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Abstract

This thesis investigates the performance of several sliding mode control (SMC) algorithms
and evaluates their robustness to disturbances, parametric uncertainties and modeling dis-
crepancies. This is done by applying them to a simulation model of a fixed-wing un-
manned aerial vehicle (UAV) operating in an uncertain environment where external distur-
bances are present. Both a decoupled model of the longitudinal dynamics of the unmanned
aerial vehicle and a full six-degrees-of-freedom (6DOF) model is implemented in MAT-
LAB/Simulink. For the 6DOF model of the UAV, the performance of a decoupled control
design is compared to that of a multivariable control design.

The SMC algorithms that are considered in this report include the first-order satu-
ration controller and several versions of the super-twisting algorithm (STA), which is
known as an especially robust second-order sliding mode (SOSM) algorithm. The single-
input-single-output (SISO) versions of these control algorithms are implemented for the
model of the decoupled longitudinal UAV-dynamics, while multivariable versions are im-
plemented for the 6DOF UAV-model.

The control algorithms are implemented in MATLAB/Simulink, and the assumptions
that guarantee the stability of each algorithm are discussed. Additionally, a stability anal-
ysis of the internal dynamics of the decoupled longitudinal model is performed.

The simulation results show that all the SMC designs considered in this report are
capable of following a set of waypoints by tracking a roll and pitch reference. Even when
external disturbances, unmodeled dynamics, process noise and modeling uncertainties are
present in the system, most of the control designs show promising results. Based on the
results, the most promising SMC algorithms in terms of tracking performance, robustness,
and smoothness of the control input are the saturation controller, the generalized STA
(GSTA), and the generalized multivariable STA (GMSTA).
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Sammendrag

I denne oppgaven blir robustheten til flere sliding mode kontroll (SMC)-algoritmer un-
dersøkt ved å implementere dem for en usikker simuleringsmodell av et lite ubemannet fly
som opererer i et miljø hvor den er påvirket av eksterne forstyrrelser. Både en forenklet
modell av dronens langsgående dynamikk og en komplett dronemodell med seks frihets-
grader er implementert i MATLAB/Simulink for å teste både endimensjonale og multivari-
able kontrollalgoritmer. For den komplette dronemodellen blir også ytelsen til et multivari-
abelt kontrolldesign sammenlignet med et design basert på flere parallelle endimensjonale
regulatorer.

Algoritmene som blir undersøkt i denne rapporten er en førsteordens konvensjonell
SMC-algoritme, og tre versjoner av super-twisting-algoritmen (STA), som er kjent som en
spesielt robust SMC-algoritme. Endimensjonale implementasjoner av SMC-algoritmene
blir brukt på modellen av fixed-wing dronens langsgående dynamikk, mens multivariable
implementasjoner av de samme algoritmene blir brukt på den komplette dronemodellen.

Alle algoritmene blir implementert i MATLAB/Simulink, og forutsetningene som garan-
terer stabiliteten til hver algoritme blir diskutert. I tillegg utføres en stabilitetsanalyse av
den interne dynamikken til modellen av den langsgående dynamikken til dronen.

Simuleringsresultatene viser at alle SMC-designene er i stand til å følge et sett med
veipunkter ved å følge en rull- og pitchreferanse. Selv når eksterne forstyrrelser, umod-
ellert dynamikk, prosesstøy og modelleringsusikkerhet er tilstede i systemet, viser de fleste
av kontrolldesignene lovende resultater. Basert på resultatene er metningsregulatoren, gen-
eralisert STA og generalisert multivariabel STA de mest lovende SMC-algoritmene når det
gjelder følging av referansen, robusthet og hvor implementerbart kontrollsignalet er.
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Chapter 1
Introduction

1.1 Motivation
Designing an attitude control system for an unmanned aerial vehicle (UAV) is a challeng-
ing task as it is typically required to maintain stability and robustness while operating in
uncertain environments. There are two main types of UAVs; multirotor UAVs, which gen-
erate lift using rotors, and fixed-wing UAVs, which use their forward speed to generate
lift. Figure 1.1 shows an example of a fixed-wing UAV.

Figure 1.1: The Skywalker X8 Fixed-Wing UAV (picture from Bøhn et al. (2019)).

Exact modeling of both the multirotor and fixed-wing UAV is difficult due to uncer-
tainties in the aerodynamic coefficients and other system parameters and the fact that they
are highly coupled and nonlinear systems. The aerodynamic coefficients are both difficult
and expensive to estimate, and it is, therefore, necessary to develop an autopilot that is
robust and effective even though there are uncertainties in the system parameters.

An example of a robust control method is the sliding mode control (SMC), which
is known for its insensitivity to parametric uncertainties and matched disturbances. It is
also known for eliminating the need for exact modeling of the system, so it can be used
in control designs for uncertain systems, such as a UAV. This comes at a cost, however,
as SMC is based on high-frequency switching of the control action, which may cause
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Chapter 1. Introduction

unwanted chattering in the control signal. The chattering phenomenon is typically caused
by characteristics in the system that are unaccounted for in the control design, such as
delays or unmodeled fast dynamics.

Several chattering-reducing techniques exist. These include both conventional first-
order algorithms and second-order algorithms such as the super-twisting algorithm (STA).
The latter is known as an especially powerful and robust control algorithm. Several exten-
sions, both single-input and multivariable, of the basic STA exist. By applying the STA
and its extensions to the model of a UAV in flight, when it is subject to disturbances due
to wind gusts and parametric uncertainties, it is possible to investigate and compare the
robustness of the different control algorithms.

The work in this report is a continuation of Griffiths (2020), where the saturation con-
troller, the STA, and an adaptive and a generalized version of the STA were implemented
for an uncertain decoupled model of the lateral dynamics of a fixed-wing UAV. All the
controllers performed satisfactory tracking of a roll angle reference even in the presence
of external disturbances and unmodeled dynamics. Applying the same controllers to a
decoupled model of the longitudinal dynamics of a UAV in this report is the first step
to verifying if it is possible to use controllers based on simplified UAV-models on a full
six-degrees-of-freedom (6DOF) UAV-model.

Additionally, it is interesting to investigate the performance of a single-input single-
output (SISO), and a multiple-input multiple-output (MIMO) control design using the
same type of control algorithm applied to the same model. The difference between the
two control designs is that the coupling between the subsystems is viewed as an addi-
tional disturbance in the system in the modeling of the SISO control design, whereas the
coupling is accounted for in the MIMO control design.

1.2 Scope of the Project
There are two main objectives of this report. The first one is to compare the tracking
performance of several single-input SMC algorithms applied to a decoupled model of
the longitudinal dynamics of a fixed-wing UAV. The second objective is to compare the
performance of two different control designs, one based on single-input controllers, and
one on multivariable controllers, applied to the same UAV model. The control objective
is to perform tracking of one or more reference signals, depending on the UAV-model and
the control design.

Figure 1.2 shows the typical software architecture for autonomous or semi-autonomous
navigation, guidance, and control of a UAV model. Since the objective in this report is to
assess the performance of different control designs applied to a UAV, the main focus is
on the contents of the Autopilot- and UAV-blocks in Figure 1.2. Additionally, a brief
presentation of the contents of the Path planning-, Path manager-, and Path following-
blocks is included in the explanation of the reference trajectory for the 6DOF UAV model.

The SMC algorithms that are presented and implemented in this report are the sat-
uration controller, the super-twisting algorithm, the adaptive STA (ASTA), the general-
ized STA (GSTA), the multivariable saturation controller (MSAT), the multivariable STA
(MSTA), the adaptive MSTA (AMSTA), and the generalized MSTA (GMSTA). For each
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Figure 1.2: A typical system architecture for control of unmanned aircrafts.

of these algorithms, the theory is presented, and the necessary model assumptions guaran-
teeing the stability of the system are discussed.

1.3 Contributions
The main contributions of this thesis are

• A simulation model of the longitudinal dynamics of a fixed-wing UAV is imple-
mented. For this model, four SISO SMC algorithms are designed and implemented.
All four algorithms are able to follow a reference signal consisting of both step-
inputs and a sine wave in the presence of process noise and external disturbances.

• The internal stability of the longitudinal dynamics of a fixed-wing UAV is investi-
gated.

• Four multivariable SMC algorithms are designed and implemented for a 6DOF
model of a fixed-wing UAV, and their applicability to the 6DOF model is discussed
and verified.

• An existing implementation of a 6DOF simulation model for the Aerosonde UAV
was provided to me, based on Beard and McLain (2012). This has been extended
to include process noise, modeling discrepancies and external disturbances in the
form of wind gusts and constant wind. Two different control designs, a decoupled
design and a multivariable one, are developed and implemented for this model. The
properties and performance of each control design are investigated and compared
by performing simulations with an increasing amount of disturbances present in the
system, to determine which control approach is the most promising.
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1.4 Report Outline
This report is divided into nine chapters. Chapter 2 presents the theory behind the model
of the fixed-wing UAV, while chapter 3 presents the theory of SMC and of the STA its
extensions. A literature review on the application of the MSTA and extensions of it to
attitude control problems is presented in chapter 4. Chapter 5 presents the design of the
controllers implemented in this report, in addition to a stability analysis of the longitudinal
decoupled model presented in chapter 2, and a discussion of the stability of the proposed
control designs. The UAV simulation model that is implemented to test the control al-
gorithms designed in chapter 5 is presented in chapter 6. Chapter 7 presents the results
of applying the different controllers to the decoupled longitudinal UAV model, as well
as a discussion of these results. The results of applying two different control designs to
the 6DOF model are presented and discussed in chapter 8. Finally, chapter 9 presents a
conclusion, in addition to suggestions for future work.

1.5 Reuse of Material
The material in this report that concerns the design of single-input control algorithms
applied a decoupled longitudinal model of a fixed-wing UAV mirrors the work that was
done in Griffiths (2020) for a decoupled lateral UAV model. Thus, much of the work in
this report is based on the same theory and methodology as Griffiths (2020). The relevant
material from Griffiths (2020) is therefore also included in this report.

The parts of chapter 2 that are taken from Griffiths (2020) are the introduction to sec-
tion 2.1, subsections 2.1.2, 2.1.6, 2.1.7, and 2.1.8, the paragraphs Control Surfaces and
Lateral Forces and Moments in subsection 2.4.2, and subsection 2.6.1. Some of chapter 3
is also from Griffiths (2020), namely section 3.1, section 3.2, section 3.7, and section 3.5.
The final parts that are taken directly from Griffiths (2020) are section 5.2 and subsection
5.7.1.

Some material is also taken from Griffiths (2020) with a few changes. This material is
parts of section 1.1, the introduction to chapter 2, the introduction to subsection 2.4.2, the
introduction to chapter 3, and section 3.4. Additionally, the simulation model presented
in section 6.1 has the same layout as the lateral simulation model presented in Griffiths
(2020), with some changes in notation.
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Chapter 2
UAV Dynamics

This chapter describes the theoretical background needed to understand the UAV simula-
tion models that are implemented in chapter 6. All the material in this chapter is based
on chapter 1-4 and appendix B in Beard and McLain (2012), and follows the structure of
Beard and McLain (2012) closely.

Section 2.1 contains a description of the relevant coordinate frames. Section 2.2 ex-
plains how the velocity of the UAV is modeled. The kinematics and dynamics of a UAV
in motion is presented in section 2.3, and the forces and moments acting on the UAV are
presented in section 2.4. A summary of the full 6DOF model of the UAV developed in
this chapter is given in section 2.5. Section 2.6 contains simplified decoupled models for
the lateral and longitudinal dynamics, which are used in the control designs in chapter 5.
Finally, sections 2.7 and 2.8 present alternative ways of representing the attitude of a UAV,
which can be useful in simulations or control design.

2.1 Coordinate Frames
To describe the orientation and position of a UAV, several coordinate frames are needed.
The transformation of coordinates from one frame of reference to another is done through
rotation and translation. The coordinate systems of interest are the inertial frame, the
vehicle frames, the body frame, the stability frame, and the wind frame. The relative
orientation of the body frame can be parameterized by the Euler angles roll φ, pitch θ, and
yaw ψ, while the orientations of the stability and wind frames relative to the body frame
are described by the angle of attack (AoA) α and sideslip angle β respectively. The Euler
angles, the AoA, and the sideslip angle are defined in the following subsections.

This section gives a brief description of the relevant coordinate frames and the trans-
formations from one reference frame to another. A short explanation of rotation matrices,
which are used in the transformations in the following subsections, is presented in the next
subsection.
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2.1.1 Rotation Matrices
A vector p = [px, py, pz]

> expressed in the coordinate frame Fa specified by the unit
vectors (ia, ja,ka) can also be expressed in any arbitrary coordinate frame Fb specified
by (ib, jb,kb). To rotate a vector from one frame Fa to another frame Fb, we use rotation
matrices. A rotation about the z-axis by an angle θ is given by the rotation matrix

Rba =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 , (2.1)

while a rotation about the y-axis is given by

Rba =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 , (2.2)

and a rotation about the x-axis is given by

Rba =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 . (2.3)

These rotation matrices have the following properties

(P1) (Rba)−1 = (Rba)> = Rab

(P2) RcbRba = Rca

(P3) det(Rba) = 1.

2.1.2 The Inertial Frame F i

The inertial coordinate system is earth-fixed, with the unit vector ii directed north, ji di-
rected east and ki directed toward the center of the earth. These unit vectors are denoted
as the inertial x, y, and z directions respectively. The origin of the system is at the defined
home location. The inertial frame is sometimes also known as a north-east-down (NED)
reference frame since the NED frame can be assumed to be inertial when using local nav-
igation instead of global. The necessary assumptions for when it is possible to use local
navigation is discussed further in subsection 2.3.3.

2.1.3 The Vehicle Frame Fv

The vehicle frame is obtained by a translation of the inertial frame so that the origin is at
the center of mass of the UAV. The axes of the frame are still aligned with the axes of the
inertial frame so that iv points north, jv points east, and kv points towards the center of the
earth.
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2.1.4 The Vehicle-1 Frame Fv1

The vehicle-1 frame is defined by a rotation in the positive right-handed direction about
kv by the yaw angle ψ. The origin of the vehicle-1 frame is, therefore, the same as the
origin of the vehicle frame, but iv1 points out the nose of the airframe and jv1 points out
the right wing when the roll angle φ and pitch angle θ are zero. kv1 is aligned with kv so
that it points towards the center of the earth. The transformation from Fv to Fv1 is given
by

pv1 = Rv1
v (ψ)pv =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

pv. (2.4)

2.1.5 The Vehicle-2 Frame Fv2

The vehicle-2 frame is defined by a rotation in the positive right-handed direction about
jv1 by the pitch angle θ. The origin of the vehicle-2 frame is, therefore, the same as the
origin of the vehicle and vehicle-1 frames. The unit vector iv2 always points out the nose
of the airframe, while jv2 points out the right wing and kv2 points out the belly of the UAV
when the roll angle φ is zero. The transformation from Fv1 to Fv2 is given by

pv2 = Rv2
v1(θ)pv1 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

pv1. (2.5)

2.1.6 The Body Frame F b

The body frame is defined with the origin at the center of mass of the UAV. ib points out
of the nose of the airframe, jb points out the right wing, and kb points out of the belly of
the UAV. The body frame is thus defined by a positive right-handed rotation about iv2 by
the roll angle φ so that the transformation from Fv2 to Fb is given by

pb = Rbv2(φ)pv2 =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

pv2. (2.6)

The transformation from the vehicle frame to the body frame is given by

pb = Rbv(θ)pv, Rbv(φ, θ, ψ) = Rbv2(φ)Rv2
v1(θ)Rv1

v (ψ). (2.7)

2.1.7 The Stability Frame F s

The stability frame is defined by a left-handed rotation about jb by the angle of attack
α, which is the angle between the body frame x-axis and the relative velocity vector, vr,
which is the velocity of the UAV relative to the surrounding air. By doing this left-handed
rotation, is is aligned with the projection of vr onto the ib- kb plane. The transformation
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from Fb to Fs is given by

ps = Rsb(α)pb =

cosα 0 − sinα
0 1 0

sinα 0 cosα

pb. (2.8)

2.1.8 The Wind Frame Fw

The wind frame is obtained through rotating the stability frame by a right-handed rotation
about ks by the sideslip angle β, which is the angle between the airspeed vector and the ib-
kb plane. Thus, the airspeed vector is aligned with the unit vector iw. The transformation
from Fs to Fv is given by

pw = Rws (β)ps =

 cosβ sinβ 0
− sinβ cosβ 0

0 0 1

ps. (2.9)

2.2 The Wind Triangle
When modeling the dynamics of a UAV, it is important to distinguish between the inertial
forces, which are dependent on velocities and accelerations relative to a fixed frame, and
aerodynamic forces, which are dependent on velocities relative to the surrounding air.
Since UAVs operate in environments where wind is almost always present, the velocity
of the UAV relative to the fixed frame, vg , and relative to the surrounding air, vr, are not
the same. This is especially important when modeling UAVs as the wind velocity can
sometimes be almost as great as the velocity of the UAV. The relation between vg and vr
in the inertial frame is given by

vr = vg − vw, (2.10)

where vw is the wind velocity vector relative to the fixed frame.
The ground velocity of the UAV with respect to the inertial frame expressed in the

body frame is given by

vb , vbg =

uv
w

 = Rbvvg, (2.11)

where the components of vb are given along the ib, jb, and kb axes. The components of the
wind velocity vector can also be expressed in the body frame in a similar way so that the
wind velocity in the inertial frame expressed in the body frame is

vbw =

uwvw
ww

 = Rbv(φ, θ, ψ)

wnwe
wd

 , (2.12)
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where wn, we, and wd are the components of the wind in the NED-frame. Finally, the
relative airspeed in the body frame is given by

vbr =

urvr
wr

 =

u− uwv − vw
w − ww

 . (2.13)

From the information above about the wind velocity, relative air velocity, and ground
velocity, it is possible to formulate expressions for the airspeed Va, the AoA α, and the
sideslip angle β as

Va =‖vr‖ (2.14)

α = tan−1

(
wr
ur

)
(2.15)

β = sin−1

(
vr
Va

)
, (2.16)

where the four-quadrant inverse tangent atan2(y, x) (MathWorks, 2020c), which maps
the resulting angle to the interval [−π, π] for any x and y, is typically used to calculate the
AoA above. The equations in (2.14)-(2.16) are convenient given that aerodynamic forces
and moments are usually formulated using Va, α, and β.

The presence of wind in the system does not only affect the velocity of the UAV, but
also the angular velocity ωi, where ωi is the angular velocity of the UAV relative to the
inertial frame. The angular velocity in the body frame is denoted as ωb and is given in
terms of the components u, v and w so that

ωb =

pq
r

 . (2.17)

The relative angular velocity of the UAV in the body frame is then given by

ωbr =

prqr
rr

 = ωb − ωbw, (2.18)

where ωbw is the effect of the wind on the angular velocity of the UAV in the body frame,
which is described in more detail in subsection 2.4.4.

2.2.1 Course Angle and Flight-Path Angle
Two additional angles are introduced relating to the navigation of the UAV, namely the
course angle χ and flight-path angle γf , which are used to describe the direction of the
ground velocity vg relative to an inertial frame. These angles are used in chapter 6 to
calculate the desired trajectory for the UAV during simulation.

The flight-path angle γf is the angle between the ii-ji plane and the ground velocity
vg , so that it is given by the relation

ḣ = Vg sin γf , (2.19)
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where h is the altitude of the UAV and Vg is the ground speed of the UAV.
The course angle χ is the angle between the inertial north ii and the projection of vg

onto the ii-ji plane so that
χ = tan−1(

vy
vx

), (2.20)

where vy is the component of vg along ji, and vx is the component of vg along ii.

2.3 Kinematics and Dynamics
To derive the equations of motion for a UAV, the expressions for the kinematics and the
dynamics of the UAV have to be defined. In this section, Newton’s laws are applied to the
translational and rotational motion of the UAV to express the relations between positions
and velocities, and between forces and moments.

2.3.1 State Variables
The equations of motion for a UAV can be defined by introducing twelve state variables.
There are three position states and three velocity states associated with both the transla-
tional and the rotational motion of the UAV. The state variables can be found in Table
2.1.

Name Description
pn Inertial north position of the UAV along ii in F i

pe Inertial east position of the UAV along ji in F i

pd Inertial down position (negative of altitude) of the UAV along ki in F i

u Body frame velocity measured along ib in Fb

v Body frame velocity measured along jb in Fb

w Body frame velocity measured along kb in Fb

φ Roll angle defined with respect to Fv2

θ Pitch angle defined with respect to Fv1

ψ Heading (yaw) angle defined with respect to Fv

p Roll rate measured along ib in Fb

q Pitch rate measured along jb in Fb

r Yaw rate measured along kb in Fb

Table 2.1: UAV state variables (from Beard and McLain (2012)).

The translational position states (pn, pe, pd) are defined relative to the inertial frame,
while the rotational position states, i.e. the Euler angles φ, θ, ψ, are defined with respect
to the vehicle-2, the vehicle-1, and the vehicle frame, respectively. The velocity states
(u, v, w) and (p, q, r) are defined with respect to the body frame.
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2.3.2 Kinematics
The components of the velocity of the UAV in the body frame are denoted u, v and w,
and correspond to the inertial velocity of the UAV projected onto the body frame axes.
However, the position of the UAV is usually expressed in an inertial reference frame. It
is therefore necessary to perform a differentiation and a rotational transformation to relate
the position and velocity:

ṙ =

ṗnṗe
ṗd

 = Rvb

uv
w

 , (2.21)

where r is the position vector.
The problem of relating quantities that are defined in different coordinate frames also

arises in the relationship between the angular positions φ, θ, and ψ and the angular rates
p, q, and r. As previously described, the angular positions are defined in three different
coordinate frames, and the angular rates are defined in the body frame. The transforma-
tions that expresses the body frame angular rates in terms of the derivatives of the angular
positions are pq

r

 =

φ̇0
0

+Rbv2(φ)

0

θ̇
0

+Rbv2(φ)Rv2
v1(θ)

 0
0

ψ̇,

 (2.22)

which means that the differential equations for the angular positions are obtained as

Θ̇ =

φ̇θ̇
ψ̇

 =

1 sinφ cos θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

pq
r

 , (2.23)

where sec(·) = 1
cos(·) and Θ = [φ, θ, ψ]> ∈ T3 is the vector of Euler angles. The

three-torus T3 is defined as the Cartesian product of three circles, i.e. T3 = S1 × S1 × S1.

2.3.3 Rigid-Body Dynamics
To derive the rest of the equations of motions for a UAV, Newton’s second law is applied
to the translational and rotational degrees of freedom. The motion of the UAV needs to
be described relative to a fixed reference, as Newton’s laws only hold in inertial frames.
For small air vehicles, it is reasonable to assume a flat earth model, which means that it is
possible to use the ground as a fixed frame of reference for the motion of the UAV. The fact
that it is possible to assume a flat earth model is because the maneuvering of a UAV only
require local navigation instead of global since the flight range is small compared to the
Earth’s surface (Lovren and Pieper, 1997). This means that the effects of the accelerations
associated with Earth’s rotation can be ignored as they are negligible in size compared to
the accelerations produced by the UAV. This is what allows us to view the NED frame
as inertial when using local navigation, even though it is actually both accelerating and
rotating (Lovren and Pieper, 1997).
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Translational Motion

For a UAV that is undergoing translational motion, Newton’s second law can be formulated
in the inertial frame as

m
dvg
dti

= f, (2.24)

where m is the mass of the UAV, d
dti

is the time derivative in the inertial frame, and f is
the external forces acting on the UAV, which are described later in this chapter.

It is desirable to express (2.24) in the body frame to describe the motion of the UAV
since we wish to develop the equation for the rate of change in the velocity of the UAV,
which is dependent on the angular velocity of the UAV and on the forces acting on the
UAV. The aerodynamic and thrust forces, which are described later in this chapter, are
commonly expressed in the body frame, and the angular rates are measured in the body
frame. Therefore, it is convenient to express the equation for vb in the body frame. This
requires the time derivative of the UAV velocity vector, vg , to be reformulated as

dvg
dti

=
dvg
dtb

+ ωi × vg, (2.25)

where ωi is the angular velocity of the UAV with respect to the inertial frame. Newton’s
second law in the body frame can then be found by combining (2.24) and (2.25) as

m
(
dvb
dtb

+ ωb × vb
)

= fb, (2.26)

where vb = [u, v, w]> is the ground velocity expressed in the body frame, ωb = [p, q, r]>

is the angular velocity in the body frame, and fb = [fx, fy, fz]
> is the sum of external

forces acting on the UAV in the body frame.
Furthermore, since

v̇b =
dvb
dtb

=

u̇v̇
ẇ

 , (2.27)

it follows that the dynamic equation for the rate of change in velocity expressed in the
body frame is given by

v̇b = −ωb × vb +
1

m
fb. (2.28)

Rotational Motion

For a UAV that is undergoing rotational motion, Newton’s second law can be formulated
in the inertial frame as

dh

dti
= mi, (2.29)

where h is the angular momentum in vector form, and mi is the sum of all external mo-
ments applied to the UAV with respect to the inertial frame.

Since the rate of change in angular velocity depends on the aerodynamic and thrust
moments, which are both given in the body frame, it is desirable to express (2.29) in the
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body frame as well. Additionally, the angular velocity of the UAV is commonly measured
as body frame angular velocities, which also makes it convenient to express (2.29) in the
body frame. To express the rate of change in angular velocity in the body frame, the
derivative of the angular momentum in the inertial frame has to be rewritten as

dh

dti
=
dh

dtb
+ ωb/i × h = mi. (2.30)

Thus, Newton’s second law in the body frame becomes

dhb
dtb

+ ωb × hb = mb, (2.31)

where hb is the angular momentum, and mb the externally applied moments, both ex-
pressed in the body frame.

To formulate the expression for ω̇b, it is necessary to rewrite the angular velocity vector
as

hb = Ibωb,

where Ib = I>b > 0 is the symmetric and positive definite inertia matrix which is given by

Ib =

 Ix 0 −Ixz
0 Iy 0
−Ixz 0 Iz

 , (2.32)

where it is assumed that the UAV is symmetric about the plane spanned by ib and kb,
which means that Ixy = Iyz = 0. The inverse of Ib is then given by

I−1
b =


Iz
Γb

0 Ixz
Γb

0 1
Iy

0
Ixz
Γb

0 Ix
Γb

 , Γb , IxIz − I2
xz. (2.33)

Thus, (2.31) can be reformulated as

Ib
dωb
dtb

+ ωb × (Ibωb) = mb, (2.34)

which means that the dynamic equation for the rate of change of the angular velocity in
the body frame is

ω̇b = I−1
b (−ωb × (Ibωb) +mb), (2.35)

where ω̇b = [ṗ, q̇, ṙ]>.

2.4 Forces and Moments
The common approach to modeling the effect of the pressure distribution around the body
of a UAV as it passes through the air is to describe it using a combination of forces and
moments. The distribution of the pressure acting on the UAV is modeled as a function of
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Chapter 2. UAV Dynamics

the airspeed, the air density, and the shape and attitude of the UAV (Beard and McLain,
2012). The total forces fb and moments mb acting on the UAV in the body frame are
typically modeled using a combination of the effects of gravitation, aerodynamics, and
propulsion on the UAV, so that

fb = fg + fa + ft

mb = ma +mt,

where fg is the gravitational force, fa and ma are the aerodynamic forces and moments,
and ft and mt are the propulsion force and moment in vector form.

2.4.1 Gravitational Forces
The gravitational force acting on the UAV is modeled as a force acting along ki that is
proportional to the mass of the UAV by the gravitational constant g. To express this force
in the body frame, it is necessary to rotate it from the vehicle frame to the body frame. The
gravitational force in the body frame is therefore formulated as

f bg = Rbv(φ, θ, ψ)

 0
0

mg

 . (2.36)

2.4.2 Aerodynamic Forces and Moments
The effect of the pressure distribution around the UAV as it passes through the air is mod-
eled using both forces and moments. The aerodynamic forces and moments are usually
decomposed into two groups: longitudinal and lateral, both of which are described in the
following paragraphs. This decoupling simplifies modeling and analysis, which is useful
in for example control design. When modeling the system as decoupled, the coupling
between the lateral and longitudinal subsystems is viewed as a disturbance in the model.
This kind of decoupling is only possible when assuming typical low-angle-of-attack flight
conditions and small deviations from the equilibrium when both the roll and pitch angles
are small, or when performing decoupled maneuvers. Decoupled maneuvers are when
there is only motion in either the pitching plane (longitudinal motion) or in the ib- jb plane
(lateral motion). Examples of longitudinal motion are changes in altitude and airspeed,
while an example of lateral motion is banked turns.

Note that the expressions for both the longitudinal and the lateral forces and moments
presented here are based on linearized coefficients. This means that they are only valid
for small deviations from the equilibrium. Therefore, the model presented in this report
cannot be used to model systems that are required to perform more advanced aerobatic
maneuvers. The reason for using these linearized coefficients that limit the application of
the model is that it is both expensive and difficult to obtain accurate models of the nonlinear
aerodynamic coefficients, which is either done through wind tunnel testing, computational
fluid dynamics simulations, or by system identification based on flight experiments. It is
easier to limit the behavior of the system to typical flight conditions and view the linearized
coefficients and large deviations from the typical flight conditions as sources of uncertainty
in the model instead.
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2.4 Forces and Moments

Control Surfaces

Three primary control surfaces can be used to maneuver a UAV by modifying the aerody-
namic forces and moments: the elevator, ailerons, and rudder. These can be seen in Figure
2.1. The ailerons are used to generate roll moment, the elevators generate pitch moment,

Figure 2.1: The primary control surfaces of a UAV (figure from Beard and McLain (2012))

and the rudder generates yaw moment. The aileron, elevator and rudder deflections are
denoted δa, δe, and δr respectively.

In Figure 2.1 the positive directions of the control surface deflections are determined,
which is done by applying the right-hand rule to the hinge axis of each control surface.
Therefore, the positive direction of the elevator deflection is trailing edge down. For the
rudder, the positive direction is the trailing edge left. The positive direction for the aileron
is when the left aileron is trailing edge down and the right aileron is trailing edge up since
the aileron deflection is given by

δa =
1

2
(δa−left − δa−right).

The configuration of control surfaces shown in Figure 2.1 is not the only standard con-
figuration for fixed-wing UAVs. Two examples of common configurations are shown in
Figure 2.2, where ruddervators are used instead of both an elevator and a rudder. The

(a) An example of a fixed-wing UAV with rudder-
vators (figure from Beard and McLain (2012)).

(b) The Aerosonde model (figure from Beard and
McLain (2012)).

Figure 2.2: Two examples of a control surface configuration of a UAV with ruddervators.
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relationship between the deflections of the ruddervators, and the elevator and rudder de-
flections is given by [

δe
δa

]
=

[
1 1
−1 1

] [
δrr
δrl

]
,

where δrr is the right ruddervator and δrl is the left ruddervator. Thus, driving the rud-
dervators together will have the same effect as an elevator, while driving the ruddervators
differentially will have the same effect as a rudder.

Lateral Forces and Moments

The lateral aerodynamic force and moments are

fy =
1

2
ρV 2

a SCY (β, pr, rr, δa, δr) (2.37)

l =
1

2
ρV 2

a SbCl(β, pr, rr, δa, δr) (2.38)

n =
1

2
ρV 2

a SbCn(β, pr, rr, δa, δr), (2.39)

where fy is the force acting on the UAV in the lateral direction along jb, and l and n are
the roll and yaw moments respectively. The constant ρ is the air density, S is the wing
area, and b is the wing span.

The equations for the aerodynamic coefficients are nonlinear and difficult to charac-
terize. Therefore, it is common to use linear approximations which are found through
first-order Taylor series approximation as

CY = CY0 + CYββ + CYp
b

2Va
pr + CYr

b

2Va
rr + CYδa δa + CYδr δr (2.40)

Cl = Cl0 + Clββ + Clp
b

2Va
pr + Clr

b

2Va
rr + Clδa δa + Clδr δr (2.41)

Cn = Cn0
+ Cnββ + Cnp

b

2Va
pr + Cnr

b

2Va
rr + Cnδa δa + Cnδr δr, (2.42)

where CY0
= Cl0 = Cn0

= 0 if the UAV is symmetric about the plane spanned by ib and
kb. These linearized coefficients are only valid under typical, low-angle-of-attack flight
conditions where the flow over the UAV body is laminar so that the UAV is quasi-steady.
This quasi-steady behaviour, which is fairly predictable, allows us to use these simplified
expressions which are proven to yield acceptable accuracy.

Longitudinal Forces and Moments

The longitudinal aerodynamic forces and moment are denoted L, D and m, where L is
the lift force, D is the drag force and m is the pitching moment. These are the forces
and moments that cause motion in the body ib- kb plane, known as the pitch plane. The
lift and drag forces are aligned with the axes of the stability frame Fs, and the pitching
moment defined as the moment about the js axis. The longitudinal aerodynamic forces and
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moments are heavily influenced by the angle of attack, and are therefore often expressed
as

L =
1

2
ρV 2

a SCL(α, qr, δe) (2.43)

D =
1

2
ρV 2

a SCD(α, qr, δe) (2.44)

m =
1

2
ρV 2

a ScCm(α, qr, δe), (2.45)

where CL, CD, and Cm are nondimensional aerodynamic coefficients, and c is the mean
chord of the wing.

The longitudinal linearized aerodynamic coefficients are

CL = CL0 + CLαα+ CLq
c

2Va
qr + CLδe δe (2.46)

CD = CD0
+ CDαα+ CDq

c

2Va
qr + CDδe δe (2.47)

Cm = Cm0 + Cmαα+ Cmq
c

2Va
qr + Cmδe δe, (2.48)

Similarly to the lateral linearized coefficients, (2.46)-(2.48) are only valid for small values
of the AoA when the flow over the UAV wing can be characterized as laminar. When the
AoA grows too large, stall may occur when the airflow separates from the wing resulting
in a loss in lift. Under these conditions, the linearized coefficients in (2.46)-(2.48) produce
too optimistic estimates of the forces, and can no longer be used to provide an accurate
model of the UAV.

Aerodynamic Force Vector and Moment Vector

The aerodynamic forces fa and moments ma mentioned in the introduction to this section
are expressed by combining the lateral and longitudinal aerodynamic forces and moments
in the paragraphs above. The aerodynamic forces are the forces acting in the lateral direc-
tion fy (2.37), the lift force L (2.43), and the drag force D (2.43). By combining these we
find the aerodynamic force vector in the body frame as

fa =
1

2
ρV 2

a SRbs(α)

−CDCY
−CL

 , (2.49)

whereRbs(α) is the rotation matrix from the stability frame to the body frame.
The aerodynamic moment vector in the body frame is found by combining the roll,

pitch, and yaw moments in (2.38), (2.45), and (2.39) respectively. The vector ma is thus
given by

ma =
1

2
ρV 2

a S

 bClcCm
bCn

 . (2.50)
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Uncertainty in the Aerodynamic Forces and Moments

The presence of wind in the system has already been discussed in section 2.2. However,
this is not the only disturbance that affects the UAV. As previously mentioned, the aero-
dynamic forces fa and moments ma are based on linearized coefficients that describe
the aerodynamic properties of the UAV. Because of the linearization, the fact that the co-
efficients are difficult to determine, and additional model parametric errors, there is an
uncertainty in the system that has not yet been modeled.

In this report, a time varying signal d(t) that represents the modeling uncertainties in
the system parameters is added to the aerodynamic forces and moments. The vectors fa
and ma with this disturbance accounted for is given by

fa =
1

2
ρV 2

a SRbs(α)

−CDCY
−CL

+ df (t) (2.51)

ma =
1

2
ρV 2

a S

 bClcCm
bCn

+ dm(t), (2.52)

where df is given in [N] and dm is given in [N m]. Both df and dm are components of the
disturbance signal d, i.e.

d =

[
df
dm

]
. (2.53)

The signal d is in this report modeled as low-pass filtered white noise, and is given by

ḋ = − 1

Td
d+

1

Td
wd, (2.54)

where Td is the time constant of the filter and wd is band-limited white noise. The values
of these parameters are given in chapter 6.

2.4.3 Propulsion Forces and Moments
Propeller Thrust

To develop a model of the thrust generated by a propeller, Bernoulli’s principle can be
applied to calculate the pressure ahead and behind the propeller so that the pressure differ-
ence can be applied to the propeller area. The thrust is then given by

T =
1

2
ρSpropCprop((kmotorδt)

2 − V 2
a ), (2.55)

where Sprop is the area swept out by the propeller, Cprop is an aerodynamic coefficient for
the propeller, kmotor is a constant that specifies the efficiency of the motor, and δt ∈ [0, 1]
is the throttle. The trust T is non-negative, so the function in (2.55) is limited to T =
max(0, T ). The propeller force is given by

ft =

T0
0

 , (2.56)
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where it is assumed that the thrust acts along the ib axis.

Propeller Torque

When the propeller on the UAV spins, a torque applied by the propeller to the motor fixed
on the UAV body is created. This effect is due to the increased momentum of the air that
passes through the propeller. The torque applied to the motor, and thus the UAV body is
opposite to the direction of the propeller rotation and is given by

Tp = −kTp(kΩδt)
2 (2.57)

where Ω = kΩδt is the propeller speed and kTp is a constant that can be determined
through experiments. The propulsion moment is thus given by

mt =

Tp0
0

 . (2.58)

2.4.4 Atmospheric Disturbances
Usually, the wind vector vw is modeled as the sum of two vectors:

vw = vws + vwg (2.59)

where vws is constant and vwg is the output of a stochastic process. The vector vws repre-
sents steady ambient wind and is usually expressed in the inertial frame as

vws =

wnswes
wds

 , (2.60)

while the vector vwg represents wind gusts and other atmospheric disturbances, and is
typically expressed in the body frame as

vbwg =

uwgvwg
wwg

 . (2.61)

The wind vector vbw in the body frame is therefore

vbw =

uwvw
ww

 = Rbv(φ, θ, ψ)

wnswes
wds

+

uwgvwg
wwg

 . (2.62)

An approximate model of the gust portion of the wind model, vbwg , is the Dryden model
(MathWorks, 2020b; Chalk et al., 1969), which approximates vbwg by passing white noise
through shaping filters.

Atmospheric disturbances also affect the rotational motion of the UAV. The Dryden
model also creates a stochastic vector ωbw = [pw, qw, rw]> that represents the effect of
gusts on the rotational motion of the UAV. The vector ωbw is used in (2.18) to calculate the
relative angular velocity ωbr in the body frame.
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2.5 Summary of the Nonlinear Equations of Motions
The equations of motion that defines the full 12-state 6DOF model developed in the pre-
vious sections are summarized below:

ṙ = Rvbvb (2.63)

v̇b = vb × ωb +
1

m
fb (2.64)

Θ̇ =

1 sinφ cos θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

ωb (2.65)

ω̇b = I−1
b (−ωb × (Ibωb) +mb), (2.66)

where r is the position vector in the NED-frame, vb is the velocity vector in the body
frame, Θ is the vector containing the Euler angles, and ωb is the body angular rate vector.
The state vector of the system is thus

x =


r
vb
Θ
ωb

 , (2.67)

where x ∈ R3 × R3 × T3 × R3.
The forces and moments acting on the UAV in the body frame, denoted fb and mb

respectively, are given by

fb = fa + ft + fg (2.68)
mb = ma +mt, (2.69)

where the aerodynamic forces, the thrust and the gravitational force acting on the UAV are

fa =
1

2
ρV 2

a SRbs(α)

−CDCY
−CL

 , ft =

T0
0

 , fg = Rbv

 0
0

mg

 , (2.70)

and the aerodynamic and thrust moments are

ma =
1

2
ρV 2

a S

 bClcCm
bCn

 , mt =

Tp0
0

 . (2.71)

The thrust T is calculated as in (2.55), and the thrust moment Tp as in (2.57). The force
coefficients are

CD = CD0
+ CDαα+ CDq

c

2Va
q + CDδe δe (2.72)

CY = CYββ + CYp
b

2Va
p+ CYr

b

2Va
r + CYδa δa + CYδr δr (2.73)
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CL = CL0
+ CLαα+ CLq

c

2Va
q + CLδe δe (2.74)

and the moment coefficients are

Cl = Clββ + Clp
b

2Va
p+ Clr

b

2Va
r + Clδa δa + Clδr δr (2.75)

Cm = Cm0
+ Cmαα+ Cmq

c

2Va
q + Cmδe δe (2.76)

Cn = Cnββ + Cnp
b

2Va
p+ Cnr

b

2Va
r + Cnδa δa + Cnδr δr. (2.77)

2.6 Simplified Decoupled Dynamics
The dynamic equations for the full 6DOF model presented in the previous section are
complicated and nonlinear, and can in many cases be simplified for the design and analysis
of UAV control algorithms. The aerodynamic coefficients used to formulate the forces and
moments acting on the UAV are already linearized, but further simplifying assumptions
about the system can be made. A common approach is to model the system as decoupled
in the longitudinal and lateral directions. This means that when assuming certain flight
conditions, which are specified in the following subsections, it is possible to view the
effect of the longitudinal dynamics in the lateral system as an unknown disturbance and
vice versa.

2.6.1 Lateral Dynamics
The simplifying assumption for the lateral decoupled model is that we only have horizon-
tal, fixed altitude flight. This means that the pitch rate q can be set to zero and that the
pitch angle θ is small. When the pitch angle is small, we have that tan θ ≈ sin θ ≈ 0
and cos θ ≈ 1. Furthermore, it is assumed that the AoA is also small, which means that
tanα ≈ sinα ≈ 0 and cosα ≈ 1. Additionally, the airspeed Va and thrust T are assumed
to be constant. Then, the 6DOF equations in (2.63)-(2.66) can be simplified to

mVaβ̇ = mg cosβ sinφ+ fy − T sinβ −mVar (2.78)

φ̇ = p (2.79)

ṗ =
Iz
Γb
l +

Ixz
Γb

n (2.80)

ṙ =
Ixz
Γb

l +
Ix
Γb
n (2.81)

defined in terms of the sideslip angle β based on Stevens et al. (2015). The inertia matrix
Ib is defined in (2.32), and the force fy and moments l and m are defined in (2.37)-(2.39).
The model in (2.78)-(2.81) is the basis for the SISO lateral control algorithms developed
in chapter 5.
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2.6.2 Longitudinal Dynamics
When assuming wings-level flight with zero sideslip we have that cosφ ≈ 1 and sinφ ≈ 0
since φ ≈ 0. Furthermore, it is assumed that p = r = 0, and that β ≈ 0 so that cosβ ≈ 1.
The decoupled longitudinal dynamics based on the 6DOF model in (2.63)-(2.66) are then
given by

θ̇ = q (2.82)

q̇ =
1

Iy
m (2.83)

mV̇a = T cosα−D −mg sin(θ − α) (2.84)
mVaα̇ = mVaq + mg cos(θ − α)− L− T sinα (2.85)

defined in terms of the airspeed Va and angle of attack α, following the modeling method
in Stevens et al. (2015). Iy is a moment of inertia given in (2.32), and the forces and
moment L,D and m are given in (2.43)-(2.45). The model in (2.82)-(2.85) is the basis for
the SISO longitudinal control algorithms developed in chapter 5.

2.7 Attitude Representation Using Quaternions
A drawback to using the Euler angle representation in (2.63)-(2.66) is that it has a singular-
ity when the pitch angle is at±90 degrees which can be seen from (2.23), in which several
elements of the matrix will grow unbounded since sec θ, tan θ → ∞ when θ = ±90.
This means that it is impossible to distinguish the roll and yaw angles when θ = ±90
degrees. An alternative singularity-free way of representing the attitude of a UAV is to use
quaternions.

A quaternion, q, is an ordered list of four real numbers, which is required to be a unit
quaternion, i.e. ‖q‖ = 1, when representing a rotation. A quaternion q is commonly
represented as a vector:

q =


q0

q1

q2

q3

 ∈ S3, (2.86)

where S3 is the space of unit quaternions called the three-sphere, which is defined as

S3 = {x ∈ R4 : ‖x‖2 = 1}.

The first part, q0, of the quaternion is called the scalar part of the quaternion, and the vector
part of the quaternion is

e = q1i
i + q2j

i + q3k
i. (2.87)

The difference between the Euler angle representation and the quaternion representation
is the way a rotation from one frame to another is defined. When using Euler angles, the
rotation is defined by a sequence of rotations around different axes by different angles.
When using quaternions, the rotation from one frame to another is defined by a single
rotation about an axis in three-dimensional space.
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In addition to the fact that using quaternions provides a singularity-free attitude rep-
resentation, it is also computationally efficient to use quaternions, since it is a representa-
tion that does not rely on trigonometric functions when computing the derivative, unlike
the Euler angle representation. However, there are also some drawbacks to using quater-
nions including the fact that the quaternion has to be normalized during simulation so that
‖q‖ = 1, and that ±q is achieved by the same rotation.

The equations of motions for the 6DOF model when using quaternions to represent the
attitude of the UAV is given by

ṙ = Rvbvb (2.88)

v̇b = vb × ωb +
1

m
fb (2.89)

q̇ = Tqωb + kq(1−‖q‖)q (2.90)

ω̇b = I−1
b (−ωb × (Ibωb) +mb) (2.91)

so that the state vector is

x =


r
vb
q
ωb

 , (2.92)

where x ∈ R3 ×R3 × S3 ×R3. The model equations in (2.88)-(2.91) are used in the sim-
ulation model described in chapter 6, while the model using Euler angles to represent the
attitude of the UAV (2.63)-(2.66) is used as the basis for the single-input control algorithm
designs.

2.8 Reduced-Attitude Representation
Another way of representing the roll and pitch angle kinematics of a UAV is to use a
reduced-attitude representation (Coates et al., 2020; Reinhardt et al., 2020). This method
does not suffer from the same problem with singularity as the Euler representation and is
more intuitive than the quaternion representation, but it only models roll and pitch, rather
than a full rotation that also includes yaw. However, the reduced-attitude representation
presented in this section can still be used in control design and is used in chapter 5 to
design multivariable control algorithms.

When using the reduced-attitude representation, the attitude of the UAV is given by the
reduced-attitude vector

Γ =

 − sin θ
cos θ sinφ
cos θ cosφ

 , (2.93)

which corresponds to the third row of the rotation matrixRvb . This means that Γ represents
the direction of gravity expressed in the body frame, i.e.

Γ = Rvb
>e3, (2.94)

23



Chapter 2. UAV Dynamics

where e3 = [0 0 1]>. From the equation above, it can be concluded that‖Γ‖ = 1, as the
rotation of a unit vector results in a new unit vector. The sphere that makes up all possible
directions Γ is called the two-sphere and is defined as

S2 = {x ∈ R3 :‖x‖ = 1}, Γ ∈ S2. (2.95)

The reduced-attitude vector can then be seen as a point on the two-sphere.
The set of all possible vectors orthogonal to Γ span an infinite plane tangent to the

sphere, which is called the tangent space at Γ. This space is denoted by

TΓS2 = {v ∈ R3 : x>v = 0}. (2.96)

2.8.1 Reduced-Attitude Kinematics
The kinematic differential equation for Γ is given by

Γ̇ = Γ× ωb, (2.97)

where ωb is the angular velocity in the body frame. This equation can further be simplified
by decomposing the angular velocity as

ωb = ω⊥b + ω
‖
b , (2.98)

where ω‖b is the component of ωb parallel to Γ, and ω⊥b is the component of ωb perpendic-
ular to Γ. According to Coates et al. (2020), the parallel and orthogonal components of ωb
are given by

ω
‖
b = projΓ(ωb) = (ω>b Γ)Γ (2.99)

and

ω⊥b = projTΓS2(ωb) = Π⊥Γωb ∈ TΓS2, Π⊥Γ , I3 − ΓΓ>, (2.100)

where I3 ∈ R3×3 is the identity matrix.
Since the cross product of two parallel vectors is zero, we have that Γ × ω‖b = 0, and

it is therefore possible to simplify the reduced-attitude kinematics (2.97) to

Γ̇ = Γ× ω⊥b . (2.101)

This means that only the perpendicular component of the angular velocity changes Γ, and
thus changes the roll and pitch angles, φ and θ.
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Chapter 3
Sliding Mode Control

The SMC technique is an approach to robust controller design. The control objective is to
provide the desired performance of the closed-loop system when there are discrepancies
between the mathematical model and the plant it describes. These discrepancies can arise
from external disturbances, errors in plant parameters, and parasitic/unmodeled dynamics
(Shtessel et al., 2014). This chapter explains the sliding mode and several conventional
SMC techniques, as well as the use of both the single-input and the multivariable super-
twisting algorithm in SMC-design.

Section 3.1 contains an explanation of the sliding mode. Section 3.2 presents the theory
behind conventional SMC, while section 3.3 explains a conventional multivariable SMC
method. Section 3.4 gives a brief description of second-order SMC. Section 3.5 presents
the original single-input STA and several extensions of the basic algorithm. Finally, section
3.6 presents the multivariable STA and its extensions.

Note that the notation in this chapter is independent of the notation used in the rest of
the report, so some symbols have different meanings in this chapter and the other chap-
ters in this report. This is done to follow as much of the notation used in the literature
referenced in this chapter as possible.

3.1 The Sliding Mode
The sliding mode is a mode that may as a phenomenon appear in dynamic systems gov-
erned by ordinary differential equations with discontinuous right-hand sides (Utkin et al.,
2009). The main features of the sliding mode are its insensitivity to disturbances, both
internal and external, its ultimate accuracy, and its finite-time transient. Exploiting the
sliding mode in the control design means that these features will also be present in the
closed-loop system, even in the presence of parametric uncertainties, unmodeled dynam-
ics, and external disturbances.

The objective of SMC is to keep exactly a chosen constraint by employing a high-
frequency switching control. This constraint is given in terms of a new variable introduced
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in the system state-space:
σ ≡ 0, ∀t. (3.1)

The new variable, σ, is called the sliding variable. The control design objective is then
to find a control, u, so that (3.1) is satisfied for a smooth dynamic system described by
nonlinear differential equations in

ẋ = f(t, x, u), (3.2)

where x ∈ Rn, u ∈ Rm, t ∈ R, and u is selected as a discontinuous function of the state.
An example of a discontinuous control can be

ui =

{
u+
i (t, x), if σi(x) > 0,

u−i (t, x), if σi(x) < 0
i = 1, . . . ,m, (3.3)

where u+
i (t, x) and u−i (t, x) are continuous state functions, and u+

i (t, x) 6= u−i (t, x).
The sliding mode will then occur in the intersection of the m smooth sliding surfaces
σi = 0, and the motion of the system in these intersections will be of order n − m.
This order reduction property that results from enforcing sliding modes in systems with
discontinuous control is one of the many interesting features of sliding mode control as it
enables decoupling and simplification of the design procedure.

3.1.1 Ideal and Real Sliding
As described in Levant (1993), every motion that takes place strictly on the constraint
manifold σ = 0 is called an ideal sliding. Motion in a small neighborhood of the manifold
is called real sliding. The notion of infinite-frequency switching of the control is only
theoretical and cannot exist in physical systems due to switching imperfections. Thus,
ideal sliding cannot be attained (Levant, 2003).

The fact that ideal sliding is unattainable is due to the presence of parasitic dynamics
in the system, and to switching nonidealities such as delays (Young et al., 1999). Both
result in high-frequency oscillations in the neighborhood of the sliding manifold. The
parasitic dynamics are excited by the high-frequency switching of the switching device and
represent the fast actuator and sensor dynamics. The high-frequency oscillations caused
by these factors are called chattering and are a significant problem in SMC design which
is investigated further in the next section.

3.2 First-Order Sliding Mode Control
In conventional SMC the idea is to first design a sliding surface from a combination of
the system states that gives appropriate closed-loop dynamics when a sliding motion is
induced, and then to develop a control law that guarantees the existence of a sliding motion
in finite-time (Shtessel et al., 2014). The systems that are considered in first-order SMC are
systems that are of relative degree 1, i.e. the control input appears in the first-derivative
of the sliding variable, and also, the control that appears in the first-order derivative is
discontinuous.
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In this section a simple second-order system is used as a motivating example to explain
the main concepts of SMC:{

ẋ1 = x2, x1(0) = x10

ẋ2 = h(t, x) + u+ d(t), x2(0) = x20
,

(3.4)

where h is an uncertain nonlinear function, and d is a Lipschitz continuous external distur-
bance with |d(t)|≤ D. This system is based on an example given in Shtessel et al. (2014),
but a few modifications have been made to follow the notation that is introduced in chapter
5 and chapter 6. Note that the system is affine in the control input and that the disturbance
is matched by the control. If the disturbances in a system is matched by the control, it
means that the control appears in every equation in which the disturbance also appears.
For example, if both ẋ1 and ẋ2 in (3.4) contained a disturbance term, then the disturbance
in ẋ2 would be matched, while the disturbance in ẋ1 would be unmatched. The fact that
there are no unmatched disturbances present in the system is one of the main assumptions
in SMC-design.

3.2.1 Methodology
The design methodology in first-order SMC consists of two stages: design of the sliding
surface such that the system’s motion on the surface will exhibit the desired properties,
and design of a discontinuous controller to enforce sliding mode on the surface.

Design of Sliding Surface

The sliding surface is designed such that the system’s motion on it is governed by the
desired compensated dynamics. The compensated dynamics are chosen to achieve some
control objective. Say the goal is to design a control law to stabilize the origin of the
system (3.4). Choosing the sliding surface as

σ = a1x1 + x2 = 0, a1 > 0 (3.5)

ensures exponential convergence of the state x = (x1, x2) to the origin as the compensated
dynamics on the surface are {

ẋ1 = −a1x1

ẋ2 = −a1x2.
(3.6)

These compensated dynamics can be found by combining the equation for ẋ1 in (3.4) and
(3.5). From (3.4) and (3.5) we know that

x2 = −a1x1 =⇒ ẋ1 = x2 = −a1x1,

and that
ẋ2 = −a1ẋ1 =⇒ ẋ2 = −a1x2.

Here it can be noted that the compensated dynamics (3.6) are independent of h and d.
This means that if it is possible to find a control law that achieves these compensated

27



Chapter 3. Sliding Mode Control

dynamics, convergence to the origin can be guaranteed even in the presence of parametric
uncertainties and external disturbances. The fact that the compensated dynamics do not
depend on either the plant parameters or the external disturbance is called the invariance
property.

Design of a Sliding Mode Control Law

After the sliding surface has been defined, the problem of designing a control law u that
drives the state to the origin or desired reference remains. A simple feedback control law
that provides asymptotic stability is

u = −k1x1 − k2x2 − h(t, x)− d(t), k1 > 0, k2 > 0. (3.7)

However, convergence is guaranteed only if both h and d are known, or if h is known and
d(t) ≡ 0, which is typically not the case. In SMC the design of the control law is based
on the sliding-dynamics:

σ̇ = a1x2 + h(t, x) + u+ d(t), σ(0) = σ0. (3.8)

In Khalil (2002) the Lyapunov-function candidate

V =
1

2
σ2 (3.9)

is used to find a control law u that asymptotically stabilizes the origin of (3.8). This control
law is given as

u = −Ksign(σ) =


−K, σ > 0

0, σ = 0

K, σ < 0,

(3.10)

which is the simplest type of SMC, called an ideal relay controller. This kind of controller
can be seen in Figure 3.1.

In the analysis of the Lyapunov-function candidate in (3.9) several assumptions about
the system are made in order to prove asymptotic convergence. It is already assumed that
d is bounded. From Shtessel et al. (2014), the condition on V̇ for finite-time convergence
is given as

V̇ ≤ −ηV 1
2 = − η√

2
|σ|, η > 0, (3.11)

which is called the reaching or existence condition. If this condition is met, then the tra-
jectory of (3.4) will approach the sliding surface in finite-time and remain on it thereafter.

From differentiation of (3.9) we have

V̇ = σσ̇ = σ(a1x2 + h(t, x) + u+ d(t))

≤ |σ|(C1 +D) + σu

where the perturbation term ϕ1(t, x) = a1x2 +h(t, x) has been defined, which is assumed
to be uniformly bounded by |ϕ1(t, x)|≤ C1 ∀t. Insert the ideal relay controller (3.10) to
obtain

V̇ ≤ |σ|(C1 +D)− σKsign(σ)
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Figure 3.1: The ideal relay controller.

≤ −|σ|(K − C1 −D)

= − η√
2
|σ|< 0, ∀σ 6= 0.

The last inequality holds if the control gain is chosen to satisfy

K =
η√
2

+ C1 +D. (3.12)

The fact that the Lyapunov-function candidate V (3.9) satisfies the following conditions

V > 0, ∀σ 6= 0 (3.13)
σ = 0 =⇒ V (σ) = 0 (3.14)
‖σ‖ → ∞ =⇒ V →∞ (3.15)

means that V̇ ≤ −ηV 1
2 , ∀σ 6= 0 implies that σ is driven to zero in finite-time, i.e. the

sliding dynamics are finite-time stable, after which the motion is confined to the surface
σ = 0. The motion of the system can thus be split into two phases; a reaching phase and a
sliding phase. During the reaching phase, the trajectory starts to move towards the surface
σ = 0. After it has reached the surface the sliding phase begins, in which the system
is represented by the desired compensated dynamics (3.6) and moves towards the desired
reference. This behavior for the system (3.4) is illustrated in Figure 3.2.

The Lyapunov-analysis above is based on the assumption that |ϕ1(t, x)|≤ C1. Say
there exists a domain D ⊂ Rn which contains an equilibrium, and let it be defined by

D = {x ∈ R2 : |x|< r},

where r is chosen so that |ϕ1(t, x)|≤ C1, ∀t. Then we have that V̇ < 0 ∀x ∈ D, σ 6= 0.
Therefore it can be concluded that all trajectories with initial values x(0) = x0 ∈ D will

29



Chapter 3. Sliding Mode Control

( Sl i di ng sur f ace)

Reachi ng phase

Sl i di ng phase

Figure 3.2: The reaching phase and the sliding phase for the system (3.4) with the sliding variable
given in (3.5).

be contained in D ∀t ≥ 0, and will also approach the equilibrium in D. This means that
the Lyapunov-analysis that is performed in this report can only guarantee convergence
for values of x contained in a subset of the set Rn, in which the state is assumed to be
bounded. The Lyapunov-analysis of the saturation controller above is therefore only able
to guarantee a local result instead of a global one.

3.2.2 Chattering
In the ideal relay controller, the switching frequency is supposed to be infinitely high,
which means that ideal sliding happens on the surface σ = 0. However, due to imper-
fections in the switching devices, such as delays, dead zones, or hysteresis, SMC suffers
from chattering. This means that in reality, the trajectory of the system is affected by these
high-frequency small-amplitude oscillations, and is therefore confined to some vicinity of
the switching surface, as seen in Figure 3.3.

Several design techniques can be applied to the control design to prevent chattering.
Fortunately, these techniques do not rely upon a more detailed model of the system. The
controller may still be designed under idealized conditions and then modified to be more
robust to chattering and provide continuous control (Utkin et al., 2009). These chattering
avoidance techniques can either be used to attenuate or eliminate the chattering effect
(Shtessel et al., 2014).

3.2.3 Saturation Controller
One approach to chattering attenuation is to replace the relay control (3.10) with some
continuous or smooth approximation. One such approximation is presented in the bound-
ary layer solution in Utkin et al. (2009), in which the sign-function in (3.10) is replaced
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Figure 3.3: Chattering due to switching delay.

with a saturation-function, sat(σ). The controller is then given by

u = −Ksat(σ) =

{
−Ksign(σ), |σ|> ε

−Kε σ, |σ|≤ ε
(3.16)

and can be seen in Figure 3.4.

Figure 3.4: The ideal saturation controller.

The sat-function takes the form of the sign-function except for in a boundary layer
around the sliding surface. In this layer, it is a linear function of the sliding variable σ,
and the control law is thus continuous in this layer. This kind of control retains several
of the properties of the ideal relay controller (3.10), such as finite-time convergence, and
partly also the invariance property. However, convergence can only be guaranteed to the
boundary layer and not to the desired reference, as the system behavior inside the boundary

31



Chapter 3. Sliding Mode Control

layer is not determined. This means that there is no ideal sliding mode in the system (3.4),
so the cost of providing a smooth control signal is the loss of robustness and accuracy,
which is a trade-off in this kind of SMC design.

3.3 Multivariable Conventional Sliding Mode Control
Suppose that for a general n-dimensional system

ẋ = f(t, x) + g(t, x)ū+ h(t, x), (3.17)

where f, h ∈ Rn, g ∈ Rn×m and ū ∈ Rm, it is possible to define an m-dimensional
sliding variable with sliding dynamics on the form

σ̇ = a(t, x) + b(t, x)u+ γ(t, x), (3.18)

where a, γ ∈ Rm, and b ∈ Rm×m. Here, a is an uncertain system function, b is the
uncertain control coefficient, and γ is an unknown disturbance in the system.

If the sliding dynamics (3.18) can be decoupled into m independent subsystems, then
it is possible to design a single-input sliding mode control law ūi, i = 1, ...,m to drive the
corresponding sliding variable σi to zero. Should it not be possible to decouple the sliding
dynamics due to nonlinearities in the system, it may be possible to simplify the system
into subsystems and then view the coupling between the subsystems as disturbances in the
system. However, if the coupling between the plant variables is too strong, the strategy of
applying SISO control loops in a multivariable system may fail (Dong et al., 2016). In this
case, a multivariable control scheme needs to be designed.

3.3.1 Unit Vector Control
An example of first-order multivariable SMC is the unit vector control (UVC), which is
an extended multivariable version of the relay controller (3.10). In Edwards and Spurgeon
(1998) the uncertain system

ẋ = Ax(t) +Bu(t) + fu(t, x) + fm(t, x, u) (3.19)

is considered in the design of the UVC law. In the system (3.19) above, the functions
fu : R×Rn and fm : R×Rn ×Rm are unknown unmatched and matched uncertainties,
which are assumed to be bounded by

‖fu‖ ≤ k1‖x‖+ k2 (3.20)
‖fm‖ ≤ k3‖u‖+ αu(t, x), (3.21)

where αu(t, x) is a known function, and k1, k2, k3 ≥ 0 are known constants. The constant
k3 is bounded by

k3 <
√
λmin(B>B). (3.22)

It is assumed that (3.19) is in regular form which means that the system can be written on
the form

ẋ1 = A11x1(t) +A12x2(t) + fu (3.23)
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ẋ2 = A21x1(t) +A22x2(t) +B2u(t) + fm. (3.24)

From the uncertain system (3.19) and the regular form decomposition (3.23)-(3.24), it can
be seen that B>B = B>2 B2. This allows us to define√

λmin(B>B) = σ(B2) = (σ(B2))−1 =
∥∥∥B−1

2

∥∥∥−1

. (3.25)

The bound on k3 can then be rewritten as

k3

∥∥∥B−1
2

∥∥∥ < 1. (3.26)

In Edwards and Spurgeon (1998) the sliding surface is expressed as

σ = S2Mx1(t) + S2x2(t), (3.27)

where σ is assumed to be continuous and differentiable everywhere. The choice of S2 ∈
Rm×m is arbitrary, but is often chosen so that

S2B2 = Λ, (3.28)

where Λ is a nonsingular diagonal matrix which can be determined from

k3κ(Λ)
∥∥∥B−1

2

∥∥∥ < 1. (3.29)

In the expression above, κ(Λ) is the condition number of Λ. It is convenient to choose Λ
to be a scaled identity matrix, which means that κ(Λ) = 1 and (3.29) becomes (3.26).

The control law u is given as the sum of a linear and a discontinuous component:

u(t) = ul(t) + un(t), (3.30)

where the linear component is designed as an equivalent control term which stabilizes the
ideal nominal system without uncertainties or disturbances. The linear term ul is given by

ul(t) = Λ−1(−S2Ā21x1(t)− (S2Ā22S
−1
2 − Φ)σ)

Ā11 = A11 −A12M

Ā21 = MĀ11 +A21 −A22M

Ā22 = A22 +A12M,

(3.31)

where Φ ∈ Rm×m is an arbitrary stable design matrix. The choice of M is described later
in this subsection.

The nonlinear component un of the control law is

un(t) = −ρu(t, x)Λ−1 P2σ

‖P2σ‖
, for σ 6= 0, (3.32)

where P2 ∈ Rm×m is a symmetric positive definite matrix determined from

P2Φ + Φ>P2 = I. (3.33)
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The function ρu(t, x) is designed to satisfy

ρu(t, x) ≥
‖S2‖ (‖M‖ (k1

∥∥x(t)
∥∥+ k2) + k3

∥∥ul(t)∥∥+ αu(t, x)) + γ2

(1− k3κ(Λ)
∥∥∥B−1

2

∥∥∥)
, (3.34)

where γ2 is the tuning variable. Note that in the scalar case with a one-dimensional sliding
variable σ, the UVC law reduces to the ideal relay controller (3.10) with a variable gain
ρu(t, x). By comparing the function ρu with (3.20)-(3.21), it is easy to see that ρu depends
only on the magnitude of the matched and unmatched uncertainties fm and fu.

Choice of Stabilizing Matrix M

In Edwards and Spurgeon (1998), the matrix M is chosen to stabilize the pair (A11, A12).
Say the sliding function can be partitioned into

S =
[
S1 S2

]
=⇒ σ = S1x1 + S2x2, (3.35)

which is compatible with the regular form representation of the system given in (3.23)-
(3.24), where S1 ∈ Rm×(n−m) and S2 ∈ Rm×m. The motion of the system on the sliding
surface is then given by

S1x1(t) + S2x2(t) = 0 (3.36)

=⇒ x2(t) = −Mx1(t), M , S−1
2 S1 (3.37)

=⇒ ẋ1(t) = (A11 −A12M)x1(t) (3.38)

so that the system is stable if the matrix (A11 −A12M) has stable eigenvalues.

3.3.2 Boundary Layer Solution
A modified continuous version of the unit vector control presented in Edwards and Spur-
geon (1998) is given by

uεn(t) =

{
−ρu(t, x)Λ−1 P2σ

‖P2σ‖ , if ‖P2σ‖ ≥ ε
−ε−1ρu(t, x)Λ−1P2σ, otherwise,

(3.39)

where a boundary layer approach is utilised in the control design. The control law u is
now composed of a linear term ul and a continuous nonlinear approximation uεn. In the
single-input case, the control law (3.39) reduces to the boundary solution (3.16) with a
variable gain ρu instead of a constant gain K.

Since the nonlinear control law (3.39) is an approximation, there exists no ideal sliding
in the system as the state x is no longer confined to the sliding surface σ = 0 once it has
been reached. As a consequence, the system is no longer totally invariant to matched
uncertainties (Edwards and Spurgeon, 1998).
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3.3.3 Multivariable Boundary Solution
The UVC design presented in the previous subsection is a substantially more complicated
design than the SISO boundary layer solution in (3.10). If it is assumed that there are
no unmatched disturbances present in the system, which is an important assumption in
SMC-design, the UVC method from Edwards and Spurgeon (1998) can be simplified to
a control algorithm that is a more direct extension of the saturation controller (3.16) to a
multivariable framework.

The multivariable extension of the SISO saturation controller is given by

u = −Ksat(σ) =

{
−K σ

‖σ‖ , if ‖σ‖ > ε

−Kε σ, if ‖σ‖ ≤ ε,
sat(0) = 0, (3.40)

where ε is the size of the boundary layer in which the control is a linear function of σ,
and K is a scalar control gain. The MSAT (3.40) can be viewed as a simplification of the
UVC boundary solution, where a constant control gain K is used instead of the time- and
state-varying function ρu(t, x). In chapter 5, the MSAT (3.40) is designed for the UAV-
model as the multivariable version of the boundary solution. This is because the MSAT is
more compatible than the UVC with the multivariable super-twisting algorithms that are
presented in section 3.6.

If assuming that the sliding variable σ for the system (3.18) is both bounded and dif-
ferentiable, it is possible to define the Lyapunov candidate

V =
1

2
σ>σ (3.41)

to prove the stability of the multivariable saturation controller (3.40). Furthermore, if the
function b is assumed to be known, we can use a manipulated control ū as the input to the
sliding dynamics, where the control ū is given by

ū = b−1(t, x)u (3.42)

if we also assume that det(b) 6= 0,∀t, x. The derivative of the Lyapunov function is then
given as

V̇ = σ>σ̇

= σ>(a(t, x) + b(t, x)ū+ γ(t, x))

≤ (A+G)‖σ‖ − σ>(Ksat(σ))

(3.43)

where it is assumed that the function a and the disturbance γ are uniformly bounded by∥∥a(t, x)
∥∥ ≤ A and

∥∥γ(t, x)
∥∥ ≤ G, where the bounds are given by positive constants A

and G.
The derivative of the Lyapunov function for the case when‖σ‖ > ε can be written as

V̇ ≤ (A+G)‖σ‖ −Kσ>σ

‖σ‖
≤ −(K −A−G)‖σ‖

= − η√
2
‖σ‖ < 0, ∀σ 6= 0
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where we have used that σ>σ =‖σ‖2. The last inequality above holds if the control gain
is chosen as

K =
η√
2

+A+G, (3.44)

where η is a positive constant from the reaching condition (3.11).
For the case when‖σ‖ ≤ ε, the Lyapunov function candidate becomes

V̇ ≤ (A+G)‖σ‖ − kσ
>σ

ε

≤ (A+G)‖σ‖ −K‖σ‖
2

ε
≤ −(K −A−G)‖σ‖

= − η√
2
‖σ‖ < 0, ∀σ 6= 0

since‖σ‖ ≤ ε =⇒ ‖σ‖
ε ≤ 1. We have that V̇ ≤ η√

2
, ∀σ 6= 0 if the control gain K is

chosen as in (3.44). Thus, the MSAT controller in (3.40) is stable if the control gain K is
chosen to fulfil (3.44).

3.4 Second-Order Sliding Mode Control
Even though conventional SMC methods achieve exact compensation of bounded matched
uncertainties, reduced-order sliding equations, and finite-time convergence to the sliding
surface, there are still several challenges that remain to be solved. Among the disad-
vantages of the conventional methods are chattering, asymptotic convergence of the state
variables, and insensitivity only to matched disturbances (Fridman et al., 2011). Further-
more, the constraint, σ, has to be of relative degree 1 which means that the control needs
to appear in the first time derivative of the constraint, σ̇.

Second-order sliding mode (SOSM) control algorithms is an attempt at solving some of
the issues that remain for conventional SMC methods. In SOSM algorithms, a continuous
control signal is produced by considering the control derivative as a new virtual control
to drive both σ and σ̇ to zero so that a 2-sliding mode (σ = σ̇ = 0) is enforced in the
system. This means that the discontinuous term of the control appears only in σ̈, not in
σ̇, so that the chattering effect is significantly attenuated (Shtessel et al., 2014). However,
this requires the derivative σ̇ to be available, which may not always be the case unless, for
example, observers are added to the control design in addition to controllers.

3.5 The SISO Super-Twisting Algorithm and Extensions
A well-known second-order approach that seeks to attenuate chattering while still guaran-
teeing robustness to disturbances and uncertainties is the super-twisting algorithm (Levant,
1993), which is applicable to systems of relative degree 1. This means that it can be used
instead of the conventional first-order SMC algorithms, which separates it from other sec-
ond or higher-order sliding algorithms that require the system to be of relative degree
r > 1.
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3.5.1 Super-Twisting Algorithm Control Law
Suppose that a sliding variable σ is designed for a system such that the sliding dynamics
can be written on the form

σ̇ = a(t, x) + b(t, x)u, (3.45)

so that the system is of relative degree 1. The function a is considered an unknown, but
bounded, function satisfying |a(t, x)|≤ A with a bounded first derivative |ȧ(t, x)|≤ Ā.
Furthermore it is assumed that

0 < b0 ≤ b(t, x) ≤ B (3.46)

and that ḃ is bounded by |ḃ(t, x)|≤ B̄.
As before, the design objective is to design a discontinuous control law that ensures

σ ≡ 0 in finite-time. The super-twisting controller that is presented in Levant (1993)
achieves this design objective, and is given by

u = −k1|σ|
1
2 sign(σ) + z

ż = −k2sign(σ).
(3.47)

Note that even though this controller guarantees the appearance of a 2-sliding mode σ =
σ̇ = 0, no measurement of σ̇ is needed, which is an advantage that separates the STA from
other second-order SMC techniques.

For the STA, the problem of choosing the control gains k1 and k2 remains. A number of
sufficient conditions for finite-time stability have been proposed. The sufficient condition
for convergence given in Levant (1998) is

k2 > Ā, k2
1 ≥ 4Ā

k2 + Ā

k2 − Ā
. (3.48)

This condition arises from a very crude estimation, so another modified condition is given
in Moreno and Osorio (2012):

k2 > Ā, k1 > 2

√
k2 −

√
k2

2 − Ā2. (3.49)

Another popular parameter configuration is

k1 = 1.5
√
Ā, k2 = 1.1Ā. (3.50)

Note that this configuration does not satisfy (3.49), but they do satisfy a more recent suffi-
cient condition for stability given in Seeber and Horn (2017):

k2 > Ā, k1 >
√
k2 + Ā. (3.51)

These conditions are discussed further in chapter 7.
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3.5.2 Adaptive Gains Super-Twisting Algorithm
The STA only provides chattering attenuation and not elimination, as the control law con-
tains a discontinuous function under the integral. A disadvantage of the method is that the
choice of control gains is made based on the estimated boundary of the perturbation gradi-
ent, which is easily overestimated. This yields larger control gains than what is necessary,
which in the worst-case scenario can amplify chattering in the system.

A solution to this problem is the adaptive STA presented in Shtessel et al. (2010). Sim-
ilarly to the STA, the adaptive version of the control law continuously drives the sliding
variable and its derivative to zero in the presence of the bounded disturbance. The advan-
tage of this method is that the boundary of the disturbance is not required in the control
design, and can thus be unknown.

Problem Formulation

The problem formulation given in Shtessel et al. (2010) is as follows: Consider a single-
input uncertain nonlinear system

ẋ = f(t, x) + g(t, x)u, (3.52)

where x ∈ Rn is a state vector, u ∈ R is a control function, f(t, x) ∈ Rn is a differentiable,
partially known vector field. Assume that

(A1) A sliding variable σ = σ(t, x) ∈ R is designed so that the system’s (3.52) desirable
compensated dynamics are achieved in the sliding mode σ = 0.

(A2) The system’s (3.52) input-output (u → σ) dynamics are of a relative degree 1, and
the internal dynamics are stable.

(A3) The function b(t, x) ∈ R is known and not equal to zero ∀x and t ∈ [0,∞).

(A4) The function ϕ(t, x) ∈ R is bounded

|ϕ(t, x)|≤ δ|σ| 12 , (3.53)

where the finite boundary δ > 0 exists, but is unknown.

The control objective is then to find a control law that drives the sliding variable σ and
its derivative σ̇ to zero in finite-time in the presence of its bounded perturbation with the
unknown boundary through continuous control.

Control Structure

The following super-twisting control is proposed in Shtessel et al. (2010):{
ω = −α|σ| 12 sign(σ) + z

ż = −βsign(σ),
(3.54)
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where α, β are adaptive gains

α = α(σ, σ̇, t)

β = β(σ, σ̇, t)
(3.55)

to be defined. Note that α, β in relation to the ASTA are control gains, and are thus not the
same as the angle of attack and the sideslip angle defined in chapter 2. The reason for this
is to follow the notation in Shtessel et al. (2010).

The control system given by (3.54) can be written in a closed-loop system as{
σ̇ = −α|σ| 12 sign(σ) + z + ϕ(t, x)

ż = −βsign(σ).
(3.56)

The control design problem is then reduced to designing an ASTA control (3.54), (3.55)
that drives σ, σ̇ → 0 in finite-time in the presence of the bounded perturbation with the
unknown boundary.

The main result of Shtessel et al. (2010) is formulated as follows: Consider system
(3.56). Suppose that the perturbation ϕ(t, x) satisfies Assumption (A4) for some unknown
constant δ > 0. Then for any initial conditions x(0), σ(0) the sliding surface σ = 0 will
be reached in finite-time via the ASTA control (3.54) with the adaptive gains

α̇ =

{
ω1

√
γ1

2 , if σ 6= 0

0, if σ = 0

β = 2εα+ λ+ 4ε2,

(3.57)

where ε, λ, γ1, ω1 are arbitrary positive constants. It is also proposed in Shtessel et al.
(2010) that the adaptive gains α, β are bounded.

However, since σ is rarely exactly equal to 0, a modification of the update laws in
which a small threshold value for σ is used instead is given by

α̇ =

{
ω1

√
γ1

2 , if |σ|> αm

0, if |σ|≤ αm
β = 2εα+ λ+ 4ε2.

(3.58)

3.5.3 Generalized Super-Twisting Algorithm
A modified version of the STA is the generalized STA, which includes added linear correc-
tion terms to the purely nonlinear terms of the STA, and a generalization of the nonlinear
terms in the original STA. The added linear terms give the control design extra degrees of
freedom, which will provide a stronger attraction force to the algorithm when the trajecto-
ries are far away from the origin (Moreno, 2009). Thus, we obtain faster convergence and
enhanced stability robustness through the GSTA.

In Moreno (2009) the GSTA, for the case when there are no perturbations present in
the system, is presented as

u = −k1φ1(σ) + z

ż = −k2φ2(σ),
(3.59)
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where k1, k2 are positive control gains, and

φ1(σ) = µ1|σ|
1
2 sign(σ) + µ2σ

φ2(σ) =
µ2

1

2
sign(σ) +

3

2
µ1µ2|σ|

1
2 sign(σ) + µ2

2σ
(3.60)

are the nonlinear stabilizing terms. The only values for µ1 that are considered are µ1 = 0
and µ1 = 1 without loss of generality. Furthermore, note that when µ1 = 1 and µ2 = 0,
the unmodified STA is recovered. The GSTA, however, is obtained from (3.59) and (3.60)
when µ1 = 1 and µ2 > 0. This means that we can rewrite the nonlinear stabilizing terms
(3.60) as

φ1(σ) = |σ| 12 sign(σ) + βσ

φ2(σ) =
1

2
sign(σ) +

3

2
β|σ| 12 sign(σ) + β2σ,

(3.61)

where µ2 has been redefined as β = µ2. As for the ASTA, note that β is a control gain in
relation to the GSTA, and different from the sideslip angle in this chapter.

What remains of the control design problem is choosing the control gains β, k1, k2. In
Castillo et al. (2018) the conditions for the control gains are presented for the application
of GSTA to a nonlinear system with state- and time-dependent uncertain control coeffi-
cient and perturbations. The following problem definition and control design are based on
Castillo et al. (2018).

Problem Formulation

We still consider the system (3.52) with sliding dynamics given by

σ̇ = a(t, x) + b(t, x)u, (3.62)

where σ ∈ R and the functions a(t, x) and b(t, x) are uncertain functions dependent on
the time and state. The uncertain function a and control coefficient b should be continuous
in order to produce a continuous control signal. Assume that

(A1) The functions a and b are Lipschitz continuous functions with respect to t.

(A2) a, b ∈ C1 with respect to x.

(A3) The uncertain control coefficient is bounded by

0 < b0 ≤ b(t, x) ≤ B. (3.63)

(A4) The uncertain function can be split into two parts

a(t, x) = a1(t, x) + a2(t, x) (3.64)

such that the first term is vanishing at the origin, i.e. a1(0, t) = 0, ∀t ≥ 0, and
bounded by

|a1(t, x)|≤ α|φ1(σ)|, α > 0. (3.65)
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(A5) The total time-derivative of the second term of the perturbation function (divided by
the control coefficient b(t, x)) can be written as

d

dt

(
a2(t, x)

b(t, x)

)
=

1

b

∂a2

∂t
− a2

b2
∂b

∂t
+

(
1

b

∂a2

∂x
− a2

b2
∂b

∂x

)
ẋ

= δ1(t, x) + δ2(t, x)ẋ,

(3.66)

and the terms δ1, δ2 are bounded by positive constants

|δ1(t, x)|≤ δ̄1, |δ2(t, x)|≤ δ̄2. (3.67)

Control Structure

The main result of Castillo et al. (2018) is as follows: Suppose that a(t, x) and b(t, x) of
(3.62) satisfy assumption (A3) and (A5). Then σ will converge to zero globally and in
finite-time, if GSTA gains k1, k2, β > 0 are designed to satisfy the conditions given in
Castillo et al. (2018). As the conditions are quite substantial and elaborate, they are not
included here.

3.6 Multivariable Second-Order Sliding Mode Control
Suppose that the sliding dynamics for a nonlinear system can be written on the form

σ̇ = a(t, x) + b(t, x)ū+ γ(t, σ), (3.68)

where a ∈ Rm is the system functions, b ∈ Rm×m is the control coefficient, and γ ∈ Rm
is an unknown disturbance. Furthermore, the control variable ū is given by

ū = b−1(t, x)(u− a(t, x)) (3.69)

if det(b(t, x)) 6= 0, where u ∈ Rm is the control signal generated by one of the MSTA
versions presented in this section. This means that the closed-loop sliding dynamics have
the form

σ̇ = u+ γ(t, σ) (3.70)

To perform the transformation in (3.69) so that the sliding dynamics can be written on the
form above, the functions a and b need to be known, and b has to be nonsingular.

The fact that a and b have to be known to complete the control coefficient transfor-
mation in (3.69) makes it difficult to use the multivariable controllers presented in this
section since most systems contain disturbances due to modeling uncertainties. Therefore
it may be possible to modify the transformation in (3.69). This can be done either by
regarding the function a as a part of the perturbation in the sliding dynamics so that the
transformation is given by

ū = b−1(t, x)u, (3.71)

if b is known, or by implementing the original transformation in (3.69) with nominal func-
tions anom and bnom and assume that the transformation contribute to the perturbation in
the sliding dynamics with an uncertain term so that the total perturbation is given by

ϑ = ∆b−1(t, x)(u−∆a(t, x)) + γ(t, σ).
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A final alternative is a combination of both alternatives above. This means that the func-
tion a is disregarded in the transformation which is implemented with a nominal control
coefficient bnom. The total perturbation in the sliding dynamics in this case becomes

ϑ = ∆b−1(t, x)u+ a(t, x) + γ(t, σ).

This last alternative is easier to implement since the transformation only relies on bnom,
but the total perturbation ϑ will also be greater.

Note that the notation used in this report varies slightly from the notations used in the
original publications of the different algorithms. The reason for this is to make all three
following subsections cohesive in notation.

Subsection 3.6.1 presents the multivariable STA, while an adaptive extension and a
generalized version of the MSTA are presented in subsections 3.6.2 and 3.6.3, respectively.

3.6.1 Multivariable Super-Twisting Algorithm
Consider the sliding dynamics (3.68), the transformation (3.69), and the single-input STA
(3.47). Suppose that for a σ̇ ∈ Rm, we can formulate a control law u ∈ Rm in terms of m
decoupled injection terms given by

ui = −k1|σi|
1
2 sign(σi)− k2σi + zi (3.72)

żi = −k3sign(σi)− k4σi (3.73)

for i = 1 . . .m, where k2 and k4 are usually chosen as k2 = k4 = 0 in the scalar case
(Nagesh and Edwards, 2014) so that the original STA in (3.47) is recovered. Using these
decoupled injection terms, the sliding dynamics become

σ̇i = −k1|σi|
1
2 sign(σi)− k2σi + zi + γi(t, σ) (3.74)

for i = 1 . . .m. It can be proven that σi = σ̇i = 0 in finite-time for the case when
|γi|≤ di|σi| for some finite scalars di and properly chosen gains k1 . . . k4 (Moreno and
Osorio, 2012), and the case when |γ̇i|≤ d̄i for some finite scalars d̄i and appropriate gains
k1 . . . k4 (Levant, 1993; Moreno and Osorio, 2012).

However, suppose that a non-decoupled injection term is used instead of the decoupled
structure in (3.72)-(3.73). Such a non-decoupled control is formulated as

u(σ) = −k1
σ

‖σ‖1/2
+ z − k2σ, u(0) := 0 (3.75)

ż(σ) = −k3
σ

‖σ‖
− k4σ + ϕ(t), ż(0) := 0, (3.76)

which is the MSTA presented in Nagesh and Edwards (2014). Note that for m = 1,
the original STA is recovered given that k2 = k4 = 0 and that ϕ ≡ 0. The finite-
time stability of the MSTA (3.75)-(3.76) is proven in Nagesh and Edwards (2014) through
Lyapunov-methods for an appropriate configuration of control gains k1 . . . k4, given that
the inequalities ∥∥γ(t, σ)

∥∥ ≤ δ1‖σ‖ (3.77)
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∥∥ϕ(t)
∥∥ ≤ δ2 (3.78)

hold for scalars δ1, δ2 > 0. Additionally, it is assumed in the Lyapunov-analysis pre-
sented in Nagesh and Edwards (2014) that both σ and z in (3.75)-(3.76) are continuous
and differentiable everywhere except on the subspace

S = {(σ, z) ∈ R2m : σ = 0}, (3.79)

which is called the zero-measure set (López-Caamal and Moreno, 2019).

3.6.2 Adaptive Multivariable Super-Twisting Algorithm
Several examples of implementations of an adaptive MSTA can be found in the literature
(Dong et al., 2016; Hu et al., 2019; Fan and Tian, 2016; Tian et al., 2019). The focus in
this report is on the version found in Hu et al. (2019) and Dong et al. (2016).

Consider still the sliding dynamics (3.68) and the transformation (3.69). The AMSTA
presented in Hu et al. (2019) and Dong et al. (2016) is given by

u(σ) = α1
σ

‖σ‖1/2
+ z, u(0) := 0 (3.80)

ż(σ) = −α2

2

σ

‖σ‖
+ ϕ(t), ż(0) := 0, (3.81)

with adaptive gain update laws given by

α̇1 =

{
ω1

√
γ1

2 , if ‖σ‖ > σT

0, if ‖σ‖ ≤ σT
(3.82)

α2 = 2ε1α1, (3.83)

where σT > 0 is some small threshold value, and ω1, γ1, and ε1 are positive constants.
Furthermore, according to Hu et al. (2019) and Dong et al. (2016), the constant ε1 should
be chosen as

ε1 =
ω3

2ω1

√
γ3

γ1
(3.84)

for positive constants ω3 and γ3.
In Hu et al. (2019) and Dong et al. (2016) Lyapunov-methods are employed to prove

that σ = σ̇ = 0 in finite-time for the AMSTA in (3.80)-(3.81) with the gain adaption laws
given in (3.82)-(3.83). As in the Lyapunov-analysis of the MSTA, the functions σ and z
are assumed to be continuous and differentiable everywhere except on the zero-measure
set S given in (3.79).

Furthermore, the perturbations γ(t, σ) and ϕ(t) are assumed to be bounded by

‖γ‖ ≤ δ1‖σ‖
1
2 (3.85)

‖ϕ‖ ≤ δ2, (3.86)

and γ is also assumed to be differentiable so that

‖γ̇‖ ≤ δ3, (3.87)

where the bounds δ1, δ2, δ3 > 0 exist, but are unknown.
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3.6.3 Generalized Multivariable Super-Twisting Algorithm
A generalized version of the MSTA is presented in López-Caamal and Moreno (2019).
The sliding dynamics that are considered are still (3.68) with the transformation (3.69),
with the additional assumption that the control coefficient b in (3.68) is a regular matrix.

The GMSTA presented in López-Caamal and Moreno (2019) is

u = −k1φ1(σ) + k3z (3.88)
ż = −k2φ2(σ) + ϕ(t, σ), (3.89)

where

φ1(σ) = (αg‖σ‖−pg + βg + γg‖σ‖qg )σ, φ1(0) := 0 (3.90)

φ2(σ) = (αg(1− pg)‖σ‖−pg + βg + γg(1 + qg)‖σ‖qg )φ1(σ), φ2(0) := 0 (3.91)

with
0 < pg ≤

1

2
, qg > 0, αg > 0, βg, γg ≥ 0

and ki ∈ Rm×m, ∀j ∈ [1, 3] are diagonal matrices with positive entries. Furthermore,
we have that φj : Rm → Rm and ϕ : R≥0 × Rm → Rm. If the control is designed
following (3.88)-(3.91), then the origin of the sliding dynamics (3.68) is finite-time sta-
ble (López-Caamal and Moreno, 2019). Furthermore, according to López-Caamal and
Moreno (2019), choosing pg = 1/2 in (3.90)-(3.91) gives the algorithm robustness against
nonvanishing perturbations ϕ. Additionally, it can be noted that all coordinates in σ con-
verge to σ = 0 at the same time.

In López-Caamal and Moreno (2019) a vector ζ ∈ R2m is defined as

ζ(σ, z) = [φ1(σ)> z>]>, (3.92)

which is assumed to be continuous and differentiable everywhere, except on the zero-
measure set S defined in (3.79). This implies that the function φ2 is also continuous
everywhere except, possibly, in S. Furthermore, the function φ1 = 0 if and only if σ = 0,
and we have that

∥∥φ1(σ)
∥∥ → ∞ as ‖σ‖ → ∞. Additionally, the function φ2 can be

expressed by the function φ1 and its gradient∇σφ1(σ), which is denoted J(σ), so that

φ2(σ) = J(σ)φ1(σ), J(σ) > 0,∀σ ∈ Rm \ S, (3.93)

where S is the zero-measure set.
Furthermore, according to López-Caamal and Moreno (2019), the perturbations γ and

ϕ can be written in terms of the vector ζ via the matrices Gj(t):

γ(t, σ, z) = G1(t)φ1(σ) +G3(t)z (3.94)
ϕ(t, σ) = G2(t)φ2(σ), (3.95)

where the matrices Gj(t) are possibly unknown and possibly time-varying, yet element-
wise bounded. The equations above state that the perturbation terms γ and ϕ may grow
proportional to the functions φ1, z, and φ2 (López-Caamal and Moreno, 2019).
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The reason the algorithm in (3.88)-(3.91) is called a generalized version of the MSTA
is that from the framework in (3.88)-(3.91) several versions of the original MSTA can be
recovered. As previously mentioned, the control gains k2, k4 in (3.75)-(3.76) are usually
chosen as k2, k4 = 0 (Nagesh and Edwards, 2014). This version of the MSTA can be
recovered from (3.88)-(3.91) if l = 1

2 , αg, k3 = 1, βg = 0 and γg = 0. The original
MSTA with k1, k2 > 0 is recovered if αg, k3 = 1 and γg = 0. Finally, a multivariable
version of the single-input GSTA given in (3.59)-(3.60) can be recovered from (3.88)-
(3.91) if γg = 0 and k3 = 1, with αg = µ1 and βg = µ2.

3.7 Analysis of Internal Dynamics

3.7.1 Concept of Equivalent Control
Until now, the control laws that have been formulated have been based solely on SMC.
However, it is possible to formulate the control law, u, with both a discontinuous SMC
term and an equivalent control term. The equivalent control is defined as the control input
that is needed to maintain the sliding mode once it has been reached. The idea is that
when a sliding mode is obtained in the system, then we also have that σ̇ = 0. From this
constraint, it is possible to find the equivalent control, ueq .

Consider again the system (3.4). The equivalent control for (3.4) is found by solving
for u in σ̇ = 0 with σ̇ as in (3.8). But as mentioned earlier, it is not possible to implement
this control law since it requires exact knowledge about the system parameters and the
disturbance. Therefore, formulating the equivalent control can have two purposes in the
control design. Firstly, it can be seen as a tool to facilitate analysis of the system behavior
in the sliding mode, which is discussed further in the following subsections. Secondly, it
can be used in the design of a control law to relax the conditions on the control gain K of
the discontinuous control term. The latter is the topic of this subsection.

The system (3.4) can be rewritten as{
ẋ1 = x2, x1(0) = x10

ẋ2 = h0(t, x) + ∆h(t, x) + u+ d(t), x2(0) = x20
,

(3.96)

where we have defined h(t, x) = h0(t, x) + ∆h(t, x), with h0 being an estimate of the
uncertain function h, and ∆h representing the error in our estimate. It is assumed that the
uncertainties are bounded by |∆h(t, x)|≤ H . It is then possible to formulate the equivalent
control assuming ideal conditions, which in this case means that d(t) = ∆h(t, x) = 0 in
the system (3.96) above. The sliding dynamics given in (3.8) then simplifies to

σ̇ = a1x2 + h0(t, x) + u. (3.97)

Solving this expression for the control u yields the equivalent control ueq:

ueq = −a1x2 − h0(t, x). (3.98)

Now that the equivalent control has been found, it is possible to formulate the control
law as a combination of the equivalent control, ueq , and the discontinuous SMC, us:

u = ueq + us = −a1x2 − h0(t, x)−Ksign(σ), (3.99)
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with σ as in (3.5). Using this control law will soften the condition for the control gain K
given in (3.12), as the dynamics of the Lyapunov-function (3.9) with the control law (3.99)
are given by

V̇ = σσ̇

= σ(a1x2 + h(t, x) + u+ d(t))

= σ(∆h(t, x) + d(t)−Ksign(σ))

≤ −|σ|(K −D −H)

= − η√
2
|σ|< 0, ∀σ 6= 0

(3.100)

as long as the control gain is chosen to satisfy

K =
η√
2

+D +H. (3.101)

This condition will give a less conservative estimate of K than the one given in (3.12), as
we no longer view the entire system dynamics as a perturbation in the control design as
in subsection 3.2. Combining feedback control based on equivalent control with SMC can
thus reduce chattering, as it allows for smaller control gains.

3.7.2 Internal Dynamics
As previously mentioned, the equivalent control can be a tool for analysis of the system
dynamics in the sliding mode. This becomes relevant when there exist some nontrivial
internal dynamics in the system which are not directly stabilized by the control law.

In the sliding mode enforced by the equivalent control (3.98), the states x1 and x2 in
the example system given in (3.4) are governed by the compensated dynamics{

ẋ1 = −a1x1

ẋ2 = −a1x2,
(3.102)

which are exponentially stable. The fact that the compensated dynamics are stable in the
sliding mode is trivial, as the control law is designed to achieve just this.

Now, say there exist two additional internal states of the system (3.4), so that it expands
to 

ẋ1 = x2, x1(0) = x10

ẋ2 = h(t, x) + u, x2(0) = x20

ẋ3 = h1(x, u, t), x3(0) = x30

ẋ4 = h2(x, u, t), x4(0) = x40,

(3.103)

where h1 and h2 are estimates of uncertain functions, which are assumed to be bounded.
Note that the function h is a function of the full state x so the equivalent control (3.98) is
also a function of the internal states x3 and x4. This is an important detail, as the equivalent
control may grow unbounded if the states x3, x4 are unstable in the sliding mode.

Now that the equivalent control ueq has been determined, it is possible to find the
system’s (3.103) compensated dynamics in the sliding mode by inserting ueq given in
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(3.98) for the control u. The resulting compensated dynamics in the sliding mode are
given by 

ẋ1 = −a1x1

ẋ2 = −a1x2

ẋ3 = h1(x, ueq, t)

ẋ4 = h2(x, ueq, t),

(3.104)

where the unknown internal dynamics in the sliding mode are given by ẋ3 and ẋ4. For the
internal dynamics to be stable in the sliding mode, the dynamics described by ẋ3 and ẋ4

should guarantee that x3 and x4 are bounded, so that h(t, x) and ueq are also bounded.
This is investigated in the next subsection.

3.7.3 Zero Dynamics
According to Khalil (2002), the zero dynamics of a system are found by setting the output
of the system, which is in this case taken to be σ, equal to zero. The fact that σ = 0 implies
that σ̇ = 0 as long as a sliding mode is enforced in the system, which means the stability
of the zero dynamics of the system (3.103) can be determined by looking at the stability of
the dynamics of the equivalent system given in (3.104), keeping in mind that σ = σ̇ = 0.

In the case that the functions h, h1, h2 are nonlinear, one possible approach is to lin-
earize the system around an equilibrium x∗ to analyze the local stability of the internal
dynamics in the sliding mode. Once the system has been linearized, the compensated
dynamics can be written in a state-space form as

ẋ = Ax (3.105)

which means that the local asymptotic stability of the zero dynamics can simply be de-
termined from the eigenvalues of the linearized system matrix A if A is constant. The
eigenvalues are denoted λi, i = 1, ..., 4, and it can easily be determined from (3.104) that
λ1 = λ2 = −a1. The remaining eigenvalues can then be determined from (3.105).

If we have that the eigenvalues λ3,4 < 0 then the system (3.103) is stable, which means
that the internal dynamics are locally asymptotically stable in the sliding mode. However,
if either λ3 ≥ 0 or λ4 ≥ 0, then the internal dynamics of the system (3.103) in the sliding
mode are unstable. In this case, the equivalent control grows unbounded. Another result
of this kind of analysis can be that either λ3 = 0 or λ4 = 0 while the other eigenvalue is
negative. Then it is not possible to make any conclusions about the stability of the internal
dynamics from the analysis in this section.

Another disadvantage of this kind of stability analysis is that it only guarantees the sta-
bility of the system in the sliding mode. If σ 6= 0 at the beginning of a simulation, it is not
possible to say whether x3 or x4 can grow unbounded before the sliding surface is reached
should it not be possible to guarantee that the functions h3 and h4 are bounded. How-
ever, the stability of the internal dynamics, which is analyzed above, is still a necessary
condition for the SMC algorithms presented earlier in this chapter to be stable.
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Chapter 4
Literature Review

This literature review aims to give an insight into the use of the MSTA, and extensions to
the basic algorithm, in applications for aerospace and attitude control designs.

Aerospace systems are often highly uncertain, nonlinear, and coupled systems that
need a robust control strategy to operate safely and accurately. They often operate in
unpredictable and uncertain environments, where there are external disturbances present.
It is sometimes possible to decouple a multi-input system into several SISO control loops
so that single-input control strategies can be applied. However, this approach may fail if
the interaction between the plant variables is too strong (Dong et al., 2016). Therefore,
it may be advantageous to design a multi-input control system that enables more accurate
modeling of nonlinear and coupled systems.

Even though the super twisting approach (Levant, 1993) has existed for quite some
time, a multivariable version of the original STA was only recently presented in Nagesh
and Edwards (2014), and extensions of it is still an area of research with a great deal of
activity. Several extensions exist, for example, the variable-gain, the adaptive-gain, and
the generalized MSTA (Vidal et al., 2017; Dong et al., 2016; López-Caamal and Moreno,
2019).

Section 4.1 of this chapter contains a brief discussion of the original MSTA and its
extensions. Section 4.2 presents research on the use of the MSTA in aerospace and attitude
control design. Finally, section 4.3 presents several papers in which extensions of the
MSTA are employed in aerospace and attitude control design.

4.1 Extensions of the Multivariable STA
The multivariable STA for MIMO systems is presented in Nagesh and Edwards (2014)
as an extension to the original super-twisting approach presented in Levant (1993) that
includes linear terms in the sliding surface σ. The stability and robustness properties and
convergence rates of the original STA in Levant (1993) have been analyzed in several
papers (Moreno and Osorio, 2008, 2012) by employing Lyapunov methods. However,
these papers consider only single-input structures. In Nagesh and Edwards (2014) the
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proposed multivariable super-twisting structure is analyzed using Lyapunov ideas from
Moreno and Osorio (2012). The finite-time stability of the sliding dynamics is proven
given that the system is only affected by unknown perturbations and uncertainties that are
bounded by sliding variable-dependent linear growth constraints.

A drawback of the algorithm presented in Nagesh and Edwards (2014) is the need for
a complete knowledge of the input matrix b(t, x) to generate the control signal u. Another
version of the approach in Nagesh and Edwards (2014) that removes the requirement of an
exactly known input matrix by extending the stability analysis is presented in Vidal et al.
(2016). However, it is necessary to know the upper and lower bounds for the largest and
smallest eigenvalues of the input matrix b(t, x) to prove finite-time stability.

An approach to variable gain MSTA (VGMSTA) is presented in Gonzalez et al. (2012)
for a linear time-invariant (LTI) MIMO system subjected to an absolutely continuous un-
certainty/disturbance. In this case, the variable gains are dependent on both time and state.
The approach in Gonzalez et al. (2012) is further extended in Vidal et al. (2017) where a
global output-feedback VGMSTA design is presented. In this paper, a controller based on
a VGMSTA approach for an uncertain nonlinear system is described. The paper by Vidal
et al. (2017) proves through Lyapunov-analysis that the control strategy achieves global
finite-time convergence to the equilibrium point in the presence of parametric uncertain-
ties and absolutely continuous matched nonlinear disturbances. The advantage of variable
gains is that it is possible to compensate for a bounded (matched) perturbation if the per-
turbation bound is not known a priori, or if the bound is time- or state-varying (Gonzalez
et al., 2012).

The MSTA with variable gains is a robust control strategy that can be applied to a
broader class of uncertain systems (Vidal et al., 2017). However, some knowledge about
the disturbances is still required, and the disadvantage of overestimating control gains that
both the MSTA and the VGMSTA suffer from remains. An alternative approach that does
not suffer from these disadvantages is the adaptive MSTA (AMSTA). Several versions of
the MSTA with adaptive gains have been used in attitude-control applications, for exam-
ple Tian et al. (2019), Fan and Tian (2016), Dong et al. (2016), and Hu et al. (2019). The
control objective in these papers is to perform trajectory tracking by generating a contin-
uous control signal in the presence of matched disturbances with unknown bounds. The
finite-time convergence of the AMSTA is proven by Lyapunov methods in both Dong et al.
(2016) and Hu et al. (2019).

Another version of the MSTA is the generalized MSTA (GMSTA), which is presented
in López-Caamal and Moreno (2019). The GMSTA is an extension of the GSTA for
the single-input case presented in Moreno (2009), to a multivariable framework. Several
versions of the GMSTA are introduced in López-Caamal and Moreno (2019). One of them
is a direct generalization of the MSTA (Nagesh and Edwards, 2014), which is proven to be
globally finite-time stable through Lyapunov-analysis, which even accounts for the case in
which the gains are time-varying.

The adaptive and generalized versions of the MSTA can be combined in an adap-
tive multivariable generalized STA (AMGSTA) presented in Borlaug et al. (2020). The
AMGSTA in this paper is proposed for systems whose perturbations and uncertain control
coefficients are time- and state-dependent. The global finite-time convergence of these
systems is guaranteed due to the dynamically adapted control gains and proven through
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Lyapunov-analysis. The proof in Borlaug et al. (2020) is performed for a single-input
system, but it also holds for n-dimensional systems that can be separated into n one-
dimensional cases.

4.2 Multivariable STA Applied to Attitude Control De-
sign

An example of the use of the MSTA in attitude control problems in aerospace applications
is given in Xuehui et al. (2015). In this paper, the control objective is to achieve continuous
finite-time tracking of a trajectory for a spacecraft in the presence of external disturbances.
Lyapunov methods are employed to prove the finite-time convergence of the closed-loop
system to the equilibrium. Numerical simulations are performed to show the performance
characteristics of the proposed controller. The simulations show the robustness of the
controller in the presence of cyclic disturbance torques. Additionally, the resulting control
signal is shown to be continuous and the error trajectories reach the equilibrium point in
finite-time.

Another example of the application of the MSTA in attitude control design is presented
in Fang et al. (2015). In this paper, a robust trajectory tracking controller for a small un-
manned helicopter with model uncertainties and external disturbances is designed. The
controller is paired with a disturbance observer which is designed based on both backstep-
ping and the MSTA. The system with the controller and disturbance observer is proven to
be globally asymptotically stable through Lyapunov-analysis. Lastly, the proposed control
design is compared through simulations with another control system design based only on
backstepping. The tracking performance of the method proposed in Fang et al. (2015) is
shown to be more effective than the backstepping method, with smaller overshoot, faster
tracking, and less chattering in the system.

The MSTA has also been applied in control design for attitude control of quadrotor
UAVs, such as in Tian et al. (2018). Here, the control objective is to achieve continuous
finite-time trajectory tracking. The finite-time stability of the closed-loop system is de-
termined using the Lyapunov method and the homogeneous technique (Tian et al., 2018).
The performance of the control strategy is confirmed first through numerical simulations,
then through experimental tests on a quadrotor UAV indoors. During the performance
testing, the proposed method is compared with a PID controller. The controller based
on the MSTA demonstrates better robustness and higher tracking accuracy than the PID
controller due to the ability of the MSTA of rejecting disturbances.

4.3 Extensions of the Multivariable STA Applied to Atti-
tude Control Design

An example of the application of the AMSTA in attitude control design is presented in
Dong et al. (2016) where an autopilot based on the AMSTA for a reusable launch vehicle
(RLV) is presented. The control objective is to design the control torque so that the RLV
can track the guidance commands in finite-time in the presence of model uncertainties
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and external disturbances with unknown boundaries (Dong et al., 2016). The paper states
that the AMSTA based controller can adapt to additive and multiplicative perturbations
with unknown boundaries while avoiding gain overestimation. It is confirmed through
simulations that the proposed controller is effective and robust, and can provide fast and
accurate tracking, and chattering suppression.

The control strategy presented in Fan and Tian (2016) is another approach to AMSTA.
In this paper, an AMSTA is implemented for a hypersonic vehicle with the control objec-
tive of tracking a velocity and altitude reference in the presence of bounded but unknown
perturbations. While the control objective in this article may not be to perform attitude
control, the problem of following a velocity and altitude reference is in many ways simi-
lar to attitude control. Designing control systems for hypersonic vehicles is a challenging
task due to the high-speed flight conditions and severe aerodynamic uncertainties (Fan and
Tian, 2016). It is, therefore, necessary to design a robust and effective controller to guaran-
tee adequate tracking of the references. In Fan and Tian (2016) the controller is combined
with a disturbance observer to further improve the tracking results.

In Tian et al. (2019) an attitude control design for a quadrotor UAV using an AMSTA
is presented. The UAV is assumed to be affected by unknown external disturbances with
unknown bounds so that gain adaptation is necessary to avoid overestimation of the control
gains. The proof of finite-time stability of the closed-loop dynamics is derived using the
Lyapunov technique (Tian et al., 2019). A comparison between using the AMSTA and
single-input ASTA controllers is investigated, where the single-input design exhibits better
accuracy in theory, while in practice the multivariable design proved to be easier to tune
and gave the best results.

The AMSTA has also been employed in the control design for other autonomous vehi-
cles, for example in Hu et al. (2019). In this paper, an AMSTA control strategy is applied
to the problem of designing a lane-keeping control for four-wheel independently actu-
ated autonomous vehicles. Since it is difficult to measure the lateral velocity (Hu et al.,
2019) a high-order sliding mode observer is included in the system. Lyapunov methods
are employed to prove the finite-time convergence of the closed-loop system. To verify
the effectiveness of the proposed control strategy, simulations were performed in which
the proposed controller was compared to a more traditional SMC approach. The simula-
tions show the robustness of the adaptive controller in yielding a high-performance, fast
and accurate lane keeping control in a faulty steering situation Hu et al. (2019).

An example of the application of the GMSTA to a problem that is similar to the prob-
lem of attitude control is presented in Singh et al. (2020). In this paper, an event-based
GMSTA is used to perform path tracking to achieve safe navigation of a nonholonomic
mobile-robot in an unknown indoor environment. The event-triggered condition is ob-
tained using Lyapunov theory to minimize the utilization of the resources. In addition to
the Lyapunov-analysis, a sensitivity analysis of the proposed controller is performed to
ensure that the GMSTA is more robust than the MSTA from Nagesh and Edwards (2014).
The performance of the proposed control strategy is compared to several other controllers
through experiments for obstacle avoidance applications. The effectiveness of the pro-
posed controller is shown in terms of error convergence rate and disturbance rejection
capability with minimum control effort compared to the other controllers.

Another extension of the MSTA is the previously discussed AMGSTA. A version of
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this algorithm is implemented in Wei et al. (2019) in the control scheme for a space robot
with coupled uncertainties and external disturbances. The space robot is a system with
strongly coupled characteristics between the robot platform and the manipulators due to
the absence of a fixed base. The advantages of the proposed controller over the original
MSTA presented in Nagesh and Edwards (2014) are that there are fewer conditions and
parameters to design, and the ability to compensate for both Lipschitz continuous distur-
bances and state-dependent uncertainties in finite-time (Wei et al., 2019). In addition to
the AMGSTA, a sliding mode disturbance observer is introduced in the system to alleviate
the system conservatism and improve convergence rate and accuracy (Wei et al., 2019).
Numerical simulations show the efficiency of the proposed control design in achieving
tracking of the reference trajectory while compensating for external disturbances and cou-
pled uncertainties. The simulations also show that improved convergence accuracy and
rate is achieved when the disturbance observer is added to the control design.
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Chapter 5
Control Design

In this chapter, the control designs for the decoupled lateral and longitudinal models, and
the multivariable 6DOF system are presented. Furthermore, the necessary assumptions for
the SISO control algorithms to be applicable to the longitudinal model, and for the MIMO
algorithms to be applicable to the 6DOF model, are verified.

Section 5.1 gives a brief description of the PI-controllers that are paired with the sliding
mode controllers in some of the control designs in this chapter. Section 5.2 presents the
single-input control design for the lateral model, and section 5.3 presents the single-input
control design for the longitudinal model. Section 5.4 presents the control design for the
6DOF model using decoupled sliding surfaces, while section 5.5 contains the multivariable
control design for the 6DOF model. In section 5.6 an analysis of the internal longitudinal
dynamics is performed. Finally, section 5.7 presents the methods that are used to evaluate
the performance of the control algorithms.

5.1 PI-controllers
There are four possible control commands that are generated by the control designs in
this chapter; u = [δt, δa, δe, δr]

>. The throttle command δt is always generated by a PI-
controller, while δa and δe are always generated by sliding mode controllers. The rudder
deflection δr however, is generated by either a sliding mode controller or a PI-controller
depending on the control design.

5.1.1 Airspeed Hold Using Throttle
The design of the PI-controller that generates δt is based on the airspeed hold using throttle
design in Beard and McLain (2012). The throttle command is given by

δt = δt0 + kpVa Ṽa + kiVa

∫ t

0

Ṽa dτ, (5.1)
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with
Ṽa = Va0 − Va, (5.2)

where δt0 is the throttle command at trim conditions and kpVa , kiVa > 0 are control gains.
The PI-controller (5.1) is used in the control designs in section 5.2-5.5 to keep the UAV at
a constant airspeed Va = Va0

. An example of the performance of the controller (5.1) can
be found in Figure 5.1.

Figure 5.1: An example of the performance of the airspeed hold controller (5.1) applied to the
6DOF model when wind and external disturbances are present in the system for a constant reference
Va0 = 35 m/s. The control gains are chosen by trial and error as kpVa = 0.6 and kiVa = 0.0009.

5.1.2 Sideslip Hold
In the decoupled control design for the 6DOF model presented in section 5.4, the SMC
design only generates the aileron and elevator deflections. Based on the design of the
sideslip hold loop in Beard and McLain (2012), the PI-controller that generates δr is given
by

δr = −kpββ − kiβ
∫ t

0

β dτ, (5.3)
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where kpβ , kiβ > 0 are control gains. Thus, the PI-controller (5.3) is used to maintain zero
sideslip angle, i.e. β(t) = 0 (Beard and McLain, 2012). An example of the performance
of the controller (5.3) can be found in Figure 5.2.

(a) An example of the response of the sideslip hold controller (5.3) to a step input reference in ideal
conditions without disturbances in the system.

(b) An example of the performance of the sideslip hold controller (5.3) when wind and external
disturbances are present in the system.

Figure 5.2: Two examples of the performance of the sideslip hold controller (5.3) when applied to
the 6DOF model with control gains chosen by trial and error as kpβ = 10 and kiβ = 0.05.
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5.2 Control Design for the Decoupled Lateral Model
This section presents the control design for the decoupled lateral model (2.78)-(2.81).
First, the system is written in state-space form, then the sliding variable is determined, and
finally, the sliding mode controllers are presented.

5.2.1 State-Space Representation
It is useful to write the dynamics of a system on state-space form since the compactness of
this standard form facilitates the verification of the assumptions made about the system for
the control algorithms presented in chapter 3. It is also helpful in determining the sliding
variable and sliding dynamics, which is necessary to design the SMC algorithms presented
in chapter 3.

The decoupled lateral dynamics (2.78)-(2.81) can be written in state-space form as

ẋφ = fφ(t, x) + gφ(t)δa + hφ(t)dφ(t), (5.4)

where xφ ∈ S1 × S1 × R× R and dφ ∈ R3 are given by

xφ =


β
φ
p
r

 , dφ =

dφ1

dφ2

dφ3

 .
The function fφ : R4 → R4 accounts for the uncertain system functions, the function
gφ : R4 → R4 is the uncertain control coefficient, and the matrix hφ ∈ R4×3 accounts for
the contribution of the disturbances dφi to each state variable.

The elements of fφ, denoted fφi , i = 1, ..., 4, are

fφ1
=

g

Va
cosβ sinφ− T

mVa
sinβ − r

+
ρVaS

2m
(CYββ + (CYpp+ CYrr))

(5.5)

fφ2 = p (5.6)

fφ3
=

1

2
ρV 2

a Sb

(
Iz
Γb

(Clββ + Clp
b

2Va
p+ Clr

b

2Va
r)

+
Ixz
Γb

(Cnββ + Cnp
b

2Va
p+ Cnr

b

2Va
r)

) (5.7)

fφ4 =
1

2
ρV 2

a Sb

(
Ixz
Γb

(Clββ + Clp
b

2Va
p+ Clr

b

2Va
r)

+
Ix
Γb

(Cnββ + Cnp
b

2Va
p+ Cnr

b

2Va
r)

) , (5.8)

while the elements of gφ are

gφ1
=
ρVaS

2m
CYδa (5.9)
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gφ2 = 0 (5.10)

gφ3
=

1

2
ρV 2

a Sb

(
Iz
Γb
Clδa +

Ixz
Γb

Cnδa

)
(5.11)

gφ4
=

1

2
ρV 2

a Sb

(
Ixz
Γb

Clδa +
Ix
Γb
Cnδa

)
. (5.12)

Lastly, the rows of the matrix hφ are given by

hφ1
=
[

1
mVa

0 0
]

(5.13)

hφ2 =
[
0 0 0

]
(5.14)

hφ3
=
[
0 Iz

Γb
Ixz
Γb

]
(5.15)

hφ4
=
[
0 Iz

Γb
Ixz
Γb

]
. (5.16)

A discussion of the boundedness of the decoupled lateral dynamics is presented in
Griffiths (2020). It was concluded that the system functions fφ, gφ, and hφ, as well as the
disturbance dφ are all bounded if the state xφ is restricted to a domain

Dφ = {xφ ∈ R4 : |xφ|≤ rφ} ⊂ R4, (5.17)

where rφ is a vector of the bounds on each element of xφ. The bounds were chosen as

|β| ≤ 0.1 rad (5.18)

|φ| ≤ π

2
rad (5.19)

|p| ≤ 1.2 rad/s (5.20)
|r| ≤ 0.5 rad/s (5.21)

for the lateral state variables. Additionally, the airspeed and the disturbance were restricted
to

|di| ≤ 4 (5.22)
Va ∈ [25, 40] m/s (5.23)

where the bound on the disturbance di is given in [N] for i = 1 and [Nm] for i = 2, 3.
Under the conditions defined in (5.18)-(5.23), the state dynamics, in addition to the deriva-
tives of the system functions ḟφ, ġφ, and ḣφ, were concluded to be bounded. This fact was
used to determine the stability of the control algorithms designed in Griffiths (2020) when
applied to the decoupled lateral dynamics.

5.2.2 Sliding Surface Design
The control objective for the lateral control system is to perform output tracking of the roll
angle reference φr, so that φ → φr asymptotically. Following the methodology in 3.2.1,
the sliding surface for the lateral system is defined as

σφ = aφ1eφ + ėφ, (5.24)
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where the error and error dynamics are

eφ = φ− φd (5.25)
ėφ = p− pd (5.26)
ëφ = ṗ− ṗd, (5.27)

where it is assumed that ṗd is bounded.
The sliding dynamics are then

σ̇φ = aφ1 ėφ + ëφ (5.28)
= aφ1 ėφ + fφ3(t, x) + gφ3(t, x)δa + hφ3dφ(t)− ṗd, (5.29)

which can be written on the more general form

σ̇φ = aφ(t, x) + bφ(t, x)δa + γφ(t, x), (5.30)

where

aφ(t, x) = aφ1 ėφ + fφ3(t, x)− ṗd (5.31)
bφ(t, x) = gφ3(t, x) (5.32)
γφ(t) = hφ3d(t). (5.33)

The function ėφ is defined in (5.26), fφ3 is defined in (5.7), gφ3 in (5.11), and hφ3 in
(5.15). Note that even though the new notation in (5.32)-(5.32) is not necessary, it is still
introduced to follow the notation in chapter 3.

A discussion of the boundedness of the decoupled lateral sliding dynamics is presented
in Griffiths (2020). In Griffiths (2020) it was concluded that when the state xφ, the distur-
bance dφ, and the airspeed Va are all bounded by (5.18)-(5.23), the functions in the lateral
sliding dynamics are all uniformly bounded by uniformly bounded by

|aφ| ≤ Aφ (5.34)
|bφ| ≤ Bφ (5.35)
|γφ| ≤ Gφ. (5.36)

This was used in Griffiths (2020) to verify the stability of the lateral control algorithms
presented in the next subsection.

5.2.3 Sliding Mode Control Design
The four lateral control algorithms that are implemented are the saturation controller, the
STA, the ASTA, and the GSTA, the equations for which are presented below. The satura-
tion controller is given by

δa = −kasat(σφ), (5.37)

the STA by

δa = −ka1 |σφ|
1
2 sign(σφ) + za

ża = −ka2
sign(σφ),

(5.38)
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the ASTA by

δa = −αa|σφ|
1
2 sign(σφ) + za

ża = −βasign(σφ),
(5.39)

with update rules for the adaptive gains αa and βa given as

α̇a =

ωa1

√
γa1

2 , if |σφ|> αam

0, if |σφ|≤ αam
βa = 2εaαa + λa + 4ε2a,

(5.40)

and finally, the GSTA is given by

δa = −ka1
φa1

(σφ) + za, ża = −ka2
φa2

(σφ)

φa1(σφ) = |σφ|
1
2 sign(σφ) + βagσφ

φa2
(σφ) =

1

2
sign(σφ) +

3

2
βag |σφ|

1
2 sign(σφ) + β2

agσφ

(5.41)

A discussion of the system assumptions that guarantee the stability of the controllers
above when applied to the decoupled lateral dynamics is presented in Griffiths (2020). The
discussion was based on the boundedness of the system and sliding dynamics, which has
been briefly summarized in the previous subsections in this report. All of the assumptions
about the saturation controller, the STA, and the GSTA were found to be valid, while
the requirement that the function bφ in (5.30) is known is the only assumption that is not
valid for the ASTA. Thus, the stability of the saturation controller, the STA and the GSTA
presented above was verified, while the stability of the ASTA was not completely verified.

5.3 Control Design for the Decoupled Longitudinal Model
Now that the lateral control algorithms have been designed, the design process is repeated
for the decoupled longitudinal dynamics in (2.82)-(2.85). First, the system is written in
state-space form, then the sliding variable σe is designed. Then the sliding mode con-
trollers are determined, and their applicability to the decoupled longitudinal model is dis-
cussed.

5.3.1 State-Space Representation
In the subsequent section an analysis of the applicability of the SISO algorithms presented
in chapter 3 to the longitudinal model is performed. It is therefore convenient to write the
system dynamics in state-space form as this form is the basis for the stability assumptions
presented in chapter 3. The longitudinal dynamics (2.82)-(2.85) can be written in state-
space form as

ẋθ = fθ(t, x) + gθ(t, x)δe + h(t)θdθ(t), (5.42)
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where xθ ∈ S1 × R× R× S1 and dθ ∈ R3 are given by

xθ =


θ
q
Va
α

 , dθ =

dθ1dθ2
dθ3

 .
The elements of the vector fθ, denoted fθi , i = 1, ..., 4, are

fθ1 = q (5.43)

fθ2 =
ρV 2

a Sc

2Iy
(Cm0

+ Cmαα+ Cmq
c

2Va
q) (5.44)

fθ3 =
T

m
cosα− ρV 2

a S

2m
(CD0

+ CDαα+ CDq
c

2Va
q)− g sin(θ − α)

(5.45)

fθ4 = q +
g

Va
cos(θ − α)− T

mVa
sinα

− ρV 2
a S

2m
(CL0

+ CLαα+ CLq
c

2Va
q)

(5.46)

while the elements of the vector gθ, denoted as denoted gθi , i = 1, ..., 4, are

gθ1 = 0 (5.47)

gθ2 =
ρV 2

a Sc

2Iy
Cmδe (5.48)

gθ3 = −ρV
2
a S

2m
CDδe (5.49)

gθ4 = −ρV
2
a S

2m
CLδe (5.50)

Lastly, the rows of the matrix hθ ∈ R4×3 are given by

hθ1 =
[
0 0 0

]
(5.51)

hθ2 =
[
0 0 1

Iy

]
(5.52)

hθ3 =
[
0 −1 0

]
(5.53)

hθ4 =
[
−1 0 0

]
, (5.54)

so that fθ : R4 → R4 are the uncertain system functions, gθ : R4 → R4 are the uncertain
control coefficients, and hθ ∈ R3×4 is the contribution of the disturbances dθi , i = 1...3 to
the state variables. The elements of fθ and gθ are denoted fθi , i = 1 . . . 4 and gθi , i = 1...4
respectively, while the elements of hθ are denoted hθij , i = 1, ..., 4, j = 1 . . . 3.

Boundedness of the Longitudinal State-Space

To verify the stability assumptions for the control algorithms presented in chapter 3, it is
helpful to determine the boundedness of the system dynamics. It is reasonable to restrict
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the analysis to a compact set in which the state variables are bounded by some maximal
values due to both physical limitations and the fact that the scope of this report limits
the analysis to typical flight conditions. In typical flight conditions, the pitch angle and
AoA are small, and the airflow is laminar so that it can be characterized by the linearized
coefficients in (2.46)-(2.48).

The bounds on the state variables are

|θ| < θmax =
π

6
rad (5.55)

|q| ≤ qmax = 90 rad/s (5.56)
0 < Va ∈ [Vamin , Vamax ] = [25, 45] m/s (5.57)

|α| ≤ αmax =
π

12
rad. (5.58)

Furthermore, the disturbances di are assumed to be bounded by

|dθi |≤ dθi,max = 4, (5.59)

where dθi,max is given in [N] for i = 1, 2 and in [Nm] for i = 3.
The fact that the state variables are restricted to a compact set means that the stability

analysis in section 5.3.3 is only valid on a domain Dθ in R4 given by

Dθ = {xθ ∈ R4 : |xθ|≤ rθ} ⊂ R4, (5.60)

where rθ ∈ R4 is a vector of the bounds given in (5.55)-(5.58). However, since the UAV
is assumed to be operating under the typical flight conditions described above, it will not
operate outside these bounds, and the analysis will therefore be valid for the scope of this
report.

Whether fθ, gθ, and hθ are bounded remains to be determined. Both fθ and gθ are
continuous functions of the state xθ since the state is restricted to a compact set. They
contain divisions by Va, but since Va is always greater than zero, these divisions cannot
make the system grow unbounded. Finally, the matrix hθ is constant, and is therefore
bounded. The bounds on the elements of fθ, gθ, and hθ are denoted Fθi , Gθi and Hθij

respectively for i = 1, ...4, j = 1, ...3.
Furthermore, since it is ascertained that fθ, gθ, and hθ are bounded, so are the system

dynamics ẋθ. This follows from the fact that the system functions and the disturbance dθ
are bounded, and that the control δe is bounded by

|δe|≤ δemax =
π

6
rad. (5.61)

From this it is possible to conclude that ḟθ, ġθ, and ḣθ are bounded as well, since they are
function of xθ and ẋθ, which are bounded.

5.3.2 Sliding Surface Design
The control objective is to perform output tracking, i.e. design a sliding surface and a
control law such that θ → θr asymptotically. First, define the tracking error eθ and error
dynamics ėθ and ëθ as

eθ = θ − θd (5.62)
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ėθ = q − qd (5.63)
ëθ = q̇ − q̇d, (5.64)

where it is assumed that q̇d is bounded.
An appropriate sliding surface is now chosen as

σθ = aθ1eθ + ėθ (5.65)

following the methodology described in 3.2.1. The sliding dynamics are then given by

σ̇θ = aθ1 ėθ + ëθ

= aθ1 ėθ + fθ2(t, x) + gθ2(t, x)δe + hθ2dθ(t)− q̇d,
(5.66)

which can be written on a more general form as

σ̇θ = aθ(t, x) + bθ(t, x)δe + γθ(t, x), (5.67)

where

aθ(t, x) = aθ1 ėθ + fθ2(t, x)− q̇d (5.68)
bθ(t, x) = gθ2(t, x) (5.69)
γθ(t) = hθ2d(t), (5.70)

with ėθ defined in (5.63), fθ2 in (5.44), gθ2 in (5.48), and hθ2 in (5.52).

Boundedness of the Longitudinal Sliding Dynamics

Determining if the sliding dynamics are bounded or not is necessary to verify the stability
of the SMC algorithms presented in chapter 3. Unbounded system dynamics may mean
that the system is not stable in the sliding mode, and the SMC algorithms are in that case
not applicable to the system.

The sliding dynamics in (5.67) are bounded if aθ, bθ, and γθ are bounded. Firstly, aθ
is bounded if ėθ, fθ2 , and q̇d are bounded. The function fθ2 is bounded following the
argumentation in subsection 5.3.1, and ėθ is bounded since both q and qd are bounded.
The fact that qd is bounded can be seen from (6.11) since both θr and θd are bounded, as
can be seen from (6.6). Finally, q̇d is assumed to be bounded by design.

Furthermore, bθ is bounded since gθ2 is bounded. Finally, γθ is bounded since hθ2 is
a constant and dθ is bounded due to the assumption in (5.59). Therefore, it is possible to
conclude that the sliding dynamics (5.67) are bounded in the domain Dθ defined in (5.60).

The functions aθ, bθ, and γθ is bounded by maximal values Aθ, Bθ, and Gθ respec-
tively, given by

|aθ| ≤ Aθ = a1ėθmax + F2 + q̇dmax (5.71)
|bθ| ≤ Bθ = Gθ2 (5.72)
|γθ| ≤ Gθ = Hθ23

dθ3,max . (5.73)
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Furthermore, the function bθ is bounded from below by

0 < bθ0 ≤ bθ ≤ Bθ, (5.74)

where bθ0 is the lower bound of bθ that can be found by inserting Vamin in (5.52), while the
upper bound Bθ can be found by inserting Vamax in (5.52). Note that the coefficient Cmδe
in (5.52) is negative so that bθ in itself is negative. However, to better follow the notation
in which the assumptions about the control algorithms are presented, bθ is regarded as
positive, while the control δe is modeled as having a negative sign.

5.3.3 Sliding Mode Control Design
Now that the design of the sliding surface is complete, the design of the control algorithms
that drives the system to the sliding surface remains to be determined. All the single-input
SMC algorithms presented in chapter 3 are designed for the longitudinal system, except
for the relay controller in (3.10). Furthermore, an analysis of the assumptions that are
made about the system to guarantee convergence to the sliding surface is performed for
each algorithm.

Saturation Control

The saturation controller is given by

δe = −kesat(σθ), (5.75)

and is implemented as shown in Figure B.5.
The stability of the saturation controller is proven through Lyapunov analysis in sub-

section 3.2.1, where it is determined that the saturation controller is stable for a control
gain ke chosen as

ke =
1

bθ0

(
η√
2

+Aθ +Gθ

)
, (5.76)

where bθ0 is the lower bound of bθ(t) and the constant η is chosen so that the reaching con-
dition defined in (3.11) is satisfied. For any choice of control gain ke that satisfies (5.76),
the convergence of the system to the sliding surface can be guaranteed if the following
assumptions are also satisfied.

Firstly, from chapter 3 it is known that the disturbance dθ needs to be matched by the
control δe. The only system equation the control does not appear in is the equation for θ̇,
which is also the only equation where the disturbance does not appear. This means that the
assumption that the disturbance is matched by the control is valid. Secondly, the functions
aθ, bθ, and γθ have to be bounded. In this case the bounds are assumed to be given by
|aθ(t, x)|≤ Aθ, 0 < bθ0 ≤ bθ(t, x) ≤ Bθ and |γθ|≤ Gθ. The assumption that these
uncertain functions are bounded is valid following the discussion in subsection 5.3.2.

Furthermore, the sliding variable σθ has to be differentiable. We know that σθ is
differentiable since σ̇θ is bounded from the discussion in the previous paragraph where it
is determined that aθ, bθ, and γθ are all bounded.

A summary of the stability assumptions that have been discussed for the saturation
controller (5.75), and whether they are valid or not can be found in Table 5.1.
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Assumption Saturation
controller

The sliding variable σθ is differentiable

The disturbance d is matched by the control Yes

The disturbance γθ is bounded Yes

The perturbation aθ is bounded Yes

The uncertain control function bθ is bounded Yes

The uncertain control function bθ is bounded from below by
0 < bθ0 ≤ bθ ≤ Bθ

Yes

Table 5.1: A summary of the assumptions made about the saturation controller. ”Yes” implies that
the assumption is valid, while ”No” implies the opposite.

Super-Twisting Algorithm

The STA is given by

δe = −ke1 |σθ|
1
2 sign(σθ) + z

ż = −ke2sign(σθ),
(5.77)

and is implemented as shown in Figure B.6.
As mentioned in chapter 3, the STA is only applicable to systems of relative degree

1. From (5.66) it is clear that the control δe appears in the first derivative of the sliding
surface, which means the system is of relative degree 1.

To guarantee convergence to the reference signal, several additional assumptions about
the system have to be made. Firstly, the sliding surface has to be differentiable. This
means that σ̇θ has to be bounded, i.e. that the uncertain functions aθ, bθ, and γθ in (5.67)
are bounded, and also that bθ is bounded from below. From the previous discussion about
the saturation controller, it is known that these assumptions are valid for the longitudinal
system.

Additionally, the first derivatives of aθ, bθ, and γθ are required to be bounded by |ȧθ|≤
Āθ, |ḃθ|≤ B̄θ, and |γ̇θ|≤ Ḡθ. In the discussion in 5.3.1, it is determined that ḟθ, ġθ, and
ḣθ are bounded. From (5.69) it can be concluded that ḃθ is therefore also bounded, and
from (5.70) it can be seen that γ̇θ is bounded if ḋθ is bounded. The disturbance dθ has a
bounded first derivative, which can be seen in (6.2) since dθ and wdθi are bounded. For
ȧθ to be bounded, it is necessary for ëθ to be bounded, in addition to the function ḟθ2 ,
which is already known to be bounded. From (5.64) it can be seen that ëθ is bounded if q̇
and q̇d are bounded. It is determined in subsection 5.3.1 that the system dynamics ẋθ are
bounded, and in subsection 5.3.2 that q̇d is bounded, which means that ëθ is also bounded.

A summary of the previously discussed assumptions can be found in Table 5.2.
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Adaptive-Gains Super-Twisting Algorithm

The adaptive STA is given by

δe = −αe|σθ|
1
2 sign(σθ) + ze

że = −βesign(σθ),
(5.78)

where the update rules for the adaptive control gains αe and βe are defined as

α̇e =

ωe1
√

γe1
2 , if σθ 6= 0

0, if σθ = 0

βe = 2εeαe + λe + 4ε2e,

(5.79)

with γe1 , λe, ωe1 , εe being arbitrary positive constants. However, since σθ is rarely exactly
equal to zero, a modification of the update laws is implemented instead:

α̇e =

ωe1
√

γe1
2 , if |σθ|> αem

0, if |σθ|≤ αem
βe = 2εeαe + λe + 4ε2e,

(5.80)

where αem is an arbitrarily small constant. The Simulink-implementation of the ASTA is
shown in Figure B.7.

Assumption STA ASTA

System is of relative degree 1 Yes Yes

The vector field fθ(t, x) is differentiable - Yes

The functions aθ and γθ are bounded by (5.81) - No

The derivative of the disturbance γθ is bounded Yes Yes

The sliding dynamics σ̇θ is bounded Yes Yes

The derivative of the function aθ is bounded Yes Yes

The function bθ is bounded from below by 0 < bθ0 ≤ bθ Yes -

The function bθ is not equal to zero ∀xθ and ∀t > 0 - Yes

The function bθ is known - No

The derivative of the function bθ is bounded Yes -

Table 5.2: A summary of the assumptions made about the STA and ASTA controllers. ”Yes” implies
that the assumption is valid, while ”No” implies the opposite. ”-” implies that the controller does
not rely upon the assumption.

For the ASTA to guarantee convergence to the reference trajectory, the system needs
to fulfill several requirements. Firstly, as for the STA, the input-output dynamics need
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to be of relative degree 1. This is true following the previous discussion about the STA.
Next, the function fθ has to be differentiable. It is already established that ḟθ is bounded,
which means that fθ is differentiable as the derivative exists at all points in the domain Dθ
defined in (5.60).

Another assumption about the system is that the function bθ is known and not equal
to zero ∀xθ and ∀t > 0. Since bθ depends on the airspeed which is affected by unknown
disturbances due to wind, the airspeed is not exactly known at all times. Additionally,
bθ depends on several system parameters that are difficult to determine exactly, so the
assumption that bθ is known is not valid. However, since Va > 0 ∀t > 0 the second part
of the assumption about bθ is valid.

Furthermore, the functions aθ and γθ are assumed to be bounded by

|aθ + γθ|≤ δ|σθ|
1
2 , δ > 0, (5.81)

where the constant δ is assumed to exist, but is unknown. From the discussion in sub-
section 5.3.2 and the discussion about the STA, it is determined that both aθ and γθ are
bounded. Therefore it is reasonable to assume that there exists some constant δ that is
large enough for (5.81) to be true except for when σθ is very small or zero. Since it is not
possible to guarantee that both aθ, γθ = 0 when σθ = 0, the bound in (5.81) is not true for
all σ, and is therefore not valid.

A summary of the previously discussed assumptions for the ASTA, and the assump-
tions that the ASTA share with the STA, can be found in Table 5.2.

Generalized Super-Twisting Algorithm

The GSTA is given by

δe = −ke1φe1(σθ) + ze, że = −ke2φe2(σθ)

φe1(σθ) = |σθ|
1
2 sign(σθ) + βegσθ

φe2(σθ) =
1

2
sign(σθ) +

3

2
βeg |σθ|

1
2 sign(σθ) + β2

egσθ,

(5.82)

and is implemented as shown in Figure B.8.
As for the STA and the ASTA, the first requirement for the GSTA to be applicable is

that the input-output dynamics are of relative degree 1, which they are. Other assumptions
about the system include that the function bθ is bounded from below by 0 < bθ0 ≤ bθ ≤
Bθ, which is true from the discussion about the previous control algorithms.

Furthermore, the functions aθ, bθ, and γθ have to be Lipschitz-continuous with respect
to t. Since any function with a bounded first derivative is Lipschitz-continuous, this as-
sumption is valid, as it has already been determined that ȧθ, ḃθ, and γ̇θ are bounded.

Additionally, aθ, bθ, and γθ need to be continuously differentiable, i.e. aθ, bθ, γθ ∈ C1

with respect to xθ. For these functions to be continuously differentiable, they need to have
bounded second derivatives with respect to xθ. It is easy to see that γθ is in in C1 as it does
not depend on xθ so that ∂γθ∂xθ

= 0. For aθ and bθ it is necessary to determine whether the
expressions below are bounded:

∂2aθ
∂x2

θ

=
∂2

∂x2
(aθ1 ėθ + fθ2) (5.83)
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∂2bθ
∂x2

θ

=
∂2gθ2
∂x2

θ

. (5.84)

Since ẋθ is bounded following the discussion in subsection 5.3.1, it follows that ẍθ is
bounded since it is a function of the state vector xθ and its first derivative ẋθ which are
known to be bounded. Because of this it can be concluded that both expressions (5.83)-
(5.84) above are bounded, so that aθ, bθ ∈ C1.

To check the validity of the other assumptions presented in chapter 3, the sliding dy-
namics (5.67) need to be rewritten slightly:

σe = ϕe + bθδe (5.85)
ϕe = aθ + γθ (5.86)

= ϕ1 + ϕ2, (5.87)

where the total perturbation ϕe is split into two parts where the first term ϕ1 is vanishing
at the origin of the sliding dynamics, i.e.

ϕ1(t, x∗θ) = 0, ∀t > 0, (5.88)

where x∗θ is the state vector in the sliding mode. The other part of the perturbation ϕ2

contains the remaining terms of ϕe. This means that ϕ1 and ϕ2 are given by

ϕ1 = ae1 ėθ (5.89)
ϕ2 = fθ2 + γθ. (5.90)

since the error dynamics ėθ = 0 in the sliding mode, while the function fθ2(t, x∗θ) 6= 0 due
to its dependence on Va, which is always greater than zero. The disturbance dθ is assumed
to be only time-dependent, and there is, therefore, no guarantee that it is equal to zero in
the sliding mode.

The first part of the perturbation is assumed to be bounded by

|ϕ1(t, xθ)|≤ µ|φθ1(σθ)| (5.91)

for some constant µ > 0. This is a reasonable assumption as we know that ėθ is bounded,
so there will exist some µ for which condition (5.91) is true.

Furthermore, it is necessary that the total time derivative ofϕ2 divided by bθ is bounded.
The derivative of ϕ2 divided by bθ is

d

dt

(
ϕ2

bθ

)
=

1

bθ

∂ϕ2

∂t
− ϕ2

b2θ

∂bθ
∂t

+

(
1

bθ

∂ϕ2

∂xθ
− ϕ2

b2θ

∂bθ
∂xθ

)
ẋθ (5.92)

=
1

bθ
(ḟθ2 + γ̇θ)−

ϕ2

b2θ
ḃθ +

(
1

bθ

∂fθ2
∂xθ

− ϕ2

b2θ

∂bθ
∂Va

)
ẋθ (5.93)

= δ1 + δ2ẋθ, (5.94)

where it is assumed that δ1, δ2 are bounded by

|δ1|≤ δ̄1, |δ2|≤ δ̄2. (5.95)
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Firstly, since ḟθ and γ̇θ are known to be bounded, the constant δ̄1 does exist. Secondly,
from looking at the system matrix with elements defined in (5.43)-(5.46) it is evident that
the derivative of fθ2 with respect to xθ is bounded since it is a polynomial, and ẋθ is known
to be bounded. The derivative of γθ with respect to xθ on the other hand, will always be
zero as γθ is not a state-dependent function. Finally, since bθ is only dependent on Va and
no other states, the derivative of bθ with respect to xθ has to be bounded as both Va and V̇a
are bounded. Therefore, it can be concluded that the constant δ2 also exists.

The assumptions for the GSTA and whether they are valid or not is summarized in
Table 5.3.

Assumption GSTA

The system is of relative degree 1 Yes

The functions aθ and bθ are Lipschitz-continuous w.r.t. t Yes

The functions aθ and bθ satisfy aθ, bθ ∈ C1 w.r.t. xθ Yes

The function bθ is bounded by 0 < bθ0 ≤ bθ ≤ Bθ Yes

The function ϕ1 is bounded by ϕ1(t, x) ≤ η|φθ1(σθ)| Yes

The function δ1 is bounded Yes

The function δ2 is bounded Yes

Table 5.3: A summary of the assumptions made about the GSTA controller. ”Yes” implies that the
assumption is valid, while ”No” implies the opposite.

Control Coefficient Transformation

In subsection 3.5.2 the control input is transformed by a control coefficient transformation:

δ̄e = bθ(t, x)−1δe, (5.96)

where bθ is the control coefficient and δ̄e is the input to the UAV model. As discussed
in the previous paragraphs, the control coefficient bθ is uncertain due to uncertainties in
the model so the transformation (5.96) cannot be implemented perfectly. However, it is
possible to split the function bθ into a nominal part and an uncertain part:

bθ(t, x) = bθnom(t, x) + ∆bθ(t, x) (5.97)

and then implement a control coefficient transformation based on the nominal part. This
means that the control input to the UAV model is

δ̄e = b−1
θnom

(t, x)δe. (5.98)

Even though only the ASTA requires this kind of input transformation, it may be ben-
eficial to apply the same transformation to the control law generated by the saturation
controller, the STA, and the GSTA as well, as this may make it easier to dominate the
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perturbation term in the sliding dynamics so that the control system is more robust. These
properties are investigated in subsection 7.7, which contains the simulation results for the
longitudinal model without using the transformation (5.96), i.e. δ̄e = δe, with the trans-
formation using a nominal bθ (5.98), and with the transformation using an exactly known
bθ (5.96).

5.4 Single-Input Control Design for the 6DOF Model
In the single-input control design for the 6DOF model, the lateral controllers presented in
subsection 5.2.3 are paired with the longitudinal controllers presented in subsection 5.3.3
based on a decoupled sliding variable.

5.4.1 Sliding surface design
Since the lateral and longitudinal controllers designs are still based on the decoupled mod-
els, it is possible to formulate a two-dimensional decoupled sliding variable, σs, from σφ
and σθ:

σs =

[
σφ
σθ

]
, (5.99)

with σφ from (5.24) and σθ from (5.65). Note that a slight modification is made in the
design of the sliding surfaces. Instead of using the body angular rates and angle rate
references pd and qd, the angle rates φ̇ and θ̇, and references φ̇d and θ̇d are used instead.
This means that the error dynamics for the lateral and longitudinal dynamics in (5.26) and
(5.63), respectively, are now given by

ėφ = φ̇− φ̇d (5.100)

ėθ = θ̇ − θ̇d. (5.101)

This is because of the difference between the decoupled lateral and longitudinal models,
and the 6DOF model in the modeling of the dynamics of the Euler angles. For the de-
coupled lateral and longitudinal dynamics, the roll and pitch dynamics are simply given
by

φ̇ = p

θ̇ = q.

However, for the 6DOF model, φ̇ and θ̇ are given by the expression

Θ̇ =

1 sinφ cos θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

ωb
so the relation between the φ̇ and θ̇ and p and q is not that simple anymore. Therefore, the
error terms in (5.100) and (5.101) are used instead of the error terms in (5.26) and (5.63).
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The sliding dynamics of σs are simply given by σ̇φ in (5.30) and σ̇θ in (5.67) so that

σ̇s =

[
aφ(t, x) + bφ(t, x)δa + γφ(t, x)
aθ(t, x) + bθ(t, x)δe + γθ(t, x)

]
. (5.102)

Even though the model is viewed as decoupled when designing the controllers, the
actual model the control laws are applied to is the full 6DOF one given in (2.88)-(2.91)
instead of the simplified lateral dynamics given by (2.78)-(2.81) and the simplified longi-
tudinal dynamics given by (2.82)-(2.85). The unmodeled dynamics in the control design
due to coupling are assumed to be included in the perturbations γφ and γθ.

5.4.2 Control Design
The lateral and longitudinal sliding mode controllers output the control commands δa and
δe respectively. These two control signals are then transformed following the methodology
in section 3.6, so that the control inputs to the 6DOF model are given by

δ̄a = bφ(t, x)−1δa (5.103)

δ̄e = bθ(t, x)−1δe, (5.104)

with bφ as in (5.32) and bθ in (5.69).
The full control vector ū is given by

ū =


δt

δ̄a

δ̄e

δr

 , (5.105)

where the two PI-controllers that generate the throttle δt and rudder δr commands are
given in (5.1) and (5.3) respectively.

5.5 Multivariable Control Design for the 6DOF Model
In this section, the design of the multivariable sliding variable is presented, as well as the
design of the MSAT, the MSTA, the AMSTA, and the GMSTA for the 6DOF model.

5.5.1 State-Space Representation
As for the lateral and longitudinal models in 5.2.1 and 5.3.1, the 6DOF model in (2.88)-
(2.91) has to be written on a state-space form to analyze the applicability of the multivari-
able control algorithms to the UAV model.

We wish to write the 6DOF model equations on the form

ẋ = f(t, x, δt) + g(t, x)ūsmc + h(t), (5.106)
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where f are the uncertain system functions, g is the control coefficient, and h(t) is a
disturbance in the system. Note that δt is included in the system functions f since it is
generated by the airspeed hold controller described in subsection 5.1.1 and is therefore
not dependent on the sliding mode control design, which is the subject of this section. The
control vector in (5.106) contains the control commands generated by the SMC algorithms,
i.e. ūsmc = [δ̄a, δ̄e, δ̄r]

>.
Based on (2.88)-(2.91), the functions f, g, and h are

f(t, x, δt) =


Rvbvb

vb × ωb + 1
mfbx(t, x)

Tqωb

I−1
b (−ωb × (Ibωb) +mbx(t, x))

 (5.107)

g(t, x) =


03×4

1
mfbu(t, x)

04×4

I−1
b mbu(t, x)

 (5.108)

h(t, x) =


03×4

1
mdf (t)

04×4

I−1
b dm(t)

 , (5.109)

where the functions fbx andmbx are the parts of the body forces and moments that depend
solely on the state x, and are given by

fbx =
1

2
ρV 2

a SRbs(α)


−(CD0

+ CDαα+ CDq
c

2Va
q)

(CYββ + CYp
b

2Va
p+ CYr

b
2Va

r)

−(CL0
+ CLαα+ CLq

c
2Va

q)

+ ft + fg (5.110)

mbx =
1

2
ρV 2

a SI
−1
b


b(Clββ + Clp

b
2Va

p+ Clr
b

2Va
r)

c(Cm0
+ Cmαα+ Cmq

c
2Va

q)

b(Cnββ + Cnp
b

2Va
p+ Cnr

b
2Va

r)

+mt, (5.111)

and the functions fbu and mbu are the parts of the body forces and moments that are
dependent on usmc, which are given by

fbu =
1

2
ρV 2

a SRbs(α)

 0 −CDδe 0
CYδa 0 CYδr

0 −CLδe 0

 (5.112)
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mbu =
1

2
ρV 2

a SI
−1
b

bClδa 0 bClδr
0 cCmδe 0

bCnδa 0 bCnδr

 . (5.113)

Boundedness of the State-Space Representation

Let us assume that the functions f, g and h in (5.106) are elementwise bounded so that
|fi|≤ Fi, |gi|≤ Gi, and |hi|≤ Hi for some finite bounds Fi, Gi, and Hi. For this assump-
tion to be valid, it is necessary to constrain the values of the state variables to a subset D
of the space spanned by the unconstrained state x. The space D is given by

D = {x ∈ R3 × R3 × S3 × R3 :‖x‖ ≤ rx} ⊂ R3 × R3 × S3 × R3, (5.114)

where rx is a vector of the bounds on the state variables. Since the scope of this report
limits the behaviour of the UAV to typical low-angle-of-attack flight conditions, it is rea-
sonable to assume that the state is bounded so that

‖r‖ ≤ rmax, ‖vb‖ ≤ vbmax , ‖q‖ ≤ qmax, and ‖ωb‖ ≤ ωbmax . (5.115)

Firstly, the fact that the position vector r is bounded follows from the typical operations of
the UAV, in which it will never happen that r→∞. Secondly, the velocity vb of the UAV
is always bounded due to the physical limitations of the UAV and the external wind vw
affecting it. Since the velocity of the UAV is bounded, it is possible to conclude that the
airspeed Va, the sideslip angle β, and the AoA α are all bounded, since they are calculated
from the relative velocity vbr, which is bounded since vb and vbw are bounded. Additionally,
it is possible to assume that there is a lower bound on the airspeed Va since the fixed-wing
UAV is always moving when in the air. Furthermore, the quaternion q in the state x is
always bounded since it is a unit quaternion, i.e. ‖q‖ ≤ 1. Finally, the assumption that ωb
is bounded is reasonable due to the physical limitations of the UAV and since the state is
bounded as in (5.115).

Furthermore, the force ft and moment mt generated by the throttle δt are bounded
since it is limited to δt ∈ [0, 1] and the thrust T is limited so that it is always non-negative.
This means that the equations in (2.55) and (2.57) for the thrust and thrust moment can
never grow unbounded since the airspeed is also bounded. The remaining force in the
system that has not yet been discussed is the gravitational force fg , which is constant in
magnitude and therefore also bounded. It can therefore be concluded that both functions
f and g are bounded. Additionally, the function h is bounded since the disturbances in
the forces df and moments dm are bounded, which is can be seen from (2.54). Since
the functions f, g, and h are bounded and we have that‖δa‖ ,‖δe‖ ,‖δr‖ ≤ π

6 , the system
dynamics ẋ are also bounded in the subspace D.

5.5.2 Sliding Surface Design
Following the methodology in Coates et al. (2020); Reinhardt et al. (2020), the control
objective when using the reduced-attitude representation is to follow a desired reference
Γd that satisfies

Γ̇d = Γd × ωd, (5.116)
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where ωd satisfies ω>d Γd = 0, i.e. ωd ∈ TΓdS2. The error states can then be defined as

eΓ = Γ× Γd ∈ TΓdS2 (5.117)

eω = ω⊥b − projTΓS2(ωd) ∈ TΓS2. (5.118)

Now let the sliding variable be given by

σ = eω + kΓeΓ + ω
‖
b −

g tanφ

Va
Γ. (5.119)

If σ is driven to zero in finite time, then eω = −kΓeΓ and ω‖b = g tanφ
Va

Γ. This is due
to the fact that the perpendicular and parallel components are decoupled. Note that it is
necessary to constrict the airspeed Va and the roll angle φ to Va > 0 and |φ|< π/2 to
avoid singularity in the last term of (5.119).

Sliding Dynamics

It is possible to rewrite the sliding variable as

σ = ωb −Π⊥Γωd + kΓeΓ −
g tanφ

Va
Γ, (5.120)

which is helpful in writing the sliding dynamics on the desired form as

σ̇ = a(t, x) + b(t, x)ū+ γ(t, x). (5.121)

The sliding dynamics based on (5.120) can be defined as

σ̇ = ω̇b +
d

dt
(−Π⊥Γωd + kΓeΓ −

g tanφ

Va
Γ)

= ω̇b + fσ(t,Γ, ωb,Γd, ωd, ω̇d, Va, V̇a).

(5.122)

If making the simplifying assumption that V̇a is simply a time-varying state-independent
signal, V̇a = V̇a(t), then the only place the body moments, mb, appear in (5.122) is in ω̇b.
The functions b and γ in (5.121) can therefore be found by expanding ω̇b in (2.91) with the
disturbance dm(t) described in chapter 2 added to the body moment mb. The functions
a, b and γ in (5.121) are then given by

a(t, x) = fσ − I−1
b (ωb × (Ibωb)) +mbx (5.123)

b(t, x) = mbu (5.124)

γ(t, x) = I−1
b dm(t), (5.125)

where mbx and mbu are given in (5.111) and (5.113) respectively.

Boundedness of the Sliding Dynamics

As previously discussed, both the function mbu and the disturbance dm are bounded sig-
nals, so the functions b and γ in the sliding dynamics (5.121) are therefore also bounded
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when restricting the state to the subspace D defined in (5.114) as previously discussed.
The function mbx and the body angle rates ωb are also bounded, which means that the
function a in (5.121) is bounded if fσ is bounded within the subspace D.

From the discussion about the boundedness of the state-space representation in sub-
section 5.5.1, it is already known that ωb and Va are bounded and that Va is bounded from
below. Furthermore, we know that Γ is bounded by design, since‖Γ‖ = 1. Since both Γ
and ωb are bounded, Γ̇ in (2.97) is also bounded in D.

The reference reduced-attitude signal Γd is bounded for the same reason that Γ is
bounded. It is also reasonable to assume that the reference angle rates ωd are bounded,
since it is part of the control design, and can thus be designed as a bounded signal. Since
both Γd and ωd are bounded, it follows from (5.116) that Γd is also bounded.

Let us make the additional assumption about the wind velocity vbw that the wind accel-
eration v̇bw is bounded. Then we can conclude that V̇a is bounded, since it depends only on
v̇br, which is bounded if both v̇b and v̇bw are bounded. The UAV acceleration v̇b is bounded
following the discussion in subsection 5.5.1 where it is concluded that the ẋ is bounded.

Since all the signals the function fσ in (5.122) depends on are bounded, it is reasonable
to assume that the function fσ is also bounded. This means that we can conclude that σ̇
in (5.122) is bounded. Additionally, this implies that the sliding variable σ in (5.119) is
continuous, and differentiable in D since it has a bounded first derivative in D.

5.5.3 Multivariable SMC Algorithms
This subsection presents the multivariable control algorithms that are applied to the 6DOF
model. Following the methodology in section 3.6, the control law u generated by the
MSAT and the multivariable super-twisting controllers is transformed by

ū = b−1(t, x)u, (5.126)

where b(t, x) is defined in (5.124). The control law ū is the control input to the 6DOF
model. Note that the transformation above differs from the one in section 3.6, which also
includes the function a(t, x). The reason for this is that the function a is regarded as
uncertain, and is therefore a disturbance in the control design instead of a known function.
This means that the sliding dynamics in (5.121) can be written on the form

σ̇ = b(t, x)ū+ ϑ(t, x), ϑ(t, x) , a(t, x) + γ(t, x), (5.127)

where ϑ is the total perturbation term in the sliding dynamics.
The fact that b needs to be known in the control coefficient transformation (5.126) is a

very restrictive requirement as b is, in most cases, uncertain in reality while the signs of the
elements of b are generally known. This uncertainty will add a control dependent pertur-
bation term to the total perturbation (5.127) when the control coefficient transformation is
used. However, the contribution to the perturbation is larger if only the sign of b is used in
the transformation in (5.126), than if an uncertain estimate of b is used instead. Therefore,
the control coefficient transformation is, in this report, implemented for all the subsequent
control designs with a b matrix that has a 20 % uncertainty. This is done to make the
implementation of the control designs more realistic. A brief discussion of the sensitivity
of the multivariable control designs to the 20% discrepancy between the b matrix used in
the UAV model and the one used in the control design is presented in section 8.8.
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Multivariable Saturation Controller

The MSAT is given by

u = −Ksat(σ) =

{
−K σ

‖σ‖ , if ‖σ‖ > ε

−Kε σ, if ‖σ‖ ≤ ε,
sat(0) = 0, (5.128)

where ε > 0 is the size of the boundary layer, and K is the scalar control gain.
The stability of the MSAT (5.128) can only be guaranteed if several assumptions,

which are made in chapter 3, are valid. The first assumption is that the sliding variable
σ is differentiable in D. From the discussion in subsection 5.5.2, we already know that σ
is differentiable. Additionally, the functions a, b, and γ have to be bounded, which they
are following the discussion in subsection 5.5.2. In the Lyapunov-analysis in subsection
3.3.3 the function b is assumed to be known and have full rank so that det(b) 6= 0. Since
the function b is affected by unknown external disturbances and parametric uncertainties,
it is not fully known in reality, so this assumption is not valid. However, we do know the
signs and approximate size of the elements in b, which means it is reasonable to assume
that b has full rank, i.e. det(b) 6= 0 in D.

A summary of the assumptions for the MSAT can be found in Table 5.4.

Assumption MSAT

The sliding variable σ is differentiable Yes

The disturbance γ is bounded Yes

The function a is bounded Yes

The function b is bounded Yes

The function b is known No

The function b is never zero, i.e. det(b) 6= 0 Yes

Table 5.4: A summary of the assumptions made about the MSAT controller. ”Yes” implies that the
assumption is valid, while ”No” implies the opposite.

Multivariable Super-Twisting Algorithm

The MSTA presented in Nagesh and Edwards (2014) is

u(σ) = −k1
σ

‖σ‖1/2
+ z − k2σ, u(0) := 0 (5.129)

ż(σ) = −k3
σ

‖σ‖
− k4σ, ż(0) := 0, (5.130)

where k1, k3 > 0 and k2, k4 ≥ 0 are positive control gains.
For the algorithm above to guarantee convergence of the system to the sliding surface,

it is assumed that both σ and z are continuous and differentiable everywhere except in the
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zero-measure set S and that the system is of relative degree 1. Firstly, since we already
know from the previous discussion that σ is continuous and differentiable everywhere inD
except on S, we also know that z is continuous and differentiable everywhere in D except
on S from (5.130). This conclusion is only valid if we assume that ϕ ≡ 0 following the
design methodology in Nagesh and Edwards (2014). Secondly, we know that the control
ū appears in the equation for the sliding dynamics, which means that the relative degree
is, in fact, equal to 1.

Furthermore, to perform the control coefficient transformation in (5.126), the function
b in (5.124) has to be both known and nonsingular. Since the function b depends on
aerodynamic parameters and coefficients that are difficult to determine experimentally, it
will never be completely known without any uncertainty. However, it is possible to still
use the nominal function b, and view the possible uncertainties compared to the real values
of the uncertain parameters as another perturbation in the system. The difference between
this kind of perturbation and the other perturbation ϑ is that uncertainty in b will add a
control-dependent perturbation to the sliding dynamics so that

ϑ1(t, x, u) = ∆b(t, x)ū+ a(t, x) + γ(t, x),

where ∆b is a perturbation that arises from uncertainty in the control coefficient. This
kind of control-dependent perturbation is not explicitly mentioned in the MSTA design in
Nagesh and Edwards (2014), where the perturbation term is γ = γ(t, σ). However, since
we have that σ = σ(t, x, u) it is reasonable to believe that even if the sliding dynamics
include a perturbation such as ϑ1, convergence to the sliding surface is guaranteed.

Even though the function b is not exactly known, it is assumed to be nonsingular, and
the estimate of b used in the simulation model is therefore also nonsingular. Even though
the aerodynamic coefficients and parameters are uncertain, their signs are known, which
simplifies the process of determining if b is nonsingular. In this report, the Aerosonde
model (Beard and McLain, 2012) is used to determine the values of the system parameters
in the UAV model. Based on this model and the equation in (5.124) it is possible to see
that

det(b) > 0, ∀t
based on the signs of the aerodynamic coefficients, which means that b is nonsingular.

In addition to the assumptions above, it is assumed that the perturbation ϑ and ϕ are
bounded by

ϑ ≤ δ1‖σ‖
ϕ ≤ δ2.

Firstly, we have that ϕ is bounded since ϕ ≡ 0. Secondly, it is already determined that
ϑ is bounded in D since we know that both a and γ are bounded in the subspace D by
some constant upper limit from the discussion in subsection 5.5.2. However, ϑ is not
necessarily bounded by a limit that depends on the sliding variable. When the system
has reached the sliding surface, we have that σ = 0 while we cannot be certain that both
a(t, x) = γ(t, x) = 0. Additionally, since γ depends on the disturbance d = d(t) which is
not state-dependent, there is no guarantee that σ = 0 =⇒ d(t) = 0. Therefore, the first
boundedness-assumption above cannot be guaranteed.

A summary of the assumptions discussed above can be found in Table 5.5.
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Adaptive Multivariable Super-Twisting Algorithm

The AMSTA presented in Dong et al. (2016) and Hu et al. (2019) is

u(σ) = α1
σ

‖σ‖1/2
+ z, u(0) := 0 (5.131)

ż(σ) = −α2

2

σ

‖σ‖
, ż(0) := 0, (5.132)

with adaptive gain update laws given by

α̇1 =

{
ω1

√
γ1

2 , if ‖σ‖ > σT

0, if ‖σ‖ ≤ σT
(5.133)

α2 = 2ε1α1, (5.134)

where σT > 0 is some small threshold value, and ω1, γ1, and ε1 are positive constants.
Furthermore, according to Hu et al. (2019) and Dong et al. (2016), the constant ε1 should
be chosen as.

ε1 =
ω3

2ω1

√
γ3

γ1
(5.135)

for positive constants ω3 and γ3.
Since the AMSTA is an extension of the MSTA, several of the same assumptions about

the system that are made for the MSTA, are also made for the AMSTA. The only additional
assumption that is required for the system to reach the sliding surface when the control is
generated by the AMSTA above is that the derivative of the perturbation is bounded by∥∥∥ϑ̇∥∥∥ ≤ δ3, (5.136)

which means that both ȧ and γ̇ need to be bounded in the subspace D for the assumption
above to be true. Firstly, since γ depends solely on d(t), we know that γ̇ is bounded based
on (2.54). Secondly, a is bounded in D if ḟσ, ωb, ω̇b, and ṁbx are bounded in D. From the
discussion in subsection 5.5.1 about the boundedness of the system dynamics, we know
that x is bounded since it is restricted to the subspace D, and also that ẋ is bounded in
D. This means that both ωb and ω̇b are bounded in D. The functions ḟσ and ṁbx are
dependent on many variables:

ṁbx = ṁbx(t, Va, V̇a, β̇, α̇, ω̇b, δt, δ̇t) (5.137)

ḟσ = ḟσ(t,Γ, ωd, ω̇d, ω̈d,Γd, φ, φ̇, φ̈, Va, V̇a, V̈a). (5.138)

which need to be bounded in D for ḟσ and ṁbx to be bounded in D.
The function ṁbx is bounded if Va, V̇a, β̇, α̇, ω̇b, δt, and δ̇t. Firstly, we know from

previous discussions that Va and ωb are bounded in D. Furthermore, we know that the
system dynamics ẋ are bounded inD. The function V̇a is already concluded to be bounded
following the discussion about the boundedness of the sliding dynamics in subsection
5.5.2. By the same argumentation, both α̇ and β̇ are bounded since they depend on the
same variables as V̇a, i.e. vr and v̇r, which are both bounded in D from the discussion
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in subsection 5.5.2. Finally, the throttle and throttle dynamics are bounded, which can be
seen in (5.1), since δt only depends on Va and δ̇t depends on Va and V̇a. Both Va and V̇a
are bounded in D as previously discussed, so δt and δ̇t are also bounded in D. Thus, the
function ṁbx is bounded in the subspace D.

Furthermore, the function ḟσ is bounded in D if Γ, ωd, ω̇d, ω̈d,Γd, φ, φ̇, φ̈, Va, V̇a and
V̈a are bounded in D. The functions Γ,Γd, ωd, φ, φ̇, Va, and Va are already found to be
bounded in D in previous discussions. It is reasonable to assume that the functions ω̇d
and ω̈d are both bounded since ωd is a design variable that can be designed so that ω̇d and
ω̈d are bounded in D. Furthermore, since ẋ is bounded, we know that φ̈ is bounded from
(2.65) since Θ̈ is a function of Θ, Θ̇, ωb, and ω̇b, which are all bounded since x and ẋ are
bounded in D. Finally, V̈a is assumed here to simply be a time-varying state-independent
signal, which is reasonable to believe is bounded in D as the UAV cannot have infinitely
high acceleration. Therefore, the assumption that ḟσ is bounded is valid in D.

Another difference from the assumptions about the MSTA is that the perturbation ϑ is
assumed to be bounded by

‖ϑ‖ ≤ δ1‖σ‖
1
2 ,

which is not a valid assumption following the discussion about the boundedness of ϑ from
the previous paragraphs about the MSTA.

A summary of the assumptions discussed in this paragraph, in addition to the assump-
tions that the AMSTA share with the MSTA, can be found in 5.5.

Generalized Multivariable Super-Twisting Algorithm

The GMSTA presented in López-Caamal and Moreno (2019) is

u = −k1φ1(σ) + k3z (5.139)
ż = −k2φ2(σ) + ϕ(t, σ), (5.140)

where

φ1(σ) = (αg‖σ‖−pg + βg + γg‖σ‖qg)σ, φ1(0) := 0 (5.141)

φ2(σ) = (αg(1− pg)‖σ‖−pg + βg + γg(1 + qg))φ1(σ), φ2(0), := 0 (5.142)

with
0 < pg ≤

1

2
, qg > 0, αg > 0, βg, γg ≥ 0.

As for the MSTA, and the AMSTA, for convergence of the system to the sliding mode
to be guaranteed, the system has to be of relative degree 1, both σ and z have to be contin-
uous and differentiable except in S, and the function b has to be known and nonsingular.
All these assumptions are already discussed in the previous sections, and whether they are
valid or not can be seen in Table 5.5.

Some additional assumptions are made about the GMSTA in (5.139)-(5.142). Firstly,
the function φ1 has to satisfy

φ1 = 0, if and only if σ = 0 (5.143)
‖σ‖ → ∞ =⇒ ‖φ‖1 →∞. (5.144)
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Assumption MSTA AMSTA GMSTA

System is of relative degree 1 Yes Yes Yes

The sliding variable σ is continuous except in S Yes Yes Yes

The sliding variable σ is differentiable except
in S

Yes Yes Yes

The function z is continuous except in S Yes Yes Yes

The function z is differentiable except in S Yes Yes Yes

The function φ1 is continuous except in S - - Yes

The function φ1 is differentiable except in S - - Yes

The function b is known No No No

The function b is nonsingular Yes Yes Yes

The total perturbation ϑ is bounded by
‖ϑ‖ ≤ δ1‖σ‖

No - -

The total perturbation ϑ is bounded by
‖ϑ‖ ≤ δ1‖σ‖

1
2

- No -

The derivative of the perturbation ϑ is bounded
by
∥∥∥ϑ̇∥∥∥ ≤ δ3 - Yes -

The perturbation ϕ is bounded by‖ϕ‖ ≤ δ2 Yes Yes -

The function φ1 = 0 if and only if σ = 0 - - Yes

The norm‖φ1‖ → ∞ as‖σ‖ → ∞ - - Yes

The function φ2 is continuous except, possibly,
in S

- - Yes

The function J(σ) fulfills
J(σ) > 0, ∀σ ∈ R3 \ S

- - Yes

The perturbation ϑ is bounded as in (5.145) - - No

The perturbation ϕ is bounded as in (5.146) - - Yes

Table 5.5: A summary of the assumptions made about the MSTA, the AMSTA, and the GMSTA
controllers. ”Yes” implies that the assumption is valid, while ”No” implies the opposite. ”-” implies
that the controller does not rely upon the assumption.
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By design, the first assumption (5.143) is satisfied. The second assumption (5.144)
is also satisfied as every term of φ1 will grow unbounded if ‖σ‖ → ∞. Secondly, the
function φ2 is assumed to be continuous everywhere except, possibly, in S. Since φ2 is
a continuous function in σ except in S, and σ is continuous everywhere except in S, the
second assumption is also satisfied. Furthermore, the function φ1 is assumed to be both
continuous and differentiable everywhere except in S. The function φ1 is also a continuous
function in σ and we know that σ is both continuous and differentiable except in S, which
means that this assumption is also valid. Another assumption is that the function J(σ),
which is given by

φ2(σ) = J(σ)φ1(σ),

fulfills J(σ) > 0, ∀σ ∈ R3 \ S. From the expression for φ2 in (5.142), it is clear that this
assumption is valid as the norm is always positive, and the choice of control parameters
does not allow negative terms in (5.142).

As for the MSTA and the AMSTA, some assumptions about the boundedness of the
perturbations are made for the GMSTA. The boundedness assumptions are given by

ϑ(t, x) = G1(t)φ1(σ) +G3(t)z (5.145)
ϕ(t, x) = G2(t)φ2(σ). (5.146)

Since ϕ ≡ 0 as previously discussed, the second assumption is valid. The first assumption,
however, is not, as it is not satisfied when σ = 0 since it cannot be guaranteed that σ =
0 =⇒ a(t, x) = γ(t, σ) = 0.

A summary of the assumptions discussed in this paragraph can be found in Table 5.5.

5.6 Stability Analysis of the Longitudinal Internal Dynam-
ics

A prerequisite assumption for the discussion of the control algorithms in the previous
sections to be valid is that the internal dynamics of the system are stable in the sliding
mode. This is assumed for both the decoupled longitudinal model and the 6DOF model.
In this section, the stability of the internal longitudinal dynamics is investigated. Since the
system is of dimension n = 4, and the relative degree of the system is r = 1, there may
exist non-trivial internal dynamics that are not bounded in the sliding mode. If this is the
case, then none of the control algorithms in 5.3.3 are applicable.

The analysis of the internal dynamics of the longitudinal model includes making some
simplifying assumptions about the system, which is done in subsection 5.6.1. Then the
equivalent control is defined in subsection 5.6.2. The equilibrium point of the system in
the sliding mode is found in subsection 5.6.3 before the zero dynamics of the system in
the sliding mode is investigated in subsection 5.6.4.

A similar analysis of the stability of the decoupled lateral internal dynamics is pre-
sented in Griffiths (2020).
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5.6.1 Assumptions
When performing an analysis of the internal dynamics, the conditions are assumed to be
ideal, which means that all disturbances and uncertainties in the system are disregarded,
and the model is assumed to be an accurate model of the system without any modeling
errors. Additionally, the reference signal θd is assumed to be constant, so that qd = q̇d = 0.
Thus, the sliding dynamics simplifies to

σθ = aθ1e+ ė = aθ1(θ − θd) + q (5.147)
σ̇θ = aθ1q + q̇. (5.148)

As previously stated in section 6.1.2, it is assumed that θd ∈ 〈−π2 ,
π
2 〉.

5.6.2 Longitudinal Equivalent Control
The first step in analysing the internal dynamics in the sliding mode is to find the equivalent
control. The equivalent control δeeq is obtained from solving σ̇θ = 0:

σ̇θ = aθ1q +
1

Iy
m = 0. (5.149)

Solving (5.149) for δe yields the equivalent control

δeeq = − 1

Cmδe

((
2Iy

ρV 2
a Sc

aθ1 + Cmq
c

2Va

)
q + Cm0

+ Cmαα

)
. (5.150)

The next step is to reformulate the system dynamics in the sliding mode in terms of
the error eθ instead of θ, which are given by

ėθ = −aθ1eθ (5.151)
q̇ = −aθ1q (5.152)

mV̇a = T cosα−D −mg sin(eθ + θd − α) (5.153)
mVaα̇ = mVaq + mg cos(eθ + θd − α)− L− T sinα, (5.154)

and then to insert the equivalent control δeeq in the expressions for L and D. The lift and
drag forces are then

Leq =
1

2
ρV 2

a SCL(α, q, δeeq )

=

(
1

4
ρVaSc(CLq −

CLδe
Cmδe

Cmq )− aθ1
CLδe
Cmδe

Iy
c

)
q

+
1

2
ρV 2

a S(CLα −
CLδe
Cmδe

Cmα)α+
1

2
ρV 2

a S(CL0 −
CLδe
Cmδe

Cm0)

= (VaLq1 − Lq2)q + V 2
a Lαα+ V 2

a L0

(5.155)
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Deq =
1

2
ρV 2

a SCD(α, q, δeeq )

=

(
1

4
ρVaSc(CDq −

CDδe
Cmδe

Cmq )−
CDδe
Cmδe

Iy
c
aθ1

)
q

+
1

2
ρV 2

a S(CDα −
CDδe
Cmδe

Cmα)α+
1

2
ρV 2

a S(CD0
−
CDδe
Cmδe

Cm0
)

= (VaDq1 −Dq2)q + V 2
aDαα+ V 2

aD0

(5.156)

so that the system dynamics in the sliding mode when using the equivalent control δeeq is

ė = −aθ1e (5.157)
q̇ = −aθ1q (5.158)

mV̇a = T cosα− ((VaDq1 −Dq2)q + V 2
aDαα+D0)

−mg sin(e+ θd − α)
(5.159)

mVaα̇ = mVaq + mg cos(e+ θd − α)

− ((VaLq1 − Lq2)q + V 2
a Lαα+ L0)− T sinα

. (5.160)

5.6.3 Finding the Equilibrium Point
When the system is in the sliding mode, we know that the values of e and q are e∗ = q∗ = 0
from (5.157)-(5.158) since the system is in an equilibrium so that ė = q̇ = 0. However,
the values of Va and α in the sliding mode, denoted V ∗a and α∗, are still unknown. To
determine the zero dynamics of the system in the sliding mode, it is necessary to know
these values.

The equilibrium

x∗θ =


e∗

q∗

V ∗a
α∗

 =


0
0
V ∗a
α∗

 (5.161)

for a given pitch angle reference θd can be found by solving the equations

fVa = V̇a = 0 (5.162)
fα = α̇ = 0, (5.163)

where the functions fVa and fα are given as

fVa =
T

m
cosα− 1

m
((VaDq1 −Dq2)q + V 2

aDαα+ V 2
aD0)

− g sin(e+ θd − α)
(5.164)

fα = q +
g

Va
cos(e+ θd − α)

− 1

mVa
((VaLq1 − Lq2)q + V 2

a Lαα+ V 2
a L0)− T

mVa
sinα

(5.165)
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based on in (5.160)-(5.159). Due to the fact that e∗ = q∗ = 0, the problem can be reduced
to solving

fVa =
T

m
cosα− V 2

a

m
(Dαα+D0)− g sin(θd − α) = 0 (5.166)

fα =
g

Va
cos(θd − α)− Va

m
(Lαα+ L0)− T

mVa
sinα = 0 (5.167)

to find the equilibrium values V ∗a and α∗ as a function of the pitch reference θd.
Since (5.166)-(5.167) are nonlinear equations, the MATLAB-function fsolve is used

to find V ∗a and α∗ in the MATLAB-script in Listing A.1. The solution of (5.166)-(5.167)
for the pitch angle reference θd ∈ 〈−π2 ,

π
2 〉 can be seen in Figure 5.3, where the system

parameter values are chosen based on the Aerosonde model (Beard and McLain, 2012).

Figure 5.3: Equilibrium values V ∗
a and α∗ for θd ∈ 〈−30, 30〉 deg found by solving (5.166)-(5.167)

with the initial guess V ∗
a0

= 45 m/s and α∗
0 = 2 deg.

However, the MATLAB-function fsolve does not detect multiple solutions, so the
solutions displayed in Figure 5.3 may not be unique. Whether (5.166)-(5.167) can have
multiple solutions is investigated by using fsolve with different initial vectors x0 =
[V ∗a0

, α∗0]>, where V ∗a0
is the initial airspeed equilibrium guess, and α∗0 is the initial equi-

librium AoA guess. The results of using combinations of the initial airspeed equilibrium
values V ∗a0

∈ [5, 40, 100] m/s, and AoA values α∗0 ∈ [−15, 5, 20] deg, are shown in
Figure 5.4. The reason for choosing these initial estimate values is that they represent both
the lower and upper limits of the normal range of airspeed and AoA values, in addition to
a more typical set of values given by V ∗a0

= 40 m/s and α∗0 = 5 deg.
In Figure 5.4, there are several discontinuities in the solutions when V ∗a0

is both small
and large independent of initial AoA α∗0. In these discontinuities, the function fsolve
is not able to find any solutions. The only solutions that are well-defined are the ones
that correspond to the initial airspeed guess V ∗a0

= 40 m/s. This may be because the trim
T is constant and always equal to the thrust at trim conditions, which might contribute to
strange behavior in the equilibrium values when there is a large deviance from the airspeed
trim condition Va0 = 35 m/s (Beard and McLain, 2012). Therefore, the constant trust may
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be the reason for the discontinuities in V ∗a and α∗ in Figure 5.4 when both a small and
large initial guess of V ∗a is used.

(a) The possible solutions of (5.166)-(5.167) for initial values V ∗
a0
∈ [5, 40, 100] m/s when the initial angle

of attack is α∗
0 = −15 deg.

(b) The possible solutions of (5.166)-(5.167) for initial values V ∗
a0
∈ [5, 40, 100] m/s when the initial angle

of attack is α∗
0 = 5 deg.

(c) The possible solutions of (5.166)-(5.167) for initial airspeed values V ∗
a0
∈ [5, 40, 100] m/s when the

initial angle of attack is α∗
0 = 20 deg.

Figure 5.4: The possible solutions for the equilibrium airspeed V ∗
a and angle of attack α∗ for

different initial estimates V ∗
a0

and α∗
0.

86



5.6 Stability Analysis of the Longitudinal Internal Dynamics

Furthermore, the linearized coefficients do not incorporate stall dynamics, which might
also be the reason for the discontinuities and negative solutions in the airspeed equilibrium
V ∗a in Figure 5.4. Even though stall angles are typically 15-25 degrees, the discontinuities
appear when α∗ is between 5 and 10 degrees. This is also something that might be due
to the constant thrust. For a higher thrust value than the trim thrust, these discontinuities
disappear, as the loss in lift when stall happens is compensated for by the high velocity
of the UAV. This can be seen in Figure 5.5, where (5.166)-(5.167) is solved using initial
equilibrium values V ∗a0

= 100 m/s and α∗0 = 20 deg. The solution in Figure 5.5 does not
contain any discontinuities, while the solution for the same initial values in Figure 5.4c
does have discontinuities and even negative solutions for the airspeed equilibrium value
V ∗a . The difference between the solutions in Figure 5.4c and Figure 5.5 is that the first one
is solved with trim thrust, and the second one is solved with a thrust value that is three
times the thrust at trim conditions so that α∗ does not grow too large.

Since the scope of this report is to perform pitch angle tracking under typical low-
angle-of-attack conditions, the solution for V ∗a andα∗ presented in Figure 5.3 is considered
the equilibrium values which are used to analyze the zero dynamics in the next subsection.

Figure 5.5: The equilibrium values V ∗
a and α∗ as a function of θd for a thrust value that is three

times as large as the thrust value at trim conditions.

5.6.4 Zero Dynamics
Now that the equilibrium x∗θ is determined, it is possible to investigate the zero dynamics
of the system in the sliding mode, which may be unstable, in which case the internal states
may grow unbounded. To determine the zero dynamics, it is necessary to write the system
on a linearized form as

∆ẋθ = Ā∆xθ, (5.168)
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where the elements of Ā are found from (5.157)-(5.158) and by linearizing (5.164)-(5.165).
The linearized expressions for V̇a and α̇ are given by

∆V̇a =
∂fVa
∂e

∣∣∣∣
xθ=x∗

θ

∆e+
∂fVa
∂q

∣∣∣∣
xθ=x∗

θ

∆q

+
∂fVa
∂Va

∣∣∣∣
xθ=x∗

θ

∆Va +
∂fVa
∂α

∣∣∣∣
xθ=x∗

θ

∆α

(5.169)

∆α̇ =
∂fα
∂e

∣∣∣∣
xθ=x∗

θ

∆e+
∂fα
∂q

∣∣∣∣
xθ=x∗

θ

∆q

+
∂fα
∂Va

∣∣∣∣
xθ=x∗

θ

∆Va +
∂fα
∂α

∣∣∣∣
xθ=x∗

θ

∆α,

(5.170)

so that the partial derivatives in the equilibrium in the expressions above are the elements
āij of the linearized system matrix Ā in (5.168).

The partial derivatives in (5.169) are

∂fVa
∂e

∣∣∣∣
xθ=x∗

θ

= −g cos(θd − α∗) = ā31(t, x) (5.171)

∂fVa
∂q

∣∣∣∣
xθ=x∗

θ

= − 1

m
(V ∗aDq1 −Dq2) = ā32(t, x) (5.172)

∂fVa
∂Va

∣∣∣∣
xθ=x∗

θ

= −2V ∗a
m

(Dαα
∗ +D0) = ā33(t, x) (5.173)

∂fVa
∂α

∣∣∣∣
xθ=x∗

θ

=
T

m
sinα∗ − V ∗a

2

m
Dα + g cos(θd − α∗) = ā34(t, x), (5.174)

and the partial derivatives in (5.170) are

∂fα
∂e

∣∣∣∣
xθ=x∗

θ

= − g

Va
sin(θd − α∗) = ā41(t, x) (5.175)

∂fα
∂q

∣∣∣∣
xθ=x∗

θ

= 1− 1

m
(Lq1 −

1

V ∗a
Lq2) = ā42(t, x) (5.176)

∂fα
∂Va

∣∣∣∣
xθ=x∗

θ

= − g

V ∗a
2 cos(θd − α∗)−

Lα
m
α∗

− L0

m
+

T

mV ∗a
2 sinα∗ = ā43(t, x)

(5.177)

∂fα
∂α

∣∣∣∣
xθ=x∗

θ

=
g

V ∗a
sin(θd − α∗)−

V ∗a
m
Lα −

T

mV ∗a
cosα∗ = ā44(t, x) (5.178)
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The linearized system can thus be written as

∆ẋθ = Ā∆xθ


−aθ1 0 0 0

0 −aθ1 0 0
ā31 ā32 ā33 ā34

ā41 ā42 ā43 ā44

∆x, (5.179)

where the elements in the top two rows of Ā arise from (5.157) and (5.158).
The real part of the eigenvalues of (5.179) for θd ∈ 〈−π2 ,

π
2 〉 can be seen in Figure

5.6 for when the equilibrium values V ∗a and α∗ are found as in Figure 5.3. Since all the
eigenvalues of the system in Figure 5.6 have negative real parts, it is possible to conclude
that the linearized system (5.179) is stable in the sliding mode. Therefore it is possible to
conclude that the original longitudinal decoupled system (2.82)-(2.85) is also stable in the
sliding mode.

Figure 5.6: The real part of the eigenvalues of the linearized system for θd ∈ 〈−30, 30〉 deg when
(5.166)-(5.167) is solved with the initial equilibrium guess V ∗

a0
= 40 m/s and α∗

0 = 2 deg.

5.7 Evaluation of Control Algorithms

5.7.1 Error Measures
Evaluating the accuracy of the different control algorithms is important in order to make
a comparison between them, so the integral square error (ISE) and integral absolute error
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(IAE) are used to measure the performances of the controllers, and are also the basis for
the tuning of the controllers. The ISE and IAE are given by

ISE =

∫ t

0

e2(τ) dτ (5.180)

IAE =

∫ t

0

|e(τ)| dτ (5.181)

where the error signal e is given in degrees.
The reason for using both the ISE and the IAE is that they emphasize different types

of errors. It is desirable to design a controller that provides a fast response with little
overshoot, which also achieves close tracking of the reference. The ISE puts more weight
on large error values as error values close to zero will become smaller in the calculation of
(5.74), and thus have a smaller impact on the ISE. Therefore it is effective to use the ISE
as a measure of the response time.

The IAE on the other hand puts equal weight on all error values independent of size.
It can therefore be a more useful measure than the ISE when it comes to quantifying the
tracking accuracy close to the reference signal, which means it is a better measure of the
controller’s ability to retain the sliding mode once the sliding surface has been reached.

Additionally, for the decoupled longitudinal model, the maximum absolute value of e
for the continuous part of the reference signal θd defined in (6.10) is used as a measure
of how stable the tracking results of the controllers are. In this report, this measure is
called the maximum absolute error after stabilization. The ISE- and IAE-values for the
continuous part of θd are called ISE after stabilization or IAE after stabilization.

5.7.2 Input Use Measures
In addition to the error measures described in the previous subsection, it is also useful to
quantify the amount of input the controllers require to track the reference trajectory, as less
input is often better. The measures of input use employed in this report are the integral
square input (ISI) and integral absolute input (IAI) given by

ISI =

∫ t

0

u2(τ) dτ (5.182)

IAI =

∫ t

0

|u(τ)| dτ (5.183)

similarly to the equations for the ISE (5.180) and IAE (5.181).
The reason for using both ISI and IAI is similar to the reason for using both ISE and

IAE explained in subsection 5.7; they emphasize different types of input use. The ISI is
more affected than the IAI by large control commands, while the IAI is more affected than
the ISI by chattering in the control signal.
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Chapter 6
UAV Simulation Model

This chapter presents the two fixed-wing UAV models that are implemented in Mat-
lab/Simulink, as well as the case studies for both models. Detailed descriptions of the
simulation setups for the two models are also included. The implementation of the single-
input longitudinal model is described in section 6.1, and the 6DOF simulation model is
described in section 6.2.

A similar description of the decoupled lateral simulation model that was used to inves-
tigate the behavior of the SISO lateral control algorithms developed in subsection 5.2.3 is
presented in Griffiths (2020).

6.1 Longitudinal Simulation Model
The longitudinal simulation model, which is implemented in Simulink, is based on the de-
coupled longitudinal model in (2.82)-(2.85), and the parameters for the Aerosonde-model
(Beard and McLain, 2012), which can be found in Table 6.1.

To investigate the robustness of the different control algorithms described in subsection
5.3.3, several uncertainties are added to the model. These are described in subsection
6.1.1. The simulation setup is described in 6.1.2, while the case study that is used to
investigate the behavior of the control algorithms is described in subsection 6.2.3. Finally,
the Simulink-implementation of the decoupled longitudinal UAV model is described in
subsection 6.1.4.

6.1.1 Disturbances and Unmodeled Dynamics
Wind Gusts

UAVs operate in uncertain environments in the presence of external disturbances which
largely take the form of wind gusts. To mimic this during simulation, a time-varying
signal dg(t) is added to the state equation for V̇a so that dg(t) is given in [m/s2]. The
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Parameter Value
Longitudinal
Coef. Value

Lateral
Coef. Value

m 13.5 kg CL0 0.28 CY0 0
Ix 0.8244 kg-m2 CD0 0.03 Cl0 0
Iy 1.135 kg-m2 Cm0

-0.02338 Cn0
0

Iz 1.759 kg-m2 CLα 3.45 CYβ -0.98
Ixz 0.1204 kg-m2 CDα 0.30 Clβ -0.12
S 0.55 m2 Cmα -0.38 Cnβ 0.25
b 2.8956 m CLq 0 CYp 0
c 0.18994 m CDq 0 Clp -0.26
Sprop 0.2027 m2 Cmq -3.6 Cnp 0.022
ρ 1.2682 kg/m2 CLδe -0.36 CYδr 0
kmotor 80 CDδe 0 Clδr 0.14
kTp 0 Cmδe -0.5 Cnδr -0.35
kΩ 0 Cprop 1.0 CYδa 0
Va0 35 m/s M 50 Clδa 0.08

Cnδr -0.032 Cnδa 0.06
CYδr -0.17
Clδr 0.105

Table 6.1: Aerodynamic coefficients and other aerodynamic and system parameters for the
Aerosonde UAV as defined in appendix E.2 in Beard and McLain (2012).

wind gusts are modeled by

ḋg = − 1

Tw
dg(t) +

1

Tw
wg, (6.1)

where Tw = 2 s and wg is band-limited white noise with noise power 5 [m/s2 · 1/
√

Hz],
which creates a disturbance signal that is approximately 10% of the magnitude of the cruise
airspeed Va0

. The signal dg(t) can be seen in Figure 6.1. The Simulink-Implementation
that generates the signal in Figure 6.1 is shown in Figure B.13.

Note that even though the wind gust signal in (6.1) is a stochastic signal because of the
white noise wg , the signal is the same in every simulation. The reason for this is to make it
easier to compare the performance of the control algorithms developed in chapter 5, while
a more rigorous approach to testing the robustness of the system could be to run Monte
Carlo-simulations.
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6.1 Longitudinal Simulation Model

Figure 6.1: The time-varying signal dg(t) representing the wind gusts in the longitudinal simulation
model.

Process Noise

The time-varying signal d(t) that is discussed in subsection 2.4.2 is modeled for the lon-
gitudinal model as

ḋθi = − 1

Tdθ
dθi +

1

Tdθ
wdθi (6.2)

for i = 1, ..., 3. Here Tdθ = 0.7 s and wdθi is band-limited white noise with noise power
3 Nm·1/

√
Hz for i = 1, 2 or 3 N·1/

√
Hz for i = 3. These parameters are chosen so that

the magnitude of the vector dθ contributes with a disturbance that is approximately 20%
of the size of the forces L and D, and moment m on average. The signal generated by
(6.2) can be seen in Figure 6.2.

Figure 6.2: The elements of the longitudinal process noise vector dθ .

In chapter 2, the disturbance d is a six-dimensional signal added to the aerodynamic
forces fa and moments ma so that they are given by (2.51) and (2.52), respectively. Since
the longitudinal model only models the lift and drag forces, and the pitching moment, the
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disturbance signal dθ is added to the forces and moment in (2.43)-(2.45) the same way d
is added to the forces and moment in (2.51)-(2.52).

Similar to the wind gust signal discussed in the previous paragraph, the disturbance
signal dθ is the same in every simulation even though it is a stochastic signal in theory.
The reason for this is to be able to compare the performance of the control algorithms
developed in chapter 5 without running a lot of quite expensive simulations.

Discrete Measurements

The effects of wind gusts and process noise are taken into account in the control design
and stability analysis of the control algorithms presented in chapter 5. However, there are
more sources of uncertainties present in the system, for example, discrete measurements.
In the ideal case considered in the theory presented in chapter 3, the state is continuous
and the dynamics of the sensors are disregarded. However, in reality, there is a delay due
to the discretization of θ and q when they are measured. In this report, the signals are
sampled with a sampling rate given by fs = 200 Hz when simulations are performed with
unmodeled dynamics, which is discussed further in subsection 6.1.3.

Actuator Dynamics

Another effect that is not taken into account in the control design is the actuator dynamics.
In ideal conditions, a change in the control signals δ̄e and δt will take place immediately,
but in reality actuator response is dynamic. Additionally, the control system runs on a
fixed sampling rate fs = 200 Hz, which creates the discrete control signals δ̄ze and δzt .
These discrete signals are then used to model the control signals δ̄de and δdt that are applied
to the UAV-model.

The throttle dynamics are modeled using a first-order low-pass filter given by

δdt =
1

Tδts+ 1
δzt , (6.3)

where Tδt = 0.2 s based on the parameters and methodology in Bøhn et al. (2019). The el-
evator dynamics are modeled using a first-order low-pass filter which is an approximation
of the second-order dynamics used in Bøhn et al. (2019), which is given by

H(s) =
ω2

0

s2 + 2ζω0 + ω2
0

, (6.4)

where ω0 = 100 and ζ = 1√
2

. The first-order approximation of (6.4) is calculated by the
script in Listing A.3, and is found to be

δ̄de =
1

Tδes+ 1
δ̄ze , (6.5)

with Tδe = 0.0154 s.
The step and frequency responses, as well as the poles and zeros, of the second-order

transfer function (TF) in (6.4) and its first-order approximation in (6.5) can be found in
Figure 6.3. The characteristics of the step responses can be found in Table 6.2.
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(a) The step responses of transfer functions.

(b) The poles of the transfer functions.
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(c) The frequency responses of the transfer functions.

Figure 6.3: The step and frequency responses, and the pole placements, for the second-order TF of
the actuator dynamics (6.4), and the first-order TF approximation (6.5).

From Figure 6.3, it is evident that the first-order TF is a good approximation of the
second-order TF for small frequencies, while there is a significant difference in both phase
and magnitude for large frequencies. Furthermore, since the second-order TF has con-
jugated complex poles, it is difficult to approximate the response with a first-order TF
since neither pole dominates. The response of the first-order TF is slightly slower than
the second-order TF, which is also reflected by the rise, settling, and peak times in Table
6.2. The response of the first-order TF is naturally less oscillatory than the second-order
response, which can be seen in Figure 6.3a and from the overshoot and peak in Table 6.2.
Using the first-order approximation of the actuator dynamics may not be as realistic as the
second-order dynamics, but it is also less challenging to tune the controllers developed in
chapter 3 to deal with first-order actuator dynamics. The effect of using either the second-
order actuator dynamics or the first-order approximation with different time constants is
investigated for the 6DOF simulation model in chapter 8.
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Property 2. order TF 1. order TF
Rise time 0.0215 s 0.0339 s
Settling time 0.0596 s 0.0604 s
Overshoot 4.3210 % 0
Peak 1.0432 1.000
Peak time 0.0443 s 0.1629 s

Table 6.2: The step response characteristics of the second-order TF (6.4) and the first-order TF
approximation (6.5) calculated with the MATLAB-function stepinfo(sys).

6.1.2 Simulation Setup
Reference trajectory

The reference trajectory θr is given by a combination of step inputs and a sine wave. Since
step inputs are discontinuous functions, the reference is low-pass filtered to generate the
desired reference θd that is the input to the control system, i.e.

θd =
1

τs+ 1
θr, θr ∈ 〈−

π

2
,
π

2
〉 (6.6)

where τ = 0.01 s.
The unfiltered reference signal is given by

θr = θr1 + θr2 + θr3 (6.7)

where

θr1 =

{
0, t < 1

20, t ≥ 1
(6.8)

θr2 =

{
0, t < 1

−20, t ≥ 5
(6.9)

θr3 =

{
0, t < 0

20.05 sin(63.03t), t ≥ 10.
(6.10)

Note that the functions in (6.8)-(6.10) are given in degrees, while the actual input to the
control system is converted to radians. Both θr and the filtered reference signal θd can be
seen in Figure 6.4. Finally, the angle rate reference qd is obtained from (6.6) as

qd = θ̇d =
1

τ
(θr − θd). (6.11)

This way of generating qd means that qd can take the form of a step-function. If it is
desirable that qd has a higher degree of smoothness, it would be possible to replace the
first-order low-pass filter in (6.11) with a higher-order filter instead.
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Figure 6.4: The low-pass filtered longitudinal reference signal θd.

Initial Conditions

The UAV model is assumed to be in an equilibrium state at the beginning of the simulation.
This is achieved by defining the initial conditions of the model to be the trim conditions for
a fixed-wing UAV with parameters based on the Aerosonde-model in Table 6.1. The trim
conditions are found by specifying the airspeed as Va = Va0

= 35 m/s, which is defined
in Beard and McLain (2012) as the cruise-speed for the Aerosonde model, and assuming
q = δa = 0, as well as wings-level, constant altitude flight. Then it is possible to solve
an optimization problem by following a similar procedure to the one found in section F.2
in Beard and McLain (2012) to find the values of α, δt and δe that result in the sums of
forces and moments acting on the UAV body being equal to zero. The initial conditions
are found to be

α0 = 0.0035 rad
δt0 = 0.4638

δe0 = −0.0494 rad
θ0 = α0 = 0.0035 rad.

6.1.3 Case Study
Two simulation cases are considered to investigate the robustness of the control algorithms
applied to the longitudinal model. In the first case, the effects of wind gusts and process
noise are taken into account, while the rest of the conditions are assumed to be ideal, i.e.
continuous feedback signals, instant change in control input, etc. Wind gusts and process
noise are also present in the second case, in addition to the measurement and actuator
dynamics described in section 6.1.2. For the longitudinal model, these dynamics include
the discretization of θ, q, and δ̄e, and the actuator dynamics. In both cases, the control
designs are implemented with the control coefficient transformation given in (5.98) where
the nominal system function bθnom , which has a 20% uncertainty in the model parameters,
is used.

The reason for investigating both these cases is that it is known that SMC algorithms
are robust to external disturbances and parametric uncertainties as these effects are a part
of the control design. However, for a control algorithm to be feasible in practice, it needs
to be robust to unmodeled dynamics, such as discrete measurements and delays in the sys-
tem. Thus, the purpose of the first case is to verify the theoretical results, and the purpose
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of the second case is to investigate the control algorithms’ suitability under realistic condi-
tions. Additionally, the advantages of using the control coefficient transformation in (5.96)
instead of applying the control signal directly to the UAV model are investigated for both
case 1 and case 2.

A different configuration of control gains is implemented for each controller for case 1
and case 2. This is because it is possible to choose a configuration for case 1 that produces
small error and input measures with little to no chattering in the control signal, while the
same configuration will produce chattering in case 2.

In both cases and for all control algorithms, a fixed-step ode4 solver is used in Simulink
with a time step size of h = 0.001 s.

6.1.4 Model Implementation
An overview of the longitudinal simulation model for the longitudinal system can be seen
in Figure 6.5. The Reference-block in Figure 6.5 outputs the reference signal

xθd =

[
θd
qd

]
(6.12)

for the SMC system where θd and qd are given in (6.6)-(6.10), and (6.11) respectively. The
Reference-block also outputs the airspeed reference, Va0

, which can be found in Table 6.1.
These two reference signals are the inputs to the Control system-block, along with the
measured state xmθ from the Sensor-block. In the Sensor-block, the states θ and q are
sampled as previously discussed so that the measured state is given as

xθm =


θz

qz

Va
α

 (6.13)

The Control system-block contains a sliding mode controller and an airspeed hold con-
troller. These two controllers generate a control signal

ūθ =

[
δ̄e
δt

]
(6.14)

based on the discretized state xθm and the references from the Reference-block. The con-
trol signal is sampled and low-pass filtered as previously discussed, and the resulting signal
ūd is used as an input to the UAV model-block.

The UAV model-block contains the equations of motions given in (2.82)-(2.85). The
other inputs to the UAV model-block are the wind gusts dg from (6.1) and the process
noise dθ from (6.2) which are generated in the Wind gusts and disturbances-block. The
output from the UAV model-block is the continuous state xθ given by

xθ =


θ
q
Va
α

 (6.15)
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Ref er ence Cont r ol  
syst em UAV model

Wi nd gust s and 
di st ur bances

Sensor

Figure 6.5: An overview of the longitudinal simulation model.

which is then discretized in the Sensor-block.
The Simulink-implementation of the longitudinal simulation model is presented in sec-

tion B.1.

6.2 6DOF Simulation Model
The 6DOF simulation model is based on the model equations using quaternions (2.88)-
(2.91), with parameters based on the Aerosonde-model, which can be found in Table 6.1.

As for the decoupled longitudinal model, several disturbances are added to the 6DOF
UAV model (2.88)-(2.91), which are described in subsection 6.2.1. The simulation setup
for the 6DOF model is described in subsection 6.2.2. In subsection 6.2.3 the case study for
the 6DOF model is presented, while subsection 6.2.4 presents the Simulink-implementation
of the system.

6.2.1 Disturbances and Unmodeled Dynamics
Wind

As mentioned in subsection 2.4.4, the Dryden-model in Matlab (MathWorks, 2020b) gen-
erates two 3-dimensional signals, vbwg and ωbw. The signal vbwg mimics the wind gusts that
act on the UAV body, and ωbw models the effect of the wind on the angular moment. The
aerodynamic coefficients (2.74)-(2.77) are calculated based on the relative airspeed vbr and
relative moment ωbr instead of using the components of vb and ωb directly.

Process Noise

As discussed in subsection 2.4.2, a time-varying disturbance d(t) is added to the forces
fa and the moments ma as in (2.51)-(2.52). The signal d(t) is given by (2.54), where the
time constant Td is chosen as Td = 0.7 s, and wd ∈ R6×1 is band-limited white noise with
noise power 3 N·1/

√
Hz for i = 1, 2, 3 or 3 Nm·1/

√
Hz for i = 4, 5, 6,. The signal that is

generated by (2.54) can be seen in Figure 6.6.
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(a) The disturbances in the aerodynamic forces, df .

(b) The disturbances in the aerodynamic moments, dm.

Figure 6.6: The process noise in the 6DOF simulation model.

Discrete Measurements

As discussed in the previous section, there is a discrepancy between the ideal system used
to develop the control algorithms in chapter 3, and the physical system that the algorithms
are actually used to control. One of these discrepancies is the fact that the state is assumed
to be continuous in the control design, while the measurement of the continuous state used
in the control design is actually discrete.

The states that have to be discretized in the 6DOF model are the angular position
states given by Θ, the angular rates in ωb, and the airspeed Va. When the 6DOF model is
simulated with a measured state instead of a continuous one, the signals Θ, ωb, and Va are
sampled with a sampling frequency of fs = 200 Hz. The effect of the choice of sampling
frequency is investigated in chapter 8.

Actuator Dynamics

In addition to the state measurements used for feedback control discussed in the previous
paragraph, the control signal ū is also, in reality, a discrete signal. Additionally, there are
unmodeled actuator dynamics present in the system, which also need to be accounted
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for. As for the longitudinal simulation model described in subsection 6.1.1, actuator
dynamics are also present in the 6DOF simulation model. When simulating the 6DOF
model with unmodeled dynamics, the control signal generated by the SMC algorithms,
ūsmc = [δ̄a, δ̄e, δ̄r]

>, is filtered by

˙̄udsmc = − 1

Tu
ūdsmc +

1

Tu
ūzsmc (6.16)

where ūdsmc is the control signal that is the input to the 6DOF model, and ūzsmc is the
control signal that is sampled from the continuous control ūsmc with a sampling frequency
of fs = 200 Hz. Here, Tu = 0.0154 s based on the approximation in subsection 6.1.1.
The throttle dynamics are generated by (6.3).

The effect of the choice of actuator dynamics is investigated in chapter 8, where the
dynamics above are considered, in addition to the actuator dynamics 6.16 with a higher
time-constant and the second-order dynamics described in Bøhn et al. (2019).

6.2.2 Simulation Setup
Reference Trajectory

The reference trajectory for the 6DOF model is produced by a waypoint following navi-
gation and guidance system. The waypoints the UAV should follow are given by a set of
waypoints wi denotedW , which is in this report defined as a set of five waypoints given
by

W =


0 0 100

500 0 85
500 500 75
0 500 90
0 0 100

 , (6.17)

where each row is the position of a waypoint in [m] so that the columns ofW are the x-,
y-, and z-coordinates of the waypoints in the NED-frame. The waypoint follower system
is implemented with the MATLAB UAV Waypoint Follower-block (MathWorks, 2020d),
which outputs the desired height hd and the desired course angle χd based on the pose (the
position and heading) of the UAV and on the next waypoint wi. These commands are used
to calculate the desired pitch and roll references.

The desired altitude hd is used by an altitude hold controller, which is a PI-controller
described in Beard and McLain (2012), to generate a desired pitch angle θd, and is given
by

θd = kphsat(hd − h) + kih

∫ t

0

sat(hd − h) dτ,

sat(hd − h) =

{
hd − h, |hd − h|≤ hlim
hlimsign(hd − h), |hd − h|> hlim,

(6.18)

where h is the current altitude. Note that there is a limit on the error in height so that the
pitch reference does not become too large. In this report, this limit is set to hlim = 5 m.
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The desired course command from the waypoint follower system is used to calculate
the desired roll angle φd, based on the current course and flight path angles, and the ground
velocity of the UAV. First, the current course and flight path angles are calculated as

γf = sin−1(− vz
Vg

) (6.19)

χ = atan2(
vy
vx

), (6.20)

where vx, vy and vz are the components of in the inertial x-, y-, and z-directions, re-
spectively. The calculation of γf in (6.19) is based on (2.19), where we have used that
h = −pd, where pd is the z-position in the NED-frame (not to be confused with the
desired roll rate described below). Note that the Matlab-function atan2 (MathWorks,
2020c) is used in (6.20) to calculate the course angle instead of the normal inverse tangen
in (2.20). Based on γf and χ, the desired roll angle can be calculated as

φd = atan2

(
Vgangdiff(χ, χd)

g cos(χ− ψ)

)
, (6.21)

where the Matlab-function angdiff(ν1, ν2) (MathWorks, 2020a), which calculates the
difference between two angles ν1 and ν2 wrapped in the interval [−π, π], is used to calcu-
late the difference between χ and χd.

The desired roll and pitch rates in the inertial frame, φ̇d and θ̇d, respectively, are ap-
proximated by high pass filtering φd and θd:[

φ̇d
θ̇d

]
=

s

TΘs+ 1

[
φd
θd

]
, (6.22)

where TΘ = 0.01 s. The desired yaw rate in the inertial frame, ψ̇d, is found from the
equation for the coordinated-turn (Beard and McLain, 2012), which is given by

ψ̇d =
g

Va
tanφd. (6.23)

The derivatives, Θ̇d = [φ̇d, θ̇d, ψ̇d]
>, of the desired Euler angles are then used to calculate

the desired angular rates ωd by inverting (2.23) so that

ωd =

pdqd
rd

 =

1 0 − sin θd
0 cosφd sinφd cos θd
0 − sinφd cosφd cos θd

 Θ̇d. (6.24)

Using the angle rate reference ωd in the MIMO control design and Θ̇d in the SISO con-
trol design discussed in chapter 5 as described above is one way of performing reference
tracking. Another method is to treat the angle references as a series of constant reference
values, which means that the angle rate references can be set to zero, i.e. ωd = Θ̇d = 0.
The differences between using the angle rate references defined in (6.22)-(6.24) and using
a zero angle rate reference for the 6DOF model is investigated in chapter 8.
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The final reference signal to the control system is the desired airspeed Va0 which is
set to the cruise-speed for the Aerosonde-model, i.e. Va0 = 35 m/s (Beard and McLain,
2012). Finally, the full reference vector xd is defined as

xd =

Γd
ωd
Va0

 ∈ S2 × R3 × R, (6.25)

where Γd is given by

Γd =

 − sin θd
cos θd sinφd
cos θd cosφd

 . (6.26)

Initial Conditions

As in the simulations of the longitudinal model, it is assumed that the UAV is in an equi-
librium state at the beginning of the simulation of the 6DOF model. The initial position of
the UAV is set to

p0 =

h0

0
0

 =

−100
0
0

 ,
where h0 is the initial altitude in [m]. The initial airspeed is set to the cruise speed of the
Aerosonde-model, i.e. Va0

= 35 m/s. The initial AoA, throttle and elevator deflection are
found by calculating the trim conditions of the UAV assuming ωb = δa = δr = 0. This
means that the initial control is

ū0 =


δt0
δ̄a0

δ̄e0
δ̄r0

 =


0.4638

0
−0.0494

0

 ,
while the initial angular velocity ωb0 is

ωb0 =

0
0
0

 ,
and the initial velocity vb0 of the UAV is

vb0 =

Va0
cosα0

0
Va0 sinα0

 =

34.9998
0

0.1212


which is calculated based on the initial AoA, α0 = 0.0035 rad. Furthermore, the initial
Euler angles are

Θ0 =

 0
α0

0

 =

 0
0.0035

0

 .
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6.2.3 Case Study
The case study for the 6DOF model is more comprehensive than the longitudinal case
study presented in subsection 6.1.3. To test the robustness of the control algorithms to
disturbances in the system, a coefficient kd is multiplied with the disturbance d(t), and
a coefficient kw is multiplied with both the wind gusts vwg and the vector ωw that ac-
counts for the effects of the wind gusts on the angular rate of the UAV. By increasing the
coefficients kd and kw, the amount of disturbance in the system also increases. These
coefficients are used to define the different simulation cases, together with the amount of
constant wind vws , as seen in Table 6.3.

Similarly to the case study for the longitudinal model presented in subsection 6.1.3,
simulation cases both with and without unmodeled dynamics, such as discrete measure-
ments and actuator dynamics, are considered for the 6DOF model. Thus case 1 is the
simulation of the 6DOF model affected by the wind disturbances vw and ωw, and the dis-
turbance signal d(t), but without any unmodeled dynamics present in the system. Case
2 is simulating the system with the same disturbances as in case 1, but with the unmod-
eled dynamics described in subsection 6.2.1 present in the system. The last two cases are
also simulated with unmodeled dynamics, but with more severe disturbances present in
the system.

Case 1 Case 2 Case 3 Case 4

Unmodeled dynamics No Yes Yes Yes

Disturbance coefficient kd 0.5 0.5 1 1.5

Wind gust coefficient kd 0.5 0.5 1 1.5

Constant wind vector vws [−1, 2, 0]> [−1, 2, 0]> [3, 5, 3]> [7, −9, 6]>

Table 6.3: The values of the disturbance coefficient kd, the wind gust coefficient kw, and the con-
stant wind vector vws for each of the simulation cases for the 6DOF model, in addition to which
simulation cases take the unmodeled dynamics into account.

To further test the robustness of the controllers, the sampling rate of the control signal
ū, the state x, the Euler angles Θ, and the airspeed Va is investigated. Simulation case
2 is considered with sampling rates set to fs = 100 Hz and fs = 20 Hz. As discussed
in subsection 6.2.1, the sampling rate is set to fs = 200 Hz, which is true for simulation
case 2-4 in Table 6.3. However, this is quite a high sampling rate, and it is interesting
to see whether the SMC algorithms are still robust to the disturbances while managing to
produce control signals without too much chattering with lower sampling rates than 200
Hz.

Furthermore, the control coefficient transformations in (5.103)-(5.104) for the single-
input control algorithms, and (5.126) for the multivariable control algorithms, are imple-
mented with a 20% uncertainty in the model parameters in all the simulation cases. The
functions bφ and bθ in (5.103)-(5.104), and b in (5.126), are therefore uncertain during
simulation, which further tests the robustness of the control algorithms to parameter un-
certainties and modeling errors.

104



6.2 6DOF Simulation Model

In all simulation cases and for all control algorithms, a fixed-step ode4 solver is used
in Simulink with a time step size of h = 0.001 s.

6.2.4 Model Implementation
The overall structure of the 6DOF simulation model is the same as for the longitudinal
model, the only difference is what the signals that are passed between the system blocks
contain. An overview of the 6DOF simulation model can be seen in Figure 6.7.

 Ref er ence Cont r ol  
syst em UAV model

Wi nd and 
di st ur bances

Sensor

Figure 6.7: An overview of the 6DOF simulation model.

The Reference-block in the 6DOF system generates the reference vector xd defined in
(6.25). The signal from the Reference-block is, together with the measured state, Euler
angles and airspeed from the Sensor-block, used as inputs to the Control system-block.
The contents of the control block depend on the type of sliding mode controller that is
being used, which is described in chapter 5. The complete control signal ū is

ū =


δt
δ̄a
δ̄e
δr

 or ū =


δt
δ̄a
δ̄e
δ̄r

 (6.27)

depending on whether a SISO or a MIMO control design is being used. The control ū is
then measured, and low-pass filtered to create the signal ūd, which is then passed to the
UAV model-block.

In the Wind and disturbances-block, the process noise in the aerodynamic forces and
moments, d = [df , dm]>, defined in (2.54) is generated, along with the wind vw and wind
moment ωw generated by the Dryden-model (MathWorks, 2020b).

In the UAV model-block, the equations for the 6DOF model defined in (2.88)-(2.91)
are implemented. The resulting continuous state x given as

x =


r
vb
q
ωb

 ,
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the vector Θ, and a vector containing the airdata, i.e. Va, α, and β, are the outputs from
the UAV model-block which are passed to the Sensor-block.

In the Sensor-block, the Euler angles and rates, and airspeed are measured so that the
resulting signals, xm, Θm and Vam , becomes

xm =


r
vb
q
ωzb

 , ωzb =

pzqz
rz

 (6.28)

Θm =

φzθz
ψz

 (6.29)

From the Sensor-block, xm, Θm and Vam are passed to the Control system-block.
The Simulink-implementation of the longitudinal simulation model is presented in sec-

tion B.2.
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Chapter 7
Results for the Decoupled
Longitudinal Model

In this chapter, the results of the decoupled longitudinal simulations for all the controllers
and both simulation cases, and the choice of control gains and other control parameters,
are presented and discussed. All the control gains presented in this chapter are chosen by
trial and error. Furthermore, the sliding variable gain aθ1 is chosen as aθ1 = 5 for all
controllers and both simulation cases.

The results for the saturation controller is presented and discussed in subsection 7.1,
for the STA in 7.2, for the ASTA in 7.3, and for the GSTA in 7.4. Subsection 7.5 contains
the performance measures for the simulation results presented in subsection 7.1-7.4. The
results of using different implementations of the control coefficient transformation (5.96)
for the longitudinal system are shown and discussed in subsection 7.7. Finally, section 7.8
contains a discussion of the tuning process for the single-input controllers applied to the
decoupled longitudinal model.

7.1 Saturation Controller
The control gain for the saturation controller for case 1 is chosen as ke = 17.5, and as
ke = 4.6 for case 2. In both cases the size of the boundary layer is chosen as ε = 0.1.

The pitch and pitch rate tracking results for case 1 are presented in Figure 7.1, and the
sliding variable and control signal are presented in Figure 7.2, while the tracking results,
and the sliding variable and control signal for case 2 are presented in Figure 7.3 and 7.4,
respectively.

The performance measures for the saturation controller for both simulation cases are
shown in Table 7.1.
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Case 1

Figure 7.1: Pitch and pitch rate tracking results for the saturation controller applied to the decoupled
longitudinal model for simulation case 1.

(a) The sliding variable σθ .

(b) The control signal δe.

Figure 7.2: Sliding variable and control signal for the saturation controller applied to the decoupled
longitudinal model for simulation case 1.
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Case 2

Figure 7.3: Pitch and pitch rate tracking results for the saturation controller applied to the decoupled
longitudinal model for simulation case 2.

(a) The sliding variable σθ .

(b) The control signal δe.

Figure 7.4: Sliding variable and control signal for the saturation controller applied to the decoupled
longitudinal model for simulation case 2.
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Discussion

The saturation controller is the only conventional single-input SMC design considered in
this report. Even though it is a simple algorithm, it performs well in both case 1 and case
2, as seen in Figure 7.1 and Figure 7.3. In case 1 there are some spikes in the control
signal shown in Figure 7.2, which would of course not be realizable in practice due to
the physical limits of the elevator. However, these spikes are gone in Figure 7.4 for case
2 when actuator dynamics are taken into consideration, and the saturation controller still
manages to perform pitch angle tracking. The sliding variable in both Figure 7.2 and
Figure 7.4 approaches zero rapidly but stays closer to zero for case 1 than for case 2,
which is expected. Additionally, there is substantial chattering in the sliding variable for
case 2 in Figure 7.4, but this chattering affects neither the control signal nor the state.
This is probably due to the sampling of the control command, and the actuator dynamics
which will attenuate the chattering as it is impossible for the elevator to move as rapidly
as the sliding variable. This is also true for the sliding variables for case 2 for the results
presented in section 7.2-7.4 below.

In chapter 5, a discussion of the necessary assumptions for the stability of the control
design with the saturation controller is presented. All the assumptions are valid for the
UAV model, so there is no reason the saturation controller would not be able to perform
pitch angle tracking, which is corroborated by the results presented above. The control
gain ke is chosen by trial and error, rather than based on the condition in (5.76). This
decision is based on the results presented for the lateral model in Griffiths (2020), where
this same condition yielded results that were dominated by chattering and completely un-
realizable in a physical system.

7.2 STA
The control gains for the STA for case 1 are chosen as ke1 = 20, ke2 = 1, and as ke1 =
5.3, ke2 = 2.9 for case 2.

The pitch and pitch rate tracking results for case 1 are presented in Figure 7.5 and the
sliding variable and control signal are presented in Figure 7.6, while the tracking results,
and the sliding variable and control signal for case 2 are presented in Figure 7.7 and 7.8,
respectively.

The performance measures for the STA for both simulation cases are shown in Table
7.1.
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Case 1

Figure 7.5: Pitch and pitch rate tracking results for the STA applied to the decoupled longitudinal
model for simulation case 1.

(a) The sliding variable σθ .

(b) The control signal δe.

Figure 7.6: Sliding variable and control signal for the STA applied to the decoupled longitudinal
model for simulation case 1.
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Case 2

Figure 7.7: Pitch and pitch rate tracking results for the STA applied to the decoupled longitudinal
model for simulation case 2.

(a) The sliding variable σθ .

(b) The control signal δe.

Figure 7.8: Sliding variable and control signal for the STA applied to the decoupled longitudinal
model for simulation case 2.
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Discussion

The STA performs pitch angle tracking well for both case 1 and case 2 as seen by Figure
7.5 and Figure 7.7, respectively. In case 2, the STA manages to track the step inputs in
the reference signal especially well, while there is some error in the continuous part of the
pitch angle reference. This can be seen in Figure 7.6 and Figure 7.8, where the sliding
variable is much closer to zero when the reference has been reached after the step inputs,
than for the continuous part of the reference signal. The control input in both cases is free
of chattering, but there are some unrealistic spikes in the control signal for both simulation
cases. The necessary assumptions for the stability of the STA discussed in chapter 5 are
all valid. This conclusion is reflected in the satisfactory tracking results presented in this
subsection.

Several conditions for the choice of control gains for the STA are presented in sub-
section 3.5.1. However, the control gains for the STA presented in the results are chosen
by trial and error. The reason for this is the results for the STA applied to the simplified
lateral dynamics of a UAV presented in Griffiths (2020). These results show that for the
control gain configurations presented in subsection 3.5.1, the resulting control signal is
dominated by chattering. Therefore, the control gain configurations in subsection 3.5.1
are disregarded in this report.

7.3 ASTA
The control parameters for the ASTA for case 1 are chosen as ωe1 = 11, γe1 = 2, εe =
2, λe = 5, αem = 0.2, and as ωe1 = 10, γe1 = 0.4, εe = 0.08, λe = 2, αem = 0.2 for case
2. The initial value of αe is set to αe0 = 5 for case 1 and αe0 = 3 for case 2.

The pitch and pitch rate tracking results for case 1 are presented in Figure 7.9 and the
sliding variable and control signal are presented in Figure 7.10, while the tracking results
and the sliding variable and control signal for case 2 are presented in Figure 7.11 and 7.12,
respectively.

The performance measures for the ASTA for both simulation cases are shown in Table
7.1.
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Case 1

Figure 7.9: Pitch and pitch rate tracking results for the ASTA applied to the decoupled longitudinal
model for simulation case 1.

(a) The sliding variable σθ .

(b) The control signal δe.

Figure 7.10: Sliding variable and control signal for the ASTA applied to the decoupled longitudinal
model for simulation case 1.
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Case 2

Figure 7.11: Pitch and pitch rate tracking results for the ASTA applied to the decoupled longitudinal
model for simulation case 2.

(a) The sliding variable σθ .

(b) The control signal δe.

Figure 7.12: Sliding variable and control signal for the ASTA applied to the decoupled longitudinal
model for simulation case 2.
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Discussion

The ASTA manages to achieve satisfactory tracking of the pitch angle reference in both
simulation cases, which can be seen in Figure 7.9 and Figure 7.11. The tracking results for
the continuous part of the reference signal is especially good in case 1, which is reflected
in the error measures in Table 7.1. For both case 1 and case 2, the resulting control signal
is free of chattering, but there are some unrealizable spikes in the control signal for case 1
and case 2 as seen in Figure 7.10 and Figure 7.12, respectively.

The sliding variable keeps almost exactly to the sliding surface in case 1 in Figure
7.10, but there are some oscillations when there is a discontinuous point in the reference
signal at t = 1 s, t = 5 s, and t = 10 s. Even so, these large oscillations do not affect the
control signal. In the results for case 2 in Figure 7.12, the sliding variable does not manage
to keep the constraint as well as in case 1, which is to be expected, but the increase in the
deviations from the sliding surface is quite large from case 1 to case 2.

From the discussion in subsection 5.3.3, we know that all the necessary assumptions
about the system to guarantee the stability of the ASTA are valid, except for the fact that
the function bθ has to be known. In the results presented in this subsection, an uncertain
bθnom was used, which may account for the large increase in error measures from case 1
to case 2 for the continuous part of the pitch angle reference.

There are some small oscillations in the results for the ASTA at the beginning of the
simulation in case 2. These oscillations can be removed by choosing a higher initial value
αe0 for the adaptive gain αe. However, a higher value for αe0 results in more chattering
in the control signal throughout the simulation. A much smaller value for αe0 made it
possible to remove the oscillations for case 1, while there are still oscillations for case
2 with a much higher αe0 . However, choosing an even higher value for αe0 for case 2
removes the oscillations, but renders the control signal unfeasible due to chattering.

7.4 GSTA
The control gains for the GSTA for case 1 are chosen as βeg = 0.03, ke1 = 24, ke2 = 15,
and as βeg = 0.01, ke1 = 7, ke2 = 3 for case 2.

The pitch and pitch rate tracking results for case 1 are presented in Figure 7.13 and the
sliding variable and control signal are presented in Figure 7.14, while the tracking results,
and the sliding variable and control signal for case 2 are presented in Figure 7.15 and 7.16,
respectively.

The performance measures for the GSTA for both simulation cases are shown in Table
7.1.
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Case 1

Figure 7.13: Pitch and pitch rate tracking results for the GSTA applied to the decoupled longitudinal
model for simulation case 1.

(a) The sliding variable σθ .

(b) The control signal δe.

Figure 7.14: Sliding variable and control signal for the GSTA applied to the decoupled longitudinal
model for simulation case 1.
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Case 2

Figure 7.15: Pitch and pitch rate tracking results for the GSTA applied to the decoupled longitudinal
model for simulation case 2.

(a) The sliding variable σθ .

(b) The control signal δe.

Figure 7.16: Sliding variable and control signal for the GSTA applied to the decoupled longitudinal
model for simulation case 2.
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Discussion

The results for the GSTA show that it achieves fast and accurate tracking in case 1 and
case 2 without chattering in the control signal which can be seen in Figure 7.13-7.16. In
case 2, the tracking of the step inputs in the reference signal is somewhat better than the
tracking of the continuous sine wave reference based on the increase in the error measures
from case 1 to case 2, and on the difference in the sliding variable for case 1 in Figure 7.14
and for case 2 in Figure 7.16.

The good results of the GSTA reflect the fact that all the assumptions discussed in
subsection 5.3.3 are valid, so it was expected that the GSTA would be able to perform
pitch angle tracking, which is confirmed by the results in the figures above.

7.5 Performance Measures
The error and input measures for the simulation results presented in subsection 7.1-7.4 are
presented in Table 7.1.
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Values for case 1

Error measure Saturation
controller

STA ASTA GSTA

Total ISE 94.517 105.048 95.826 88.396

Total IAE 10.490 11.675 9.088 8.704

ISE after stabilization 0.1018 0.230 4.705 · 10−9 4.983 · 10−6

IAE after stabilization 0.7900 1.018 1.597 · 10−4 4.535 · 10−3

Maximum absolute error
after stabilization

0.1983 0.407 6.340 · 10−5 3.459 · 10−3

Input measure Saturation
controller

STA ASTA GSTA

Total ISI 164.23 166.54 145.331 178.49

Total IAI 37.514 37.746 37.370 37.800

Values for case 2

Error measure Saturation
controller

STA ASTA GSTA

Total ISE 193.77 132.77 137.15 108.10

Total IAE 20.475 16.602 15.477 16.122

ISE after stabilization 1.670 3.087 2.154 6.088

IAE after stabilization 3.203 3.620 3.018 5.603

Maximum absolute error
after stabilization

0.8355 1.817 1.512 2.029

Input measure Saturation
controller

STA ASTA GSTA

Total ISI 108.93 129.49 122.32 152.87

Total IAI 36.947 37.677 37.863 37.727

Table 7.1: Performance measures for the single-input control algorithms applied to the decoupled
longitudinal model for case 1 and case 2.

7.6 Comparison of the Controller Performance
All the controllers that are implemented for the decoupled longitudinal model produce
similar results, but there are some relatively minor differences in their performances. The
saturation controller has a slightly slower response to the step inputs in case 2 than the other
controllers. The reason for this is that the saturation controller in case 2 requires a small

120



7.6 Comparison of the Controller Performance

value for the control gain to avoid chattering in the control signal. However, the tracking of
the continuous reference is excellent. The saturation controller manages to perform better
tracking of the continuous reference than the second-order algorithms even with a lower
input use, which can be seen in Table 7.1. However, the overall error measures for the
whole simulation are much bigger for the saturation controller than for the second-order
algorithms in case 2, which means that the saturation controller is not suitable for tracking
discontinuous reference signals in the presence of external disturbances and unmodeled
dynamics.

Based on Table 7.1 it is possible to see that the STA, the ASTA, and the GSTA perform
better than the saturation controller in case 1. All three second-order algorithms achieve
near-perfect tracking of the continuous pitch angle reference, with the ASTA being the
best out of the three. The GSTA has the lowest error measures overall, while the ASTA
uses the least amount of input. The fact that the error measures for the continuous part of
the reference signal are close to zero, while the total error measures are higher or almost
equal to the error measures for the STA, implies that the ASTA is more suited to track
continuous reference signals instead of discontinuous signals such as step inputs, at least
in case 1.

From Table 7.1, it is also possible to see that the GSTA has the lowest ISE in case 2,
but the error measures for the continuous part of the reference are much higher than for the
rest of the controller, and the IAE is slightly higher than for the STA and the ASTA. This
implies that the GSTA is more suitable than the other controllers for tracking discontinuous
or rapidly changing reference signals, since a low ISE means fewer large errors, while a
higher IAE means that there are more small errors. This can also be seen by comparing
the tracking results for case 1 in Figure 7.13 and for case 2 in 7.15, where the tracking of
the continuous sine wave reference in case 2 seems to be slower than the tracking of the
discontinuous reference, which is almost as good in case 2 as in case 1.

Additionally, the control signals produced by the controllers are similar in both case
1 and case 2. In case 1, they all produce control signals in which the elevator deflection
instantly changes to very high or low values, which is only possible in theory. These spikes
in the control signals are slightly smaller for all the controllers in case 2, due to the actuator
dynamics.

Furthermore, the STA and the GSTA have almost equal ISE and IAE values for case 1.
For case 2, however, the GSTA outperforms the STA in terms of ISE values. This might
be due to the choice of control gains for the controllers since the STA and the GSTA have
similar input use in case 1, while in case 2, the GSTA uses slightly more input than the
STA. It is reasonable to think that this will make the STA slower, which is reflected in the
ISE value for case 2 compared to the ISE value for the GSTA in case 2. However, this
might be different if the STA was tuned differently.

A common phenomenon for all the controllers is the extremely large spikes in the slid-
ing variable, which reach a magnitude of almost 2000 rad/s. This causes the control signals
to go from zero to the maximal deflection value almost instantly, which, if implemented,
will put unnecessary strain on the actuator. These spikes are caused by the discontinuous
steps in the reference signal, which will cause the pitch rate to become very large and then
almost instantly go back to zero again. This can be improved by using a higher-order low-
pass filter on θr so that the qd will be smoother. Implementing a limit on qd may also be
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beneficial, as this would enable the controller to track qd for smaller changes in θr while
avoiding the large sudden changes in δe. Another alternative that would reduce the spikes
in the sliding variable is to use a zero-signal as the angle rate reference, but this will cause
poorer tracking of the angle reference. The effect of using a zero-reference for the angle
rate is

7.7 Control Coefficient Transformation
In this subsection, the effect of the control coefficient transformation in (5.96) on the
simulation results is presented and discussed. The results of three ways of implementing
the transformation in (5.96) are shown for each controller for case 2 for the discontinuous
part of the reference trajectory. The reason for only showing the first step input of the
reference signal is that the differences between using the different transformations for
the continuous part of the reference signal are so small that they are irrelevant. The first
way of implementing the transform is with only the sign of b being known. The second
implementation is with a function bθ that has a 20% uncertainty in the model parameters.
The third way of implementing the transformation is with an exactly known bθ, which is
only theoretically possible. The three different transformations are given by the equations
below:

(T1) The first implementation of the control coefficient transformation is

δ̄e = −δe,

(T2) the second implementation of the transformation is

δ̄e = b−1
θnom

(t, x)δe,

where bθnom(t, x) is the nominal, but uncertain, model function,

(T3) and the third implementation of the transformation is

δ̄e = bθ(t, x)−1δe.

The results of using the control coefficients transformations in (T1)-(T3) is also in-
vestigated for case 1. Most of the tracking results and control signals for case 1 can be
found in C, as they are almost identical for each transformation and are therefore not as
important as the results in case 2. The one exception is the ASTA, as the results for both
simulation cases are included in this section. However, all the performance measures are
included in this section for both simulation cases to easily illustrate the difference between
implementing the transformations for case 1 and case 2.
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7.7.1 Saturation controller
The results of using the control coefficient transformations described in (T1)-(T3) in the
design of the saturation controller for case 2 are shown in Figure 7.17. The performance
measures can be found in Table 7.2. The control gains are chosen for the three different
transformations as

(T1) ke1 = 0.13, ε = 0.1

(T2) ke1 = 4.6, ε = 0.1

(T3) ke1 = 4.6, ε = 0.1

Figure 7.17: The pitch angle tracking results and control signals for the single-input saturation
controller applied to the decoupled longitudinal model for case 2. The pitch angle θT1 and elevator
deflection δ̄deT1

are the results for transformation (T1), θT2 and δ̄deT2
are the results for transformation

(T2), and θT3 and δ̄deT3
are the results for transformation (T3).
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Case 1

Performance
measure

Transformation
(T1)

Transformation
(T2)

Transformation
(T3)

Total ISE 47.385 47.887 45.349

Total IAE 4.996 4.704 4.544

Total ISI 1.658 · 105 1.500 · 105 1.793 · 105

Total IAI 3.714 · 102 3.675 · 102 3.744 · 102

Case 2

Performance
measure

Transformation
(T1)

Transformation
(T2)

Transformation
(T3)

Total ISE 141.21 104.584 90.670

Total IAE 11.523 8.327 7.415

Total ISI 5.666 · 103 6.451 · 103 7.068 · 103

Total IAI 3.653 · 102 3.640 · 102 3.635 · 102

Table 7.2: Performance measures for the control coefficient transformations (T1)-(T3) applied in
the saturation control design for simulation case 1 and 2.

Implementing either transformation (T2) or (T3) for the saturation controller is clearly
beneficial based on the results presented above. In case 2, transformation (T2) and (T3)
lead to less standard deviation, and faster convergence to the reference without any addi-
tional chattering in the control signal, which can be seen in Figure 7.17. The improvement
in the tracking performance in case 2 is also reflected in the error measures in Table 7.2,
which are smallest for transformation (T3).

In case 1, Figure C.1 shows that the results are almost identical, which confirms the
theoretic robustness property of the saturation controller to disturbances and parametric
uncertainties.

7.7.2 STA
The results of using the different control coefficient transformations described in (T1)-
(T3) in the design of the STA for case 2 are shown in Figure 7.18. The performance
measures can be found in Table 7.3. The control gains are chosen for the three different
transformations as

(T1) ke1 = 0.15, ke2 = 0.08

(T2) ke1 = 5.3, ke2 = 2.9

(T3) ke1 = 5.3, ke2 = 2.9
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Figure 7.18: The pitch angle tracking results and control signals for the single-input STA applied
to the decoupled longitudinal model for case 2. The pitch angle θT1 and elevator deflection δ̄deT1

are the results for transformation (T1), θT2 and δ̄deT2
are the results for transformation (T2), and θT3

and δ̄deT3
are the results for transformation (T3).

Case 1

Performance
measure

Transformation
(T1)

Transformation
(T2)

Transformation
(T3)

Total ISE 53.961 52.881 52.530

Total IAE 5.593 5.310 5.282

Total ISI 1.626 · 105 1.549 · 105 1.602 · 105

Total IAI 3.760 · 102 3.740 · 102 3.757 · 102

Case 2

Performance
measure

Transformation
(T1)

Transformation
(T2)

Transformation
(T3)

Total ISE 61.710 65.271 60.564

Total IAE 6.612 6.208 5.919

Total ISI 1.158 · 105 9.516 · 104 1.129 · 105

Total IAI 3.714 · 102 3.665 · 102 3.644 · 102

Table 7.3: Performance measures for the control coefficient transformations (T1)-(T3) applied in
the STA control design for simulation case 1 and 2.

For the STA, the differences between using the three transformations are minor. In case
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1, the performance of all the transformations are almost the same, which can be seen in
Figure C.2 and Table 7.3. In case 2, the error measures when using transformation (T3) are
slightly smaller than for transformations (T1) and (T2). Furthermore, the error measures
for case 2 when using transformation (T2) are actually larger than the error measures when
using transformation (T1). However, Figure 7.18 shows that the controller follows the
reference more closely at the beginning of the simulation when using the transformation
(T2).

7.7.3 ASTA
The results of using the different control coefficient transformations described in (T1)-(T3)
in the design of the ASTA for case 1 are shown in Figure 7.19. The performance measures
for case 1 can be found in Table 7.4. The control gains are chosen for the three different
transformations as

(T1) ωe1 = 1, γe1 = 0.05, εe = 0.05, λe = 0.1, αem = 0.2, αe0 = 1

(T2) ωe1 = 11, γe1 = 2, εe = 2, λe = 5, αem = 0.2, αe0 = 5

(T3) ωe1 = 11, γe1 = 2, εe = 2, λe = 5, αem = 0.2, αe0 = 5

Figure 7.19: The pitch angle tracking results and control signals for the single-input ASTA applied
to the decoupled longitudinal model for case 1. The pitch angle θT1 and elevator deflection δ̄eT1

are the results for transformation (T1), θT2 and δ̄eT2 are the results for transformation (T2), and θT3

and δ̄eT3 are the results for transformation (T3).

The results of using the different control coefficient transformations described in (T1)-
(T3) in the design of the ASTA for case 2 are shown in Figure 7.20. The performance
measures can be found in Table 7.4. The control gains are chosen for the three different
transformations as
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(T1) ωe1 = 0.6, γe1 = 0.01, εe = 0.0005, λe = 0.13, αem = 0.2, αe0 = 0.07

(T2) ωe1 = 10, γe1 = 0.4, εe = 0.08, λe = 2, αem = 0.2, αe0 = 3

(T3) ωe1 = 10, γe1 = 0.4, εe = 0.08, λe = 2, αem = 0.2, αe0 = 3

Figure 7.20: The pitch angle tracking results and control signals for the single-input ASTA applied
to the decoupled longitudinal model for case 2.The pitch angle θT1 and elevator deflection δ̄deT1

are
the results for transformation (T1), θT2 and δ̄deT2

are the results for transformation (T2), and θT3

and δ̄deT3
are the results for transformation (T3).
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Case 1

Performance
measure

Transformation
(T1)

Transformation
(T2)

Transformation
(T3)

Total ISE 44.434 48.906 46.924

Total IAE 4.354 4.555 4.460

Total ISI 2.000 · 105 1.218 · 105 1.319 · 105

Total IAI 4.723 · 102 3.644 · 102 3.644 · 102

Case 2

Performance
measure

Transformation
(T1)

Transformation
(T2)

Transformation
(T3)

Total ISE 73.894 74.269 67.892

Total IAE 7.290 6.411 5.936

Total ISI 8.256 · 104 7.731 · 104 8.327 · 104

Total IAI 3.793 · 102 3.709 · 102 3.708 · 102

Table 7.4: Performance measures for the control coefficient transformations (T1)-(T3) applied in
the ASTA control design for simulation case 1 and 2.

In case 1, the tracking results in Figure 7.19 show that all three control coefficient
transformations achieve almost identical tracking of the reference, but the control signals
are different. This difference in control signal between (T1), and (T2) and (T3) may be
due to the different configuration of control gains, as (T2) and (T3) have the same control
gains, and produce similar control signals. The similarity of the tracking results in case 1
can also be seen by the error measures in Table 7.4.

In case 2, there is some difference in the performance measures presented in Table 7.4
for the transformations. Transformation (T3) has the lowest error measures, while (T2)
has the largest. However, (T2) also uses the least amount of input, which may explain the
slightly higher error measures. The fact that there is an improvement in using transfor-
mation (T3) in case 2 may be because of the assumption that bθ is in fact known in the
control design, which would explain the difference between using the transformations (T1)
and (T2), and the transformation (T3). Additionally, the results in Figure 7.20 show that
the tracking results for transformations (T2) and (T3) follows the reference signal more
closely than the result for transformation (T1).

7.7.4 GSTA
The results of using the different control coefficient transformations described in (T1)-
(T3) in the design of the GSTA for case 2 are shown in Figure 7.21. The performance
measures can be found in Table 7.5. The control gains are chosen for the three different
transformations as

(T1) βeg = 0.0001, ke1 = 0.25, ke2 = 0.01
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(T2) βeg = 0.01, ke1 = 7, ke2 = 3

(T3) βeg = 0.01, ke1 = 7, ke2 = 3

Figure 7.21: The pitch angle tracking results and control signals for the single-input GSTA applied
to the decoupled longitudinal model for case 2.The pitch angle θT1 and elevator deflection δ̄deT1

are
the results for transformation (T1), θT2 and δ̄deT2

are the results for transformation (T2), and θT3

and δ̄deT3
are the results for transformation (T3).
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Case 1

Performance
measure

Transformation
(T1)

Transformation
(T2)

Transformation
(T3)

Total ISE 44.735 44.502 44.427

Total IAE 4.391 4.364 4.361

Total ISI 1.701 · 105 1.744 · 105 1.804 · 105

Total IAI 3.728 · 102 3.744 · 102 3.880 · 102

Case 2

Performance
measure

Transformation
(T1)

Transformation
(T2)

Transformation
(T3)

Total ISE 57.945 51.227 48.213

Total IAE 7.322 4.997 4.738

Total ISI 1.625 · 105 1.338 · 105 1.545 · 105

Total IAI 3.801 · 102 3.650 · 102 3.721 · 102

Table 7.5: Performance measures for the control coefficient transformations (T1)-(T3) applied in
the GSTA control design for simulation case 1 and 2.

For the GSTA, the results of the transformations are almost identical in case 1, which
can be seen from Table 7.5 and Figure C.3. In case 2, there is a more noticeable difference
between the transformations, with the error measures for transformation (T3) being lower
than for the other transformations, and the error measures for transformation (T1) being
the highest. Even so, the responses for case 2 are quite similar which can be seen in Figure
7.21. However, the controller performs better tracking of the reference for transformations
(T2) and (T3), which can be seen in Figure 7.21, where the controller using the (T1)
transformation does not reach the reference value as fast as the two other signals.

7.8 Tuning of the Single-Input Controllers
The above discussion of and comparison between the controllers presented in section 7.1-
7.6 is based on control gain configurations chosen through trial and error. This means that
some algorithms may have a more optimal control gain configuration than others, which
means that the basis of the discussion above may be unfair. The process of choosing
control gains is both difficult and time-consuming, and it is difficult to determine whether
the current configuration could be better. This means that algorithms that are difficult to
tune will probably end up with a less optimal control gain configuration than an algorithm
that is easy to tune. Additionally, some algorithms may give similar results for completely
different sets of control gains, which further complicates the tuning process.

Both the saturation controller and the STA have only one or a few control gains and are
easy to tune. However, in case 2, the saturation controller proved to be prone to chattering
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in the control signal, and it is difficult to determine when the control signal is smooth
enough, which may account for the poor error measures for the saturation controller in
case 2. The STA, on the other hand, proved to be easy to tune, and performs well for a
larger range of control gain values than the saturation controller.

Tuning the ASTA is an especially time-consuming process, even though the control
gains are adaptive. Several parameters have to be chosen in the update laws for the adaptive
gains, which complicates the design. Additionally, the threshold value αem in the update
rule for the adaptive gain αe, and the initial value αe0 have to be chosen. With a larger
threshold value, the control signal is smoother, but naturally, this means that there is a
pretty substantial loss in accuracy. The initial value αe0 is also an important parameter
that has to be chosen carefully. A small initial value would make the oscillations at the
beginning of the simulation in case 2, which can be seen in Figure 7.11, even larger.
However, choosing a value for αe0 that is too large will increase the chattering in the
control signal substantially for the entirety of the simulation.

The GSTA is an example of a control algorithm that can perform satisfactory reference
tracking for multiple different configurations of the control gains. This both simplifies and
complicates the tuning process as it is easy to produce good results, but it is also difficult
to determine the most optimal gain configuration.

Furthermore, in the control coefficient transformations in section 7.7, there is a dif-
ference in the tuning process for the control algorithms. Ideally, it would be possible to
choose one control gain configuration for each algorithm for the transformation (T1) in
which only the sign of the control coefficient is known, and then scale the configuration
by the airspeed Va when using the other transformation in (T2). This is convenient since
it would then be possible to produce the same results for a range of different airspeeds.
However, this kind of scaling of the control gains is only possible for some of the algo-
rithms considered in this report. The saturation controller and the STA both give similar
results for (T1) and (T2) when their control gain configuration is scaled by the airspeed
reference Va0

, while the ASTA and the GSTA do not.
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Chapter 8
Results for the 6DOF Model

In this chapter, the simulation results for the SISO and MIMO control designs are pre-
sented and discussed. The reason for combining the results and the discussion is that the
simulation results are extensive, as they include many control designs and also investigate
several aspects of the designs. Therefore, this chapter is used to illustrate the overall per-
formance of the different SISO and MIMO control designs, as well as their similarities and
differences, rather than showing the simulation results of each control design separately.
Additionally, several factors in the modeling of the system are investigated, such as the
sensitivity of the control designs to actuator dynamics and modeling errors.

In section 8.1, the effect of using two different types of angular rate reference signals
is investigated. The results for the SISO and MIMO control designs are presented and
discussed in section 8.2 and section 8.3, respectively, for simulation case 1 and 2. A
comparison between the SISO and MIMO results for case 1 and case 2 is then made in
section 8.4. Then, the simulation results for case 3 and case 4 for only some of the SISO
and MIMO control designs are presented and discussed in section 8.5. The same SISO and
MIMO designs are then used to investigate the sensitivity of the designs to the modeling
of the actuator dynamics and to the choice of sampling frequency in section 8.6 and 8.7,
respectively. Section 8.8 briefly investigates the effect of removing the modeling errors
from the simulation model. Finally, the importance of the discontinuous terms in the
MSTA and the GMSTA designs is investigated in section 8.9.

8.1 The Effect of the Angular Rate Reference
In this section, the effect of using either the angular rate reference ωd generated by (6.24)
or a zero angular rate reference for the MIMO GMSTA control design is investigated. The
tracking results and the generated control signals for simulation case 2 when using a zero
angular rate reference are presented in Figure 8.1, and the results when using an angular
rate reference ωd 6= 0 are presented in Figure 8.2.

The GMSTA design performs satisfactory tracking of the roll and pitch references
in both Figure 8.1a and Figure 8.2a. When using a non-zero angular rate reference, the
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GMSTA also manages to follow the angular rate references, which can also be seen in
Figure 8.2a. There are some differences between the two tracking results, as the tracking
performance for a non-zero ωd is slightly better than the performance when ωd = 0. This
comes at a cost, however, as the control commands when ωd = 0 are smoother than for
ωd 6= 0, which can be seen by comparing Figure 8.1b and Figure 8.2b. Even though there
are some spikes in the control signals when ωd = 0, they are much smaller in size than the
spikes in the control signals when ωd 6= 0, which almost reach the maximal and minimal
deflection values several times during the simulation. This might be due to the way the
angular rate reference is generated, as a discontinuity in the angle reference will result in
a very large angular rate reference. This means that even though the tracking results are
better for ωd 6= 0 than for ωd = 0 in theory, this might not be the case in reality as the
control signals in Figure 8.2b are unrealizable in a physical system.

Even though only the results for the GMSTA design for case 2 are presented here, they
are representative of the results for the other MIMO control designs and simulation cases,
as well as the SISO control designs. Therefore, the rest of the results are generated when
using a zero angular rate reference ωd = Θ̇d = 0.
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(a) Tracking of the roll and pitch references, and the roll and pitch rate references.

(b) The control input.

Figure 8.1: The simulation results for the MIMO GMSTA for case 2 when ωd = 0.
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(a) Tracking of the roll and pitch references, and the roll and pitch rate references.

(b) The control input.

Figure 8.2: The simulation results for the MIMO GMSTA design for case 2 when ωd 6= 0.

8.2 The SISO Control Designs for Case 1 and Case 2

8.2.1 The Tracking Performance
All the SISO control designs can perform satisfactory tracking of the reference signal and
reach all the waypoints in the waypoint setW (6.17), which can be seen in Figure 8.3 for
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case 2. The resulting flight paths for case 1 are very similar, with slightly fewer oscillations
in the pitch angle, and can be seen in subsection D.1.1.

(a) North-East-Up view of the flight paths.

(b) North-East view of the flight paths.

Figure 8.3: The flight paths of all the SISO algorithms for case 2.

The control gains and other parameters for all control designs and for both simulation
case 1 and 2 are chosen by trial and error with the goal of achieving approximately the
same input use for all the algorithms. The choice of control gains and system parameters
can be found in section D.2.

Even though the flight paths in Figure 8.3 are very similar, there are some small dif-
ferences between the behavior of the control designs. Firstly, the second-order algorithms,
i.e. the STA, the ASTA, and the GSTA, all follow approximately the same path in the
North-East-plane, while the flight path of the saturation control design is slightly differ-
ent. That does not necessarily mean that the overall performance of the saturation control
design is worse than those of the STA and its extensions, but it is interesting to see that
all the second-order methods generate a similar flight path, while the first-order saturation
controller produces a slightly different one.

When looking at the flight path in the North-East-Up view in Figure 8.3a, it is possible
to see some minor differences between the second-order algorithms, which can also be
seen in the performance measures presented in Table 8.1 for simulation case 2. The per-
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formance measures are similar, with the GSTA performing slightly better than the other

Simulation case 1

Performance measure Saturation
Controller

STA ASTA GSTA

Total ISE 1.056 · 103 1.121 · 103 9.896 · 102 9.860 · 102

Total IAE 1.666 · 102 1.586 · 102 1.553 · 102 1.529 · 102

Total ISI 1.429 · 103 1.392 · 103 1.377 · 103 1.392 · 103

Total IAI 2.949 · 102 2.895 · 102 2.890 · 102 2.907 · 102

Simulation case 2

Performance measure Saturation
Controller

STA ASTA GSTA

Total ISE 1.152 · 103 1.157 · 103 1.162 · 103 1.016 · 103

Total IAE 1.766 · 102 1.543 · 102 1.567 · 102 1.541 · 102

Total ISI 1.439 · 103 1.396 · 103 1.392 · 103 1.401 · 103

Total IAI 2.959 · 102 2.902 · 102 2.894 · 102 2.910 · 102

Table 8.1: The performance measures for the SISO control designs, which includes the saturation
controller, the STA, the ASTA, and the GSTA designs, for simulation cases 1 and 2.

algorithms. However, by comparing the tracking results for the ASTA and the GSTA
designs in Figure 8.4 it is clear that in practice, the differences in error measures are almost
impossible to distinguish without quantifying them with the error measures, as the tracking
results for the ASTA and the GSTA designs are almost the same. Overall, however, the
difference between the two designs are enough to be able to see some small differences in
the flight paths in Figure 8.3.

Figure 8.4: The tracking results for the ASTA and GSTA designs for simulation case 2.
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The GSTA is the algorithm with the smallest error measures in both case 1 and case 2.
The tracking results and control inputs generated by the GSTA design in case 1 and case
2 are shown in Figure 8.5, where it is again possible to see that such a small difference
in error measures is almost unnoticeable. This, however, speaks to the robustness of the
GSTA design to unmodeled dynamics. There is a small difference in the control signals
produced by the GSTA in case 1 and case 2; the large spikes in the control signal for case
1 have been somewhat attenuated by the actuator dynamics. This is a phenomenon that is
discussed further in the next subsections.

(a) The tracking results for the GSTA design.

(b) The control input generated by the GSTA design.

Figure 8.5: A comparison of the tracking performance and control input for the GSTA design for
case 1 and case 2. The control input ū is the control input generated by the control system in case 1
which is also the input to the UAV model since actuator dynamics and measurements are disregarded
in case 1. The control input ūd is the control input to the UAV model in case 2, and is affected by
the actuator dynamics (6.16) and measurements.
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The comparison between the tracking performance of the ASTA and the GSTA designs
for case 2, which is presented in Figure 8.4, can be seen as a testimony to the robustness
of the saturation controller, the STA, and the ASTA control designs. The ASTA design
has the highest error measures for case 2 and the highest increase in error measures from
case 1 to case 2. However, it still performs satisfactorily in case 2. This means that the
performances of the other controllers are also acceptable. As the difference in performance
between the ASTA and the GSTA designs for case 2, which is presented in Figure 8.4, is
minimal despite a difference in error measures, it is a testimony to the robustness of the
saturation controller, the STA and the GSTA control designs to unmodeled dynamics. This
is because their increases in performance measures from case 1 to case 2 are much smaller
than the increase for the ASTA design, which is still able to perform attitude tracking
despite having the largest error measures for case 2, as well as the largest increase from
case 1 to case 2.

8.2.2 Sliding Variable
The objective of SMC design is to drive the sliding variable to zero, which in the case of the
SISO control designs means to drive the system to the sliding surfaces σa = σe = 0. All
the control designs drive the sliding variables toward zero, but there are some differences
in how well the control designs manage to keep the system in the sliding mode.

The error measures for the ASTA and the GSTA designs are almost identical for case
1, which can be seen in Table 8.1, so it is reasonable to believe that the two control designs
should have similar sliding variables or at least sliding variables that overall have the same
magnitude. This is confirmed by Figure 8.6, where we can see that the ASTA is better than
the GSTA at driving the lateral sliding variable to zero and enforcing the sliding mode for
the lateral dynamics, while the GSTA is better than the ASTA at enforcing the sliding
mode in the longitudinal dynamics. Thus, it makes sense that the overall error measures
are very similar for the ASTA and the GSTA designs.

Figure 8.6: The sliding variables for the ASTA and the GSTA designs for case 1.

The sliding variables for case 1 are similar for the saturation and the GSTA control
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designs, and for the STA and ASTA designs. The STA and the ASTA designs enforce the
sliding mode in the lateral dynamics better than the saturation and the GSTA designs with
less oscillations and smaller amplitudes of the deviance of σa from zero. However, for the
longitudinal dynamics, the saturation and the GSTA control designs are better at keeping
the sliding variable from growing too large, while the STA and the ASTA designs are still
better at enforcing the sliding mode once the sliding surface has been reached. For all
the control designs it seems that the longitudinal dynamics are more sensitive and prone
to chattering and oscillations in the control input δ̄e than the lateral dynamics and control
input δ̄a.

For case 2, there is more chattering in the control surface, which is caused by the
actuator dynamics and the fact that the control designs now use a measured state instead
of the actual continuous state. The difference in the sliding variable from case 1 to case 2
is shown for the saturation and the ASTA control designs in Figure 8.7.

(a) The sliding variables for the saturation control design.

(b) The sliding variables for the ASTA design.

Figure 8.7: A comparison of the sliding variables generated for case 1 and case 2 for the saturation
and the ASTA control designs.

In Figure 8.7 we can see that neither the sliding variables for the saturation design nor
those for the ASTA design contain chattering. However, for case 2, there is a significant
increase in chattering in the sliding variables, especially in the lateral sliding variable σa.
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Additionally, there are more oscillations in the sliding variables for case 2 than for case 1
for both controllers, which is as expected. As we will see in the next subsection, chattering
in the sliding variable does not necessarily mean that there is more chattering in the control
input.

8.2.3 Control Input
The control commands are similar for all control designs and for simulation case 1 and
case 2. As for the sliding variables, the input generated by the saturation control design is
similar to the one generated by the GSTA design, and the control input for the STA design
is similar to that of the ASTA design. The fact that the control designs with similar sliding
variables produce similar control inputs is as expected.

The control inputs for simulation case 1 tend to have large spikes, such as the ones that
appear in the control inputs generated by the longitudinal control design discussed in the
previous chapter but have smaller and fewer oscillations. In the control inputs generated
in case 2, these large spikes are attenuated by the actuator dynamics, but there are slightly
more small high-frequent oscillations in the control signals, which reflect the increase in
oscillations in the sliding variables described in the previous subsection. The increase in
oscillations from case 1 to case 2 is also visible in the input use measures in Table 8.1,
which are slightly higher for case 2 than for case 1. The control inputs generated by the
saturation and the STA designs for case 1 and case 2 can be seen in Figure 8.8. The results
for the saturation and the STA control designs highlight the attenuation of the spikes, and
the oscillations in case 2 compared to case 1. As discussed for the longitudinal model in
the previous chapter, these spikes in the control signal are not realizable in practice, and
therefore give a better result during simulations than would be the case in reality. Further-
more, it seems that the saturation control design, and the GSTA design which produces a
similar control input, are more prone to these spikes than the STA and the ASTA designs.

An important thing to note is that it is necessary to re-tune the control gains and system
parameters from case 1 to case 2, as the control gains for case 1 cause too much chattering
in case 2 for the control input to be feasible. In most cases, the tuning of the control gains
for case 2 is less aggressive than for case 1. An exception of this is the GSTA, which has
the same control gain configuration for both case 1 and case 2, something that speaks to the
robustness of the GSTA design as it also has the lowest error measures for both case 1 and
case 2. Additionally, the control gain configurations for the longitudinal dynamics have to
be chosen less aggressively than the lateral control gain configurations, as the longitudinal
dynamics are more sensitive to the disturbances that are present in the system, so that δ̄e
is generally less smooth than δ̄a in both case 1 and case 2.
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(a) The control input generated by the saturation control design.

(b) The control input generated by the STA design.

Figure 8.8: A comparison of the control inputs generated for case 1 and case 2 for the saturation
and the STA control designs.

For case 2, it is interesting how the increased chattering in the sliding variables dis-
cussed in the previous section affects the control signals. In Figure 8.9 the commanded
control signals that are generated by the sliding mode controllers, ū, and the actual control
input to the model, ūd (6.16), after actuator dynamics and measurements are presented for
the ASTA and the GSTA.
In Figure 8.9 it is clear that the measurements and the actuator dynamics significantly
attenuate the chattering in the commanded control signal caused by the chattering in the
sliding surface. However, the ASTA is more sensitive to this chattering than the GSTA, and
some chattering remains in the control input to the UAV model which is shown in Figure
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8.9. Additionally, it can be seen in Figure 8.9a that δ̄de is affected more by chattering than
δ̄da, even though there is more chattering in δ̄a than in δ̄e and the longitudinal control gains
are much smaller than the lateral control gains, which can be seen in Table D.1.

(a) The control command generated by the ASTA de-
sign.

(b) The control input generated by the ASTA control
design.

(c) The control command generated by the GSTA con-
trol design.

(d) The control input generated by the GSTA control
design.

Figure 8.9: A comparison of the commanded control signal ū generated for the ASTA and the GSTA
control designs and the resulting control input to the UAV model ūd for case 2.

8.3 The MIMO Control Designs for Case 1 and Case 2

8.3.1 The Tracking Performance
The MIMO control designs, which include the MSAT, the MSTA, the AMSTA, and the
GMSTA, are all capable of following the waypoints in the waypoint set for both simulation
case 1 and case 2. The flight paths for all the control designs for case 2 are shown in Figure
8.10.
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(a) North-East-Up view of the flight paths.

(b) North-East view of the flight paths.

Figure 8.10: The flight paths of all the MIMO algorithms for case 2.

and the flight paths for case 1 are shown in subsection D.1.
The control gains for the MIMO control designs are chosen by trial and error while

trying to achieve approximately the same input use for all the control algorithms in each
simulation case. The choice of control gains and other parameters can be found in subsec-
tion D.2.2 for case 1 and case 2.

The flight paths for case 1 are all very similar to each other, while Figure 8.10 shows
that in case 2, the flight paths are still very similar, except for the flight path of the AMSTA,
which is slightly different from the rest. This can be seen in the tracking results for case
2 in Figure 8.11, where the MSTA and the AMSTA have similar performances for case 1,
with the AMSTA performing only slightly better.
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(a) The tracking results for the MSTA.

(b) The tracking results for the AMSTA.

Figure 8.11: A comparison of the tracking results for the MSTA and the AMSTA for both case 1
and case 2.

In case 2, however, the MSTA clearly outperforms the AMSTA in the tracking of the
pitch reference, while the tracking of the roll reference is approximately the same for both
control designs. This is also reflected in the error measures in Table 8.2, where the increase
in error measures from case 1 to case 2 is bigger for the AMSTA than for the MSTA. Even
so, the AMSTA still performs satisfactorily for case 2. Another interesting thing about the
tracking results in Figure 8.11 is that the tracking of the roll reference barely changes from
case 1 to case 2, while the change in the tracking of the pitch reference is noticeable for
both the MSTA and the AMSTA. Therefore, it seems that the longitudinal dynamics are
more sensitive to disturbances than the lateral dynamics, which becomes clear in case 2
when unmodeled dynamics are present.

In subsection 5.5.2, the sliding variable for the MIMO control designs is chosen so
that when σ is zero we have that eω = −kΓeΓ so that the control design tracks the roll
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Case 1

Performance measure MSAT MSTA AMSTA GMSTA
Total ISE 1.251 · 103 1.086 · 103 9.906 · 102 7.809 · 102

Total IAE 1.792 · 102 1.591 · 102 1.454 · 102 1.365 · 102

Total ISI 1.497 · 103 1.522 · 103 1.611 · 103 1.602 · 103

Total IAI 3.115 · 102 3.351 · 102 3.355 · 102 3.351 · 102

Case 2

Performance measure MSAT MSTA AMSTA GMSTA
Total ISE 1.180 · 103 1.277 · 103 2.341 · 103 8.122 · 102

Total IAE 1.731 · 102 1.760 · 102 2.207 · 102 1.376 · 102

Total ISI 1.520 · 103 1.544 · 103 1.511 · 103 1.608 · 103

Total IAI 3.180 · 102 3.226 · 102 3.213 · 102 3.334 · 102

Table 8.2: Performance measures for the MIMO control designs, which includes the MSAT, the
MSTA, the AMSTA, and the GMSTA, for simulation case 1 and case 2.

and pitch references, and that ω‖b = g tanφ
Va

Γ so that it is possible to track the angular
rate references. The fact that the control designs are able to track the roll and pitch rate
references are confirmed in section 8.1, while the results in Figure 8.12 shows that the yaw
rate in the inertial frame ψ̇ follows the desired yaw rate generated by the coordinated-turn
equation (6.23). Thus, it is confirmed that driving the sliding variable to zero generates the
desired results.

In Figure 8.12, the inertial yaw rates for the MSAT and the GMSTA control designs for
both case 1 and case 2 are shown. For the MSAT, the yaw rate in case 2 is perhaps slightly
closer to the desired yaw rate than in case 1, which makes sense as the error measures for
the MSAT in Table 8.2 are actually lower for case 2 than for case 1. However, the change in
error measures from case 1 to case 2 is relatively minor, so it makes sense that there is not
a very noticeable change in the generated yaw rate. The results for the GMSTA changes
from case 1 to case 2 as well, as there is an increase in oscillations in ψ̇ in case 2. This
increase in oscillations does not appear for the MSAT from case 1 to case 2, so it seems that
this is a phenomenon that only appears in the second-order methods, which is confirmed
by the results in Figure 8.13. In Figure 8.13, the results show that the yaw rates generated
by the MSTA and the AMSTA for case 2 are much less smooth than the yaw rates for case
1. This implies that the second-order algorithms are theoretically more robust than the
first-order MSAT, which is a surprisingly efficient and robust control method compared to
the MSTA and the AMSTA. This is also reflected in the error measures in Table 8.2, where
the error measures for the MSAT are higher than those for the second-order algorithms
in case 1, while in case 2, the error measures for the MSAT are lower than those for the
MSAT and the AMSTA. However, the GMSTA outperforms the other algorithms in both
case 1 and case 2 in terms of error measures.
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(a) The MSAT results.

(b) The GMSTA results.

Figure 8.12: The yaw rates in the inertial frame, ψ̇, for the MSAT and the GMSTA compared to the
inertial yaw rate generated by the coordinated-turn equation (6.23) for both simulation case 1 and
case 2.

(a) The MSTA results.

(b) The AMSTA results.

Figure 8.13: The yaw rates in the inertial frame, ψ̇, for the MSTA and the AMSTA compared to the
inertial yaw rate generated by the coordinated-turn equation (6.23) for both simulation case 1 and
case 2.
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8.3.2 Sliding Variable
All the MIMO control designs manage to drive the sliding variable to zero for case 1 and
case 2, with some algorithms driving σ to zero faster than others, and some algorithms
being better at enforcing the sliding mode once the sliding surface has been reached.

The MSAT and the MSTA designs have similar sliding surfaces in both case 1 and case
2, which can be seen in Figure 8.14. However, it seems that the sliding variable approaches
zero slightly faster for the MSTA design than for the MSAT design in case 1. This might
also be the case for simulation case 2, but the size of the deviations of the sliding variable
from the sliding surface is larger for the MSTA than for the MSAT in case 2. Therefore,
the sliding variables for both control design approach the sliding surface at approximately
the same time in case 2.

Furthermore, the sliding variable is much smoother for the MSTA than for the MSAT
in case 1, while the increase in chattering in the sliding surface from case 1 to case 2 is
much more noticeable for the MSTA design than for the MSAT design. The components
of σ for the MSAT design appears to follow approximately the same trajectories in both
case 1 and case 2, but with slightly more chattering in case 2. For the MSTA design, on
the other hand, the peaks in the components of the sliding variable are clearly bigger in
case 2 than in case 1, with the peaks in σ1 even being bigger than the peaks in σ1 for the
MSAT design. The increase in the magnitude of the sliding variable from case 1 to case
2 for the MSTA design is especially true for the last component of σ, σ3. However, σ3 is
only slightly larger for the MSTA design in case 2 than for the MSAT design in both case
1 and case 2.

The increase in oscillations in σ from case 1 to case 2 for the MSTA design is as
expected based on the results presented in Figure 8.12-8.13, where the oscillations in ψ̇
increased more for the second-order algorithms than for the MSAT design.

Even though there is a larger increase in oscillations for the MSTA design than for the
MSAT design, the sliding variables have approximately the same amount of chattering in
case 2, which can be seen in Figure 8.14. However, it is not possible to find any chattering
in σ3 for the MSTA design in case 2, while there is a small amount in σ3 for the MSAT
design. Another thing that can be noted in Figure 8.14 is that it seems that σ1 is more
prone to chattering than σ2 and σ3.

149



Chapter 8. Results for the 6DOF Model

(a) The sliding variable for the MSAT design.

(b) The sliding variable for the MSTA design.

Figure 8.14: The components of the sliding variable σ generated by the MSAT and the MSTA
designs in case 1 and case 2.

The sliding variables for the AMSTA and GMSTA designs are both different from the
sliding variables for the MSAT and MSTA designs but are similar to each other. This
can be seen in Figure 8.15. In case 1, the AMSTA and the GMSTA designs show that
they are better at enforcing the sliding mode in the system once the sliding surface has
been reached, than the MSAT and the MSTA designs presented in Figure 8.14. Especially
the AMSTA shows robust behavior by keeping the system almost exactly on the sliding
surface once it has been reached, which separates it from the rest of the control designs.
The GMSTA also keeps the first two components of σ, σ1 and σ2, approximately at zero
with some minor oscillations, while there are more oscillations in σ3, which separates it
from the AMSTA design in case 1.

In case 2, however, the sliding variable for the AMSTA design has several large peaks,
which are much smaller for the GMSTA design. This is expected considering the measures
in Table 8.2, where the error measures for case 1 are similar, while the error measures for
the AMSTA design in case 2 are much higher than for the GMSTA. Additionally, the
chattering in the sliding variable is more prominent for the AMSTA design than for the
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GMSTA design for case 2. The GMSTA design barely has any chattering, and σ3 does not
contain any at all.

(a) The sliding variable for the AMSTA design.

(b) The sliding variable for the GMSTA design.

Figure 8.15: The components of the sliding variable σ generated by the AMSTA and the GMSTA
in case 1 and case 2.

Overall, the sliding variables for the MIMO control designs have large spikes in σ1

and σ2, while the spikes in σ3 are much smaller in magnitude. Furthermore, there is more
chattering in σ1 and σ2 for all the control designs in case 2, while σ3 contains little to no
chattering.

8.3.3 Control Input
The control inputs generated by the MSAT, the MSTA, and the GMSTA designs are all very
similar. The control inputs generated by the MSTA and the AMSTA control designs are
shown in Figure 8.16 for both case 1 and case 2. In Figure 8.16, we can see that the control
signals generated by the MSTA design have several large spikes that are not as present in
the control signals generated by the AMSTA design. These spikes are attenuated by the
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actuator dynamics in case 2, even though additional spikes in the control input generated
by the AMSTA appears in case 2.

In addition to the attenuation of the spikes in the control signals, the aileron control
signal is slightly smoother in case 2 both for MSTA and for the AMSTA. However, the
elevator and rudder control signals are slightly less smooth for both control designs in
case 2. This is as expected based on the input use measures in Table 8.2, where there is
a minor increase in the input use measures for the MSTA design from case 1 to case 2.
The input measures for the AMSTA, however, actually decrease from case 1 to case 2,
while the rest of the control designs have higher input measures for case 2 than case 1.
This makes sense by looking at the control inputs in Figure 8.16, where δ̄da is smaller in
amplitude than δ̄a, while the other control inputs are approximately the same for case 1
and case 2.

As there is some chattering in the sliding variables for case 2 discussed in the previous
subsection, it is natural to expect that there is also chattering in the control signals pro-
duced by the multivariable controllers. This is confirmed by Figure 8.17, where there is
clearly chattering in the commanded control signals for both the AMSTA and the GMSTA
designs, which is the control ū before actuator dynamics and measurements. However,
due to the coupling in the sliding variable, it is not straightforward to determine just by
looking at the simulation results which component of the sliding variable that causes chat-
tering in the commanded control signals. A common trait of the sliding variables for all
the control designs discussed in the previous subsection is that there is more chattering in
σ1 and σ2, than in σ3. In Figure 8.17, however, δ̄r is the control signal that is the least
affected by chattering for the AMSTA design, while it is the control signal with the most
chattering for the GMSTA. On the other hand, δ̄a is the control signal with the smallest
amount of chattering for the GMSTA, while δ̄a and δ̄e are the control signals that are the
most affected by chattering for the AMSTA. Even though the chattering in the commanded
control signals are sufficiently attenuated by the actuator dynamics and measurements for
the GMSTA, some chattering remains in δ̄da and δ̄de for the AMSTA.
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(a) The control input generated by the MSTA design.

(b) The control input generated by the AMSTA design.

Figure 8.16: The control input generated by the MSTA and the AMSTA in case 1 and case 2.

Note that a significant re-tuning of most of the control designs from case 1 to case 2
was necessary to produce adequate tracking results in case 2. This can be seen by looking
at the control gains presented in subsection D.2.2. For the MSAT and the GMSTA the
re-tuning involves slightly increasing or decreasing the control gains, while for the MSTA
and AMSTA, the control configurations in case 1 and case 2 are completely different.
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(a) The control command ū generated by the AMSTA
design.

(b) The control input ūd generated by the AMSTA
design.

(c) The control command ū generated by the GMSTA
design.

(d) The control input ūd generated by the GMSTA
design.

Figure 8.17: The commanded signal ū input generated by the AMSTA and GMSTA controllers
compared to the resulting control input to the UAV model ūd for case 2.

8.4 Comparison of the SISO and the MIMO Designs

8.4.1 Tracking Performance
As seen in the previous two sections, all the SISO and MIMO control designs are capable
of following the waypoints inW . All the algorithms achieve approximately the same error
measures for case 1 and case 2, which can be seen in Table 8.1 and Table 8.2. Interestingly,
the control designs based on the GSTA and the GMSTA have the lowest error measures for
both the SISO and MIMO control designs, respectively, with the GMSTA design having
the lowest error measures out of all the control designs in both case 1 and case 2. However,
the GMSTA also has the highest input use measures in both simulation cases. In case 1,
the MIMO control designs have lower error measures than the SISO designs, except for
the MSAT design, which has the highest error measures of all the control designs for case
1. The MSAT, however, is the only control design with lower error measures for case 2
than for case 1, even though it still has higher error measures than the SISO control designs
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in case 2. Overall, the SISO control designs have smaller error measures than the MIMO
control designs in case 2, except for the GMSTA design, even though the MIMO control
designs all have higher input use measures than the SISO algorithms. This implies that the
MIMO designs are theoretically more efficient and robust to disturbances than the SISO
control designs, while in more realistic conditions, the SISO control designs are actually
more robust than the MIMO control designs overall.

The SISO and MIMO control designs are also very similar in the kind of reference
signal they produce. As the error measures are approximately the same for all the control
designs, which means that the tracking performances are similar, this is expected since the
reference trajectory is generated based on the ability of the control design to follow the
reference. This means that if a control design does not track the reference closely enough,
the reference will grow unbounded. This proved to be a challenge during the tuning pro-
cess as it is difficult to remove high-frequent oscillations in the control signal, while still
producing a feasible reference trajectory. Especially the pitch angle reference proved to be
vulnerable if the controller is not tuned aggressively enough. The similarities between the
reference signals produced by the SISO and the MIMO control designs are demonstrated
in Figure 8.18, where the reference signals for the STA and the MSTA designs for case 2
are presented.

Figure 8.18: The reference signals for the STA and the MSTA designs for case 2.

Another interesting thing that can be noted in Figure 8.18 is that there are several small
discontinuities in the reference signals, both in φd and θd for both control designs. This
is unfortunate, as a sudden change in the reference signal may contribute to the spikes in
the control signals presented in the two previous sections. As the scope of this report is
the design of attitude control systems, minimal focus has been placed on the guidance and
navigation aspect in the simulation model, which may be improved by generating a more
continuous signal that is easier to track for the control system.

Even though the error measures for the SISO control designs are generally lower than
for the MIMO designs in case 2, the MIMO designs still manage to track the pitch refer-
ence better than the SISO designs. This is demonstrated in Figure 8.19, where the tracking
results for the STA and the MSTA designs are presented for case 2. In case 2, the error
measures for the STA design are smaller than for the MSTA design. Yet, the MSTA design
tracks the pitch reference as well, or even better, than the STA design. The fact that the
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error measures are smaller for the STA design is because of the tracking of the pitch angle
reference, which is only slightly better for the STA design than for the MSTA design. This
is because it is possible to tune the lateral controllers in the SISO designs to track the roll
reference extremely well without requiring a much higher input use. However, the longi-
tudinal control input tends to be prone to high-frequent oscillations in the SISO designs,
which is why the tracking of the pitch reference is not as good for the SISO designs as for
the MIMO designs.

Figure 8.19: The tracking results for the STA and the MSTA designs for case 2.

The fact that the error measures for the SISO control designs are lower than for the
MIMO control designs is solely due to the tracking of the roll angle reference, as the
tracking of the pitch angle reference is as good or worse than the tracking performance of
the MIMO control designs. This is proven in Figure 8.20, where the tracking performance
of the MIMO control designs are better at tracking the pitch angle reference in every case,
except, perhaps, the AMSTA control design for case 2. This makes sense, however, as the
AMSTA for case 2 has the highest error measures of all the control designs.

(a) The saturation and the MSAT control designs for case 1.
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(b) The saturation and the MSAT control designs for case 2.

(c) The ASTA and the AMSTA designs for case 1.

(d) The ASTA and the AMSTA designs for case 2.

(e) The GSTA and the GMSTA designs for case 1.

(f) The GSTA and the GMSTA designs for case 2.

Figure 8.20: The pitch angle tracking results for the saturation, the MSAT, the ASTA, the AMSTA,
the GSTA, and the GMSTA control designs for case 1 and case 2.
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8.4.2 Sliding variable
The sliding variables for the SISO and the MIMO control designs are similar in pairs, but
they are different for each type of control design: the sliding variables for the saturation
and the GSTA designs, and those for the STA and the ASTA designs are similar for the
SISO control designs, while the sliding variables for the MSAT and MSTA designs and
those for the AMSTA and GMSTA designs are similar for the MIMO control designs.

The sliding variables for the SISO control designs generally contain more chattering
for simulation case 2, and more high-frequent oscillations than the MIMO control designs
in both case 1 and case 2. This is demonstrated in Figure 8.21 and Figure 8.22 for the
saturation and MSAT control designs, and for the GSTA and the GMSTA designs, respec-
tively.

(a) The sliding variable for the saturation control design.

(b) The sliding variable for the MSAT design.

Figure 8.21: The sliding variables for the saturation and the MSAT control designs for case 1 and
case 2.

In Figure 8.21, the components of the sliding variable for the MSAT design are smoother
than for the saturation control design, while they both contain the same spikes due to the
discontinuities in the reference signals discussed in the previous subsection. The sliding
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variable components are also smoother for the MSAT than for the saturation design in case
2 and contain less chattering as well. Figure 8.22 confirms that the sliding variable for the
GMSTA control design is smoother in case 1 than for the GSTA design and that the sliding
variable for the GSTA contains the most chattering in case 2. Figure 8.21 and Figure 8.22
are representative for the sliding variables for the STA and the MSTA designs, and for the
ASTA and AMSTA designs as well.

(a) The sliding variable for the GSTA design.

(b) The sliding variable for the GMSTA design.

Figure 8.22: The sliding variables for the GSTA and the GMSTA control designs for case 1 and
case 2.

8.4.3 Control Input
A big difference between the SISO and MIMO control designs is that in the MIMO design,
the rudder command is included in the SMC design instead of being generated by a PI-
controller, which is the case for the SISO control design. This puts a strain on the elevator
command in the SISO designs, which is typically less smooth than the elevator command
produced by the MIMO control designs. The aileron commands produced by the SISO
control designs also contain oscillations, but they are small in magnitude compared to the
oscillations in the elevator command. This is exemplified in Figure 8.23.
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(a) The control input produced by the saturation control design.

(b) The control input produced by the MSAT control design.

Figure 8.23: The control input produced by the sliding mode controllers in the saturation and the
MSAT control designs in case 1 and case 2. The control ū for case 1 is the control input generated
by the controllers, which is also the input to the UAV model, as there are no unmodeled dynamics
present in case 1. The control ūd for case 2 is the control input to the UAV model after actuator
dynamics and measurements.

Another thing that can be seen in Figure 8.23 most of the SISO and the MIMO control
designs produce control input that contain the characteristic spikes that have already been
mentioned in the previous subsections. However, it seems that the MIMO control designs
are overall more prone to these discontinuities in the control input, which might give an
unrealistically good impression of the MIMO designs compared to the SISO control de-
signs. A commonality for all the control commands produced by both the SISO and the
MIMO control designs is that they contain high-frequent motion around ū = 0, or slightly
less than zero for the elevator deflection, and more rigorous testing of the systems is there-
fore necessary to guarantee that the control signals are smooth enough to be feasible in
reality.

Additionally, several of the control inputs produced by the SISO and the MIMO de-
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signs, namely the ASTA, the MSTA, and the AMSTA control designs, contain a small
amount of chattering due to the chattering contained in the sliding variables for simula-
tion case 2. This can be seen in Figure 8.9 for the ASTA design and in Figure 8.17 for
the AMSTA designs. As can be seen in the previously mentioned figures, the chattering
is minimal, but it is difficult to remove it completely without sacrificing too much of the
tracking ability of the control designs. The AMSTA actually has some of the lowest input
use measures of the MIMO control designs for case 2, with the input use being lower for
case 2 than for case 1, so this speaks to the difficulty of removing the chattering in the
signal compared to many of the other control designs considered in this report. The same
can also be said for the ASTA design, which has the lowest input use measures for case 2
of the SISO control designs but still produces a control input that contains chattering.

8.4.4 Tuning
There is a big difference in the tuning process for the SISO and the MIMO designs. The
fact that the sliding variable is modeled by two separate decoupled sliding variables, σφ,
and σθ, allows us to choose the control gains for the lateral and longitudinal controllers
separately. When designing an attitude control system for a fixed-wing UAV, this is an
especially good thing, as the longitudinal dynamics seem to be more sensitive to external
disturbances and other uncertainties in the system than the lateral dynamics. Therefore,
it is beneficial that it is possible to choose a less aggressive control configuration for the
longitudinal controller than for the lateral controller so that both δ̄a and δ̄e are smooth
enough. However, this doubles the number of control gains that have to be chosen for
each control design, which complicates the tuning process significantly. From only that
perspective it is easier to choose control gains for the MIMO control designs. However,
the MIMO designs do not have the ability to choose control gains for each control signal,
so to produce three control signals that are smooth enough, it may be necessary to allow
higher tracking errors.

Furthermore, it is hard choosing the system parameters for both the SISO ASTA and
the AMSTA designs, despite the control gains being adaptive. In case 2 for both control
designs there are some remnants of chattering in the control signals from the chattering
in the sliding variables that could not be removed while still producing adequate tracking
results. For the MSTA design, it is easier to choose control gains than for the ASTA and
the AMSTA designs, since it is possible to achieve acceptable tracking performances for a
wider range of control gains, while it was surprisingly difficult to choose control gains for
the STA design for case 2. The control designs that are the easiest to tune are the saturation
and the MSAT designs, as these only have two parameters per controller. Adjusting the
size of the boundary layer proved to be a very effective tool to minimize chattering and
produce smooth control signals. Finally, the GSTA and the GMSTA are also easy to tune,
as they produce good results for several different control gain configurations. However, it
is difficult to determine the optimal configuration, which is also true for the other SISO
and MIMO control designs.

Of the second-order SISO and MIMO control designs, the ASTA and the AMSTA
designs definitely have the most difficult tuning processes, with the STA also being slightly
more difficult to tune than the other algorithms. There is a difference in the design of the
GSTA, the MSTA, and the GSTA, from the design of the STA, the ASTA, and the AMSTA,
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which is that the latter do not have added linear correction terms. The linear correction
terms were first added to the GSTA (Moreno, 2009) with the intention of making the
algorithm more robust. Due to the performance of the GSTA for the lateral dynamics in
Griffiths (2020) and for the longitudinal dynamics presented in chapter 7, it is possible
to conclude that the GSTA definitely have an advantage over the original STA. As the
SISO GSTA, the MSTA and GMSTA designs have also proven to be robust in the results
presented in this chapter, it would be reasonable to accredit some of this robustness to the
extra linear correction terms. The control gains for these terms were discovered to be very
useful and efficient in the tuning process, and are generally chosen quite large compared
to the other control gains for the MSTA, the GSTA, and the GMSTA designs.

8.4.5 Angle of Attack
The AoA is an important factor when designing an attitude control system for a UAV, as
it is dangerous if the AoA approaches the stall angle since this will cause a sudden drop
in the lift. It is necessary to determine whether the AoA reaches the stall angle, which
is typically around 15-20 deg (Beard and McLain, 2012), during the simulation, as the
system would not be stable in reality should this happen. The AoA for the STA and the
MSTA designs are presented in Figure 8.24 for case 1 and case 2. The results presented
in this figure are representative of all the control designs, which produce AoAs that satisfy
α ∈ [−5, 12] deg. Thus, the AoA does not reach the stall angle for either the SISO or the
MIMO control designs.

(a) The AoA for the STA design.

(b) The AoA for the MSTA design.

Figure 8.24: The AoA for the STA and MSTA control designs for case 1 and case 2.
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8.5 Results for Case 3 and Case 4

8.5.1 Tracking Results
The algorithms that are considered for case 3 and case 4 are the saturation, the GSTA, the
MSAT, and the GMSTA control designs. The reason for choosing these designs is that it
is interesting to compare the results of first-order and second-order designs, and the GSTA
and GMSTA is the control designs that have proven to be the most robust in case 1 and
case 2, together with the saturation control design.

The flight paths of these algorithms for case 3 can be found in Figure 8.25 and for
case 4 in Figure 8.26. Compared to the flight paths of the SISO and MIMO algorithms for
case 2 shown in Figure 8.3 and Figure 8.10, respectively, there is a much bigger difference
between the flight paths of the control designs for both case 3 and case 4 than for case 2.
Surprisingly, the algorithms produce flight paths that are more similar for case 4 than for
case 3, despite the increase in external disturbances and process noise from case 3 to case
4. The flight paths produced in case 4 also seems to be smoother than the flight paths for
case 3. Especially the GMSTA seems to produce a flight path with fewer oscillations than
the other flight paths.

(a) North-East-Up view of the flight paths.

(b) North-East view of the flight paths.

Figure 8.25: The flight paths of all the algorithms considered for case 3.
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As for case 1 and case 2, the flight paths of the algorithms are much more similar to
each other when only regarding the North-East view than when regarding the full North-
East-Up view, both in case 3 and case 4. This means that the control designs track the
roll reference approximately to the same degree in both case 3 and case 4. An example
of the tracking of the roll reference is given in Figure 8.27, which shows the roll angle
tracking performance of the GSTA design for case 3 and case 4. As for the results in case
1 and case 2, the SISO control designs are overall slightly better at tracking the roll angle
than the MIMO designs due to the lateral controllers having more aggressive control gains.
The choice of control gains and system parameters for case 3 and case 4 can be found in
subsection D.2.3.

(a) North-East-Up view of the flight paths.

(b) North-East view of the flight paths.

Figure 8.26: The flight paths of all the algorithms considered for case 4.

The roll angle tracking results shown in Figure 8.27 are very similar to the results for
case 1 and case 2. However, there is slightly more error in the tracking results for cases
3 and 4, than for cases 1 and 2. In the results for case 4, the reference trajectory is not as
smooth as for the other simulation cases. This is natural, as the wind speed in case 4 is
about 40% of the airspeed, which is in the upper range of possible wind speeds, which is
generally 20%-50% of the airspeed (Beard and McLain, 2012).
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Figure 8.27: The roll angle tracking results for the GSTA design in case 3 and case 4.

Based on the results for case 1 and case 2 presented in the previous sections, it is
expected that the pitch angle tracking performance of the control designs will be more
affected by the increase in external disturbances and process noise than the roll angle
tracking. The pitch angle tracking results for the saturation, the GSTA, the MSAT, and the
GMSTA control designs are shown in Figure 8.28 for case 3 and case 4. When looking
at just the pitch angle tracking results, it is clear that the MIMO designs considered here
outperform the SISO control designs in terms of tracking the reference closely, and in
providing smooth tracking. Especially the GMSTA manages to track the pitch reference
closely in both case 3 and case 4.

Even though Figure 8.28 shows that the MIMO designs are better at tracking the pitch
reference than the SISO designs, the error measures for the SISO designs are lower than
the measures for the MSAT in both case 3 and case 4. The error measures for case 3 and
case 4 can be found in Table 8.3. This is because the SISO designs generally perform better
roll angle tracking than the MIMO control designs, which is also the case for simulation
cases 1 and 2. However, the GMSTA has the smallest error measures out of all the control
designs considered in this section. This is as expected since the GMSTA also had the
smallest error measures for case 1 and case 2 of all the control designs considered in this
report.

Furthermore, the MSAT and the GMSTA still manage to produce inertial yaw rates that
correspond to the yaw rate given by the coordinated-turn equation (6.23). This is shown
for the GMSTA in Figure 8.29. However, there is a clear loss of smoothness in ψ̇ produced
by the GMSTA for case 3 and case 4 compared to ψ̇ for the MIMO algorithms presented in
Figure 8.13 for case 1 and case 2, which makes sense due to the increase in process noise
and wind speed.
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(a) The saturation control design.

(b) The GSTA design.

(c) The MSAT control design.

(d) The GMSTA design.

Figure 8.28: The pitch angle tracking results for the saturation, the GSTA, the MSAT, and the
GMSTA control designs for case 3 and case 4.
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Case 3

Performance measure Saturation
design

GSTA MSAT GMSTA

Total ISE 1.389 · 103 1.699 · 103 1.885 ·103 1.382 · 103

Total IAE 2.310 · 102 2.603 · 102 2.269 ·102 1.961 · 102

Total ISI 1.847 · 103 1.988 · 103 2.102 ·103 2.074 · 103

Total IAI 3.247 · 102 3.278 · 102 3.761 ·102 3.749 · 102

Case 4

Performance measure Saturation
design

GSTA MSAT GMSTA

Total ISE 1.270 · 103 1.285 · 103 1.398 ·103 1.162 · 103

Total IAE 2.508 · 102 2.420 · 102 2.279 ·102 2.203 · 102

Total ISI 1.998 · 103 1.984 · 103 2.405 ·103 2.354 · 103

Total IAI 3.402 · 102 3.390 · 102 4.075 ·102 4.078 · 102

Table 8.3: Performance measures for the saturation, the GSTA, the MSAT and the GMSTA control
design for simulation cases 3 and 4.

Figure 8.29: The yaw rate in the inertial frame, ψ̇, for the GMSTA compared to the inertial yaw rate
generated by the coordinated-turn equation (6.23) for simulation case 3 and case 4.

8.5.2 Sliding Variable
The sliding variables produced in case 3 and case 4 by the saturation and the MSAT control
designs can be found in Figure 8.30, and the sliding variables produced by the GSTA and
the GMSTA control designs can be found in Figure 8.31.

The saturation and the GSTA control designs are much better at enforcing the sliding
mode for the lateral sliding variable σφ than for the longitudinal sliding variable σθ. This
is as expected based on the tracking results discussed in the previous subsection and the
sliding variables produced by the SISO control designs in case 1 and case 2. The GSTA
is slightly better at keeping σφ at zero than the saturation control design in both case 3
and case 4, while the saturation control design is perhaps slightly better at enforcing the
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sliding mode for σθ than the GSTA design. This makes sense based on the error measures
in Table 8.3, which are higher for the GSTA design than for the saturation control design
in case 3, and approximately the same in case 4.

(a) The sliding variable for the saturation control design.

(b) The sliding variable for the MSAT control design.

Figure 8.30: The sliding variables for the saturation and the MSAT control designs for case 3 and
case 4.

The sliding variables produced by the MSAT and GMSTA control designs are very
similar in both case 3 and case 4. In case 3, the GMSTA is better at keeping σ1 at zero,
while in case 4 σ1 are approximately the same for both control designs. The error measures
for the MSAT control design are much closer to the error measures for the GMSTA design
in case 4 than in case 3, so this is as expected.

Furthermore, there seems to be approximately the same amount of chattering in each
simulation case for both SISO and both MIMO designs, with more chattering in case
3 than in case 4. Overall there is more chattering in the sliding variables for the SISO
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control designs than in the ones produced by the MIMO designs. For the saturation and
the GSTA control designs there is more chattering in σφ than in σθ, while for the MSAT
and the GMSTA control designs, σ1 contains more chattering than σ2 and σ3. Both these
results are as expected based on the sliding variables produced by the SISO and MIMO
control designs in case 1 and case 2. Overall, the sliding variables produced by the control
designs considered in this section contain approximately the same amount of oscillations,
and the motion of the sliding variables is much more high-frequent than the motion of
those produced in case 1 and case 2.

(a) The sliding variable for the GSTA design.

(b) The sliding variable for the GMSTA design.

Figure 8.31: The sliding variables for the GSTA and the GMSTA designs for case 3 and case 4.

8.5.3 Control Input
The increase in oscillations in the control input is significant for both the SISO and MIMO
control designs for case 3 and case 4 compared to case 1 and case 2. The control inputs
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produced by the saturation, the GSTA, the MSAT, and the GMSTA control designs in case
3 can be found in Figure 8.32, and the control inputs produced in case 4 can be found in
Figure 8.33. For case 3, the MSAT produces the least feasible control input, with many
large oscillations compared to the control inputs generated by the other control designs.
The MSAT has the largest input use measures for case 3 so it makes sense that its control
input is the one with the most oscillations. On the other hand, the GMSTA has the most
feasible control signal due to the smaller size of the oscillations, even though the GMSTA
has the second larges input use measures for case 3. This is due to the large size of the
peaks in the control signal, which is not a bad thing as the peak values of the control inputs
are still a long way from the saturation value at ±30 deg.

(a) The saturation and the GSTA control designs.

(b) The MSAT and GMSTA control designs.

Figure 8.32: The control input generated by the saturation, the GSTA, the MSAT and the GMSTA
control designs for case 3.

In case 4, however, the control input produced by the GMSTA is not more feasible than
the control inputs produced by the other control signals. In fact, the amount and size of the
oscillations render the control inputs shown in Figure 8.33 close to unrealizable in reality.
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At the very least, the control inputs for case 4 would put a very high strain on the actuators,
which is not desirable. The control input that is the most feasible in case 4 is either the
one produced by the saturation control design or by the GSTA design. This makes sense
as the increase in input use measures from case 3 to case 4 is much smaller for the SISO
control designs than for the MIMO control designs. However, the fact that the GMSTA
design produces such an oscillatory control input makes sense as the error measures for
the GMSTA are quite a bit smaller than the error measures for the other control designs.
Therefore, the control input produced by the GMSTA in case 4 might be more feasible
with a more optimal control gain configuration.

(a) The saturation and the GSTA control designs.

(b) The MSAT and GMSTA control designs.

Figure 8.33: The control input generated by the saturation, the GSTA, the MSAT and the GMSTA
control designs for case 4.

8.5.4 Angle of attack
All the control designs considered for case 1 and case 2 produce values for the AoA that
are all well below the typical stall angle values of 15-20 deg. However, in case 3 and case
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4, the saturation and the GSTA control designs both produce values for α that are higher
than 15 deg, with the peak in the AoA being larger for case 3 than for case 4. This can
be seen in Figure 8.34, which shows the AoA for the saturation and the MSAT control
designs for case 3 and case 4. The AoA produced by the MIMO control designs is below
12 deg, which is reasonable. The fact that both SISO control designs considered for case
3 and case 4 produces and AoA which reaches the potential stall angle range, is a clear
drawback to using the decoupled SISO design instead of the MIMO design.

(a) The AoA for the saturation control design.

(b) The AoA for the MSAT control design.

Figure 8.34: The AoA for the saturation and the GMSTA control designs for case 3 and case 4.

8.6 Sensitivity to Actuator Dynamics
In this section, the sensitivity of the saturation, the GSTA, the MSAT, and the GMSTA to
the modeling of the actuator dynamics is investigated. In the previous simulation results
presented in this chapter, the actuator dynamics are modeled using the first-order TF in
(6.16) with time constant Tu = 0.0154 s. This section presents a comparison of the results
when using the same first-order TF with the time constant Tu = 0.1 s so that the actuator
dynamics are slower, and when using the second-order dynamics (6.4) from Bøhn et al.
(2019), which means that the actuator dynamics are more complex. It is necessary to
re-tune the control designs to achieve adequate tracking performance without chattering
when changing the actuator dynamics. The control gains used in this section can be found
in subsection D.2.4.

8.6.1 Tracking Results
The flight paths of the control designs considered in this section can be found in Figure
8.35 for both the first- and second-order dynamics. Figure 8.35 shows that the flight paths
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are generally smoother for the second-order dynamics than for the first-order dynamics.
The one exception is the saturation control design, which produces approximately the same
flight path for both types of actuator dynamics. The flight paths are also more similar for
the second-order dynamics than for the first-order dynamics. This means that the control
designs are less robust to slower actuator dynamics, which makes sense since the basis
of SMC is a discontinuous control action that switches at an infinitely high switching
frequency. Slow actuator dynamics limit the oscillations in the control signals which would
also limit the tracking ability of the control designs.

(a) The flight paths for the first-order actuator dynamics with Tu = 0.1 s.

(b) The flight paths for the second-order actuator dynamics.

Figure 8.35: The flight paths of the saturation, the GSTA, the MSAT, and the GMSTA control
designs for case 2 when the actuator dynamics are modeled using the first-order TF (6.16) with
Tu = 0.1 s, and when they are modeled using the second-order TF (6.4).

Overall, the longitudinal dynamics are more affected than the lateral dynamics by the
choice of actuator dynamics. This is shown in Figure 8.36, where the roll angle track-
ing of the GSTA design is almost unchanged for the different actuator dynamics, with the
tracking performance being only slightly worse for the second-order dynamics than for the
first-order dynamics. The GMSTA design is the one exception, as its tracking performance
is clearly degraded when using the slower first-order dynamics than the second-order dy-
namics. This is also reflected in the error measures presented in Table 8.4 where the
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decrease in the error measures for the first-order dynamics to the second-order dynamics
is substantial for the GMSTA design.

Interestingly, the saturation and the GSTA designs perform much better than the MSAT
and the GMSTA for the first-order dynamics, while the error measures increase for both
SISO designs when using the second-order dynamics. The increase of the error measures
for the saturation control design is especially big compared to the increase for the GSTA
design. The change in error measures from using the first-order dynamics to using the
second-order dynamics is also reflected in the pitch tracking results of the control designs,
which are shown in Figure 8.37.

(a) The GSTA design.

(b) The GMSTA design.

Figure 8.36: The roll angle tracking results for the GSTA and the GMSTA control designs for case 2
when the actuator dynamics are modeled using the first-order TF (6.16) with Tu = 0.1 s, and when
they are modeled using the second-order TF (6.4).
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Case 2 when using first-order actuator dynamics with Tu = 0.1 s

Performance measure Saturation
design

GSTA MSAT GMSTA

Total ISE 9.754 · 102 1.141 · 103 2.240 ·103 2.299 · 103

Total IAE 1.694 · 102 1.863 · 102 2.504 ·102 2.402 · 102

Total ISI 1.438 · 103 1.479 · 103 1.594 ·103 1.734 · 103

Total IAI 2.937 · 102 2.943 · 102 3.211 ·102 3.307 · 102

Case 2 when using second-order actuator dynamics

Performance measure Saturation
design

GSTA MSAT GMSTA

Total ISE 1.292 · 103 1.153 · 103 1.882 ·103 9.002 · 102

Total IAE 1.924 · 102 1.695 · 102 2.276 ·102 1.463 · 102

Total ISI 1.442 · 103 1.433 · 103 1.536 ·103 1.639 · 103

Total IAI 2.969 · 102 2.951 · 102 3.159 ·102 3.315 · 102

Table 8.4: Performance measures for the saturation, the GSTA, the MSAT and the GMSTA control
design for simulation case 2 for different actuator dynamics.

Figure 8.37 shows the reason for the smoothness of the flight paths for the second-
order dynamics compared to the first-order dynamics, as the changes in the pitch reference
are much larger for the first-order dynamics. This is especially noticeable for the second-
order control designs, i.e. the GSTA and the GMSTA designs, compared to the first-order
saturation and MSAT control designs. Even though the pitch tracking performances of the
saturation and the GSTA designs are slightly better for the second-order dynamics than for
first-order dynamics, the error measures are higher for the second-order dynamics. This
is probably due to the roll tracking performance, which in Figure 8.36 is shown to be
slightly worse for the GSTA design when using the second-order dynamics. On the other
hand, the pitch tracking results in Figure 8.37 show that the performance of the MSAT and
the GMSTA designs is better for the second-order dynamics, which agrees with the error
measures presented in Table 8.4.

Furthermore, the MSAT and the GMSTA still generate yaw rates that correspond to the
yaw rate generated by the coordinated-turn equation (6.23), which means that the desired
dynamics are achieved by enforcing the sliding mode in the system. The yaw rates gener-
ated by the MSAT and the GMSTA designs are shown in Figure 8.38. Figure 8.38 shows
that the yaw rate generated by the GMSTA for the first-order dynamics is much further
from the coordinated-turn yaw rate than the yaw rate generated when using the second-
order dynamics. Additionally, the yaw rates generated by both control designs when using
the second-order dynamics are smoother than the ones generated when using the first-order
actuator dynamics. This implies that the sliding variables for the second-order dynamics
are less smooth than the sliding variables for the first-order dynamics, which is investigated
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in the next subsection.

(a) The saturation control design.

(b) The GSTA design.

(c) The MSAT control design.

(d) The GMSTA design.

Figure 8.37: The pitch angle tracking results for the saturation, the GSTA, the MSAT, and the
GMSTA control designs for case 2 when the actuator dynamics are modeled using the first-order TF
(6.16) with Tu = 0.1 s, and when they are modeled using the second-order TF (6.4).
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(a) The MSAT control design.

(b) The GMSTA design.

Figure 8.38: The yaw rate in the inertial frame, ψ̇, for the MSAT and the GMSTA control designs
compared to the inertial yaw rate generated by the coordinated-turn equation (6.23) for simulation
case 2 when the actuator dynamics are modeled using the first-order TF (6.16) with Tu = 0.1 s, and
when they are modeled using the second-order TF (6.4).

8.6.2 Sliding Variable
The sliding variables generated by the saturation and the GSTA control designs for the
first- and second-order actuator dynamics are shown in Figure 8.39 and for the MSAT and
the GMSTA control designs in Figure 8.40.

For the first-order actuator dynamics, the sliding variable produced by the saturation
control design is slightly smoother than the sliding variable produced by the GSTA design,
and the lateral and longitudinal sliding modes are enforced only slightly better by the sat-
uration control design than by the GSTA design. This makes sense as the error measures
are lower for the saturation control design than for the GSTA design when using first-order
dynamics. For the second-order dynamics, on the other hand, the GSTA design is slightly
better at enforcing the sliding modes in the system, and produces a smoother sliding vari-
able, than the saturation control design, which also agrees with the error measures in Table
8.4, which are smaller for the GSTA than for the saturation control design when using the
second-order dynamics. Both sliding variables have the same amount of chattering in σφ
for both types of actuator dynamics, and both are free of chattering in σθ.
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(a) The sliding variable for the saturation control design.

(b) The sliding variable for the GSTA control design.

Figure 8.39: The sliding variables for the saturation and the GSTA control designs for case 2 when
the actuator dynamics are modeled using the first-order TF (6.16) with Tu = 0.1 s, and when they
are modeled using the second-order TF (6.4).

Figure 8.40 shows that the sliding variables produced by the MSAT and the GMSTA
designs for the first-order dynamics are similar in smoothness, except for σ2 which has
more oscillations for the GMSTA design than for the MSAT control design. However, the
sliding variable produced by the GMSTA design has several large peaks that are larger than
the peaks in the sliding variable for the MSAT control design. The reduction in the size
and amount of oscillations in the sliding variables produced for the second-order dynamics
compared to the first-order dynamics is approximately the same for both control designs.
The peaks in the sliding variable for the MSAT control design are slightly smaller for the
second-order dynamics, while the peaks in the sliding variable for the GMSTA design
are almost gone. Thus, the GMSTA design is much better than the MSAT control design
at enforcing the sliding mode in the system when using second-order actuator dynamics.
This agrees with the error measures in Table 8.4, which are slightly higher for the GMSTA
than for the MSAT control design when using the first-order dynamics, while the situation
is reversed for the second-order dynamics, with the GMSTA design having substantially
smaller error measures than the MSAT control design.

Both sliding variables in Figure 8.40 contain little to no chattering, with σ1 being the
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only component of the sliding variable where chattering is present. However, σ1 generated
by the MSAT control design contains slightly more chattering than σ1 produced by the
GMSTA design for both kinds of actuator dynamics.

(a) The sliding variable for the MSAT control design.

(b) The sliding variable for the GMSTA control design.

Figure 8.40: The sliding variables for the MSAT and the GMSTA control designs for case 2 when
the actuator dynamics are modeled using the first-order TF (6.16) with Tu = 0.1 s, and when they
are modeled using the second-order TF (6.4).

8.6.3 Control Input
The control inputs generated for both types of actuator dynamics by the saturation and
the GMSTA control designs are shown in Figure 8.41. The GMSTA is the control design
with input use measures that are among the highest in Table 8.4 for both the second-
and first-order actuator dynamics, while the saturation control design has input measures
that are among the smallest for both kinds of actuator dynamics. Even so, the GMSTA
control design produces a control input that is smoother than the one produced by the
saturation control design for the second-order dynamics, which means that the large input
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use measures for the GMSTA design are due to the large peaks in the control signals,
which is not necessarily a bad thing, as they are well within the control deflection limit of
±30 deg.

(a) The saturation control design.

(b) The GMSTA design.

Figure 8.41: The control input generated by the saturation and the GMSTA control designs for case
2 when the actuator dynamics are modeled using the first-order TF (6.16) with Tu = 0.1 s, and when
they are modeled using the second-order TF (6.4).

The control commands generated by the GSTA and the MSAT control designs for the
first-order dynamics are presented in Figure 8.42, where the control command generated
by the control system is compared with the control input to the UAV model. Firstly, the
control command produced by the GSTA design contains too many oscillations to be feasi-
ble, even after the oscillations have been attenuated by the actuator dynamics. The MSAT
produces a more feasible control input, but some oscillations still remain.

Furthermore, the commanded control signal generated by the GSTA design contains
more chattering than the control command produced by the MSAT control design, which
contains only some minor chattering. However, the final control input to the UAV model
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is free of chattering for both control designs.
The commanded control and the final control inputs generated by the GSTA and the

MSAT control designs are also investigated for the case when the second-order actuator
dynamics are used. These results can be found in Figure 8.43. The control commands
generated by the control designs are substantially smoother for the second-order dynamics
than for the first-order dynamics, so the control inputs generated for the second-order
dynamics are much more realizable than the control input for the first-order dynamics.
However, the control input produced by the GSTA design contains more oscillations than
the control input produced by the MSAT control design.

(a) The control command generated by the GSTA de-
sign.

(b) The control input generated by the GSTA design.

(c) The control command generated by the MSAT con-
trol design.

(d) The control input generated by the MSAT control
design.

Figure 8.42: The commanded control signal ū generated by the GSTA and the MSAT control de-
signs compared to the control input to the UAV model ūd for case 2 when the actuator dynamics are
modeled using the first-order TF (6.16) with Tu = 0.1 s.

There is some chattering in the control commands produced by the GSTA and the
MSAT control designs for the second-order dynamics, but it is less than the chattering
contained in the control commands produced for the first-order actuator dynamics. As for
the case when the first-order dynamics is used, the control input to the model does not
contain any chattering.

Overall, using the second-order dynamics produce the best results in terms of smooth-
ness of the control input for the control designs considered in this section. Additionally,
the SISO designs are much more robust to the slower first-order dynamics than the MIMO
control designs, while the MIMO designs are more robust than the SISO designs to the
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more complex second-order dynamics.

(a) The control command generated by the GSTA de-
sign.

(b) The control input generated by the GSTA design.

(c) The control command generated by the MSAT con-
trol design.

(d) The control input generated by the MSAT control
design.

Figure 8.43: The commanded control signal ū generated by the GSTA and the MSAT control de-
signs compared to the control input to the UAV model ūd for case 2 when the actuator dynamics are
modeled using the second-order TF (6.4).

8.7 Sensitivity to the Choice Sampling Frequency
In this section, the sensitivity of some of the saturation, the GSTA, the MSAT, and the
GMSTA to the sampling frequency of the continuous state and to the fixed sampling fre-
quency of the controller is investigated. In the previous simulation results presented in
this chapter, the sampling frequency is chosen as fs = 200 Hz, which is quite high so it
is interesting to see whether the control designs still produce adequate results for lower
sampling frequencies.

This section presents a comparison of the simulation results for case 2 for when the
sampling frequency is fs = 100 Hz, and when it is fs = 20 Hz. The control gains that are
used for fs = 100 Hz are the same as for case 2, and can be found in subsection D.2.1 and
subsection D.2.2, while the control gains for when fs = 20 Hz can be found in subsection
D.2.4.
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8.7.1 Tracking Results
The flight paths of the saturation, the GSTA, the MSAT, and the GMSTA designs can
be found in Figure 8.44 for the case when the sampling frequency is fs = 100 Hz and
fs = 20 Hz. Figure 8.44 shows that the flight paths of the control designs are very similar
when fs = 100 Hz, while the difference between the flight paths is more noticeable when
fs = 20 Hz. Even so, the flight paths are generally quite smooth for both sampling
frequencies, with a slight increase in the size of the oscillations in the pitch reference
signal when fs = 20 Hz.

(a) The flight paths when fs = 100 Hz.

(b) The flight paths when fs = 20 Hz.

Figure 8.44: The flight paths of the saturation, the GSTA, the MSAT, and the GMSTA control
designs for case 2 when using a sampling frequency of fs = 100 Hz, and fs = 20 Hz.

Also for a change in sampling frequency, the longitudinal dynamics are more affected
by the lateral dynamics, but there is a minor change in the roll tracking results as well. This
can be seen in Figure 8.45, where the roll tracking results for the GSTA and the GMSTA
designs for fs = 100 Hz and fs = 20 Hz are presented. The roll tracking performance
of the GSTA design is clearly more affected than the performance of the GMSTA design
by the reduction in sampling frequency. Both control designs track the roll angle well
when fs = 100 Hz, while the GSTA does not track the reference as well as the GMSTA
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design when fs = 20 Hz. Even so, the tracking results of both designs for both sampling
frequencies are adequate.

(a) The GSTA design.

(b) The GMSTA design.

Figure 8.45: The roll angle tracking results for the GSTA and the GMSTA control designs for case
2 when using a sampling frequency of fs = 100 Hz, and fs = 20 Hz.

The change in tracking performance for the different sampling frequencies is reflected
in the error measures presented in Table 8.5, which show that the error measures for fs =
100 Hz are only slightly higher than for the case 2 performance measures presented in
Table 8.1 and Table 8.2. However, there is an increase in the error measures for all the
control designs considered in this section when fs = 20 Hz.

The increase in error measures is not only due to a worsened roll tracking performance
but also to a change in the pitch tracking performance, which can be seen in Figure 8.46.
When fs = 100 Hz, all control designs track the pitch reference well, with the tracking
performance of the GMSTA being the best. However, the performances of all the control
designs experience a loss in accuracy when the sampling frequency is fs = 20 Hz. The
tracking of the pitch reference is still acceptable for all the control designs, but there is
a clearer latency in the tracking results for fs = 20 Hz than for fs = 100 Hz. This is
expected as a decrease in sampling frequency will delay the response of the control design
to changes in the continuous state of the UAV model, and the change in control deflections
based on the commands generated in the control system.
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Case 2 when fs = 100 Hz

Performance measure Saturation
design

GSTA MSAT GMSTA

Total ISE 1.102 · 103 1.028 · 103 1.183 ·103 7.943 · 102

Total IAE 1.546 · 102 1.546 · 102 1.732 ·102 1.358 · 102

Total ISI 1.442 · 103 1.402 · 103 1.592 ·103 1.608 · 103

Total IAI 2.961 · 102 2.910 · 102 3.134 ·102 3.331 · 102

Case 2 when fs = 20 Hz

Performance measure Saturation
design

GSTA MSAT GMSTA

Total ISE 1.878 · 103 1.785 · 103 2.047 ·103 1.301 · 103

Total IAE 2.518 · 102 2.236 · 102 2.236 ·102 1.787 · 102

Total ISI 1.462 · 103 1.465 · 103 1.580 ·103 1.614 · 103

Total IAI 2.993 · 102 2.973 · 102 3.191 ·102 3.207 · 102

Table 8.5: Performance measures for the saturation, the GSTA, the MSAT and the GMSTA control
design for simulation case 2 for different sampling frequencies.

Furthermore, the pitch tracking results in Figure 8.46 shows the increase in oscillations
for fs = 20 Hz in the pitch reference that causes the change in flight paths from when
fs = 100 Hz to fs = 20 Hz in Figure 8.44. The increase in the number and size of
oscillations in the pitch reference is probably due to the latency in the response that occurs
when fs = 20 Hz, which causes the altitude hold controller (6.18) in the waypoint follower
system to compensate for the altitude error by generating a larger desired pitch angle.

The MSAT and the GMSTA still generate yaw rates that correspond to the yaw rate
generated by the coordinated-turn equation (6.23), which means that the desired dynamics
are achieved by enforcing the sliding mode in the system. The yaw rates generated by the
MSAT and the GMSTA designs are shown in Figure 8.47. In Figure 8.47 it is shown that
the generated yaw rates correspond to the yaw rate from the coordinated-turn equation to
a higher degree when fs = 100 Hz than when fs = 20 Hz. Additionally, there yaw rates
generated when fs = 20 Hz are smoother when fs = 100 Hz than when fs = 20 Hz.
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(a) The saturation control design.

(b) The GSTA design.

(c) The MSAT control design.

(d) The GMSTA design.

Figure 8.46: The pitch angle tracking results for the saturation, the GSTA, the MSAT, and the
GMSTA control designs for case 2 when using a sampling frequency of fs = 100 Hz, and fs = 20
Hz.
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(a) The MSAT control design.

(b) The GMSTA design.

Figure 8.47: The yaw rate in the inertial frame, ψ̇, for the MSAT and the GMSTA control designs
compared to the inertial yaw rate generated by the coordinated-turn equation (6.23) for simulation
case 2 when using a sampling frequency of fs = 100 Hz, and fs = 20 Hz.

8.7.2 Sliding Variable
The sliding variables generated by the saturation and the GSTA control designs for the
first- and second-order actuator dynamics are shown in Figure 8.48 and for the MSAT and
the GMSTA control designs in Figure 8.49.

Figure 8.48 shows that when fs = 100 Hz, the sliding variables for the saturation and
the GSTA control designs are very similar to the sliding variables for case 2 presented in
subsection 8.2.1. The sliding variables contain some chattering when fs = 100 Hz, with
σφ containing more chattering than σθ. This is probably due to the control gains for the
lateral controller being more aggressive than the control gains for the longitudinal control
gains. When fs = 100 Hz, the GSTA design is better than the saturation control design
at enforcing the sliding mode in the system. This agrees with the error measures in Table
8.5, which are lower for the GSTA design than for the saturation control design when
fs = 100 Hz. The same is also the case for fs = 20 Hz, where the GSTA design is still
slightly better at enforcing the sliding mode in the system, which corresponds to the GSTA
design having smaller error measures than the saturation control design when fs = 20 Hz.

When fs = 20 Hz, there is an increase in the amount of chattering in the sliding
variables, as well as in the size of the chattering. However, the frequency of the chattering
is now lower than when fs = 100 Hz. Both the saturation and the GSTA control designs
have more oscillations and struggle more at enforcing the sliding mode in the system when
fs = 20 Hz than when fs = 100 Hz.
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(a) The sliding variable for the saturation control design.

(b) The sliding variable for the GSTA control design.

Figure 8.48: The sliding variables for the saturation and the GSTA control designs for case 2 when
using a sampling frequency of fs = 100 Hz, and fs = 20 Hz.

The sliding variables for the MSAT and the GMSTA control designs are shown in
Figure 8.49, where we can see that the sliding variables for the MIMO control designs
are smoother and that the designs are better at enforcing the sliding mode in the system
than the SISO control designs by comparing Figure 8.48 and Figure 8.49. This is the
case for both fs = 100 Hz and fs = 20 Hz. The sliding variables for both the SISO
and MIMO designs contain approximately the same amount of chattering when fs =
100 Hz. However, there is a difference between the sliding variables when fs = 20 Hz,
which is that the chattering in σφ and σθ has a higher frequency than the chattering in the
components of σ.

The sliding variables for the MSAT and GMSTA control designs are very similar when
fs = 100 Hz, and when fs = 20 Hz, which can be seen in Figure 8.49. However, there are
some differences between them. Firstly, the sizes of the peaks in the sliding variable for
the MSAT control design are slightly larger than for the GMSTA design when fs = 100
Hz, and in σ1 when fs = 20 Hz. Secondly, the GMSTA is slightly better at enforcing the
sliding mode in the system when fs = 100 Hz. This makes sense, as the error measures
for the GMSTA design are smaller than those for the MSAT control design both when
fs = 100 Hz and when fs = 20 Hz.
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(a) The sliding variable for the MSAT control design.

(b) The sliding variable for the GMSTA control design.

Figure 8.49: The sliding variables for the MSAT and the GMSTA control designs for case 2 when
using a sampling frequency of fs = 100 Hz, and fs = 20 Hz.

8.7.3 Control Input
The control inputs generated for both sampling frequencies by the saturation and the
MSAT control designs are shown in Figure 8.50. The saturation control design has smaller
input use measures than the MSAT design both for fs = 100 Hz and fs = 20 Hz, which
can be seen in Table 8.5. Even so, the MSAT control design produces an elevator control
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input that is smoother than the elevator control input produced by the saturation control
signal when fs = 100 Hz. Thus, the high input use measures of the MSAT is probably
due to the peaks in the control input, which is characteristic for the control input generated
by the MIMO control designs, which can be seen in subsection 8.3.3. When fs = 20
Hz, however, the control input produced by the saturation control design appears to be
smoother than the input produced by the MSAT control design.

(a) The saturation control design.

(b) The MSAT control design.

Figure 8.50: The control input generated by the saturation and the GMSTA control designs for case
2 when using a sampling frequency of fs = 100 Hz, and fs = 20 Hz.

The control command generated by the GSTA and the GMSTA control designs, ū,
when fs = 100 Hz are presented in Figure 8.51, where the control command generated
by the control system is compared with the delayed and sampled control input to the UAV
model after the actuator dynamics and measurements, ūd. The control input generated
by the GMSTA design is slightly smoother than the control input generated by the GSTA
design, both before and after the actuator dynamics and measurements. Furthermore, the
commanded control signal generated by the GSTA design contains more chattering than
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the control command produced by the GMSTA design. However, the final control input to
the UAV model is free of chattering for both control designs.

The commanded control and the final control input generated by the GSTA and the
GMSTA designs are also investigated for the case when fs = 20 Hz. These results can be
found in Figure 8.52. The final control inputs to the UAV model have approximately the
same degree of smoothness when fs = 20 Hz as when fs = 100 Hz for both the GSTA
and the GMSTA designs, with the control input produced by the GMSTA design being
smoother than the input produced by the GSTA design also for fs = 20 Hz. Additionally,
there is an increase in the amount of chattering in the commanded control signal generated
by the control systems from when fs = 100 Hz to when fs = 20 Hz for both control
designs. Also for fs = 20 Hz, the GSTA design produces a control signal that contains
more chattering than the control produced by the GMSTA design. However, as for fs =
100 Hz, the control input generated by both the GSTA and the GMSTA designs are free of
chattering, which is attenuated by the actuator dynamics and measurements.

(a) The control command produced by the GSTA de-
sign.

(b) The control input produced by the GSTA design.

(c) The control command produced by the GMSTA de-
sign.

(d) The control input produced by GMSTA design.

Figure 8.51: The commanded control signal ū generated by the GSTA and the GMSTA control
designs compared to the control input to the UAV model ūd for case 2 when using a sampling
frequency of fs = 100 Hz, and fs = 20 Hz.

Overall, the control designs considered in this section are capable of tracking the roll
and pitch references while still producing acceptable control signals for both fs = 100 Hz
and fs = 20 Hz without any chattering in the control input to the UAV model,ūd.
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(a) The control command produced by the GSTA de-
sign.

(b) The control input produced by the GSTA design.

(c) The control command produced by the GMSTA de-
sign.

(d) The control input produced by GMSTA design.

Figure 8.52: The commanded control signal ū generated by the GSTA and the MSAT control de-
signs compared to the control input to the UAV model ūd for case 2 when using a sampling frequency
of fs = 100 Hz, and fs = 20 Hz.

8.8 Sensitivity to Modeling Uncertainties
In this chapter, every simulation is done with a 20% uncertainty in the sliding dynamics
matrix b(t, x), which is used in the transformation

ū = b−1(t, x)u,

where ū is the control command produced by the control system before actuator dynamics
and measurements. For the longitudinal dynamics discussed in the previous chapter, an
analysis of the performance of the controllers is performed for when b is known, b is
uncertain, and for when only the sign of b is known. As the results of using an uncertain
b are more beneficial than using only the sign of b in the transformation above for the
longitudinal dynamics, the control designs for the 6DOF model is implemented with an
uncertain b. However, it is interesting to investigate the performance of the control designs
when using an exactly known b compared to an uncertain b. For the SISO control designs,
this means that bφ(t, x) and bθ(t, x) are known. In this section, the performance measures
for simulations case 2 are presented for all the SISO and MIMO control design for both
the case when there are modeling uncertainties present in the system and for when there
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is not. The performance measures for the case of an uncertain b, or bφ and bθ, are thus the
same as the ones presented in Table 8.2 and Table 8.1, respectively. The control gains used
for the simulations when b is known are the same as the ones used in the case 2 simulations
presented earlier in this chapter and can be found in section D.2.

The performance measures for the SISO control designs are presented in 8.6. Even
though the control designs are tuned using the uncertain matrices bφ and bθ, all the control
designs perform better when the matrices are known while using almost exactly the same
amount of input. This is as expected following the discussion of the longitudinal control
coefficient transformation results in section 7.7, where the controllers generally performed
better when bθ is known. However, the decrease in error measures is minor for the SISO
control designs, which shows that they are quite robust to modeling uncertainties.

Uncertain bφ(t, x) and bθ(t, x)

Performance measure Saturation
Controller

STA ASTA GSTA

Total ISE 1.152 · 103 1.157 · 103 1.162 · 103 1.016 · 102

Total IAE 1.766 · 102 1.543 · 102 1.567 · 102 1.541 · 102

Total ISI 1.439 · 103 1.396 · 103 1.392 · 103 1.401 · 103

Total IAI 2.959 · 102 2.902 · 102 2.894 · 102 2.910 · 102

Known bφ(t, x) and bθ(t, x)

Performance measure Saturation
Controller

STA ASTA GSTA

Total ISE 1.070 · 103 1.029 · 103 1.120 · 103 9.357 · 102

Total IAE 1.670 · 102 1.462 · 102 1.522 · 102 1.468 · 102

Total ISI 1.443 · 103 1.398 · 103 1.392 · 103 1.405 · 103

Total IAI 2.954 · 102 2.904 · 102 2.897 · 102 2.909 · 102

Table 8.6: The performance measures for the SISO control designs, which includes the saturation
controller, the STA, the ASTA, and the GSTA, for simulation case 2 when bφ(t, x) and bθ(t, x) are
uncertain, and for when bφ(t, x) and bθ(t, x) are exactly known.

The performance measures for case 2 when using a known b in the MIMO control
designs are presented in Table 8.7. Interestingly, the results for the MIMO control designs
are the complete opposite of the results for the SISO control designs. The error measures
for all the MIMO designs increase when using a known b, while the input use measures
decrease. The control design with the smallest increase in error measures is the GMSTA,
for which the increase is minimal. As the control gains are chosen for the case when b
is uncertain, this might imply that the MIMO designs are more sensitive to the choice
of control gain configurations than the SISO designs, which would be a drawback of the
MIMO control designs compared to the SISO designs.
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Case 1

Performance measure MSAT MSTA AMSTA GMSTA
Total ISE 1.180 · 103 1.277 · 103 2.341 · 103 8.122 · 102

Total IAE 1.731 · 102 1.760 · 102 2.207 · 102 1.376 · 102

Total ISI 1.520 · 103 1.544 · 103 1.511 · 103 1.608 · 103

Total IAI 3.180 · 102 3.226 · 102 3.213 · 102 3.334 · 102

Case 2

Performance measure MSAT MSTA AMSTA GMSTA
Total ISE 1.214 · 103 1.345 · 103 2.617 · 103 8.196 · 102

Total IAE 1.767 · 102 1.819 · 102 2.343 · 102 1.380 · 102

Total ISI 1.505 · 103 1.519 · 103 1.470 · 103 1.588 · 103

Total IAI 3.083 · 102 3.167 · 102 3.121 · 102 3.301 · 102

Table 8.7: The performance measures for the MIMO control designs, which includes the MSAT, the
MSTA, the AMSTA, and the GMSTA, for simulation case 2 when b(t, x) is uncertain, and for when
b(t, x) is exactly known.

8.9 The STA Without Discontinuous Terms
As increasing the control gains for the linear correction terms proves to be a very effective
tool for lowering error measures, while still avoiding additional chattering in the control
input, the possibility of implementing the MSTA and the GMSTA without the discontinu-
ous terms is investigated in this section. Note that even though the GSTA also contain the
added linear correction terms, the framework in which it is presented in Moreno (2009)
does not allow us to remove the discontinuous terms by choosing certain control gains to
be zero. This is easily done, however, for the MSTA and the GMSTA.

The equations for the MSTA (5.129)-(5.130) reduces to a PI-controller that drives σ to
zero if the control gains are chosen as k1 = k3 = 0 and k2, k4 > 0 so that the control law
is given by

u = −k2σ − k4

∫ t

0

σ(τ) dτ (8.1)

The same can be done for the GMSTA (3.88)-(3.91), for which the parameters and control
gains need to be chosen as αg = γg = 0 and k1, k2, k3, βg > 0 so that the control law is
given by

u = −k1βgσ − k2k3βg

∫ t

0

σ(τ) dτ (8.2)

which also is a PI-controller with codependent control gains, as βg appears in the control
gain for both the proportional and the integral term of the controller.
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The tracking results for the MSTA PI (8.1) and the GMSTA PI (8.2) designs compared
to the original MSTA and GMSTA designs are presented in Figure 8.53 for simulation
case 1. The tracking results show that the GMSTA PI produces a very similar reference
trajectory and show the same tracking capabilities as the original GMSTA design. The
MSTA PI design, on the other hand, does not track the reference as well as the MSTA
design. Additionally, the GMSTA and the GMSTA PI designs outperform the MSTA and
MSTA PI designs in terms of tracking errors, which is also reflected in the error measures
in Table 8.8. The tracking results of the PI designs for case 2 is also very similar to the
tracking results of the original control designs, which is also shown by the error measures
for case 2 presented in Table 8.8.

(a) The MSTA and the MSTA PI designs.

(b) The GMSTA and the GMSTA PI designs.

Figure 8.53: The tracking results for the MSTA and the GMSTA compared to a MSTA PI and a
GMSTA PI control design, respectively, for case 1.
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Case 1

Performance measure MSTA MSTA PI GMSTA GMSTA PI
Total ISE 1.086 · 103 1.941 · 103 7.809 · 102 8.648 · 102

Total IAE 1.591 · 102 2.316 · 102 1.365 · 102 1.438 · 102

Total ISI 1.522 · 103 1.648 · 103 1.602 · 103 1.617 · 103

Total IAI 3.351 · 102 3.350 · 102 3.351 · 102 3.309 · 102

Case 2

Performance measure MSTA MSTA PI GMSTA GMSTA PI
Total ISE 1.277 · 103 1.352 · 103 8.122 · 102 8.488 · 102

Total IAE 1.760 · 102 1.836 · 102 1.376 · 102 1.423 · 102

Total ISI 1.544 · 103 1.557 · 103 1.608 · 103 1.632 · 103

Total IAI 3.226 · 102 3.258 · 102 3.334 · 102 3.312 · 102

Table 8.8: Performance measures for the original MSTA and GMSTA designs, as well as the mea-
sures for the MSTA and GMSTA based PI designs.

The control inputs generated by the MSTA, the MSTA PI, the GMSTA, and the GM-
STA PI designs for case 2 are presented in 8.54. The control signals generated by the PI
designs are very similar to the ones produced by the original control designs, but they are
slightly smoother than the original control inputs. Since the error measures and most of
the input use measures for the PI designs are higher than for the original designs, it can
be concluded that adding the discontinuous terms in the control law is beneficial for the
tracking performance of the attitude control designs.
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(a) The MSTA and the MSTA PI designs.

(b) The GMSTA and the GMSTA PI designs.

Figure 8.54: The control inputs for the MSTA and the GMSTA designs compared to the control
inputs for the MSTA PI and the GMSTA PI design, respectively, for case 2.
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Chapter 9
Conclusions and Future Work

9.1 Conclusions

9.1.1 The Decoupled Longitudinal Model
Several aspects of the single-input control designs are investigated in this report, including
the robustness properties, the properties of the different control coefficient transformations,
and the stability of the designs and of the longitudinal dynamics in the sliding mode. The
conclusion that can be drawn from the results presented in subsection 7.7, is that the choice
of transformation does not matter in theory. However, in realistic conditions, the better
choice is to use a control coefficient transformation with some uncertainty. This is because
the SMC algorithms are robust enough to modeling errors and parametric uncertainties to
handle the discrepancy between the actual true system and the model function used in the
transformation.

The main conclusion that can be made about the single-input control algorithms, is
that the second-order algorithms, i.e. the STA, the ASTA, and the GSTA, perform better
than the saturation controller in the simulation cases considered in this report. Still, the
saturation controller is surprisingly robust compared to the complexity of the controller.
It is difficult to determine which algorithm performs the best, as they are very similar.
However, for a discontinuous reference signal, either the STA or the GSTA would be the
better choice, while the saturation controller or the ASTA would give the best results for a
continuous reference signal.

9.1.2 The 6DOF Model
The main objective of this report is to investigate the robustness of four SISO and four
MIMO control designs when applied to an uncertain model of a fixed-wing UAV operating
that is affected by external disturbances and process noise. The control designs were
evaluated based on their tracking performance of a roll and pitch reference generated by a
waypoint follower system.
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The robustness of the control designs has been investigated by adding unmodeled dy-
namics, such as actuator dynamics, and increasing amounts of disturbances due to wind
and process noise to the simulation model. All of the control designs were able to reach the
waypoints when a minimal amount of disturbances were present in the system, both with
and without additional unmodeled dynamics present, which shows the robustness of the
designs. For a larger amount of disturbances in the simulation model, the control designs
were also able to reach the waypoints, albeit with a substantial loss in smoothness of the
control input, which resulted in unfeasible control input for some of the control designs.

It is difficult to determine whether the SISO or the MIMO modeling approach is the
best, as they produce very similar results. However, the MIMO control designs have the
advantage of using all three control surfaces to achieve tracking of the reference signals,
while the SISO designs only uses the aileron and elevators, which puts a strain on the
elevator command and causes the control input produced by the SISO designs to be overall
less smooth than the control input produced by the MIMO designs. This also means that
the pitch tracking performance of the SISO designs to be less smooth than that of the
MIMO designs. Additionally, the SISO designs produce an angle of attack that is within
the stall angle range when there are more disturbances in the system, which is a drawback
to the SISO modeling of the control design.

The robustness of some of the SISO and MIMO control designs were investigated with
respect to changes in the modeling of the actuator dynamics and to changes in sampling
frequency. Here, the SISO control designs outperformed the MIMO designs for slower
actuator dynamics, while the MIMO control designs handled the more complex second-
order actuator dynamics better. For changes in sampling frequency, the MIMO designs
proved to be more robust for lower sampling frequencies than the SISO designs in terms
of tracking accuracy and smoothness of the control input.

Additionally, it is difficult to determine which of the SISO and MIMO control designs
is the most robust and effective. There are, however, some control algorithms that are more
promising than others. The saturation control design is a simple design that performed well
in most of the aspects investigated in the previous chapter, even outperforming several of
the STA based SISO and MIMO designs. This does not come as a surprise as the saturation
controller performed well for the lateral dynamics in Griffiths (2020), and reasonable well
for the longitudinal dynamics presented previously in this report. Another algorithm that
performed well is the GSTA, but it tends to produce control input that is less smooth
than those of the other control designs with the same tracking performance as the GSTA.
Finally, the most promising algorithm is the GMSTA which consistently had the smallest,
or among the smallest, error measures in this report, while still producing a relatively
smooth and feasible control input. However, the tracking performance of the GMSTA was
noticeably more affected by slow actuator dynamics than for example the performance of
the saturation control design. Each of the most promising algorithms has its own separate
strengths and weaknesses, and more rigorous testing of the algorithms is necessary to fully
conclude which one is the most effective and robust algorithm.
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9.2 Future Work
The goal of future work should be to further investigate the robustness of the control al-
gorithms considered in this report by developing a simulation model that is closer to a
realistic UAV, and by performing more rigorous testing of the control algorithms. This
can, for example, be done by using Monte Carlo simulations. Additionally, the control de-
signs should be compared to an attitude control design that is currently being used in UAV
applications. Additionally, the use of sliding mode disturbance and/or state observers,
such as in Fang et al. (2015); Singh et al. (2020); Hu et al. (2019); Fan and Tian (2016);
Wei et al. (2019); López-Caamal and Moreno (2015), should be investigated, as this may
increase the robustness of the control design to external disturbances.

Another improvement that may make the control design more robust is to employ the
equivalent control for the 6DOF model, such as in Gonzalez et al. (2012); Fang et al.
(2015); Tian et al. (2019), since this will lower the bound on the control gains by de-
creasing the perturbations the control algorithms need to dominate. This can easily be
done by including the function a(t, x) in the sliding dynamics in the control coefficient
transformation, such as in Nagesh and Edwards (2014), instead of using only the function
b(t, x).

Furthermore, the problem of choosing optimal control gains should be investigated.
There already exist some rules for choosing the control gains based on Lyapunov analysis,
where the conditions on the control gains are based on the bounds on the disturbances and
perturbations in the system. The control gain configurations presented in subsection 3.5.1
provides rules for choosing the control gains for the STA, which proved unsuccessful in
Griffiths (2020). It may, however, be possible to formulate an optimization problem for
choosing the control gains such as in You et al. (2004), where an optimization algorithm
is used to choose the control gains for a sliding mode controller and disturbance observer
design. Achieving more optimal control gain configurations would be an improvement for
the results presented in this report, as it would be easier to achieve more similar perfor-
mances of the system which are easier to compare.

Several improvements can also be made to the stability analysis of the internal dy-
namics of the system, and to the discussion of the application of SISO controllers to the
6DOF model. In the analysis of the internal longitudinal dynamics in section 5.6 and of
the lateral dynamics in Griffiths (2020), several simplifying assumptions are made, and
only the stability of the decoupled dynamics is determined. It may be interesting to per-
form a more comprehensive analysis with fewer simplifications of the internal dynamics
of the 6DOF model in the sliding mode to fully determine the internal stability of the
6DOF model dynamics since the stability of the internal dynamics in the sliding mode is a
necessary condition for the stability of the SISO and MIMO control designs. Furthermore,
only the validity of the system assumptions for the decoupled dynamics is verified for the
SISO controllers, even though they are applied to the 6DOF model. This means that even
though the validity of the assumptions is confirmed for the SISO controllers applied to the
decoupled models, this might not be the case when they are applied to the 6DOF model.

Even though several versions of the MSTA are implemented in this report, the exten-
sion of the MSTA presented in Wei et al. (2019) is not considered in this report, which
is the adaptive multivariable generalized STA. Because of the good results of the AM-
STA and GMSTA in this report, it would be interesting to compare these algorithms to the
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AMGSTA.
Finally, the inclusion of an anti-windup scheme for the STA should be considered as

this may improve the tracking results. An example of an implementation of the STA with
anti-windup is presented in Golkani et al. (2019), where it is shown to be more effective
than the original STA. If implementing the anti-windup scheme in Golkani et al. (2019)
improves the results for the STA applied in the SISO control design, the possibility of
extending the anti-windup scheme to extensions of the STA, as well as the MSTA and its
extensions, should be investigated.
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Appendix A
MATLAB files

A.1 Zero Dynamics

A.1.1 eigvals.m
Description

Calculates the eigenvalues of the linearized system in the sliding mode presented in section
5.6. Also plots the equilibrium values V ∗a and α∗.

Code

Listing A.1: eigvals.m

close all;
clear eigvalues;
aerosonde;

V_a_0 = 35;
[alpha_0,delta_t_0,delta_e_0] = trim(V_a_0,P);
theta_0=alpha_0;

plot_text = ’’;

a_1 = 5; % dummy sliding variable constant

%% Constants
L_0 = 0.5*P.rho*P.S*(P.C_L_0 - (P.C_L_delta_e/P.C_m_delta_e)*P.C_m_0);
L_q1 = 0.25*P.rho*P.S*P.c*(P.C_L_q - (P.C_L_delta_e/P.C_m_delta_e)*P.C_m_q

);
L_q2 = (P.C_L_delta_e/P.C_m_delta_e)*(-P.I_b(2,2)/P.c)*a_1;
L_alpha = 0.5*P.rho*P.S*(P.C_L_alpha - (P.C_L_delta_e/P.C_m_delta_e)*P.

C_m_alpha);

D_0 = 0.5*P.rho*P.S*(P.C_D_0 - (P.C_D_delta_e/P.C_m_delta_e)*P.C_m_0);
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D_q1 = 0.25*P.rho*P.S*P.c*(P.C_D_q - (P.C_D_delta_e/P.C_m_delta_e)*P.C_m_q
);

D_q2 = (P.C_D_delta_e/P.C_m_delta_e)*(-P.I_b(2,2)/P.c)*a_1;
D_alpha = 0.5*P.rho*P.S*(P.C_D_alpha_1 - (P.C_D_delta_e/P.C_m_delta_e)*P.

C_m_alpha);

%% Solver
% x = [V_a, alpha]
N = 1000;
V_a_star_0 = 45;
alpha_star_0 = deg2rad(3);
theta_lim = deg2rad(25); % stall angle
theta_d = linspace(-theta_lim,theta_lim,N);
T = 0.5*P.rho * P.S_prop * P.C_prop * ((P.k_m*delta_t_0)ˆ2 - V_a_0ˆ2);

x_vec = zeros(N,2);
Tx = zeros(1,N);

for i=1:N
% solve equation set
F = @(x) [(1/P.m)*(T*cos(x(2)) - x(1)ˆ2*(D_alpha*x(2) + D_0) - P.m*P.g

*sin(theta_d(i) - x(2)));
(P.g/x(1))*cos(theta_d(i) - x(2)) - (x(1)/P.m)*(L_alpha*x(2) + L_0

) - (T/(P.m*x(1)))*sin(x(2))];
x0 = [V_a_star_0,alpha_star_0];
options = optimoptions(’fsolve’);
[x,fval(:,i),exitflag(i),output(i)] = fsolve(F,x0,options);
x_vec(i,:) = x;

Tx(i) = 0.5*P.rho * P.S_prop * P.C_prop * ((P.k_m*delta_t_0)ˆ2 - x(1)
ˆ2);

% calculate linearized matrix
a_31 = -P.g*cos(theta_d(i) - x(2));
a_32 = -(1/P.m)*(x(1)*D_q1 - D_q2);
a_33 = -((2*x(1))/P.m)*(D_alpha*x(2) + D_0);
a_34 = (1/P.m)*(-T*sin(x(2)) - x(1)ˆ2*D_alpha) + P.g*cos(theta_d(i) -

x(2));

a_41 = -(P.g/x(1))*sin(theta_d(i) - x(2));
a_42 = 1 - (1/P.m)*(L_q1 - (1/x(1))*L_q2);
a_43 = -(P.g/(x(1)ˆ2))*cos(theta_d(i) - x(2)) - (1/P.m)*(x(2)*L_alpha

+ L_0) + (T/(P.m*x(1)ˆ2))*sin(x(2));
a_44 = (P.g/x(1))*sin(theta_d(i) - x(2)) - (x(1)/P.m)*L_alpha - (T/(P.

m*x(1)))*cos(x(2));

% calculate eigenvalues
A_lin = [-a_1 0 0 0;

0 -a_1 0 0;
a_31 a_32 a_33 a_34;
a_41 a_42 a_43 a_44];

eigvalues(:,i) = real(eig(A_lin));

end
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%% Plot equilibrium values for theta_d vector

f1 = figure(1);
set(gcf, ’Units’, ’Normalized’, ’OuterPosition’, [0, 0.1, 0.6, 0.50]);
subplot(1,2,1)
plot(rad2deg(theta_d),x_vec(:,1))
title(’Airspeed equilibrium $V_aˆ*$’)
ylabel(’$V_aˆ* \: [$m/s$]$’)
xlabel(’$\theta_d \: $[deg$]$’)

subplot(1,2,2)
plot(rad2deg(theta_d),rad2deg(x_vec(:,2)))
title(’Angle of attack equilibrium $\alphaˆ*$’)
ylabel(’$\alphaˆ* \: [$deg$]$’)
xlabel(’$\theta_d \: $[deg$]$’)

path = ’/Stability Analysis/’;
filename = [path plot_text ’_equilibrium.eps’];
print(f1,[pwd filename],’-depsc’);

data.eigvalues = eigvalues;
data.alpha_star_0 = alpha_star_0;
data.V_a_star_0 = V_a_star_0;
data.theta_d = theta_d;
data.x_vec = x_vec;

path = ’Stability Analysis/’;
filename = [path plot_text ’.mat’];
save(filename, ’data’);

%% Plot eigenvalues
plot_eigvals(eigvalues, rad2deg(theta_d), plot_text);

A.1.2 plot eigvals.m
Description

Plots the eigenvalues of the linearized system in the sliding mode presented in section 5.6.

Code

Listing A.2: plot eigvals.m

function plot_eigvals(eigvals,theta_d,plot_text)
%PLOT_EIGVALS Plot eigvals for values of phi_r
% inputargs: eigvals is an 4xn matrix
% phi_r is an 1xn vector

f2 = figure(2);
set(gcf, ’Units’, ’Normalized’, ’OuterPosition’, [0, 0.1, 0.5, 0.60]);
subplot(2,2,1)
plot(theta_d,eigvals(1,:))
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title(’$Re(\lambda_1)$’)
xlabel(’$\theta_d$ [deg]’)

subplot(2,2,2)
plot(theta_d,eigvals(2,:))
title(’$Re(\lambda_2)$’)
xlabel(’$\theta_d$ [deg]’)

subplot(2,2,3)
plot(theta_d,eigvals(3,:))
title(’$Re(\lambda_3)$’)
xlabel(’$\theta_d$ [deg]’)

subplot(2,2,4)
plot(theta_d,eigvals(4,:))
title(’$Re(\lambda_4)$’)
xlabel(’$\theta_d$ [deg]’)

path = ’/Stability Analysis/’;
filename = [path plot_text ’_eigvals.eps’];
print(f2,[pwd filename],’-depsc’);

end

A.2 Approximate Actuator Dynamics

A.2.1 approximate dynamics.m
Description

Approximates the step-response of the second-order actuator dynamics used in Bøhn et al.
(2019) to a first-order transfer function.

Code

Listing A.3: approximate dynamics.m

close all;

% second-order
omega_0 = 100;
zeta = 1/sqrt(2);

sys = tf(omega_0ˆ2,[1 2*zeta*omega_0 omega_0ˆ2]); % second-order TF

step_time = 0;
sim(’Aux Files/second_order_actuator_dynamics.slx’,100);

% first-order approximation
np=1; % number of poles
nz=0; % number of zeros
Ts = 0.001; % sampling time step

data = iddata(ans.y.Data,ans.u.Data,Ts);
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sys2 = tfest(data,np,nz); % approximate first-order TF

T_delta_e = 1/sys2.Denominator(2); % low-pass filter time constant
disp(T_delta_e);

% Plotting
step(sys) % second-order response
hold on;
step(sys2) % approximate first-order response
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Appendix B
Simulink Models

B.1 Longitudinal Model
In this section, the implementation of the longitudinal simulation model is presented. An
overview of the model is shown in Figure B.1. Subsection B.1.1 contains the implemen-
tation of the decoupled longitudinal dynamics. The contents of the Control-block, which
includes the saturation controller, the STA, the ASTA, the GSTA, the airspeed hold con-
troller, the measuring of the continuous control signals, and the implementation of the
actuator dynamics are shown in subsection B.1.2. The contents of the Reference-block
are shown in subsection B.1.3, while the contents of the Wind and disturbance-block are
shown in subsection B.1.4. Finally, the implementation of the Sensor-block is shown in
subsection B.1.5.

Figure B.1: Overview of the longitudinal simulation model in Simulink.
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B.1.1 Model Implementation

Figure B.2: The Simulink-implementation of the longitudinal model.

B.1.2 Control System

Figure B.3: The Simulink-implementation of the longitudinal control system.

Figure B.4: The Simulink-implementation of the longitudinal SMC control system.
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Saturation Controller

Figure B.5: The Simulink-implementation of the single-input saturation controller.

STA

Figure B.6: The Simulink-implementation of the single-input STA controller.

ASTA

Figure B.7: The Simulink-implementation of the single-input ASTA controller.

GSTA

Figure B.8: The Simulink-implementation of the single-input GSTA controller.
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Airspeed Hold Using Throttle

Figure B.9: The Simulink-implementation of the airspeed PI-controller.

Actuator Measurement and Dynamics

Figure B.10: The Simulink-implementation of the measurement and actuator dynamics in the con-
trol system.

B.1.3 Reference Trajectory

Figure B.11: The Simulink-implementation of the longitudinal reference signal θd.

B.1.4 Wind and Disturbances

Figure B.12: The Simulink-implementation of the longitudinal disturbances.
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Wind Disturbance

Figure B.13: The Simulink-implementation of the wind gust signal dg .

Process Noise

Figure B.14: The Simulink-implementation of the parametric uncertainty signal dθ(t).

B.1.5 Sensor Block

Figure B.15: The Simulink-implementation of the sensor block.

B.2 6DOF Simulation Model
In this section, the implementation of the 6DOF simulation model, and of the SISO and
MIMO control designs, are presented. An overview of the 6DOF simulation model is
shown in Figure B.16. The implementation of the 6DOF UAV dynamics is shown in
subsection B.2.1. Subsection B.2.2 contains the implementation of the waypoint following
system. Subsection B.2.3 presents the implementation of the wind and process noise that is
present in the simulation model. The implementations of the sensor and actuator dynamics
are shown in subsection B.2.4. Finally, the SISO and MIMO control designs are presented
in subsection B.2.5 and subsection B.2.6, respectively.
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Figure B.16: Overview of the 6DOF simulation model in Simulink.

B.2.1 Model Implementation

Figure B.17: The implementation of the 6DOF model in Simulink.

B.2.2 Reference Block

Figure B.18: Overview of the Reference-block in the 6DOF model in Simulink.
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Waypoint Follower

Figure B.19: The waypoint follower system in the 6DOF model in Simulink.

Control Commands

Figure B.20: The system that generates the reference trajectories based on the commands from the
waypoint follower subsystem in Simulink.

Heading Control Block

Figure B.21: The system that generates the desired roll angle φd in Simulink.
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Altitude Hold Controller

Figure B.22: The altitude hold controller that generates the desired pitch angle θd in Simulink.

B.2.3 System Disturbances

Figure B.23: Overview of the Wind and disturbance-block in Simulink.

Wind

Figure B.24: The system that generates the wind disturbances vw and ωw in Simulink.
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Parametric Uncertainties

Figure B.25: The system that generates the disturbance vector d in Simulink.

B.2.4 Sensor Blocks and Actuator Dynamics
Sensor Block for the State

Figure B.26: The sensor block that measures the state x, the Euler angles Ω, and the airdata variables
Va and α in Simulink.

Sensor Block for the Control

Figure B.27: The sensor block that measures the control ū in Simulink.
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Actuator Dynamics

Figure B.28: The system that generates the delayed control signal ūd in Simulink.

B.2.5 SISO Control Design

Figure B.29: Overview of the SISO control design in Simulink.

SISO Controllers

Figure B.30: The SISO controllers in Simulink.
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Sliding Variable-Subsystem

Figure B.31: The implementation of the sliding variable for the SISO control design in Simulink.

Single-Input Controllers

(a) The implementation of the lateral controllers in
the SISO control design in Simulink.

(b) The implementation of the longitudinal con-
trollers in the SISO control design in Simulink.

Figure B.32: The single-input lateral and longitudinal controllers in the SISO control design in
Simulink.

Sideslip Hold

Figure B.33: Implementation of the sideslip hold controller in Simulink.
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B.2.6 MIMO Control Design

Figure B.34: Overview of the MIMO control design in Simulink.

MIMO Controllers

Figure B.35: The MIMO controllers in Simulink.

Sliding Variable-Subsystem

Figure B.36: The implementation of the sliding variable for the MIMO control design in Simulink.
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Appendix C
Additional Control Coefficient
Transformation Results

In this chapter, the results of using the control coefficient transformations in (T1)-(T3) for
simulation case 1 are presented. The results for the saturation controller are presented in
section C.1, for the STA in C.2, and for the GSTA in C.3.

C.1 Saturation Controller
The results of using the different control coefficient transformations in the design of the
saturation controller for case 1 are shown in Figure C.1. The performance measures for
case 1 can be found in Table 7.2. The control gains are chosen for the three different
transformations as

(T1) ke1 = 0.5, ε = 0.1

(T2) ke1 = 17.5, ε = 0.1

(T3) ke1 = 17.5, ε = 0.1
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Figure C.1: The pitch angle tracking results and control signals for the single-input saturation con-
troller applied to the decoupled longitudinal model for case 1. The pitch angle θT1 and elevator
deflection δ̄eT1 are the results for transformation (T1), θT2 and δ̄eT2 are the results for transforma-
tion (T2), and θT3 and δ̄eT3 are the results for transformation (T3).

C.2 The STA
The results of using the different control coefficient transformations described in (T1)-(T3)
in the design of the STA for case 1 are shown in Figure C.2. The performance measures
for case 1 can be found in Table 7.3. The control gains are chosen for the three different
transformations as

(T1) ke1 = 0.7, ke2 = 0.008

(T2) ke1 = 20, ke2 = 1

(T3) ke1 = 20, ke2 = 1
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Figure C.2: The pitch angle tracking results and control signals for the single-input STA applied to
the decoupled longitudinal model for case 1. The pitch angle θT1 and elevator deflection δ̄eT1 are
the results for transformation (T1), θT2 and δ̄eT2 are the results for transformation (T2), and θT3

and δ̄eT3 are the results for transformation (T3).

C.3 The GSTA
The results of using the different control coefficient transformations described in (T1)-(T3)
in the design of the GSTA for case 1 are shown in Figure C.3. The performance measures
for case 1 can be found in Table 7.5. The control gains are chosen for the three different
transformations as

(T1) βeg = 0.001, ke1 = 0.5, ke2 = 0.2

(T2) βeg = 0.03, ke1 = 24, ke2 = 15

(T3) βeg = 0.03, ke1 = 24, ke2 = 15
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Figure C.3: The pitch angle tracking results and control signals for the single-input GSTA applied
to the decoupled longitudinal model for case 1.The pitch angle θT1 and elevator deflection δ̄eT1 are
the results for transformation (T1), θT2 and δ̄eT2 are the results for transformation (T2), and θT3

and δ̄eT3 are the results for transformation (T3).

228



Appendix D
Additional 6DOF Simulation
Results

D.1 Flight Paths for Case 1 and Case 2
This chapter contains the waypoint following performance of the SISO control design for
case 1 in section D.1.1, and the performances of the MIMO control designs for case 1
in section D.1.2. The flight paths of the SISO and MIMO control designs for case 2 are
presented in sections 8.2 and 8.3, respectively.

D.1.1 All SISO Control Designs for Case 1
The flight paths for all the SISO control designs for case 1 are shown in Figure D.1.

(a) North-East-Up view of the flight paths.
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(b) North-East view of the flight paths.

Figure D.1: The flight paths of all the SISO algorithms for case 1.

D.1.2 All MIMO Control Designs for Case 1
The flight paths for all the MIMO control designs for case 1 are shown in Figure D.2.

(a) North-East-Up view of the flight paths.

(b) North-East view of the flight paths.

Figure D.2: The flight paths of all the MIMO algorithms for case 1.

D.2 Control Gains and System Parameters
In this section, the control gain configurations and other system parameters for the SISO
and MIMO control designs are presented for simulation cases 1 and 2. The parameters
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for the SISO designs are presented in subsection D.2.1, and for the MIMO designs in
subsection D.2.2. The choice of control gains and system parameters for case 3 and case
4 can be found in subsection D.2.3.

D.2.1 The SISO Control Designs
The sliding surface gain is the same for all controllers and simulation cases, and is chosen
as aφ1

= aθ1 = 5 rad/s. The rest of the control gains and system parameters can be found
in Table D.1.

Simulation Case 1
Saturation STA ASTA GSTA

ka 35 ka1 11 ωa1 1 ka1 7
ke 30 ka2 5 γa1 1 ka2 2
ε 1 ke1 7 εa 0.1 βag 2

ke2 1 λa 0.1 ke2 6
αa0

5 ke2 0.1
αam 0.001 βeg 2
ωe1 0.6
γe1 0.6
εe 0.05
λe 0.05
αe0 5
αem 0.1

Simulation Case 2
Saturation STA ASTA GSTA

ka 30 ka1 11 ωa1 2 ka1 7
ke 25 ka2 5 γa1 1 ka2 2
ε 1 ke1 8 εa 0.4 βag 2

ke2 2 λa 0.1 ke2 6
αa0

5 ke2 0.1
αam 0.05 βeg 2
ωe1 0.6
γe1 0.6
εe 0.1
λe 0.05
αe0 5
αem 0.1

Table D.1: The choice of control gains and system parameters for the SISO control designs for
simulation cases 1 and 2.
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D.2.2 The MIMO Control Designs
The sliding surface gain kΓ is the same for all controllers and simulation cases, and is
chosen as kΓ = 5 rad/s. The rest of the control gains and system parameters can be found
in Table D.2.

Simulation Case 1

MSAT MSTA AMSTA GMSTA
K 30 k1 23 ω1 5 k1 8
ε 0.5 k2 17 γ1 5 k2 11

k3 0.1 ε1 3 k3 1
k4 13 α0 5 αg 0.4

σT 0.4 βg 5
pg 0.5
qg 1
γg 0

Simulation Case 2

MSAT MSTA AMSTA GMSTA
K 35 k1 3 ω1 80 k1 6
ε 0.5 k2 40 γ1 40 k2 11

k3 0.1 ε1 0.01 k3 0.8
k4 15 α0 16 αg 0.4

σT 2 βg 4
pg 0.5
qg 1
γg 0

Table D.2: The choice of control gains and system parameters for the MIMO control designs for
simulation cases 1 and 2.

D.2.3 Simulation Case 3 and Case 4
In this section, the control gains and system parameters for the control designs considered
for case 3 and case 4 are presented. They can be found in Table D.3. The sliding variable
gains for the SISO and MIMO control designs are chosen as aφ1 = aθd = kΓ = 5 rad/s.
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Simulation Case 3

Saturation GSTA MSAT GMSTA
ka 35 ka1

8 K 28 k1 7
ke 12 ka1

1.2 ε 0.8 k2 8
ε 1 βag 4 k3 0.5

ka1 1 αg 0.00002
ka1 0.0007 βg 3
βag 8 pg 0.5

qg 1
γg 0

Simulation Case 4

MSAT MSTA AMSTA GMSTA
ka 35 ka1

8 K 35 k1 7
ke 13 ka1

1.2 ε 1 k2 6
ε 1 βag 4 k3 0.5

ka1 2 αg 0.00002
ka1 0.0007 βg 3
βag 4 pg 0.5

qg 1
γg 0

Table D.3: The choice of control gains and system parameters for the saturation, the GSTA, the
MSAT, and the GMSTA control designs for simulation case 3 and 4.

D.2.4 Choice of Control Gains for Different Actuator Dynamics
In this section, the control gains and system parameters for the saturation, the GSTA, the
MSAT, and the GMSTA control designs for case 2 with different actuator dynamics are
presented. They can be found in Table D.4. The sliding variable gains for the SISO and
MIMO control designs are chosen as aφ1

= aθd = kΓ = 5 rad/s.
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Case 2 when Tu = 0.1 s

Saturation GSTA MSAT GMSTA
ka 35 ka1

9 K 25 k1 15
ke 8 ka1

0.05 ε 1 k2 20
ε 0.5 βag 3 k3 1

ka1 5 αg 0.3
ka1 0.1 βg 0.5
βag 0.5 pg 0.5

qg 1
γg 0

Case 2 when using second-order dynamics

MSAT MSTA AMSTA GMSTA
ka 35 ka1

6 K 60 k1 5
ke 30 ka1

0.05 ε 2 k2 10
ε 1.5 βag 3 k3 0.6

ka1 4 αg 0.1
ka1 0.01 βg 4
βag 4 pg 0.5

qg 1
γg 0

Table D.4: The choice of control gains and system parameters for the saturation, the GSTA, the
MSAT, and the GMSTA control designs for simulation case 2 with different actuator dynamics.

D.2.5 Choice of Control Gains for Different Sampling Frequencies
In this section, the control gains and system parameters for the saturation, the GSTA, the
MSAT, and the GMSTA control designs for case 2 with different sampling frequencies are
presented. They can be found in Table D.5. The sliding variable gains for the SISO and
MIMO control designs are chosen as aφ1

= aθd = kΓ = 5 rad/s.
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Sampling frequency fs = 100 Hz

Saturation GSTA MSAT GMSTA
ka 30 ka1

7 K 35 k1 6
ke 25 ka1

2 ε 0.5 k2 11
ε 1 βag 2 k3 0.8

ka1 6 αg 0.4
ka1 0.1 βg 4
βag 2 pg 0.5

qg 1
γg 0

Sampling frequency fs = 20 Hz

MSAT MSTA AMSTA GMSTA
ka 50 ka1

5 K 110 k1 6
ke 35 ka1

0.1 ε 4 k2 8
ε 3 βag 2 k3 0.3

ka1 1.85 αg 0.2
ka1 0.1 βg 3
βag 5 pg 0.5

qg 1
γg 0

Table D.5: The choice of control gains and system parameters for the saturation, the GSTA, the
MSAT, and the GMSTA control designs for simulation case 2 with different sampling frequencies.
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