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Abstract

Digital twins are ment to bridge the gap between real-world physical systems and virtual
representations. Both standalone and descriptive digital twins incorporate 3D models,
which are the physical representations of objects building the digital replica. Digital twin
applications are required to rapidly update internal parameters with the evolution of their
physical assets. Due to an essential need for high-quality models for accurate physical
representations, this causes the storage and bandwidth requirements for storing 3D model
information to quickly exceed storage and bandwidth capacity.

In this work, we demonstrate a novel approach to geometric change detection in the
context of a digital twin. We address the issue through a combined solution of Dynamic
Mode Decomposition (DMD) for motion detection, YOLOv5 for object detection, and
3D machine learning for pose estimation. DMD is applied for background subtraction,
enabling detection of moving foreground objects in real-time. The video frames contain-
ing detected motion are extracted and used as input to the change detection network. The
object detection algorithm YOLOv5 is applied to extract the bounding boxes of detected
objects in the video frames. Furthermore, the rotational pose of each object is estimated
in a 3D pose estimation network. A series of convolutional neural networks (CNNs) con-
ducts feature extraction for images and 3D model shapes. Then, the network outputs the
estimated Euler angles of the camera orientation with respect to the object in the input
image. By only storing data associated with a detected change in pose, we minimize
necessary storage and bandwidth requirements while still being able to recreate the 3D
scene on demand. To the best of our knowledge, a similar solution has not previously
been attempted in a digital twin context.
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Sammendrag

En digital tvilling er en digital rekonstruksjon av et fysisk system i den virkelige verden.
Flere typer digitale tvillinger bruker 3D-modeller som fysiske representasjoner av objek-
ter i de digitale rekonstruksjonene. Digitale tvillinger krever jevnlige oppdateringer av
interne parametre i henhold til utviklingen i verdier og ressurser. For å bygge digitale
modeller som etterligner virkeligheten så nøyaktig som mulig må de fysiske modellene
være av høy kvalitet. Dette fører til at mengden lagringsplass og båndbredde som kreves
for lagring av informasjon om 3D-modeller raskt overstiger tilgjengelig kapasitet.

I dette arbeidet demonstrerer vi en ny tilnærming til deteksjon av geometriske endringer
i sammenheng med digitale tvillinger. Tilnærmingen demonstrerer en innovativ løsning,
der vi kombinerer bevegelsesdeteksjon gjennom Dynamic Mode Decomposition (DMD),
objektdeteksjon ved bruk av YOLOv5, og 3D-maskinlæring til estimering av fysiske ob-
jekters posisjon og orientering. DMD henter ut videorammer der bevegelse blir detektert.
YOLOv5 brukes så til å detektere objekter i videorammene. Videre estimeres posisjonen
og orienteringen til 3D-objektene i videorammene gjennom et system basert på convo-
lutional neural networks (CNN). Ved å fokusere på lagring av data direkte knyttet til de-
tekterte endringer i fysiske objekter, minimerer vi kravene til nødvendig lagringplass og
båndbredde, samtidig som vi fortsatt er i stand til å rekonstruere nødvendige 3D-scener
ved behov. Metoden blir i dette prosjektet anvendt på eksperimenter med ekte data samlet
ved hjelp av et eksperimentelt oppsett. Det har ikke blitt gjort funn av tidligere presen-
terte løsninger satt i kontekst til digitale tvillinger.
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Chapter 1
Introduction

Digital twins are required to frequently update themselves according to the evolution
of their physical assets. High-quality models are an essential factor in order to build
digital replicas as similar to real world systems as possible. Given these requirements,
3D models used as input to physical simulators in digital twins can be enormous in size.
Thus, the storage and bandwidth requirements for storing 3D models as a function of
time will quickly exceed the storage and bandwidth capacity. In this thesis, we approach
the issue through an innovative combination of motion detection, object detection and
3D pose estimation, to minimize the amount of collected information while still being
able to recreate the 3D scene on demand.

1.1 Motivation and Background
Digital twins are one of the most intriguing prospects associated with the upcoming tech-
nology advancements of Industry 4.0 and the Internet of Things (IoT). This recent wave
of digitalization has also affected the industry, where the need for viable approaches
to real-time simulations are increasing. However, the complexity of many applicable
processes results in high costs, storage incapacity, and computational and geometrical
challenges.

A digital twin is defined as a virtual representation of a physical asset enabled through
big data and simulators for real-time prediction, optimization, monitoring, controlling,
and improved decision making [1]. While a digital twin operating as a digital sibling
can be used for what-if analysis, risk assessment and uncertainty quantification, digital
threads are used for transferring experience from one asset to the next iteration of assets
[2, 3]. A digital twin’s capability can be ranked on a scale from 0-5 (0 - standalone, 1
- descriptive, 2 - diagnostic, 3 - predictive, 4 - prescriptive, 5 - autonomy), as illustrated
in Figure 1.1. Both standalone and descriptive digital twins may consist of 3D models,
which are the physical representations of the objects building the digital twin [4].

1



Chapter 1. Introduction

3D models may be used as input to physical simulators in digital twins. High-quality
models are an essential factor in order to build digital replicas as similar to real world
systems as possible. 3D models based on these requirements can be enormous in size.
Since digital twins are required to frequently update themselves according to the evo-
lution of their physical assets, the storage and bandwidth requirements for storing 3D
models as a function of time will quickly exceed the storage and bandwidth capacity
[5, 6]. Extensive digital twins receive large amounts of real-time big data from sensor
monitoring in its associated physical system. Data storage capacity has thus become one
of the big challenges faced in the field [7]. To this end, this project proposes an innova-
tive approach to geometric change detection in the context of a digital twin.

Standalone
A baseline description of non-integrative

conceptual understanding

0 1 3 42 5

Descriptive
CAD/CAM/CFD modeling for describing the
static or dynamic phenomena of an asset

Diagnostic
Seamless integration with real-life sensor

measurement and data acquisition systems 

Predictive
Systematically combined standalone, descriptive
and diagnostic models for prediction, control and

optimization

Prescriptive
Assessment, what if analysis, uncertainty
quantification, and process optimization

Autonomy
In integrated representation of an asset for
real-time prediction, monitoring, control and

optimization throughout its life cycle

Figure 1.1: Digital twin capabilities, on a scale from 0-5

From a computer aspect, understanding the physical world involves accurately interpret-
ing its surroundings. 3D understanding is important for various computer applications
to operate in the real world [8, 9]. This is becoming increasingly important with the de-
velopment of scientific fields such as autonomous vehicles, autonomous robotics, virtual
reality, and augmented reality.

Detecting moving objects in video streams is a cornerstone objective in image processing
and computer vision. Video surveillance, automation, and real-time monitoring are all
applications that require real-time data processing. The demand for video processing has
increased with the rising number of sensors used for monitoring, automation and surveil-
lance technology applied in modern-day IoT applications. Several types of sensor data
provide a foundation for performing motion detection. In this work, however, we focus
on sensor data in the form of video streams.

In terms of digital twins, motion detection is a key element to detect changes in sys-
tems monitored through video surveillance. Background modeling is one of the methods
applied for this purpose. Background modeling is a challenging task in practice, aiming
to define models describing the nature of the background in video frames. This allows for
extraction of moving foreground components for further processing and analysis, also in
real-time [10]. Several applications presents viable results using the data-driven method
Dynamic Mode Decomposition (DMD) for background modeling [11, 12]. Therefore,
the method of DMD will be further investigated in this work.

2



1.1 Motivation and Background

In order for us to safely apply artificial intelligence (AI) methods to real-world systems,
learning agents must understand, recognize, and interpret visual surroundings in three
dimensions. While deep learning has contributed to significant improvements within 2D
recognition, many applications for 3D data remain uncharted. There are several engi-
neering challenges related to 3D machine learning, as operations on 3D data are much
more complex than those of 2D data. However, this might change with the introduction
of new tools for handling 3D data [13].

Recent advancements in AI and machine learning (ML) have opened up new possibil-
ities for applying deep learning techniques to 3D format data. One of these applications
is 3D pose estimation. Though pose estimation is considered to be an old computer vi-
sion problem, it is still a very relevant and active area of research [14, 15, 16]. This is
applicable for predicting the behaviour of physical assets in digital twins.

Estimating 3D object structure from single RBG images is a challenging computer vi-
sion task. One of the reasons for this is the fairly recent introduction of large, properly
annotated datasets applicable for training computer vision algorithms [17, 18, 19]. Sev-
eral solutions have investigated the possibilities of performing 3D object detection and
pose estimation from single images [20, 21, 22], which makes the methods much more
applicable due to less input data requirements. Furthermore, estimating an object’s con-
tinuous six degrees of freedom (6DoF) pose in terms of translation and rotation has been
performed in some novel approaches for single RBG images [23, 24].

Today, many machine learning-based applications rely on algorithms trained to be instance-
aware, expecting to be tested for the same object categories that they have been trained
on. Earlier state-of-the-art deep pose estimation methods have been category-specific,
simplifying estimation problem by assuming known input objects [25, 26]. Most of
these methods require 3D CAD models as input, making them uapplicable to previously
unseen objects [27, 28].

Recent contributions look at the possibility of estimating the 3D pose of objects from
novel categories, i.e. objects not belonging to predefined categories used for training
[29, 30]. Some of these methods argue that computer vision applications must be able
to respond to previously unseen objects in real-world applications without requiring ad-
ditional training or relying on 3D CAD models. Zhou et al. [31] and Grabner et al.
[32] performed category-agnostic pose estimation on rigid objects with promising re-
sults, though they require similar data used for training and testing. However, in a digital
twin application system operators will already know the object categories present at the
site, thus the application may assume known objects without worrying about novel cat-
egories. Pose estimation applications can therefore be trained for category-specific data
to ensure satisfactory system performance [33].
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Chapter 1. Introduction

1.2 Objective
The main objective of this thesis is to combine the fields of 3D solid modeling and
machine learning and explore the possibilities of using a novel approach of geometric
change detection in the context of a digital twin, to minimize the amount of collected
information while still being able to recreate a 3D scene on demand.

1.3 Research Questions
To the best of our knowledge, there is currently no published work on change detection
in the context of a digital twin. To this end, the guiding questions governing the research
are stated as:

• How can we analyse and validate 3D machine learning algorithms in the context
of digital twins in a cost-effective manner?

• How can we create a workflow to detect rotational changes of solid models in three
dimensions?

1.4 Outline of Report
In the following chapter, Chapter 2, we introduce relevant background material for this
project. This will cover the theory behind motion detection, presenting in-depth the fun-
damentals of deep learning and 3D machine learning, including CNN’s. In Chapter
3, we present relevant data, software and hardware framework and experimental set-up.
Furthermore, we outline our methodology’s specifics for change detection and describe
the full workflow of the pipeline solution, including motion detection, 3D object detec-
tion, and 3D pose estimation. The final results and project insights are presented and
discussed in Chapter 4. Finally, in Chapter 5, we conclude the project and discuss
further work.

4



Chapter 2
Theory

This chapter introduces relevant background topics for this project and establishes the
theory required to have a thorough understanding of the methods presented in Chapter
3. In the first part of this section, an introduction to motion detection is given. Sec-
ondly, we give an in-depth explanation of object detection fundamentals, including a
general overview of artificial neural networks (ANNs) and convolutional neural networks
(CNNs). Then, we present methods and theory behind the topic of 3D pose estimation.

2.1 Motion Detection

Motion detection is the procedure of detecting a change in an object’s position or orienta-
tion relative to its surroundings, or a change in surroundings relative to an object. Video
motion detection (VMD) is the task of detecting motion in videos by analyzing differ-
ences in a sequence of video frames. For instance, a change in pixel intensity between
consecutive video frames may be detected as motion.

The task of separating changes related to an object’s movement from various noise fac-
tors, such as background noise, can be challenging. This challenge can be addressed by
finding an applicable model describing the static background. By constructing a back-
ground model, object movement can be detected as a change in intensity compared to the
background, given a certain threshold [34, 35], as illustrated in Figure 2.1.

By defining parts of a video frame as the background, we allow extraction of moving
foreground objects that can be of potential interest, to be used as input in further analy-
sis. This method is known as background subtraction or foreground detection, and it is
an extensive field within image processing and computer vision.
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Chapter 2. Theory

Video frame

Video stream

Background model

Threshold

Figure 2.1: Illustration of background subtraction

2.1.1 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) is a data-driven method of matrix decomposition,
originally introduced in the field of fluid mechanics [36]. DMD is capable of approxi-
mating nonlinear dynamics by providing reconstructions of coherent structures arising in
dynamical systems [37]. It enables the evaluation of spatiotemporal structures, i.e., data
collected in both space and time.

For a time series of data, the DMD computes a set of modes and eigenvalues, each
with corresponding time dynamics defined in terms of a single eigenvalue [37]. These
time dynamics are related to certain oscillation frequencies. DMD essentially performs
background subtraction by computing DMD modes and differentiating between modes
close to the origin and the remaining modes [10]. The DMD algorithm can be used as
a diagnostic tool for system analysis and predicting future states. The combination of
calculated modes and eigenvalues can produce a function approximating the system state
at any given time.

DMD requires evenly spaced data sequences for computation, which applies well to the
evenly distributed video frames in video streams. Consecutive video frames, referred to
as snapshots, are flattened by vectorizing the pixel data in each snapshot. These vectors
are then ordered in time as the column vectors of a matrix D, as illustrated in Figure
2.2. Thus, the sequence of video frames is reshaped into a 2-dimensional spatiotemporal
grid of size Rnxm, where m indicates the number of frames collected and n indicates the
number of pixels per frame. Each matrix element xts is associated with a single pixel in
both domains time t and space s.

Furthermore, one assumes that two consecutive snapshots relate to each other with re-
spect to time. This states the following expression, where the linear mapping A defines
the relationship between consecutive snapshots. [11].

xt+1 = Axt (2.1)

6



2.1 Motion Detection

When applying DMD to data generated by nonlinear dynamics, it assumes there exists an
operator A that approximates the dynamics. The computed DMD modes and eigenval-
ues thus intend to approximate the eigenvalues and eigenvectors of A. The eigenvalue
decomposition of the linear operator portrays the underlying system dynamics of each
snapshot.

To compute the DMD, the spatiotemporal grid obtained from the reshaped snapshots
is first split into two overlapping sequences; left sequence X and right sequence X′.

X = [x1,x2, ...,xm−1], X′ = [x2,x2, ...,xm] (2.2)

The two sequences are related through the linear operator A

X′ = AX (2.3)

Then, we compute the singular value decomposition (SVD) of X as

X = UΣV∗ (2.4)

Furthermore, we approximate A using the following least-squares operation

Â = min ‖X′ −AX‖2F (2.5)

The least-square estimate is then computed in equation 2.6. U ∈ Cm×n and V ∈ Cn×n
are matrices consisting of the left and right singular vectors of X, respectively.

Â = X′VΣ−1U∗ (2.6)

Furthermore, we can compute the eigenvalue decomposition of Â, where W is the eigen-
vector matrix and Λ is the corresponding diagonal matrix containing the eigenvalues, λ.

ÂW = ΛW (2.7)

The dynamic DMD modes Φ corresponding to the eigenvalues λ are then given by

Φ = XVΣ−1W (2.8)

Any snapshot at time t, including future snapshots, can be reconstructed using DMD as
in equation 2.9, where λ is the eigenvalue, φ is the dynamic mode, and b is the related
amplitude.

xDMD(t) ≈
n∑
i=1

biφiλi (2.9)

As illustrated in Figure 2.2, the fully reconstructed video sequence using DMD then gives
the following low-rank factorization of a given video stream

XDMD ≈ ΦBV (2.10)
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where B is the diagonal matrix of amplitudes

B =


b1

b2
. . .

bk

 (2.11)

and matrix V is defined as the Vandermode matrix [38] of the eigenvalues.

V =


1 λ1 · · · λn−11

1 λ2 · · · λn−12
...

...
. . .

...
1 λk · · · λn−1k

 (2.12)

Thus, the modes φ describe the spatial structure of the matrix decomposition, and the
eigenvalues in matrix V describes the temporal evolution of the DMD modes, where the
matrix elements of V are distinct frequencies defining the temporal dynamics.

In practice, we cannot directly apply equation 2.10 for background subtraction. There-
fore, the solution is a matrix decomposition into a low-rank component, describing the
background, and a sparse component, describing the foreground [39, 40]. First, the com-
puted DMD eigenvalues are related to Fourier modes ω as in equation 2.13.

ωi =
logλi
∆t

(2.13)

The Fourier modes provide some important insights. The real part of a Fourier mode de-
scribes mode evolution over time, while the imaginary part describes mode oscillations.
The approximate low-rank DMD can now be rewritten, using a time-vector t, as

XDMD =

k∑
i=1

biφie
ωit (2.14)

Equation 2.14 proves that the Fourier modes describe how the modes change with respect
to time. We can therefore separate our DMD modes in two categories; Fourier modes that
change very slowly are related to the low-rank background video, L, while fast moving
Fourier modes are related to the sparse foreground video, S. 2.14 is rewritten as

XDMD = L + S ≈
∑
i∈l

biφie
ωit

︸ ︷︷ ︸
background

+
∑
i∈s

biφie
ωit

︸ ︷︷ ︸
foreground

(2.15)

Foreground video can be defined as the difference between the original video and the
background video. Discarding the imaginary values, the foreground video can therefore
be calculated as

S = X− L (2.16)

This approach is applicable for implementations described in Section 3.5.1.
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Amplitudes Temporal 
evolution

Video stream

Flattened frame

Reshaped video DMD

Figure 2.2: Illustration of DMD applied to a video stream. Initially, video frames are flattened into
a 1-dimensional vector and ordered in time as the column vectors of a 2-dimensional spatiotem-
poral grid. DMD then constructs a decomposition in space and time; DMD modes containing the
spatial structure, and the eigenvalues containing the temporal evolution.

2.2 Object Detection
Object detection is a computer vision task that combines object localization and object
classification tasks. Thus, an object detection model aims to identify the presence of
objects in input images and classify each identified object according to a set of defined
classes. The detection of objects is marked by drawing a bounding box around each
object. Object detection is considered a difficult task in computer vision, as both lo-
calization and classification have to yield accurate predictions for the network to output
successful results. Object detection tasks are usually realized through approaches based
on machine learning or deep learning. Both of these approaches will be further intro-
duced in this section.

2.2.1 Machine Learning

Machine learning (ML) is the study of computational methods that use experiences to
improve performance without being explicitly programmed [41]. Machine learning is
an application of Artificial Intelligence (AI) that builds mathematical models based on
sample data, allowing computers to learn from a series of examples [42]. Models are
typically trained on parts of the sample data, the training data, before making predictions
or decisions based on previously unseen test data.

Machine learning algorithms that uses labeled training data to infer a mapping func-
tion between pairs of inputs and outputs apply supervised learning. Labeled data is data
that has already been classified. Thus supervised algorithms are designed to learn by ex-
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ample. Supervised learning can be applied to both regression and classification tasks. In
regression tasks, the aim is to approximate output values for a continuous set of values.
In classification tasks, on the other hand, a set of discrete values defines the target value
outputs. The discrete values are referred to as labels. In both regression and classification
tasks, the learning procedure is the same; the learning algorithm generates an output ŷi
given an input xi. The algorithm tries to minimize a loss function L(yi, ŷi) by iteratively
updating its internal parameters according to the received feedback.

2.2.2 Artificial Neural Networks

An artificial neural network (ANN) is a computing system inspired by the human brain.
ANNs are one of the most important tools in machine learning, and they provide the
foundation for deep learning (DL) methods. ANNs can be used to approximate any given
function [43], which makes them especially useful when applied to high complexity and
dimensionality systems.

The fundamental building blocks of ANNs are a collection of interconnected process-
ing elements called artificial neurons. These artificial neurons are built to resemble the
biological neurons in a brain, typically modeled as in Figure 2.3. Real-valued signals are
transmitted in between connected neurons. An artificial neuron receives several inputs
x1, x2, ..., xn from its connected neurons and produces a single output. The neuron as-
signs a weight w to each input x and sums all the weighted inputs together with a bias
term b. The weighted sum is then passed to an activation function ϕ, to estimate the
output y.

y = ϕ

(
n∑
i=1

wixi + b

)
(2.17)

Activation 
function

Inputs

Weights

Output

Bias

... ...

Figure 2.3: Simplified model of an artificial neuron
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Network Architecture

ANNs are built by arranging artificial neurons in connected layers. ANNs consists of
one input layer, one output layer, and an arbitrary number of hidden layers. The neu-
rons in the input layer represent features in received input data. The outputs of the input
layer are connected to a hidden layer, not visible from the outside. The network architec-
ture where the outputs of layeri are connected to the inputs of layeri+1 are called feed-
forward ANNs, or multilayer perceptrons (MLPs). Furthermore, networks with more
than two hidden layers are called deep networks, applying deep learning for regression
or classification tasks. Networks where all the outputs of one layer are connected to all
the inputs of the next layer are called fully-connected layers, as illustrated in Figure 2.4.
Implementations of an ANN is not a straight-forward procedure. The main challenge is
usually to decide the optimal network size configuration. Whereas the size of the input
and output layers are fixed, the size and numbers of hidden layers must be chosen based
on the complexity of the input data and the effect on system performance.

Figure 2.4: ANN architecture with two hidden layers

Activation Function

Activation functions are nonlinear mathematical functions attached to each neuron in a
neural network. They are essential parameters in deep learning, as they determine the
output, accuracy, and efficiency of a network. Given a large enough input, the activa-
tion function fires, and the neuron is activated. This required input size is determined
by a defined threshold. Nonlinear activation functions allow more complex mappings
between inputs and outputs, necessary for modeling complex data. Three of the most
commonly used nonlinear activation functions are Sigmoid, Hyperbolic Tangent (tanh),
and Rectified Linear Unit (ReLU), respectively defined as

Sigmoid(x) =
1

1 + e−x
(2.18)

tanh(x) =
2

1 + e−2x
− 1 (2.19)

ReLU(x) = max(0, x) (2.20)

11



Chapter 2. Theory

Optimization and Backpropagation

ANNs create a mapping between input and output data by learning to recognize patterns
in the data. This learning process is known as the training phase, where network param-
eters are altered to generate accurate network predictions.

A loss function is a measure of error used to quantify how well an ANN can approx-
imate a target function. The loss function provides feedback to the network on how well
the target function is approximated. A commonly used loss function is Mean Squared
Error (MSE). MSE calculates the error as the difference between the predicted output
value ŷ and the target value y.

L(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2 (2.21)

As the loss is the penalty for prediction errors, perfect output predictions will result in
zero loss. Thus, training poses an optimization problem aiming to minimize the loss
function L. The most common method is approximating the minimum of the loss func-
tion using gradient descent. Gradient descent is an optimization algorithm that tries to
minimize the loss function by iteratively updating model parameters in the direction op-
posite the gradient of the loss function. The optimizer takes iterative steps to reach a
local minima in the following way:

φi+1 = φi − α∇L(φi) (2.22)

Here, φ represents the optimized network parameters, and α is the defined learning rate.
The learning rate is a hyper-parameter determining the size of each iteration step. It
is used for tuning the network during training, where it controls how much network
weights are adjusted with respect to the loss function gradient at each step. However,
directly applying this method to an ANN comes at a high computational cost. A more
efficient, commonly used algorithm for training feed-forward ANNs is backpropagation.
Backpropagation computes the loss function gradient with respect to each weight in a
network, according to the chain rule. The algorithm iteratively propagates the loss back-
ward in the network, traversing from the output layer to the input layer, computing the
gradient one layer at a time [44]. Thus, the prediction error is iteratively corrected by
adjusting internal weights until the error between prediction and target values is min-
imized. Weights are adjusted relative to the amount they contribute to the error using
gradient descent.

2.2.3 Convolutional Neural Network
Convolutional neural networks (CNNs) are a specialized class of deep neural networks
designed to process tensor data. CNNs are commonly used for image processing tasks
and have generated exceptional results in image pattern recognition tasks [45]. As a re-
sult of its recent success, CNNs are considered to be the leading method for detection
and recognition applications [46].
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As deep neural networks, CNNs build on the idea of how distinct features are built from
collections of smaller, low-level features. Collectively, these low-level features form lo-
cal clusters that eventually represent parts of an object. Images, text, and speech are
all built based on similar hierarchies, making them all applicable for pattern recognition
using CNNs [46].

Convolutional Layer

A CNN is essentially a form of ANN containing convolutional layers. Convolution is
a linear mathematical operation on two functions, f and g, where the convolution f ∗ g
discloses how much one function is shifted over the other, eventually fusing the two func-
tions. The standard mathematical expression for convolution applied to neural networks
is defined as

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (2.23)

In a more realistic scenario however, we may expect discretized input data and therefore
rewrite equation 2.23 as a discrete convolution in the following way:

(f ∗ g)(t) =

∞∑
τ=−∞

f(τ)g(t− τ) (2.24)

This is illustrated in Figure 2.5. In neural network applications, the input argument f is
referred to as the input and the argument g is referred to as the kernel. The convoluted
output (f ∗ g)(t) is also referred to as the feature map [47]. Thus, the convolutional layer
inputs a tensor and abstracts it to a feature map, with the aim of learning features.

Figure 2.5: Matrix convolution

In our applications of CNNs, we will work with image inputs, represented as 2D ar-
rays. We may therefore introduce convolution over two axes, using a 2D image I as
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input, and thereby defining a 2D kernel K :

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.25)

The discrete convolution operation can now be viewed as a form of matrix multiplication,
where the kernel is represented as a matrix carrying out the convolutional operation. The
convolution aims to extract high-level features, such as edges, in input images. The
kernel shifts its position and performs a matrix multiplication between the kernel matrix,
K, and a given portion of the input image, as illustrated in Figure 2.6. The stride value
parameter decides the length the filter moves at each iteration. The filter moves around
until the entire image has been traversed.

Figure 2.6: Convolution operation and shifting kernel

Pooling Layer

CNN architecture is typically composed of a series of stages, where the convolutional
layer and pooling layer populate the initial stages. The outputs from a convolutional
layer are usually sent through a ReLU nonlinear activation function before being passed
on to a pooling layer. Pooling layers are normally applied after convolutional layers to
reduce the spatial size of the feature map output from the convolutional layer.

The convolutional layer detects feature conjunctions in previous layers, and the pool-
ing layer fuses similar features into one [46]. The purpose is to decrease the required
computational power used for processing the data. This is done through dimensionality
reduction. Several convolutions, nonlinear activation functions, and pooling layers are
typically stacked together before fully-connected layers are added to a CNN. Further-
more, training through backpropagation is performed in the same manner as for regular
ANNs.

Residual Network

Deep neural networks are hard to train because they are prone to an issue referred to
as vanishing gradient. With increasing numbers of layers, the repeated multiplications
performed by the backpropagation algorithm eventually results in a very small gradient,
and thus a declining system performance. This leads to the introduction of residual net-
works (ResNet) [48]. Residual networks address this challenge by reformulating network
structure, applying shortcuts, or skip connections that skips some layers in the network.
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These skip connections are typically implemented to skip two or three layers at a time.
This simple step significantly simplifies training of deep learning networks, making them
much easier to optimize and eventually avoid the problem of vanishing gradient [49].

2.2.4 YOLO - You Only Look Once
You only look once (YOLO) is a family of state-of-the-art object detection applications
capable of effectively processing images in real-time. YOLO was first introduced by
Redmon et al. [50] in 2016, providing one of the fastest object detection algorithms at
the time. Since then, several versions of the YOLO application have been released. Most
YOLO iterations have been implemented and maintained in the open-source Darknet
framework [51]. In 2020, however, a PyTorch-based framework called YOLOv5 was
released, outperforming all previous versions.

The YOLO algorithm varies from its predecessors in detection systems by applying a sin-
gle neural network to an image. With this application, the detection network is provided
with the full context of an input image at test time, which is advantageous compared to
former solutions based on classifiers. The name ”You Only Look Once” relates to the
fact that YOLO only performs a single network prediction, thus only extracting informa-
tion one time per input image. This results in YOLO achieving much faster predictions
than networks depending on multiple predictions per input image. The network first di-
vides each input image into grid regions before predicting bounding box estimates and
confidence scores for each region. The confidence score reflects how certain the network
is of its predicted bounding boxes. YOLO predicts bounding boxes based on two image
coordinates, bounding box width and bounding box height, per detection.

Evaluation Metric

The universal metric used for comparing and evaluating the performance of detection net-
works is mean Average Precision (mAP). The metric is calculated as the mean value of
the average precision calculated separately for each class of objects in an image dataset.
Furthermore, two performance measures commonly used in classification tasks are pre-
cision and recall. Precision is defined as the proportion of relevant instances in a set of
retrieved instances. Precision thus aims to find the proportion of correct classifications
among all classifications. Recall aims to find the proportion of actual identifications that
are correctly classified. Precision and recall are computed according to equations 2.26
and 2.27, respectively. Any single prediction can be one of four definitions presented in
Figure 2.7, relative to ground truth labeled data. We can compute a precision-recall curve
for each class in our dataset by plotting precision against recall for each classifier.

Precision =
TP

TP + FP
(2.26)

Recall =
TP

TP + FN
(2.27)
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Figure 2.7: Confusion matrix for binary classification

Computations of prediction and recall are based on a measure defining how correct a
prediction really is. This prediction correctness is be evaluated using a measure called
Intersect over Union (IoU). IoU measures the overlap of two associated bounding boxes
in object detection tasks. These refer to the predicted bounding box and the ground truth
bounding box defining the boundaries of the real object. A given threshold defines the
amount of overlap necessary for a prediction to be considered correct. IoU is computed
according to equation 2.28, as the area of overlap divided by the area of union between
the predicted bounding box, BBpred, and the ground truth bounding box, BBgt.

IoU =
Area(Bpred ∩BBgt)
Area(BBpred ∪BBgt

(2.28)

2.3 3D Pose Estimation
3D machine learning is a field integrating machine learning, computer vision, and com-
puter graphics to enhance 3D understanding. Recent years have provided significant
progress in performing object detection, and segmentation in images [52, 53], perceiving
3D attributes is an essential factor in many real-world applications. 3D predictions such
as shape and pose are important applications in robotics, autonomous vehicles, and visual
and augmented reality, among others, where 3D perception is a key factor. Great strides
have been made over the last couple of years to develop technology and deep learning
methods applied to 3D data. Developed methods are applied to classification and seman-
tic segmentation of 3D shapes and scenes, synthesis and reconstruction of 3D geometry,
and 3D pose estimation. We will further focus on explaining 3D pose estimation, as this
is relevant for this work.

Estimating the 3D pose of objects in 2D images is an essential task in applications re-
lated to 3D perception [54]. It is a challenging but fundamental computer vision problem,
highly relevant in modern-day applications. 3D pose estimation is the task of predicting
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the transformation of an object with respect to a defined reference pose, matching the
spatial position of the object. Pose estimation can be used for identification, object ma-
nipulation, or Computer-Aided Design (CAD) model alignment, which are typical tasks
emerging from the field of robotics-related computer vision. Essentially, recovering a
full object pose for such applications requires high accuracy object detection of known
3D CAD models [55].

Generally, we may recover the 3D pose of an object either by localizing a set of key-
points describing the object shape or by estimating the object’s viewpoint [56]. Recently
published work apply many different methods to recover the 3D pose of objects, or hu-
mans, based on RBG or RBG-D images. Feature-matching methods are typically applied
to RBG images, aiming to extract features of 3D objects and further recover a full 6DoF
pose by either correctly matching the features against known objects in a feature database
[57], or by matching coherent feature keypoints between estimating 2D images and 3D
objects [58]. Other methods match 2D-3D coherence based on 2D predictions of the
estimated 3D bounding boxes of objects [59]. However, these methods rely heavily on
using textured input objects to extract shape features.

2.3.1 Object Orientation
Object orientation describes the placement of a rigid body and the imaginary rotation
needed to move the object from the placement of reference to its placement at present.
A change in placement may require both translation and rotation. When we talk about
moving an object in the 3-dimensional space, we often talk about an object’s six degrees
of freedom (6DoF). 6DoF refers to a change in position in terms of translation on three
perpendicular axes, combined with orientation changes in terms of rotation about three
perpendicular axes.

Euler angles are often used to describe an object’s rotation with respect to a fixed refer-
ence frame. Another orientation method most commonly used in astronomy is azimuth-
elevation orientation. In Figure 2.8, azimuth is defined as the angle φ and elevation as
the angle θ. The r parameter defines the distance from a specific point or object to the
viewpoint. The point is defined in the 3-dimensional space by spherical coordinates.
The Cartesian coordinates equivalent to the point’s spherical coordinates are derived in
equations 2.29-2.31.

X = r cos(θ) sin(φ) (2.29)
Y = r cos(θ) sin(φ) (2.30)
Z = r sin(θ) (2.31)
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Figure 2.8: Illustration of spherical coordinates

An elemental rotation defines a rotation about one of the axes in a coordinate system.
A rotation matrix is a transformation matrix used to perform rotations of an object in
3-dimensional space. A 3D rotation matrix describes three successive rotations about
arbitrary coordinate axes. Equations 2.32-2.34 define elemental rotations of φ, θ and ψ
degrees about the x−, y− and z− axis, respectively. A full object rotation about all three
axes is defined by multiplying consecutive single rotations about an individual axis, re-
sulting in a rotation matrix R.

Rx(φ) =

1 0 0
0 cφ −sφ
0 sφ cφ

 (2.32)

Ry(θ) =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 (2.33)

Rz(ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1

 (2.34)
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Chapter 3
Method and Set-up

In this chapter, the physical and computational set-up of our project is presented. First,
we outline the software and hardware frameworks. Secondly, we describe the experimen-
tal set-up and datasets used in our experiments. Then, we present the methods applied
for motion detection, object recognition, and 3D pose estimation. Finally, we present the
full workflow of our approach.

3.1 Software Framework
Both the object detection and 3D pose estimation architectures used in this work were im-
plemented in Python 3.6 using the open-source machine learning library PyTorch [60].
The pose estimation network implements Blender 2.77, an open-source library imple-
mented as a Python module to render multi-views of 3D CAD model inputs. Further-
more, the MeshLab software is used to visualize 3D objects, and the Python library
Matplotlib is used for creating most plots and diagrams.

The DMD motions detection algorithms were implemented in Python, enabling real-time
processing through OpenCV (Open Source Computer Vision Library) [61]. OpenCV is
an open-source software library for computer vision and machine learning. It provides
an infrastructure for computer vision tasks and optimizes machine perception methods.

3.2 Hardware Implementation
Deep learning algorithms require large amounts of memory as well as computing power.
Computing power usually requires a proper graphics processing unit (GPU), allowing
efficient manipulation of computer graphics and image processing. When working with
neural networks, running code on CPUs is not a viable solution. GPUs drastically re-
duces training time in many deep learning tasks. Today, many of the commonly used
machine learning frameworks are built upon CUDA-enabled GPUs. CUDA (Compute
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Unified Device Architecture) is a parallel computing platform and API used for general
purpose processing. These CUDA-enabled GPUs are also referred to as GPGPUs.

The pose estimation architecture in this project was trained and tested on the NTNU
Idun computing cluster [62] to provide necessary computing power. The Idun cluster is
a cooperation between the IT division and various faculties at NTNU, aiming to provide
a computing platform enabling rapid testing and prototyping of HPC software. The Idun
cluster has more than 70 nodes and 90 GPGPUs. Each node contains two Intel Xeon
cores and a minimum 128 GB of main memory. All the nodes are connected to an In-
finiband network. Half of the nodes are equipped with two or more Nvidia Tesla P100
or V100 GPUs. Idun’s storage is provided by two storage arrays and a Lustre parallel
distributed file system.

The object detection network applied in this work was trained and tested using Google
Colab. Google Colab is an open-source computing platform developed by Google Re-
search. The platform is a supervised Jupyter notebook service where all processing is
performed in the cloud while providing free access to GPU computing resources. Google
Colab provides easy implementations and compatibility between different machine learn-
ing frameworks.

3.3 Experimental Set-Up
To demonstrate our approach to geometric change detection, we constructed an experi-
mental set-up based on a Raspberry Pi 4 kit [63] and a connected Raspberry Pi camera.
Raspberry Pi 4 is the fourth generation single-board computer developed by the Rasp-
berry Pi Foundation in the United Kingdom. It is widely used within a range of fields.
The Raspberry Pi is designed to run GNU/Linux, and it features a processing unit pow-
erful enough to run various image processing algorithms, as utilized in this work. The
hardware specifications of the Raspberry Pi 4 are presented in the table in Figure 3.1b.
The Raspberry Pi 4 was connected to a Raspberry Pi HQ camera, version 1.0, and a 6mm
compatible lens during experimentation. This is a high-quality camera offering high im-
age resolution, see the table in Figure 3.2b.

We built a camera tripod from 3D printed parts and two steel arms. A square platform
with laser-cut trenches was designed and set up to mount the camera tripod. A torch was
connected to one of the steel arms, serving as an external light source. The two steel arms
were set up to move independently of each other in order to record videos with external
lighting applied from different angles. The full set-up is displayed in Figures 3.3 and
3.4. While running the real-time DMD algorithm, the Raspberry Pi was connected to an
external monitor displaying the scene captured by the Raspberry Pi camera and associ-
ated video processing results. A set of scripts were implemented on the Raspberry Pi 4,
containing DMD and 3D pose estimation algorithms. This part is further explained in
Section 3.5.1. Furthermore, the Raspberry Pi was connected using an Ethernet cable to
ensure a stable internet connection and a designated Raspberry Pi power source.
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(a)

Processor Broadcom BCM2711, quad-core Cortex-A72
(ARM v8) 64-bit SoC @ 1.5GHz

Memory 8GB LPDDR4
GPU Broadcom VideoCore VI @ 500 MHz
OS Raspbian Pi OS

(b)

Figure 3.1: Illustration and technical specifications of the Raspberry Pi 4 Model B

(a)

Sensor Sony IMX477
Sensor Resolution 4056 x 3040 pixels
Sensor Image Area 6.287mm x 4.712mm
Pixel Size 1.55µ x 1.55µ
Focal Length 6mm
Resolution 3 MegaPixel

(b)

Figure 3.2: Illustration and technical specifications of the Raspberry Pi HQ V1.0 camera and the
6mm IR CCTV lens
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Figure 3.3: Overview of the experimental set-up

Figure 3.4: The Raspberry Pi 4B and Raspberry Pi camera mounted on the camera tripod

3.4 Datasets

The algorithms used in this work were trained on two large-scale datasets. We also cre-
ated one annotated dataset of our own. The ObjectNet3D [17] and Pascal3D [18] datasets
are used for training the 3D pose estimation network. These datasets are built to provide
3D pose and shape annotations for various detection and classification tasks. The Ob-
jectNet3D database consists of 100 object categories, 44,147 object shapes, and 90,127
images with 201,888 objects, where objects are aligned with 3D shapes providing accu-
rate 3D pose annotation and 3D shape annotation for each 2D object, as illustrated in
Figure 3.5. Similarly, the Pascal3D database consists of 12 image categories with more
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than 3,000 instances per category.

(a) 3D pose annotation examples

(b) 3D shape annotation examples

Figure 3.5: Examples of 3D pose and shape annotation results from ObjectNet3D

A set of 3D CAD models from various random categories were used for object detec-
tion and pose estimation in this work. The model files were downloaded from GrabCAD
and Free3D. We used STL files for 3D printing and associated OBJ files as input to our
pose estimation network.

Figure 3.6: 3D CAD models used for 3D printing and as inputs to the 3D pose estimation ne-
towork, displayed in MeshLab.

Furthermore, data used for testing both the object detection algorithm and the pose es-
timation network came from a set of collected images and sampled video frames from
the Raspberry Pi. A dataset of 193 images of 3D printed objects from the nine object
categories presented in Figure 3.6 was collected using the experimental set-up described
in 3.3. The collected dataset contains images of
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• Single objects seen from different angles

• Multiple objects seen from different angles

• Objects occluded by other objects, meaning objects where some are in focus and
some are blurred in the background

In addition, we took images both in natural lighting and with additional lighting from
four different angles using the torch attached to the camera tripod. Preprocessing and
image augmentation was applied to the images before exportation. Three augmented
images were created for each image in the dataset, in order to provide the network with
a sufficiently large dataset for training. Eventually, our final image dataset consisted of
463 images. The image processing is further described in Section 3.5.2.

3.5 Geometric Change Detection
The overall approach in this work is presented in Figure 3.7. We consider a cubical room
consisting of 3D objects, each capable of moving with six degrees of freedom. 3D CAD
models of these objects are saved at time t = 0. A single RGB camera is pointed to-
wards the collection of objects. When the scene is stationary, the camera does not record
anything. However, as soon as objects start to move, the motion is detected using a mo-
tion detection algorithm based on Dynamic Mode Decomposition (DMD). The whole
sequence of motion (t = t1 − t2) is then recorded. When the scene becomes stationary
again, the whole sequence is deleted after saving the last video frame containing detected
motion.

Motion detection 3D pose estimation

Stationary Stationary

Motion detection 3D pose estimation

Stationary

Motion Motion

Figure 3.7: Workflow of our approach geometric change detection

Furthermore, the last frame is analyzed using YOLOv5 and a 3D pose estimation algo-
rithm to estimate the applied effects of translation and rotation, after which only changes
in the six variables (∆x,∆y,∆z,∆φ,∆θ,∆ψ), corresponding to the changes in degrees
of freedom, are saved. In the following section, we give a brief overview of the applied
methods of motion detection, object detection, and 3D pose estimation utilized in this
work. We also present the details of our set-up that has been used to mimic physical
assets.
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3.5.1 DMD Implementation
We implemented a DMD methods in Python for testing the application of motion detec-
tion on our experimental set-up. The method was implemented according to Algorithm
1, based on coding examples from the book Kutz et al. [37]. The Python implementation
enables real-time motion detection using OpenCV on a system webcam, in our case, the
Raspberry Pi HQ camera. For testing purposes, most of the DMD processing was per-
formed using prerecorded videos and images. Some processing was also run on the Idun
cluster for additional computational power.

Several configurations of the DMD algorithm were tested. Figure 3.7 presents the full
workflow of our approach, where DMD is the initial catalyst. The DMD implemen-
tation follows the steps presented in Section 2.1.1, where the computed background is
subtracted from the original video, and moving objects in the video foreground are out-
putted.

Algorithm 1: Dynamic Mode Decomposition (DMD)

Require: Input matrix D ∈ Rm×n, target rank k
procedure DMD(D, k)

D← x(t0), ..., x(tm)
X,X′ = D
SVD(X, k) = U,Σ,V
Ã = U∗ ∗X ∗V ∗ Σ−1

W, λ = eig(Ã)
ΦDMD ← X′ ∗VS−1 ∗W
b = lstsq(Φ,x1)
V = V andermonde(Λ)

3.5.2 Data Annotation and Training of YOLOv5
For detecting objects in images, we chose the YOLOv5 framework, which is the latest
version in the family of YOLO frameworks at the time of writing. YOLOv5 is the first
YOLO implementation written in the PyTorch framework, and it is therefore considered
to be more lightweight than previous versions while at the same time offering great com-
putational speed. There are no considerable architectural changes in YOLOv5 compared
to the previous versions YOLOv3 and YOLOv4. Performance of different YOLO ver-
sions is illustrated in Figure 3.8, from the Github repository of YOLOv5 [64]. There are
yet no published articles on YOLOv5 at the time of writing.
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Figure 3.8: Performance graph for different versions of YOLO tested on the COCO AP dataset

YOLOv5 was trained to recognize the 3D CAD models from our experimental set-up. To
train our object detector through supervised learning, we required a properly annotated
dataset. The dataset was collected using the experimental set-up as specified in 3.4. We
used CVAT (Computer Vision Annotation Tool) for labeling images. CVAT is an open-
source, web-based image annotation tool produced by Intel. To annotate the images,
we drew bounding box around the objects that we wanted our detector to localize, and
assigned the object categories that we wanted out detector to classify.

(a) Screenshot of the image annotation process in CVAT

(b) Screenshot of the fully annotated dataset in Roboflow

Figure 3.9: Procedure of annotating dataset used for supervised learning in image annotation tools
CVAT and Roboflow

26



3.5 Geometric Change Detection

Furthermore, the fully annotated dataset was opened in Roboflow where techniques of
preprocessing and augmentation were applied. Data augmentation involves altering train-
ing images to extend the original dataset with a synthetic dataset to provide more training
data. Data augmentation aims to improve model performance during training. Several
augmentation techniques, such as rotation, crop, gray-scale, exposure, and noise mea-
sures, were applied. The final image dataset was split into three parts, in a 70-30-10
pattern. Approximately 70% of the images were applied to the training set, 20% to the
validation set, and the remaining 10% was applied to the test set. The procedures from
CVAT and Roboflow are illustrated in Figure 3.9.

The YOLOv5 network was implemented in Google Colab using PyTorch. We chose
the biggest YOLOv5 model available for training the network, namely YOLOv5x (x-
large). The network was trained using the Adam optimizer and the training parameters
presented in Table 3.1.

Parameter Value

Image size 640
Batch size 16

Epochs 300
Device GPU

Learning rate 10−2/10−3

Table 3.1: Choice of training parameters for YOLOv5x

3.5.3 Pose Estimation: Translation
The initial plan for this work was to calculate the 6DoF pose of the objects in our images.
The idea was to estimate object translation in Cartesian coordinates using a combination
of bounding box coordinates for x and y from the YOLOv5 network and triangle sim-
ilarity. Given an object with a known width, placed a given distance from our camera,
we can measure the elusive pixel width in an image and derive the perceived focal length
between our object and the camera. By configuring our camera with a known distance, it
will then be able to estimate other distances in future experiments.

However, our current experimental set-up does not allow us to determine the camera’s
orientation and viewpoint. Without this knowledge, we cannot know the objects’ cen-
ter of mass in our detected bounding boxes. Therefore, calculations based on measured
object size and triangle similarities become inaccurate. With some alterations and addi-
tions to our experimental set-up, such as adding a depth-camera, determining the camera
viewpoint would not be an issue.

The lack of necessary apparatus in our set-up results from inadequate testing in the de-
sign process. Construction of the experimental set-up was disrupted due to circumstances
concerning the ongoing COVID-19 pandemic. Necessary equipment became unavailable
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to the author, and there was little time to properly test the implementation. Eventually,
this prevented us from doing necessary alterations to the experimental set-up to enable
depth estimation in images. On this note, we have chosen to further disregard the esti-
mation of object translation in our geometric change detection approach. However, we
consider this to be a feasible objective with some simple alterations. Thus, proposals for
future alternations are presented in Section 5.3.

Left x: 157
Top y: 69
Width: 186
Height: 148

Figure 3.10: Example of detected bounding coordinates from YOLOv5

3.5.4 Pose Estimation: Feature Extraction

To extract image features and 3D shape features, we implement the deep pose estimation
method presented by Xiao et al. [65]. The proposed method extracts features from both
inputs in two separate, parallel branches, one for image features and one for 3D shape
features. The method extracts image features using a CNN with 18 layers, called ResNet-
18. In the parallel branch, 3D shape features are extracted through image rendering using
the Blender module for Python [66]. The method implements virtual cameras pointing
towards the input 3D model, rendering images from different model angles, as illustrated
in Figure 3.11. A total of 216 images are rendered per input object. The rendered images
are further used as input to a series of CNN’s. A joint feature vector is then created by
combining the feature vectors extracted from the image and the 3D CAD model.

Figure 3.11: A selection of rendered images using Blender
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3.5.5 Pose Estimation: Orientation
The output used to estimate the pose of each input object is the three Euler angles in-
dicating the orientation of the camera with respect to the reference frame of the object
in the images. The angles are estimated using a multi-layer perceptron with three hid-
den layers, each followed by batch normalization and the ReLU activation function. The
three estimated Euler angles are azimuth, elevation, and in-plane rotation, as described
in Figure 3.12. A combined method of classification and regression uses the joint feature
vector obtained earlier to estimate the angles. The angles are equally divided into several
bins, for which a probability is calculated based on individual bin classification scores.

 (in-plane rotation)

(elevation)

(azimuth)

Figure 3.12: Illustration of angles azimuth, elevation and in-plane rotation describing the pose of
a camera with respect to an object.

The main goal of the orientation estimation is to accurately align a provided 3D shape
with an object in an image in terms of pose. The coordinate system of each given 3D
shape is defined using three axes (i,j,k) with origo placed in the center of the shape. The
three axes are set to point towards significant features in the provided shapes. Secondly,
the camera’s coordinate system (i’,j’,k’) is defined with the front of the camera facing the
3D object along the negative axis of k’.

The rotation transformation of the two coordinate systems can be defined using a ro-
tation matrix R(φ, θ, ψ), introducing three new variables; azimuth (φ), elevation (θ) and
in-plane rotation (ψ). Likewise, the translation transformation of the camera is defined
by a matrix T (φ′, θ′, ψ′) introducing distance r as a new variable. The rotation matrix is
computed from Euler angles using the formula in equation 3.1, where RX and RZ define
rotations around the X and Z axis, respectively.

R = RZ(ψ)RX
(
θ − π

2

)
RZ(−φ) (3.1)

The method utilizes a single loss function combining outputs of classification and regres-
sion. The loss function sums cross-entropy loss from the classification with loss from the
regression. The final network was trained on the ObjectNet3D dataset, as this provided
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better system performance than the network trained on Pascal3D. Furthermore, the net-
work was trained using the Adam optimizer for 300 epochs. The parameters used for
training the network are presented in Table 3.2. The architecture of the 3D pose estima-
tion network is illustrated in Figure 3.13.

Parameter Value

Batch size 16
Epochs 300
Device GPU

Learning rate 10−4/10−5

Table 3.2: Choice of training parameters for the 3D pose estimation network
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Figure 3.13: Architecture of the 3D pose estimation network implemented in Xiap et al. [66]

3.5.6 Pose Estimation: Evaluation Metric
The workflow of our geometric change detection approach consists of several modules.
Each module was separately trained and tested to eventually optimize the combined
workflow. Several tests were conducted using images of different 3D CAD models from
various angles, to provide a thorough basis for evaluating system performance on 3D
pose estimation.

Evaluating the 3D pose estimation results is a bit more complicated than evaluating those
of our YOLOv5 object detection network. The 3D pose estimation network outputs the
three Euler angles associated with the orientation of our camera with respect to the object
it is looking at. Furthermore, the angle outputs are given in terms of azimuth, elevation,
and in-plane rotation. The common interpretation of rotation relates to the azimuth angle,
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3.5 Geometric Change Detection

measured as the angle between the perpendicularly projected vector from the camera to
the object on the reference plane and a reference vector on the same reference plane, as
previously illustrated in Figure 2.8.

North 0◦ South 180◦

North-northeast 22.5◦ South-southwest 202.5◦

Northeast 45◦ Southwest 225.5◦

East-northeast 67.5◦ West-southwest 247.5◦

East 90◦ West 270◦

East-southeast 112.5◦ West-northwest 292.5◦

Southeast 135◦ Northwest 315◦

South-southeast 157.5◦ North-northwest 337.5◦

Table 3.3: Definitions of true north-based azimuths

Figure 3.15: Illustration of the true north-based reference system

Furthermore, the azimuth estimation results are defined according to a true north-based
azimuth reference system, presented in the table in Figure 3.3. Figure 3.14 was created
as a tool to evaluate the accuracy of the predicted azimuth estimates. The figure displays
a reference wheel from which one can verify the camera’s angle of rotation according to
the angle azimuth, where angle 0◦ refers to the angle directly north of the observer.
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3.6 Overview of the Method

The workflow of our approach to geometric change detection is presented in Figure 3.16.
The dataset used for testing our method was collected using an experimental set-up based
on a camera tripod connected to a Raspberry Pi 4. The collected dataset contains videos
of our set of 3D printed objects. Some of the videos are prone to different sources of
noise. The dataset also consists of several images of the objects taken from different
angles. Furthermore, we apply a DMD algorithm to detect motion in our videos. This is
also tested for real-time videos.

YOLOv5

Rasberry Pi + camera

Experimental set-up DMD

Object Detection

Bounding box images

3D CAD models

Stored object pose at t = 0

Stored object pose at t = 2

3D Pose Estimation

Change in rotational pose

Figure 3.16: Workflow for geometric change detection

Video frames where DMD detects motion are used as input to the object detection net-
work. Here, a pre-trained YOLOv5 network detects objects in the images and crops the
images according to their bounding box estimations. The cropped images are further
used as input to the pose estimation network, together with CAD models of our 3D ob-
jects.

The pose estimation network performs two subsequent tasks of feature detection. First, a
shape encoder renders images of our input CAD model from different angles and eleva-
tions and inputs these to a CNN. The CNN then extracts object features in the rendered
images and saves them in a feature vector. Secondly, the cropped bounding box images
are used as input to a ResNet, which extracts object features in the images.
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3.6 Overview of the Method

Furthermore, the two output feature vectors from our shape encoder and image encoder
are connected to a single feature vector and used as input to a feed-forward ANN (multi-
layer perceptron). The ANN utilizes a loss function combined with regression and classi-
fication. Eventually, the network outputs a pose estimate based on the camera’s rotation
with respect to the object in the image. The pose is based on three Euler angles; azimuth
φ, elevation θ, and in-plane rotation ψ. By comparing the real change in rotation of our
camera with the estimated rotation, we get the pose estimation error. The angle output
from a 3D pose estimation may be defined using a rotation matrix, eventually describing
an object’s change in pose.
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Chapter 4
Results and Discussion

This section presents the results obtained in our approach to geometric change detection.
First, we outline and discuss the results of performing motion detection using DMD. Sec-
ondly, we present results from our trained object detection network. Finally, we present
the predicted results for 3D pose estimation based on our experimental set-up and discuss
the viability of our results. We also discuss how our approach can be applied to a digital
twin scenario.

4.1 Reference Models

The 3D printed CAD models used for all experiments throughout this project are pre-
sented in Figure 4.1. These are to be used as a reference when evaluating the results for
DMD and pose estimation. However, due to symmetry issues and lack of texture, only
the first eight models are used for testing the pose estimation method. This choice will
be discussed later on, along with how results from using different input models vary.

Figure 4.1: 3D printed CAD models used in experiments
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4.2 Motion Detection with DMD
The first module in our workflow involves real-time motion detection using DMD. In
this section, we evaluate the performance of DMD on our video set and how suitable
the algorithm is for performing background modeling. DMD is an essential part of our
workflow, as it is where we collect the video frames that create the foundation for further
processing. Our ability to first detect motion and then extract relevant video frames is
challenged by some factors common for the task of image processing.

The video set used for evaluating DMD in this project consists of six videos recorded
using our experimental set-up. The first three videos are recorded under similar circum-
stances without any significant noise sources. These are therefore referred to as baseline
videos. The other three videos are subjected to different kinds of external noise, based
on the common challenges outlined below. Results from processing all six videos are
presented in the following section. The common challenges related to video processing
and motion detection are:

• Dynamic background: Objects moving in the background without being a part of
the relevant foreground, such as waves, rain, or trees moving in the wind.

• Inactive foreground objects: Foreground objects that are periodically stationary
in video sequences makes it hard for DMD to differentiate.

• Monochrome frames: Images where the moving object have the same color, i.e.
pixel intensity, as the background.

• Lighting conditions

– Deficient light conditions: Poor lighting conditions are especially problem-
atic this particular project when using fully black objects.

– Gradual changes in lighting: The Raspberry Pi camera uses a few seconds
to calibrate lighting conditions at the beginning of video sequences. This
causes a change in lighting, which is sometimes recognized as movement by
DMD.

The relevant videos were imported in our Python environment and tested for different
configurations of DMD. Initially, the original videos were converted to gray-scale and
re-scaled to conserve memory on the computer running the algorithm. Re-scaling, or
down-sampling, is applied to reduce computational power and time. However, it is im-
portant to output image frames of decent quality in our application, as these images are
further used as input to the change detection network. Therefore we chose a rather low
re-scaling factor of 0.25, even though it significantly increases the processing time.

Furthermore, video frames were flattened and stacked as the column vectors of a ma-
trix X. Then, steps of computing the SVD of X and the components and eigenvalue
decomposition of Ã are implemented according to Algorithm 3.5.1.

After computing the DMD modes, the background is separated from the foreground.
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DMD does this according to the explanation in Section 2.1.1. The computed DMD
modes with the lowest oscillation frequency, i.e. smallest changes in time, are defined
as the static background. Furthermore, we can extract the background from the original
frame, leaving only the foreground.

Visual evaluation results of background subtraction for three baseline videos from our
dataset are presented in Figure 4.2. The top row shows an example frame from the orig-
inal video. In the second row, the predicted background frame is based on computed
DMD modes with low oscillation frequency. The third row displays the predicted fore-
ground frame based on computed DMD modes with high oscillation frequency. Finally,
the fourth row displays the filtered results after extracting the predicted background frame
from the original video frame. These videos are defined as baseline results since none of
them are subjected to any external noise sources.

Figure 4.2: Visual evaluation results for example frames from three baseline videos. The top row
shows the original video frames. The second and third row shows the predicted static background
and the predicted foreground frame, respectively. The fourth row shows the filtered foreground
after subtracting the background from the original frame.
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Looking at the results in Figure 4.2, the DMD algorithm appears to successfully classify
DMD modes based on their associated high or low oscillation frequencies. The results
of background predictions displayed in the second row are not perfect, as contours of the
foreground objects are visible. However, judging by the results in row four, the slightly
inaccurate background predictions does not seem to affect the final filtered foreground
results.

The left image in Figure 4.3a displays an original video frame from a video where subtle
background movement is applied as a source of noise. A screen displaying trees blowing
in the wind is displayed in the frame’s background while the motion from the moving
foreground object is detected. Initially, the 3D object is static. DMD then detects the
dynamic background as the foreground, as displayed in the image to the right.

Furthermore, the left image in Figure 4.3b displays the DMD results for the predicted
foreground when the 3D object starts moving. Both the dynamic background and the
moving 3D object are now predicted to be parts of the foreground. Finally, the predicted
background is extracted from the original video frame and the resulting foreground is
filtered. This result is displayed in the image to the right, illustrating how DMD now
considers almost the whole frame as a part of the foreground. The visual results clearly
show that distinguishing dynamic background changes from moving objects in the fore-
ground is a limitation to DMD.

Another weakness of DMD is the method’s ability to detect moving foreground objects
with the same pixel intensity as the background, i.e., monochrome frames. These visual
results are presented in Figure 4.5. Furthermore, Figure 4.4 presents visual DMD results
of a video where a sudden change in lighting conditions is applied as a noise source.
Changes in lighting conditions as a noise factor resulted in detections quite similar to
the baseline results. In fact, by comparing the processed frames from before and after
the sudden change in lighting, it actually seems as if some previous noise factors were
removed from the video frames. Change in lighting conditions might not be as much of
an issue when running in real-time compared to running on prerecorded videos due to
the need for initial camera calibrations.
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(a) Original video frame to the left and DMD foreground prediction of the dynamic background to the right.

(b) DMD foreground prediction of the dynamic background and the moving 3D object to the left, and the
filtered foreground to the right.

Figure 4.3: DMD results for a scene subjected to noise from a dynamic background

Figure 4.4: DMD results for a scene subjected to sudden changes in lighting conditions. The first
row displays original frames, and the second row displays filtered foreground frames.

39



Chapter 4. Results and Discussion

Figure 4.5: DMD results on foreground object with same pixel intensity as background object.
The original frame frame is displayed to the left and the filtered foreground is displayed to the
right.

The spectrum of exponential eigenvalues and computed SVD modes for the six videos
used for testing are plotted in Figure 4.6 and Figure 4.7, respectively. The eigenvalues are
all plotted within the unit circle, with absolute values less than one. This indicates that
the modes contain a stable evolution without signs of neither descending nor decreasing
growth. From the SVD spectra in the right column, it is clear that most of the SVD modes
are related to low oscillation frequencies, indicating little or no detected movement. The
modes with higher frequency thus contain more spatial information.

The results presented in this section display some of the strengths and limitations of the
DMD algorithm. The suitability of using DMD for motion detection is evaluated on real
data collected using our experimental set-up.

We chose to use DMD over PCA methods based on arguments from previously pub-
lished results. Results from [11] and [10] argue that various DMD methods prove vi-
able candidates for applying fast processing of high-quality videos, especially when fast
processing is considered more important than high accuracy. Fast processing enables
real-time detection, which is a key element in our application. It may also be stated that
post-processing techniques may enhance system performance in challenging scenes. The
main challenge of DMD revealed through our experiments relates to noise from dynamic
backgrounds and inactive foreground objects.

Real-time DMD applications are expensive given high-resolution videos, both in terms
of computational time and memory. However, the need for a full video reconstruction is
often unnecessary for performing background subtraction. In many applications, deter-
mining a static background model is sufficient for performing background subtraction.
A process of mode selection must be completed in order to find the static background
model that most accurately represents the original background.

Furthermore, reducing computational cost and runtime is necessary to ensure sufficient
real-time performance. To this end, [10] presents a solution where DMD is computed on
a combination of original and compressed data to accelerate calculations.
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Figure 4.6: Complex eigenvalues from DMD plotted for the six videos in the dataset
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(b) Baseline video 2
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(c) Baseline video 3
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(f) Monochrome frame

Figure 4.7: Normalized spectrum of SVD modes from DMD plotted for the six videos in the
dataset
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4.3 Object Detection using YOLOv5
The object detection algorithm YOLOv5 was implemented in PyTorch and trained for
300 epochs on a dataset collected from our experimental set-up. The dataset consists
of 463 images. We chose to use the network model YOLOv5x, which is currently the
biggest available network in the YOLOv5 family.

YOLOv5 outputs images containing labeled bounding boxes for all detected objects.
In computer vision tasks, it is commonly considered important to build systems not de-
pendent on being trained for previously seen categories to enable detection of novel cat-
egories in test environments. However, the situation is arguably different in a digital
twin setting. Most digital twins models aim to be highly accurate imitations of real-life
systems. Therefore, specific 3D objects present in a digital twin system will already be
known, along with system dynamics, possible noise sources, etc. Training a system for
specific object categories will significantly improve system performance while also being
a relevant solution to this fully supervised system.

Different configurations of YOLOv5 were tested using images of the 3D CAD models
in our experimental set-up. System performance is measured by comparing the ground
truth data, i.e., manually labeled images, to data labeled by our YOLOv5 network. After
applying preprocessing and augmentation to our dataset, the final YOLOv5 model was
trained on the 463 annotated images. A precision-recall curve and training loss curves
were used as diagnostic tools for deciding when the model was sufficiently trained.

Figure 4.8: Precision-recall curve for our nine object categories from YOLOv5
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Figure 4.8 displays the plotted precision-recall curve for our object detection network
on nine object categories. The overall mean network performance on all object classes
results in a high mAP of 0.936. This is a good result clearly marked by the precision-
recall curve plotted as a thick blue line. Most object categories obtain high mAP results,
resulting in a high average score. However, the boat category significantly reduces the
average, with an mAP score of 0.496. There may be many reasons for this, including
an uneven distribution of boat objects in the datasets used for training. The YOLOv5
network was not trained for perfection in our geometric change detection approach. The
network was merely trained to illustrate how an object detection network can be trained
using collected data for a specific purpose. On this note, we find that the results illus-
trated in Figure 4.8 are sufficient for our project.

Figure 4.9: Examples of objects detected by YOLOv5

Figure 4.9 illustrates an example of detected objects and their respective bounding boxes.
Our YOLOv5 network does this for most iterations. Furthermore, we know, based on sev-
eral previously published sources, that the YOLO network can be trained to output close
to perfect predictions given proper training data and the right configurations.

When starting this research project, we chose to focus on estimating object pose in terms
of rotation, assuming translation would be fairly simple in comparison. However, the
translation did not appear to be as easy to estimate as first assumed, given the experimen-
tal set-up we chose.

The initial idea was to utilize bounding box coordinates based on YOLOv5 object detec-
tion combined with triangle similarities. Bounding box coordinates provide the position
of a detected object in 2D, assuming a stationary camera with a known orientation. The
distance from the camera to the detected object can then be found using triangle simi-
larities in images. We can calculate the perceived focal length from our camera to the
object given objects of known width. A round of calibration is initially required, where
we provide the algorithm with the object width and distance.

In a stationary set-up, where all objects are facing the camera from the side, the method
of calculating perceived focal length seemed to work reasonably well. However, we soon
realized that initializing the camera orientation would be challenging in a more realistic
setting, since our current experimental set-up includes no way of accurately knowing
which way our camera is pointing. Some improvement for the experimental set-up to
counteract these challenges are presented in 5.3.
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4.4 3D Pose Estimation
Following the video frame extraction from our motion detection algorithm, we evaluated
the performance of our implemented pose estimation system. As outlined in Section 3.5,
our evaluation method for pose estimation is based on qualitative results from repeated
tests on image frames containing different objects from our set of 3D CAD models. The
pose estimation algorithm was tested on objects within nine different object categories.

The algorithm we used builds upon a network that does not require training on specific
categories used for testing [65]. The intention is for the estimation method to work on
novel object categories. The method requires a 3D CAD model in OBJ format as input,
used for rendering images of each object from different angles, as explained in Section
2.3. It also requires the input of a cropped out bounding box containing the object used
for pose estimation. This is the purpose of our trained YOLOv5 network.

4.4.1 Rotation
Given a 3D CAD model and a single RBG image cropped as each object’s bounding box,
the pose estimation algorithm predicts the camera’s orientation with respect to the object
we are looking at. The network, presented in Section 2.3, outputs the three Euler angles
equivalent to the camera’s orientation. A change in the camera orientation is equivalent
to a change in pose given a stationary camera. We will further address the estimated
angle output as the estimated object pose. Our aim is for the predicted pose to have an
orientation as similar to the object in the original image as possible.

In a digital twin scenario, we can assume that we would have a camera rig of known
parameters. Thus, estimating our camera’s elevation with respect to the ”ground” may
be irrelevant. The same argument can be used for the in-plane rotation angle. How-
ever, the object pose is estimated as a combination of these three angles, therefore we
cannot simply discard some angles. Instead, we chose to focus on the azimuth angle for
evaluation. All presented results are thus based on the most accurate azimuth predictions.

The estimated angles from the pose estimation algorithm trained on ObjectNet3D and
based on best-fit azimuth angle are shown in Table 4.1. We chose to base our results on
the azimuth angle as this is most relevant to our objective. This angle is also easily eval-
uated. Each experiment predicts a change in angle between two different object poses.
No pair of object poses are the same for any experiments. We rank the predictions based
on azimuth estimations and present the best results for selected object poses. Results are
presented both as estimated angle error in degrees and as a percentage error. Percentage
errors for azimuth predictions are calculated according to equation 4.1.

Percentage error =
| ∆φreal −∆φpred |

∆φreal
∗ 100 (4.1)
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Percentage errors for elevation and in-plane rotation are calculates as the percentage of
the total range of each angle; 180 degrees for elevation and 360 degrees for in-plane ro-
tation. We calculate the errors the following way due to the fact that the true changes in
both elevation and in-plane rotation are zero for all our experiments.

Out of the total eleven 3D printed objects presented in Figure 4.1, the results of seven
are presented in Table 4.1. Pose estimations for the two boat models are combined in the
results for the boat object category. The remaining three objects were discarded from the
testing phase because they proved to be unrecognizable to the pose estimation algorithm.

The cup model was discarded due to rotational symmetry, which is a common prob-
lem in pose estimation applications [67, 68, 69]. The model is completely symmetrical
from most angles, as the cup handle is the only remark that may be used to determine
the object pose. Therefore, the pose estimation algorithm did not predict any meaningful
results for the cup model. However, when comparing prediction results for test images
taken from a high elevation and at ground level, the pose estimation algorithm managed
to predict satisfying results for the elevation angle. Even so, as we decided to focus on
predicting the azimuth angle, these results were considered insufficient. Furthermore, we
discarded the duck model due to a lack of texture. Both the white and the black models
are assumingly unrecognizable to the pose estimation algorithm, as it fails to predict any
results for both objects.

No substantial difference was found between novel object categories and object cate-
gories used for training the pose estimation network. There may be many reasons for
this, including that the 3D objects in our images aren’t close in resemblance to the im-
ages of real-life objects used for training. However, the result indicates that the 3D CAD
model used as input is enough for the network to predict decent results, regardless of the
object class.

Combined estimation errors for all three output angles, based on best-fit azimuth, are
visualized in Figure 4.10. Based on these results, it is the object categories car, chair,
and torch that performs worst for elevation and in-plane rotation. However, by merely
looking at estimation results for best-fit azimuth alone in Figure 4.11a, prediction results
are sufficiently accurate.
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| (φf − φ0) | 2.40 0.27 2.26 0.40 1.62 2.05 0.52 0.85 1.36 3.82 2.93 3.41 0.02 2.25 1.10 2.21 0.50
| (θf − θ0) | 3.39 0.09 32.16 0.72 30.89 31.14 0.85 1.53 0.47 18.25 16.73 1.41 0.57 19.10 1.91 34.43 0.12
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Table 4.1: Pose estimation errors presented for five experiments per object category, for a total
of seven categories. Results are based on best-fit azimuth predictions, and are presented both as
estimated angle errors in degrees and as percentage errors based on the given range of each angle.

Figure 4.10: Combined angle error estimates for azimuth, elevation and in-plane rotation on five
conducted experiments per object category, for a total seven object categories. Presented results
are based on best-fit azimuth predictions.
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(a) Azimuth

(b) Elevation

(c) In-plane rotation

Figure 4.11: Estimated angle errors results in degrees for azimuth, elevation and in-plane rotation,
respectively, based on best-fit azimuth predictions.
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(a) Azimuth

(b) Elevation

(c) In-plane rotation angle

Figure 4.12: Percentage errors of predicted angles for elevation and in-plane rotation, respectively,
based on best-fit azimuth predictions. Azimuth errors are calculated according to equation 4.1.
Errors for rotation and in-plane rotation are calculated based on the total range of each angle; 180◦

for elevation and 360◦ for in-plane rotation.
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Recognizing Causes of Failure
Several aspects have been proved to affect the pose estimation results of our experimental
set-up. The most prominent are:

• Symmetrical objects: Detecting the pose of partly or fully symmetrical objects is
a key challenge in pose estimation. Specific measures have to be applied in order to
address this challenge [70, 69]. Our 3D cup model is not entirely symmetrical due
to the handle; however, from most rotations around the angle azimuth, the object
appears to be entirely symmetrical about the rotational axis.

• Black and texture-less objects: Detecting the pose of monochrome, texture-less
objects are a challenge for the 3D pose estimation network. Most of our objects
are 3D printed as black CAD models, making it difficult to accurately detect ob-
ject texture using our experimental set-up. Ensuring proper lighting conditions
throughout experiments has therefore been a key priority. However, even in bright
daylight, shadows may cause objects to appear texture-less in images.

• Shape similarities from different angles: The shape of some objects appears
similar even when seen from completely different angles. This typically poses a
challenge to the pose estimation network, especially when it appears in combina-
tion with poor lighting conditions or texture-less objects, as previously mentioned.
For instance, the front and back of the 3D car model may appear very similar in
images, making it almost impossible for the pose estimation algorithm to correctly
distinguish between the different orientations.

Several different solutions performing 3D pose estimation were researched and tested
upon the initialization of this project. Many of these solutions have in common that they
are built to provide good system performance on specific issues that haven’t been suffi-
ciently handled earlier, for instance, object symmetries or real-time pose estimation of
objects in videos. Furthermore, various methods require different formats of input data
and different training regimes.

We require a universal solution that is easily applicable to new, collected data for our
geometric change detection approach. We also require single image inputs to make pre-
dictions based on video frames extracted from detected motion sequences. The pose
estimation network implemented in Xiao et al. [65] provided all this while also enabling
training on new datasets. In general, we find that requiring accurate 3D models as inputs
is unsuitable for many applications. However, in our case, we may use the same argu-
ment as previously, stating that all objects would already be known to system operators in
a digital twin context. Thus, providing 3D models of relevant objects can be considered
a feasible task.

During research into currently existing solutions, we found that few solutions actually
publish software frameworks or source code. As mentioned earlier, the field of 3D pose
estimation has seen rapid growth over the last couple of years. Numerous solutions are
developed to handle various issues, and performance is evaluated on how well these so-
lutions can be applied in real-world scenarios. However, without published source-code,
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we are unable to reproduce results and test the methods for our application. This is a
widely known issue in the machine learning community, addressing the need for more
open-source solutions to ensure scientific progress [71]. Furthermore, many AI-based
applications are black-box methods, making it impossible for outsiders to neither un-
derstand nor reproduce system results without knowing specific system parameters and
training regimes [72].

The rapid advances in tools and frameworks built for the machine learning community
also fuel another issue. Compatibility between different machine learning frameworks
are often limited and requires specific release versions. Therefore, implementation and
testing of previously published machine learning solutions becomes a process aiming to
find compatible versions of all required frameworks [73]. This problem is commonly
addressed using package managers and creating virtual environments in Python or Ana-
conda.

51



Chapter 4. Results and Discussion

52



Chapter 5
Conclusion and Future Work

5.1 Conclusion
The initial objective of this thesis was:

To combine the fields of 3D solid modeling and machine learning and explore the possi-
bilities of using a novel approach of geometric change detection in the context of a digital
twin, to minimize the amount of collected information while still being able to recreate a
3D scene on demand.

We achieved the above objective by reducing the amount of data recorded to the bare
minimum using Dynamics Mode Decomposition, and by exploiting the information con-
tained in 3D CAD models, which are generally discarded in traditional image based
object detection and classification algorithms, using 3D machine learning. The main
contributions of this thesis can be enumerated as follows:

• A cost-effective experimental set-up for analyzing and validating 3D machine
learning algorithms in the context of digital twins.

• A workflow consisting of Dynamic Mode Decomposition, 2D object detection,
and 3D pose estimation based on CNN’s to estimate rotational changes in three
dimensions.

The workflow can be extended and utilized to perform change detection in digital twins,
given that each module in the workflow are specifically trained for objects present in
the monitored environment. The camera technology and lighting must be sufficiently
tailored for the expected scene conditions. Although we have not demonstrated it here,
the workflow proposed in this work will also be capable of estimating the pose of multiple
objects in a single image, since the 2D object detection module consisting of YOLO
already takes this into account. The method demonstrated in this work will significantly
reduce the amount of data archived (6DoF pose instead of images and videos) to recreate
the scene at any point of time, on demand.
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5.2 Lessons learned
In retrospect, our research efforts exposed several aspects of the work that could have
been carried out differently. If the author were to reproduce the same work again, some
changes would have been made in the project’s early phase.

Most importantly we would ensure that a meticulous plan was in place before starting
the design phase. Furthermore, we would employ a more systematic approach to choos-
ing design parameters through rigorous design of the experiments and the experimental
set-up. For our choice of solid models in the experimental set-up we would include vari-
ations in size, color, shape and texture. We would also aim to quantify the uncertainties
at an early stage, in order to avoid certain error sources in our design.

5.3 Future Work
The current work introduced a novel concept to geometric change detection and demon-
strated its value. However, to make the approach more robust and accurate the following
extensions to this work are proposed:

• The experimental set-up has no efficient solution for identifying the camera’s cur-
rent orientation, which is why we cannot demonstrate reliable results for estimated
object translation. Therefore, we cannot claim to estimate the full 6DoF pose of
our 3D objects in images. A simple and low-cost solution to this problem is to
apply a laser pointer to the camera, enabling identification of the current camera
viewpoint, which can then be initialized with an orientation pointing in the direc-
tion of the relevant objects.

• Future testing and enhancements in terms of reliability and robustness require
training the full system pipeline for specific data relevant to a potential digital
twin application. Thus, the individual networks need to be trained explicitly on
the 3D models present in the application. Considering the system model should be
trained for specific object categories in future iterations, the need for 3D pose es-
timation of novel categories is irrelevant. Solutions only applicable to pre-trained
categories might enhance the system’s robustness and reliability through more ac-
curate system performance.

• For our solution, we deliberately chose to utilize low-cost equipment to achieve our
objective. However, other solutions are available by discarding cost requirements.
We found it challenging to estimate all three translational coordinates in RGB im-
ages; with depth being the real challenge, RGB-D cameras (depth sensors) can
extract depth information from images on a per-pixel basis. Thus, several pose
estimation methods are developed specifically for using RBG-D images. Where
solutions for RGB images require knowledge of object dimensions to compute
perceived focal length from the camera to the object, systems with depth sensors
have one less thing to worry about.
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Some of the above work was to be included in the current work. However, it had to
be discarded as a result of limited access to the experimental facility as a result of the
COVID-19 restrictions at the time.
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