles. This includes simulation of the FCU which
the autopilot system runs on. The system also simulates UAV sensors like a GNSS-receiver,
IMU, barometer and altitude LiDAR, which are fused by the FCU’s EKF. Range sensors can
also be added, and as mentioned the project makes use of an Iris quadrotor model with a 64x48
pixel RGB-Depth camera running at a frequency of 20 Hz with a maximum range of 8 meters.

In the Specialization project, the PX4 software for OA was used as a local planner for the
UAV. However, several issues with the planner were identified, leading to it being replaced
for this project. For normal operations it was determined that intelligent control for OA was
not necessary since the planned paths would always be relatively short straight-line paths in
known free space. Therefore, the end of this path line segments can be used directly as the
position setpoint for the flight controller software. For longer navigation tasks that may need

12https://dev.px4.io/v1.10/en/concept/architecture.html
13https://mavlink.io/en/
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obstacle avoidance, such as during the UAV recovery behaviour presented in section 4.1, the
navigation stack used for the UGV was adapted for the UAV software.

3.3.2 View-based exploration

For the directional camera sensors on the UAV, orientation had to be taken into account when
performing IPP for the individual UAVs. A system was developed using the RRT* algorithm
to sample configurations and calculate their information gain metric at each tree vertex. Each
UAV would have a tree grown from its current position and within free space14.

Each tree segment, consisting of a series of connected vertices from the root-vertex to a
tree-vertex (not necessarily a leaf-vertex), was recorded and assigned a utility as a function
of the information gain at the vertex, the vertex rank and the utility of the parent vertex. The
classic distance cost metric used in the RRT* algorithm was used for tree expansion, but not
taken into account in the information utility function. The information utility Utility was
calculated as shown in 3.1, using the function Gain(q) to calculate the information gain at a
configuration q and Rank(q) to get the vertex rank for configuration q in the tree.

Utilitynew =Utilityparent +
1

Rank(qnew)
Gain(qnew) (3.1)

Information gain was calculated for each viewpoint using the OctoMap framework and a
set number of equally spaced camera rays within the UAV FOV. For each viewpoint, rays
were cast using OctoMaps raycast function in the predefined camera ray directions with a
maximum range equal to the depth camera’s maximum range. The information gain is then
calculated as the ratio of unmapped voxels hit by the rays to the total number of rays cast. A
horizontal FOV of 1.02974 and maximum range of 8 meters was used, with the rays cast in a
6 wide by 3 tall grid resulting in 18 rays.

After growing the tree for a set amount of time, the RRT* algorithm returns the tree and a list
of the tree segments sorted in descending order by their utilities. The tree segment with the
highest utility is selected, and the configuration represented by the first vertex in the segment
is selected as the navigation goal for the UAV. After the first vertex is reached, the RRT*
search is repeated, with the remainder of the previously used tree-segment included as an

14Collision checks were performed along the whole tree to ensure that each straight line segment of the tree
would be collision free for a UAV following it. Configurations were also not allowed to lie within unmapped
space.
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initial tree with newly calculated costs and information utility.

(a) View-sequence 1 (b) View-sequence 2

Fig. 3.8 Running the implemented View-based RRT exploration planner on a UAV in a 3D
environment populated by obstacles. The search tree is visualized in blue, with the selected
path visualized in green. Pyramids on the path visualize the FOVs at those particular locations
[1]. (a) After running the RRT algorithm to sample view points, a sequence of views is
selected and the first view is chosen as the navigation goal of the UAV. (b) After reaching the
selected view point, the RRT search is repeated with the remainder of the previously chosen
path is resampled.

The view-based RRT algorithm is shown in practice on a UAV in Figure 3.8. Pseudo-code
for how the view-based RRT algorithm modifies the EXTEND function of the classical RRT
algorithm shown in Algorithm 2 is shown in Algorithm 6.

For this project work, the View-based exploration planner plays a central role in the Col-
laborative exploration planner presented in Section 4.2. Here, the results of running the
View-based exploration planner on multiple UAVs are processed to ensure collaborative
exploration and communicaiton constraint satisfaction.

3.4 Conclusion

This chapter presented software frameworks and systems which make up the foundation that
this project work is built upon. The general software frameworks for robotic systems and
simulation were first covered. Following this, the UGV systems were presented, including
the global path planner and frontier exploration planner implemented in the Specialization
project. Finally, UAV systems for controlling the simulated UAVs were presented. Included
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in these systems was the View-based exploration planner, which will be expanded upon in
Chapter 4.



Chapter 4

Design and implementation

This chapter presents the design and implementation of the systems that were developed for
solving the problem presented in Section 1.2. As mentioned in Section 1.3, implementing
these systems constitutes part of the contribution of this project work. Background material
from Chapter 2 and Chapter 3 will be referenced when motivating design decisions in the
implementation of the systems. Furthermore, results from testing the systems influenced
some design decisions, as well as the creation of the systems presented in Section 4.4. These
results will be presented later in Chapter 5. Several system parameters will be presented in
this chapter. The default values of these can be found in Chapter B.

A simplified overview of the system architecture is presented in Figure 1.1. The main project
systems can be grouped in a MIPP Planner system as presented in Figure 4.1. The system
takes input from the UGV Path planner that is presented in Section 3.2.1, and uses the
immediate UGV navigation plan to create a plan for the UAVs. Depending on the specific
UAV planner mode that is in use, each UAV Planner subsystem instance within the MIPP
Planner will formulate a goal for their assigned UAV. This goal will be sent to the relevant
UAV Path planner. This plan can be aborted should a recovery maneuver be needed, as is
the case when a loss of communication is detected.

This chapter begins by presenting the overall system structure in greater detail. The imple-
mentation will not be presented in detail, however some attention is given to ROS-related
aspects that influence the structure of the system. The design of specific planners that handle
multi-robot planning for the UAVs around the UGV will then be presented. First, the Collab-
orative exploration planner is presented, which extends the functionality of the View-based
exploration planner presented in Section 3.3.2 to the multi-UAVs case. Next, the Simple-
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and Sampling-based formation planners are presented. Finally, Combined planners which
combine elements of the aforementioned planners are presented.

MIPP Planner
UGV

Planner

UAV Planner

FSM View-based
exploration

Recovery
planner

Formation
reshaper

Com.
Monitor

UGV Path

UAV Goal

Fig. 4.1 Overview of the subsystems that make up the MIPP Planner system. Taken from
Figure 1.1.

4.1 System structure

The main task of the MIPP Planner system is to coordinate UAV movement around the
UGV during operation. UGV operation is initiated by giving the UGV Path planner a
navigation goal. This goal can either be given directly by the user or, as is done in this project,
from other systems. An example of one such system is the Frontier exploration planner
presented in Section 3.2.2. Once the Path planner is given a goal, the Informed-RRT*
global planner creates a global path from the UGV to the goal. This path is then published,
and navigation begins.

The UGV Planner subsystem of the MIPP Planner receives the global path plan that is
published when UGV navigations starts. This plan comes in the form of a series of waypoints
with varying spacing, with the first waypoint being the initial UGV location and the final
waypoint being the navigation goal. The path is continually processed by the UAV Planner
subsystem, which creates a number of local navigation waypoints on the immediate UGV
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path starting from the current UGV location.

The number and spacing of these local navigation waypoints are defined by the parameters
nugv_wp and lugv_wp respectively. These waypoints are visualized for a UGV in navigation in
Figure 4.2, with nugv_wp= 4 and lugv_wp= l. In the special case that the remaining UGV path
is shorter than the distance nugv_wp·lugv_wp, the final global path waypoint (the navigation
goal) is chosen as the final local waypoint such that the number of local waypoints may
be less than nugv_wp. For a stationary UGV, the current UGV position is the only local
navigation waypoint. The parameter lugv_wp is chosen relative to the set maximum UGV
speed vugv, such that a certain amount of time tugv_wp can elapse before the UGV reaches its
next local waypoint.

CobsCobs

CobsCobs

1
2

3
4

l

Initial location
Global waypoint

Local waypoint

Goal location

Fig. 4.2 Local UGV navigation waypoints are created by the UGV Planner subsystem of the
MIPP Planner. Waypoints are placed along the global path, starting from the current UGV
location.

The local navigation waypoints are passed to the UAV Planner subsystem(s) of the MIPP
Planner, with a UAV Planner subsystems being initialized and assigned to each UAVs in
the system. Central for each individual UAV Planner is a Finite-State Machine (FSM) which
manages the current planner state of its assigned UAV. The FSM is visualized in Figure 4.3.

The INIT state is responsible for initializing the UAV Planner variables after the FSM has
been started. It also blocks until other systems are ready, waiting for both the UAV to take
off and for communication with the UGV to be established. When this is complete, the FSM
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Fig. 4.3 The FSM architecture for coordinating UAV planning in the MIPP Planner system.
Blue states are used in the Collaborative exploration planner. Red states are used in the
Formation-based planner.

transitions to the IDLE state and enters the main operational loop.

The FSM-transitions that occur within the main operational loop depends on the selected
UAV planner mode that is in use. While in the IDLE state, the UAV maintains a stable hover.
The next transition may either be to the PLAN state or the ESCORT state, depending on if the
Collaborative exploration planner or the Formation-based planner are in use respectively.
The functionality of these planners are covered in Section 4.2 and Section 4.3.

Normal operation may be interrupted by a call for recovery, in which case the FSM transitions
to the RECOVER state. A transition to the RECOVER state may be triggered internally by the UAV
Planner or by an external call. When entering the RECOVER state all current plans are aborted
and cleared. The current UGV location is used as a recovery navigation goal for the UAV and
is passed to the UAV Path planner. A path to the recovery navigation goal is created using
a modified variant of the UGV Navigation Stack presented in Section 3.2.1. This differs from
the normal operation of the UAV Path planner presented in Section 3.3.1, where goals
are assumed to be within a short distance in free space such that obstacle avoidance isn’t
necessary. Once the UAV in recovery reaches the area above its recovery navigation goal, the
UAV FSM transitions back to the IDLE state.
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The Communication monitor system is a separate ROS Node which monitors the current
satisfaction of communication constraints between the UGV and individual UAVs. Possible
communication constraints are presented in Section 2.3.4. In this project, both the range and
Line-of-Sight (LoS) constraints are enforced. The range constraint is continuously checked
by monitoring the ground truth positions of the vehicles in the simulator and comparing the
euclidean distance in three dimensions with the maximum communication range lcom. Check-
ing whether or not a UAV has LoS with the UGV is done using the OctoMap castRay()
function on the current map built by the system. If either constraint is broken for a period
longer than the communication timeout tcom, communication to the UAVis considered broken
and a recovery call is made for the UAV to recover.

The MIPP Planner system is implemented as a number of ROS nodes which communicate
through Topics, Services and Actions. The UGV Planner, UAV Planner and Formation
reshaper subsystems are implemented as one Node, where each subsystem is controlled by
asynchronous ROS timer functions running at set frequencies of fugv_pl , fuav_pl and fuav_s f r

respectively. The UGV Planner subscribes to the UGV global planner path and odometry
Topics. When the UGV Planner timer function is called, local navigation waypoints are
made using the latest UGV odometry. At each UAV Planner interval, the UAV FSM is
checked for transition conditions and the state is updated. This includes whether or not a
recovery has been called, either by an internal system or by the Communication monitor.
The Formation reshaper subsystem will be presented in further detail in Section 4.3. As
mentioned previously, the Communication monitor is implemented as a separate node.
Instances of the View-based exploration planner also run as independent Nodes assigned
to each UAV, and will be presented in further detail in Section 4.2.

4.2 Collaborative exploration planner

The Collaborative exploration planner extends the functionality of the individual View-based
exploration planners implemented for the UAVs in the specialization project. As presented
in Section 3.3.2, the planner uses the RRT* algorithm to sample sequences of views and
estimates the information gain related to these views. A maximum ray and neighbor distance
luav_rrt is used by the RRT* algorithm to create the tree. Information gain is estimated by
casting a set amount of rays within the FOV of the sampled configuration and returning
the ratio of rays which hit unmapped voxels to the total amount of rays cast. Samples are
taken uniformly within a circle with a circle center prrt_samp,i and a given radius rrrt_samp.
For the specialization project, prrt_samp,i was chosen to be the current position of UAVi. The



4.2 Collaborative exploration planner 57

planner is given a maximum running time trrt_samp, after which the sampled view-sequences
are returned.

4.2.1 Modified View-based exploration planner

The View-based exploration planner is modified for this project work to act as an Action
server. Action calls can be made to the server to initiate the View-based planner, with the
ability to specify the sampling center prrt_samp,i, radius rrrt_samp and time trrt_samp as part of
the call. A call to the Action server is made when a UAV FSM transitions the PLAN state.
Each UAV has an instance of the View-based planner running, which run independently of
other UAV systems and UAVs.

The View-based planner Action server is also modified to accept a list of sampling centers
prrt_samp,i, selecting one sampling center with a uniform probability when creating a sample.
The sampling centers passed to the View-based planner Action server are the local navigation
waypoints made by the UGV Planner subsystem. The sampling radius rrrt_samp is chosen
to be equal to the maximum communication range lcom. By using these parameters for the
planner, all sampled views are ensured to be within communication range of at least one
local UGV navigation waypoint.

The RRT* ray and neighbor distance parameter luav_rrt is chosen relative to the set maximum
UAV velocity vuav and the local UGV navigation waypoint time tugv_wp. By ensuring that
luav_rrt is sufficiently less than the product of vuav and tugv_wp, the UAV is able to reach
the first vertex of the returned tree before the UGV reaches the next UGV waypoint. The
maximum rank rnkrrt_v of any vertex in the RRT* algorithm is chosen to be less than nugv_wp.
A visualization of the modified View-based exploration sampling is shown in Figure 4.4.

Collision checking is performed for sampled configurations using the collision checking
mechanism described in Section 3.1.2. For the purpose of collision checking, unmapped
space is considered occupied. To avoid collision between individual UAVs in the system,
each UAV is assigned a distinct height/altitude at which it must plan and move. This altitude
huav,i is determined using Equation (4.1) with a minimum UAV operational altitude huav_min

and altitude interval huav_int for a UAV with ID i.

huav,i = huav_min + i ·huav_int (4.1)
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Fig. 4.4 The View-based sampler is modified to sample configurations uniformly within a
circle of radius lcom. The sampling circle center is chosen randomly among the list of local
navigation waypoints constructed by the UGV Planner subsystem. (a) A configuration α(i)
is sampled with waypoint nr. 3 as the sampling center. The configuration is collision-free
and is connected to the tree. (b) A configuration α(i) is sampled with waypoint nr. 4 as the
sampling center. The configuration is in collision (unmapped space) and not connected to the
tree.

Once the sampling time trrt_samp has elapsed, the planner Action server returns a list of view-
sequences and the total sequence information gain, as well as the information gain tied to
each view. The view-sequences are then processed further, considering both communication
constraints to the UGV and the plans of other UAVs in the system.

4.2.2 Communication constraints and coverage overlap

Communication constraints are check relative to the local UGV navigation waypoints. Indi-
vidual view configurations in the view-sequences are checked against a pair of waypoints,
with the rank of the view determining which waypoints it is checked against. The rank is
determined in ascending order, with the first view in the sequence being assigned a rank of 1.
For a view of rank n, both range and LoS communication constraints are checked against
waypoints n and n+1. If a view configuration doesn’t satisfy the communication constraints,
its view-sequence is discarded. This process is visualized in Figure 4.5a.
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If a view-sequence satisfies the communication constraints, its information gains are recalcu-
lated to take sensor coverage overlap into account. Sensor coverage overlap is considered
both internally with regard to the other views within the view-sequence and externally to
the chosen plans of other UAVs. Internal overlap is considered in ascending order of rank,
such that the first view will have no internal overlap, the second view may have internal
overlap with the first, etc. External overlap is checked for each view by iterating over the
views contained in the plans of other UAVs. These plans are recorded once a UAV finishes
planning and transitions from the PLAN to the MOVE state. A visualization of possible sensor
overlap between UAV plans is shown in Figure 4.5b.
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(a) Communication constraint satisfaction.

CobsCobs

Cmap

CunmapCunmap

1

0

(b) Sensor coverage overlap.

Fig. 4.5 The results of the View-based exploration planner are processed to take communica-
tion constraints and collaboration into account. In this example, UAV 0 already has a plan
that is being executed, while UAV 1 is processing the results of the View-based exploration
planner. (a) A view-sequence is checked for communication constraint satisfaction. The last
view in the sequence does not satisfy the constraints (no LoS), and the sequence is discarded.
(b) Information gains for views in the sequence are recalculated to take sensor coverage
overlap into account. The last view’s coverage overlaps with a view in another UAV’s plan
and its gain is reduced.

To calculate sensor coverage overlap, the UAV sensor FOV is approximated as a circle on
the two dimensional ground plane. A conservative approximation is used, such that the
coverage circle is larger than the actual sensor coverage. The circular coverage is defined by
the distance from the UAV sensor to the circle center luav_cov and the radius of the circular
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coverage ruav_cov. The calculation is simplified further by restricting all sensor coverage
circles to have the same radius. These simplifications allow the calculation of sensor coverage
overlap as shown in Equation (4.2) [117]. Here, ratovr is the ratio between the area of overlap
Aovr and the total area of the circle Atot , C is a circle that has an area overlapping another
circle C∗, r is the common circle radius and d is the distance between the circle centers of C
and C∗. This is visualized in Figure 4.6.

ratovr(C,C∗) =
Aovr

Atot
=


0, for d ≥ 2r,

1, for d = 0,
2
π

cos−1( d
2r )−

d
2πr2

√
4r2−d2, for 0 < d < 2r.

(4.2)

C C∗Aovr

r

d

Fig. 4.6 The intersection area of two circles with the same radius r, with a distance d between
the two circle centers.

4.2.3 View-sequence utility calculation

Given a view configuration q and corresponding sensor coverage circle C(q), other sensor
coverage circles (internal and external) Cother, the ratio ratunmp of rays cast within the FOV
which intersect with unmapped voxels to the total number of rays cast and the ratio of
overlap ratovr(C,C∗) between two circles C and C∗, the information gain In f o(q) for a view
configuration is recalculated as shown in Equation (4.3). To account for the possibility
that multiple coverages may overlap with the sensor coverage circle of the configuration
in question, the function sums the overlap ratios individually and caps this sum as to not
allow negative information gain values. This is only an approximate method which doesn’t
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account for overlap between more than two circles in the same area, and isn’t the correct way
to calculate overlap between more than two circles.

In f o(q) = ratunmp ·
(

1−min
{
∑C∗∈Cother

ratovr (C(q),C∗) , 1
})

. (4.3)

Unlike in the specialization project, the distance travelled by the UAV to get to a view
configuration is also considered when selecting the UAV plan. Both euclidean distance d and
angular (yaw) distance ψ are considered. The latter is transformed to a standardized unit for
angular distance ψu that is defined by the author. The former is considered in meters. When
considering sequences of view configurations, both distance metrics are considered relative
to the previous view configuration. For the case of the first view configuration, the distance
metrics are considered relative to the current UAV position and orientation.

For a UGV in movement, a method to discount UAV movement for communication constraint
maintenance was implemented. To encourage UAV movement in the direction of the moving
UGV, a certain amount of "free movement" d f ree is subtracted from the euclidean distance
considered in the overall utility function. This is achieved by iterating through the local UGV
navigation waypoints and the corresponding (by rank) view configurations and performing
a vector subtraction on the corresponding UGV and UAV path segments. The discount is
also capped to zero from below as to not allow a negative distance discount, which would
correspond to a penalty for UAV plans which move opposite to the UGV plans. The discount
for each view-sequence path segment is also naturally capped from above by the maximum
discount of lugv_wp.

The utility of a view-sequence can be determined with the utility function shown in Equa-
tion (4.4). Here, Seq is a non-empty sequence of view configurations q. In f o(q) is the
information gain with coverage overlap taken into account as presented in Equation (4.3).
The distance d is the sum of euclidean distances travelled between each consecutive view
configuration in the sequence, with d f ree being the total free distance described above. The
total angular distance travelled along the sequence ψ is transformed to a standardized unit
ψu defined by the author. The cost parameters cin f o, ceuc and cang weight the information
gain, euclidean distance and angular distance of the sequence, with cin f o ≥ 0, ceuc ≤ 0 and
cang ≤ 0.

Utility(Seq) = cin f o ·∑q∈Seq In f o(q)+ ceuc ·
(
d−d f ree

)
+ cang ·

(
ψ

ψu

)
. (4.4)
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Once the utility of all communication constrained view-sequences has been calculated, the
Collaborative exploration planner selects the sequence with the highest utility as its plan.
The sensor coverages of the view-sequence are recorded so that other UAVs can consider
coverage overlap with the selected plan. Finally, the first configuration in the view-sequence
is selected as the navigation goal of the UAV and the UAV FSM transitions to the MOVE state.

When a UAV reaches its navigation goal, the UAV FSM transitions to the IDLE state. If the
MIPP Planner system is still running and the Collaborative exploration planner mode is still
in use, the FSM immediately transitions to the PLAN state. The planning sequence is then
repeated, with any remaining views in the previously selected view-sequence being added
to the planning action call. These views are resampled by the planner to enable receding
horizon planning.

4.3 Formation-based planner

A Formation-based planner was created for UAV coordination around the UGV as an alterna-
tive to the Collaborative exploration planner. Two variants were made: a Simple "formation
bank" planner which makes use of a bank of user specified formations, and a Sampling-based
Formation Reshaping (SFR) planner which samples new formation configurations. Common
for both methods is the way UAV planning is done relative to a coordinate frame fixed on the
UGV (which might not be stationary).

A distinction is made between a UAV’s escort pose and its formation pose. The formation
pose refers to the pose of the UAV in formation relative to the UGV. In this coordinate frame,
the UGV is at the origin with an orientation of zero. Formation poses are either kept in a
formation bank in the case of the Simple formation bank planner or continuously sampled in
the case of the Sampling-based formation reshaper. The escort pose refers to the formation
pose transformed into a global inertial frame. This transformation includes the translation
and rotation of the formation pose by the current pose of the UGV. In the case of UAV path
planning, the escort pose is the navigational goal sent to the UAV Path planner system.
This navigation goal is published continuously at a high frequency fuav_pl such that the UAV
follows the UGV closely.

The Formation-based planner is activated when the UAV FSM enters the ESCORT state.
Unlike the Collaborative exploration planner covered earlier, the FSM does not transition out
of this state during normal operation. While in the ESCORT state, the formation is updated



4.3 Formation-based planner 63

at each UAV Planner interval with a frequency of fuav_pl . This includes transforming the
current formation pose and sending the appropriate navigation goal to the UAV. For the
Sampling-based formation reshaper, an additional loop is run at the frequency fuav_s f r which
updates the formation through sampling.

4.3.1 Simple formation bank planning

The first variation of the Formation-based planner makes use of a set, or bank, of formation
poses which the UAVs can vary between individually. These poses are made ahead of time
and consist of the series of poses ranging from a pose close to the UGV to a pose further
form the UGV. The far poses are preferred, as they increase the area that is swept by the
UAV sensors as the UGV moves. Closer poses are used in case the further poses are not
viable, for example if they are in collision, with the closest pose being assumed collision free.
The orientation of the poses are also varied, with the orientation facing forwards when in
the far pose and to the side in the close pose. A visualization of the formation bank poses is
presented in Figure 4.7.

(a) Formation bank for 2 UAVs. (b) Formation bank for 3 UAVs.

Fig. 4.7 The Simple formation bank planner makes use of a bank of predefined formation
poses that the UAVs may vary between individually. These include a close pose, a far pose
and a linear interpolation between these poses.

Each formation bank is parameterized by the close formation pose pclose, a far formation pose
p f ar and the amount of poses in the bank n f orm_bank. Usually, n f orm_bank> 2, such that linear
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interpolation is used to make the remaining poses between pclose and p f ar. This includes the
yaw values. When these values are given, the planner calculates all the poses beforehand
and saves them for later use. The number of UAVs in the system also affects the poses in
the pose bank for each UAV. The formation bank pose parameters used for this project are
presented in Chapter D.

Collision avoidance for a formation pose is check by propagating the formation pose for-
wards along the UGV path and checking the resulting path for collision. An escort pose is
calculated for the UAV for each local UGV navigation waypoint. The projected orientation
of the UGV at each waypoint is determined in relationship to the previous waypoint, with
the first UGV waypoint assuming the current UGV orientation. A path is then created for
each UAV which joins these propagated formation poses. This is demonstrated in Figure 4.8a.

The same collision checking mechanism used for the Collaborative exploration planner is
used to check for collisions on the escort path. Any potential escort pose is checked to both
not be in collision and to not be in unmapped space. The path from the current escort pose
to a potential escort pose is also checked. For the propagated escort poses on the escort
path, only collision with occupied space is considered and a path is allowed to have portions
in unmapped space. This assumes that all formation poses are facing in a direction which
allows the front-facing UAV sensor to map the area ahead, such that any obstacles on the
escort path will be detected.

During operation, the planner will attempt to increase the width of the formation by iterating
through the poses in the formation bank and checking them for collision. The formation bank
is ordered such that pclose is checked first and p f ar last, with all poses being iterated through
regardless of the current formation pose. If a collision is detected on one of the propagated
formation paths, the preceding formation pose will be chosen as the new formation pose.
As the UGV moves through the environment and the UAV sensors explore more area, a
newly detected obstacle may lead to the current formation pose being in collision. This
results in the formation bank iteration selecting a new, collision free formation pose and
sending the corresponding escort pose as the navigational goal for the UAV Path planner.
A visualization of this is shown in Figure 4.8b.

Communication constraints are check along with the collision check for each potential pose
and propagated path in the formation bank. Communication range can be checked simply by
checking the euclidean distance from the origin to the formation pose, as this corresponds to
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(a) Formation along a non-straight path. (b) Formation collision avoidance.

Fig. 4.8 The Simple formation bank planner modifies and selects formation poses for the
UAVs depending on the projected local navigation waypoints of the UGV. (a) The forma-
tion poses maintain their orientation relative to the local navigation waypoint, leading to
propagated escort paths which curve along with the local navigation path. (b)

the distance from the UGV to the UAV when the UAV is in formation. LoS constraint checks
are performed pairwise between the propagated escort path poses and the corresponding
local UGV navigation waypoints.

4.3.2 Sampling-based Formation Reshaping

The second variation of the Formation-based planner is the Sampling-based Formation Re-
shaping (SFR) planner. The SFR planner continuously samples potential formation poses
and selects the best formation, both on the basis of collision avoidance and communication
constraint but also with regards to formation utility. Unlike the Simple formation bank
planner, the formation bank is not specified beforehand. Samples are however taken within
certain limits of distance and orientation.

The initial formation pose of each UAV in the SFR planner is their respective pclose pose
taken from the Simple formation bank planner. After initializing, new formation poses are
sampled. These poses are sampled within a radius rs f r_samp of the current formation poses
and have an orientation which is uniformly sampled in a range with a maximum deviation
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ψs f r_samp from the UGV orientation. The orientation deviation ψs f r_samp is increased when
the UGV approaches its goal. One pose is sampled for all UAVs in the system simultaneously
as to create a formation sample.

When a formation sample is taken, it is checked for collision avoidance and communication
constraint satisfaction. This is done in the same way as formations were checked in the
Simple formation bank planner, including propagating the resulting escort poses into escort
paths. Formations which are found to be in collision or which violate the communication
constraints are discarded, and a new sample formation is taken.

Formations which are viable, meaning they are not in collision and are communication
constrained, are kept in a "viable formation bank". New formation samples are taken until
the bank contains a number ns f r_bank of viable formations. This viable formation bank is kept
until the next iteration of the SFR planner, where the viability and utility of the formations
are recalculated. Following this, only a number ns f r_keep of the best viable formations are
kept, and the rest are discarded. Sampling then resumes to fill the bank.

Formation utility is determined much in the same way as for the Collaborative exploration
planner. For information gain, the propagated escort path is treated similarly to the view-
sequence paths. Overlap is considered both internally and externally, with external overlap
being checked sequentially in the ascending order of the UAV id. A combined information
gain utility is then calculated which sums the information gain utilities of the individual UAVs
in the formation. Euclidean and angular distances are also calculated from the combined
distances the UAVs have to travel in the formation frame to get to the new formation from
their current formation.

The utility for a formation is calculated as shown in Equation (4.5). The cost parameters
cin f o, ceuc and cang are reused from the Collaborative exploration planner to weight the
information gain, euclidean distance and angular distance. For the information gain utility,
view-sequences are constructed from the propagated escort paths and overlap is check
sequentially. Unlike in Equation (4.4), the "free distance" discount has been removed, as the
euclidean distance is not measured along the view-sequence but is measured in the moving
formation frame. This distance is combined for all UAVs in the combined distance dcomb.
Similarly, the combined angular distance ψcomb is calculated in the formation frame.
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Utility(Form) = cin f o ·∑Seq∈Form ∑q∈Seq In f o(q)+ ceuc ·dcomb + cang ·
(

ψcomb

ψu

)
. (4.5)

After calculating the utility of each formation in the viable formation bank, the formation
with the highest utility is selected as the new formation. This new formation is reported to
the UAV Planner subsystem and is broadcast continuously to the UAV Path planner at a
frequency of fuav_pl . Iterations of the SFR planner are run at a frequency of fuav_s f r, with
the relation fuav_pl > fuav_s f r being required to allow the UAV to assume its new formation
before any new formations are sampled and selected. A visualization of the SFR planner is
shown in Figure 4.9.
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(b) New formation assumed.

Fig. 4.9 The SFR planner continuously samples new formations which the UAVs may assume
around a moving or stationary UGV. (a) A newly detected obstacle may make the current
formation not viable due to a collision on the propagated escort path. (b) A new, collision
free formation is assumed which also takes into account the utility of the new formation.

In situations where no viable formations can be sampled, a timeout ts f r_samp < 1
fuav_pl

is
enforced after which a viable formation must be selected. If the viable formation bank is
empty when the timeout occurs, a recovery formation pose is selected which should be viable.
This formation pose is the pclose formation pose which is used by the Simple formation-bank
planner presented earlier. After assuming this formation, formation sampling is resumed.
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4.4 Combined planners

Several planning systems which combine elements of the aforementioned planners were
created for this project. The implementation of these Combined planners was motivated
by some of the preliminary results presented in Chapter 5, specifically Section 5.3 and
Section 5.4. These results identified that the different planners had strengths and weaknesses
for different situations and scenarios.

4.4.1 Hybrid planner

The Hybrid planner is motivated by the observation that the planners performed differently in
stationary- and path following scenarios. Specifically, the Collaborative exploration planner
was observed to excel in scenarios where the UGV was either stationary or moving slowly,
while not performing as well when UGV speed was increased. These results contrast the
results and behaviour observed for the Formation-based planners, which are not as affected
by UGV motion but which explore slowly in stationary scenarios.

The central idea of the Hybrid planner is to switch between the planning modes once the
UGV approaches a navigation goal where the UGV will remain stationary for some time.
Such stationary navigation goals appear in the Tour- and Frontier-exploration scenarios
presented in section 5.5 and section 5.6 respectively.

During UGV operation that involves movement, such as following a path, the UAVs will
be tasked to use the Simple formation bank planner. The distance to the next stationary
navigation goal is continuously tracked by the planner. A hybrid switching distance lhybrid is
defined and checked against the distance to the next goal. Once the distance to the next goal
goes below the threshold defined by lhybrid , UAV planning switches to using the Collaborative
exploration planner. This persists until the UGV receives a new navigation goal and begins
moving, at which point the UAV planning switches back to the Simple formation bank
planner.

4.4.2 Split planner

The Split planner is motivated by the observation that the Collaborative view-based planner
would not sufficiently map the area directly in front of the UGV in movement, causing loss
of LoS communication and recovery behaviour. This behaviour was not observed with the
Formation-based planners, which were observed to move ahead of and map the area in front
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of the UGV.

The central idea of the Split planner is to allow the UAVs in a multi-UAV team to operate with
different planners. In the case of two UAVs, one UAV would plan using the Collaborative
exploration planner while the other would make use of the SFR planner. The assigned
planners would be used throughout the entire UGV operation.

To make the Split planner collaborative, sensor coverage overlap must be considered between
the different planning systems. As both the Collaborative exploration planner and the SFR
planner make use of the same function to calculate coverage overlap and weight information
gain taking overlap into account, collaboration could be ensured by sharing plans between the
planners. This is straight forward for the Collaborative exploration planner, as it is already
done during normal operation. For the SFR planner, a plan is created from the propagated
escort path, which is updated and published with a frequency of fuav_s f r.

4.5 Conclusion

This chapter described the design and implementation of multiple systems which were made
in this project work. First, the general system architecture to enable CCMIPP planning and
coordination of the robots was presented. Some attention was given to the system imple-
mentation ROS, specifically with regard to communication between processes. Following
this, the Collaborative exploration planner was presented which extends the View-based
exploration planner for the cooperative communication constrained case. Two variants of
Formation-based planners were then presented: a Simple formation-bank planner making
use of a predefined bank of formation poses and a Sampling-based Formation Reshaping
(SFR) planner which samples new formation poses to switch to. Finally, two planners
which combine aspects of the Collaborative exploration and Formation-based planners were
presented.



Chapter 5

Simulation and results

This chapter presents the results gathered from running the implemented planners on a
simulated robotics system in multiple scenarios. These results are a part of the contributions
presented in Section 1.3, as they are used to demonstrate and compare the performance of
the implemented systems. The robotics and simulation framework which these results were
taken from are presented in Chapter 3, while the design and implementation of the planners
that the results relate to is covered in Chapter 4.

Included in the presentation of the design and implementation is the definition of multiple
parameters which modify the behaviour of the implemented systems. Some parameters had
their values modified when gathering results to demonstrate characteristics of the systems.
Whenever such a modification is made, the relevant parameter is referenced along with the
new value and purpose of the change. Otherwise, all parameters can be assumed to have their
default values. These can be found in Chapter B.

This chapter begins by presenting the performance metrics that are used to judge the system
performance. The simulation environments will then be presented briefly. Following this, the
four different scenarios which the planning systems were tested in will be presented, along
with results from running the systems in these scenarios. These results will be accompanied
with some discussion that is relevant to what the results show. However, the main discussion
of the overall results will be presented in Chapter 6.

5.1 Performance metrics

Several performance metrics are considered when comparing the developed systems. As
Communication Constrained Multi-robot Informative Path Planning (CCMIPP) systems
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are the focus of this project work, these metrics will mainly be tied to information gain
and communication constraint satisfaction. Several metrics exist within the field of robot
exploration which can be used for this purpose [118]. As mentioned in Section 1.2, the shift
of focus from pure exploration towards efficient coordination of the UAVs around the UGV
will also influence which metrics are used.

Total Information Gain (TIG) is defined as the area or volume which has been explored
by the system. Since the implemented systems operate and map in three dimensional
space, TIG is taken to mean the volume that is mapped by the system. This volume is
calculated by multiplying the amount of voxels mapped noctomap(t) at time t by the voxel
resolution resoctomap, which is done using functions from the OctoMap framework presented
in Section 3.1.2. The function for calculating the TIG metric is shown in Equation (5.1),
where the resulting volume will be in cubic meters [m3].

TotalIn f oGain(t) = noctomap(t) · (resoctomap)
3. (5.1)

Information Gain Efficiency (IGE) is defined as the TIG divided by some exploration cost.
For the systems developed for this project, the most relevant cost is the distance travelled
by the UAVs. As the TIG is defined with regards to the total volume explored up tot the
current time t, the distance travelled that corresponds to the TIG metric is the sum of the
distances travelled by all the UAVs up to the current time t. The function for calculating the
IGE metric is shown in Equation (5.2), with the resulting unit being [m3/m].

In f oGainE f f (t) =
TotalIn f oGain(t)

∑UAV∈UAV s Distance(t,UAV )
. (5.2)

Communication Constraint Breakages (CCBs) are defined as loss of range or LoS communi-
cation between the UGV and one of the UAVs for an extended period of time tcom. This is
defined further in Section 4.1. As with the previous performance metrics, the total number of
CCBs up to the current time t are recorded.

5.2 Simulated environments

Three different environments were created to test the implemented systems. These environ-
ments are implemented as Gazebo simulator worlds with a fixed size of 60x60 meters. Walls
are placed around the perimeter of the environments to limit UGV and UAV movement and
mapping to be contained within the interior.
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The environments created for this project are populated by simple geometric shapes of
varying sizes and heights. These shapes include rectangles and cylinders. The simplicity of
the environment geometry makes testing the implemented systems easier, as the local path
planners do not have to avoid small or moving obstacles. The system is however tested in
some of the realistic environments presented in Figure 3.3 for the Frontier exploration demo
presented in Section 5.6.

The three different environments share the basic layout of shapes, however, they vary in
the height of the shapes. The "Low shapes" Gazebo world is populated by obstacles with
a height of 1 m, allowing UAVs to fly over the obstacles. In contrast, the "High shapes"
Gazebo world is populated by obstacles with a height of 5 m, preventing UAVs from flying
over the obstacles. Finally, the "Mixed shapes" world is populated by obstacles with a height
of either 1 or 5 m, allowing UAVs to fly over some obstacles but not others. The worlds,
along with maps of their layouts, are shown in Figures 5.1 to 5.3.

(a) Gazebo world. (b) Map.

Fig. 5.1 The "Low shapes" Gazebo world.
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(a) Gazebo world. (b) Map.

Fig. 5.2 The "High shapes" Gazebo world.

(a) Gazebo world. (b) Map.

Fig. 5.3 The "Mixed shapes" Gazebo world.

5.3 Stationary scenario

The first scenario the planners were tested in involves a stationary UGV, similar to a fixed
Base Station (BS). In this scenario, the planners are tested to see how they perform in a
given time-frame after takeoff and initialization is done. The planners must coordinate UAV
movement to gather information about the environment around the UGV while maintaining
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communication constraints.

Results are gathered by running the planners on 1 to 3 UAVs in the different situations. Each
variation is run 5 times in order to gain some indication of how consistent the planners are.
The planners are given 30 s to coordinate UAV movement, after which planning is stopped
and the performance variables are recorded.

Also of interest are the effects of increasing the communication range lcom from the UGV to
the UAVs. Two communication ranges are tested in the stationary scenario: the default value
lcom= 10.0 m and the increased value lcom= 20.0 m. The increase of communication range
is visualized in Figure 5.4.

(a) lcom= 10.0 m. (b) lcom= 20.0 m.

Fig. 5.4 Map of the Stationary scenario. The UGV position is indicated with a red circle in
the middle. The dashed circle indicates the communication range lcom.

5.3.1 Different environments

Scenario Environment Nr. of UAVs Variation
Stationary "Low shapes",

"High shapes"
1−3 Default parameter values in different

environments.

First, the planners are tested in different environments with lcom= 10.0 m. The "Low shapes"
environment is used to test performance for planning in unrestricted situations, where colli-
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sion avoidance and LoS communication constraints are not a major factor. The "High shapes"
environment is then used to see how the planners perform when these constraints must be
considered.

In both environments, the Collaborative exploration planner is observed to have a greedy
behaviour; quickly reaching the limits of the communication range and exploring the frontiers.
With multiple UAVs on the "Low shapes" map, each UAV is able to occupy a "sector" of the
communication constrained area and collaborative exploration is done efficiently. However,
for the "High shapes" map, multiple UAVs are sometimes observed exploring the same
"corridor" created by the tall shapes. This leads to one UAV having to backtrack or both
getting stuck in sub-optimal positions.

(a) With 1 UAV. (b) With 2 UAVs. (c) Vehicle paths.

Fig. 5.5 Simulation of the Collaborative exploration planner in the stationary scenario on the
"High shapes" map.

The Formation-based planners behave more conservatively. For all cases, the Simple
formation-bank planner assumes the widest formation in the bank and stays there, lead-
ing to very little exploration beyond the initial movement to get into formation. The SFR
planner is able to explore the environment, albeit at a much slower pace than the Collaborative
exploration planner. Since whole formations are sampled, rather than individual poses, a
formation change which would lead to higher information gain for one UAV may result in
wasted distance travelled for another UAV. Therefore, the SFR planner is observed to get
"stuck" in formations while new formations are being sampled, with the occasional formation
change occurring when a good formation is sampled.
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(a) With 2 UAVs. (b) With 3 UAVs. (c) Vehicle paths.

Fig. 5.6 Simulation of the Simple formation-bank planner in the stationary scenario on the
"High shapes" map.

(a) With 2 UAVs. (b) With 3 UAVs. (c) Vehicle paths.

Fig. 5.7 Simulation of the SFR planner in the stationary scenario on the "High shapes" map.

Low shapes

The results presented in Figure 5.8 support the observed behaviour, with the Collaborative
exploration planner having a higher TIG than the other planners. The results for the SFR
planner can also be seen to be more variable than the results for the Collaborative exploration
planner. This can be tied to the formation sampling sometimes not being able to find good
formations to transition to, as was observed in the behaviour.

In the IGE metric, the Collaborative exploration planner also performs better than its
Formation-based counterparts. This could be due to the planner effectiveness in open
environments where greedy exploration behaviour does not necessarily lead to the UAVs
getting stuck, as is the case in more constrained environments.
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(a) TIG. (b) IGE.

Fig. 5.8 Results from running the planners in the stationary scenario on the "Low shapes"
map.

High shapes

The results presented in Figure 5.9 show that the TIG for the planners is lower, as is expected
when obstacles cannot be flown over and the area is limited by communication constraints.
The Collaborative exploration planner is observed to suffer more relative to the SFR planner
in the TIG metric, however it is still able to gather more information. The variability of the
SFR planner’s performance is also reduced.

In the IGE metric the SFR planner is able to overtake the Collaborative exploration planner
for the case of one UAV, but has similar results relative to the Collaborative exploration
planner for the other cases as it did for the "Low shapes" map. Variability of performance
is also reduced, with the Collaborative exploration planner and SFR planner having similar
consistency in the TIG metric.
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(a) TIG. (b) IGE.

Fig. 5.9 Results from running the planners in the stationary scenario on the "High shapes"
map.

5.3.2 Increased communication range

Scenario Environment Nr. of UAVs Variation
Stationary "Low shapes",

"High shapes"
1−3 Communication range between the

UGV and UAVs is increased.

Increasing the communication range effectively increases the area that the UAVs are able to
explore, as can be seen in Figure 5.4. The "Low shapes" and "High shapes" environments
are again used, so that results from increasing the communication range can be compared
with the previously presented results.

The Collaborative exploration planner is observed to utilize the increased range to explore
more "deeply" into unmapped space. For the "Low shapes" environment this leads to more
area being explored and a similar assignment of exploration "sectors" to each UAV as in the
normal communication range scenario. In the "High shapes" environment, similar behaviour
is observed. However, LoS communication constraints now begin to play a role in restricting
the UAV movement.

The increased communication range naturally only affects the SFR variant of the Formation-
based planners. A conservative behaviour similar to the behaviour with the normal communi-
cation range is observed, though the sampled formations are allowed to expand more. For
the "High shapes" environment with multiple UAVs the planner is observed to struggle with
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sampling good formation changes as the UAVs are moved into the "corridors" created by the
shapes. This can be due to the limits imposed by the LoS communication constraints in these
areas.

Low shapes

In the results presented in Figure 5.10 the TIG is seen to be higher for the Collaborative
exploration and SFR planners, with the relative TIG between the two planners being similar
to the previous cases. The TIG is also observed to scale to a higher degree when the number
of UAVs is increased, with the increase from one to two UAVs being more than double.

IGE is now more consistent, unlike the previous cases where an increase in the number of
UAV lead to worse efficiency. This is likely due to the increased amount of are the UAVs are
allowed to explore.

(a) TIG. (b) IGE.

Fig. 5.10 Results from running the planners in the stationary scenario on the "Low shapes"
map, with an increased communication range lcom= 20.0 m.

High shapes

The results presented in Figure 5.11 show a higher TIG relative to the lower communication
range case, as expected. However, variability in the results is seen to increase relative to
the "Low shapes" results, especially for the Collaborative exploration planner with multiple
UAVs. This could be due to the increased negative effects of backtracking when multiple
UAVs explore the same "corridor", as the backtracking distance to get to newly explored
areas is increased together with the increased communication range.
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(a) TIG. (b) IGE.

Fig. 5.11 Results from running the planners in the stationary scenario on the "High shapes"
map, with an increased communication range lcom= 20.0 m.

5.3.3 Conclusion

In all cases, the Collaborative exploration planner is able to gather more information about
the area around a stationary UGV in a given time-frame than the other planners. IGE of the
Collaborative exploration planner is also similar to the SFR planner in most cases, with the
exception of the cases with one UAV.

Increasing the communication range naturally increased the amount of area to be explored.
For the stationary case this naturally leads to higher TIG, and with the same time-frame as
the lower communication range case this also translates to higher Information efficiencies
for cases with multiple UAVs. Though the greedy behaviour shown by the Collaborative
exploration planner leads to higher TIG, it may have consequences in cases where the UGV
operation involves movement.

5.4 Path scenario

The second scenario centers on the UGV moving along a predefined path from one corner
of the environment to the other. The path is relatively straight, with little requirement for
the UGV to turn. During this operation, the planners must coordinate UAV movement to
gather information around the moving UGV while considering collision and communication
constraints. Results are again gathered by running the planners on 1 to 3 UAVs, with each
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variation being run 5 times in order to gain some indication of how consistent the planners are.

UAV coordination starts when the UGV receives its navigation goal and path, and finishes
when the UGV is within a certain euclidean and angular distance from its navigation goal.
Due to the nature of the simulated UGV movement, some variation in the completion time of
the path navigation is expected. A mean completion time for the path scenario was recorded
at 142.8 s, with a standard deviation of 0.68 s. As the observed variation in completion time
is negligible, these variations were not taken into account when creating the results.

The path scenario is shown in Figure 5.12 for the "Mixed shapes" environment.

Fig. 5.12 Map of the path scenario. The UGV path is illustrated in orange.
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5.4.1 Different environments

Scenario Environment Nr. of UAVs Variation
Path "Low shapes",

"High shapes",
"Mixed shapes"

1−3 Default parameter values in different
environments.

First, all planners are run on the path scenario in the different environments to test how
obstacles affect planning around a moving UGV.

The "Low shapes" environment is used to test the planner’s ability to sweep over the largely
unobstructed area around the UGV while it operates. Operation in the "High shapes" en-
vironment is analyzed to judge performance in obstructed areas, where the planners must
both consider collision avoidance and LoS communication while attempting to map the area
around the moving UGV. The "Mixed shapes" environment is then used, mainly to provide a
benchmark for the other path scenario variations covered later in this section.

The Collaborative exploration planner is observed to perform well in the "Low shapes"
environment with regards to the amount of area that is explored around the UGV. However,
the planner displays a tendency to explore areas to the sides of the UGV rather than in
front of it. This sometimes leads to the UGV entering unmapped space, in which case
the Collaborative exploration planner calls for a recovery due to the conservative assump-
tion that unmapped space is equivalent to occupied space with regards to LoS communication.

This issue is made worse in the "High shapes" environment, where the obstacles create
situations where the UAVs get stuck in "corridors" to the side of the UGV path. In these
situations, the UAVs are not able to move further out due to the communication constraints and
the planner prefers not to move back to the UGV due to the negative utility of backtracking
through mapped space. This either results in the UAVs only moving when there is no other
option (when the current "stuck" position is no longer communication constrained for the pair
of UGV waypoints) or recovery having to be called due to broken communication constraints.
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(a) Plan 1. (b) Plan 2. (c) Vehicle paths.

Fig. 5.13 Simulation of the Collaborative exploration planner in the path scenario on the
"Mixed shapes" map. (a) Plans are sampled and selected asynchronously. (b) New plans are
selected as more information about the environment is acquired.

The Formation-based planners coordinate UAV movement relative to the UGV, and as such
is able to handle a moving UGV situation well. The Simple formation-bank planner is able
to sweep the area effectively in the "Low shapes" environment, and can quickly contract
and expand to accommodate the obstacles encountered in the "High shapes" environment.
Formation changes are observed to happen quickly but conservatively, with the formation
contracting immediately after detecting an obstacle and only expanding once it has mapped
space to expand into.

(a) Wide formation. (b) Narrow formation. (c) Vehicle paths.

Fig. 5.14 Simulation of the Simple formation-bank planner in the path scenario on the
"Mixed shapes" map. (a) The formation is wide in open areas. (b) One UAV chooses a closer
formation due to a discovered obstacle.

Similarly, the SFR planner is able to follow the UGV and sweep the area in the "Low shapes"
map. The sampled formation changes also tend to make the UAVs sweep side to side,
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similar to the "lawn mower pattern" described in previous chapters. This results in more area
being mapped when compared to the Simple formation-bank planner. In the "High shapes"
environment the SFR planner is quick to detect and avoid new obstacles.

Some anomalous behaviour was observed for the SFR planner runs. In obstructed environ-
ments, the planner is observed to struggle with assuming a wider formation after having
contracted to avoid obstacles, leading to it keeping a narrow formation even in open areas.
Some oscillating behaviour was also observed when new obstacles are detected. This involves
the formation contracting briefly to the viable recovery formation pose above the UGV and
quickly sampling and assuming new formation poses further away. As more of an obstacle
is revealed, this sometimes leads to oscillations between a wide sampled formation and the
narrow recovery formation.

(a) Wide formation. (b) Narrow formation. (c) Vehicle paths.

Fig. 5.15 Simulation of the SFR planner in the path scenario on the "Mixed shapes" map.
Formation samples are shown as yellow FOV pyramids, with an increased opacity indicating
high utility (a) Formations are sampled in an open area. (b) New formations are chosen to
avoid collision when an obstacle is discovered.

Low shapes

The results from running the planners in the "Low shapes" environment are shown in Fig-
ure 5.16. The Collaborative exploration planner is able to achieve the highest TIG, especially
in the case with one UAV. The performance of the Formation-based planners does however
scale better with the number of UAVs, with the SFR planner having similar results for three
UAVs.

For IGE the Simple formation-bank planner is able to gather more information pr. meter
travelled when compared to the other planners, with the exception of the single-UAV case.
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This indicates that the simple wide formation that is kept by the planner through the whole
path is an efficient way to gather information in unobstructed environments.

CCBs are also recorded for the runs. The Collaborative exploration planner is the only
planner for which such breakages are observed. For the "Low shapes" environment the CCBs
are mainly cause by the UGV entering unmapped space, causing the UAVs to not have LoS
with the UGV. In most cases the planner is able to notice this and initiate recovery before a
communication timeout occurs. However, in some cases this is not done quickly enough and
a CCB is recorded.

(a) TIG. (b) IGE. (c) CCBs.

Fig. 5.16 Results from running the planners in the path scenario on the "Low shapes" map.

High shapes

Results from the "High shapes" scenario are shown in Figure 5.17. Both TIG and IGE are in
most cases similar when compared to the "Low shapes" cases, with the SFR planner having
the greatest relative performance drop. This performance drop is likely due to the sub-optimal
behaviour commented above, where a narrow formation is kept even when a wider formation
is possible. A similar amount of CCBs are recorded for the Collaborative exploration planner
as before, and are similarly caused by the UGV entering unmapped space.
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(a) TIG. (b) IGE. (c) CCBs.

Fig. 5.17 Results from running the planners in the path scenario on the "High shapes" map.

Mixed shapes

The results from the "Mixed shapes" scenario shown in Figure 5.18 resemble a blend of the
results from the two other environments. This is to be expected, as the environment is created
as a blend of the two other environments.

(a) TIG. (b) IGE. (c) CCBs.

Fig. 5.18 Results from running the planners in the path scenario on the "Mixed shapes" map.

5.4.2 Increased UGV speed

Scenario Environment Nr. of UAVs Variation
Path "Low shapes" 1−3 Increase UGV speed to see effects

of speed on the planners.



5.4 Path scenario 87

In one variation of the path scenario, the UGV speed is increased from its default value of
vugv= 0.5 m/s to vugv= 1.0 m/s. This effectively reduces the amount of time each UAV has
to plan and act to maintain communication with the moving UGV. The increased UGV speed
variation is tested in the "Low shapes" environment.

The Collaborative exploration planner is observed to suffer the most from the increased
UGV speed. CCBs and subsequent recoveries occur multiple times, triggered by the UAVs
exploring to the sides of the UGV and spending too much time planning. This allows the
UGV to enter unmapped space, and the increased UGV speed results in the UAVs having to
travel further to recover.

Increasing the UGV speed is not observed to affect the Formation-based planners’ perfor-
mance. The Simple formation-based planner is still able to follow the UGV as designed, and
the lack of obstacles in the environment allows it to effectively sweep the unmapped area as
before. The SFR planner has a similar performance, however, it is not able to perform the
"side to side" sweeping motions as effectively as before.

The results are shown in Figure 5.19, with the results from Figure 5.16 overlayed in dashed
lines for comparison. The decrease in performance is most apparent in the TIG for the
Collaborative exploration planner. However, the SFR planner’s performance is also seen to
decrease, both for TIG and IGE. The greatest difference between the default and increased
UGV speed results is in the recorded number of CCBs, where the Collaborative exploration
planner in some cases has three times the amount of recorded breakages.

(a) TIG. (b) IGE. (c) CCBs.

Fig. 5.19 Results from running the planners in the path scenario on the "Low shapes" map,
with an increased UGV speed vugv= 1.0 m/s. Results with default value vugv= 0.5 m/s are
plotted as dashed bars.
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5.4.3 Adjusted cost parameters

Scenario Environment Nr. of UAVs Variation
Path "Mixed shapes" 1−3 Adjust utility cost parameters to

weight information gain lower rel-
ative to distance travelled.

The cost parameters cin f o, ceuc and cang for information gain, euclidean distance and angular
distance respectively can also be tuned to affect planner performance. This is the case for the
Collaborative exploration planner, which utilizes the utility function shown in Equation (4.4),
and the SFR planner, which utilizes Equation (4.5). For both functions, information gain is
weighted positively while both distance metrics are weighted negatively.

The default cost parameter value for information gain cin f o is maintained at 100.0, while
both the cost parameters for euclidean distance ceuc and angular distance cang are increased
in magnitude from −1.0 to −10.0 for both parameters. This adjustment affects the choice of
exploration plan or formation change, favoring actions which don’t require as much distance
to be covered to gather information. The planners running with the adjusted cost parameters
are tested in the "Mixed shapes" scenario.

For the Collaborative exploration planner, the adjustment does not noticeably affect the per-
formance of the planner during normal operations. Some behavioural changes are however
observed in situations where a UAV gets stuck in a "corridor" and has to backtrack through
largely mapped space. In such cases, the frequency of the UAV rejecting plans is increased,
leading to the UAV being idle until it is forced by communication constraints to return to the
UGV through recovery behaviour.

The adjustment is observed to mitigate the oscillation that could be observed for the SFR
planner. This is likely due to the adjusted cost parameters favoring incremental formation
changes rather than the abrupt formation changes which could lead to oscillations. However,
this also had the perceived effect of prolonging the time the SFR planner spent in a "con-
tracted" formation to avoid an obstacle, before assuming a wider formation in an open area.

The results for running the planners with the adjusted cost parameters are presented in
Figure 5.20, with the default results from Figure 5.18 overlayed as dashed lines. A slight
decrease on the TIG metric can be observed for both the affected planners. However, IGE
is affected positively for the SFR planner while the Collaborative exploration planner has a
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reduced efficiency. These changes are however relatively small.

One noticeable difference is the increased rate at which CCBs are recorded for the Collab-
orative exploration planner. This corresponds to the increased occurrences of the UAVs
getting "stuck" that was observed. A possible explanation for this behaviour and result is
that the Collaborative exploration planner penalizes all movement, even movement which
is necessary to maintain the communication constraints. Some of this movement should be
discounted by the "free distance" discussed in Section 4.2.3. However, several factors could
cause the movement to not be discounted sufficiently. This, along with an added cost for any
remaining movement, discourages the UAV from moving from these sub-optimal positions.

(a) TIG. (b) IGE. (c) CCBs.

Fig. 5.20 Results from running the planners in the path scenario on the "Mixed shapes" map,
with a increased euclidean distance cost ceuc=−10.0 and angular distance cost cang=−10.0.
Results with default values ceuc=−1.0 and cang=−1.0 are plotted as dashed bars.

5.4.4 UGV waypoint utility

Scenario Environment Nr. of UAVs Variation
Path "Mixed shapes" 1−3 Use a modified utility function to

encourage mapping of area in front
of the UGV.

To address the issue observed with the Collaborative exploration planner losing communica-
tion due to the UGV entering unmapped space, a modified utility function was implemented
which positively weights the information gathered in areas directly in front of the UGV.
This is done using the distance from a UAV’s potential sensor coverage to the closest local
UGV navigation waypoint and multiplying the information gain utility with a multiplier
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that is inversely proportional to this distance. This new utility function is then used by
the Collaborative exploration planner and the SFR planner to determine the next plan or
formation change. A more detailed explanation of the modified utility function is presented
in Chapter C.

For the Collaborative exploration planner, the modification has noticeable effects on the be-
haviour. The planner often chooses plans which lead to the UAVs exploring the area directly
in front of the UGV, as intended. For multiple UAVs, one UAV is in most cases observed
exploring the area in front of the UGV while the other UAVs explore to the sides. This
reduces the amount of recoveries that have to be called due to the UGV entering unmapped
space.

The modified utility function is also applied to the SFR planner. The formations the planner
selects are observed to include UAVs with coverages that cover the local UGV navigation
waypoint, as expected. However, the tolerance for overlapping coverages seems to increase.
This is observed as formations are chosen which have overlapping coverages close to the
local UGV navigation waypoints, leading to less explored area to the sides of the path.

The results shown in Figure 5.21 support the observed behaviour. The Collaborative explo-
ration and SFR planners both have reduced TIG and IGE. However, the number of recorded
CCBs for the Collaborative exploration planner is significantly reduced.

(a) TIG. (b) IGE. (c) CCBs.

Fig. 5.21 Results from running the planners in the path scenario on the "Mixed shapes" map,
with an added local waypoint multiplier function to modify planner estimated information
gain. Results without the local waypoint multiplier function are plotted as dashed bars.
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5.4.5 Conclusion

In this section, each planner was tested in a moving UGV scenario on several different
environments and with several different variations.

The Collaborative exploration planner is in general observed to have the highest TIG, mean-
ing it is able to explore more of the environment than the other planners. The planner also
performs well on the IGE metric, usually performing as well as or slightly better than the
SFR planner. However, the Collaborative exploration planner is also plagued by the need for
recovery behaviour due to CCBs. The amount of CCBs increases for higher UGV speeds
and when the utility cost parameter for travelled distance is raised relative to information gain.

This problem is alleviated by the modified utility function which takes the local UGV navi-
gation waypoints into account, but at some cost to the TIG and IGE. For the remainder of
the results, the Collaborative exploration planner will utilize the modified utility function
to reduce the number of CCBs. Results comparing the two variants further can be found in
Chapter C.

The Simple formation-bank planner performs consistently, albeit poorly relative to the other
planners, in the TIG metric. However, the planner performs well in the IGE metric, specifi-
cally when planning for multiple UAVs. Despite the planner’s simplicity, it is able to map
the area around a moving UGV efficiently while avoiding obstacles and maintaining commu-
nication constraints.

The SFR planner is able to map more area than the Simple formation-bank planner, but less
than the Collaborative exploration planner. However, the planner’s IGE is the lowest when
default parameter values are considered. Changing the distance cost parameters is observed
to lead to better efficiency, but at the cost of TIG.

5.5 Tour scenario

The third scenario simulates a longer UGV "tour", containing multiple tour waypoints where
the UGV stops and path segments connecting these. This scenario includes elements of the
two previous scenarios, with the addition of transitions between a stationary and a moving
UGV.
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A map of the tour scenario is presented in Figure 5.22. The tour contains three path segments
and two tour waypoints. The first path segment is relatively straight and contains a mixture
of low and high shapes, resembling a shortened path scenario on the "Mixed shapes" map.
In contrast, the second path segment contains two sharp turns and an increased density of
obstacles. This is intended to present a challenging area for the planners to coordinate UAV
movement through. Finally, the third path segment first contains a U-turn for the UGV,
followed by an area containing high obstacles on one side and low obstacles on the other.
Both tour waypoints are located in corner areas of the map and are relatively open in that the
surrounding obstacles have a low height.

For each tour waypoint, the UGV is stopped for 20 s before moving on the next path segment.
The recorded mean completion time of the tour is 358.5 s with a standard deviation of 0.7 s.

Fig. 5.22 Map of the Tour scenario. Path segments are illustrated and annotated in orange.
Stationary waypoints are illustrated and annotated in purple.

Two additional planners were implemented for testing in the tour scenario: the Hybrid planner
and the Split planner. These were developed following the results and observed behaviours
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of the planners in the two previous scenarios. All five planners were run in the tour scenario
5 times, with 2 UAVs and default parameter values1.

Scenario Environment Nr. of UAVs Variation
Tour "Mixed shapes" 2 None.

Planner behaviour

The behaviour for the Collaborative exploration and Formation-based planners is similar
to the behaviour observed in the previous scenarios. For the path segments, the Formation-
based planners is able to map the area around the moving UGV, though not as effectively
as the Collaborative exploration planner. The modified utility function used by the Col-
laborative exploration planner also mitigates the number of needed recovery behaviours,
with the exception of some CCBs observed in the second path segment. Behaviour in the
tour waypoint areas resembles the behaviour observed in the stationary UGV scenario, with
the Collaborative exploration planner exploring more area than the Formation-based planners.

Some issues with the Formation-based planners are observed during sharp UGV turning
maneuvers. As the formation is held relative to the UGV, the rotation of the UGV during
a turn translates to rapid movement for the UAVs in order to keep their formation poses.
The needed movement increases for formation poses which are further away from the UGV.
When such a turn is performed close to obstacles, the planners are sometimes not reactive
enough to choose more narrow formations to avoid collision with obstacles.

For the Hybrid planner, the planner is designed to utilize different planning methods for the
different areas encountered on the tour. For the path segments, planning using the Simple
formation-bank planner ensures a consistent mapping behaviour and no loss of communi-
cation or collision with obstacles. The planners switches to the Collaborative exploration
planning method as the UGV approaches a tour waypoint, and the UAVs collaboratively
explore the area while the UGV is stationary.

Some issues are observed when the planner switches back to the Formation-based planner.
One issue arises from the UAVs having to travel from their exploration positions to their
respective formation poses once the planner switch occurs. As no explicit collision avoidance

1The Collaborative exploration planner will make use of the modified utility function which takes into
account the local UGV navigation waypoints. An explanation of the modified utility function, along with results
comparing the performance of both planner variants on the tour scenario, are found in Chapter C.
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is used during this movement, collision with obstacles is sometimes observed. Other issues
similar to the turning-related issue for the Formation-based planner are also present.

In the path scenario, the Split planner coordinates one UAV using the Collaborative explo-
ration planner and the other using the SFR planner. The planner is observed to behave largely
as intended, with the SFR planned UAV planning ahead of the UGV while the Collaborative
exploration planned UAV maps the areas to the side of the UGV. Having the area in front of
the UGV mapped by one UAV largely eliminate the occurrences of LoS communication loss
which affected the Collaborative exploration planner. Recovery behaviour and CCBs were
still observed however, largely tied to the exploring UAV navigating to an area on the edge of
the communication range and subsequently not being able to plan a route back to the UGV
before losing communication.

Results

TIG results from the path segments and tour waypoints are shown in Figure 5.23. The
TIG from each area, defined by when the UGV transitions from moving to stationary and
vice-versa, was recorded separately.

For the path segments the TIG of the Collaborative exploration and Formation-based planners
bear resemblance to the previously presented path scenario results, apart from in the third
path segment where the SFR planner gets a higher TIG than the Collaborative exploration
planner. Tour waypoints results however are skewed more in favor of the Collaborative
exploration planner than the results for the similar Stationary UGV scenario. The SFR
planner has a very low TIG in these areas.

The newly introduced Combined planners have performance similar to the planners they
combine features from. Since the Hybrid planner uses the Simple formation-bank planner in
the path segments and switches to the Collaborative exploration planner for tour waypoints,
its performance in each of these areas is similar to the results of the respective planner.

The Split planner performs very well in the TIG metric, matching and in some cases sur-
passing the Collaborative exploration planner. This indicates that having one UAV exploring
ahead of the UGV and preventing LoS communication loss allows the other UAV to explore
effectively. The TIG recorded for the Split planner around tour waypoints is however lower
than for the Collaborative exploration planner, reflecting that it only has half the amount of
exploring UAVs.



5.5 Tour scenario 95

(a) Path areas. (b) Stationary areas.

Fig. 5.23 TIG results from running the planners in the tour scenario on the "Mixed shapes"
map, with TIG recorded individually for each area. (a) TIG from path segments, where the
UGV is in movement (b) TIG from tour waypoints, where the UGV is stationary.

The cumulative TIG is also plotted in Figure 5.24, along with the recorded CCBs. Both the
Collaborative exploration and Split planners are able to accumulate the highest TIG, with a
higher variance in the Split planner results stemming from variable performance on the final
two path segments. The SFR planner achieves the third highest cumulative TIG, performing
better than the two other planners that make use of the Simple formation-bank planner.
Though the Split planner is able to achieve a higher TIG than the pure Simple formation-bank
planner, the added information gained from using the Collaborative exploration planner
around the tour waypoints is not significant.

CCBs are also recorded for each area. The planners which make use of the Collaborative
exploration planner are the only planners for which CCBs are observed. For the pure
Collaborative exploration planner, the use of the modified utility function contributes to
reducing the amount of CCBs. The Split planner is observed to have a higher and more
consistent amount of CCBs, despite only having one exploring UAV. The CCBs are most
prevalent in the second path segment, which was previously identified as a difficult area
due to the concentration of obstacles and sharp turns. Some CCBs are also recorded for the
Hybrid planner, though these are observed to occur when the planner switches modes.
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(a) Cumulative information gain. (b) CCBs.

Fig. 5.24 Cumulative TIG and recorded CCBs results for the tour scenario on the "Mixed
shapes" map.

The IGE was recorded for each area and is shown in Figure 5.25. For the path segments,
IGE performance is relatively equivalent for all planners, with the exception of the Simple
formation-bank planner having good IGE performance in the last two path segments. This is
similar to the behaviour observed for the path scenario, where the Simple formation-bank
planner’s low TIG was accompanied by a high IGE. The Hybrid planner is observed to have
a lower IGE than the Simple formation-bank planner in the path areas of the tour, which is an
interesting result as the Hybrid planner makes use of the Simple formation-bank planner in
these areas and hsould have equivalent performance. However, due to the switching distance
lhybrid , the planner actually switches to the Collaborative exploration planner while the UGV
is still moving, which explains the reduced efficiency. The Split planner is also observed
to have a highly variable IGE in the stationary areas, though no explanation for this can be
provieded.
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Fig. 5.25 IGE results from running the planners in the tour scenario on the "Mixed shapes"
map, with IGE recorded individually for each area.

5.5.1 Conclusion

In this section, all five planners implemented for this project were tested in an extensive
tour scenario. This scenario blended the two previous scenarios by including tour waypoints
where the UGV would remain stationary and path segments for the UGV to move along.
Transitions between the UGV being stationary and moving were also included in this scenario.

The Collaborative exploration planner and the two variants of the Formation-based planner
has similar performance as had been observed in the previous scenarios. Some added issues
for the Formation-based planners were observed due to the sharp turns included in the tour
scenario, which were not present in the stationary or path scenarios. The inclusion of the
modified utility function for the Collaborative exploration planner also significantly reduced
the recorded number for communication constraints breakages.

The Hybrid planner functioned as intended and switched between two planners during op-
eration in the tour scenario. The conservative Simple formation-bank planner was utilized
for the path segment areas of the tour, and provided a consistent mapping of the area around
the moving UGV. For the tour waypoints, a switch tot eh Collaborative exploration planner
allowed the area around the waypoint to be mapped extensively. Some issues were observed
when the planner would switch from exploration to formation mode, as collision avoidance
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was not applied for the UAVs getting back into formation.

The Split planner has good performance on the TIG metric, with comparable performance
with the Collaborative exploration planner. It does however have highly variable performance
in some areas, as is observable in the IGE metric for tour waypoints. Though the SFR planner
should prevent a higher number of CCBs, it still records more communication losses than the
Collaborative exploration planner with the modified utility function.

5.6 Exploration scenario

The final scenario makes use of the Frontier-exploration planner presented in Section 3.2.2
to drive the UGV in an exploration scenario. Unlike the previous scenarios, the sampling-
based nature of the Frontier-exploration planner leads highly to variable performance and
exploration behaviour. As such, no results were recorded for the exploration scenario.

The exploration behaviour is showcased here to demonstrate a potential use-case for the
developed UAV coordination systems and planners.

(a) Gazebo world. (b) Rviz visualization.

Fig. 5.26 Simulation of the exploration scenario on the "Outdoor" map. (a) The Gazebo GUI
allows the viewing of the robot system during in simulation. (b) The UGV exploring frontiers
points, which are visualized as blue spheres. Frontier points are found using a modified RRT*
algorithm, with the tree visualized in orange.
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(a) Gazebo world. (b) Rviz visualization.

Fig. 5.27 Simulation of the exploration scenario on the "Disaster" map. (a) The Gazebo GUI
allows the viewing of the robot system during in simulation. (b) The UGV exploring frontiers
points, which are visualized as blue spheres. Frontier points are found using a modified RRT*
algorithm, with the tree visualized in orange.

(a) A frontier tree is grown. (b) A frontier is selected.

Fig. 5.28 Simulation of the exploration scenario on the "Outdoor" map, showing the growth
of the initial frontier tree. (a) A frontier tree, visualized in orange, is grown from the current
UGV position. Frontier points, visualized as blue spheres, are detected where tree edges
cross from mapped to unmapped space. (b) A frontier point is selected and its parent vertex
is chosen as the navigation goal, visualized as a red sphere. The UAVs make plans taking the
new UAV path into account.
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(a) Obstacle detected and replanning initiated. (b) UGV moves around obstacle.

Fig. 5.29 Simulation of the exploration scenario on the "Disaster" map, showing the global
RRT planner navigating around obstacles. (a) The RRT global path planner is used to create
a collision free path for the UGV. Planning is done using the Informed-RRT* algorithm,
visualized in blue. (b) The UGV moves around the obstacle.

(a) Exploration 1. (b) Exploration 2. (c) Exploration 3.

Fig. 5.30 Simulation of the exploration scenario on the "Disaster" map, showing the gradual
exploration of the environment by the UGV-UAV collaborative system.



Chapter 6

Conclusion

This chapter concludes the the project work presented in this thesis. First, a short summary
of the thesis and project work will be given. Following this, a discussion is presented which
addresses the results and how the results relate to the original problem formulation presented
in Section 1.2. Possible improvements to the implemented systems will then be discussed.
Finally, this chapter is concluded with a presentation of potential future work beyond the
improvements presented in the preceding section.

6.1 Summary

The first chapter of this thesis introduced the problem formulation that was tackled in this
thesis. This problem formulation was rooted in a potential scenario and use-case for a
UGV-UAV cooperative team that was identified in the Specialization project [1]. Further
motivation for tackling this problem was presented through a review of the existing systems
within the field of UGV-UAV collaborative path planning and the identification of a gap in
the literature.

Chapter 2 presented background theory and material that motivated the design choices taken
when implementing the project systems. The chapter first presented general concepts within
the field of robotic systems, such as motion control, planning and perception. Path planning
concepts and algorithms for single-robot use cases were then presented, with a focus on
Informative Path Planning (IPP). These concepts were then extended to the multi-robot case,
with some added material within formation control and communication constrained planning
also being presented.
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Background material related to the software frameworks used for this project were presented
in Chapter 3. This includes the Robot Operating System (ROS) framework and Gazebo
simulator, both of which are central in this work. Following this, the systems for the UGV
and UAV vehicle platforms were presented. An emphasis was placed on the motion- and path-
planning capabilities of these systems, as these would be directly utilized by the implemented
project systems. The chapter also summarized the most important systems implemented for
the Specialization project, which includes single-robot exploration path planning systems.

The design and implementation of the project systems was presented in Chapter 4. The over-
all system architecture to coordinate a multi-UAV team around a UGV was first presented,
with the presentation centering around the Finite-State Machine (FSM)s controlling UAV
movement. The implemented Communication Constrained Multi-robot Informative Path
Planning (CCMIPP)-systems were then presented.

First, the Collaborative exploration planner was presented as an extension to the View-based
exploration planner implemented in the Specialization project. Communication constraint
satisfaction and sensor coverage overlap had to be taken into account to enable collaborative
exploration. Two variants of Formation-based planners were then presented; the Simple
formation-bank planner and the Sampling-based Formation Reshaping (SFR) planner. Both
planned UAV motion relative to the UGV, with the latter also making use of the systems
implemented for the Collaborative exploration planner. Finally, two Combined planners were
introduced which combined the functionality of the previously presented planners.

In the fifth chapter, simulation results from testing the implemented systems and planners
in various scenarios were presented. The Total Information Gain (TIG), Information Gain
Efficiency (IGE) and Communication Constraint Breakage (CCB) performance metrics were
used to compare the implemented planners. Environments consisting of simple shapes were
used to test the planners and gather results in three different scenarios involving a stationary
UGV, a UGV moving along a path and a UGV tour consisting of path segments and waypoint
stops. A final scenario was presented in two realistic environments to showcase the planners
in an exploration use-case.

6.2 Discussion

The systems implemented in this project work were designed to coordinate UAV movement
around a UGV, with the goal of the UAVs acting as mobile sensors for the UGV. This
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problem formulation was initially conceived prior to initiating the Specialization project
work. During the course of the Specialization project, the focus shifted to implementing the
simulation- and system framework which would eventually be used to implement and test
the systems that could solve the initial problem formulation. The initial problem formulation
was also modified to focus more on collaborative exploration rather than UAV coordination.
In the conclusion of the Specialization project, several potential improvements to the systems
and possible future works were presented. These will be addressed here.

For the UGV systems, the path planning and exploration algorithms used in the Specialization
project were deemed to be robust, and have been utilized in this project work without major
changes. The modifications to the planning algorithms to allow for path replanning and more
intelligent usage of the exploration results were implemented. However, the focus in this
project shifted away from collaborative exploration between the UGV and UAVs and back to
the original goal. As a result of this, the planning and exploration systems of the UGV were
not extended further beyond the aforementioned improvements.

As the project focus was shifted to UAV coordination, the potential improvements presented
in the Specialization project regarding UAV behaviour had to be addressed. The UAV ob-
stacle avoidance system was identified as a primary cause of issues for operations in the
Specialization project. For this project it was replaced by a modified variant of the UGV
path planner, as suggested in the Specialization project. Modifications to the View-based
exploration planner were also made since the planner would play a central role in one of
the implemented systems. This includes the inclusion of distance costs and sensor coverage
overlap.

Beyond this, the framework itself was not extended far beyond its original functionality. An
additional UAV was added, such that a total of three UAVs could be simulated alongside one
UGV. Some modifications were made to improve general system and simulator performance,
though these modifications were minor and will therefore not be elaborated further. The
framework was also not extended to include other vehicle platforms beyond the UGV and
UAV platforms.

The Specialization project presented two directions for future work. One direction was the
extension of the framework into a higher level mission planner for extended and complex
scenarios. Though some of the scenarios and monitoring systems implemented in this work
bear resemblance to such a mission planner, any functionality beyond this would need to
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be addressed in future work. The other direction for future work was the implementation
of a communication constrained planner to coordinate the UGV-UGV team to perform
collaborative exploration, which has been addressed in this project work.

The problem formulation presented in Section 1.2 addresses the way in which this project
work extends the work done in the Specialization project. Two research questions were posed,
the first of which directly addresses the extension of the Specialization project systems into a
system to solve the UGV-UAV CCMIPP problem.

The Collaborative exploration planner, which extends the functionality of the IPP systems
made for the Specialization project, was in many cases shown to be superior to the other
planning methods developed in this project work. Extending the system for this project’s use-
case involved changing both how the planner functioned and how the results were processed.
To achieve the former, the planner was provided with details about the local UGV plans to
inform sampling and planning. The results were then processed by giving the resulting paths
new utility values, taking collaborative and communication constraint elements into account.

This method was given a lot of attention and tuning, with several modifications made to
increase the planner’s effectiveness. This includes the modified utility function to address
the problem of UAVs operating under the Collaborative exploration planner losing LoS
communication with the UGV. The effectiveness of the resulting Collaborative exploration
planner is also possible due to the effectiveness and robustness of the original exploration
algorithm it extended. As such, the answer to the first research question is positive. The
Collaborative exploration planner, being an extension of a single-robot exploration planner,
is able to solve the UGV-UAV CCMIPP problem in an effective manner.

The second research question was addressed by analyzing the performance of the Col-
laborative exploration planner against the other planners developed for this project. The
Formation-based planners, consisting of a Simple formation-bank planner variant and a
Sampling-based Formation Reshaping (SFR) planner variant, were developed explicitly to
coordinate UAV movement around a stationary or moving UGV for the purpose of acting as
mobile sensors.

The Simple formation-bank planner was shown to be surprisingly effective in the moving
UGV case relative to it’s simple design. Compared to the design and implementation of the
Collaborative exploration planner, little effort went into the design and implementation of the
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Simple Formation-bank planner. For the stationary UGV case, the pure Simple formation-
bank planner was not effective. However, combining it with other planners, as was done in
the Hybrid planner, alleviated this issue.

The SFR planner can in some ways be seen as combining principles from both the Collab-
orative exploration planner and the Simple formation-bank planner. Introducing sampling
removed the need for the designer to specify the poses in the formation-bank, and allowed
the planner itself to select and tune the chosen poses given the current situation and utility
function. More effort can however be given to improving the performance of the planner, as
multiple instances of erroneous behaviour could be observed.

Compared to the result of the Collaborative exploration planner, the Formation-based plan-
ners are shown to be moderately effective in the scenarios presented in Chapter 5. They do
not behave as greedily as the Collaborative exploration planner, usually resulting in a higher
IGE performance but a lower TIG performance. They are however much more robust to
communication failure and have a lower amount of recorded CCBs. Answering the second
research question is however made difficult by the fact that these planners were not given as
much attention as the Collaborative exploration planner, making a direct comparison unfair
in most cases.

It can also be discussed whether the presented scenarios are adequate in simulating the
UGV-UAV CCMIPP problem, and whether the chosen performance metrics are good metrics
to judge the systems by. The stationary, path and tour scenarios were used to test the planners
and gather results. In these scenarios, the chosen metrics make sense. However, the planners
were also tuned and modified to maximise the chosen metrics in these scenarios, which could
affect system performance negatively if they were applied to other scenarios or with other
performance metrics.

Though the case of collaborative UGV-UAV exploration was presented, it was not as heavily
analyzed as the other scenarios. It was observed that some problems which had plagued the
other scenarios were not present in the exploration scenario. This includes the issue of the
UGV entering unmapped space and losing LoS communication with the UAVs, which had
been a motivating factor in modifying some planner’s behaviour.

Though several planning systems for solving the UGV-UAV CCMIPP problem were inves-
tigated in this thesis, these systems do not span the entire field of possible solutions to the
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presented problem. Sampling-based methods are central to all the solutions investigated in
this project work. This is obvious for the Collaborative exploration and SFR planners, but
the Simple-formation planner also makes use of sampling when checking whether poses in
the formation bank are viable. The planners that make use of information gain also make use
of the same method to determine the estimated information gain of potential poses.

As presented in both section 1.1 and chapter 2, similar problems can be solved using other
methods. Many of the existing solutions involve optimization-based methods. These methods
can in most cases make stricter claims on optimality and robustness compared to the sampling-
based methods presented here. This direction was however not chosen for this project work,
as the sampling-based methods presented were simpler to implement and test, and had already
shown great promise in the previous work. Though optimization-based methods and other
methods could be investigated, this is left as future work.

6.3 Improvements

Several avenues for further improvement were identified during the conclusion of this project
work. This includes improvements to the framework for performance reasons and modifica-
tions of the implemented planning systems. Improvements or implementations of a larger
scale are covered in Section 6.4.

Some shortcomings of the simulation framework implemented in the Specialization project
were addressed and commented on in Section 6.2. However, the framework should still be
improved further to optimize performance and increase usability. The Gazebo simulator
is still the most computationally heavy component of the current system. Offloading this
computation to another computer and implementing networked communication between
the simulator and robot systems should be investigated to alleviate this issue. Usability can
be improved by providing a better user interface, potentially by using the rqt-based tools
identified in the Specialization project.

A central part of the problem revolves around planning under communication constraints.
In this project work, communication constraint satisfaction was determined by systems
operating in the same software framework as the planners. While the range communication
constraint could be checked using ground truth positions of the vehicles, the LoS commu-
nication constraint was checked within the OctoMap framework, leading to the issue of
determining whether or not unmapped space should be considered occupied. Moving the
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LoS communication constraint checking to the simulator framework would provide a more
correct way to determine whether the vehicles have lost LoS communication.

For the planning systems, a central feature of the UAV platform is its ability to operate in all
three dimensions. In the current planning systems, UAVs are not allowed to move outside
of their assigned operational altitudes. This was due to collisions between the UAVs that
were observed to occur when full three dimensional planning was allowed, though this only
happened in rare cases. Implementing collision avoidance between the UAVs, which can
take into account communication of positions and plans between the UAVs, would allow the
planners to plan freely in all three dimensions and potentially yield better plans.

Several issues and bugs were observed with the implemented planning systems which high-
light areas of potential improvement. Some of these were covered in Chapter 5, while others
will be mentioned here.

For the Collaborative exploration planner, one main issue was the rejection of plans that
would prevent a loss of communication and subsequent recovery. This issue could be fixed
by including communication constraint satisfaction into the utility of plans, such that longer
plans that maintain communication are favored over shorter paths that would eventually
break communication. Increasing the maximum path length for UAV plans could also enable
the UAV to sample good view configurations on the other side of the mapped area which it
could navigate to rather than maintaining the same position. This variation could also be
extended to a split between a local and a global level of planning for information gain and
communication constraint satisfaction respectively.

For the Formation-based planners, some issues were identified when maintaining a formation
with a turning UGV. Removing the rotation of the UGV centered formation frame would fix
this issue, though this would change the nature of the formation holding and could introduce
other issues. If rotation should still be considered, a maximum rotation rate for the formation
frame separate from the UGV orientation could be introduced.

The Simple Formation-bank planner would benefit from some additional attention and tuning
with regards to the formations in the bank. Apart from adding additional poses, the individual
UAVs could benefit from taking the actions of other UAVs into account when choosing a
formation pose. This could come in the form of checking sensor coverage overlap, as is done
in the other planning systems. Additional degrees of freedom, such as allowing the formation
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pose orientations to be chosen freely, could also be investigated.

The SFR planner, along with the Combined planners, were the last to be implemented and
could see significant improvement with better selection of parameters and some general bug
fixing. For the SFR planner, the design decision to sample and select entire formations rather
than allowing individual UAVs to select formation poses lead to some suboptimal behaviour.
One way to fix this would be to allow the UAVs to select their preferred formation pose in a
sequence determined by priority or other means.

In general, this project work has focused on analyzing many different methods of solving the
identified problem, rather than choosing one and improving one system. This has made it
possible to compare the systems’ performance with each other on the same scenarios, which
has yielded insights into good directions to investigate in future works.

6.4 Future work

Beyond improving the implemented systems, several possible future works have been identi-
fied which could use the foundation built by this project work.

Perhaps the most obvious continuation of this project work would be to test the implemented
systems on physical vehicle platforms. The Specialization project framework was designed
with the intention of deploying the systems on physical vehicles, though no such experiments
have been conducted. Such an extension would require systems for localization and motion
control of the vehicle, which have been assumed to be functioning for this project work.
Physical tests would also place higher requirements on the robustness and reliability of the
systems for practical and safety reasons.

As a central part of this project work revolves around the communication constraints imposed
by having UAVs act as mobile sensors for a UGV, more realistic communication bandwidth
constraints should be investigated if the systems are applied to real robots. Some alternatives
were presented in Section 2.3.4, which include probabilistic models that can be included
in the utility functions of the planners. Other communication related factors, such as the
propagation of information through robotic networks, would also have to be analyzed and
tackled should the system be tested in real-world scenarios.
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Several works within communication constrained planning have also demonstrated the usage
of robots as communication relays to extend the range of operation. This would be especially
relevant for scenarios with a stationary UGV and in obstructed environments where the LoS
constraint severely limits the operational area. The increased bandwidth requirements on
potential relay UAVs would also have to be accounted for. Additionally, online switching of
robots to act as relays or explorers is an active field of research that could be investigated
using the systems made in this project.

Within the space of sampling-based methods, other methods for solving the CCMIPP prob-
lem could be investigated. The PRM algorithm presented in Section 2.2 could be used to
construct a communication constrained roadmap above the UGV which the UAVs could
traverse. This would separate the problem into two parts: the constructions and maintenance
of the roadmap for communication constraints and obstacle avoidance, and graph traversal of
the roadmap by the UAVs. This could potentially simplify the problem, as potential UAV
plans and states would be confined to the discrete edges and vertices of the roadmap graph.

More intelligent methods for negotiating plans between robots in multi-robot systems have
also been presented. This work utilized priority-based sequential planning in the cases
where multiple UAV plans had to be determined. Methods such as network consensus were
presented in Section 2.3.1, while systems using optimization based methods such as integer
linear programming are present in the literature. These methods could potentially increase
the overall performance of the implemented systems.

Beyond the high-level path planning that this work has focused on, future works could
investigate ways to integrate perception or motion control more actively in the planning.
Though sensor characteristics play a role in the planning of informative paths, operation
in GNSS-denied environments could make the role of active perception planning more
important if range sensors are used to localize the robots. Metrics such as the amount of
trackable visual features on a potential path could then be used to influence the plans of the
UAVs. Including motion control of the UAVs beyond the simple navigation goals used in
this project should also be investigated.

Finally, for this system to be viable for real applications, the implementation of a higher level
mission planner should be investigated. This would give potential operators the ability to
send goals to the system and monitor progress and actions made by the system. A mission
planner would also need to account for auxiliary states and situations that the system could



110 Conclusion

encounter in a realistic scenario, such as sensor- or communication failure, UAV battery
recharge or shifting environmental conditions.

The potential future works that can be based on the work done in this project are not limited
to the cases presented here. The author hopes that the foundation created by this project work,
and which has been presented in this thesis, can inspire others to investigate and contribute
to this exciting field of research.
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Appendix A

Algorithms

Algorithm 1: Sampling-Based Roadmap
Data:
N: Number of nodes to include in roadmap
Result:
G: Roadmap

1 G.init();
2 i← 0;
3 while i < N do
4 α(i)← RANDOM_CONFIGURATION();
5 if α(i) ∈ C f ree then
6 G.ADD_VERTEX(α(i));
7 i← i+1;
8 for q ∈ NEIGHBORHOOD(α(i),G) do
9 if CONNECT(α(i),q) then

10 G.ADD_EDGE(α(i),q);
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Algorithm 2: Rapidly-exploring Random Tree
Data:
qinit : Initial/root configuration
k: Number of exploration steps
∆t: Fixed time interval for integration
Result:
T: Tree

1 T.init(qinit);
2 for i← 0 to k do
3 α(i)← RANDOM_CONFIGURATION();
4 T← EXTENDRRT (T,α(i),∆t);

Algorithm 3: EXTENDRRT

Data:
T: Initial tree
α(i): Sampled configuration
∆t: Fixed time interval for integration
Result:
T’: Extended tree

1 T’← T;
2 qnearest ← NEAREST_NEIGHBOR(α(i),T’);
3 u← SELECT_INPUT(qnearest ,α(i));
4 qnew← NEW_STATE(qnearest ,u,∆t);
5 if qnew ∈ C f ree ANDPATH(qnearest ,u,∆t) ∈ C f ree then
6 T’.ADD_VERTEX(qnew);
7 T’.ADD_EDGE(qnearest ,qnew,u);

8 return T’;
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Algorithm 4: EXTENDRRT∗
Data:
T: Initial tree
α(i): Sampled configuration
∆t: Fixed time interval for integration
Result:
T’: Extended tree

1 T’← T;
2 qnearest ← NEAREST_NEIGHBOR(α(i),T’);
3 qnew← STEER(qnearest ,α(i));
4 if qnew ∈ C f ree AND PATH(qnearest ,qnew) ∈ C f ree then
5 T’.ADD_VERTEX(qnew);
6 qmin← qnearest ;
7 Qnear← NEAR(T,qnew);
8 for qnear ∈ Qnear do
9 if PATH(qnear,qnew) ∈ C f ree then

10 c′← COST(qnear)+DISTANCE(qnear,qnew);
11 if c′ < COST(qnew) then
12 qmin← qnear;

13 T’.ADD_EDGE(qmin,qnew);
14 for qnear ∈ Qnear \{qmin} do
15 if PATH(qnear,qnew) ∈

C f ree AND COST(qnear)>

COST(qnew)+DISTANCE(qnear,qnew) then
16 qparent ← PARENT(qnear);
17 T’.REMOVE_EDGE(qparent ,qnear);
18 T’.ADD_EDGE(qnew,qnear);

19 return T’;
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Algorithm 5: RANDOM_CONFIGURATIONINFORMED

Data:
qinit : Initial configuration
qgoal: Goal configuration
Result:
α(i)’: Informed random configuration

1 if COST(qgoal)< ∞ then
2 cmin← ||qgoal−qinit ||2;
3 qcenter← (qgoal +qinit)/2;
4 C← ROTATION_TO_WORLD_FRAME(qinit ,qgoal);
5 r1← COST(qgoal)/2;

6 {ri}i=2,...,n←
(√

c2
max− c2

min

)
/2;

7 L← DIAG(r1,r2, . . . ,rn);
8 qball ← SAMPLE_UNIT_BALL();
9 α(i)← CLqball +qcenter;

10 else
11 α(i)← RANDOM_CONFIGURATION();
12 return α(i);
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Algorithm 6: EXTENDViewBasedRRT

Data:
T: Initial tree
α(i): Sampled configuration
dmax: Maximum line-path distance
θmax: Maximum yaw-angle change
Result:
T’: Extended tree

1 T’← T;
2 nnearest ← NEAREST_NEIGHBOR(α(i),T’);
3 qnew← LINE_PATH(nnearest ,α(i),dmax,θmax);
4 if COLLISION_FREE(qnew)ANDCAST_RAY(nnearest ,qnew) ∈ C f ree

then
5 nmin← nnearest ;
6 Nnear← NEAR(T,qnew);
7 for nnear ∈ Nnear do
8 if PATH(nnear,qnew) ∈ C f ree then
9 c′← COST(n(near)+DISTANCE(nnear,qnew);

10 if c′ < COST(qnew) then
11 nmin← nnear;

12 nparent ← nmin;
13 cnew← COST(nparent) + DISTANCE(nparent ,qnew);
14 gnew← GAIN(nparent) + 1

RANK(nparent)+1GAIN(qnew);

15 nnew← CREATE_NODERRT (T’,nparent ,qnew,cnew,gnew);
16 T’.ADD_NODE(nnew);

17 return T’;



Appendix B

Parameter values

Default parameter values that are in use unless where stated otherwise. Parameter values
are chosen by the author. Certain parameters have a relationship to other parameters which
influence the choice of the parameter value. Other less explicit motivations for the parameter
values are described in either Chapter 4 or Chapter 5. Some values are approximated since
their corresponding parameters are not directly accessible to the author.

Symbol Description Relationship Value Unit

vugv Max. UGV velocity - 0.5 m/s
nugv_wp UGV local waypoint amount - 5 -
lugv_wp UGV local waypoint spacing ≥ vugv ·tugv_wp 2.0 m
tugv_wp Min. UGV local waypoint time - 4.0 s
vuav Max. UAV velocity - ≈ 1.5 m/s
huav_min Min. UAV operation altitude - 1.5 m
huav_int UAV operation altitude interval - 0.5 m
rrrt_samp Sampling radius for UAV RRT*

planning
≤ lcom 10.0 m

trrt_samp Sampling time for UAV RRT* plan-
ning

- 1.0 s

luav_rrt Max. edge distance for UAV RRT*
planning

≤ vuav ·tugv_wp 4.0 m

rnkrrt_v Max. vertex rank for UAV RRT*
planning

< nugv_wp 4 -

lcom Communication range - 10.0 m
tcom Communication timeout - 1.0 s
fugv_pl UGV planner loop frequency - 5.0 Hz
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fuav_pl UAV planner loop frequency - 10.0 Hz
fuav_s f r Formation reshaper loop frequency - 1.0 Hz
luav_cov UAV circular coverage distance - 6.0 m
ruav_cov UAV circular coverage radius - 5.0 m
ψu Standard angular unit - 90.0 deg
dmult_max Max. distance threshold for way-

point multiplier
- 4.0 m

dmult_min Min. distance threshold for way-
point multiplier

- 1.0 m

cmult Max. multiplier value for waypoint
multiplier

- 2.0 -

cin f o Information gain cost parameter - 100.0 -
ceuc Euclidean distance cost parameter - −1.0 -
cang Angular distance cost parameter - −1.0 -
n f orm_bank Amount of formations in formation

bank
- 7 -

ns f r_bank Amount of sampled formations in
SFR bank

- 20 -

ns f r_keep Amount of sampled formations kept
in SFR bank

- 5 -

rs f r_samp Sampling radius of SFR planner - 1.0 m
ψs f r_samp Max. sample yaw deviation of SFR

planner
- 60.0 deg

ts f r_samp SFR planner sampling timeout - 1.0 s
lhybrid Hybrid planner switch distance - 10.0 m
resoctomap OctoMap voxel resolution - 0.25 m
foctomap OctoMap update frequency - 1.0 Hz
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Local navigation waypoint multiplier

In section 5.4.4, the observation is made that the Collaborative view-based exploration
planner (presented in section 4.2) would frequently trigger recovery behaviour due to not
mapping the area directly around the UGV. More precisely, when the UGV and its local
navigation waypoints would enter unmapped space, LoS communication between the UGV
and UAVs would be perceived as being lost. This is due to the conservative assumption that
unmapped space is equivalent to occupied space when the Collaborative exploration planner
is determining whether or not a plan is viable.

To attempt to fix this issue, a multiplier was added to the estimated information gain tied
to the area around the UGV local navigation waypoints. The idea motivating this is that
assigning more value to the information gained from unmapped areas around the UGV would
drive the exploration planner to prefer exploring these area. Distance thresholds would apply,
such that only unmapped areas within a certain radius of the UGV local navigation waypoints
would add a multiplier. This multiplier function was then added to the normal information
gain function presented in Equation (4.3). This function is repeated here, with the addition of
the waypoint multiplier:

Given a view configuration q and corresponding sensor coverage circle C(q), other sensor
coverage circles (internal and external) Cother, the ratio ratunmp of rays cast within the FOV
which intersect with unmapped voxels to the total number of rays cast, the ratio of overlap
ratovr(C,C∗) between two circles C and C∗ and a UGV local waypoint multiplier function
fugv_wp(q), the information gain In f o(q) for a view configuration is recalculated as shown in
Equation (C.1).
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In f o(q) = ratunmp ·
(

1−min
{
∑C∗∈Cother

ratovr (C(q),C∗) , 1
})
· fugv_wp(q). (C.1)

Here, fugv_wp(q) is the local navigation waypoints multiplier function. Given a view-
configuration q, the distance dcov_wp(q) between the corresponding coverage circle center
and its closest local navigation waypoint is calculated. The function is presented in Equa-
tion (C.2), where the multiplier has a maximum value of cmult and a minimum value of 1
dependant on the distance dcov_wp(q) and the distance thresholds dmult_min and dmult_max. The
function resembles a ramp that saturates at 1 for distances above dmult_max and at cmult for
distances below dmult_min.

fugv_wp(q) =


1, for dcov_wp(q)≥ dmult_max,

cmult_max, for dcov_wp(q)≤ dmult_min,

cmult_max−
dcov_wp(q)−dmult_min
dmult_max−dmult_min

, otherwise.

(C.2)

A comparison of the Collaborative exploration planner with and without the modified utility
function presented here was conducted in Section 5.4. Following this, results were gather
for the Collaborative exploration planner using the modified utility function. Results of the
Collaborative exploration planner using the default and modified utility functions on the tour
scenario are presented here, without comments on the observed behaviour.

(a) Path areas. (b) Stationary areas.

Fig. C.1 Information gain in tour areas.
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(a) Cumulative information gain. (b) Com. breaks.

Fig. C.2 CUmulative Information gain and total Communication breakages pr. area.

Fig. C.3 Information efficiency.



Appendix D

Formation bank

Number of UAVs = 1

UAV id Variable x value [m] y value [m] yaw value [deg]

0
pclose 2.0 0.0 0.0
p f ar 2.0 0.0 0.0

Number of UAVs = 2

UAV id Variable x value [m] y value [m] yaw value [deg]

0
pclose 1.0 0.0 −30.0
p f ar 0.0 −3.0 0.0

1
pclose −1.0 0.0 30.0
p f ar 0.0 3.0 0.0

Number of UAVs = 3

UAV id Variable x value [m] y value [m] yaw value [deg]

0
pclose 2.0 0.0 0.0
p f ar 2.0 0.0 0.0

1
pclose 0.0 0.0 −60.0
p f ar 0.0 −6.0 0.0

2
pclose −2.0 0.0 60.0
p f ar 0.0 6.0 0.0
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