
Em
il O

ppegård
O

ptim
ization and Control of Battery Electrode D

rying Process

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’s

 th
es

is

Emil Oppegård

Optimization and Control of Battery
Electrode Drying Process

Master’s thesis in Industrial Cybernetics

October 2020





Emil Oppegård

Optimization and Control of Battery
Electrode Drying Process

Master’s thesis in Industrial Cybernetics
October 2020

Norwegian University of Science and Technology





MASTER’S THESIS
TTK4900-Engineering Cybernetics

Optimization and Control of Battery Electrode Drying
Process

Emil Oppegård
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Abstract

The battery industry has experienced a significant increase in the last decades, mainly due to the growth in the elec-
tric vehicle (EV) industry and the applications of lithium ion batteries (LIBs). LIBs play a vital role in reducing the
CO2-emissions globally due to its ability to replace power supply based on fossil fuel with electricity. A key factor for
maximizing the benefits of LIBs (and other batteries) is to reduce the carbon footprint of the battery itself. The majority
of the carbon footprint of LIBs is related to the energy consumption during the drying process in the electrode production.
The purpose of this thesis was to examine similar drying processes in various industries and derive a simple, yet accurate
model which describes the physical phenomena of thin film drying which later can be used in optimization and control.

A one dimensional model was derived with the parameters; initial solvent content, initial thin film temperature, initial
density, air temperature and air velocity. A numerical solution was obtained by applying the finite element method (FEM)
and 4th order Runge-Kutta method to the model. The model showed promising behavior compared to similar models
presented in different literature. A sensitivity analysis further indicated that air temperature and air velocity have a major
impact on the evaporation rate, unlike the initial thin film temperature’s influence which was rather small.

The model was linearized about the stationary conditions in an attempt to simplify the optimization and control prob-
lem. Although the linearized model shared the same transient behavior as the non-linear model, the dynamics of the
linearized model was much faster. Along with large deviation in the stationary thickness, the fast dynamics rendered the
linearized model unsuitable for optimization and control purposes. However, the linearized model was used to determine
the controllability and observability of the system to assess whether or not a state estimator could be implemented.

With the air temperature and air velocity as control inputs and film temperature and thickness as measurement, the system
was observable for small mesh resolutions. Thus, an extended Kalman filter (EKF) was implemented with success for
estimating the states based on the measurements.

The process was optimized with respect to energy consumption with the air temperature and air velocity as optimization
variables. Due to crack formation and adhesion forces which can be related to the evaporation, the optimization was
carried out with upper bounds on the evaporation rate to avoid degeneration of the final performance of the cell. The
results clearly indicated reduction in energy and drying time using a multi-stage drying unit compared to single-stage
dryer. However, implementation of model predictive control (MPC) was unreasonable due to the computational time
of the implemented optimization routine. As a result, simple PI-controllers were designed to track the optimal control
input calculated by the optimization routine to optimize the overall process. The designed control systems successfully
controlled the overall process to follow the optimal trajectory.
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Sammendrag

Batteriindustrien har opplevd en betydelig økning de siste tiårene, hovedsakelig på grunn av veksten i elbilindustrien
og anvendelsene av litiumionbatterier. Litiumionbatterier spiller en viktig rolle i å redusere CO2-utslippene globalt på
grunn av dets evne til å erstatte kraftkilder basert på fossilt drivstoff med elektrisitet. En nøkkelfaktor for å maksimere
fordelene med litiumionbatterier (og andre batterier) er å redusere karbonavtrykket til selve batteriet. Hovedandelen av
karbonavtrykket til litiumionbatterier er relatert til energibehovet under tørkeprosessen i elektrodeproduksjonen. Hensik-
ten med denne oppgaven er å undersøke lignende tørkeprosesser i forskjellige industrier og utlede en enkel, men likevel
nøyaktig modell som beskriver de fysiske fenomenene som oppstår under tørking av en tynnfilm og deretter benytte
modellen til å optimalisere og kontrollere prosessen.

En endimensjonal modell ble utledet med initialbetingelser for parametrene; løsemiddel fraksjon, tynnfilmstemperatur og
tetthet i tillegg til lufttemperatur og lufthastighet. En numerisk løsning ble funnet ved å anvende finite element metoden
(FEM) og 4.ordens Runge-Kutta metode på modellen. Modellen viste lovende oppførsel sammenlignet med lignende
modeller presentert i ulik litteratur. En sensitivitesanalyse indikerte videre at lufttemperaturen og lufthastigheten hadde
stor påvirkning på fordampningshastigheten i motsetning til initialbetingelsen for tynnfilmstemperaturens som hadde liten
påvirkning.

Modellen ble linearisert rundt de stasjonære forholdene i et forsøk på å forenkle optimaliseringen og kontrollen. Selv om
den lineariserte modellen viste samme transient oppførsel som den ulineære modellen, var dynamikken i den lineariserte
modellen mye raskere. I tillegg til et stort avvik i den stasjonære filmtykkelsen, gjorde den raske dynamikken den lin-
eariserte modellen uegnet for optimalisering og kontrollering. Imidlertid ble den lineariserte modellen brukt til å evaluere
systemets kontrollerbarhet og observerbarhet for å vurdere om en tilstandsestimator kunne implementeres.

Med lufttemperatur og lufthastighet som pådrag og filmtemperatur og tykkelse som måling, var systemet observerbart for
et lavt antall elementer. Som et resultat ble et utvidet Kalman-filter implementert med suksess for å estimere tilstandene
basert på målingene.

Prosessen ble optimalisert med hensyn til energiforbruk med lufttemperatur og lufthastighet som optimaliseringsvariabler.
Da sprekkdannelse og vedheftningskrefter kan relateres til fordampningen, ble optimaliseringen utført med øvre grenser
på fordampningshastigheten for å unngå degenerering av den endelige ytelsen til cellen. Resultatene indikerte tydelig
redusert energibruk og tørketid for en flertrinns tørkeenhet sammenlignet med en enkeltrinns tørkeenhet. Implementer-
ing av modell prediktiv kontroll var imidlertid ikke hensiktsmessig på grunn av beregningstiden for den implementerte
optimaliseringsrutinen. Som et resultat ble enkle PI-regulatorer designet for å følge de optimale pådragene beregnet av
optimaliseringsrutinen for å optimalisere den totale prosessen. For det modellerte systemet ble prosessen kontrollert til å
følge den optimale banen med suksess.
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Chapter 1

Introduction and Literature Review

The battery industry has experienced a significant increase in the last decades, mainly due to the growth in the electric ve-
hicle (EV) industry and the applications of lithium ion batteries (LIB). As LIBs allows a large portion of the transportation
sector to be shifted from fossil fuel to electricity and replace fossil fueled power generation in synergy with sustainable
power generation, LIBs plays a vital role in reducing the CO2-emissions globally.

A key factor for maximizing the benefits of LIBs (and other batteries) is to reduce the carbon footprint of the battery itself.
The majority of the carbon footprint of LIBs is related to the consumed energy from the battery production[4]. Where as
most of the energy is consumed during the drying process of the electrodes and maintaining operation conditions in the
dry-room.

Although drying processes is one of the oldest processes applied and are found in various industries, most of the research
done in the battery industry focus on improving performance by investigating new materials or technologies[5, 6]. The
drying process is one of the key-steps in the battery process-chain, not only as reduced energy consumption and increased
throughput yield economic benefits, but also due to its significant impact on the electrode structure and the final perfor-
mance of the cells. A comprehensive understanding of how the drying parameters (such as temperature, air velocity, etc.)
affects the performance and drying rate is essential for optimization.

Due to limited amount of adequate literature on the subject, the purpose of this thesis is to investigate the potential of
different drying processes applied in industries such as: paper, food and pharmaceutical in order to derive a simple, yet
accurate model for the electrode drying process. The model is then used to optimize and control the drying process.

This thesis is structured in a similar fashion as the majority of master’s thesis with theory, experimental and results and
discussion organized in separate chapters. The structure of chapters will share similar substructure with everything related
to formulation of the model being presented first, then followed by topics related to the numerical method. Further, topics
about linear system is presented, and lastly topics regarding optimization and control. This organizes the thesis such
that results and discussion can be read independent of theory and implementation while at the same time maintaining the
same flow at which the work was progressed. As an introduction, LIBs in general along with the process chain of LIBs
production, relevant thin film process and models are briefly investigated.
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1.1 Why CO2 Free Battery Production in Norway?
The growing focus on climate-friendly solutions has resulted in a shift in the transport sector from fossil fuels to electricity.
Although this transition is at an early stage, it is expected that the global EV market will grow in the years to come.
Currently, China and Europe have the highest number of EV. Compared to other countries, Norway has already come
a long way in the transition towards fully electric transport sector, as the share of EVs of new cars sold has exceeded
50%[7].

Provided the rest of the world will experience the same development, the demand for LIBs will increase significantly.
With today’s production mainly located in China, this can pose challenges in terms of security of supply. The Covid-
19 pandemic is a good example as several of European EV manufacturers have had to stop production as the supply
of LIBs from China disappeared[8]. In addition, according to Zeng and Li and Adams and Shachmurove, China will
have increasing need of oil, coal and gas imports in the years to come as a result of rising energy consumption due to
technological and economical growth[9, 10].

Establishing battery production in Norway would not only provide increased security of supply for the European market,
but also reduce the increasing energy demand in China to some extent. Furthermore, the production of LIBs in China
are mainly supplied by coal power, which negatively affects the greenhouse gas (GHG) emissions of LIBs. Since 95%
of energy produced in Norway comes from hydropower plants, battery production can be supplied with clean, CO2 free,
energy (without taking into account the European energy mix), thus, reduce the GHG-emissions associated with the
production of LIBs[11, 12]. In addition, Norway’s relatively low ambient temperature and availability of cooling water
will be advantageous as this may indicate lower humidity and energy requirements for industrial processes. Finally,
establishing battery factories will also benefit the Norwegian economy, which as of today, is highly dependent on the oil
market.

1.2 Process Chain
High throughput production of small LIBs for everyday electronics originated in the 90s[13]. Following recent growth
and technological advance, the high throughput-process has been transferred to larger cell production, mainly due to the
applications of LIBs in EVs. LIBs used in EVs place high demands on energy and power density, as well as lifetime
and safety[13]. To achieve the desired specifications, cells are connected in series or/and parallel and safety systems
are implemented to control voltage levels, currents and temperatures. As a result, the cell-to-pack production is a long
process-chain of several individual steps. Figure 1.1 illustrates the complete process-chain with the intermediate products
as electrode, cell and final package.

Figure 1.1: Generalized model of the process chain of battery production.
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The process begins with the active materials (AMs) being dry- and wet-mixed together with carbon black (CB) additives
and polymer binders in a solvent. The composition of the mixture differs from cathode and anode due to the different
materials used in the respected electrodes. In EVs production, layered oxides (LiNiCoMnO2 or LiNiCoAlO2) or spinels
(LiMn2O4) are often used as AMs for cathodes, where as for the anode graphite is normally used[13]. Recently it has
become more common to add a small amount of silicon with the graphite to increase the energy density [13]. The
polymer binders are added to improve mechanical properties such as stability, elasticity and adhesion, while the CB
additives improves the electrical contact and reduces the overall impedance. The solvent for the mixtures changes with
the different polymers as it needs to have the potential to dissolve the binder, which is the main reason why N-methyl-2-
pyrrolidone (NMP) are used for cathode and water for anode. The usage of NMP introduces not only higher production
costs compared to water, but also higher energy consumption due to high energy demand in the required NMP-recover
process[14]. However, in recent years new polymer binders in aqueous solutions have been studied[15, 16, 17].

When the materials are uniformly mixed the resulting solution is coated onto both sides of the respected current collector
(copper for anode, aluminium for cathode) through slot die coating. The coating process, which depends on various
aspects of the process (drying time, current collector, etc.), is either done continuously or in patterns. The two side of the
current collector is either coated at a separate stages of the liner or simultaneously. Two-sided coating machinery does
exists, but in reference with Kwade et. al these are not frequently applied due to structural variations between the two
sides[13]. The speed at which the mixture is coated onto the current collector later affects the drying time as higher speed
imposes longer drying times[6].

The drying process is one of the major contributors to the high energy consumption in battery production due to the large
amount of heat needed to evaporate the solvent. The heat transfer is mainly done by hot air being blow over the wet
web coating (convection), but in recent years this has been combined with infrared radiation (IR) and separate drying
stages to reduce the drying time and energy consumption[13]. The drying process also have a profound impact on the end
performance of the battery, e.g drying temperature and air speed do affect the adhesion strength, resistance and crackling
development[6].

With the coated current collector dried to a desired moisture content, it is compressed in the calendering process to a
desired thickness. This process does not only reduces the thickness of the electrode, but also improves the energy density
as well as conductivity and adhesion. The electrode film is later brought through a dry-room where it is first sliced to the
desired dimensions. The operation conditions within the dry-room is carefully controlled to keep the moisture content in
the air as low as possible. Thus, preventing damage caused by corrosion which can, among other things, lead to reduced
lifetime. The sliced electrodes are then arranged with separators to form cells. There are three different method for
arranging the electrodes and separators; winding, stacking and Z-folding. All three methods have their advantages and
disadvantages regarding efficiency, mechanical load and energy density. The stacked electrodes and separators are then
placed in housing and filled with electrolyte before the cells are being closed.

Before the cells are arranged into modules and later packs, the cells goes through a quality control followed by formation,
aging and a final quality control. After the battery packs are assembled with the necessary monitor and cooling system, it
is ready for use.

1.3 Industrial Thin Film Drying Process and Relevant Models
Drying is one of the oldest unit operation and are applied in various industries[18]. Although the processes are different
for the distinct industries, they do operate on the same principal of heat and mass transfer. A common group of drying
processes utilizes thin films where the wet material is formed as a thin film and dried continuously along an operating
line. In this section thin film drying processes from different industries that resembles the one used in LIBs production is
examined to investigate whether there are certain aspects that can be incorporated into a model for electrode-drying.

1.3.1 Food Industry
Drying processes are widely adopted in the food industry due to various reasons. Mainly, drying processes are used to
preserve and extend the shelf life of the product, but also to achieve a desirable shape or structure. With vast quantities of
different products, numerous different drying methods have been used depending on which methods are most appropriate.
This depends on the quantity, size and shape of the product. Drying processes involving food products in the form of
thin layers, shown in figure 1.2, are similar to the methods used in battery production. The product is dried in convection
ovens where hot air heats and transports moisture away from the product. When drying food, physical and biochemical
transformations often occur. Such transformations changes the characteristic of the drying process, which makes it very
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complex. Erbay and Icier presents a detailed model based on convection ovens, while 22 different models for thin-layer
drying processes are reviewed in the studies conducted by Onwude et. al[5, 18]. Furthermore, a mathematical model for
drying was developed by Aboltins et. al in which IR was used as a heat source[19]. In addition to better preservation
of nutrients, Aboltins et. al mentions that the drying process can be made more efficient by using radiation of a certain
wavelength that is absorbed only by the water in the product[19].

Figure 1.2: Illustration of the thin layer drying process[2].

1.3.2 Paper Industry
A common drying system applied in the paper industry is drying by heating-cylinders in series. Such a system typically
consists of 20-120 cylinders with a diameter of 0.75-2 meters filled with steam[20]. Before entering the drying process,
the paper web is coated onto a wire and wet-pressed to remove some of the moisture which results in the paper sheet
entering the drying section with a moisture content of 55-60%[20]. The paper web is then thread around each cylinder
and is heated by the steam through conduction as shown in figure 1.3a. The process is divided into several phases with
different number of cylinders and temperature, with and without felts and with a final phase without cylinders so that
the moisture can evaporate on both sides of the paper web. The process is controlled by the steam pressure, however,
it is common to restrict the controllers to the last groups. The purpose of the felts (which are illustrated in figure 1.3b)
is to hold the paper web in close contact to the drying-cylinder, thus further increasing the heat transfer to the web. It
also prevents the paper from shrinking and deforming. Heo et. al presents a comprehensive model based on heat transfer
through conduction using heating cylinders[20].

(a) Schematic for heating-cylinders. (b) Heating-cylinder with felt.

Figure 1.3: Illustration of the drying process in the paper industry with heating-cylinders.
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1.3.3 Pharmaceutical Industry
In Active Pharaceutical Ingridient (API) manufacture, drying processes are applied to reduce the moisture content to an
acceptable level. Due to relative long process time, the drying process is often the bottle-neck in API production[21]. In
addition, the drying process may have an impact on the properties of the product, such as API uniformity, which later
affects unit operation downstream. API products formed as a thin film is more frequently applied due to enhanced prop-
erties, such as eliminating side effects and reduce dose frequency[22]. Thin film drier operation used in pharmaceutical
production resembles the one found in electrode production as the slurry is coated onto a moving liner. The slurry then
moves with the liner through drying compartment were the moisture is evaporated and carried away. Figure 1.4 illustrated
the drying process used in pharmaceutical production. Mesbah et. al presents a mathematically model which describes
the drying process and is later used in model predictive control (MPC)[23].

Figure 1.4: Illustration of a drying process in the pharmaceutical industry[3].
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Chapter 2

Theory

The purpose of this thesis is to derive a simple model for a drying process which can later be used for optimization
and control. As a consequence, theory from different fields will be applied; thermo- and fluid dynamics for the model
derivation, numerical- integration and methods, linear system theory etc. To give an overview, the relevant theory applied
will be presented in this chapter. The chapter is structured with the model derivation being presented first, then the
numerical methods applied for solving the problem is presented in advance of the linear system theory, and lastly, the
theory relevant for optimization and control.

2.1 Drying Process & Model Derivation
The drying process were briefly described in section 1.2 as one of the key steps in the process chain in battery production.
As the process have a profound impact on the properties of the electrodes, it is important to understand how drying
parameters such as temperature, velocities and moisture content affects the performance of the product as well as the
drying time.

Figure 2.1: Illustration of the drying process.

The drying process can be illustrated as shown in figure 2.1 with the drying compartment consisting of a slot die, liner
and fans which blow air along the surfaces of the thin film. The compartment is often divided into several section, each
with their distinct fans, air velocities and temperatures. However, for simplistic reasons the drying process is viewed
as a drying process with consisting of one compartment. As the thin film enters the drying compartment the solids
are fully suspended in a pool of solvent. At this moment, the evaporation is only a surfaces phenomena. However, as
the thin film shrinks due to evaporation, the solids will eventually form a porous media. At first, the porous media is
completely saturated with solvent in the liquid phase. Further on, the thin film no longer shrinks and evaporation is no
longer only a surface phenomenon. At this stage, the rate of evaporation is highly complex due to interplay of physical
phenomenons within the thin film structure. Susarla et al. divides the drying process into two stages; the first stage
includes evaporation as a surfaces phenomenon and shrinkage of the thin film, and the second stage with no shrinkage

6



Optimization and Control of Electrode Drying Process Chapter 2

and evaporation rate no longer being limited to the surface[24]. Consequently, the two distinct stages requires different
mathematically descriptions. Therefore, this thesis will focus on the deriving a mathematically model for the first stage
of the drying process. Given that the drying process had a significant impact on performance due to moisture content,
adhesion and crack formation, the model has to be able to measure the performance of the cell. Compared to the moisture
content, which can be expressed by weight or mole fractions, adhesion forces and crack formation are not easily expressed
mathematically. However, studies conducted by Kumberg et al. reveals that adhesion forces and crack formation can be
related to the rate of evaporation[25]. Thus, final moisture content and evaporation rate will be a measure of electrode
performance in the model.

2.1.1 Model Derivation
In order to accurately express the physical phenomenon of drying mathematically, a framework has to be established. By
considering the Cartesian coordinate system, as shown in figure 2.2a, with x, y and z representing the width, length and
height of the film, respectively, the directional fluxes can be expressed in terms of the variables x, y and z. Furthermore,
by assuming that the slurry and temperature distribution is uniform in the x-direction, the concentration and temperature
gradients in the x-direction equals zero. These are well established assumptions as the width of the film is much greater
than the thickness as well as the solution is uniformly mixed prior to being coated onto the current collector[23, 24, 26].
Movement within the film in the y-direction is neglected as these fluxes are assumed to be insignificant. This assumption
is more applicable for slurries with lower weight fraction due to higher viscosity, thus higher resistance for movement.
In addition, as the slurry is placed upon a liner with a given reel velocity, the y-position can be expressed by the drying
time, t. Thus, limiting the model to only consider fluxes in the z-direction, thereby reducing the model from 3D to 1D, as
illustrated in figure 2.2b. Resulting in a simpler model without reducing the accuracy of the model significantly.

(a) Cartesian coordinate system in 3-D. (b) 1-D coordinate system.

Figure 2.2: Illustration of the different coordinate systems.

For the first stage of the drying process solvent transportation within the thin film are governed by diffusion, which is
a term used for the movement of particles caused by concentration gradients within a region. As solvent evaporates at
the surfaces, solvent particles at lower sections of the thin film will start to diffuse towards the surface to equalize the
concentration level. Mathematically this can be expressed by the one dimensional diffusion equation[27]:

∂C

∂t
=

∂

∂z

(
D(C, T )

∂C

∂z

)
(2.1)

where C represents the weight fraction of the solvent (concentration), t (s) is the time, z (m) is the height andD (m2 s−1)
is the diffusion coefficient. The diffusion coefficient is highly dependent on the concentration and temperature. There are
several ways to approximate the diffusion coefficient, e.g the Stokes–Einstein equation. However, Mesbah et al. expresses
the the diffusion coefficient as a function of temperature and polymer volume fraction[23]:

D = D0 ·
(

1− φ
1 + φ

)γ
· e( −E

RT ) (2.2)

D0 (m2 s−1) refers to the mutual diffusion coefficient and varies with different mixtures, φ is the polymer volume fraction,
E (J kmol−1) is the activation energy and γ is a constant.
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Equation (2.1) expresses the solvent mass transportation within the thin film. However, this does not apply at the bound-
aries of the thin film. Since the model is limited to one dimension, the only boundaries are at the top and bottom of the
thin film as illustrated in figure 2.3. The liner itself is assumed to be impenetrable, thus, there is no loss of solvent through
the bottom boundary. Mathematically this equivalent to applying Neumann boundary condition:

z = 0 :

∂C

∂z
= 0

(2.3)

Figure 2.3: Illustration of the boundaries at z = 0 and z = L.

For the surface boundary one has to consider that the thin film is shrinking due to the evaporation. As a result, the
boundary condition at the surface is not fixed at given height, z, because the boundary will move with the diminishing
thin film thickness. Mesbah et al. expresses for the boundary condition as[23]:

z = L(t) :

D
∂C

∂z
+ C

dL

dt
= −kmMs

ρsR
·
(
Ps
T
− Pa

Ta

)
(2.4)

Where, L (m) is the varying thickness of the film, km (m s−1) is the mass transfer coefficient, Ms (kg kmol−1) is
the molecular weight of the solvent, ρs (kg m−3) is the density of the solvent, R (J kmol−1 K−1) is the universal gas
constant, Ps (Pa) is the equilibrium partial pressure of the solvent at the thin film-air interface, T (K) is the varying film
temperature, Pa (Pa) is the vapor pressure in the air and Ta (K) is the temperature of the air. The vapor pressure in
the heated air, as well as the temperature of the air is considered to be constant throughout the drying process and are
calculated using the Antoine equation:

Pa = ϕ · 133.332 · 10

(
7.54826− 1979.68

222.2+(Ta−273.15)

)
(2.5)

where ϕ is the relative humidity of the air and the constants in the equation is from [28]. In contrast to the vapor pressure,
Ps varies with both solvent concentration and temperature. The theory of polymer solution are highly advanced and will
not be studied in this thesis. However, Khansary expresses the solvent vapor pressure using the Flory Huggins theory
as[29]:

Ps = P0 · e

(
φ2
bX+ln(φa)+

(
1− va

vb

)
φb

)
(2.6)

where P0 is the vapor pressure of the pure solvent and can be calculated using equation (2.5) with ϕ = 1 and replacing
Ta with T . φi represents the volume fraction of component i, vi is the number of molecules of component i and X is the
Flory Huggins interaction parameter.

It is assumed that the density of the film is solely a function of moisture content and that the specific densities of the
solvent and solids remains constant throughout the process. However, these assumptions are not accurate as the density
depends on both pressure and temperature. These assumptions are made due to the inherent complexity of expressing
the density as a function of porosity as the solid can create various of structures as the solvent evaporates. The density is
assumed to follow the linear relation as a function of the solvent volume fraction, Φ:

ρf = ρs · Φ + (1− Φ) · ρsolid (2.7)
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where ρs(kg m−3) is the density of the solvent and ρsolid(kg m−3) is the combined density of the solids in the thin film.
Due to the changes in the combined film density, an expression for the rate of change of the density with respect to time
is necessary (the reason will become obvious when the an expression for the temperature is derived). The solvent volume
fraction is a function of the solvent concentration, which can be expressed as:

Φ =
C · ρs

C · (ρs − ρsolid) + ρsolid

Thus, the derivative of the thin film density with respect to time is proportional to the derivative of the derivative of the
solvent concentration:

dρf
dt

=
ρsρsolid · (ρs − ρsolid)

(C · (ρs − ρsolid) + ρsolid)2
· Ċ (2.8)

The derivative of the solvent concentration is left undefined for now as it is dependent on the method chosen for the
numerical approach.

To obtain an expression for the varying thickness of the film, we apply mass balance to the thin film. Along with solid
densities of the respective components and the fact that there are no transportation of mass into the thin film such that
the mass balance is solely a function of the evaporation that occurs at the thin-film-air interface, the mass balance can be
expressed as follows:

d

dt
(ρfVf ) = −ṁA

d

dt
(ρfAL) =

dL

dt
ρfA+

dρf
dt

LA = −ṁA

dL

dt
= − ṁ

ρf
− L

ρf

dρf
dt

where ṁ represents the mass rate out of the thin film due to evaporation. Thus, the thickness reduction of the thin film
can be expressed as:

dL

dt
= −kmMs

ρfR
·
(
Ps
T
− Pa

Ta

)
− L

ρf

dρf
dt

(2.9)

An expression for the thin film temperature is found by applying energy balance to the thin film. The heat transported
out of the thin film equals the amount of heat needed to evaporate the solvent. The heat transferred into the thin film is
expressed by heat transportation either by ordinary convection or radiation. To simplify the energy balance, the thickness
of the film is assumed to be so small that the temperature development within the thin film is so fast that it can be
considered to be uniform in the z-direction. Furthermore, the curvature of the thin film is so small that the contributions
from surface tension and shear stress gradients are neglected. Thus, the energy balance can be expressed by the following
formula:

d

dt
(ρfCpALT ) = −ṁAhfg + Q̇inA

ρfCpAL
dT

dt
+ ρfCpAT

dL

dt
+ CpATL

dρf

dt
= −kmMsAhfg

R
·
(
Ps
T
− Pa

Ta

)
+ q̇inA

Dividing by ρfCpAL on both sides yields:

dT

dt
= −T

L

dL

dt
− T

ρf

dρf

dt
− kmMshfg

ρfCpR
·
(
Ps
T
− Pa

Ta

)
+

q̇in
ρfCp

(2.10)

Here hfg(J kg−1) represents the latent heat of evaporation and Cp(J kg−1 K−1) is the specific heat coefficient. hfg is a
function of the temperature and is given by:

hfg = 6.991 · T 2 − 6193 · T + 1.848 · 106 (2.11)

Equation (2.11) was found using Matlab’s ”Curve fitting” tool with the values from [30] to form a second degree poly-
nomial with R2 = 0.995. The values from [30] is given in J mol−1 and are converted to J kg−1 in advance to get the
correct units. Cp is assumed to be constant as it is a weak function of the temperature within the temperature range[23].
q̇in (W m−2) represents the heat transfer into the thin film from the heat source. This can either be heat transferred due to
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convection, radiation or a combination of both depending on which configuration used for the distinct drying processes.
Heat transfer due to convection can be expressed as:

q̇in = kc(Ta − T ) (2.12)

where kc is the heat transfer coefficient. Susarla et. al expresses the heat transfer coefficient as a function of the air
velocity[24]:

kc = 0.037 · V 0.8
a

(
µa
ρa

)−0.8

Pr1/3L−0.2 (2.13)

Here, Va is the velocity of the air, µa the dynamic viscosity of the air, Pr is the Prandtl number and L is the characteristic
length. The total energy that is needed for the drying process can then be expressed as:

Q =

∫ tf

0

(
q̇in + ṁevap · hfg

)
dt (2.14)

To finalize the model, initial conditions are needed to obtain an exact solution for the simulations. The initial conditions
are given by:

t = 0 :

C(0, z) = C0

T (0) = T0

L(0) = L0

ρf (0) = ρ0

(2.15)

This completes the drying model with parameters as air temperature, Ta, initial solvent weight fraction, C0, initial thick-
ness, L0, initial film temperature, T0, and wind velocity,Va.
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2.1.2 Dimensionless Model
A common approach when dealing with generalized system is to convert the system to only include dimensionless vari-
ables. The major advantage of implementing dimensionless variables is that it immobilizes the otherwise moving bound-
ary condition at z̃ = 1. To start off, the dimensionless variables are defined as:

t̃ =
t− tr

ts
, ρ̃f =

ρf − ρf,r

ρ0
, L̃ =

L− Lr

L0
, z̃ =

z − zr

L
, T̃ =

T − Tr

T0
, C̃ =

C − Cr

C0
, D̃ =

D −Dr

D0

By setting all the reference values, (·)r, to equal zero, the variables can be expressed in terms of dimensionless variables:

t = t̃ts (2.16a)

ρf = ρ̃fρ0 (2.16b)

L = L̃L0 (2.16c)

z = z̃L = z̃L̃L0 (2.16d)

T = T̃T0 (2.16e)

C = C̃C0 (2.16f)

D = D̃D0 (2.16g)

By substituting equation (2.16a) - equation (2.16g) into the continuous model from the previous section, we obtain the
dimensionless model:

dρf

dt̃
=

C0 · ρsρsolid · (ρs − ρsolid)
ρ0 · (C̃N · C0 · (ρs − ρsolid) + ρsolid)2

· ˙̃CN (2.17a)

dL̃

dt̃
= − kmMsts

ρ̃fρ0RL0
·

(
Ps

T̃ T0

− Pa

Ta

)
− L̃

ρ̃f

dρ̃f

dt̃
(2.17b)

dT̃

dt̃
= −kmMstshfg

ρ0CpRL̃z0

·

(
Ps

T̃T0
2
− Pa

TaT0

)
− T̃

L̃

dL̃

dt̃
− T̃

ρ̃f

dρ̃f

dt̃
+

ts

ρ̃fρ0Cpz̃L0T0
q̇in (2.17c)

∂C̃

∂t̃
=

D0ts

(L̃L0)2

∂

∂z̃

(
D̃(C̃C0, T̃ T0)

∂C̃

∂z̃

)
(2.17d)

With the boundary conditions:

z̃ = 0 :
∂C̃

∂z̃
= 0 (2.18a)

z̃ = 1 :
D̃D0C0

L̃L0

∂C̃

∂z̃
+
C̃C0L0

ts

dL̃

dt̃
= −kmMs

ρ̃fρ0R
·

(
Ps

T̃T0

− Pa

Ta

)
(2.18b)

With the dimensionless initial values:

t̃ = 0 :

C̃(0, z̃) = 1

T̃ (0) = 1

z̃(0) = 1

ρ̃f = 1

(2.19)

The derivations of the dimensionless system can be found in appendix A. Note that all dimension factors, (·)0, are set to
their respective initial value, except ts, which is set to unity for simplicity.
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2.2 Numerical Method
Many problems in applied science and mathematics are described by differential equations. Thus, the the ability to
solve such problems are an essential tool for many technological advances. For linear cases, an analytical solution can
easily be obtained through calculus. However, for problems described by non-linear phenomenons, an analytical solution
may nearly be impossible to obtain. A way around this problem is to rather than seeking an exact solution, one aim to
find an approximation of the solution with sufficient accuracy. The fundamental idea of approximating solutions is to
evaluate the functions at discrete points in space and/or time, converting continuous problems into a collection of discrete
algebraic equations which are well suited for modern computers. Although numerical analysis are well suited for modern
computers, numerical algorithms predates computers as e.g. the Newton-Raphson-method was published in 1968 [31].
However, the field of numerical analysis has seen significant growth in recent years due to the improvement made in
computational power, extending the application of numerical methods to e.g. bio-mechanics, medicine, social life and
economics.

There are a number of different numerical methods for solving non-linear differential equations, varying in terms of
efficiency, accuracy and simplicity. For partial differential equations (PDEs), methods as finite volume (FVM), finite
different (FDM) and finite element (FEM) is widely adopted for solving complex problems. Although they all represents
the problem in mesh and sound some what similar, the approach for solving the differential equations of these methods
are very different. The FDM converts the differential equations by approximations of the differentials them self, where
as the FVM converts volume integrals containing divergence into surfaces integrals by the divergence theorem. The FEM
approximates the unknown functions within the domain by using shape functions of a given degree.

Due to the non-linearities of the coupled differential equations presented in the previous section and the fact that equa-
tion (2.17d) is a non-linear PDE, an analytical solution would be challenging and in fact maybe impossible to obtain.
Hence, a numerical approach is taken. In previous work, the FDM was applied which showed to be comparatively less
efficient and inaccurate [32]. Furthermore, despite being suitable for fluid dynamics, the FEM is chosen rather than FVM
due to its efficiency. Considering that the model is to be used for optimization and control, solving the problem in a
respectable time-frame is essential.

2.2.1 Finite Element Method
The FEM was originally developed for solving problems for elasticity and structural loading in engineering. However, in
recent years, the FEM are also widely applied to problems beyond structural analysis. The method has several variations,
such as the meshfree method, Galerkin method, discontinuous Galerkin method and mixed FEM. Although each method
differs from one another, they are all based on variational formulations. Due to the close relation between the numerical
and variational formulation, the FEM gives useful bounds for the error of the numerical method. The approach taken in
this thesis will be the one of a Galerkin formulation, which in essence means that in addition to the unknown functions,
the weighting function are also described by the chosen shape functions.

The system consists of four equation, which of only one is a PDE. Thus, the FEM is only applied to the equation (2.17d)
due to the changes in the spatial domain. Let Ω denote the spatial domain (0, 1)R

1

, the notation dΩ represent the bound-
aries on Ω, and Ωt the time domain (0, tf ) where tf is the final time. The finite approximation problem is cast with a
slightly different notation due to simplistic reason. The tilde notation in the previous chapter is omitted, thus, all variables
are indeed the dimensionless variables. Furthermore, C is replaced by u just for the sake of generalization. The finite
approximation problem in its strong form can then be cast as:

Find u such that:

du(z, t)

dt
= α

∂

∂z

(
D(u, T )

∂u(z, t)

∂z

)
, ∀z ∈ Ω,∀t ∈ Ωt (2.20a)

∂u

∂z
= 0, z = 0 ∀t ∈ Ωt (2.20b)

D(u, T )
∂u

∂z
= Γ, z = 1 ∀t ∈ Ωt (2.20c)

u(z, 0) = C0 (2.20d)

where α is D0

(L̃L0)2
and Γ is the boundary condition stated in equation (2.18b) rearranged with respect to D̃ ∂C̃

∂z̃ . The finite
approximation begins with deriving the variational and weak formulation from the strong formulation above.
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Variational and Weak Formulation

The variatonal form is found by multiplying the strong formulation by a weighting function, v(z), and integrating over
the domain Ω. The weighting function is arbitrarily, however, it has to fulfill some criteria. Firstly, for the integral to exist
it is required that both v(z) and v′(z) is bounded on Ω. Secondly, it has to make the boundary conditions well defined.
Let V define the function space which contains all possible functions v(z):

V =
{
v : ||v′|| ≤ ∞, ||v|| ≤ ∞, v(0) = 0, v(1) = 1

}
Clearly, V contains a infinite number of functions, thus, V has infinite dimensions. Rather than looking for an exact
solution in an infinite function space, an approximation within a subspace Vh which contains all piecewise quadratics
which ensures that the integral is well defined is considered:

Vh ⊂ V

The variational form can then be expressed as:∫
Ω

v(z)
du(z, t)

dt
dz = α ·

∫
Ω

v(z)
∂

∂z

(
D(u, T )

∂u(z, t)

∂z

)
dz (2.21)

To arrive at the weak formulation, the integral on the right hand side is resolved using integration by parts:∫
Ω

v(z)
∂u(z, t)

∂t
dz = α ·

[
D(u, T )v(z)

∂u(z, t)

∂z

]
dΩ

− α ·
∫

Ω

D(u, T )
∂u(z, t)

∂z

∂v(z)

∂z
dz

∫
Ω

v(z)
∂u(z, t)

∂t
dz = αv(z)Γ− α ·

∫
Ω

D(u, T )
∂u(z, t)

∂z

∂v(z)

∂z
dz (2.22)

where Γ represents the boundary condition at z = 1. Equation (2.22) is the weak formulation of equation (2.20a), which
is later used as the basis for the formulation of the finite element approximation.

Finite Element Approximation

In the same manner as for the weighting function v(z), the exact solution of u(z, t) can be found in a function space S
with infinite dimensions. The approximation of u(z, t), from now on referred to as uh, is approximated with peicewise
quadratics, thus, the search for a solution is reduced to a finite function space Sh which contains all peicewise quadratics
that ensures that the problem is well defined. Hence, the finite element approximation problem is defined as:

Find uh such that:

uh ∈ Sh, Sh ⊂
{
u :

du(0, t)

dz
= 0, D(u, T )

du(1, t)

dz
= Γ

}
︸ ︷︷ ︸

= S

For the finite element approximation, the spatial domain is first subdivided into ne number of subdomains referred to as
elements. These elements now describes the problem on a local level and the unknown function u within each element.
Figure 2.4 illustrates how the domain Ω is subdivided into ne number of subdomains, and it is clear that Ωe ⊂ Ω.

Figure 2.4: Illustration of the partition of the domain Ω in to ne number of subdomains.

Within each element, the unknown function u is approximated by piecewise polynomials of n-th degree, referred to as
shape functions, and the nodal values of u. The number of nodes in each element varies with the order of the piecewise
polynomials as the sum of polynomials always equals one. Linear shape functions requires two nodes for each elements,
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quadratic polynomials requires three and so forth. A common property of the shape functions is that it takes the value of
unity at their corresponding spatial value, expressed mathematically as:

φj(zi) =

{
1, if i = j,

0, if i 6= j
, i, j = 0, 1, ..., n

Higher order polynomials does not only implies higher accuracy of the approximated solution, but also higher complexity
and computational power requirement for the method. In this thesis quadratic shape functions are used, as it assumed that
polynomials of 2th order will resemble the unknown function u sufficiently. The domain Ω is subdivided into ne number
of elements, each with a length h. Now, each element is treated with local coordinates ranging from z = 0 to z = h.
Three quadratic polynomials which satisfy the properties mentioned above is:

φ1(z) = 1− 3

h
z +

2

h2
z2, φ2(z) =

4

h
z − 4

h2
z2, φ3(z) =

2

h2
z2 − 1

h
z (2.23)

Figure 2.5 is a plot of the three quadratic shape functions for an arbitrary element using local coordinates. As previously

z = 0 z = h
2

z = h

0

1

φ1

φ2

φ3

Figure 2.5: Plot of quadratic shape functions in local coordinates for a given element.

stated, the unknown function u is approximated by the shape functions along with nodal values. This can be represented
by:

uh =

3∑
i=1

εiφi (2.24)

where εi represents the nodal value at the i’th node. Likewise, the weighting function, which also are approximated by its
nodal values and the shape functions shares a similar definition:

vh =

3∑
i=1

ciφi (2.25)

where ci represents the nodal value of the weighting function at the i’th node. Substituting equation (2.24) and equa-
tion (2.25) into equation (2.22) and restricting the domain to the one of a single element in the interior of Ω (this is for
any element that is not on the boundary of Ω), the weak formulation can be expressed as:∫

Ωe

3∑
i=1

ciφi

3∑
i=1

ε̇iφi dz = −α ·
∫

Ωe

D(uh, T )
∂
∑3
i=1 ciφi
∂z

∂
∑3
i=1 εiφi
∂z

dz (2.26)

To simplify, equation (2.24) and equation (2.25) is rewritten in matrix form as follows:

uh =

3∑
i=1

εiφi =
[
φ1 φ2 φ3

]
·

ε1ε2
ε3

 = Φε (2.27)

vh =

3∑
i=1

ciφi =
[
φ1 φ2 φ3

]
·

c1c2
c3

 = Φc = c>Φ> (2.28)
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where both εi and ci are independent of z, while φi is independent of t. Thus, the derivatives can be written as:

∂uh
∂t

=
∂Φε

∂t
= Φε̇ (2.29)

∂uh
∂z

=
∂Φε

∂z
=
∂Φ

∂z
ε = Ψε (2.30)

∂c>Φ

∂z
= c>

∂Φ

∂z
= c>Ψ> (2.31)

Substituting equation (2.27)-equation (2.31) into equation (2.26) yields the weak formulation on matrix form:∫
Ωe

c>Φ>Φ dz · ε̇ = −α ·
∫

Ωe

D(uh, T )c>Ψ>Ψ dz · ε (2.32)

As ci is just a scalar, hence, c> is a scalar vector, equation (2.32) is divided by c> on both sides.∫
Ωe

Φ>Φ dz · ε̇ = −α ·
∫

Ωe

D(uh, T )Ψ>Ψ dz · ε (2.33)

Written in a compact form, it becomes clearer that the PDE is discretizied in space and converted to ODE:

Me · ε̇ = −αKe · ε (2.34)

where theMe andKe is often referred to as the mass and stiffness matrices. The subscription denotes the local mass and
stiffness matrices, and are defined as:

Me =

∫
Ωe

Φ>Φ dz (2.35)

Ke =

∫
Ωe

D(uh, T )Ψ>Ψ dz (2.36)

When forming the global mass and stiffness matrices, the local matrices are appended to the global matrix along its
diagonal. However, as each node at the boundary of an element interacts with two elements, the local matrices has to be
appended accordingly. To avoid a large example, the procedure for assembling the global matrices are shown for linear
shape function. However, the procedure is the same for matrices of higher order shape functions.

M =



M1,11 M1,12 0 0 . . . 0 0
M1,21 M1,22 +M2,11 M2,12 0 . . . 0 0

0 M2,21 M2,22 +M3,11 M3,12
. . . 0 0

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

0 0 0 0 0 Mn−1,22 +Mn,11 Mn,12

0 0 0 0 0 Mn,21 Mn,22


(2.37)

K =



K1,11 K1,12 0 0 . . . 0 0
K1,21 K1,22 +K2,11 K2,12 0 . . . 0 0

0 K2,21 K2,22 +K3,11 K3,12 . . . 0 0
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
0 0 0 0 0 Kn−1,22 +Kn,11 Kn,12

0 0 0 0 0 Kn,21 Kn,22


(2.38)

where the notation (·)i,kj refers to the kj’th element of the i’th local matrix with n being the final element. When no
longer restricting the domain to a single element, the discretizied ODE for the entire domain Ω becomes:

M · ε̇ = αΓ̂− αK(uh) · ε (2.39)

where Γ̂ is:

Γ̂ = Φ> ·D(uh, T ) ·


0
0
...
0
Γ

 (2.40)
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Discretization in Time

Equation (2.39) is discretizited in the spatial domain, however, the formulation needs to be extended with discretization
in time to obtain an numerical formulation of the problem. For discretization of the time domain, a similar approach is
taken as in [33], but with backwards Euler instead of forward Euler due to stability conditions. Consider a known solvent
fraction nodal value at a discrete point in time εn−1 and a unknown nodal value εn at at point ∆t forward in time. The
objective is to use the known nodal values at tn−1 to determine values at tn. For the time discretization, linear polynomials
are chosen to realize a backwards Euler time scheme. The shape functions are given by:

φ̂1 = 1− τ

∆t
, φ̂2 =

τ

∆t
(2.41)

where τ is the local coordinate of t within each increment. Thus, the nodal value as a function of τ can be expressed as:

ε(τ) = φ̂1εn−1 + φ̂2εn (2.42)

Differentiating equation (2.42) with respect to τ yields the following expression for ε̇:

ε̇ =
εn − εn−1

∆t
(2.43)

Substituting equation (2.42) and equation (2.43) into equation (2.39) yields the following expressions:

M · εn − εn−1

∆t
= αΓ̂− αK(uh,n) ·

((
1− τ

∆t

)
εn−1 +

τ

∆t
εn

)
(2.44)

Furthermore, equation (2.44) is multiplied with a weighting function w(τ) and integrated over the time step. However,
the weighting function w(τ), has to fulfill some criteria as v(z) does. As for v(z), w(τ) and w′(τ) has to be bounded on
the interval (0, τ). In addition, w(τ) has to vanish at the boundaries of the interval.

W =
{
w : ||w′|| ≤ ∞, ||w|| ≤ ∞, w(0) = 0, w(1) = 0

}
W is a functions space of infinite dimensions, however, the approximated function lies within a subset of W which
contains all the piecewise linears that ensures that the integral is well defined:

Wh ⊂ W

Multiplying equation (2.44) by the weighting functions w(τ) and integrating over the time increment yields:∫ ∆t

0

w(τ)M · εn − εn−1

∆t
dτ =

∫ ∆t

0

w(τ)αΓ̂ dτ −
∫ ∆t

0

w(τ)αK(uh,n) ·

((
1− τ

∆t

)
εn−1 +

τ

∆t
εn

)
dτ (2.45)

Dividing by
∫∆t

0
w(τ)dτ :

M · εn − εn−1

∆t
= αΓ̂−

w(τ)αK(uh,n) ·
((

1− τ
∆t

)
εn−1 + τ

∆tεn

)
dτ∫∆t

0
w(τ)dτ

(2.46)

Assuming that w(τ) = τ
∆t and rearranging with respect to εn yields:

Mεn +
2

3
α∆tK(uh,n)εn = −1

3
α∆tK(uh,n)εn−1 + α∆tΓ̂ (2.47)

Equation (2.47) is the finite element formulation of the problem stated in the introduction of this chapter. Clearly, the
equation is non-linear due to backwards Euler scheme and the fact that the stiffness matrix K depends on the solution of
the approximation. The non-linear equation is solved using an iterative algorithm presented in the next section.

Picard Iteration

To handle the non-linearities of equation (2.47) an iterative procedure has to be implemented which solves the non-linear
equation iterative until a solution with a sufficient accuracy is found. There are several methods for solving non-linear
equations e.g. the Newton-Raphson method and fixed-point iterations. Picard iteration may be the simplest method for
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solving non-linear equations. However, its convergence is relative slow compared to other method, such as the Newton-
Raphson method. Picard iteration is applicable to functions on the form:

x = g(x) (2.48)

where g(x) is an arbitrarily function. In discrete formulation:

xk+1 = g(xk) (2.49)

where the superscription denotes the current iteration. The iteration procedure is terminated as soon as the difference
δ = |xk+1 − xk| becomes lower than a desired threshold. Now, the focus is shifted to the Newton-Raphsons method.
Consider the function:

g(x) = 0 (2.50)

which assumed to be a non-linear function. The Taylor serie’s expansions of g(x) when higher order terms are neglected
is as follows:

g(x) ≈ g(x0) + J |x=x0 · (x− x0) (2.51)

where J is the Jacobian of g(x). This can also be viewed as an iterative procedure where x0 is the k’th iteration and x is
the value at iteration k+1:

g(xk+1) = g(xk) + J |x=xk · (xk+1 − xk) (2.52)

Let now r and d define the residual in the solution and deviation in the x values, respectively. Then the linearization of
the function g(x) can be written in deviation variables from the solution g(x) = 0:

rk = J |x=xk · dk (2.53)

The next iteration can then be determined by:
xk+1 = xk + dk

xk+1 = xk + J |−1
x=xkr

k (2.54)

Equation (2.54) is the Newton-Raphson algorithm used to solve a non-linear equations. It converges with a quadratic rate
which is faster than for fixed-point method, such as Piccard iteration. However, the Newton-Raphson method requires
that we calculate the Jacobian at each iteration, which can be computationally demanding. In addition, in situations where
the Jacobian becomes singular or close to singular, the method fails to determine the root as the solution blows up due
to division by zero. A solution to this problem is to use an approximation of the Jacobian. By linearizing the residual in
terms of using the known values at the last iteration, the residual r can be expressed by the following:

rk = b(k) −A(k)xk (2.55)

Furthermore, lets approximate the Jacobian using the system matrix A(k). Substituting equation (2.55) and the approxi-
mation of J into equation (2.54) gives us:

xk+1 = xk +A(k)−1
·
(
b(k) −A(k)xk

)
xk+1 = A(k)−1

b(k) (2.56)

Comparing equation (2.49) and equation (2.56) it is clear that the latter is Picard iteration as a simplified Newton-Raphson
method.

To apply the simplified Newton-Raphson method to the finite approximation equation in equation (2.47) every term in
equation (2.47) is shifted to the left-hand side and set to equal zero:

ri = Mεn
i +

2

3
α∆tK(εn

i, Tn)εn
i +

1

3
α∆tK(εn

i, Tn)εn−1 − α∆tΓ̂ = 0 (2.57)

To get the residual on the form as in equation (2.55) the expression has to be linearizied. εn−1 is the solvent fraction
value at the previous node, thus, it can be treated as a constant. Furthermore, the linearization is rather simple by using
the most recent approximation of ε. Prior to rearranging equation (2.57) to a form similar to the one in equation (2.55),
the boundary condition is divided into two parts as one term contains the solvent fraction value at the boundary:

αΓ̂ = − 1

Ln
· dL
dt︸ ︷︷ ︸

=Bc

·εin −
kmMs

ρsRLnL0C0
·

(
Ps(ε

−
n )

TnT0
− Pa
Ta

)
︸ ︷︷ ︸

=f

(2.58)
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where ε−n denotes the most recent approximation. Thus, the residual can be written on the form as equation (2.55) with
A(k) andB(k) being:

A(k) = −
(
M +

2

3
α∆tK(εn

i, Tn)−∆tBc

)
(2.59)

B(k) =

(
1

3
α∆tK(εn

i, Tn)−M
)
· εn−1 −∆tf (2.60)

Thus, the next iteration value of εn is expressed as:

εn
i+1 = −

(
M +

2

3
α∆tK(εn

i, Tn)−∆tBc

)−1
((

1

3
α∆tK(εn

i, Tn)−M
)
· εn−1 −∆tf

)
(2.61)

BothBc and f are extended with zeros such that it fits the dimensions ofM andK.

2.2.2 Time Discretization of the ODEs
As previously mentioned, the FEM is only applied to equation (2.17d) has all of the differential equation for the density,
thin film thickness and thin film temperature does not involve differential with respect to the spatial domain. To solve
equation (2.17a)-equation (2.17d) a simpler approach is taken as a forth order explicit Runge-Kutta method is applied. The
Runge-Kutta method is a family of one-step methods for solving differential equations. Compared to the simpler Euler’s
method, the Runge-Kutta method demands more computation, but is in return more accurate and stable [34]. However,
deriving the method is a tedious procedure as it involves applying the trapezoidal method and evaluating the differential
at four different values. Thus, a general formulation of the fourth order explicit Runge-Kutta as stated by Egeland and
Gravdalh in [35] is used with a slightly different notation. Figure 2.6a is an illustration of how the differential terms are
evaluated at four different values to get a general idea of how the forth order Runge-Kutta approximates the next iteration
value. In accordance to formulation by Egeland and Gravdalh in [35], consider the differential equation on the form:

du

dt
= f(u, t) (2.62)

Then the forth order explicit Runge-Kutta method is given by:

k1 = f(un, tn) (2.63a)

k2 = f(un +
h

2
k1, tn +

h

2
) (2.63b)

k3 = f(un +
h

2
k2, tn +

h

2
) (2.63c)

k4 = f(un + hk3, tn + h) (2.63d)

un+1 = un +
h

6
· (k1 + 2k2 + 2k3 + k4) (2.63e)

where h = ∆t.

In contrast to implicit methods, the explicit methods are not unconditionally stable. As a result, depending on the chosen
time (and spatial) increment, the approximated solution can grow unbounded and no longer give any meaningful informa-
tion. To avoid instability, it is important to chose the parameters such that amplification factor is still within the stability
region of the applied method. Figure 2.6b illustrated the stability region for the Runge-Kutta methods from order one to
four. The forth order method has clearly larger stability region of that of an order one, which is identical to the stability re-
gion of the Euler’s method. Stability estimates are often limited to linear systems as such estimates for non-linear systems
are tedious to derive and involves to a large extent advanced mathematics. Thus, an estimate of the stability condition
for this particular problem will not be derived. However, the concept of instability is important to be aware of as certain
combination of parameter values can render the numerical method unstable.

Page 18 Master’s Thesis



Optimization and Control of Electrode Drying Process Chapter 2

(a) Illustration of the usage of four slope values for the forth
order Runge-Kutta method [36].

(b) The stability regions of the Runge-Kutta method from
order one to four [35].

Figure 2.6: Illustration of the approximation procedure and stability region of the Runge-Kutta method.

2.3 Linear System Theory
Linearization is in essence finding a linear approximation of a non-linear function around a specific point. Linear systems
are easier to handle in terms of analysis, control and optimization as linear system theory can be applied which can not be
extended to non-linear system. Thus, it is common in situations when dealing with non-linear system to derive a linear
model which hopefully resembles the non-linear model with sufficiency. A linearized model is found by restricting the
Taylor Serie’s expansion to its linear terms. Consider the the non-linear differential function written in vector form:

ẋ = f(x) (2.64)

where f(x) is assumed to be infinite differentiable. Then it’s Taylor Serie’s expansion is:

ẋ = f(x0) +

∞∑
k=1

f (k)(x0)

k!
· (x− x0)k (2.65)

Restricting the Taylor Serie’s to its linear terms yields:

ẋ ≈ f(x0) + J · (x− x0) (2.66)

A simple example of linearization of a function is illustrated in figure 2.7. The function f(x) = x2 is linearized around
x = 1. In a close neighbourhood of x = 1 the approximated linear model is accurate. However, when moving further
away from the point x = 1 the linearized approximation becomes less accurate. For these reasons, a linear approximation
of a non-linear model is only valid for small perturbations from the linearization point.

Usually, when controlling a process around the operating point, the model parameters are defined as deviations variables
from the operating point. To convert the linearized model into a model expressed by deviation variables are done in a
fairly straight forward manner. Again, consider the linear terms of the Taylor Serie’s expansion as in equation (2.66). For
simplicity ẋ is replaced by f(x) to make the notation easier to follow. A linear model expressed by deviation variables
can then be derived as follows:

f(x) − f(x0) ≈ J · (x− x0)

∆f(x) = ∆ẋ ≈ J ·∆x

The system is now a linear differential equation on the form:

∆ẋ = A ·∆x (2.67)

In a control problem, one or more states serves as manipulated variables used to drive the system in a desired direction.
These states are removed form the state vector x and placed in a separate input vector u. As a consequence, the linear
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Figure 2.7: Linearization of the function f(x) = x2 around x = 1.

system of differential equation can then be written in the form a of state space realization:

∆ẋ = A ·∆x+B ·∆u
∆y = C ·∆x+D ·∆u

(2.68)

where ∆x is the reduced state vector as one or more states is used as control inputs. The removed states from ∆x are
placed in ∆u. B is a matrix with the terms which contains ∆u, e.g. kc if the air temperature Ta is used as a control
input. ∆y represents the measurements in the system which in most cases is limited to some of the states them self.
However, the measurement can be a combination of several states and inputs as C and D is the matrices which contains
the respective coefficients for ∆x and ∆u for the distinct measurement.

2.3.1 Stability
An important property of the continuous state-space model is the stability. An unstable system may be stabilized by
feedback control. However, designing a controller is much easier when the system is already stable. The eigenvalues of
the system matrix, A, can be used as a measure of the system stability. To get an idea on how the eigenvalues can be a
measurement of the system stability, consider the single variable differential equation:

ẏ = λy (2.69)

with the analytical solution:
y(t) = eλt (2.70)

Figure 2.8a shows the plot of two distinct scenarios with the eigenvalues of the system being 0.25 and -1, respectively. As
seen for the case with λ = −1, the function value is decreasing exponentially with time. For the second case λ = 0.25, the
function value is increasing exponentially despite being lower than 1. Clearly, the effects the second case has on system
is unwanted as state values will eventually grow unbounded with time as:

lim
t→∞

eλt =∞, ∀λ > 0

Thus, a system is stable when the real value of the eigenvalue are less or equal to zero. Figure 2.8b illustrates the region
in which a continuous system remains stable. A special case occurs when an eigenvalue at zero is not a simple root.
Where as a simple root with a real value of zero implies marginally stability, a root of higher multiplicity than 1 leaves
the system unstable. However, Hovd mentions that in most practical situations system which are marginally stable will
need to be stabilized by feedback and therefore classifies such system as unstable [37]. The eigenvalues effects on the
system’s stability can be extended to multivariable system as multivariable system can be solved in the same manner as
monovariable system which is well explained by Chen in [38]. Thus, the stability region of a monovariable system also
hold for a multivariable system with the exceptions of roots at zero with a multiplicity of two or higher.
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(a) Illustration of the eigenvalues influence on the solution.
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(b) The stability region of the a continuous system.

Figure 2.8: Plots for illustrating the effects of λ on the stability of a system.

2.3.2 Discretization of Continuous Model
In practice, modern computers and electronics does not have the ability to read and apply measurements and control
inputs continuously. These actions are all executed at discrete points in time in intervals. As a consequence, a control
system can not use a continuous model, as this requires a continuous flow of measurements readings and control input
applications. The solution to this problem is to discretize the continuous model. There are several method to discretize
continuous model, e.g. Euler’s method and Zero-Oder-Hold method. The approach of the latter is taken. Assume zero
order hold (which in essence means that each sample value is hold constant throughout the sampling interval) and a time
step of length k, then integration over a time step yields:

x(n+ nk) = eAkx(nk) +

∫ nk+k

nk

eA(nk+k−τ)Bτdτ (2.71)

which yields the following discrete system:

xn+1 = Adxk +Bduk (2.72)

where:

Ad = eAk =

∞∑
j=0

Aj

j!
(2.73)

Bd =

∫ nk+k

nk

eA(nk+k−τ)Bτdτ (2.74)

Equation (2.72) is the discrete state-space model. C and D remains the same as the measurements readings are not
affected by the discretization. However, a property that is affected by the discretization is the stability region. As for the
continuous system, it is desirable to avoid the discrete solution to grow unbound with increasing iterations. Because of the
iterative procedure, the amplification factor can make the system grow unbounded in both positive and negative direction.
Thus, the stability region for a discrete model is limited to the unit circle as illustrated in figure 2.9.
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Figure 2.9: The stability region of a discrete linear system.

2.3.3 Controllability and Observability
For control purposes, information about whether or not the system is controllable based upon the chosen control inputs
is of interest. With the term controllable, it means that the control input has the ability to move any state within the state
space to an arbitrarily state within a finite time interval. If a system fulfills this criteria, the pair (A,B) is said to be
controllable. For linear system, the controllability matrix is defined as:

C =
[
B AB A2B . . . An−1B

]
(2.75)

where n is the dimension of the square matrix A, or more convenient, the number of states. If the rank of C is of n, then
the system controllable. For each linear dependent row vectors there is one state which is uncontrollable. Note that term
controllability does not mention anything about which trajectory the states should take, nor the magnitude of the control
input. Thus, in practice, controllability can be prevented by saturation limits. Furthermore, the observability matrix gives
information whether or not the system is observable. Observability means that with information about the control input
and measurement, any unknown initial states can be determined. If so, the pair (A,C) is said to be observable. The
observability matrix is defined as:

O =


C
CA
CA2

...
CAn−1

 (2.76)

In comparions to the controllability matrix, the system is observable if and only if the rank of O equals the number of
states n.
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2.4 State Estimation
In control problems, such as in stabilization using state-feedback, knowing the state values is a necessity. However,
measurement of every state is rarely available in practice and for those that are, the signals will be contaminated by noise.
A solution to this problem is to use state estimation which uses the available measurements and the covariance of the
process and measurement noise to calculate a more accurate estimation of the states. A widely adopted method for doing
so is by implementing a Kalman filter. The Kalman filter comes in several different variations and can be applied to linear
and non-linear systems. The unscented Kalman filter (UKF) and extended Kalman filter (EKF) is methods which can be
applied to non-linear problems, with the latter being the one applied in this thesis [39]. The EKF is in essence the original
linear Kalman filter, but for each iteration it is linearized about the estimate of the current mean and covariance. Consider
the non-linear discrete system:

xk = f(xk−1, uk−1, wk−1)

yk = h(xk, vk)
(2.77)

where f is the non-linear state function, w is the process noise, h is the measurement function and v is the measurement
noise. The process and measurement noise is assumed to be normally distributed Gaussian white noise, such that:

w ∼ N (0,Q), v ∼ N (0,R)

where Q and R represents the covariance matrices for w and v, respectively. Linearizing the non-linear state function
about the expected values yields:

xk ≈ f(xk−1,a, uk−1,a, wk−1,a) + Jx · (xk−1 − xk−1,a) + Ju · (uk−1 − uk−1,a) + Jw(wk−1 − wk−1,a)
(2.78)

yk ≈ h(xk,a, vk,a) +Hx · (xk − xk,a) + Jv · (vk − vk,a) (2.79)

where the subscription (·)k−1,a denotes the expected value of the previous iteration. Depending on the information that
is available, the most accurate estimation of the states is always desired. In the situations where all of the measurement
is available, an estimate based upon the expected values of all the measurement can be calculated, often referred to as a
posteriori estimate. However, there is situation where the last measurement has not yet been processed, a priori estimate
can be calculated based upon the expected values of the previous measurement. The priori estimate can then later be
smoothed when the last measurement has been acquired, producing a more accurate estimate. As the priori estimate is
determined by the expected values of the previous measurements, it can be calculated based upon the expected value of
the previous posteriori estimate. Using the linearized model in equation (2.78) while keeping in mind that the function is
linearized about the expected values, the priori estimate can be expressed by:

x−k = E[x+
k−1] ≈ f(x+

k−1, uk−1, 0) (2.80)

where the superscription − and + denotes the priori and posteriori estimates, respectively. Following the same for the priori
estimate of the covariance along with the assumption of the process noise enters the system directly. As a consequence,
the Jacobian of the non-linear function with respect to w becomes one. In addition, as the process noise is assumed to be
normally distributed Gaussian white noise with a constant covariance, the Q matrix does not change for each iteration.
The priori estimate of the covariance matrix is expressed as (derivation of the expression can be found in appendix B):

P−k = JxP
+
k−1J

>
x +Q (2.81)

With theQ being unknown in practice, it becomes a tuning parameter for the EKF. Choosing small values for the diagonal
elements ofQ implies that the estimated is of high accuracy and small variations are expected. In contrast, choosing large
values implies that large variations is expected, and that the estimate is of poor accuracy.

For the posteriori estimate, the idea is to produce a more accurate estimate using the last available measurement. As
the priori estimate is purely based on the previous control inputs and estimated states, it does not take into account
unmodelled dynamics of the actual plant. As a consequence, there will be an error between the actual measurement of
the system and the predicted measurement. To solve this problem the error in the actual and predicted measurement is
multiplied with a corrective factor and added to the priori state estimation. Using the linearized model in equation (2.79)
for the measurement about the current priori estimate, the posteriori estimate can be expressed as:

x+
k = x−k +Kk

(
yk − h(x−k )

)
(2.82)

whereKk is the corrective factor matrix also known as the Kalman gain. In terms of least square error minimization, the
Kalman gain is the matrix that minimizes the sum of the squared errors. For linear cases the Kalman gain is optimal[39].
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As for non-linear cases the Kalman gain is only suboptimal. There are iterative methods for reducing the linearization
error, however, such method will not be implemented in this thesis. The derivation of the Kalman gain is cumbersome
and yields little to no additional intuition on how the Kalman gain minimizes the error. Therefore, the Kalman gain is
expressed in its simplest form (for derivation see appendix B):

Kk = P−k J
>
h

(
Jh(x−k )P−k J

>
h (x−k ) +R

)−1

(2.83)

In the same manner as for Q, the covariance matrix of the measurement R can be used as a tuning parameter. However,
the covariance of the measurement can be obtained by measuring the process about a stationary operating point. The same
rules applies to R as for Q, with large elements implies large expected variations and vice versa. Finally, the posteriori
estimate of the covariance is needed. As for the Kalman gain, the derivation of the posteriori estimate of the covariance
matrix can be found in appendix B. The posteriori estimate of covariance matrix can be found by:

P+
k =

(
I −KkJh(x−k )

)
P−k (2.84)

Figure 2.10 is an illustration of how the EKF estimates the states in parallel with the physical plant. The plant block
should not be confused by the non-linear model f , as the plant represents the exact dynamics of the process which is
unknown, whereas f is only an approximation. The computation of the Kalman gain and the posteriori estimate of the
covariance matrix is omitted as the purpose of the figure is to illustrate how the EKF computes the estimates based upon
the control inputs, previous estimates and available measurements in its simplicity. For a more detailed block diagram,
see the work by Terejanu et al. in [40]. However, the figure shows the very essence of the Kalaman filter, which is that
the state estimation based upon the approximated model is smoothed by using the available measurement of the physical
plant.

Plant Sensor

f h

Kk

Xkuk

x−k

Yk

−

x+
k

wk vk

Kalman Filter

Figure 2.10: Simplified block diagram of the plant with the extended Kalman filter implemented.
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2.4.1 EKF - Algorithm
Based upon the previous elaboration, the EKF can summarized as a iterative algorithm as followed: Initialize:

x+
0 = E[x0] = x0

P 0 = E[(x0 − x+
0 )(x0 − x+

0 )>]
(2.85a)

Priori estimates:
x−k ≈ f(x+

k−1, uk−1) (2.85b)

P−k = Jf(x+
k−1)Pk−1J

>
f (x+

k−1) +Q (2.85c)

Posteriori estimates:
Kk = P−k J

>
h

(
Jh(x−k )P−k J

>
h (x−k ) +R

)−1

(2.85d)

P+
k =

(
I −KkJh(x−k )

)
P−k (2.85e)

x+
k ≈ x

−
k +Kk

(
yk − h(x−k )

)
(2.85f)
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2.5 Optimization
In everyday practice, achieving the best possible outcome is always desirable, whether it is maximizing the total income
of a business, saving as much fuel as possible for a space rocket or controlling a process in the best possible way. As a
result, optimization theory is widely adopted in a broad collection of industries, such as; economics, science and medicine
to determine optimal conditions for specific problems. Although optimization can be seen as a relatively young in terms
of technology, optimization has and always will occur in nature through evolution. As for example, the shape of the body
of fish has throughout history evolved to reduce the aerodynamic forces which allow the fish to swim more efficiently,
thus reduces the energy needed for moving.

At the very heart of every optimization problem is the objective at which the engineer want to optimize. The objective can
be minimizing the time it takes to drive through a city, reducing the heat needed for a process or simply finding a minima
of a polynomial. Mathematically, the objective can take many forms and in reality two problem will never be the same.
However, problems are classified as either linear, quadratic or non-linear. In addition, the objective are in most cases
limited by given conditions, referred to as constraints. As a consequence, one distinguish between unconstrained and
constrained optimization problem. In practice, all optimization problem is limited by some constraints to some degree.
The constraints restricts the optimization at reaching the same optimal point as for an unconstrained problem. Figure 2.11
is an illustration on how the minima of the objective function f(x) = x2 is limited by the constraint c(x) ≥ 10 − 5x.
Here, c(x) is an inequality constraint, which in essence means that the optimal point can be anywhere as long as it is
greater than c(x). However, it could be a equality constraint, which again implies that the optimal optimal point has to
equal c(x). In this particular case, it does not matter whether c(x) is an inequality or equality constraint as the minima
lies at the interception of f(x) and c(x). Naturally, an objective can be restricted by a combination of several constraints,
which can be both inequality and equality constraints. In addition, constraints can be constants, linear or non linear.

As the optimization problem comes in varies forms, naturally, there exists numerous different methods for solving opti-
mization problems. Popular method such as the simplex method is well suited for solving linear optimization problems.
For non linear problems, a class of methods known interior-points methods can be used. However, in this thesis, a
sequential quadratic program (SQP) method is applied for solving the non-linear constrained optimization problem.
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c(x) = 10 − 5x

Figure 2.11: Illustration of how constraints limits the optimal (minima) conditions.

The SQP method for solving non-linear optimization problems is an iterative method at which the objective and constraint
function are twice continuously differential. It involves using Lagrangian multipliers to design a quadratic subproblem
and then using the respective minimizer of the subproblem to define the next iteration. The derivation of the method is to
a large extent highly theoretical and is not emphasized in this thesis. For a comprehensive elaboration of the SQP method,
see the work by Nocedal and Wright in [41]. Instead, figure 2.12 shows a simplistic flowchart of the SQP algorithm.
The algorithm starts by initializing the optimization vectors, as well as other variables before it progresses by solving the
subproblem. If the constraints are violated, the optimization variable is updates and the subproblem is recomputed. If the
solution to the subproblem satisfy the constraints, the algorithm progresses by checking whether or not the solution has
converged. This is mainly done by checking if the 2-norm of previous and current iteration has decreased below a certain
threshold. If so, the current iteration is accepted as the solution to the optimization problem.
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Figure 2.12: Simplistic flowchart of the SQP-method.

As the derivation of the SQP method is omitted in the thesis, the general formulation of an optimization problem as stated
by Jongen et al. in [42]:

arg min
x∈Rn

f(x) (2.86a)

such that
ci(x) = 0, i ∈ E (2.86b)

ci(x) ≥ 0, i ∈ I (2.86c)

where f(x) is the objective function, x is the optimization variable and ci(x) is the constraint functions. E and I denotes
the set which contains the equality and inequality constraints, respectively.
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2.6 Control Theory
In many situations it is desirable to keep process variables within a close proximity of a reference value. The reasons
are many, some examples may be to increase the throughput of a process, increase the performance of a product or keep
a machine from operating at condition which may cause rapid degeneration. Process control is found in one form or
another in every system, and with the increasing development in computational power, control systems becomes more
sophisticated and advanced for each day.

2.6.1 Laplace Transform and Scaling
To avoid repeating already presented theory, a dynamic system used for control purposes are generally linearized and
expressed using a state-space model as in equation (2.68). Usually, a process is affected by some disturbance, d, of
one or another form. Disturbances are added to the state-space model either by adding a separate term or by treating it
as an input. In this thesis both approaches is taken depending on which is more convenient for the given situation. It is
important to note that the state-space model is expressed in deviation variables from the point at which the dynamic model
is linearized about. Hence, the model is limited to operating conditions in close proximity of the linearization point. As
the perturbations may be large during start up of a process, a common approach in control engineering is set the controllers
to manual until the process reaches the operating point. A soon as the process reaches its operating point, the controllers
are set to automatic and the process is controlled based upon a linearized model [37]. Signals that enters the system are
rarely constant (with reference signals being an exception) and varies over time. As the signal may be changing slowly or
fast with time, it is difficult to asses how the system response to signals of every form. Rather than analysing the systems
response in the time domain, the system is converted to the s-domain (Laplace-domain), where s is the complex variable
jω. Consider the linearized state-space model:

ẋ = Ax+Bu+Ed

y = Cx+Du+ Fd

Using the rules of typical Laplace transforms as found in the table in [43] by Murray, the state-space model can be
converted to the s-domain as follows:

sx(s) + x(0) = Ax(s) +Bu(s) +Ed(s)

y(s) = Cx(s) +Du(s) + Fd(s)

y(s) =
(
C (sI −A)

−1
B +D

)
u(s) +

(
C (sI −A)

−1
E + F

)
d

which is later reduced to:
y(s) = G(s)u(s) +Gd(s)d(s) (2.87)

Figure 2.13 is a block diagram of the Laplace transformed system. This block diagram is later extended with controller
and feedback.

G(s)

Gd(s)

u y

d

Figure 2.13: Block diagram of the Laplace transformed system.

With the magnitude of the transfer functions varying from system to system, it is difficult to apply general measures of
performance of the control system. Rather than representing the system with its original values, it is common to scale the
system such that the maximum acceptable deviation from the reference value, available control input as well as expected
disturbances is all set to 1. This does not only makes the control system easier to understand for someone without any
knowledge of the system, but also enables the application of general measurement of performance and robustness. The
scaled variables can be defined as:

û =
u

umax
, ŷ =

y

ymax
, d̂ =

d

dmax
(2.88)
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For multivariable systems the scaling is achieved by diagonal scaling matrices, with each diagonal element being the
appropriate scaling constant for the corresponding input/output/disturbance. On matrix form, the scaled system can be
expressed as:

Wyŷ(s) = G(s)Wuû(s) +Gd(s)Wdd̂(s)

ŷ(s) = Ĝ(s)û(s) + Ĝd(s)d̂(s) (2.89)

where Wy , Wu and Wd is the scaling matrices for the output, input and disturbances, respectively. The hat notation is
from here omitted for simplicity, hence, when presenting transfer function later on it is assumed that it is scaled.

2.6.2 Feedback Control
In general, it is distinguished between two types of control loops; open and closed loop control. In open loop control
structures, the corrective input signal is calculated by a controller independently of the process output. As a consequence,
the controller has no information about how the output is behaving. Regardless of the output growing out of bounds or
oscillating, the controller can not adjust the control input to correct the behavior of the output. What causes the unwanted
behavior of the output can be for example uncertainties in the process model, changes in the disturbance or the process
being unstable. Thus, the applicability of an open loop control structure is limited. Figure 2.14a shows a block diagram
of an open loop control system with K(s) being the controller. It is clear from the illustration that the controller has no
knowledge of the output and calculates what it ”thinks” is the best control input based purely on the reference input. In
contrast, in a closed loop control structure, the output is fed back to the controller which allows it to use the information
of the output to calculate a corrective control input. This enables the controller to adjust for changes in the output caused
by various reason. It can correct for model uncertainties and changes in the disturbance. It also have the ability to stabilize
an unstable process. These are some of the advantages of feedback control (closed loop) and makes it, by far, the most
applied control structure. Figure 2.14b is a block diagram with feedback implemented. Here r, e and n represents the
reference value, error between the reference and the actual output and the measurement noise from the sensor used to
obtain the measurement, respectively.

K(s) G(s)

Gd(s)

r u y

d

(a) Open loop control structure.

K(s) G(s)

Gd(s)

r e u y

−

d

n

(b) Closed loop control structure.

Figure 2.14: Block diagram of open loop and closed loop control structure.

The idea of feedback control is to minimize the error e. There are many different approaches for minimizing the error, e.g.
using P/PI/PID-controllers, H2 - optimal control or MPC. Which controller that fits best depends on the process and its
complexity. However, P/PI/PID-controllers are in most situations sufficient for achieving desirable control performance
[44]. Naturally, testing and tuning the controller whilst the process is operating is not reasonable as it may cause damage to
components. Thus, it is desirable to assess how different signal affects the error prior to implementing the control system
on the actual process. Using the block diagram of a feedback control structure in figure 2.14b to derive an expression for
the error e yields:

e =
(
I +G(s)K(s)

)−1
Gd(s)d(s)−

(
I +G(s)K(s)

)−1
r(s)−

(
I +G(s)K(s)

)−1
G(s)K(s)n(s)

This can be further reduced to:
e = S(s)Gd(s)d(s)− S(s)r(s)− T (s)n(s) (2.90)

S(s) and T (s) is referred to as the sensitivity function and the complementary sensitivity function. By intuition, the
magnitude of S and T amplifies the disturbance and noise signals influence on the error. To be precise, the sensitivity
and complementary sensitivity function tells how much the disturbance and noise signal is affected by the feedback,
respectively. Naturally, the best option would be to make both S and T as low as possible. However, there is a trade off
as S and T is related by:

S + T = 1 (2.91)
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This implies that by reducing either one results in an increase in the other. The term ”waterbed effect” is often used when
explaining the relation of S and T . As a consequence, rejecting both disturbances and measurement noise with the same
frequency is impossible. However, as most disturbances is signals of relative low frequency compared to the frequency
of measurement noise, controllers are designed such that the magnitude of S is small at low frequencies and larger for
higher frequencies. However, large values in both S and T implies poor control at the respective frequency. Thus, it is
of interest to keep the values of S and T as low as possible. In fact, the peak values of S and T is used as a measure of
control performance. The peak values are defined as:

MS = max
ω

∣∣S(jω)
∣∣ (2.92)

MT = max
ω

∣∣T (jω)
∣∣ (2.93)

A similar definition using the largest singular value is applicable for multi-input-multi-output system (MIMO). However,
MIMO systems is not considered in this thesis. For strictly proper systems, MS will always be great or equal to 1 with
MS ≤ 2 being considered acceptable[37]. Similarly, MT will always be greater or equal to one with MT ≤ 1.3 being
considered acceptable[37].

Designing the controller such that S is small for low frequencies and larger at higher frequencies implies that the con-
trollers ability to reject disturbances drops off as the frequency increases. The frequency range at which the controller is
effective is referred to as the bandwidth frequency. In most situations the lower limit of the bandwidth is at zero, resulting
in the bandwidth being referred to the frequency at which the controllers stops being effective. Considering that S tells
how much the disturbances is amplified by the feedback, it indicates when the effect of the controller start to drop off.
Hovd defines in [37] the bandwidth frequency for single-input-single-output system (SISO) as:

ωb →
∣∣S(jω)

∣∣ =
1√
2

(2.94)

Ideally, one want to the bandwidth to be as large as possible to increase the range at which the controller is effective.
However, there are several factor which restricts the bandwidth. One factor is time delays which puts a major limitation
on the bandwidth. As a consequence, processes with large internal/input/output delay is inherently difficult to control. In
practice, every system has a time delay to some extent.

2.6.3 Loop Shaping
There are several ways for tuning controllers, e.g. Ziegler-Nichols method, step-response fitting or IMC-tuning. Loop
shaping is a technique for tuning the controller in which the magnitude of a Bode-plot is shaped such that desirable closed
loop performances is achieved. A Bode-plot is a representation of the magnitude and phase as a function of frequency of
a transfer function. The magnitude is either represented in dB or absolute values. In this thesis the latter representation is
used. As Bode-plot is mainly a graphical representation of the transfer function, it will not be further explained.

A prerequisite for applying the rules of loop shaping is that the system is appropriately scaled as previously mentioned.
The idea is to plot the frequency response of GK, Gd, S and T to assess control performance and stability. Within
the bandwidth, it is desirable that the controller has the ability cancel out any disturbances and track the reference.
Furthermore, to minimize the influence of the feedback on the measurement noise the magnitude of the open loop gain
should be as low as possible for frequencies above the bandwidth. In summary, it is required that:

• For disturbance rejection: ||GK|| � ||Gd|| for frequencies below the bandwidth.

• For reference tracking: ||GK|| � ||r|| for frequencies below the bandwidth.

• For low the sensitivity to measurement noise: ||GK|| � 1 for frequencies above the bandwidth.

In addition, MT and MS should be as low as possible and at least as small such that the inequalities previously mentioned
is fulfilled. The stability of a system can be determined in the Bode-plot by looking at the frequency at which |GK| = 1,
known as the crossover-frequency, ωc. The system is stable as long as |GK| remains less than 1 for all frequencies above
ωc provided that the phase at ωc is larger than -180◦. Furthermore, the gain and phase margin are terms which indicates
how far a system are from being unstable. The gain and phase margin are defined as:

GM =
1

|GK(jω180|)
(2.95)

PM = 180◦ + ∠GK(jωc) (2.96)

Page 30 Master’s Thesis



Optimization and Control of Electrode Drying Process Chapter 2

where ω180 is the frequency at which the phase for GK equals −180◦. To maintain robustness form model uncertainties,
it is recommended that GM ≥ 2 and PM ≥ 60◦ [44]. However, GM and PM does not guarantee good control
performance.

Figure 2.15 shows a Bode-plot of an arbitrary system with the terms mentioned above pointed out. When tuning, a
initial guess for a controller is used when plotting the Bode-plot. If the requirement mentioned above is not satisfied,
the controller is tuned and the requirement is checked again. This process is repeated until the system shows satisfying
performance.
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Figure 2.15: Example of a Bode-plot with performance indications marked.

2.6.4 Anti-Windup
In addition to the requirements mentioned in the previous section, the usage of the control input also has to be considered.
For an ideal controller, it can stabilize and control a system as it can produce control inputs of unlimited magnitude. In
practice, control input is bounded and large inputs may cause saturation. For controllers consisting purely of a proportional
term this does not cause any problem except limiting the input implemented in the system. However, for controllers with
a integrator, saturation causes an additional unwanted effect. In situations when the input is saturated, the integral term
in the controller keeps growing and ”winds up” in an attempt to compensate for the error in the output. When the output
has been brought back near the reference value, the input value is still affected by the integrator adding to the control
input during the saturation. To prevent wind up effects from happening, anti-windup schemes are implemented in the
controller. For a PI/PID controller this is achieved by having the implemented control input fed back through a low pass
filter. Figure 2.16 shows the block diagram of a simple anti-windup implementation for a PI controller as stated in [37].
Here the integration term is implemented in the low pass filter.

Kp

1
Tis+1

e û u

Figure 2.16: Implementation of anti-windup for a PI-controller.
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Chapter 3

Model Development and Implementation

The work done in this thesis was carried out in Matlab. Thus, a majority of the implementation of the previous dis-
cussed topics was necessary. This chapter is structured with the same substructure as the previous chapter. The different
implementations and simulations are explained, and important code snippets are presented in the chapter.

3.1 Implementation of the Numerical Method
Due to equation (2.17a) - equation (2.17d) being implicit, the equations has to be solved simultaneously. As a conse-
quence, prior to implementing the numerical method in Matlab, the equations are arranged in a matrix from with Θ and
dX
dt

being the vector with the thickness, temperature and density states and differential terms, respectively:

Θ =

LT
ρf

 , dX

dt
=

 dL
dt
dT
dt
dρf
dt


In matrix form, the system of equations can be represented as:1 0 0

0 1 0
0 0 1

 · dX
dt

=

 0 0 − L
ρf

−TL 0 − T
ρf

w 0 0

 · dX
dt

+

 −h
−g + q̇
v



dX

dt
=

 1 0 L
ρf

T
L 1 T

ρf

−w 0 1


−1  −h
−g + q̇
v

 (3.1)

where h, g, q̇ and v are the terms in equation (2.17a)-equation (2.17d) which do not contain any of the derivatives. The
derivation of equation (3.1) and its terms can be found in appendix C. Furthermore, dX

dt
is a function of Θ and applying

the Runge-Kutta method as stated in equation (2.63) with the system written on the form as in equation (3.1) yields the
following iterative algorithm:

k1 =
dX

dt
(Θn) (3.2a)

k2 =
dX

dt

(
Θn +

∆t

2
k1

)
(3.2b)

k3 =
dX

dt

(
Θn +

∆t

2
k2

)
(3.2c)

k4 =
dX

dt
(Θn + ∆tk3) (3.2d)

Θn+1 = Θn +
1

6
· (k1 + 2k2 + 2k3 + k4) (3.2e)
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The function listed in listing 3.1 finds the gradient ki at each iteration for the Runge-Kutta method. Furthermore, list-
ing 3.2 lists the overall implementation of the numerical method with the combination of the Runge-Kutta method and
the simplified Newton-Raphsons method derived from the FEM method in section 2.2. The main script can be found in
appendix D.1 in appendix D.

1 function k = RungeKutta(p,t,v,w,K)
2 %-------------------------------------------------------------------------%
3 %------------Calculates the slopes for Runge-Kutta Method-----------------%
4 %-------------------------------------------------------------------------%
5

6 %% Initialization
7 qin = p.k_c*(p.Ta(t)-v(2)*p.T0);
8 h_fg = 6.991*(v(2)*p.T0)ˆ2-6193*(v(2)*p.T0)+1.985e06;
9 D = D_Coefficient(w.*p.C0,v(2)*p.T0,p);

10 Ps = p_sol(w(end)*p.C0, v(2)*p.T0,p);
11

12 %% Solves the Implicit Function dXdt(Theta + delta t*k_n)
13 Q = D.*K; b = p.D0/((v(1)*p.L0)ˆ2);
14 q = (p.rho_s*p.rho_p*(p.rho_p-p.rho_s)*p.C0)/(p.rho0*(w(end)*p.C0*(p.rho_s-p.rho_p)+p.rho_p)ˆ2);
15 B = [-(p.k_m*p.Ms)/(v(3)*p.rho0*p.R*p.L0)*(Ps/(v(2)*p.T0)-p.Pa(p.Ta(t))/p.Ta(t));
16 -(p.k_m*p.Ms*h_fg)/(v(3)*p.rho0*p.Cp*p.R*v(1)*p.L0*p.T0)*(Ps/(v(2)*p.T0)-p.Pa(p.Ta(t))/p.Ta(

t))+qin/(v(3)*p.rho0*p.Cp*p.T0*v(1)*p.L0);
17 -q*(p.k_m*p.Ms)/(p.R*p.rho0*v(1)*p.L0)*(Ps/(v(2)*p.T0)-p.Pa(p.Ta(t))/p.Ta(t))-q*b*Q(end,end

-2:end)*w(end-2:end)];
18 A = [1 0 v(1)/v(3); v(2)/v(1) 1 v(2)/v(3); q*v(3)/v(1) 0 1];
19

20 k = A\B;
21 end

Listing 3.1: Implementation of the Runge-Kutta gradient function in Matlab

1 function [x, DD] = solveDryingSystem(p,t,x0,M,K)
2

3 %-------------------------------------------------------------------------%
4 %-------------------Solves the drying system with FEM---------------------%
5 %---------------------------Dimensionless Model---------------------------%
6 %-------------------------------------------------------------------------%
7

8 x = zeros(length(p.z)+3,length(t)); x(:,1) = x0; eps = 1e-04; max_iter = 20; DD = zeros(length(p.z),
length(t));

9 for i = 1:length(t)-1
10

11 %% The Runge-Kutta Method for Solving the ODEs
12 k1 = RungeKutta(p,i*p.dt,x(1:3,i),x(4:end,i),K);
13 k2 = RungeKutta(p,i*p.dt,x(1:3,i)+p.dt*k1/2,x(4:end,i),K);
14 k3 = RungeKutta(p,i*p.dt,x(1:3,i)+p.dt*k2/2,x(4:end,i),K);
15 k4 = RungeKutta(p,i*p.dt,x(1:3,i)+p.dt*k3,x(4:end,i),K);
16

17 x(1:3,i+1) = x(1:3,i)+1/6*p.dt*(k1+2*k2+2*k3+k4);
18

19 %% The Simplified Newton-Raphson’s Method for Solving the Finite Element Approximation
20 j = 1; c_next = x(4:end,i); dc = 1; b = p.D0/((x(1,i)*p.L0)ˆ2);
21 R = zeros(size(M)); F = zeros(length(p.z),1);
22 while max(dc) > eps && max_iter > j
23 D = D_Coefficient(c_next.*p.C0,x(2,i)*p.T0,p); Q = D.*K;
24 Ps = p_sol(c_next(end)*p.C0, x(2,i)*p.T0,p);
25 R(end) = k1(1)/x(1,i);K_star = -(b*Q+R); F(end) = -(p.k_m*p.Ms)/(x(3,i)*p.rho0*p.R*x(1,i)*p.

L0*p.C0)*(Ps/(x(2,i)*p.T0)-p.Pa(p.Ta(0))/p.Ta(0));
26 A = -(M-p.dt*K_star); B = -M*x(4:end,i)-p.dt*F;
27 c_prev = c_next; c_next = A\B; dc = norm(c_prev-c_next); j = j+1;
28 end
29 x(4:end,i+1) = c_next; DD(:,i) = D;
30 end
31 end

Listing 3.2: Implementation of the numerical method in Matlab
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3.2 Linearization and Linear Analysis
The linearization is, as mentioned, an attempt to simplify the control and optimization problems by converting the non-
linear system into a linear system. The implementation in Matlab is done in the order which the linear system theory is
presented. In addition, step responses are included in the implementation to assess whether or not the linear system reacts
to excitations in the control inputs in the same way as the non-linear model.

3.2.1 Linearization
To begin with, linearization done analytically would be time consuming and mistakes would easily been made due to the
complexity of the system. To simplify the work and to prevent any human mistakes, the model is implemented in Matlab
using the Symbolic Toolbox. Thus, the model is represented by symbolic variables which can take any value. However,
the symbolic variables are restricted to real values as complex values does not occur in practice for the chosen variables. A
snip out of the linearization function in Matlab which illustrates the declaration of the symbolic variables and the variable
dependent parameters is shown in listing 3.3. The complete Linearization.m is found in appendix D.2.

1 %% Declaring the Symbolic Variables
2 c = sym(’c’, [length(p.z) 1], ’real’);
3 syms L T rho Ta V real;
4

5 %% Declaring the Parameters in Terms of the Symbolic Variables
6 Ps = p_sol(c(end)*p.C0,T*p.T0,p);
7 D = D_Coefficient(c*p.C0,T*p.T0,p);
8 h_fg = 6.991*(T*p.T0)ˆ2-6193*T*p.T0+1.848e06;
9 Pa = p.rh*133.332*10.ˆ(7.54826-1979.68./(222.2+(Ta-273)));

10 [k_c , k_m ] = TransferCoefficients(V);
11 qin = k_c*(Ta-T*p.T0);

Listing 3.3: Declaration of the symbolic variables

Furthermore, the Jacobian is found using Matlabs built in function jacobian. The Jacobian is first found for the den-
sity, thickness and temperature, and then the solvent fractions. This is purely a result of the procedure of the numerical
approach, and could, in hindsight, be made more efficient by only calculating the Jacobian of the whole system. Anyway,
the Jacobians are evaluated at the final values of the non-linear model using the subs function which substitutes the
chosen symbolic variables with predefined values. This is realized by solving the non-linear system prior to the lineariza-
tion procedure. However, this does require that the drying time is sufficiently long such that stationary conditions for the
non-linear system is achieved. The state-space matrices A and B are assembled by adding the respective elements from
the Jacobians in the correct order of the state vector. The state vector is always defined as in the numerical method with
Ta and V being added at the end depending on if they are chosen as control inputs or not. In appendix D.2, both Ta
and V is used as control inputs, thus the elements of the Jacobians which contains the terms with Ta and V is placed in
matrixB. As for now, there is no automatic procedure to form the matrices based upon the chosen control inputs, nor for
the measurement matrix C, so this has to be done manually. The system is then converted to a state-space system using
Matlab’s built in function ss, whereD is set to zero as the measurement of interest is the states them self. The main rea-
son for using the ss function is because it allows the use for the function c2d which converts the continuous state-space
model into a discrete state-space model with a given time sample. By default, the c2d function uses the Zero-Order-Hold
method to discretize the model, which is explained in equation (2.71).

The system is then solved for the predefined simulation time with the discrete model using a simple for-loop as shown
in the snip out of Linearization.m in listing 3.4. Here, the control input vector remains constant throughout the
simulation time. This is the case as the non-linear system is solved with constant control inputs. If one of the control inputs
is changed during the simulation of the non-linear system, u as to be change accordingly. This has not been implemented
in the current code, but can easily be added by storing the values of the control inputs for the non-linear system and
sending the control input vector as an argument for the Linearization.m function. Note that the linearized model
is expressed in terms of deviation variables, so the control input data for the non-linear model has to be converted to
deviation variables from the operating point in order to get the correct values.

Page 34 Master’s Thesis



Optimization and Control of Electrode Drying Process Chapter 3

1 %% Solving the Linear System
2 Ad = sys_d.A; Bd = sys_d.B;
3 a = zeros(length(p.z)+3,length(t));
4 a(:,1) = y0;
5 u = u0;
6 for i = 1:length(t)-1
7 a(:,i+1) = Ad*a(:,i)+Bd*u;
8 end

Listing 3.4: Solving the linear system for a predefined simulation time.

To account for the model being expressed by deviation variables, the solution is converted back into their original form
prior to being used in post-processing. Listing 3.5 shows a snip out of the main script which converts the solution from
the linearization model into its original values. (v.·) is the linearization point and (p.·) is the intial values of the problem.

1 [y_l,sys_c,sys] = Linearization(p,v,M,K,y0,u0,t);
2

3 L_l = (y_l(1,:)+v.L)*p.L0;
4 T_l = (y_l(2,:)+v.T)*p.T0;
5 rho_l = (y_l(3,:)+v.rho)*p.rho0;
6 C_l = (y_l(4:end,:)+v.C)*p.C0;

Listing 3.5: Converting from deviation variables to original variables.

The stability of both the continuous and discrete linear system is easily assessed using the function eig(A) which
calculates the eigenvalues of the system matrixA along with the stability criteria mentioned in section 2.3.

The controllability and observability matrices is found using Matlab’s built in functions ctrb and obsv. The control-
lability and observability is then determined accordingly to as stated in section 2.3. Listing 3.6 is a code snippet of the
Linearization function which determines the controllability and observability.

1 %% Determining the Controllability and Observability of the Linear System
2 OB = obsv(Ad,C); CB = ctrb(Ad,Bd);
3 OX = [’Number of unobservable states: ’, num2str(rank(A)-rank(OB))];
4 CX = [’Number of uncontrollable states: ’,num2str(rank(A)-rank(CB))];
5 disp(OX)
6 disp(CX)

Listing 3.6: Determining the controllability and observability of the discrete system.

3.2.2 Linear Analysis
To test the linearized model, a series of test will be carried out. Firstly, the linearized model is compared to the non-linear
model. This is done in straight forward manner by plotting the solution of the non-linear model versus the linearized
model with the same initial values. Furthermore, the validity range of the linearized model is tested as well as how it
responds to excitations in the control inputs.

For all the test, the Matlab built in function lsim is used. The function simulates the time response of a dynamic system
with arbitrary control inputs. Thus, a control input vector must be defined. For the different tests, the control input vector
takes the different values due to the purpose of the test. Listing 3.7 shows a code snippet of the main script for which
the test are implemented. Note that in this particular code snippet the air temperature, Ta and air velocity,V , is chosen as
control inputs.

The linearized model is tested with different initial perturbations from the operating point to assess at which point the
model fails to converged to the stationary values. For each simulation the values of y(0)OP is changed with further
increasing perturbations. The second test is simply a simulation with no excitations in the control input with the model
being initialized at the linearization point. For a stable system the model should not experience any changes at all.
However, in case the system is unstable, the solution will eventually grow unbounded. Finally, the linearized model is
tested when the control inputs are excited. Rather than constructing the increase/decrease in control inputs as step function
(heaviside funtion), the change in control inputs is constructed as a ramp function as this resembles an actual change more
accurately.
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1 %% Linear Simulation - Small Deviation From OP
2 u = zeros(2,length(t));
3 y0_OP = [0.05 -0.1 -0.1 ones(1,length(p.z))*0.1];
4 y_no = lsim(sys,u,t, y0_OP);
5 %% Linear Simulations - No Excitation
6 y_ne = lsim(sys,u,t);
7 %% Linear Simulations - With Excitation
8 t_hta = 20; step_Ta = 5; % Steptime in minutes

and stepsize for Ta
9 t_hv = 25; step_V = 2; % Steptime in minutes

and stepsize for V
10 t_hta = (t_hta*60)/p.dt;
11 t_hv = (t_hv*60)/p.dt;
12

13 t_ramp = 5; % Duration of the
ramp

14 t_ramp = (t_ramp*60)/p.dt; % Converting the
duration of the ramp to fit t-vector

15 for i = 1:t_ramp % Constructing ramp
functions for the steps in u

16 u(1,t_hta+1+i) = step_Ta/t_ramp*i;
17 u(2,t_hv+1+i) = step_V/t_ramp*i; % Linear increas in

control input
18 end
19 u(1,(t_hta+1+t_ramp):end) = step_Ta; % Setting the step in

the control input for the rest of the simulation
20 u(2,(t_hv+1+t_ramp):end) = step_V;
21 y_e = lsim(sys,u,t);

Listing 3.7: Implmentation of the different tests of the linearized model in Matlab
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3.3 State Estimation
For the state estimation, the EKF algorithm is implemented in the same manner as stated in equation (2.85). Due to lack
of actual measurements, the solution of the non-linear model will be used as measurements for estimation. Thus, the EKF
routine runs in parallel with the non-linear model. Listing 3.8 is a code snippet with the EKF-algorithm implemented in
parallel with the numerical solution of the non-linear problem. The SolveIter function is the same routine as found
in listing 3.2. The process and measurement noise is generated using the wgn function with the noise magnitude given in
dBW. However, as the estimation and the measurements from the non-linear model is represented using its dimensionless
variables choosing appropriate magnitudes for the noise is of importance. Normally, signals is transmitted in terms of
voltage or ampere and later converted to its appropriate units through transfer functions[45].

1 %% Declartion of Non-Linear Solution Vector and Estimation Vector
2 x = zeros(length(p.z)+3,length(t)); a = ones(length(p.z)+3,1); x(:,1) = a; v = x;
3

4 %% Generating Measurement and Process Noise in dBW
5 wnm = wgn(2, length(t),-24); wnp = wgn(length(p.z)+3, length(t),-96);
6 cm = cov(wgn(2,1,-24)); cp = cov(wgn(length(p.z)+3,1,-96));
7

8 %% Assigning the Q, R and P_0 Matrices
9 Q = diag(ones(1,length(p.z)+3)); R = diag([1 1]); P_k = Q;

10

11 %% Measurement Function h
12 C = zeros(2,length(p.z)+3); C(1,1) = 1; C(2,2) = 1;
13

14 %% Analytical Expression of the Jacobian and Converting to Matlab Function to Avoid Symbolic
Toolbox in for-loop

15 [J_ff, J_h, Y] = Jacobians(p,M,K);
16 g = matlabFunction(J_ff, ’vars’, {Y});
17 tic
18 for i = 1:length(t)-1
19

20 %% Solution of the Non-Linear Function f
21 v(:,i+1) = SolveIter(p,M,K,v(:,i),i*p.dt);
22 a = SolveIter(p,M,K,a,i*p.dt) + wnp(:,i);
23

24 %% Model Forecast Step/Predictors
25 z = v(1:2,i+1)+wnm(:,i);
26 J_f = g([x(:,i)’ p.Ta(i*p.dt) p.V]);
27 P_kf = J_f*P_k*J_f’+Q;
28 %% Data Assimiliation Step/Corrector
29 KK = P_kf*J_h’/(J_h*P_kf*J_h’+R);
30 P_k = (eye(size(P_k))-KK*J_h)*P_kf;
31 x(:,i+1) = a + KK*(z-C*a); a = x(:,i+1);
32 end

Listing 3.8: Implementation of the EKF-algorithm in parallel with the non-linear model.
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3.4 Optimization
When optimizing the drying process, designing a routine which solves the optimization problem from scratch is a project
by itself. Thus, one of Matlab’s built-in function is rather used. The fmincon function is a routine which solves non-
linear minimization problems. By default, the fmincon function uses the interior-point method, but may be configured
to use other methods such as SQP. Since the SQP method is applied, the function is configured to do so. Listing 3.9
shows a code-snippet with the fmincon-function being reconfigured to use the SQP as well as setting maximum allowed
iterations and constraint tolerance. To view the full documentation of the fmincon-function, see [46].

1 %% Optimization
2 disp(’Optimizing!’)
3 tic
4 options = optimoptions(’fmincon’, ’Algorithm’,’sqp’,’MaxIterations’,3000,’ConstraintTolerance’,1

e-06);
5 [u,fval] = fmincon(@(u)OFun(u,x,p),u0,[],[],[],[],vl,vu,@(u)nlCon(u,x,p),options);
6 toc

Listing 3.9: Code-snippet of the configuration and implementation of the fmincon-function.

To begin with, the fmincon function assumes that the problem is continuous, so the discrete model can not be imple-
mented directly. A solution to this problem is rather simple by augmenting the optimization vector with the number of
discrete optimization variables. Hence, the fmincon function will solve for N number of variables. The choice of
optimization variables depends on the objective that is to be optimized. For the objective function, the choice is to either
optimize with respect to performance or energy demand. As stated in section 4.1, the model is not suited for control and
optimization with respect to performance, which leaves the choice of optimization to energy consumption. Minimizing
the heat needed for the process implies minimizing equation (2.14) with respect to the control inputs. Furthermore, having
the control inputs continuously changing does not fit with reality. Thus, the drying process is divided into three separated
zones, each with a distinct air temperature and air velocity. This reduces the number of optimal control inputs needed
to be determined to only six. The constraints for the optimization problem have to ensure that the process reaches a
desirable final solvent fraction as well as having upper and lower bound on the air temperature and air velocity to prevent
unrealistic control inputs. In addition, as stated in section 2.1, the evaporation rate has a profound impact on the end
performance, which implies that constraint on the maximum evaporation rate allowed should also be considered. With
the general formulation of an optimization problem presented in equation (2.86), the optimization problem with respect
to heat consumption for the drying process can be stated as follows:

arg min
u

f(u, x) =

N∑
i=1

kc · (ui(1)− x(2)i · T0) + ṁi(x, ui(2)) · hfg,i(x(2)) (3.3a)

such that:
T0 ≤ ui(1) ≤ 370 (3.3b)

5 ≤ ui(2) ≤ 15 (3.3c)

CN ≤ 0.1 (3.3d)

ṁi ≤ a (3.3e)

where a is set to an arbitrary constant (as several values will be tested), N refers to the value at the end of the drying-time,
u(1) is the air temperature and u(2) is the air velocity. As both CN and ṁi is a function of x and u(2), the non-linear
model has to be solved in order to determine the final solvent fraction as well as the evaporation rate at each discrete
iteration. The objective function is implemented as shown in listing D.4 in appendix D.3. Furthermore, the fmincon
function requires the non-linear constraints to be declared as a separate function which is called on during the routine.
Thus, the non-linear constraints function is implemented in somewhat same fashion as the objective function by solving
the non-linear model to compute the c(u, x) and ceq(u, x). Listing D.5 in appendix D.3 shows the function which
calculates the non-linear constraints. As fmincon requires both c(u, x) and ceq(u, x) to be defined, ceq(u, x) is
simply set to being empty as there are no non-linear equality constraints. Furthermore, the main script, which defines all
variables and parameters, as well as does the post-processing is listed in listing D.3 in appendix D.3.
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3.5 Control
The overall system with control features is implemented in Simulink rather than directly in Matlab due to the convenience
of working with block diagrams. In section 2.5 it was concluded that the computational time of the optimization problem
was too high for the implementation of an MPC to be reasonable. Thus, a decentralized control structure (multiple single
loops) is implemented for controlling the air temperature and air velocity to track the calculated optimal control inputs. In
an attempt to replicate a realistic control scenario, the heating of the inlet air as well as the acceleration of the air velocity
is modelled with disturbances. Prior to describing the implementation of the controller and the overall system in Simulink,
the controllers are tuned in accordance to the theory presented in section 2.6. However, the performance of the controllers
are presented in section 4.5. Simple PI-controllers are used as these are the type of controllers that are most applied in
industrial processes [37].

3.5.1 Air Temperature Controller
For the heat exchanger, the process is modelled using the heat equation as stated in the book [47] by Widder:

dQ

dt
= cρV

dT

dt
(3.4)

where c is the specific heat of the air, ρ is the density and V is the volume. The heat exchanger is modelled such that
energy needed for heating the air is provided by a heating element. The disturbances are also assumed to be heat loss to
the surroundings which affects the process in the same manner as the heating elements, thus, the heat transferred to the
air is expressed as:

dQ

dt
= Q̇ = u+ d (3.5)

where d denotes the disturbance. Substituting equation (3.5) into equation (3.4) yields:

Ṫ =
1

cρV
· u+

1

cρV
· d (3.6)

Here positive magnitudes of d represents heat transferred into of the system. Following the rules of Laplace transform,
linearization and appropriate scaling as presented in section 2.6, the system can be expressed as:

y(s) = G(s) · u(s) +Gd(s) · d(s) (3.7)

where y(s) represents T (s) and G(s) = Gd(s) = 1
cρV s .

Considering the linearized transfer function for the heating process in equation (3.7), the power needed to increase the
temperature of the air by one Kelvin can be determined. The expression is linearized about T = 350 K which is the
average of the upper and lower bounds set for the air temperature in the optimization problem. Having c = 0.7214kJkg ,

ρ = 1.009 kg
m3 and V = 1 m3, the power needed to change the temperature is approximately 8.84kWT [48, 49]. Thus,

the maximum allowed magnitude of the control input and disturbance is in the same scale. Assuming that the heating
element has the ability to change the temperature by half a Kelvin at any point, the maximum control input is set to 5 kW ,
whereas the maximum disturbance the system may experience is set to 1 kW . The output T is expected to remain within
the boundaries set by the optimization problem, which implies no larger deviation than 20 K from the linearization point.
With this in mind the scaling parameters are as follows:

Wy = 20, Wu = 5, Wd = 1 (3.8)

Heating a medium does not happen instantaneously which can be translated into a delay in the output. Assuming that
the heating process is relative fast, the output delay is set to 1 second. Furthermore, the process is assumed to have no
input delay. This is not realistic as there will be delays related to the heating element. However, this assumption is made
to avoid to large restriction on the bandwidth frequency. With the assumption and scaling mention above the transfer
functions for the temperature process is:

G =
0.25

0.7279s
· e−s, Gd =

0.0125

0.7279s
· e−s (3.9)

The controller was tuned in accordance to the procedure described in section 2.6.3.
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3.5.2 Air Velocity Controller
For the acceleration of the wind, the system is modelled using a fan to increase the velocity of the air. To calculate the
energy needed for accelerating the wind, the Bernoulli equation has stated in the book by Cengel and Cimbala is used
[50]:

dQ

dt
=
V 2
out − V 2

in

2
· ṁ (3.10)

Rearranging with respect to Vout and setting dQ
dt = u yields:

Vout =

√
2u

ṁ
+ V 2

in (3.11)

The disturbance is assumed here to affect the air velocity directly, e.g. measurement noise and so on. Applying the
same rules of Laplace transform, linearization and scaling as for the heat exchanger, the air acceleration process can be
expressed by:

V (s) = G(s) · u(s) +Gd(s) · d(s) (3.12)

where Gd(s) = 1 as the disturbance enters the process directly and G(s) is:

G(s) =
1

ṁ
· 1√

2u∗

ṁ + V 2
in

where u∗ is the energy needed to accelerate the air to the velocity at which the model is linearized about.

For scaling the air velocity process, the same procedure as for the temperature process is followed. The process is
linearized about 15 m

s with a inlet velocity of 1 m
s and mass rate of 1 kg

s . This results in the power needed to change
the air velocity to be 7.5 kW

m
s

. Assuming that the fan has the ability to change the air velocity by slightly more than one
meter per second at any point, the maximum control input is set to 10 kW . For the air velocity system, the disturbances
are assumed to affect the process directly and assuming that affects the process of much lower magnitude compared to u,
the maximum disturbance is set to 0.5 kW . Furthermore, the output is expected to not deviate more than 5 m

s from the
linearization point. The scaling parameters then becomes:

Wy = 5, Wu = 10, Wd = 0.5 (3.13)

Assuming that fan has the ability to change the air velocity instantaneously once the current control action is implemented
the process has no time delays. However, in contrast to the air temperature process, it is here assumed that the control
input is delay by 1 second which translates into an input delay (the fan takes 1 second to produce the correct input). This
yields the following transfer functions:

G = 0.133 · e−s, Gd = 0.1 (3.14)

The controller was tuned in accordance to the procedure described in section 2.6.3.
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3.5.3 Implementation
In Matlab, the heating and air velocity process was converted into a single state-space model with four inputs; two for
the control inputs and two for the disturbance inputs. Figure 3.2 shows how the decentralized controller with two PI-
controllers (one for each control input) was implemented in Simulink. In Simulink, the references signals are converted
and scaled appropriated prior to entering the control loop to fit the model which is expressed in deviation variables. The
control inputs are later converted back into their original values before used in solving the drying process. Anti-windup
schemes as explained in section 2.6.4 was implemented to prevent windup effects caused by any saturation in the control
inputs, while random disturbances with a given frequency is generated using a signal generator.

The decentralized control is a subsystem of the overall drying process. The implementation of the overall system in
Simulink is illustrated in the simplified block diagram shown infigure 3.1 which consists of the decentralized controller
K, the control plant (air temperature and velocity process), the plant, sensors and the extended Kalman Filter. The actual
implementation can be found in figure F.1 in appendix F. Due to the lack of actual measurements from a physical plant,
the proposed model is used as the ”unknown”-plant model to provide measurements for the state estimation. The senors
subsystem extracts the measurement variables from the ”unknown” state variable X and adds the appropriate noise to the
measurement. The Kalman filter block is the same procedure as presented in listing 3.8. Both the plant and Kalman filter
block is realized using the Matlab Function Block for Simulink, with the respective functions being the same a previously
presented. The only change made to the functions is that every variable that is used and calculated during the routine is
determined within the respective function as the Matlab Function Block does not support nested functions.

K Control Plant Plant Sensors

Kalman Filter

r e û u x y

−

d w v

x̂

Figure 3.1: Simplified block diagram of the overall system.

In practice, each drying stage is controlled by distinct controllers, which implies that each controller is unaffected by the
process in other drying stages. Implementing the process as in figure F.1 implies that the distinct stages is controlled by
the same controller. This will cause effects when the reference in control inputs changes as the thin-film enters a new
drying stage which wont occur in practice. To avoid this, and at the same time avoid implementing more controllers with
delayed start time which has to be selected based on a time criteria, the system is solved sequentially for each drying
stage. This can be done as each drying stage is in essence the same process. Therefore, the implementation in figure F.1
is used for each stage but initialized with the different parameter values and starting conditions. The script for initializing,
simulation and processing the solution is listed in listing D.6 and can be found in appendix D.4.
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Figure 3.2: Implementation of the decentralized controller with saturation and anti-windup scheme.
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Chapter 4

Results and Discussion

In this chapter the results from various simulations and experiments are presented and discussed. The chapter is structured
in the most reasonable way with validation of the model and its numerical solution being first. The behavior of the model
will be compared with results from different studies to ensure the validity of the model and pin point any limitations or
errors. Furthermore, the results of the linear analysis is carried out to assess whether or not a linearized model can be used
rather than the non-linear model for control purposes which will greatly reduce the complexity of the optimization and
control problem. Lastly, the sections with the optimization and control results are presented and evaluated to assess the
performance and applicability of such a control structure in the battery industry.

4.1 Model Validation and Numerical Method
To achieve acceptable performance of any given control structure, the accuracy of the model that describes the dynamics
has to be sufficient. Therefore, it is important that the model derived in section 2.1 resembles the general behavior of an
electrode drying process as much as possible in terms of transient behavior and general characteristics. Equally important
is the accuracy of the numerical method applied for solving the model. Thus, several simulations are carried out to provide
information of the proposed model which is used to assess its validity. The simulations are carried out with, to some extent,
a random battery composition as such information turned out to be difficult to obtain. However, the parameters are either
obtained or chosen based on the work done by Sursala et al. and Mesbah et al. in [24, 23] such that the composition
resembles the one of an actual battery. Table 4.1 lists the parameters used in the simulations.

Table 4.1: Chosen parameters for simulations.

Parameter Value Unit
ρs 838 kg

m3

ρsolids 1200 kg
m3

Cp 1900 J
kg·K

R 8314 J
kmol·K

Ms 99.133 kg
kmol

D0 9·10−9 m2

s

L0 0.165·10−3 m
T0 330.5 K
C0 0.5 kgs

kgf

φ 0.25 -
X 0.45 -
γ 1.15 -

E 7.70·106 J
kmol

V 15 m
s

Ta 350 K
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4.1.1 Model Validation
Figure 4.1 shows the development of the film thickness, film temperature, solvent fraction and film density using the
parameters listed in table 4.1. The plots clearly shows the behavior of the system and how it reaches stationary conditions
after approximately 150 minutes. The thickness decreases linearly for the majority of the deformation of the thin film until
the deformation slows down and decreases exponentially. This is in close relation with the reduction of the solvent fraction
as it seems to follow the same pattern. A constant drying rate followed by a falling drying rate is a common behavior of
drying processes which is well documented in published literature, such as the work published by Ludovico-Marques et
al. and King and King in [51, 52]. The evaporation seems to continue even though the concentration level at the top layer
has reached a stationary value. This is because of the transportation of the solvent from the lower layers being limited by
a further decreasing diffusion coefficient. This is common trait for diffusion limited drying process and is well explained
and studied by van Ballegooijen et al. in [53]. Their results also shows the same transient behavior as in figure 4.1.
A plot of the decreasing diffusion coefficient can be found in figure E.1 in appendix E. Furthermore, the temperature
reaches the air temperature within approximately 45 seconds and is very fast relative to the solvent fraction and thickness
development. An explanation for the huge differences in settling time is the heat transfer coefficient, kc, being more than
104 greater in magnitude than the mass transfer coefficient, km. This result further justifies the simplification of neglecting
temperature gradients within the thin film as such gradients would have insignificant impact on the drying behavior of the
thin film. The density seems simply to be a reflection of the thickness as it increases with decreasing film thickness. This
makes sense as the density is assumed to be a linear function of the solvent fraction, thus, making the film thickness and
density both related to the solvent fraction.

Comparing these results with the work presented by Sursala et al. and Mesbah et al. in [24, 23] indicates that the model
successfully resembles the general behavior and characteristics of that of an electrode drying process. However, the model
does not account for the forming of a porous media during the deformation of the thin film which is a major limitation of
the model. As a result, the final thickness of an actual film would be greater due to formation of void spaces within the
film, leaving the model unfit for control purposes in cases in which the final thickness of the film has to accurate. Thus,
prior to be used for performance related control, the model should be extended to account for the forming of a porous
media. Nevertheless, the model can still be applicable for energy minimization problems in which high accuracy of the
film thickness is not needed.
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Figure 4.1: Simulation of the model with the parameters listed in table 4.1.
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4.1.2 Mesh Independency and Accuracy
The accuracy of the approximated solution is important when the system is evaluated and used for control purposes.
Naturally, as the numerical method finds an approximation of the exact solution, error due to round-off, discretization
and truncating infinite sums will always be present. However, it is of interest to keep the error at a minimum without
compromising performance as higher accuracy invokes higher computational power. Insight in the numerical method’s
ability to approximate accurate solution is key for determining the models limitation. Thus, various simulation are carried
out to assess the accuracy of the model in terms of mesh independency, time-step dependency and mass conservation.

Mesh Independency

Mesh independency is simply a term used for the number of elements that is required for the solution to no longer
change when the spatial increment is decreased. Figure 4.2 shows results of the simulation with an increasing number of
elements. The approximated solution seems close to independent of the number of elements chosen for the spatial domain.
However, the thickness do seems to have some small variations as it approaches the final drying time. A closer look at the
reveals that there is indeed some variations in the final values of the parameters with respect to the number of elements.
Figure 4.3 plots the normalized final values for each parameter with an increasing number of elements for three different
time increments. For the temperature, the variations are limited to the 10−9 which are insignificant and the temperature
is said to be mesh independent. The final value of the evaporation rate experiences variations of approximately 0.6 µg

s
which are relative low when the scale of the evaporation rate (as in figure 4.2) is taken into consideration. In addition,
the solvent fraction also experience a relative small variation, of only 10−6. Considering the relative low scale of the
variations caused by spatial and time discretization, these three variables is considered to be mesh independent. However,
the thickness experiences a variation of 5 · 10−3 due to the mesh resolution which is thought to cause significant errors.
The variation is reduced to 1 · 10−4 from 100 to 200 elements. Therefore, the thickness is considered to become mesh
independent in the spatial domain at around 200 elements. As a result, the complete system becomes mesh independent
at approximately 200 elements.

Considering the argumentation in the previous section, the most reasonable choice in terms of accuracy is to use 200 ele-
ments or more. However, as figure 4.4 shows, the computational time for solving the system increases exponentially with
the number of elements. This implies that a combination of low steps in both time and space implies higher computational
time for solving the system. If the model is to be used for a MPC, a optimization problem based upon the model has to
be solved for each time step. A large computational time will then enforce a large sample time for the control structure.
Large sample times will miss important dynamics in the system and the worst-case scenario occurs when the sample time
is brought lower than the computational time for the numerical method. This will cause an internal delay and render
the overall system unstable. As a consequence, there is a trade off in terms of accuracy and computational time when
choosing the steps in space and time. Based upon the observations done, a combination of either a time increment of one
or two seconds with 20 elements seems like a overall good compromise between accuracy and computational demand.
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Figure 4.2: Simulation with different numbers of elements for the discretization of the spatial domain.
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Figure 4.3: Variation of the final values of each parameter with respect to the number of elements.
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Figure 4.4: Computational time as a function of number of elements.

Comparisons of Quadratic and Linear Shape Functions

In the previous sections quadratic shape functions was used to approximate the unknown solution. It also is of interest to
see how well linear shape functions approximates the unknown solution compared to quadratics. Figure 4.5 shows a plot
of the normalized error between the solution using quadratic and linear shape functions (keep in mind that it is assumed
that the solution with quadratic shape function is more accurate). Initially the error is of about 0.68 % and decreases
with increasing number of elements. The figure also illustrates the time ratio of the elapsed time for the solver between
quadratic and linear shape functions. For the ratio of the elapsed time for the solver, the ratio increases exponentially
with increasing elements. This makes sense as quadratic elements requires three nodes for each element whereas linear
only requires two. Thus, the total number of nodes needed to be computed is 2 · ne + 1 and ne + 1 for quadratic and
linear elements, respectively. This results indicates that elapsed time of the numerical solver can be greatly reduce by
allowing a small increase error. From a control perspective, using linear shape function instead of quadratic may increase
the controllablity and observability of the system as using linear shape functions implies less states compared to quadratic
shape functions.
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Figure 4.5: Comparison of linear and quadratic shape functions.
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Mass Conservation

It was previously stated that the model is not suited in control structures for performance purposes due to the lack of
porosity. However, the model can still be applicable for problems related to energy minimization. If so, the model has to
conserve energy and mass. In essence, conservation of mass implies conservation of energy and vice versa, which means
that by looking at the mass conservation based upon the amount of mass evaporated compared to the difference in initial
and final film volume, it should equal. For simulations with varying number of elements and a time increment, the error
in mass conservation is 0.16% ± 0.04%. Some errors are to be expected as the solution is approximated and errors due
occurs for the same reasons previously mentioned.

4.1.3 Sensitivity Analysis
Information about how different parameters affects the drying process in terms of drying time, energy consumption and
final solvent content is not only interesting from a control perspective, but also for general knowledge of drying processes.
To gain this information, several simulation are carried out to assess each of the individual parameters influence on the
drying process. For each of the tests, the selected parameter is increased or decreased with a certain percentage while all
other parameters are kept constant. The base values for every parameters are the ones found table 4.1, however, these base
values can be arbitrarily chosen.

Energy

Figure 4.6 shows a sensitivity plot with respect to the energy consumption of the drying process. The initial film temper-
ature has the largest effect on the energy consumption of all the parameters. The main reason is that the energy needed
for evaporating the solvent is in the same order of magnitude as the energy needed for the heating of the film. Thus, re-
gardless of the rapid temperature development, reducing the energy needed for heating the film affects the overall energy
requirement significantly. However, this does not take into account that energy saved or added when changing the initial
film temperature zeroes out when considering that the energy is either added or saved prior to the drying process. Hence,
the initial film temperature will have no impact on the overall energy requirement of the system unless there are more/less
efficient heating methods prior to the drying process. Furthermore, consumed energy decreases with increasing initial
film temperature. This can be deducted straight from equation (2.12) as larger temperature differences implies larger heat
transportation. Secondly, the air temperature affects the drying process in the same fashion as the initial film temperature
with decreasing energy requirement with increasing air temperature. The same arguments regarding preheating can be
used for the air temperature. However, the air temperature also affects the vapor pressure and the maximum temperature
the film can achieve. As the latent heat of evaporation is a decreasing function of the film temperature, the energy needed
for evaporation reduces with increasing film temperature (a plot of the latent heat of evaporation as a function of T can
be found in figure E.2 in appendix E). Considering this, the air temperature does shows good potential for reducing the
energy requirement for the process.

The initial solvent fraction and thickness also has a large impact on the energy consumed for the process, however, in
the reverse direction compared to the initial film and air temperature. Intuitively, this makes sense as increasing either of
them implies a large amount of solvent has to evaporate during the drying process. Hence, from an energy perspective,
a slurry composition with as little solvent as possible will yield the lowest energy consumption for the drying process.
Furthermore, the air velocity seems to have little impact on the consumed heat. Considering that both the heat and
mass transfer coefficient is a function of the velocity one might except a larger influence. However, the changes in
both coefficient is too small for the air velocity to have a large impact on the energy consumption. The initial diffusion
coefficient seems to affect the heat consumed with the same magnitude but in the reverse direction as the air velocity.
Intuitively, the diffusion coefficient should not have any impact on the consumed heat as it mainly limits movement of the
solvent within the film. Lastly, the relative humidity of the air has the least influence on the consumed heat during the
process.
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Figure 4.6: Sensitivity plot for energy consumption.

Solvent Fraction

Figure 4.7 shows the sensitivity plot with respect to the final solvent fraction. In addition to Ta having a small influence,
the relative humidity affects the final solvent fraction the most. This can be explained by the vapor pressure being a
function of both the relative humidity and air temperature. However, the vapor pressure is a much weaker function with
respect to the air temperature compared to the relative humidity. Increasing vapor pressure increases the equilibrium
pressure which again allows for more solvent to evaporate. Further, neither of the initial parameters values does affect the
final moisture content. Considering the vapor pressure being the only limiting factor of the final solvent fraction, it has
already been stated that the vapor pressure is function of air temperature and relative humidity, only. Thus, neither of the
initial parameters value will have any influence on the final solvent fraction. The same argumentation can be used for the
air velocity.
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Figure 4.7: Sensitivity plot for solvent fraction.

Page 49 Master’s Thesis



Optimization and Control of Electrode Drying Process Chapter 4

Drying Time

Figure 4.8 shows the sensitivity plots for the drying time. The drying time is set equal to the time when the evaporation
and the change in evaporation falls below a given threshold. From figure 4.8a shows the sensitivity plot with the air
temperature included. Clearly, the air temperature has an huge influence on the drying time compared to the parameters
and to better see how the drying time is affected by the other parameters, figure 4.8b shows the same plot but with the air
temperature excluded. The reason for the air temperatures large influence can be explained with the pressure difference
being the driving force of the evaporation. As the vapor pressure decreases with air temperature it limits the amount of
solvent that can evaporate and vice versa. However, figure 4.8a also shows that the drying time decreases exponentially
with decreasing air temperature rather than linearly. The main reason for the exponentially reduction in drying time is
diffusion limiting behavior. The drying time is prolonged as a consequence of the restricted movement of the solvent
within the film. As the evaporation is assumed to be limited to the surface only, the solvent fraction at the surface layer
quickly reaches the final solvent content, and from this point the evaporation is limited to the rate at which the solvent
reaches the surface layer. Thus, increasing the diffusion coefficient along with air temperature would yield even lower
drying times.

For the initial film temperature there are no significant changes in the drying time. This is due to the rapid temperature de-
velopment compared to solvent removal. Likewise, the relative humidity as minor influence on the drying time. However,
by changing the relative humidity it was observed from figure 4.7 that the final solvent content also changed. Thus, in
practice, changing the relative humidity implies that more or less solvent evaporates within the same time frame, however,
the threshold at which the drying time is determined is reached approximately at the same time. Furthermore, the air
velocity and diffusion coefficient seems to have the same influence on the drying time. Changing the air velocity affects
the mass transfer coefficient which allows for more/less mass to evaporate at any given time. As previously mentioned,
the diffusion coefficient limits the movement of the solvent within the film, thus, restricting the amount of solvent that
is at the surface layer of the film. Naturally, increasing initial thickness yields longer drying time as it implies more
solvent has to evaporate. Likewise, one might assume that the initial solvent fraction would influence the drying time
in the same manner. However, this is not the chase. It would seem that increasing initial solvent fraction yields lower
drying times. The main reason for this is the way the partial pressure has been modelled using the Flory Huggin’s theory
in equation (2.6). Figure E.3 in appendix E shows how the evaporation rate increases with the increasing initial solvent
fraction and that it also that the evaporation is brought to a stop faster for increasing initial solvent fractions. This implies
that there is a trade-off between trying time and heat consumed when considering the initial solvent fraction.
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Figure 4.8: Sensitivity plots for the drying time.
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4.1.4 Control Inputs
From a control perspective, it is reasonable to choose the parameters that affects the process the most as control inputs
to achieve effective control. In the previous sections the influence of each parameter regarding heat consumed, solvent
fraction and drying time was presented which gave good indication of which parameters that is suited as a manipulated
parameter. However, there are limitations. Although some of the initial parameters values had a large influence over the
drying process, they are not suited as control inputs. This is because that these parameters describes the mixture prior to
drying process and can not be manipulated throughout the process. As a consequence, these parameters are much more
interesting consider optimization of the composition with respect to either heat consumed, solvent fraction or drying time.
For the process, there are three parameters that can be manipulated during the process; air temperature, air velocity and
the relative humidity. The latter does affect the final solvent fraction which implies that it can be used to control the final
thickness of the film. However, for the end product, the least amount of moisture is always desired. Thus, choosing the
relative humidity will always result in control input that ensures the lowest relative humidity as possible. One could argue
that by choosing the relative humidity of the air, one could control the evaporation rate as the vapor pressure is function
of the relative humidity. However, it is believed that control of the relative humidity is much slower than the control of
the air temperature. Hence, the same affects on the evaporation rate can be achieved faster by using the air temperature as
a control input instead. In addition, as previously mentioned, the model fails to represent the porosity of the film which
renders it unsuitable for performance control and optimization in which thickness is of major concern. As a consequence,
choosing the relative humidity as a control input for optimization and control with respect to energy and drying time
minimization would been ineffective as it as little to no impact on either as shown in the previous sections. Therefore, the
most reasonable control inputs is the air temperature supplemented by the air velocity due to their influence on both heat
requirement and drying times.

4.1.5 Summary
From the results of the simulation is was concluded that the derived model resembles the general transient behavior
and characteristics of that of an electrode drying process. However, the model does not account for the forming of a
porous media which renders the model unsuitable for performance control and optimization in which accurate solution
of thickness is important. Nevertheless, the model and its numerical solution as a low error in mass conservation which
makes the model suitable for energy optimization and control. To further increase the applicability of the model, it was
recommend that the model was extended to account for porosity.

The numerical solution of the model showed promising results with low error in mass conservation. However, the solution
requires a large amount of elements to become mesh independent, which implies high computational time. This is un-
wanted as high computational time may invoke instability when the system is to be controlled using the model. To avoid
high computational time, it is suggested that the elapsed time of the solver was decreased in favor of increased error in the
solution by reducing the number of the elements for the finite element approximation. Furthermore, the elapsed time of
the solver could be further decreased by using linear shape functions instead of quadratic shape functions. Assuming that
quadratic shape function is more accurate, using linear shape functions instead of quadratics further increases the error
of the numerical solution. Thus, there is an important trade-off between accuracy and computational time that has to be
taken into consideration when the model is to be used for control purposes.

From the sensitivity analysis, the behavior of the model was further validated. The model seemed to react reasonable
to changed in the different parameters when considering the energy consumption, final solvent fraction and drying time.
Furthermore, the results gave good indication of which parameters that is suitable as control inputs. As many of the
parameters are initial values, only the air velocity, air temperature and relative humidity turned out the be promising
candidates as control inputs. The latter was later dismissed as the lowest final solvent fraction is always desired, which
would yield the lowest possible control input for the relative humidity.
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4.2 Linear Analysis
Linear system are less complicated to deal with for system analysis, optimization and control. For these reasons, a lin-
earized system is derived and tested to determine whether or not a linear approximation of the non-linear model can used
for control purposes. The linear model is compared with the non-linear in terms of transient behavior and characteristics,
as well as the controllability and observability is checked based upon the derived state-space realization. Lastly, a com-
parisons between the transient behavior of the linear and non-linear model when the manipulated variables are excited is
also presented.

4.2.1 Comparison of the Linear Model With the Non-Linear Model
For this simulation, both the linear and non-linear models are simply simulated using the values found in table 4.1 and the
linear system is linearized around the stationary values of the non-linear model. Figure 4.9 shows the simulation with both
the linear and non-linear system plotted. Clearly, the linear model fails to resemble the non-linear model sufficiently as the
solvent concentration and evaporation rate decreases rapidly. In addition there is a huge stationary deviation in the final
thickness of the thin film. A reason for this is the rapid decrease in the solvent fraction which implies a rapid decrease in
the partial pressure of the solvent. Thus, the difference between the partial pressure of the solvent and the vapor pressure
of the air converges rapidly to zero. As the difference in pressure is the driving force of the evaporation, the amount of
mass that evaporates is being restricted which naturally yields a higher final thickness due to less solvent being evaporated.
Although the temperature development is much more accurate relative to the other variables, it too is also faster for the
linear model compared to the non-linear model. These results all point in the direction of the initial perturbations being
too large, and that these initial deviations are outside the validity range of the model. This can be compared to the example
in figure 2.7 where x-values of 0 or 2 yields relative large errors between the linear and non-linear function. By looking
closer at the plots for the drying rate, the linear model does seem to follow the non-linear model from approximately 45
min. A further investigation of the validity range of the linear model is presented in upcoming section. However, with
the information provided by the particular simulation, the conclusion is that the initial perturbations are too large for the
linear system to be used for the entire drying process.
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Figure 4.9: Simulation of the linear and non-linear model using the parameters found in table 4.1.

The stability of the system is assessed by looking at the eigenvalues of the system matrix. Despite the number of elements
chosen for the finite element approximation, the linearized system always becomes marginally stable as the both the
continuous and discrete system have either a eigenvalue of 0 or 1, respectively. Figure 4.10 plots the eigenvalues of
the continuous and discrete linear system with 1, 10 and 20 elements. It is clear that for every simulation both system
is marginally stable. If we are to use the classification of Hovd in [37], these system would been defined as unstable.
However, form the simulations it can be observed that the solutions does not grow unbound, thus, a conclusion is drawn
for the system to be marginally stable regardless of the discretization of the spatial domain.
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Figure 4.10: The eigenvalues with increasing number of elements

4.2.2 Initial Perturbations
It is interesting to see whether or not the linearized model has the ability to converge to the linearization point when
initialized with a given perturbation. The simulation are carried out with increasing initial perturbations of the variables,
and for each simulation the initial perturbation are identical for every variable. Figure 4.11 shows the results from these
simulations. The results indicates the same issue as in the previous section with a stationary deviation in the thickness.
These deviation still occurs with relative small initial perturbation, even though it is on a small scale. The reason is the
same as for the previous scenario with the reduction of the solvent fraction being so fast that evaporation stops to occur
before the thin film has reached its final thickness. Thus, an identical initial offset of the variables (the thickness and
solvent fraction) will always yield a stationary deviation in the thickness. A stationary deviation can also been seen for
the density, which makes sense as it is a function of both the solvent fraction and thickness. Due to these errors, the
linearized approximation of the non-linear model does not seem to be a promising alternative for control and optimization
purposes. Figure 4.12 illustrates how the stationary deviation in the thickness changes with varying initial perturbations
in the solvent fraction. In this case, the initial perturbations for the rest of the variables are set to 0.05. Although different
values for the initial perturbations for the solvent fraction and the thickness does not make much sense for a physical
perspective, the plot shows how the models fails to arrive at the correct final thickness.
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Figure 4.11: Simulations with different initial perturbations for the linear system.
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Figure 4.12: Stationary deviation in thickness with varying initial perturbations in solvent fraction.
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4.2.3 Controllability and Observability
Table 4.2 list the number of uncontrollable and unobservable states with Ta and V being chosen as control inputs for
two scenarios: (i) Only measurement for the thickness and temperature is available. (ii) Measurement for every state is
available. The latter is an unrealistic scenario, as measurements of the solvent fraction in the layers of the film is not
possible. However, it is of interest to see whether or not such a setup can improve the properties of the system.

For the parameters chosen in table 4.1, the system is observable for a small number of elements, but fails to be controllable
despite the number of elements. The number of uncontrollable and unobservable states increases with the number of
elements chosen for the spatial discretization and a large increase in uncontrollable and unobservable states occurs from
10 to 20 elements. The increase in the number of uncontrollable and observable states are expected as this introduces
more solvent fraction states. A reason for the large increase in both uncontrollable and unobservable state might be that
the control inputs Ta and V only affects the solvent fraction at the top layer through the boundary condition. As the the
number of elements increases, the solvent fraction at the boundary node interacts with a lower percentage of the total
number of solvent fraction node. Thus, limiting the influence of Ta and V on the system. This reasoning fits with the
explanation of controllability by Micu and Zuazua in [54]. In the seconds scenario with every state being measured,
naturally the system is observable regardless of the number of elements. Considering the definition of the controllability
matrix in equation (2.75), changing the number or setup of the measurements does not change the matrices A and B.
Hence, the controllability is unaffected by the number of measurements.

Table 4.2: Number of uncontrollable and unobservable state with Ta and V as control inputs.

Number of Elements 2 Measurements Every State Measured
Nr. Uncontrollable States Nr. Unobservable States Nr. Uncontrollable States Nr. Unobservable States

1 1 0 1 0
5 2 0 2 0

10 2 2 2 0
20 17 18 17 0
30 37 38 37 0
40 56 58 56 0

One might assume that changing the selected control inputs might improve the controllablility and observability of the
system. However, as discussed in previous sections, Ta and V is the most appropriate variables to be used as control
inputs due to their influence on the system and that they may be changed during the drying process. As both Ta and
V interacts with the same states, the controllability should not improve by only using one of them instead of both. In
fact, removing either Ta or V as a control input and instead treat it as a state should introduce additional uncontrollable
states. Table 4.3 shows the number of uncontrollable and unobservable states with either Ta or V used as control inputs
while the control input that is not selected is instead treated as a state. In addition to measurements for the thickness
and temperature, measurement of either Ta and V is used for this particular test. Compared to the results form table 4.2,
these two control setups only introduce more uncontrollable and unobservable states which fits well with the assumption
above. The reason for the small variation of uncontrollable states are not known. Intuitively, it should be the same for
both cases for the same reasons previously mention. An explanation could be round-off done by Matlab which in some
occasions leaves some of the rows of the controllability matrix linearly dependent. Treating the non-selected control input
as a constant instead of a state removes one uncontrollable state for each scenario in table 4.3.

Table 4.3: Number of uncontrollable and unobservable state with either Ta and V as control input.

Number of Elements Ta as Control Input V as Control Input
Nr. Uncontrollable States Nr. Unobservable States Nr. Uncontrollable States Nr. Unobservable States

1 3 0 2 0
5 3 1 3 1

10 4 3 4 3
20 21 19 22 19
30 40 39 40 39
40 60 59 59 59

In addition, the solvent fraction node at the boundary is also used as control input togheter with Ta and V . Table 4.4 shows
the number of the uncontrollable and unobservable states with Cn, Ta and V as control inputs. The measurements are
limited to the thickness and temperature only. The results indicates that this setup reduces the number of uncontrollable
states by four compared to the setup in table 4.2. However, the number of unobservable states increases by two. The
reason for the decrease in uncontrollable state could be that by using Cn as a control input the control actions now acts
on a large percentage of the solvent states compared to the case in table 4.2. Ta and V only affects the solvent fractions
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indirectly through Cn, but as for this case, control actions with Cn directly acts on nearby solvent fraction nodes, thus
expanding the influence of the control actions on the system. The reason for the increase in unobservable states is most
likely due to measurements of L and T no longer can be used to determine the initial conditions of the solvent fraction
node close to the boundary node as this node is now used as a control input.

Table 4.4: Number of uncontrollable and unobservable state with the boundary node, Ta and V as control inputs.

Number of Elements Nr. Uncontrollable States Nr. Unobservable States
1 0 0
5 0 0
10 0 4
20 13 21
30 33 40
40 52 60

In summary, the controllability of the linear system is dependent on the spatial discretization which is reasonable as an
increasing number of elements implies more states. Despite being (in most cases) uncontrollable, this does not mean that
system cannot be controlled at all. The controllablity has to be treated as an indication of the possibility of controlling the
system as a whole. Thus, regardless of the system having uncontrollable states, the controllable states can still be forced
to a desired value by control actions. Determining which of the states that is controllable is not straight forward and
cannot be deducted from the controllablility matrix. However, with the observation made of the results from the different
simulations carried out above, it is most likely that the states of interest (this is the thickness, temperature and solvent
fraction at surface) is controllable. Thus, control of the system could still be applied to the system with success.

Comparison of Linear and Quadratic Shape Functions

Table 4.5 shows the number of the uncontrollable and unobservable states using linear shape functions instead of quadrat-
ics. Compared to table 4.2, there is no change in the number of uncontrollable states for up to 10 elements. However, from
20 and higher number of elements, there is a large difference in both number of uncontrollable and unobservable states.
The main reason for the reduced number of uncontrollable and unobservable states is the reduced number of elements
when using linear shape functions instead of quadratics. However, as the system becomes unobservable somewhere be-
tween 10 and 20 elements there is not much to gain in sense of accuracy using linear shape functions instead of quadratics
for an estimator considering the additional error introduced by linear shape functions as shown in figure 4.5.

Table 4.5: Number of uncontrollable and unobservable state with Ta and V as control inputs for linear shape functions.

Number of Elements 2 Measurements Every State Measured
Nr. Uncontrollable States Nr. Unobservable States Nr. Uncontrollable States Nr. Unobservable States

1 1 0 1 0
5 2 0 2 0

10 2 0 2 0
20 2 3 2 0
30 8 9 8 0
40 17 18 17 0

4.2.4 Step Response
Figure 4.13 shows the plot of the measurements of the thickness and temperature of the linear system initialized at the
stationary point when the control inputs are being excited. The thickness experiences a inverse response in which the
thickness increases when the air temperature is excited positively. When the temperature reaches a stationary point,
the thickness reduces to its initial value. The cause of the inverse response is not known. Most likely, it is caused by
inaccurate modelling of the process, but this can not be concluded. The air velocity does not seem to have any affect on
the thickness, nor the temperature. Intuitively, the air velocity should have some effect on the temperature development as
it affects the heat transfer coefficient. However, a step size of 2 m

s does not have any significant impact on the temperature
gradient of the film. Furthermore, for the linear system, neither the air temperature and air velocity has any affect on the
final thickness, which also implies no effect on the final solvent fraction. This fits well fit the observation made in the
sensitivity analysis. As a consequence, control using the air temperature and air velocity at a stationary point does not
make any sense. Instead, it is more reasonable to apply control using the air temperature and air velocity for controlling
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the rate at which the solvent evaporates. As a further verification, figure 4.14 shows a plot with both the linear and non-
linear system with the control inputs being excited. Clearly, both the linear and non-linear system has the same transient
behavior in the thickness before settling at the operating point (there is a small error in the initial value of the non-linear
model from the operating point in the thickness due to the initialization of the linear and non-linear model not being
exact).
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Figure 4.13: Step response of the linear system.
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Figure 4.14: Comparison of step response of the linear and non-linear model.

Page 57 Master’s Thesis



Optimization and Control of Electrode Drying Process Chapter 4

4.2.5 Summary
The results above indicates that the linear model does experience stationary deviations for the thickness and density, as
well as the reduction in solvent is very fast compared to that of the non-linear model. Also for small initial perturbations
the linear model fails to converge to the linearization point for the same reason as the stationary deviations. Both the con-
tinuous and discrete linear model is marginally stable, and thus needs to be stabilized by feedback control in accordance
with Hovd[37]. The controllability and observability of the system is dependent on the spatial discretization as increasing
the mesh resolution implies more solvent fraction nodes. For a reasonable mesh resultion in time ans space, in terms of
computational time and accuracy, the linear system is neither controllable nor observable. However, it is believed that
the states of interest (thickness, temperature and solvent fraction at the boundary) is controllable, thus control by using
Ta and V as control inputs can still be applied with success. The linear model behaves relative similar to the non-linear
model in terms of step responses when both system is initialized at the stationary conditions. However, as neither Ta nor
V has an influence on the final solvent moisture content, control at the stationary conditions is pointless considering that
the drying process is over when these conditions are reached. As consequence, a conclusion is drawn that the linearized
model is not an alternative for optimization and control purposes.

Considering using the model for an EKF, using linear shape functions instead of quadratics yields no particular benefits in
terms of accuracy as the system becomes unobservable with approximately the same number of elements. As the system
becomes unobservable for relatively small number of elements despite choosing linear shape functions, the computational
time for an EKF algorithm would not improve significantly.
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4.3 State Estimation
Due to exact measurement of every state can not be achieved in practice state estimation using a EKF is tested to asses
whether or not such an estimator scheme can be applied for optimization and control purposes. From the linear analysis,
a system configuration with Ta and V as inputs was observable for 5 elements for the spatial domain. However, it turns
out that the non-linear model with similar system configuration is not. Thus, the number of elements used for the spatial
domain is set to 2 to maintain an observable system.

4.3.1 Noise Magnitude
Prior to testing the EKF, reasonable noise magnitudes has to be determined. It is assumed that sensors for the temperature
and film thickness has relative high accuracy, thus, the maximum off-sets in the thickness measurement should not exceed
more than one percentage and even lower for the temperature measurement. Figure 4.15 shows the plots of the maximum
offset in the measured values with increasing measurement noises. Note that the x-axis is logarithmic and given in watts.
This is purely a result of the wgn function used to generate the noise as explained in section 3.3. The units of the noise is of
no particular interest in practice, but it is used to generate noise which affects the system in such a way that can be expected
in practice. From figure 4.15, it seems that the temperature is slightly more prone to measurement noise. Allowing up to
one percent offset in the thickness measurement the maximum magnitude of the measurement is set to approximately -48
dBW. For the temperature a maximum offset of one percent translates into variations in the temperature measurement of
+- 3.5-3.8 degrees Kelvin. An offset of 0.1 percent is much more realistic, thus, the temperature measurement noise is
limited to approximately -72 dBW. Figure 4.16 shows a plot of the thickness and temperature measurement with sensor
noise of -48 dBW and -72 dBW, respectively. It is assumed that the magnitude of the variations caused by the generated
noise in figure 4.16 resembles realistic measurement data.
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Figure 4.15: Maximum off-set due to measurement noise.

For the process noise it is harder to make a decent guess of the magnitude of the noise due to the uncertainties of the
process. However, the model itself is a source of error which can be traced back to round-off errors, unmodelled dis-
turbances etc. In comparison to the measurements noise, the process noise will also affect the states differently. Thus,
different magnitudes of the process noise might be needed for the distinct states. Figure 4.17 shows the plot of the thick-
ness, temperature, solvent fraction at the boundary and density with added process noise of -48 dBW. Both the thickness
and solvent fraction is relatively unaffected by the process noise compared to the temperature and the density. As the
temperature and density is much more affected by the process noise, the magnitude of the noise is reduced to -72 dBW for
both states. As there is a large uncertainties related to the process noise, as well as larger emphasize on the measurement
noise, the magnitude of the process noise for the temperature and density is reduced to -72 dBW for both states.
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Figure 4.16: Measurement with -48 dBW magnitude noise for the thickness sensor and -72 dBW magnitude noise for the
temperature sensor.
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Figure 4.17: Solution of the non-linear model with added process noise.
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4.3.2 Tuning And State Estimation
Initially the EKF was tested with both Q and R being diagonal matrices with ones at the diagonal and P 0 set to zero.
Figure 4.18 shows the estimated states with the initial tuning of the EKF. The estimates of the solvent fraction and density
is good. The main reason for the well estimations of the density is the low process noise applied to the density. However,
increasing either the process or measurement noise, the density estimation becomes more inaccurate. One can argue that
the density is of no particular interest, hence, as long as the thickness, temperature and solvent fraction is well estimated
inaccurate estimation of the density could be disregarded. Rather than disregarding the inaccurate estimation of the
density, one could remove it completely from the estimation by implementing a reduced order EKF instead of that of a
full order. In some situations, a reduced order observer/EKF improves the properties of the observer/EKF. Furthermore,
the thickness and temperature estimation has unacceptable variations. Thus, the initial setup of Q,R and P 0 does not
suffice for accurate estimates. The EKF was further tuned by trail and error. Figure 4.19 shows the plots of the tuned
EKF. Here Q is set to a diagonal matrix with 10−5 on its diagonals except for the thickness, temperature and density,
which was set to 0.1, 0.1 and 10, respectively. R is set to diag(10, 2) and P 0 to 0. As the initial setup estimated both
the density and the solvent fraction well, there is no significant improvement with the tuned EKF. However, there is a
clear improvement in the estimation of the thickness and the temperature as the variations in the estimate is significantly
reduced. The reasoning for the given tuning values is due to how the different parameters are affected by process and
measurement noise. The solvent fraction is relatively unaffected compared to the other parameters, thus, the solution of
the non-linear model can be ”trusted” and have a low covariance. For the thickness and temperature we expect a larger
variation than for the solvent fraction, thus the covariance is increased compared to the one of the solvent fraction. Lastly,
for the density it is excepted an even larger variation and the covariance for the density is further increased. For the R
matrix, it is assumed that there is larger expected variations in the thickness measurement due to the small scale. Hence,
the element of the thickness is set higher compared to the one of the temperature. Furthermore, the initial covariance
matrix P 0 is set to zero as it is assumed that the film is initialized with perfect accuracy.

Figure 4.20 shows the error between the estimated states and the solution of the non-linear model. With the relative small
error, the figure reflects the high accuracy of the estimated states as observed above. However, the error in the density
increases as time goes on, implying that the error in the density estimated by the EKF increases with increased density.
For the rest of the states, the error seems to be uniformly distributed.

The control inputs are excited during the simulations to ensure that the estimation behaves well during input changes. The
air velocity is excited with a negative change of ∆5 at approximately 13 minutes, and the air temperature is excited with a
positive change of ∆10 at 20 minutes. From both figure 4.18 and figure 4.19 it is clear that the EKF behave well even with
input changes. This suggest that the EKF can be implemented in control structures without rendering the overall system
unstable. However, large process noise do make the EKF unstable as singularities occurs when inverting a close to zero
Jacobian. As a consequence, the EKF can not be implemented in situations with large process noise. This is also the case
with a large resolution of the spatial domain. An alternative to EKF is the UKF which do not use an inverted Jacobian.
Thus, singularities will no longer be of concern. As a suggestion for further work, an UKF could be implemented instead
of an EKF to ensure stability.

Page 61 Master’s Thesis



Optimization and Control of Electrode Drying Process Chapter 4

0 20 40 60 80 100 120
80

100

120

140

160 Estimated

Non-Linear Solution

0 20 40 60 80 100 120
330

340

350

360

Estimated

Non-Linear Solution

0 20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5
Estimated

Non-Linear Solution

0 20 40 60 80 100 120

1050

1100

1150

Estimated

Non-Linear Solution

Figure 4.18: The estimated states prior to tuningQ,R and P0.
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Figure 4.19: The estimated states withQ,R and P0 tuned.
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Figure 4.20: The error between the estimated states and the non-linear solution.
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4.4 Optimization
For the optimization of the process, the model is implemented as described in section 3.4 and tested using the parameter
values in table 4.1. The tests is carried out with different constraint with respect to maximum evaporation rate to assess
how much of a reduction in heat consumption that can be achieved. The main reason for using the evaporation rate as the
limiting factor of the process is its close relation to crack formation in the material as mentioned in section 2.1. As de-
scribed in section 3.4, the drying process is divided into three separate stages, each with its distinct temperature. Different
length of the three zones is also tested to see whether or not this has any effect on the reduction in heat consumption. At
first, the process is optimized with respect to the air temperature only by treating the air velocity as a constant. Later, the
process is optimized with respect to both air temperature and air velocity to assess whether or not this is more beneficial
in terms of energy reduction.

4.4.1 Optimization With Respect to Air Temperature
Figure 4.21 shows the plot of the thickness, temperature, solvent fraction and evaporation rate for both simulation with
and without optimal control inputs. In this particular case the evaporation limit is set to 5 · 10−5 kg

s (this is approximately
the maxima of the evaporation rate of the non-optimized solution), and the transition between the different drying zones
are set to 6 and 20 minutes with the total drying time being 80 minutes. For the thickness and solvent fraction there is not
much difference between the optimized and non-optimized trajectory. This can be explained by that there is no particular
difference in the evaporation rate. However, when the thin film enters the third and final drying section, the air temperature
as well as the evaporation rate drops which is reflected by a slower thickness and solvent fraction development. The
reduction in heat needed for the drying process is reduced by 7.75%. However, the drying time is increased by 19.4%.
Furthermore, figure 4.22 shows the comparison of the non-optimized and optimized trajectory with the drying zone
transition set at t1 = 20 and t2 = 40 minutes, while the evaporation constraint is unchanged. For the first drying section
the optimized and non-optimized remains the same as the air temperature is unchanged. However, as the thin film enters
the second section, the air temperature increases to about 364 K which increases the evaporation of the solvent. A closer
look reveals that the evaporation rate exceeds the upper limit set for the evaporation rate. This is due to the constraint
tolerance set for the fmincon-function and the relative small scale of the evaporation. Decreasing the tolerance will
keep the evaporation rate from exceeding the constraint at the expanse of the air temperature. Nevertheless, reducing
the tolerance will most likely yield a small reduction in the air temperature. Compared to the first configuration of the
drying sections, the heat consumption is now reduced by 25.32%. In addition, the drying time is reduced by 33.67%. The
reduction in drying time should not be taken too literally, as by changing the threshold at which the drying is considered
to be over does changed the overall reduction. However, it gives some indication on whether the drying time decreases or
increases.

Table 4.6 is a comparison of configurations with different upper evaporation rate bound and drying section separations.
Similar plots for the different configurations as figure 4.21 and figure 4.22 can be found in figure E.6-figure E.5 in
appendix E. The table show that separating the the drying section more evenly yields higher reduction in both drying time
and heat consumption. A three-zoned drying unit clearly reduces the heat consumption by utilizing the temperature related
latent heat of evaporation which decreases with increased film temperature. By trail and error, the optimal separation of
the drying section turned out to be approximately around t1 = 20 and t2 = 40 minutes. By extending the optimization
problem to include for variable section separation this can be determined more accurately. Extending the optimization
problem can further optimize the drying process and can be a part of future work. Furthermore, increasing the upper
evaporation limit speeds up the drying process as well as reducing the heat needed even more as it allows for utilization
of even higher temperatures. However, these results are representative for this particular battery composition only, hence,
other composition will experience different reduction in heat consumption and drying time. Nevertheless, it is reasonable
to assume that any composition will behave in a similar manner. Of course, the upper bounds on the evaporation rate has
to be determined experimentally for any battery composition. But the results clearly indicates that a multi-section drying
unit is more efficient in terms of heat consumption and drying time compared to a single stage drying unit. The benefits
of multi-stage drying units are also documented in other published literature which further verifies the results[55, 56, 23].
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Table 4.6: Listing of reduction in heat consumption and drying time and optimal control inputs based on evaporation rate
constraint and drying section separation.

Ebound (kg
s

) t1 (min) t2 (min) Qred(%) tred(%) u1 (K) u2 (K) u3 (K)

4 · 10−5 6 20 -9.1 -6 330.5 346.1 351.2
20 40 12.1 -11.9 345.5 353.1 335.6

5 · 10−5 6 20 7.8 -19.39 350.2 352.1 340.1
20 40 25.3 33.67 350.2 363.9 330.5

7 · 10−5 6 20 25.72 -3.9 357.7 361.1 339.2
20 40 31.7 41.4 357.6 370 330.5
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Figure 4.21: Comparison of the numerical solution with and without optimized air temperature control input with the
constrain ei ≤ 5 · 10−5 kg

s . The drying zone transition is set at t1 = 6 and t2 = 20 min.
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Figure 4.22: Comparison of the numerical solution with and without optimized air temperature control input with the
constrain ei ≤ 5 · 10−5 kg

s . The drying zone transition is set at t1 = 20 and t2 = 40 min.
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4.4.2 Optimization With Respect To Air Temperature And Air Velocity
Figure 4.23 shows the the comparison of the non-optimized trajectory and the optimized trajectory with respect to the air
temperature and air velocity. The upper bound on the evaporation rate is set to 5 · 10−5 kg

s . The different drying stages
were separated at t1 = 20 and t2 = 40 minutes. The reduction in energy consumption is 14.9%, while the reduction in
drying time is found to be 33.7%. Compared to the optimal trajectory with the same setup when only the air temperature
is treated as an optimization variable, the reduction in the energy consumption is approximately 10% lower. However, the
reduction in drying time is the same. Furthermore, table 4.7 lists the optimal control inputs calculated for two different
setups along with the reduction in energy needed for the process and reduction in drying time.

Table 4.7: Listing of reduction in heat consumption and drying time and optimal control inputs based on evaporation rate
constraint and drying section separation.

Ebound (kg
s

) t1 (min) t2 (min) Qred(%) tred(%) u1 (K) u2 (K) u3 (m
s

) v1 (m
s

)) v2 (K) v3 (m
s

))

5 · 10−5 20 40 14.9 33.7 369.3 370.0 330.5 5.0 9.7 15.0
7 · 10−5 20 40 16.0 39.7 370.0 370.0 330.5 5.0 15.0 15.0

Compared to the results from the previous section, the reduction in both energy consumption and drying time is lower.
The reason for the decreased optimal point when both the air temperature and air velocity are treated as optimization
variables is not known. However, by looking at figure 4.24, the evaporation rate peaks when the thin film enters the
second drying stage which could be sign of the air velocity’s relation to the mass transfer coefficient causing the weird
results. Despite the higher air temperature for the optimized trajectory, the evaporation rate follows the same trajectory as
the non-optimized solution within the first drying stage due to the much lower air velocity. However, as the thin film enters
the second drying stage, only the air velocity changes from 5 m

s to 15 m
s which causes a large spike in the evaporation

rate. The spikes in the evaporation are mainly caused as the changes in the control inputs happens instantaneously. In
practice, the thin film would experience a smoother change with respect to the control input as it is transferred from one
drying stage to another. However, a similar observation can be made for the optimized trajectories when the air velocity
is treated as a constant in the previous section. Thus, it cannot be concluded that air velocity’s affect on the mass transfer
function is the cause of the unexpected results. However, it suggested as future work to further investigate the cause.
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Figure 4.23: Comparison of the numerical solution with and without optimized control inputs with the constrain ei ≤
5 · 10−5 kg

s . The drying zone transition was set at t1 = 6 and t2 = 20 min.
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Figure 4.24: Comparison of the numerical solution with and without optimized control inputs with the constrain ei ≤
7 · 10−5 kg

s . The drying zone transition was set at t1 = 20 and t2 = 40 min.

4.4.3 Further Notes
The optimization problem is formulated such that it does not take into account the energy needed to heat up the air
temperature nor energy needed for the fans. One can argue that this is the case for both the optimized and non-optimized
solution so that it evens out. However, higher air temperatures and velocities would require more energy to produce.
An interesting future development could be to investigate the total energy reduction of the overall system in terms of
heat and exergy analysis in which heat recovery method is utilized. An exergy analysis can provide useful information
of the quality of the energy and to what extent heat recovery method is useful. From a control perspective, the elapsed
time for solving the optimization problem is approximately half a minute. Considering implementing a MPC, the current
computational time is too high as an MPC solves the optimization problem at each iteration which in turn will invoke large
internal delays. Having larger computational power at hand, which could solve the optimization problem in a reasonable
time frame, would enable the implementation of an MPC. However, as this is not the case, controlling the process using
P/PI/PID controllers with feedback is more reasonable.

For the optimal trajectories with a upper bound on the evaporation rate at 7 · 10−5 kg
s , the final thickness deviates from

that of the non-optimized trajectory. A similar observation was made in the linear analysis section, although on a larger
scale. However, this indicates that there is some faults in the relation between the evaporation rate and the thickness of the
film as it seems that the solvent fraction is not affected in the same way. This can be related to the way the partial pressure
of the solvent is calculated by using Flory Huggin’s theory or how the partial pressure is coupled with the thickness.
This should be investigated for further verification. However, the relatively small deviation along with the model already
discarded from performance optimization and control with respect to the thickness should not have significant impact on
the results presented above.
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4.5 Control
In this section, the results from the controlled system are presented and discussed. However, prior to controlling the overall
system, the performance of each controller is assessed. The controllers are tested with disturbances of different frequency
to assess whether or not the control system is exposed for disturbances of a particular frequency and the performance in
general.

4.5.1 Controller Performance
To begin with, the processes that the proposed controllers are to control are modelled in an attempt to replicate an actual
process that occur in the battery industry. The actual models of the heating and acceleration systems are not assumed to
be of high accuracy. However, the main focus is to replicate behaviors of the control inputs that one might find in the
industry. Therefore, as long as the control system is tuned properly and the output signals behave some what realistically,
the accuracy of the actual control process models are of no particular concern.

The proposed controllers are:

KT =
1.5s+ 0.1

s
, KV =

3s+ 5

s

Air Temperature Controller

For the air temperature controller the gain and phase margin are found to be 3 and 59◦. The gain margin is well above
the recommended value of GM ≥ 2, while the phase margin is slightly below the recommended value of 60◦. With
the definition of the bandwidth frequency as stated in section 2.6, it is found to be approximately at ωb = 0.36 rad

s .
Within the bandwidth region ||GK|| � ||Gd|| which indicates good disturbance rejection within the bandwidth. ||Gd||
falls well below 1 around the bandwidth. Thus, disturbances of frequency larger than ωb is dampen by the process it
self. As a consequence, control is not needed at these frequencies. In addition, with the reference being constant at
zero, ||GK|| � ||r|| within the bandwidth which indicates good reference tracking. ||GK|| also drops well below 1 for
frequencies above ωb implying low sensitivity to measurement noises. Finally, the peak values MS and MT is found to
be at 1.62 and 1.01, respectively. This indicates good control performance within the bandwidth as well as the control
system is robust to model uncertainties. Figure 4.25 shows the Bode-plot of the system with the proposed controller for
the air temperature process.
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Figure 4.25: Frequency response for the air temperature heating process.

Figure 4.26 shows simulations of the temperature control system with the proposed PI controller with disturbances of
increasing frequency. As the figure shows the system becomes less affected disturbances of increasing frequency. This fits
well with the information obtained from the Bode-plot in figure 4.25 with a decreasing magnitude of Gd. This shows that
even though the disturbance signal is of a frequency higher than the bandwidth, the process remains close to its reference
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value. This is due to the disturbance been dampen by the process it self rather than the controller efficiently correcting
the deviation in the error. However, at frequencies within the bandwidth it is clear that the controller is performing well
as the uncontrolled output deviates with about 50 Kelvin while the controlled output stays close to the reference value.
For the controlled system, the temperature deviates at most by 1 Kelvin, which is considered to be good when compared
to the accurate temperature control for industrial processes developed by Li and Yu in [57] (which deviates with 0.5
Kelvin). Furthermore, figure 4.27 shows the saturated and unsaturated control inputs during the simulation. The scaled
control input is peaking at approximately 0.05. With a saturation limit of |umax| = 1, the control input is far from being
saturated and the process uses little of the available control input. This implies that scaling with respect to u could be
better. Nevertheless, the controller manages to keep the output value within a close proximity of the reference value
despite disturbances.
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Figure 4.26: Simulation of the temperature control with disturbances of different frequency.
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Figure 4.27: Saturated and unsaturated control input for the temperature process with disturbances of different frequency.
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Air Velocity Controller

The Bode-plot of the air velocity process with the proposed controller is illustrated in figure 4.28. The gain and phase
margin are found to be approximately 2.09 and 72◦. This is slightly above recommend considering the gain margin.
However, the phase margin is well above the recommended value of 60◦. Thus, the system is far from being unstable. The
bandwidth frequency is approximately 0.56 rad

s , limiting the controller to frequencies up to roughly 1 rad
s . Within the

bandwidth, ||GK|| � ||Gd|| which implies good disturbance rejection. In addition, the magnitude of GK is much lager
than ||r||. Thus, good reference tracking can also be expected. However, both ||GK|| and ||Gd|| remains close to 1 for all
frequencies above ωb. As a consequence, disturbances with frequency in this range wont be rejected and thus, affecting
the process with a larger magnitude than for lower frequencies. Furthermore, MS and MT are found to be 1.91 and 0.91.
Although this is below recommended, both S and T oscillates peaking at MS and MT for frequencies above ωb, further
indicating that control at these frequencies is poor. Nevertheless, due to the input delay, the control performance of the
system is difficult to improve. Thus, the controller is left unchanged.
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Figure 4.28: Frequency response for the air velocity process.

Figure 4.29 shows the simulations of the air velocity control system with disturbance of increasing frequency. As the
process is scalar function, the disturbance is implemented with a bias to represent forces which works in the opposite
direction of the control input. This is mainly done to show that the process is in need of a integrator to correct for the
stationary offset that is created by the disturbance. As the figure shows, for every simulation the controller manage to
correct for the stationary deviation. However, as the frequency of the disturbance increases, the output value becomes
increasingly oscillatory. Considering the observation made when studying the Bode-plot, this behavior is reasonable.
Furthermore, figure 4.30 shows the saturated and unsaturated control inputs during the simulation. With a saturation limit
at |umax| = 1, the control input remains within the range of the actuator. Compared to the magnitude of the control inputs
for the temperature controller, the scaling of the air velocity process with respect to the control input is more appropriate.
However, in events with changes in the reference, the control input is likely to become saturated. Nevertheless, as reference
changes only occurs at start up of the drying process this is of little concern. In summary, the controller performs well
within the bandwidth with decent disturbance rejection. However, as the frequency increases the control system fails to
reject disturbances.
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Figure 4.29: Simulation of the air velocity control with disturbances of different frequency.
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Figure 4.30: Saturated and unsaturated control input for the air velocity process with disturbances of different frequency.
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4.5.2 Control of the Overall System
For controlling the complete system, the controllers are set to follow the optimal trajectory for the control inputs obtained
from the optimization. Table 4.8 lists the parameters from the selected configuration from section 4.4.

Table 4.8: List of parameter selected for the simulation.

Parameter t1 (min) t2 (min) Ta,1 (K) Ta,2 (K) Ta,3 (K) V (m
s

) Ebound(
kg
s

)

Value 20 40 350.2 363.9 330.5 15 5 · 10−5

Figure 4.31 shows a comparison of the optimal trajectory and the estimated states from the simulation of the complete sys-
tem. In this particular case, the control processes are excited by disturbances at 0.63 rad

s which are within the bandwidth
of both controllers. The system manages to follow the optimal trajectory with high precision despite the disturbances in
the control process and the measurement and process noises for the sensor and the plant. However, such accuracy can
not be expected in reality as there are several factors which is not considered when designing the control systems. A
significant reason for the high accuracy is that the ”unknown” plant is modelled using the proposed model. As both the
plant and the EKF uses the same model to produce the output and estimates, the only thing causing variations between
the two are the measurements and process noises and control inputs. However, as figure 4.32 shows, the control inputs
implemented on the plant is far from constant which implies that the output of the system is not significantly affected by
variations in the control input. Nevertheless, a conclusion whether or not the overall system is fit for control purposes can
not be drawn without testing the model on a physical plant.
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Figure 4.31: Comparison of the optimal trajectory and estimated states from the simulation when the control process is
excited by disturbances at 0.63 rad

s .
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Conclusion

The purpose of this thesis was to derive a model which describes the drying process for electrodes used in battery produc-
tion which could be used in optimization and control.

A one dimensional model was derived using theorems from fluid- and thermo-dynamics with the parameters initial solvent
content, initial thin film temperature, heat source temperature and air velocity. The system were solved by applying the
FEM in combination with 4th order Runge-Kutta method to the model in Matlab®. The numerical method became mesh
independent at roughly 200 elements. However, as the model was to be used for control and optimization purposes, a
resolution in time and space of approximately 1-2 seconds and 20 elements was found to be a good compromise between
accuracy and computational time. Furthermore, comparison of the solution using linear and quadratic shape functions
showed that with increasing number of elements the difference in the solution decreased exponentially. In addition, the
difference in computational time increased exponentially, indicating that linear shape functions was most reasonable for
a large number of elements. Finally, simulations showed that the numerical method conserves mass and energy.

The model showed promising behavior when comparing it with other published literature on the similar topics. However,
the model does not account for the formation of the porous media during the drying process. As a consequence, the
model was unfit for optimization and control with respect to performance in which the film thickness was of importance.
Despite this, the model was fit for optimization and control with respect to energy as the model conserves mass and
energy. Furthermore, a sensitivity analysis indicated that all of the parameters had varying effects on the drying process.
The air temperature and air velocity had the greatest influence, while the drying process was least affected by changes
in the initial thin film temperature. This was mainly due to the parameters influence on the vapor pressure and the mass
transport coefficient which were the limiting factors for the evaporation rate. However, none of the parameters affected
the final moisture content, which was solely dependent on the relative humidity of the air.

In attempt to simplify the task at hand, the model was linearized about the stationary conditions. The linear model shared
similar behavior to the non-linear model. However, the dynamics of the linear model was much faster compared to the
non-linear model. In addition, the linear model experienced a large deviation in the film thickness. The main reason for the
large difference was large initial perturbation from the linearization point and that the process was highly non-linear. As
a result, the linearized model was not a suitable alternative to the non-linear model for optimization and control purposes.
Nevertheless, the linear model was used to assess the controllability and observability of the system which indicated that
the model is uncontrollable despite the number of elements used for the finite element approximation. However, the
analysis indicated that the system were observable for a small number of elements, indicating that a Kalman filter could
be used for estimating the states.

An EKF was derived for estimating the states. Due to lack of a physical plant or data, measurements were produced using
the derived model and appropriate measurement and process noise. The different states were affected differently by both
process and measurement noise, with the density being the state that was affected the most. The initial configuration of
unity for the EKF already showed promising performance. However, by tuning the accuracy of the estimated states were
further improved. Despite the promising performance showed by the EKF algorithm, the EKF was prone to singularities
when the Jacobian became close to zero. Thus, it was recommended to implement an UKF in future work.

The process were optimized with respect to the chosen control inputs (air temperature and air velocity) in order to reduce
the energy needed for the process. In addition, the drying process was divided into three separate stages in an attempt to
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utilize higher air temperatures for a lower amount of time. The results clearly indicated that a multi-stage dryer reduced
both energy and time for the drying process. This was found to be in accordance with other published work. However,
unexpected results was obtained when the process was optimized using both the air temperature and air velocity as
optimization variables. The air velocity’s influence of the mass transfer coefficient was pointed out as a possible reason.
However, further investigation was suggested.

Due to lack of a physical plant, simple models for heating the air temperature and acceleration was derived in an attempt
to recreate an actual drying process. Simple PI-controller were designed through the loop shaping technique to control
the systems. The control system managed to replicate inputs which can be expected in practice. However, despite a suc-
cessfully implementation and simulation of the overall system, a conclusion other than that the model showed promising
performance for optimization and control for energy minimization purpose could not been drawn.
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Chapter 6

Outlook and Further Work

In this thesis, several topics related to the drying process of a battery electrode has been visited. Although the thesis has
arrived at some conclusion based on the results presented, further investigated should be carried to further verify discussed
subject. In addition, the model and the numerical method could be improved upon in terms of accuracy and efficiency. As
a brief summarization, the list below contains suggested topics for future work:

• Further development of the model to account for the porosity of the material, as well as looking into the relation
between the thickness and the evaporation rate.

• Further validation of the model by obtain accurate values for parameters and properties for a distinct composition.

• Further improving the numerical method in terms of stability and efficiency.

• Implementing a UKF for state estimation to avoid problems related to singularities.

• Further investigation of the problem related to optimization with both the air temperature and air velocity as opti-
mization variables.

• Comparing the overall energy reduction for multi-stage drying units with heat recovery methods implemented by
applying exergy analysis.

• Further verifying the accuracy of the overall system by implementing the model on a physical plant.
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Appendix A

Derivation of Dimensionless Model

Substituting equation (2.16a) and equation (2.16b) into equation (2.8) we get:

d(ρ̃fρ0)

d(t̃ts)
=

ρsρsolid · (ρs − ρsolid)
(C̃C0 · ·(ρs − ρsolid) + ρsolid)2

· ˙̃CC0 (A.1a)

dρ̃f

dt̃
=

C0ρsρsolid · (ρs − ρsolid) · ts

ρ0 · (C̃C0 · ·(ρs − ρsolid) + ρsolid)2
· ˙̃C (A.1b)

By substituting equation (2.16a) and equation (2.16c) into equation (2.9) we get:

d(L̃L0)

d(t̃ts)
= −kmMs

ρsR
·

(
Ps

T̃ T0

− Pa

Ta

)
(A.2a)

L0

ts

dL̃

dt̃
= −kmMs

ρsR
·

(
Ps

T̃ T0

− Pa

Ta

)
(A.2b)

dL̃

dt̃
= −kmMsts

ρsRL0
·

(
Ps

T̃ T0

− Pa

Ta

)
(A.2c)

Furthermore, by substituting equation (2.16a), equation (2.16e) and equation (2.16c) into equation (2.10) we get:

ρ̃fρ0L̃L0
d(T̃T0)

d(t̃ts)
+ ρ̃fρ0T̃T0

d(L̃L0)

d(t̃ts)
+ L̃L0T̃T0

d(ρ̃fρ0)

d(t̃ts)
= −kmMshfg

CpR
·

(
Ps

T̃T0

− Pa

Ta

)
+
q̇in
Cp

(A.3a)

ρ̃fρ0L̃L0
T0

ts

dT̃

dt̃
+ ρ̃fρ0T̃T0

L0

ts

dL̃

dt̃
+ L̃L0T̃T0

ρ0

ts

dρ̃f

dt̃
= −kmMshfg

CpR
·

(
Ps

T̃T0

− Pa

Ta

)
+
q̇in
Cp

(A.3b)

dT̃

dt̃
= − kmMstshfg

ρ̃fρ0CpRL̃L0

·

(
Ps

T̃T0
2
− Pa

TaT0

)
+

ts

ρ̃fρ0CpL̃L0T0

· q̇in −
T̃

L̃

dL̃

dt̃
− T̃

ρ̃f

dρ̃f

dt̃
(A.3c)

Finally, by substituting equation (2.16a), equation (2.16f), equation (2.16g) and equation (2.16d) into equation (2.1) we
get:

∂(C̃C0)

∂(t̃ts)
=

∂

∂(z̃L)

(
D̃(C̃C0, T̃ T0)D0

∂(C̃C0)

∂ (z̃L)

)
(A.4a)

C0

ts

∂C̃

∂t̃
=

D0C0(
L̃L0

)2

∂

∂z̃

(
D̃(C̃C0, T̃ T0)

∂C̃

∂z̃

)
(A.4b)

∂C̃

∂t̃
=

D0ts(
L̃L0

)2

∂

∂z̃

(
D̃(C̃C0, T̃ T0)

∂C̃

∂z̃

)
(A.4c)
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For the boundary condition at z̃ = 1:

D̃0D0
∂(C̃C0)

∂(z̃L)
+ C̃C0

d(L̃L0)

d(t̃ts)
= −kmMs

ρsR
·

(
Ps

T̃T0

− Pa

Ta

)
(A.5a)

D̃0D0C0

L̃L0

∂C̃

∂z̃
+
C̃C0L̃L0

ts

dL̃

dt̃
= −kmMs

ρsR
·

(
Ps

T̃T0

− Pa

Ta

)
(A.5b)
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Appendix B

Derivation of Extended Kalman Filter
Equations

Using the linearized model equation (2.78) linearized about the priori estimate yields the following:

P−k = E[(xk − x−k )(xk − x−k )>]

= E[(Jx(xk−1 − x+
k−1) + Jwwk−1)(Jx(xk−1 − x+

k−1) + Jwwk−1)>]

= E[(Jx(xk−1 − x+
k−1)(xk−1 − x+

k−1)>J>x + Jx(xk−1 − x+
k−1)w>k−1J

>
w

+ Jwwk−1(xk−1 − x+
k−1)> + Jwwk−1w

>
k−1J

>
w ]

Noting that the process noise has no correlation with the states as well as recalling thatR represents the covariance matrix
of the process noise, the priori estimate of the covariance matrix, P−k is reduced to:

P−k = E[Jx(xk−1 − x+
k−1)(xk−1 − x+

k−1)>J>x + Jwwk−1w
>
k−1J

>
w ]

P−k = JxE[(xk−1 − x+
k−1)(xk−1 − x+

k−1)>]Jx + JwE[wk−1w
>
k−1]Jw

>

Recalling that P+
k = E[(xk − x+

k )(xk − x+
k )>] and assuming that the process noise enters the system directly yields:

P−k = JxP
+
k−1Jx +Q (B.1)

Prior to the posteriori estimate, let us first define the error in the state estimation as:

ek = xk − x+
k

= f(xk−1, uk−1, wk−1) − x−k −Kk(h(xk, vk) − h(x−k , vk))

≈ f(xk−1, uk−1, wk−1) − f(x+
k−1, uk−1, wk−1) −Kk(h(xk, vk) − h(x−k , vk))

≈ Jf,x(x+
k−1)ek−1 + Jf,wwk−1 −Kk(Jh,x(x−k )e−k + Jh,vvk)

≈ Jf,x(x+
k−1)ek−1 + Jf,wwk−1 −KkJh,x(x−k )(Jf,x(x+

k−1)ek−1 + Jf,wwk−1) −KkJh,vvk

≈ (I −KkJh,x(x−k ))Jf,x(x+
k−1)ek−1 + (I −KkJh,x(x−k ))Jf,wwk−1 −KkJh,vvk

Now, the posteriori estimate of the covariance matrix can be found by:

P+
k = E[eke

>
k ]

=
(
I −KkJh,x(x−k )

)
Jf,x(x+

k−1)P+
k−1Jf,x(x+

k−1)>
(
I −KkJh,x(x−k )

)>
+
(
I −KkJh,x(x−k )

)
Q
(
I −KkJh,x(x−k )

)>
+KkRK

>
k

=
(
I −KkJh,x(x−k )

)
P−k

(
I −KkJh,x(x−k )

)>
+KkRK

>
k (B.2)

II
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Now, we like to find the Kalman gain that minimizes the tr(P+
k ). This is found by setting the differential of tr(P+

k )
with respect to Kk to 0:

∂tr(P+
k )

∂Kk
= 0

0 = −
(
Jh,x(x−k )P−k

)>
− P−k Jh,x(x−k )> − 2KkJh,x(x−k )P−k Jh,x(x−k )> + 2KkR

Kk = P−k Jh,x(x−k )>
(
Jh,x(x−k )P−k Jh,x(x−k ) +R

)−1

(B.3)

Substituting equation (B.3) back into equation (B.2) yields:

P+
k =

(
I −KkJh,x(x−k )

)
P−k −

(
I −KkJh,x(x−k )

)
P−k Jh,x(x−k )>K>k +KkRK

>
k

=
(
I −KkJh,x(x−k )

)
P−k −

(
P−k Jh,x(x−k )> −KkJh,x(x−k )P−k Jh,x(x−k )> −KkR

)
K>k

=
(
I −KkJh,x(x−k )

)
P−k −

(
P−k Jh,x(x−k )> − P−k Jh,x(x−k )>

)
K>k

P+
k =

(
I −KkJh,x(x−k )

)
P−k
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Appendix C

Derivation of System Equations in Matrix
Form

We start by rewriting equation (2.8) in dimensionless form:

dρ̃f

dt̃
= q · ˙̃C (C.1)

where q are:

q =
C0ρsρsolid · (ρs − ρsolid)

(C̃C0 · ·(ρs − ρsolid) + ρsolid)2
(C.2)

Substituting equation (2.39) in to equation (C.1) and we get:

dρ̃f

dt̃
= q ·

(
αΓ̂− αK(Φε) · ε

)
(C.3a)

dρ̃f

dt̃
= − q

Ln
· εNn︸ ︷︷ ︸

=w

·dL̃
dt̃
−q · kmMs

ρ̃fρ0RL̃nL0C0

·
(

Ps
TnT0

− Pa
Ta

)
− qαKe,N ·

εN−2
n

εN−1
n

εNn


︸ ︷︷ ︸

=v

(C.3b)

dρ̃f

dt̃
= w · dL̃

dt̃
+ v (C.3c)

whereKe,N refers to the last row of the local stiffness matrix at the boundary element. The superscription (·)N refers to
the node at the boundary at any specific time step. For the thickness equations we have:

dL̃

dt̃
=

kmMs

ρ̃fρ0RL0
·

(
Ps

T̃ T0

− Pa
Ta

)
︸ ︷︷ ︸

=−h

− L̃

ρ̃f

dρf
dt

(C.4)

For the temperature equation we got:

dT̃

dt̃
= − T̃

L̃

dL̃

dt̃
− T̃

ρ̃f

dρ̃f

dt̃
−kmMstshfg

ρfCpRL̃L0

·

(
Ps

T̃T0
2
− Pa

TaT0

)
︸ ︷︷ ︸

=−g

+
ts

ρfCpL̃L0T0

q̇in︸ ︷︷ ︸
=q̇

(C.5)

Together they form the matrix equation:1 0 0
0 1 0
0 0 1

 ·


dL̃
dt̃
dT̃
dt̃

dρ̃f
dt̃

 =

 0 0 − L̃
ρ̃f

− T̃
L̃

0 − T̃
ρ̃f

w 0 0

 ·


dL̃
dt̃
dT̃
dt̃

dρ̃f
dt̃

+

 −hq̇ − g
v

 (C.6)
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Appendix D

Matlab-Scripts

D.1 Main-Script
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%%%%%%%%%%%%%%%%%%%% Electrode Drying Model w/FEM %%%%%%%%%%%%%%%%%%%%%%%
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 clear;
5

6 %-------------------------------------------------------------------------%
7 %-------------------------Declaring Variables-----------------------------%
8 %-------------------------------------------------------------------------%
9

10 p.rho_s = 838; %@(T) -0.8833*T+1292; % Density of solvent [kg/m ˆ3]
11 p.rho_p = 1200; % Density of the solids [kg/mˆ3] 4000 without air
12 p.Cp = 1900; % Specific heat coefficient [J/ kgK ]
13 p.Ms = 99.133; % Molecular weight of solvent[kg/ kmol ]
14 p.R = 8314; % Universal gas constant [J/kmolK ]
15 p.Ta = @(t) 350+5*(t>1200);% + 20*(t>3000)); % Ambient air temperature [K] (80-130)C
16 p.rh = 0.25; % Relativ humidity of ambient air [%]
17 p.Pa = @(Ta) p.rh*133.332*10.ˆ(7.54826-1979.68./(222.2+(Ta-273) )); % Vapor pressure in the ambient

air [Pa]
18 p.V = @(t) 15+2*(t>1210); % Air velocity [m/s] (4-25)
19 %[p.k_c , p.k_m ] = TransferCoefficients(V); % Heat and mass transfer coefficients [W/mˆ2K] [m/s]
20

21 %% Initial Values
22 p.L0 = 0.165e-03; % Initial thin film thickness (75-240)mum
23 p.T0 = 330.5; % Initial thin film temperature
24 p.D0 = 9e-9; % Initial diffusion coefficient
25 p.C0 = 0.5; % Initial solvent concentration .5455 or .3243 (solvent mass/total mass)
26 [p.rho0 ,p.V_s,p.V_so] = GetDensity(p); % Intial density, solvent volume and solid volume
27

28 lambda = 30e-03; %
29 rho_a = 1.009; % Denisty of the air
30 mu_a = 20.74e-06; % Viscocity of the iar
31 Cp = 1000; % Specific heat of the air
32 D = 0.282e-06; % Diffusion coefficient
33 LL = 1; % Charactheristic length
34 Pr = Cp* mu_a / lambda ; % Prandtl number
35 Sc = mu_a /( rho_a *D); % Schmidt number
36 Le = Sc/Pr; % Lewis number
37 p.k_c = @(V) 0.037*V.ˆ(0.8).*( mu_a / rho_a )ˆ( -0.8)*Prˆ(1/3)*lambda*LLˆ( -0.2) ;
38 p.k_m = @(k_c) k_c /( rho_a *Cp)*Le ˆ( -2/3) ;
39

40 %-------------------------------------------------------------------------%
41 %-------------------------Finite Element Method---------------------------%
42 %-------------------------------------------------------------------------%
43

44 %% Number of elements and matrix assembling
45 noe = 10; % Number of elemetns
46 non = 2*noe+1; % Number of nodes (assuming quadratic elements)
47 p.z = linspace(0,1, non); % Spacestep (assuming uniform element size)
48 [M,K] = AssembleMatriceQuad(p.z); % Assembling the dampning and stiffness matrices

V
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49 x0 = ones(1,length(p.z)+3); % Initial values vector, x0(1:2) initial thickness and
temperatur

50 x0(1:3) = [0.516693157188501 1.059001512161357 1.115504352140297
51 ]; x0(4:end) = 0.184988256905711;
52 SimTime = 150*60; % Simulation time in minutes
53 p.dt = 1; % Timestep
54 t = 0:p.dt:SimTime; % Time vector
55

56 %% Solving the system
57 tic
58 % [y, p.rho, ConD] = SolveSystem(t,x0,p,M,K); % Solving the system
59 [y D] = solveDryingSystem(p,t,x0,M,K);
60 toc
61 L = y(1,:)*p.L0; % Solution vector for thickness
62 T = y(2,:)*p.T0; % Solution vector for temperature
63 rho = y(3,:)*p.rho0;
64 C = y(4:end,:)*p.C0; % Solution matrix for solvent concentration
65

66

67 %-------------------------------------------------------------------------%
68 %--------------------------- Linear System -------------------------------%
69 %-------------------------------------------------------------------------%
70 v.T = p.Ta(0)/p.T0;
71 v.C = C(end)/p.C0;
72 v.rho = rho(end)/p.rho0;
73 v.L = L(end)/p.L0;
74 v.Ta = p.Ta(0);
75 v.V = p.V(0);
76

77 y0 = zeros(size(y,1),1);
78 % [L T C]
79 y0(1:3) = [1-v.L 1-v.T 1-v.rho]; y0(4:end) = 1-v.C;
80 % y0 = 0;
81 u0 = [0 0]’;
82 tic
83 [y_l,sys_c,sys] = Linearization(p,v,M,K,y0,u0,t);
84 toc
85 L_l = (y_l(1,:)+v.L)*p.L0;
86 T_l = (y_l(2,:)+v.T)*p.T0;
87 rho_l = (y_l(3,:)+v.rho)*p.rho0;
88 C_l = (y_l(4:end,:)+v.C)*p.C0;
89

90 %% Linear Simulation - Small Deviation From OP
91 u = zeros(2,length(t));
92 y0_OP = [0.05 -0.05 -0.05 ones(1,length(p.z))*0.25];
93 y_no = lsim(sys,u,t, y0_OP);
94 %% Linear Simulations - No Excitation
95 y_ne = lsim(sys,u,t,’zoh’);
96 %% Linear Simulations - With Excitation
97 t_hta = 20; step_Ta = 5; % Steptime in minutes and

stepsize for Ta
98 t_hv = 25; step_V = 2; % Steptime in minutes and

stepsize for V
99 t_hta = (t_hta*60)/p.dt;

100 t_hv = (t_hv*60)/p.dt;
101

102 t_ramp = 10; % Duration of the ramp
103 t_ramp = (t_ramp*60)/p.dt; % Converting the duration

of the ramp to fit t-vector
104 for i = 1:t_ramp % Constructing ramp

functions for the steps in u
105 u(1,t_hta+1+i) = step_Ta/t_ramp*i;
106 u(2,t_hv+1+i) = step_V/t_ramp*i; % Linear increas in

control input
107 end
108 u(1,(t_hta+1+t_ramp):end) = step_Ta; % Setting the step in the

control input for the rest of the simulation
109 u(2,(t_hv+1+t_ramp):end) = step_V;
110 y_e = lsim(sys,u,t);
111

112 %% Linear Vs Non-Linear
113 t_hh = 1201/p.dt; t_vh = 1211/p.dt; % Steptime of the non-

linear model
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114 u_h = zeros(2,length(t));
115 u_h(1,t_hh:end) = step_Ta; u_h(2,t_vh:end) = step_V;
116 y_lvn = lsim(sys,u_h,t,’zoh’);
117 T_lvn = T/p.T0-v.T; L_lvn = L/p.L0-v.L;
118 %-------------------------------------------------------------------------%
119 %----------------------------Post Processing------------------------------%
120 %-------------------------------------------------------------------------%
121

122 % T = correctTemperature(p,T); % Correction for small
overshoot in temperature

123 Ps = p_sol(C(end,:),T,p); % Vector for solvent
partial pressure at thin film - air interface

124 Ps_l = p_sol(C_l(end,:),T_l,p); % Vector for solvent
partial pressure for linear model

125 Ta = p.Ta(t(:))’; Pa = p.Pa(p.Ta(t(:)))’;
126 Evap_rate = (p.k_m(p.k_c(p.V(t(:))))’.*p.Ms)./p.R.*(Ps./(T)-Pa./Ta); % Vector

for evaporation [kg/mˆ2]
127 E_l = (p.k_m(p.k_c(p.V(t(:))))’.*p.Ms)./p.R.*(Ps_l./(T_l)-Pa./Ta); % Vector

for evaporation for linear model
128 % m_error_p = 100*MassConservationCheck(t,C(end),p,L(end),Evap_rate); % Error in mass [%]
129 Q = HeatConsumed(p,T,Evap_rate); % Total heat needed [kJ/

mˆ2]
130

131

132 for i=2:length(t) % Assessing drying time
based on evaporation criterias

133 check = abs(Evap_rate(i)-Evap_rate(i-1));
134 E_constraint = 1e-07; % Constraint for the

evaporation rate
135 dE_constraint = 1e-09; % Constraint for the

change in evaporation rate
136

137 if abs(Evap_rate(i)) <= E_constraint && check <= dE_constraint
138 drying_time = i*p.dt/60 % Drying time in

minutes
139 C(end,i)
140 break
141 end
142 end
143

144 error = (1-((p.L0*p.rho0-L(end)*rho(end))/trapz(p.dt,Evap_rate)))*100
145 %-------------------------------------------------------------------------%
146 %-------------------------------Plots-------------------------------------%
147 %-------------------------------------------------------------------------%
148 t = t/60;
149 figure
150 %% Thickness Plot
151 subplot (221)
152 plot (t,L*10ˆ6, ’b’)
153 grid
154 xlabel(’Time (min)’,’interpreter’,’latex ’)
155 ylabel (’ Film Thickness ($\mathrm{\mu m}$)’, ’interpreter’,’latex ’)
156

157 %% Temperature Plot
158 subplot (222)
159 plot (t,T,’b-’)
160 hold on
161 plot([0 t(end)],[p.Ta(0) p.Ta(0)],’r--’)
162 hold off
163 grid
164 xlabel (’ Time (min)’, ’Interpreter’,’latex ’)
165 ylabel (’ Temperature (K)’, ’Interpreter’,’latex ’)
166 legend(’Thin Film Temperature’,’Air Temperature’)
167 xlim([0 2]); ylim([p.T0 p.Ta(0)+5])
168 %% Evaporation Plot
169 subplot (224)
170 plot (t,rho, ’b’)
171 grid
172 xlabel(’ Time (min)’, ’Interpreter’,’latex ’)
173 ylabel(’ Density ($\mathrm{\frac{kg}{mˆ3}}$)’, ’Interpreter’,’latex ’)
174

175 %% Solvent Fraction Plot
176 subplot (223)
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177 plot (t,C(end,:),’b’,t,C(1,:),’r--’)
178 grid
179 xlabel(’ Time (min)’, ’Interpreter’,’latex ’)
180 ylabel(’ Solvent fraction’, ’Interpreter’,’latex ’)
181 legend(’C_{top layer}’,’C_{bottom layer}’)
182 %-------------------------------------------------------------------------%
183 %-------------------------- Linear Plots ---------------------------------%
184 %-------------------------------------------------------------------------%
185 figure
186 %% Thickness Plot
187 subplot (221)
188 plot (t,L_l*10ˆ6,’b’, t, L*10ˆ6,’r--’)
189 grid
190 xlabel(’Time (min)’,’interpreter’,’latex ’)
191 ylabel (’ Film Thickness ($\mathrm{\mu m}$)’, ’interpreter’,’latex ’)
192 legend(’Linear Model’, ’Non-Linear Model’)
193

194 %% Temperature Plot
195 subplot (222)
196 plot (t,T_l,’b-’,t,T,’r--’)
197 grid
198 xlabel (’ Time (min)’, ’Interpreter’,’latex ’)
199 ylabel (’ Temperature (K)’, ’Interpreter’,’latex ’)
200 legend(’Linear Model’, ’Non-Linear Model’)
201 xlim([0 2])
202 %% Evaporation Plot
203 subplot (224)
204 plot (t,E_l,’b’,t, Evap_rate,’r--’)
205 grid
206 xlabel(’ Time (min)’, ’Interpreter’,’latex ’)
207 ylabel(’ Drying rate ($\mathrm{\frac{kg}{mˆ2s}}$)’, ’Interpreter’,’latex ’)
208 legend(’Linear Model’, ’Non-Linear Model’)
209 %% Solvent Fraction Plot
210 subplot (223)
211 plot (t,C_l(end,:),’b’,t,C(end,:),’r--’)
212 grid
213 xlabel(’ Time (min)’, ’Interpreter’,’latex ’)
214 ylabel(’ Solvent fraction’, ’Interpreter’,’latex ’)
215 legend(’Linear Model’, ’Non-Linear Model’)
216

217 %-------------------------------------------------------------------------%
218 %---------------------- Linear Simulation Plots --------------------------%
219 %-------------------------------------------------------------------------%
220 figure
221 %% Thickness Plot
222 subplot (211)
223 yyaxis left
224 plot (t,y_e(:,1)’*p.L0*10ˆ6,’b’, t, y_ne(:,1)’*p.L0*10ˆ6,’r’)
225 ylabel (’Deviation from OP [$\mathrm{\mu m}$]’, ’interpreter’,’latex ’)
226 yyaxis right
227 h = plot(t,u(1,:),’b:’,t,u(2,:),’r:’);
228 set(h,{’LineWidth’},{2})
229 grid
230 xlabel(’Time (min)’,’interpreter’,’latex ’)
231 ylabel(’Stepsize’)
232 legend(’W/ Excitation’, ’Operating Point’, ’u_1’,’u_2’)
233

234 %% Temperature Plot
235 subplot (212)
236 yyaxis left
237 plot (t,y_e(:,2)’*p.T0,’b’, t,y_ne(:,2)’*p.T0,’r’);
238 ylabel (’Deviation from OP [K]’, ’Interpreter’,’latex ’)
239 yyaxis right
240 h = plot(t,u(1,:),’b:’,t,u(2,:),’r:’);
241 set(h,{’LineWidth’},{2})
242 grid
243 xlabel (’ Time (min)’, ’Interpreter’,’latex ’)
244 ylabel(’Stepsize’)
245 legend(’W/ Excitation’, ’Operating Point’, ’u_1’,’u_2’)
246

247 figure
248 %% Thickness Plot
249 subplot (211)

Page VIII Master’s Thesis



Optimization and Control of Electrode Drying Process Chapter D

250 yyaxis left
251 plot (t,L_lvn,’b’, t, y_lvn(:,1)’,’r’)
252 ylabel (’Deviation from OP’, ’interpreter’,’latex ’)
253 yyaxis right
254 plot(t,u_h(1,:),’:’,t,u_h(2,:),’:’);
255 grid
256 xlabel(’Time (min)’,’interpreter’,’latex ’)
257 ylabel(’Stepsize’)
258 legend(’Non-Linear Model’, ’Linear Model’, ’u_1’,’u_2’)
259

260 %% Temperature Plot
261 subplot (212)
262 yyaxis left
263 plot (t,T_lvn,’b’, t,y_lvn(:,2)’,’r’);
264 ylabel (’Deviation from OP’, ’Interpreter’,’latex ’)
265 yyaxis right
266 plot(t,u_h(1,:),’:’,t,u_h(2,:),’:’)
267 grid
268 xlabel (’ Time (min)’, ’Interpreter’,’latex ’)
269 ylabel(’Stepsize’)
270 legend(’Non-Linear Model’, ’Linear Model’, ’u_1’,’u_2’)

Listing D.1: Main Matlab script.

D.2 Linearization Implmentation
1 function [a,sys,sys_d] = Linearization(p,v,M,K,y0,u0,t)
2 %-------------------------------------------------------------------------%
3 %----------------Linearization of the Non-Linear Model--------------------%
4 %---------------------Using the Symbolic Toolbo---------------------------%
5 %-------------------------------------------------------------------------%
6

7 %% Declaring the Symbolic Variables
8 c = sym(’c’, [length(p.z) 1], ’real’);
9 syms L T rho Ta V real;

10

11 %% Declaring the Parameters in Terms of the Symbolic Variables
12 Ps = p_sol(c(end)*p.C0,T*p.T0,p);
13 D = D_Coefficient(c*p.C0,T*p.T0,p);
14 h_fg = 6.991*(T*p.T0)ˆ2-6193*T*p.T0+1.848e06;
15 Pa = p.rh*133.332*10.ˆ(7.54826-1979.68./(222.2+(Ta-273)));
16 [k_c , k_m ] = TransferCoefficients(V);
17 qin = k_c*(Ta-T*p.T0);
18

19

20 %% Determining the Jacobian for the Density, Thickness and Temperature Based on the Startionary
Conditions for the Given Problem

21 Q = D.*K; b = p.D0/((L*p.L0)ˆ2);
22 q = (p.rho_s*p.rho_p*(p.rho_p-p.rho_s)*p.C0)/(p.rho0*(c(end)*p.C0*(p.rho_s-p.rho_p)+p.rho_p)ˆ2);
23 B = [-(k_m*p.Ms)/(rho*p.rho0*p.R*p.L0)*(Ps/(T*p.T0)-Pa/Ta);
24 -(k_m*p.Ms*h_fg)/(rho*p.rho0*p.Cp*p.R*L*p.L0*p.T0)*(Ps/(T*p.T0)-Pa/Ta)+qin/(rho*p.rho0*p.Cp*

p.T0*L*p.L0);
25 -q*(k_m*p.Ms)/(p.R*p.rho0*L*p.L0)*(Ps/(T*p.T0)-Pa/Ta)-q*b*Q(end,end-2:end)*c(end-2:end)];
26 A = [1 0 L/rho; T/L 1 T/rho; q*rho/L 0 1]; dXdt = A\B;
27 Y = [L T rho c’ Ta V]; W = [v.L v.T v.rho ones(1,length(p.z))*v.C v.Ta v.V];
28 J = double(subs(jacobian(dXdt,Y),Y,W));
29

30 %% Determining the Jacobian for the Solvent Fraction Based on the Startionary Conditions for the
Given Problem

31 b = p.D0/((L*p.L0)ˆ2); R = Q; R(:,:) = 0; B = c; B(:) = 0;
32 R(end) = dXdt(1)/L; K_star = -(b*Q+R);
33 B(end) = -(k_m*p.Ms)/(rho*p.rho0*p.R*L*p.L0*p.C0)*(Ps/(T*p.T0)-Pa/Ta);
34 dCdt = M\K_star*c+M\B;
35 J_C = double(subs(jacobian(dCdt,Y),Y,W));
36

37 %% Defining the Matrices for the Linear State-Space Realization
38 A = [J(:,1:end-2); J_C(:,1:end-2)];
39 B = [J(:,end-1:end); J_C(:,end-1:end)];
40 C = zeros(2,length(p.z)+3); C(1,1) = 1; C(2,2) = 1;
41 % C = diag(ones(1,length(p.z)+2)); % If every
42 % state is measured
43
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44 %% Converting the System Into a Continuous and Discrete State-Space Realization
45 sys = ss(A,B,C,0);
46 sys_d = c2d(sys,p.dt);
47

48 %% Solving the Linear System
49 Ad = sys_d.A; Bd = sys_d.B;
50 a = zeros(length(p.z)+3,length(t));
51 a(:,1) = y0;
52 u = u0;
53 for i = 1:length(t)-1
54 a(:,i+1) = Ad*a(:,i)+Bd*u;
55 end
56

57 %% Determining the Controllability and Observability of the Linear System
58 OB = obsv(Ad,C); CB = ctrb(Ad,Bd);
59 OX = [’Number of unobservable states: ’, num2str(length(A)-rank(OB))];
60 CX = [’Number of uncontrollable states: ’,num2str(length(A)-rank(CB))];
61 disp(OX)
62 disp(CX)
63

64 end

Listing D.2: Linearization script.

D.3 Optimization
1 clear;
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %%%%%%%%%%%%%%%%%%%%%% Electrode Drying Model w/FEM %%%%%%%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% Optimization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 %-------------------------------------------------------------------------%
7 %-------------------------Declaring Variables-----------------------------%
8 %-------------------------------------------------------------------------%
9

10 p.rho_s = 838; % Density of solvent [kg/m ˆ3]
11 p.rho_p = 1200; % Density of the solids [kg/mˆ3]

4000 without air
12 p.Cp = 1900; % Specific heat coefficient [J/ kgK

]
13 p.Ms = 99.133; % Molecular weight of solvent[kg/

kmol ]
14 p.R = 8314; % Universal gas constant [J/kmolK ]
15 p.Ta = 350; % Ambient air temperature [K]

(80-130)C
16 p.rh = 0.25; % Relativ humidity of ambient air

[%]
17 p.Pa = p.rh*133.332*10.ˆ(7.54826-1979.68./(222.2+(p.Ta-273))); % Vapor pressure in the ambient air

[Pa]
18 p.V = 15; % Air velocity [m/s] (4-25)
19 [p.k_c , p.k_m ] = TransferCoefficients(p.V); % Heat and mass transfer

coefficients [W/mˆ2K] [m/s]
20

21 %% Initial Values
22 p.L0 = 0.165e-03; % Initial thin film thickness (75-240)mum
23 p.T0 = 330.5; % Initial thin film temperature
24 p.D0 = 9e-9; % Initial diffusion coefficient
25 p.C0 = 0.5; % Initial solvent concentration .5455 or .3243 (

solvent mass/total mass)
26 [p.rho0 ,p.V_s,p.V_so] = GetDensity(p); % Intial density, solvent volume and solid volume
27

28 %% Number of elements and matrix assembling
29 noe = 2; % Number of elemetns
30 non = 2*noe+1; % Number of nodes (assuming quadratic elements)
31 p.z = linspace(0,1, non); % Spacestep (assuming uniform element size)
32 [p.M,p.K] = AssembleMatriceQuad(p.z); % Assembling the dampning and stiffness matrices
33 x0 = ones(1,length(p.z)+3); % Initial values vector, x0(1:2) initial thickness

and temperatur
34 SimTime = 80*60; % Simulation time in minutes
35 p.dt = 8; % Timestep
36 p.t = 0:p.dt:SimTime; % Time vector
37 p.t_1 = 6; p.t_2 = 20;
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38 %-------------------------------------------------------------------------%
39 %----------------------------Optimization---------------------------------%
40 %-------------------------------------------------------------------------%
41

42 p.Noi = 1; p.Nos = length(p.z)+3; % Length of control input vector and state vector
43 p.N = length(p.t); % Number of discrete points
44 u = zeros(3,1); u0 = u; u0(:) = p.Ta; % Declaration of u vector
45 x = ones(p.Nos,1); % Declaration of initial z vector
46

47 %% Bounds
48 ul = p.T0; uu = 370;
49 ul = repmat(ul,3,1); uu = repmat(uu,3,1);
50 vl = ul; vu = uu; % Upper and lower bounds on optimization variable
51 p.C_limit = 0.2; % Upper bounds for final solvent concentration
52 p.E_limit = 5e-05; % Upper bounds on evaporation rate
53

54 %% Optimization
55 disp(’Optimizing!’)
56 tic
57 options = optimoptions(’fmincon’,’Algorithm’,’sqp’,’MaxIterations’,3000,’ConstraintTolerance’,1e-06)

;
58 [u,fval] = fmincon(@(u)OFun(u,x,p),u0,[],[],[],[],vl,vu,@(u)nlCon(u,x,p),options);
59 toc
60

61 %% Solving the Non-Linear System, With/Without Optimal Control Inputs
62 u_0 = p.Ta*ones(length(p.t),1);
63 u_o = zeros(length(p.t),1); u_o(1:p.t_1*60/p.dt) = u(1); u_o(p.t_1*60/p.dt+1:p.t_2*60/p.dt) = u(2);

u_o(p.t_2*60/p.dt+1:end) = u(3);
64

65 y_0 = solveSystemOP(u_0,x,p); y_o = solveSystemOP(u_o,x,p);
66

67

68 %% Comparison of Original and Optimal setup
69 Ps_0 = p_sol(y_0(end,:).*p.C0,y_0(2,:).*p.T0,p); Ps_o = p_sol(y_o(end,:).*p.C0,y_o(2,:).*p.T0,p);
70 Pa_0 = p.rh*133.332*10.ˆ(7.54826-1979.68./(222.2+(u_0-273)))’; Pa_o = p.rh

*133.332*10.ˆ(7.54826-1979.68./(222.2+(u_o-273)))’;
71 E_0 = (p.k_m*p.Ms)./p.R.*(Ps_0./(y_0(2,:).*p.T0)-Pa_0./u_0’); E_o = (p.k_m*p.Ms)./p.R.*(Ps_o./(y_o

(2,:).*p.T0)-Pa_o./u_o’);
72 Q_0 = HeatConsumedOP(p,y_0(2,:)*p.T0,E_0,u_0’); Q_o = HeatConsumedOP(p,y_o(2,:)*p.T0,E_o,u_o’);
73

74 Q_reduction = (1-Q_o/Q_0)*100
75

76 t = p.t/60;
77 %% Plots
78 figure
79 subplot(221)
80 plot(t,y_0(1,:)*p.L0*10ˆ6, t, y_o(1,:)*p.L0*10ˆ6,’r--’)
81 legend(’Original Setup’,’Optimized Setup’)
82 xlabel(’Time (min)’,’interpreter’,’latex ’)
83 ylabel (’ Film Thickness ($\mathrm{\mu m}$)’, ’interpreter’,’latex ’)
84 subplot(222)
85 plot(t,y_0(2,:)*p.T0, t, y_o(2,:)*p.T0,’r--’)
86 legend(’Original Setup’,’Optimized Setup’)
87 xlabel(’Time (min)’,’interpreter’,’latex ’)
88 ylabel (’ Film Temperature (K)’, ’interpreter’,’latex ’)
89 subplot(223)
90 plot(t,y_0(end,:)*p.C0, t, y_o(end,:)*p.C0,’r--’)
91 legend(’Original Setup’,’Optimized Setup’)
92 xlabel(’Time (min)’,’interpreter’,’latex ’)
93 ylabel (’ Solvent Fraction’, ’interpreter’,’latex ’)
94 subplot(224)
95 plot(t,E_0, t, E_o,’r--’)
96 legend(’Original Setup’,’Optimized Setup’)
97 xlabel(’Time (min)’,’interpreter’,’latex ’)
98 ylabel (’ Evaporation Rate ($\mathrm{\frac{kg}{s}}$)’, ’interpreter’,’latex ’)

Listing D.3: Optimization script.
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1 function ObjFun = OFun(u_i,z,p)
2 ObjFun = 0; x = z; a = x;
3 uu = zeros(length(p.t),1); uu(1:(p.t_1*60/p.dt)) = u_i(1); uu((p.t_1*60/p.dt)+1:(p.t_2*60/p.dt))

= u_i(2); uu((p.t_2*60/p.dt)+1:end) = u_i(3);
4 uv = zeros(length(p.t),1); uv(1:(p.t_1*60/p.dt)) = u_i(4); uv((p.t_1*60/p.dt)+1:(p.t_2*60/p.dt))

= u_i(5); uv((p.t_2*60/p.dt)+1:end) = u_i(6);
5 [k_c,k_m] = TransferCoefficients(uv);
6 for i = 1:length(p.t)-1
7 u = uu(i);
8 %% The Runge-Kutta Method for Solving the ODEs
9 k1 = RungeKuttaCon(p,x(1:3),x,u,k_c(i),k_m(i));

10 k2 = RungeKuttaCon(p,x(1:3)+p.dt*k1/2,x,u,k_c(i),k_m(i));
11 k3 = RungeKuttaCon(p,x(1:3)+p.dt*k2/2,x,u,k_c(i),k_m(i));
12 k4 = RungeKuttaCon(p,x(1:3)+p.dt*k3,x,u,k_c(i),k_m(i));
13

14 a(1:3) = x(1:3)+1/6*p.dt*(k1+2*k2+2*k3+k4);
15

16 %% The Simplified Newton-Raphson’s Method for Solving the Finite Element Approximation
17 j = 1; c_next = x(4:end); dc = 1; b = p.D0/((x(1)*p.L0)ˆ2); max_iter = 20;
18 R = zeros(size(p.M)); F = zeros(length(p.z),1);
19 Pa = p.rh*133.332*10ˆ(7.54826-1979.68/(222.2+(u-273)));
20 while max(dc) > eps && max_iter > j
21 D = D_Coefficient(c_next.*p.C0,x(2)*p.T0,p); Q = D.*p.K;
22 Ps = p_sol(c_next(end)*p.C0, x(2)*p.T0,p);
23 R(end) = k1(1)/x(1);K_star = -(b*Q+R); F(end) = -(k_m(i)*p.Ms)/(x(3)*p.rho0*p.R*x(1)*p.

L0*p.C0)*(Ps/(x(2)*p.T0)-Pa/u);
24 A = -(p.M-p.dt*K_star); B = -p.M*x(4:end)-p.dt*F;
25 c_prev = c_next; c_next = A\B; dc = norm(c_prev-c_next); j = j+1;
26 end
27 a(4:end) = c_next;
28 h_fg = 6.991*(x(2)*p.T0)ˆ2-6193*(x(2)*p.T0)+1.985e06;
29 ObjFun = [ObjFun k_c(i)*(u-x(2)*p.T0)+((h_fg*k_m(i)*p.Ms)/p.R)*(Ps/(p.T0*x(2))-Pa/u)];
30 x = a;
31 end
32 ObjFun = trapz(p.dt,ObjFun);
33 end

Listing D.4: Implementation of objective function.

1 function [c, ceq] = nlCon(u_i,z,p)
2 x = z; a = x; check = true; ceq = [];
3 uu = zeros(length(p.t),1); uu(1:(p.t_1*60/p.dt)) = u_i(1); uu((p.t_1*60/p.dt)+1:(p.t_2*60/p.dt))

= u_i(2); uu((p.t_2*60/p.dt)+1:end) = u_i(3);
4 uv = zeros(length(p.t),1); uv(1:(p.t_1*60/p.dt)) = u_i(4); uv((p.t_1*60/p.dt)+1:(p.t_2*60/p.dt))

= u_i(5); uv((p.t_2*60/p.dt)+1:end) = u_i(6);
5 [k_c,k_m] = TransferCoefficients(uv);
6 for i = 1:length(p.t)-1
7 u = uu(i);
8 %% The Runge-Kutta Method for Solving the ODEs
9 k1 = RungeKuttaCon(p,x(1:3),x,u,k_c(i),k_m(i));

10 k2 = RungeKuttaCon(p,x(1:3)+p.dt*k1/2,x,u,k_c(i),k_m(i));
11 k3 = RungeKuttaCon(p,x(1:3)+p.dt*k2/2,x,u,k_c(i),k_m(i));
12 k4 = RungeKuttaCon(p,x(1:3)+p.dt*k3,x,u,k_c(i),k_m(i));
13

14 a(1:3) = x(1:3)+1/6*p.dt*(k1+2*k2+2*k3+k4);
15

16 %% The Simplified Newton-Raphson’s Method for Solving the Finite Element Approximation
17 j = 1; c_next = x(4:end); dc = 1; b = p.D0/((x(1)*p.L0)ˆ2); max_iter = 20;
18 R = zeros(size(p.M)); F = zeros(length(p.z),1);
19 Pa = p.rh*133.332*10ˆ(7.54826-1979.68/(222.2+(u-273)));
20 while max(dc) > eps && max_iter > j
21 D = D_Coefficient(c_next.*p.C0,x(2)*p.T0,p); Q = D.*p.K;
22 Ps = p_sol(c_next(end)*p.C0, x(2)*p.T0,p);
23 R(end) = k1(1)/x(1);K_star = -(b*Q+R); F(end) = -(k_m(i)*p.Ms)/(x(3)*p.rho0*p.R*x(1)*p.

L0*p.C0)*(Ps/(x(2)*p.T0)-Pa/u);
24 A = -(p.M-p.dt*K_star); B = -p.M*x(4:end)-p.dt*F;
25 c_prev = c_next; c_next = A\B; dc = norm(c_prev-c_next); j = j+1;
26 end
27 a(4:end) = c_next;
28 if check
29 c = (k_m(i)*p.Ms)/p.R*(Ps/(x(2)*p.T0)-Pa/u)-p.E_limit;
30 check = false;
31 else
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32 c = [c; (k_m(i)*p.Ms)/p.R*(Ps/(x(2)*p.T0)-Pa/u)-p.E_limit];
33 end
34 x = a;
35 end
36 Pa = p.rh*133.332*10ˆ(7.54826-1979.68/(222.2+(u_i(3)-273)));
37 Ps = p_sol(x(end)*p.C0, x(2)*p.T0,p);
38 c = [x(end)-p.C_limit; c; (k_m(end)*p.Ms)/p.R*(Ps/(x(2)*p.T0)-Pa/u)-p.E_limit];
39 end

Listing D.5: Implementation of non-linear constraint function.

D.4 Control
1 clear;
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %%%%%%%%%%%%%%%%%%%%%% Electrode Drying Model w/FEM %%%%%%%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Control %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 %-------------------------------------------------------------------------%
7 %-------------------------Declaring Variables-----------------------------%
8 %-------------------------------------------------------------------------%
9

10 p.rho_s = 838; % Density of solvent [kg/m ˆ3]
11 p.rho_p = 1200; % Density of the solids [kg/mˆ3] 4000 without air
12 p.Cp = 1900; % Specific heat coefficient [J/ kgK ]
13 p.Ms = 99.133; % Molecular weight of solvent[kg/ kmol ]
14 p.R = 8314; % Universal gas constant [J/kmolK ]
15 p.Ta = 350; % Ambient air temperature [K]
16 p.rh = 0.25; % Relativ humidity of ambient air [%]
17 p.V = 15; % Air velocity [m/s]
18 [p.k_c , p.k_m ] = TransferCoefficients(p.V);
19 p.k = 0.024;
20

21 %% Initial Values
22 p.L0 = 0.165e-03; % Initial thin film thickness (75-240)mum
23 p.T0 = 330.5; % Initial thin film temperature
24 p.D0 = 9e-9; % Initial diffusion coefficient
25 p.C0 = 0.5; % Initial solvent concentration
26 [p.rho0 ,p.V_s,p.V_so] = GetDensity(p); % Intial density, solvent volume and solid volume
27

28

29 %% Number of elements and matrix assembling
30 noe = 2; % Number of elemetns
31 non = 2*noe+1; % Number of nodes (assuming quadratic elements)
32 p.z = linspace(0,1, non); % Spacestep (assuming uniform element size)
33 [p.M,p.K] = AssembleMatriceQuad(p.z); % Assembling the dampning and stiffness matrices
34 x0 = ones(1,length(p.z)+3); % Initial values vector, x0(1:2) initial thickness and

temperatur
35 SimTime = 80*60; % Simulation time in minutes
36 p.dt = 1;
37 E_limit = 5e-5;
38 %% Optimal Control Inputs
39 uref1 = [350.2; 15]; uref2 = [363.9; 15]; uref3 = [330.5;15];
40 t_1 = 20; t_2 = 40;
41 %% Kalman Filter Parameters
42 H = zeros(2, length(p.z)+3); H(1,1) = 1; H(2,2) = 1;
43 [J_ff, p.J_h, Y] = Jacobians(p,p.M,p.K);
44 g = matlabFunction(J_ff, ’vars’, {Y});
45 p.Q = 10ˆ(-5)*diag(ones(1,length(p.z)+3)); p.RR = diag([10 2]); p.P_k = zeros(size(p.Q));
46 p.Q(1,1) = 0.1; p.Q(2,2) = 0.1; p.Q(3,3) = 100; p.P_k = diag(ones(1,length(p.z)+3));
47 %% Heat Exchanger
48 c = 0.7214;
49 pp = 1.009;
50 G = tf(1,[c*pp 0],’outputdelay’,1);
51 Gd = tf(1,[c*pp 0],’outputdelay’,1);
52 W_y = 20; W_u = 5; W_d = .25;
53 G = W_yˆ(-1)*G*W_u; Gd = W_yˆ(-1)*Gd*W_d;
54 K = tf([1.5 .01],[1 0]); [num, den] = tfdata(K);
55 Kp1 = num{1}(1); Ti1 = 1/num{1}(2);
56

57 %% Wind Fan
58 Vl = 15; Vin = 1; ql = (Vlˆ2-Vinˆ2)/2;

Page XIII Master’s Thesis



Optimization and Control of Electrode Drying Process Chapter D

59 k = 1/(sqrt(2*ql+Vinˆ2));
60 Gv = tf(k,1,’inputdelay’,1); Gvd = tf(1,1);
61 Wv_y = 5; Wv_u = 10; Wv_d = .25;
62 Gv = Wv_yˆ(-1)*Gv*Wv_u; Gvd = Wv_yˆ(-1)*Gvd*Wv_d;
63 Kv = tf([3 5],[1 0]); [numv,denv] = tfdata(Kv);
64 Kp2 = numv{1}(1); Ti2 = 1/numv{1}(2);
65 %% Overall Control Process
66 sys = [G Gd 0 0; 0 0 Gv Gvd];
67 sys = ss(sys);
68

69 % hws = get_param(bdroot,’modelworkspace’);
70 % hws.assignin(’p’,p);
71

72 %% Simulation
73 sim(’PIControl.slx’);
74 x0 = x_hat1.Data(end,:);
75 sim(’PIControl2.slx’);
76 x0 = x_hat2.Data(end,:);
77 sim(’PIControl3.slx’);
78

79 %% Variables
80 L = [x_measure1.Data(:,1)’ x_measure2.Data(:,1)’ x_measure3.Data(:,1)’]*p.L0;
81 Le = [x_hat1.Data(:,1)’ x_hat2.Data(:,1)’ x_hat3.Data(:,1)’]*p.L0;
82 T = [x_measure1.Data(:,2)’ x_measure2.Data(:,2)’ x_measure3.Data(:,2)’]*p.T0;
83 Te = [x_hat1.Data(:,2)’ x_hat2.Data(:,2)’ x_hat3.Data(:,2)’]*p.T0;
84 rho = [x_hat1.Data(:,3)’ x_hat2.Data(:,3)’ x_hat3.Data(:,3)’]*p.rho0;
85 C = [x_hat1.Data(:,4:end)’ x_hat2.Data(:,4:end)’ x_hat3.Data(:,4:end)’]*p.C0;
86 t = [x_hat1.Time’ (x_hat2.Time’)+x_hat1.Time(end) (x_hat3.Time’)+(x_hat1.Time(end)+x_hat2.Time(end))

]/60;
87 uT = [u_a1.Data(:,1)’ u_a2.Data(:,1)’ u_a3.Data(:,1)’];
88 uV = [u_a1.Data(:,2)’ u_a2.Data(:,2)’ u_a3.Data(:,2)’];
89 p.t = t;
90 %% Evaporation Rate
91 Ps = p_sol(C(end,:),Te,p);
92 Pa = p.rh*133.332*10.ˆ(7.54826-1979.68./(222.2+(uT-273)));
93 E = (p.k_m.*p.Ms)./p.R.*(Ps./(Te)-Pa./uT);
94

95 %% Optimized Trajectory
96 u_o = zeros(length(t),1); u_o(1:t_1*60/p.dt) = uref1(1); u_o(t_1*60/p.dt+1:t_2*60/p.dt) = uref2(1);

u_o(t_2*60/p.dt+1:end) = uref3(1);
97 v_o = zeros(length(t),1); v_o(1:t_1*60/p.dt) = uref1(2); v_o(t_1*60/p.dt+1:t_2*60/p.dt) = uref2(2);

v_o(t_2*60/p.dt+1:end) = uref3(2);
98 x0 = ones(1,length(p.z)+3);
99 y_o = solveSystemOP(u_o,v_o,x0’,p);

100

101 L_o = y_o(1,:)*p.L0;
102 T_o = y_o(2,:)*p.T0;
103 C_o = y_o(4:end,:)*p.C0;
104 [k_c,k_m] = TransferCoefficients(v_o);
105

106 Ps = p_sol(C_o(end,:),T_o,p);
107 Pa = p.rh*133.332*10.ˆ(7.54826-1979.68./(222.2+(u_o’-273)));
108 E_o = (k_m’.*p.Ms)./p.R.*(Ps./(T_o)-Pa./u_o’);
109 %% Plots
110 figure
111 subplot(221)
112 plot(t,Le*10ˆ6,t,L_o*10ˆ6,’r--’)
113 ylabel(’Thickness ($\mathrm{\mu m}$)’,’interpreter’,’latex’)
114 xlabel(’Time (min)’,’interpreter’,’latex’)
115 legend(’Controlled Process’, ’Optimal Trajectory’)
116 subplot(222)
117 plot(t,Te,t,T_o,’r--’)
118 ylabel(’Temperature (K)’,’interpreter’,’latex’)
119 xlabel(’Time (min)’,’interpreter’,’latex’)
120 legend(’Controlled Process’, ’Optimal Trajectory’)
121 subplot(223)
122 plot(t,C(end,:),t,C_o(end,:),’r--’)
123 ylabel(’Solvent Fraction (\%)’,’interpreter’,’latex’)
124 xlabel(’Time (min)’,’interpreter’,’latex’)
125 legend(’Controlled Process’, ’Optimal Trajectory’)
126 subplot(224)
127 plot(t,E,t,E_o,’r--’)
128 hold on
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129 plot([0 t(end)],[E_limit E_limit],’--’)
130 ylabel(’Evaporation Rate ($\mathrm{\frac{kg}{s}}$)’,’interpreter’,’latex’)
131 xlabel(’Time (min)’,’interpreter’,’latex’)
132 legend(’Evaporation Rate’,’Optimal Trajectory’,’Constraint’)
133 figure
134 subplot(211)
135 plot(t,uT,t,u_o,’r--’)
136 ylabel(’Temperature (K)’,’interpreter’,’latex’)
137 xlabel(’Time (min)’,’interpreter’,’latex’)
138 legend(’Controlled Process’, ’Optimal Trajectory’)
139 subplot(212)
140 plot(t,uV,t,v_o,’r--’)
141 ylabel(’Air Velocity ($\frac{m}{s}$)’,’interpreter’,’latex’)
142 xlabel(’Time (min)’,’interpreter’,’latex’)
143 legend(’Controlled Process’, ’Optimal Trajectory’)

Listing D.6: Main Matlab script for initialization, simulation and processing the control system
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Figure E.1: The diffusion coefficient in the different layers throughout the drying time.
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Figure E.2: The latent heat of evaporation as a function of the temperature.

Page XVII Master’s Thesis



Optimization and Control of Electrode Drying Process Chapter E

0 20 40 60 80 100 120
-1

0

1

2

3

4

5

6
10

-5

C
0
 = 0.35

C
0
 = 0.40

C
0
 = 0.45

C
0
 = 0.50

C
0
 = 0.55

C
0
 = 0.60

C
0
 = 0.65

Figure E.3: Evaporation rate with different initial solvent fractions.
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Figure E.4: Comparison of the numerical solution with and without optimized control inputs with the constrain ei ≤
4 · 10−5. The drying zone transition is set at t1 = 6 and t2 = 29 min.
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Figure E.5: Comparison of the numerical solution with and without optimized control inputs with the constrain ei ≤
4 · 10−5. The drying zone transition is set at t1 = 20 and t2 = 40 min.
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Figure E.6: Comparison of the numerical solution with and without optimized control inputs with the constrain ei ≤
7 · 10−5. The drying zone transition is set at t1 = 6 and t2 = 20 min.
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Figure E.7: Comparison of the numerical solution with and without optimized control inputs with the constrain ei ≤
7 · 10−5. The drying zone transition is set at t1 = 20 and t2 = 40 min.
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Appendix F

Simulink Implementations

F.1 Implementation of the Overall System

Figure F.1: Implementation of overall system in Simulink.
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