
H
alvorsen, Karoline

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Halvorsen, Karoline

Analysis of position estimation in a
dead reckoning navigation robot

Master’s thesis in Cybernetic and robotik
Supervisor: Onshus, Tor

January 2020

Halvorsen, Karoline

Analysis of position estimation in a
dead reckoning navigation robot

Master’s thesis in Cybernetic and robotik
Supervisor: Onshus, Tor
January 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

To my mother: for all the support through my years of study

Preface

This master thesis marks the end of five years at the Norwegian University of Science and
Technology (NTNU). The work is a part of the course, TTK4900- Engineering
Cybernetics, Master’s Thesis, at the Cybernetic Department.

The work conducted in this master thesis is based on knowledge from the specialization
project [1], but with a different robot and another robot application. The specialization
project focused on determining the precision in the robot’s internally estimated position,
and how to improve it through work on the gyroscope. The master thesis takes a closer
look at all the sensors and the position estimation application. In the beginning of the
thesis, time has also been spent on getting the system to a functional state.

Recognition and acknowledgement
I want to thank my supervisor Professor Tor Onshus, for guidance and interesting
discussions through the work on this thesis.

A special thanks to my family and Amund Fjøsne, who has supported me and cheered me
up trough the project.

Thanks to the employers at IKT and the Mechanical workshop at the Cybernetic
Department, for letting me use the soldering equipment, fastening the motors to the robot
and supplying materials to build the larger testing court.

Thanks to Torgeir Myrvang, for letting me use the software he had written to easy debug
the robot with a USB cable, and to all the fellow students at the office for technical
discussions.

Karoline Halvorsen
Trondheim, January 2021

i

Problem Description

Background
“Knowledge is power”, is a phrase attributed by Thomas Hobbes, dating back to 1668 [2].
As the world gets more complex, inaccuracies and fake news can create chaos and divi-
sion. It is not only in society where precision and truth are essential. In the navigation of
robotics, it is crucial to have correct and accurate data, as companies work toward industry
4.01. With more communication between different systems, and robots becoming more
autonomous, the reliability of accurate information is more and more critical. An error in
robot position or orientation can cost a firm time and money.

This robot project faces many of the same challenges. The precision in the position has
to be accurate for the robot not to collide, or give false information. For some companies,
the cost of high precision sensors may be prohibitively high. Even if the robot has low-
budget sensors, without the highest accuracy, the problem of how to improve precision in
the estimated position is highly relevant.

Objective
Evaluate the error, investigate its sources, and provide suggestions for improvements of
the robots internal pose estimation.

List of tasks that have been carried out

1. Correct initial problems in software and hardware if they occur

2. Test gyroscope for drift and noise

3. Test the accelerometer

4. Test the encoder

5. Test the compass

6. Test the IR sensors

7. Test driving performance in a square test and testing different courts

8. Find solution to improve the position estimation

Tests on the autonomous parking have also been executed.

1Industry 4.0 is a term that represents the fourth stage in the industrial revolution. Here, the technology is
linked more together in real-time systems, automation and machine learning [3].

ii

Summary

In this master thesis, the focus area has been to investigate the sources for the error in the
Arduino robot’s position estimation. This has been done by evaluating position estimation
in square tests, to find the position accuracy. In addition, the estimation application and all
sensors connected to the robot, are evaluated.

In the beginning of the project, some bugs were detected. Most were fixed, but the
problem with the lidar was not solved and was excluded from the project. In the continu-
ous square test, the robot tended to get a larger error after driving multiple rounds. It was
detected that the robot is stochastic in the way it behaves. This might be due to a problem
with FreeRTOS or an initialization problem. This has not been investigated further but is
left as a suggestion for future work. The robot was also tested in a more extensive track
and in the round court, with varying results.

This project has, in addition, investigated the angular velocity, dTheta, of the robot’s
heading. dTheta is a direct result from the weighted data measurement from the gyroscope
and encoder. The estimated robot heading is an integration of dTheta. The heading of the
robot is found to have an increasing error over time, due to integration. The error varied
when changing the weighting between the gyroscope and encoder.

The thesis will also describe how all sensors are tested. The five sensors on the robot
were tested and found usable. The gyroscope was found to have a drift of 0.02 degrees
in 30 minutes. The bias was found to be around -5 to -6 dps, but two outliers have been
found, with an increase of 300%. The placement of the accelerometer corrupts the data.
When the robot is standing still, all axes can measure 1 g in the vertical direction, but
had a measurement error of 0.49 to -0.0320 g. The new encoders were then tested and
found to have between 90-110 ticks per wheel rotation. In the last period of this thesis
work, it was discovered that the function used, to extract encoder ticks, was wrong. After
it was fixed, the encoder ticks were found to be 225 ticks per wheel rotation. The compass
was calibrated, which resulted in a more accurate measurement compared to the previous
calibration. The new calibration of the compass gives an x offset of -456 milligauss and
a y offset of 246 milligauss. To measure distance, the IR sensors were calibrated. The
old calibration often measures too far, at shorter distances (up to 30 centimetres). The
new calibration underestimated the distance. However, the new calibration was fluctuating
more than than the old one, which resulted in the conclusion of keeping the old calibration.

To improve the position estimate, a design for an extended Kalman filter to fuse the
sensor data, is presented. This has not been implemented and is left for future work.

iii

Sammendrag

I denne masteroppgaven har fokusområdet vært å undersøke årsaken til feil i Arduino-
robotens posisjonsestimering. Dette har blitt gjort ved å evaluere posisjonsestimering un-
der firkanttesten, for å finne posisjonsnøyaktigheten. I tillegg evalueres estimeringsapp-
likasjonen og alle sensorer som er koblet til roboten.

I begynnelsen av prosjektet ble noen feil oppdaget. De fleste ble løst, utenom prob-
lemet med lidaren, derfor ble den utelatt fra prosjektet. Roboten har en tendens til å få en
større feil etter kontinuerlige runder i firkanttesten. Det ble oppdaget at roboten tilsynela-
tende har en stokastisk oppførsel. Dette kan skyldes et problem med FreeRTOS eller et
initialiseringsproblem. Det er ikke undersøkt nærmere, men er satt som et forslag for
videre arbeid. Roboten er i tilegg testet i en mer omfattende bane, og i rundbanen, med
varierende resultat.

Denne oppgaven har i tilegg undersøkt vinkelhastigheten, dTheta, i robotens heading.
dTheta er et direkte resultat av vekting av målinger fra gyroskopet og enkoderen. Den
estimerte robot-headingen er en integrasjon av dTheta. Robotens heading har en økende
feil over tid, som følge av denne integrasjonen. Feilen varierte når vektingen mellom gy-
roskopet og enkoderen ble endret.

Oppgaven vil også beskrive hvordan alle sensorer blir testet. De fem sensorene på
roboten ble testet og bedømt til å være brukbare. Gyroskopet hadde en drift på 0,02 grader
i løpet av 30 minutter. Bias ble funnet å være rundt -5 til -6 dps, men hadde to avvik, med
en økning på 300 %. Plasseringen av akselerometeret ødelegger tildels dataene. Når
roboten står stille, kan alle aksene måle 1 g i vertikal retning, men hadde en målefeil på
0,49 til -0,0320 g. Videre ble de nye enkoderne testet, og funnet å ha et sted mellom 90-
110 tikk per hjulrotasjon. I den siste perioden av arbeidet med masteren ble det oppdaget
at funksjonen brukt til å hente ut antall enkoder-tikk, var feil. Etter at den var fikset, ble
det funnet å være 225 steg per hjulrotasjon. Kompasset ble kalibrert, noe som resulterte
i en mer nøyaktig måling sammenlignet med forrige kalibrering. Den nye kalibreringen
av kompasset gir en x-offset på -456 milligauss og en y-offset på 246 milligauss. For å
måle avstand ble IR-sensorene kalibrert. Den gamle kalibreringen måler ofte for langt på
korte avstander (opptil 30 cm), og den nye kalibreringen underestimerte avstanden. Den
nye kalibreringen fluktuerer mer enn den gamle, hvilket resulterte i konklusjonen om å
beholde den gamle kalibreringen.

For å forbedre posisjonsestimatoren presenteres et design som bruker et utvidet Kalman-
filter til å fusjonere sensordataene. Dette er ikke implementert og er forelsått som fremtidig
arbeid.

iv

Conclusion

Different sources of error have been found in the robot’s estimation of position and
orientation (POSE), with the constraints of evaluating the robot’s sensors and its position
estimator. The work carried out for this thesis concludes that the robot is not optimized for
accurate position estimation. The robot has an error in its position estimate, and it varies
from a few, to more than 20 centimetres. The error also develops over time and is often
increasing.

Today, only encoders and gyroscope are used to calculate the position estimate in the
Arduino robot. None of the sensors have mechanisms that protect against noise, e.g., a
filter to conserve signal integrity. Noise has been found in the gyroscope, and the full
range of the encoders is not utilised. The encoder resolution can be improved by using
both phases and recording all encoder ticks. In the robot application, integration and cal-
culation of position, leads to errors in the estimator. This calculation error has not been
quantified.

The robot can improve POSE estimation by utilising several of the sensors. It is con-
cluded that the accelerometer works. However, to effectively use it in the robot application,
the IMU must be moved or the accelerometer data mathematically transformed to the cen-
tre of rotation. The compass works as well, but must be calibrated if the robot is used near
objects that disturb the magnetic field. Using the sensors above, an extended Kalman filter
can improve the robot position and orientation estimate [4].

The calculation of distance using the IR sensors should be executed in millimetres,
to avoid rounding error. In addition, using the full range of the ADC will improve the
measurement, by increasing the resolution. The robot application could detect the docking
station and re-calibrate its position, to improve the position estimate.

v

Table of Contents

Preface i

Problem Description ii

Summary iii

Sammendrag iv

Conclusion v

Table of Contents vi

List of Tables ix

List of Figures x

Abbreviations xiii

1 Introduction 1
1.1 The Robot Project . 2
1.2 Motivation . 3
1.3 Equipment . 3

1.3.1 Hardware . 3
1.3.2 Software tools . 4

2 Background 5
2.1 Robot description . 6

2.1.1 Previous work . 6
2.1.2 Hardware . 6
2.1.3 Software . 13
2.1.4 Programming with Atmel Studio 14

2.2 Server application . 15
2.3 Tracking the robot . 16
2.4 Initial work . 16

2.4.1 Challenges . 16
2.4.2 Software application changes 21
2.4.3 Merging IR and lidar application 22
2.4.4 Folder structure . 23
2.4.5 Testing autonomous docking . 23

vi

3 Method 27
3.1 Driving performance . 27

3.1.1 Square test . 27
3.1.2 Continuous square test . 28
3.1.3 The round court . 29
3.1.4 Larger tracking court . 29

3.2 Position estimation . 30
3.2.1 dTheta . 31
3.2.2 Robot heading . 32
3.2.3 New position estimator design 33

3.3 Sensors . 35
3.3.1 Gyroscope . 36
3.3.2 Accelerometer . 39
3.3.3 Encoders . 42
3.3.4 Compass . 44
3.3.5 IR sensors . 46

4 Result 51
4.1 Driving preformance . 51

4.1.1 Square test . 51
4.1.2 Continuous square test . 52
4.1.3 The round court . 56
4.1.4 Larger tracking court . 56

4.2 Position Estimation . 57
4.2.1 dTheta . 57
4.2.2 Robot heading . 59

4.3 Sensors . 65
4.3.1 Gyroscope . 65
4.3.2 Accelerometer . 68
4.3.3 Encoder . 70
4.3.4 Compass . 72
4.3.5 IR measurement . 74

5 Discussion 77
5.1 Driving performance . 77

5.1.1 Square test . 77
5.1.2 Continuous square test . 78
5.1.3 Round court . 79
5.1.4 Larger track . 80

5.2 Position estimation . 80
5.2.1 dTheta . 81
5.2.2 Robot heading . 81

5.3 Precision in sensors . 82
5.3.1 Gyroscope . 82
5.3.2 Accelerometer . 84
5.3.3 Encoder . 86

vii

5.3.4 Compass . 87
5.3.5 IR sensor . 87

6 Further work 91

References 93

Appendix 99

A Manuals to operate the system 99
A.1 Set up Netbeans IDE . 99
A.2 Use of the Netbeans server . 99
A.3 Flash script . 100
A.4 How to charge the robot . 101
A.5 How to debug via Putty . 101
A.6 How to use the Optitrack system . 102
A.7 Lidar pinout . 104

B More results from testing 105
B.1 Square test . 105
B.2 Continuous square test . 106
B.3 The larger track . 112
B.4 Robot heading . 112
B.5 Gyroscope data . 113
B.6 Data from IR calibration . 114

viii

List of Tables

2.1 New IR sensor mapping . 21

3.1 Commands to execute the square tests in the CCW and CW directions . . 28
3.2 Distance to calibrate the IR sensors . 49

4.1 Robot heading [deg] after five minutes 61
4.2 Data measurement from Optitrack during the three meter test, unit [m] . . 62
4.3 Final robot heading after driving 3 meters, given in degrees 64
4.4 Calculated variance and standard deviation of the gyro measurement [deg] 66
4.5 Detailed result from the 90 degree turn test 68
4.6 Measurement from acceleration test, with the different orientations of the

accelerometer . 69
4.7 Total encoder tics found from 20 manual wheel rotations 71
4.8 Result from finding encoder values from driving 72
4.9 New encoder ticks and calculation of wheel factor 72
4.10 Result from curve fitting using the Matlab toolbox 75
4.11 Result of IR calibration method . 76

A.1 Lidar pin-out . 104

B.1 Result of the net error calculation from the continuous square test 111
B.2 Result of average distance error of the continuous square test 111
B.3 Voltage measurement from the IR sensor calibration 114

ix

List of Figures

1.1 The Arduino robot . 1

2.1 Definition of the body coordinate frame of the robot 5
2.2 Arduino ATmega 2560, image is taken from the Arduino homepage [21] . 7
2.3 UK1122 H-Bridge Motor Driver, image is taken from [24] 7
2.4 DAGU motor image from Sparkfun [26] 8
2.5 SO5NF STD servo, image is taken from DigiKey [29] 8
2.6 Sensor tower on top of the robot with the IR sensors 9
2.7 Analog to Digital converter, image taken from [31] 10
2.8 The Garmin lidar v3 sensor, image from Sparkfun [33] 10
2.9 HMC5883L compass, image is taken from Jensen 2018 [18] after the repairs 11
2.10 To communicate between the robot and server, both systems must have an

nRF51 dongle (image is taken from [39]) 12
2.11 Points A and B are detected as a previously visited points in SLAM. With

the use of odometry, this information is lost, image from [44] 15
2.12 Placement of the new motors . 18
2.13 Connector sheet for the new motor and encoder, image is from [49] 19
2.14 Original PCB-design from Jensen [18] 19
2.15 Modified design for the PCB, where the changes are made in the area

indicated by the black circle . 20
2.16 Test setup of the autonomous docking station 23
2.17 Different result from testing the autonomous docking application 24
2.18 Simplified circuit diagram of the charging system for the robot 25
2.19 Simplified circuit diagram of the charging system for the robot with the

switch replaced by a diode . 25

3.1 The round court . 29
3.2 Plan for a larger court for the robot to navigate 30
3.3 Visual description of the 90 degree test as described in 3.3.1 37
3.4 Frequency response of different filters 38
3.5 Coordinate system of the three tests of the positive gravitational force . . 39
3.6 Coordinate frame of the robot and the IMU, b is the body frame, m is the

measurement frame and w is the fixed world frame 40
3.7 Reference between fixed world frame and robot frame 42
3.8 Quadrature encoder concept . 42
3.9 XOR phase A and B to improve the resolution 44
3.10 Compass measurement with no distortion, image taken from [62] 45
3.11 Voltage to distance curve from IR-sensor datasheet [30] 46
3.12 Test setup for distance measurement . 47
3.13 Data flow for IR measurements in the robot 47

x

4.1 Error distance in square test . 52
4.2 Result of the continuous square test . 53
4.3 Average distance error from the multiple square test run 54
4.4 Outlier from the multiple square run in the CW direction 55
4.5 Different outcomes of mapping the round court on the server, the name of

the robot was LIDAR-IR, even though the lidar was not used 56
4.6 Result of mapping the larger court . 56
4.7 dTheta value when the robot is standing still, for different gyro weights . 57
4.8 dTheta value using only encoders, robot is standing still 58
4.9 dTheta value when the robot is driving, for different gyro weights 58
4.10 dTheta value using only encoders, robot is driving 59
4.11 Robot heading during five minutes of standing still with gyro weight = 0 . 59
4.12 Logged robot heading during five minutes standing still 60
4.13 Result from the robot driving three meters in a straight line 61
4.14 Result from the robot driving three meters in a straight line, with gyro

weight = 0 . 62
4.15 Predicted robot heading when the robot is driving 63
4.16 Predicted robot heading when the robot is driving, with gyro weight = 0 . 64
4.17 Data from the gyroscope, while the robot is standing still for 30 minutes . 65
4.18 Result of gyroscope noise . 66
4.19 Bias test: Offset values from 20 separate tests 67
4.20 Result from the gyroscope test with 90 degrees turn 67
4.21 Acceleration data when the robot is at rest, with various rotations 68
4.22 The improvement of the accelerometer data when the robot was tilted to

be horizontal . 69
4.23 Acceleration results when the robot moves forward 70
4.24 Encoder ticks from rotating the wheel 20 times 71
4.25 Compass measurement and theoretical improvement with the calibration . 73
4.26 Compass measurement with the implemented calibration 73
4.27 Curve-fitting from IR sensors, with coefficient from table 4.10 74
4.28 Theoretical error from the new calibration 75
4.29 Error from measured distance and actual distance from the IR sensors . . 76

5.1 Net error for every round in the continuous square test, CCW direction . . 79
5.2 Net error for every round in the continuous square test, CW direction . . . 79
5.3 Comparison of the larger tracking test 80
5.4 Conceptual diagram of potential sources of error in the gyroscope 83
5.5 Time the robot used to drive approximately one meter 85
5.6 Illustration of a signal with a small bias, and the resulting single and dou-

ble integral errors . 86
5.7 Theoretical worst-case of ADC error in the left IR sensor 88
5.8 Zoomed image of theoretical worst-case of ADC error in the left IR sensor 89

A.1 Resolving error in Netbeans . 100
A.2 The commercial charger, image from [67] 101
A.3 Wand used to calibrate the Optitrack camera, image from [46] 103

xi

A.4 Placement of the calibration L in the testing area 104
A.5 Lidar mounted on the sensor tower . 104

B.1 Square test result with no error factor implemented 105
B.2 Square test result with gyro error factor implemented 106
B.3 Square test result with encoder error factor implemented 106
B.4 Result of distance from continuous square test, CCW direction 107
B.5 Result of distance from continuous square test, CCW direction 108
B.6 Result of distance from continuous square test, CCW direction 108
B.7 Result of distance from continuous square test, CW direction 109
B.8 Result of distance from continuous square test, CW direction 110
B.9 The larger track that was tested . 112
B.10 Noise in the gyroscope, result from test explained in chapter 3.3.1 113

xii

Abbreviations

ADC = Analogue to Digital Converter
BLE = Bluetooth Low Energy
CCW = Counterclockwise
CPU = Central Processing Unit
CW = Clockwise
DC = Direct Current
dps = degrees per second
EMA = Exponential Moving Average
GPS = Global Position System
GUI = Graphical User Interface
IDE = Integrated Development Environment
IDP = Integrated Development Platform
IMU = Inertial Measurement Unit
INL = Integral Non-Linearity
IR = Infrared
NTNU = Norwegian University of Science and Technology
PCB = Printed Circuit Board
PI = Proportional Integral
POSE = Position and Orientation
RPM = Rotations per Minute
RTOS = Real-Time Operating System
RX = Receive
SLAM = Simultaneous Localisation and Mapping
SSNAR = System for Self-Navigating Autonomous Robots
TX = Transmit

xiii

xiv

Chapter 1
Introduction

The reader will find the thesis structured in the following way:

• Chapter 1: Introduces the project and describes the equipment used.

• Chapter 2: Describes how the system works in more detail. It also gives an expla-
nation of the tasks that have been executed to fix initial problems.

• Chapter 3: Explains the experimental method and theoretical background needed to
solve this thesis problem.

• Chapter 4: Reviews the results and findings from the experimental tests.

• Chapter 5: Analyses and discusses the results found.

• Chapter 6: Suggests relevant tasks for future work.

Figure 1.1: The Arduino robot

1

Chapter 1. Introduction

1.1 The Robot Project

The Robot project is a hands-on project available for the fifth-year students at the cyber-
netic department at NTNU. It is worked on as a specialisation project and master thesis,
and is supervised by professor Tor Onshus.

The goal of the project is to navigate an unknown environment with a robot. The nav-
igation method uses dead reckoning. This is a method where the position and orientation
is based on initially given values and calculation from the driven distance and heading [5].
The system assumes there are no known markers in the area. The system consists of the
robot collecting data and calculate its internal position and orientation. The robot sends
the information to the server, that constructs a map and calculates target points and path.
This information is then sent back to the robot for execution.

The robot project was founded in 2004 and consisted only of a single robot constructed
of LEGO bricks, therefore called the LEGO - robot project. At this point the server was
written for Linux, by Håkon Skjelten [6]. The project has grown from one robot to multi-
ple, and today there exists six robots. Previously the different robots were built with Lego
and with different microchips, like the AT91SAM7S256 chip used in the NXT robot [1,
chapter 2.1.1].

In the last years the robots have been upgraded to use more off-the-self components.
Today the robots use an Arduino board, connected to different commercial sensors. With
no Lego robot parts left, the name Lego project is phased out and replaced by the Robot
project. It is not only the robot that has changed since the beginning of the project. Fur-
thermore, the server has also been under development. It was first written for Linux, then
in Java and is now in C++.

Today the development of the different robots are at different stages. Some use differ-
ent control systems and communicate only with certain servers. Nevertheless, the overall
goal for the project is the same, to navigate in an unknown environment. In the end, the
goal is to have multiple robots navigate autonomously1 and collaborate in the mapping,
without the use of the server. The server will then function as a graphical user interface
(GUI) to display the map for the user.

In this master thesis, the robot used is the Arduino robot that can have both infrared
(IR) or lidar sensors connected to it, to determine the distance to an obstacle. A future
goal is to achieve autonomous parking of the robot. To achieve this the position error of
the robot must not be over 15 millimetres (defined in the robot application). Improving the
position estimate must first be solved before working on autonomous parking, therefore
this thesis investigates reasons for the position error.

1Independent or self-government [7]

2

1.2 Motivation

1.2 Motivation

Today in the digitized and more robotized world, position and navigation are widely re-
searched. For many years Global Position System (GPS) has been used to find the position
of an object, like in the navigation system of a car. However, the GPS is known to have
some downsides when it comes to precision, as the accuracy is on meter-level and can be
hard to use in a specific environment [8]. For example, where there are high buildings that
blocks the signal or mountains that shields the signal to the satellite. In addition the GPS
will not work inside a building. In this robot project, there is not possible to use GPS, as
the accuracy must be on centimetres and millimetres-level, and the robot is used inside.
Today projects that navigates without the use of GPS, is found in many applications, like
robot vacuum cleaners or the MIT project where they use drones to look for lost hikers in
an environment where there are no GPS [9].

The task of getting the most precise position estimate for a robot that has off-the-shelf-
sensors, without the highest quality, is an interesting challenge. Today many projects want
to have the best equipment and best sensors, but they are often too expensive. To be able
to learn how to get the best out of the equipment that is given, is a skill that is useful for a
future career.

In the last few years, several students have tried to improve the position estimation in
the robot. This is a crucial part of the project, for the robot to operate with best possible
accuracy. For me, it is motivating to find where errors occur, and if possible, find a way to
counteract, and reduce, these errors.

1.3 Equipment

The equipment used in this project is described in this section. In addition to the hardware
and software, access to the camera room, B333 [10] at NTNU was given, which was nec-
essary to use the OptiTrack system. Here it was possible to get an objective measurement
from the movement of the robot.

1.3.1 Hardware

The hardware was provided by the department of cybernetics at NTNU. In addition, a
multimeter and soldering equipment was provided by the IKT employees. The following
list summarises the hardware used in the project.

– Arduino robot with four IR sensors and one lidar.
– USB wire to program the robot.
– Server and periphery dongle of type nRF51.
– Tenergy, universal smart charger was shared between all students that worked with a

robot.

3

Chapter 1. Introduction

1.3.2 Software tools
The software tools were already installed or downloaded, free of charge, due to the work
from the specialization project [1]. The software was used on a 64-bit computer, with
Windows and Intel Core i7-8700 CPU. In addition to this, NetBeans, and AVRdude was
executed on a different computer, a 64-bit laptop, with Windows and Intel Core i5 CPU.
The following list summarises the software tools used in the project.

– NetBeans IDE 8.02, to execute the server application.
– Java 8 , a requirement for downloading and running NetBeans.
– Atmel Studio 7, is an integrated development platform (IDP) [11], used in this project

to develop and debug the robot application.
– Arduino IDE 1.8.13, is an integrated development environment (IDE) [12], used to

check the Arduino board.
– AVRdude, is an open source software used to program Atmel AVR microcontrollers

[13]. This was used to program the robot with a hex file.
– Matlab, with license given by NTNU. Matlab has been used in processing data for

this thesis.
– Motive, is the software used by the camera setup OptiTrack, in room B333 at NTNU.

The software is found on the stationary computer in the room.
– Microsoft Project [14] has been used to keep track of the tasks and schedule.

4

Chapter 2
Background

A description of the Arduino robot hardware and software is described in this chapter,
along with the Java server application. The chapter also contains the work done to fix
initial problems in the project.

Conventions
Firstly, here are some definitions used in this project. The robot is in previous reports
called the Arduino robot or the Arduino - LIDAR robot. In this report, the LIDAR was
not used. The robot will be referred to as the Arduino robot or the Arduino - IR robot,
or simply the robot. The robot has its Cartesian coordinate system, shown in figure 2.1.
The direction the robot is driving is called the robot heading. When the robot turns, the
direction is defined around the z-axis, the clockwise or counter-clockwise direction is used
to describe the rotation.

Figure 2.1: Definition of the body coordinate frame of the robot

5

Chapter 2. Background

2.1 Robot description
The robot in this master thesis is best described in two parts, hardware and software.
Firstly, a brief summary of the previous work is given. Before the hardware, the con-
struction of the physical components of the robot, is presented. After this the software is
covered. The software consists of code written in C. Finally, the steps required to program
the robot are listed.

2.1.1 Previous work
The Robot project has been existing for many years. The first robot was built in 2004 by
Skjelten [6]. The robot used in this master project was build in 2017.

• 2016: Ese [15] developed the robot application.

• 2017: Jensen [16] ordered parts and builds the robot based the design by Andersen
and Rødseth from 2016 [17].

• 2018: Jensen [18] implemented the lidar and made the necessary software changes.

• 2020: Dypbukt [19] investigated the position estimation and implemented error fac-
tors on the gyroscope and encoders.

2.1.2 Hardware
The Arduino robot is a two-wheel driven robot that rests on supporting wheel which is fas-
tened in the rear of the robot. The robot has a length of 195 millimetres and a width of 125
millimetres. It weighs 1.1 kg and consists of two plastic plates, where every component is
attached. A detailed explanation of the choices made in selecting the hardware is found in
Jensen 2017 [16, chapter 2].

Arduino
The main component is the Arduino board, seen in figure 2.2. It has multiple digital inputs
and outputs, along with some analogue inputs. The Arduino board is based around the
ATmega 2560 microcontroller, from Atmel [20]. The robot application runs on this con-
troller. The Arduino is programmed using a USB-cable. An analogue to digital converter
(ADC) for transforming an analogue input signal to a digital reading, is integrated into the
microcontroller. The internal ADC has 10-bit resolution [20], but the existing robot appli-
cation uses only the eight most significant bits. The reason for this is not fully known, but
it is assumed that it simplified the implementation of the bit-to-centimetre look-up table
for the IR sensors. Eight bits of resolution will give a table of 256 items, while 10 bits of
resolution would require a table with 1024 entries. The design requires four such tables
(one pr. IR sensor), and each entry is stored as an eight-bit value, giving a total required
memory of 4 kB, if using 10 bits resolution. The Arduino-board is connected directly to
the battery, since it has a recommended input voltage of 7 to 12 V [21, Technical specs].
The Arduino outputs both 3.3 V and 5 V, which is necessary for the different sensors used
by the robot. For more information, the reader can find this in the datasheet for the Arduino
[20] and the ATmega 2560 [22].

6

2.1 Robot description

Figure 2.2: Arduino ATmega 2560, image is taken from the Arduino homepage [21]

Printed circuit board - PCB

The robot has two PCBs in addition to the Arduino board. On top of the Arduino, the
self–made PCB is connected. This PCB was produced by Jensen in 2017 [16], with an it-
erative design from Andersen and Rødseth 2016 [17]. It functions as an interface between
the sensors and the Arduino. A Bluetooth Low Energy (BLE) communication device is
fastened, and connected, to the PCB. It allows communication between the robot and the
server. The self-made PCB from Jensen also distributes power from the battery. At the
same time, the PCB interfaces with the motor driver.

The third PCB is a commercial, UK1122 H-Bridge motor driver [23], that powers the
wheels motors. The technical specification states that a power source from 6 to 35 V DC
can be connected, it is therefore connected directly to the battery. The motor driver can
also supply 5 V DC to other components. Andersen and Rødseth concluded that the motor
driver could give the system enough power while the Arduino board could not. Therefore,
the self-developed PCB uses the Motor Driver as a 5 V source, Andersen and Rødseth [17,
p. 75].

Figure 2.3: UK1122 H-Bridge Motor Driver, image is taken from [24]

7

Chapter 2. Background

Motor and encoder

The robot has two wheels, each driven by a separate motor. The motor was changed by
Jensen in 2018 to DAGU with 120:1 gear ratio (DG01D, [25]), from DAGU 48:1 (image
2.4). The reason for this change, explained by Jensen [16, p. 6], was due to spin and slip,
causing problems in the robot’s estimated travel distance.

Figure 2.4: DAGU motor image from Sparkfun [26]

Data from two encoders are used to calculate the distance travelled. They are attached
to the back of the motors. The encoders are from DAGU and consists of two neodymium
8-pole magnets and use the hall-effect [27]. They count the transition between the positive
and negative poles, and travel with the same velocity as the motors. The encoders can
operate with a voltage source from 3 V to 24 V, specified in the datasheet [27].

A SO5NF STD (see image 2.5) - servo is connected to the sensor tower, placed on top
of the robot. The Arduino powers the servo with 3.3 V. The servo can rotate the sensor
tower 90 degrees. By rotating the sensor tower, the robot can scan 360 degrees around
itself. The sensor tower will only be rotated while the robot is standing still, and the tower
remains at a fixed position when the robot is driving. The technical specification of the
servo is found in the datasheet [28].

Figure 2.5: SO5NF STD servo, image is taken from DigiKey [29]

8

2.1 Robot description

Light sensors

To detect the surroundings and measure the distance to obstacles the robot uses light sen-
sors. The operation is based on emission and detection of a light beam. The sensor emits
and detects light in the infrared range, meaning the light beam is not visible to the human
eye. When the sensor detects the light beam, it gives a voltage output that corresponds to
a distance.

The Arduino robot has two different setups to measure the distance to an obstacle,
infrared (IR) sensors or lidar. These sensors are placed on top of the robot, on what is
called the sensor tower (figure 2.6). The two different possible setups have resulted in two
different source codes for the robot.

Figure 2.6: Sensor tower on top of the robot with the IR sensors

The standard configuration is using four IR sensors (GP2Y0A21YK) mounted orthog-
onal to each other. The IR sensors have a detection range of 10 to 80 centimetres [30].
Due to increasing error with larger distance, the server only uses measurements up to 40
centimetres to create the map. The IR sensor generates a voltage based on the distance
to the object. The ADC on the Arduino then converts the analogue voltage into a digital
value. Figure 2.7 shows a visual representation of how an ADC works. This is an example
of a signal, represented by three bits.

9

Chapter 2. Background

Figure 2.7: Analog to Digital converter, image taken from [31]

The robot can also use the LIDAR lite v3 (figure 2.8), from Garmin, to detect obstacles.
The datasheet specifies that the lidar has a measuring distance up to 40 meters with a 70%
reflective target [32]. The lidar is placed on top of the sensor tower and replaces the
forward heading IR sensor. How to mount and connect the lidar is described in appendix
A.7.

Figure 2.8: The Garmin lidar v3 sensor, image from Sparkfun [33]

Heading and acceleration sensors

The Arduino robot has an inertial measurement unit (IMU), LSM6DS3, with a 3-axis dig-
ital accelerometer and a 3-axis digital gyroscope [34]. It is powered with 3.3 V from the
Arduino board. The IMU is attached beneath the robot, towards the front. The accelerome-
ter measures linear acceleration. In the software application of the robot, the accelerometer
data is not utilised. Dypbukt 2020 [19] describes usage of the accelerometer to estimate
the distance traveled but did not see an improvement and decided therefore not to use it
[19, chapter 4.5].

The gyroscope on the other hand, measures angular velocity at each iteration of the
robot application. It has a range of± 125 dps (degrees per second). The gyroscope is only

10

2.1 Robot description

used to measure rotation around the z-axis, as this is the only rotation relevant for control-
ling the robot. The raw gyroscope data and the angular rate sensitivity, (4.375 mdps/LSB)
given from the datasheet [34], are multiplied together to obtain the measured value from
the raw data. This means the raw data is converted to physical quantities before being used
in the position estimation.

The robot also has a compass. It is fastened on top of the self-made PCB. The com-
pass is a 3-Axis digital compass IC, HMC5883L type GY-273 [35]. A compass, or mag-
netometer, measures the strength and direction of the magnetic field. The magnetic field
is produced from the earth and other, local magnetic sources, such as electric motors or
magnets. The earths magnetic field can be said to be constant over the relevant timescales,
even if it can have slight changes from day to day. The strength of earths magnetic field
is more dependant on global position than point in time [36]. As the robot project has
only been used in Trondheim, the earths magnetic field is expected to be constant. The
GY-273 compass is designed for low–field magnetic sensing [35]. There exists drivers
and application code for reading data from the compass, but this is presently not used in
the application. Nilsen 2018 argues that the compass introduced more noise and did not
clearly improve the heading estimation [37, p. 14]. Jensen 2018 on the other hand, states
that the robot navigates considerably better when using the compass [18, p. 30].

Figure 2.9: HMC5883L compass, image is taken from Jensen 2018 [18] after the repairs

Communication device

The server and robot communicates over Bluetooth Low Energy (BLE), using the nRF51
dongle from Nordic. The server, running on a host computer, is connected to the peripheral
dongle (ID: 680316134). At the same time, the robot is connected to the server dongle
(ID: 680840037). Both can receive and send messages with BLE. The distance between
the server dongle and peripheral dongle can be up to 10 meters in an indoor environment
[38]. The dongle is programmed with a hex file and flashed through nRFgo Studio, from
Nordic Semiconductor.

11

Chapter 2. Background

Figure 2.10: To communicate between the robot and server, both systems must have an nRF51
dongle (image is taken from [39])

Battery

The robot is powered by a Li-Ion Battery, H2B181. The battery is fastened to the chassis
of the robot, in the rear. It is directly supplying the Arduino and the motor control board.
The nominal capacity is 4.6 Ah, and the nominal voltage is 11.1 V [40]. How to charge
the robot is explained in appendix A.4.

12

2.1 Robot description

2.1.3 Software

To get a multi-threading system the robot uses FreeRTOS. FreeRTOS is a real-time oper-
ating system for microcontrollers [41], letting the ATmega2560 schedule different tasks.
This allows the processor to switch between tasks even though the ATmega2560 is a single
core processor, and can only handle one thread of execution at any instant of time.

The robot application has five key parts, initialisation of the sensors, and four real-time
tasks. By having the initialisation of the sensors before starting FreeRTOS, errors may be
detected before the robot starts driving.
The four main real-time tasks running on the ATmega2560 are:

I. vMainCommunicationTask

II. vMainSensorTowerTask

III. vMainPoseEstimatiorTask

IV. vMainPoseControllerTask

The communication task (I) has two main responsibilities. It is responsible for maintaining
the connection to the server, as well as for sending and receiving data. Today the robot ap-
plication works using Cartesian coordinates, which means the commands from the server
are received in x and y coordinates, given in centimetres. The robot will also receive a
handshake from the server. The robot will send messages to the server that contains the
name of the robot, the size of the robot, the position and rotation of the robot, and mea-
surement data from the sensor tower.

The sensor tower task (II) gathers measurements from the IR sensors and the LIDAR,
and sends them to the server. In addition, it rotates the sensor tower using the servo.

The job of estimating the position and rotation is performed in the pose estimator task
(III). The task uses data from the encoder and IMU to calculate its predicted Cartesian co-
ordinates and the predicted robot heading. The robot uses dead reckoning [5] to estimate
its POSE. Currently the accelerometer and compass are not used in the estimation task,
while the encoders and gyroscope are used. In the calculation of the position and rotation
of the robot, the gyroscope and encoders are weighted differently. If the rotation of the
robot is less than 10 degrees per second, the gyro weight is 0. If the sensor value is over the
threshold, then the gyro weight is 1. This is further explained by Dypbukt in [19, chapter
4.7.3].

The pose controller task (IV) is responsible for making the robot reach the right posi-
tion. It uses a PI-controller, which receives the target coordinates from the communication
task. The pose controller task sends the desired magnitude and direction of actuation to
the motors, driving the wheels.

13

Chapter 2. Background

2.1.4 Programming with Atmel Studio
The robot application is written in C. It is developed and debugged with Atmel Studio 7.
Since the robot application is running on an ATmega-based Arduino board, some modi-
fication must be done in Atmel Studio, to be able to program the robot. The instructions
that were used for this installation was documented by Jensen in 2017 [16, chapter 6.1.2].
The following operations were done in Atmel Studio under Tools→ External Tools.

• ”Title”:
Write “Deploy code”. The title is the name that will be shown in Atmel Studio as
the name for the operation.

• ”Command”:
The path to where AVRdude.exe is installed.

• ”Argument”:
-F -v -p atmega2560 -c wiring -P COM6 -b 115200 -D
-U flash:w:”$(ProjectDir)Debug\Test.hex”:i
-C ”C:\Program Files(x86)\Arduino\hardware\tools\avr\etc\avrdude.conf”

• “Use Output window”: Check this box

After the setup in Atmel Studio was executed, it was possible to flash the robot. First by
building the code then pressing Deploy code, found under Tools. To give the reader a better
understanding of the AVRDude commands [42], used for flashing from Atmel Studio, a
short explanation is given below.

– F
This operation overrides the signature check, in case the device signature is wrong.

– v
Enable verbose output.

– p atmega2560
Sets the command for which type of device is programmed.

– c wiring
Sets the options to program the device over wiring, like USB.

– P COM6
Sets the COM-port where the device is connected to the computer. To find the
COM-port, check the device manager on the computer.

– b 115200
Sets the communication speed over the data channel.

– U flash:w:”$(ProjectDir)Debug\Test.hex”:i
A memory operation, to flash the device by reading the specified file from the com-
puter, and writing it to the device memory. The final :i indicates the file-format,
Intel hex.

– C ”C:\Program Files (x86)\Arduino\hardware\tools\avr\etc\avrdude.conf”
Specifies the path to the AVRdude configuration file

14

2.2 Server application

2.2 Server application

The server used in this master thesis is the Java server. Most of the code is written by
Thon 2016 [43]. The server is called System for Self-Navigating Autonomous Robots
(SSNAR). The project-file last used by Dypbukt was used in the work on this thesis. The
file is found on One Drive, access is given by Professor Tor Onshus. A full guide on how
to use the server is found in appendix A.2.

The server application can operate in three modes, manual, navigation and simulation.
In manual mode, the user will manually set the x- and y-coordinates. The coordinates will
be sent to the robot and treated as a new target. The second mode is the navigation mode.
In this mode the system uses Simultaneous Localization and Mapping (SLAM). SLAM is
defined as a system that can continuously construct a map of the environment while the
robot calculates its position and orientation in the environment [44]. This allows the sys-
tem to recognize previously visited coordinates, compared to odometry, where the system
does not know when an already known location is seen again. A visual representation of
this is shown in figure 2.11.

Figure 2.11: Points A and B are detected as a previously visited points in SLAM. With the use of
odometry, this information is lost, image from [44]

In the navigation mode, the server will calculate new targets for the robot. This calcu-
lation is based on the mapping data received from the robot. In both modes, the server will
receive the robots position, heading, and measurements from the sensor tower. The server
uses this data to build up a map that is represented graphically. The map consists of a grid
of cells, the cells are marked as either cleared, restricted, or weakly restricted. A clear cell
will be white indicating that there are no obstacles there. A restricted cell will be black
and mark that there is an obstacle in that position. A weakly restricted cell will be dark
grey and is considered a danger-zone for the robot, because they are close to restricted
cells meaning a collision is probable there. The third mode is the simulator mode, which
can simulate how a virtual robot will navigate a virtual court. The simulator feature will
not be used in the work behind this thesis.

15

Chapter 2. Background

2.3 Tracking the robot

To be able to validate the navigation performance of the robot, a solution from Optitrack
is used. This system is found at NTNU room B333 [10]. The concept is to track the robot
when it is moving in a specific area. This allows post-analysis of the robot’s movement.
Running the robot in manual mode, it is possible to compare the data from where the robot
was supposed to travel (the given command), to where it actually travelled (Optitrack mea-
surement). If the robot was in navigation mode, it is only possible to see where the robot
has driven, as the commands are typically not known.

The Optitrack system consists of 16 cameras mounted on the ceiling, in the shape of
a square around the testing area. Motive, witch is the accompanying software system, is
installed on the desktop computer in B333. Motive takes multiple 2D-images and tra-
jectorises them to a 3D-image, also known as structure from motion. By having several
2D-points, tracked between images taken from different cameras, a 3D-image can be con-
structed [45]. To be able to do this, the cameras must be calibrated. This means to compute
the position, orientation and distortion of each camera, as explained in the documentation,
chapter System setup → Calibration [46]. In this master thesis a series of steps were
executed when using the tracking software. This is found in the appendix A.6.

2.4 Initial work

To ensure that the robot system worked as intended, and as described in previous reports,
some initial tests were done. This included communicating with the robot, programming
the robot, checking that the robot application coincides with what was written in previous
reports, and in the end, testing the robot on the office floor. During this time, some prob-
lems were discovered. Some of these problems were fixed, and some are not important for
this master thesis.

2.4.1 Challenges

Connection with the charger
Initially the robot would not charge, it was thought that there was a short-circuit in the
electrical wiring. No error was found when probing the robot with a multimeter. Securing
the chargers connection with two crocodile clips solved the problem.

Atmel Studio on laptop

Both a desktop computer and a laptop has been used in the master thesis. The laptop
was brought to the testing facilities to run the server, and have the possibility of re-
programming the robot on-site.

16

2.4 Initial work

It was desirable to program the robot on the testing site, using Atmel Studio. The
laptop available fulfilled the requirements needed to install Atmel Studio [47]. After in-
stallation, it did not work. After troubleshooting, using debug steps from Atmel studio
[48], and contact with Atmel support team, the problem was not resolved.

To be able to work with the robot and not be delayed further in the project, another way
to program the robot on-site was found. The solution was to flash the robot application hex-
file generated by the desktop computer, using AVRdude on the laptop. To make the process
as efficient as possible, a batch script that runs the AVRdude command was written. This
script is found in appendix A.3.

Troubleshooting the Arduino board

Another problem was discovered when trying to program the robot. After following Jensen
[16, chapter 6.1.2], Atmel Studio gave an error with the note ”stk500v2 ReceiveMessage():
timeout”. To troubleshoot, the example code of a blinking light in Arduino IDE, was at-
tempted flashed on the Arduino. It was seen that the receiver (RX) led on the Arduino
blinked, but not the transmitter (TX). This confirmed the suspicion that there was some-
thing wrong with the Arduino. Probably a bug in the bootloader, since the development
program could be read but did not have two-ways communication. No further investiga-
tion has been done into troubleshooting the Arduino board. The solution was to replace
the Arduino. A second Arduino was tested, first with the simple blinking light example
from Arduino IDE, then with the complete robot application. Both tests were successful.

New motors

When first testing the robot, the robot was not able to drive straight forward. The software
application was the same as the on used by Dypbukt 2020 [19], and he described nothing
of this sort. A hypothesis was that there where something wrong with the hardware. More
specifically, something was wrong with the motors.

To check the motors, both were removed from the robot, then tested individually with
the use of a power supply and a multimeter. The left motor had no problem spinning with
the help of the power supply. On the other hand, nothing happened when running the right
motor, even when the voltage was increased. With the use of the multimeter, connected
in series between the power supply and the motor, it was found that no current flowed
through the motor. By Ohm’s law it is known that current equals voltage divided by re-
sistance. This implies that the resistance must be infinitely high, or relatively much larger
than the voltage, to get the current low enough to be shown, by the multimeter, as zero.
Following this, the conclusion was that the motor was broken and had to be replaced. At
this time, new components had been ordered for the other students working on their robots.
Eivind Jølsgard had already made the order, but had a set of unused, spare motors. It was
decided to replace the old, broken motors with the ones provided by Jølsgard.

17

Chapter 2. Background

The new motors are of the type Uxcell DC 12 V 220 RPM with encoder and gear
[49]. The swap between the DAUG motors and the Uxcell 12 V motors was not without
complications. The old motors were fastened so that the primary axis was in parallel with
the side of the robot, whereas the new motors had to be pointed inwards. This made it
challenging to place the motors, without getting in the way of already placed electronics
inside the robot. The old mounting brackets could not be used either. With the help of the
Mechanical lab at the cybernetic department, the new motors were attached to the robot.

The new motors were successfully attached to the robot and connected to the motor
control card. Image 2.12 shows the new placement of the motors, fastened inside the robot.

Figure 2.12: Placement of the new motors

New encoders

The old encoders were not longer needed with the new motors, because they have encoders
pre-installed. The new sensors are quadrature encoders, in contrast to the hall effect en-
coders that were previously used. The new encoders have two outputs, meaning they can
be used to detect, not only rotational speed, but also the direction of rotation. The old en-
coders operated on 5 V [27], compared to the new encoders that operates on 3.3 V, see 2.13.

18

2.4 Initial work

Figure 2.13: Connector sheet for the new motor and encoder, image is from [49]

A modification was done to the self-made PCB from Jensen 2018 (seen in figure 2.14),
to power the encoders with 3.3 V. Removing the trace that powered the encoder connec-
tion with 5 V and soldering a wire from a 3.3 V source (see figure 2.15), solved the power
source problem. Another situation was that the new encoders have two data wires, one for
each of the outputs. As the self-made PCB from Jensen was made for the old encoders, it
was only possible to use one of the phases from the new encoders. If both phases had been
used, it could improve the accuracy in measured rotation, see section 3.3.3.

Figure 2.14: Original PCB-design from Jensen [18]

19

Chapter 2. Background

Figure 2.15: Modified design for the PCB, where the changes are made in the area indicated by the
black circle

The new motors and encoders are expected to have a different wheel factor than the
old setup. Wheel factor is defined here as a ratio between the wheel circumference and
the number of encoder ticks per rotation. Previously, this has been calculated by using the
number of encoder ticks and the motor’s gearbox ratio. The new motor had no complete
datasheet and therefore no such way to find the gear ratio. The encoders ticks per revo-
lution will be determined by executing two tests. This method is described in chapter 3.3.3.

New servo

Another problem was detected when initially testing the robot. The sensor tower did not
rotate. The issue was debugged by validating the level of input voltage and control signal,
using an oscilloscope. It was found that the power signal was 5V, as it should be [28],
and the control signal seemed plausible. It was concluded that the servo did not work.
The servo was therefore replaced by a new servo of the same type [28], which fixed the
problem.
This change also resulted in reconnecting the IR sensor. It was then discovered that the IR
sensor’s hardware connection did not match the connection in the robot application. This
mistake was fixed and verified by reading one IR sensor at a time. The new mapping from
hardware to software is described in the robot application and is found in table 2.1. Where
the Pin is the connection to the Arduino board, Analog In are the connections to the sensor
on the self-made PCB. It is worth noticing that the server receives the measured distance
in an array of the following order [front, left, back, right].

20

2.4 Initial work

Pin Analog In
Left PINF0 A0
Front PINF1 A1
Right PINF2 A2
Rear PINF3 A3

Table 2.1: New IR sensor mapping

FreeRTOS and Lidar

It is said that the most challenging thing in a relationship is communication. The same was
initially true for the Arduino robot. When the robot ran with only IR sensors, no errors
were detected. An issue appeared when the lidar was used. The error was provoked by a
timeout between the server and the robot. The robot was tested with the lidar sensor in the
original software structure, resulting in the robot timing-out after a period. It is believed
that the robot sends more data over the BLE interface than the server can manage [19,
chapter 5.2]. After troubleshooting, the conclusion was that the lidar and FreeRTOS might
be the problem. Another possibility is what Jensen discussed in 2018 [18], that the lidar
has to be a critical task to be handled in FreeRTOS. After discussing the problem with
Professor Tor Onshus, it was decided not to use the lidar, but instead focus on the setup
of the IR-sensors. This desertion did not compromise objective of the thesis, as the robot
should be able to detect obstacles using only IR sensors.

2.4.2 Software application changes
During the start of this project, it was discovered that the distributed software application
and the master project from Dypbukt had some differences. It was decided to change the
robot application to match the work documented in Dypbukt’s master thesis.

Changes that were made in the robot application:

• The gyro weight was set from one to zero, in the if statement, that checks if the
robot turns less then 10 dps, in the pose estimation. This causes only the gyro
measurement to be used to calculate the robot heading, during turning, as described
in [19].

• The error factor described in Dypbukt 2020 [19], chapter 6.1 and 6.2, was not im-
plemented in the source application for the IR setup.

• At the end of the pose estimation, predicted theta was converted from radians to
degrees.

The problem with converting the predicted theta into degrees, was that the measured
data was extracted in radians. This mismatch of units meant that adding them together,
in the integration, resulted in the value of predicted theta being wrong. The value was
saturated to be in the range ±2π, which made the error harder to detect. An example with
the gyro measurement is found below. Note that only the relevant code is shown.

21

Chapter 2. Background

1 float gyrZ = 0;
2 float predictedTheta_gyro = 0;
3

4 while(1){
5 // Import gyro measurement
6 gyrZ = (fIMU_readFloatGyroZ() - gyroOffset); // [dps]
7

8 // Find the angle measured by the gyroscope since previous iteration
9 dTheta_gyro = gyrZ*period_in_S* DEG2RAD; // [rad]

10

11 // Add the new gyroscope angle to previous angle
12 predictedTheta_gyro += dTheta_gyro; // Mismatch between deg and rad!
13

14 // Saturate measurement values to be +- 2 pi
15 vFunc_Inf2pi(&predictedTheta_gyro); // [rad]
16

17 // Calculate the predicted heading of the gyroscope in degree
18 predictedTheta_gyro *= RAD2DEG; // [deg]
19 }

2.4.3 Merging IR and lidar application

In the code base submitted by Dypbukt it was found that there existed two software ap-
plications, one for the IR setup and another for the lidar setup. From experience, it is not
easy to maintain two different versions of the same software project. It was considered
beneficial for the robot project to have the robot applications merged together. It would be
easier for future students to work with one project version, instead of keeping track of the
two similar, but different, versions. The differences in the project can be summarised as
follows:

1. The robot names and robot name lengths were different.

2. The calibration matrix, which transforms IR measurement to centimetres was dif-
ferent.

3. In server communication.c the modes have different lengths of the arq message.

4. In SensorTower.c the robot has different wait times.

5. In SensorTower.c at the lidar application, the forward IR measurement is replaced
by the measurement from the lidar.

6. In main.c file in the lidar application, the lidar is initialised.

7. In the lidar application, PoseController.c the global variable gTheta target is inte-
grated and calculated from radians to degrees.

These small changes in the two robot applications were easy to merge. If the robot only
uses the IR sensor, the right robot application will be used by commenting in ROBOT IR
in define.h. By using ROBOT LIDAR, the robot accesses the lidar application.

22

2.4 Initial work

2.4.4 Folder structure
When first opening the project file in Atmel studio, it was noted that all 63 files were in
the same folder. At the same time, the main.c file had 1220 lines of code.

Since this is a student project, the software development process and the resulting
structure should be of high priority, to avoid unnecessary bugs and excessive work. A
folder structure would make it easier to maintain the robot application. Therefore, the
robot application was structured into three folders, and the main file was shortened. The
folders got the names Drivers, FreeRTOS and Tasks. In Drivers all files that are written by
students to operate the robot, and interface with other systems are found. In FreeRTOS all
files provided by FreeRTOS are saved. In Tasks, the four main tasks (described in 2.1.3)
that the robot executes, are kept. By having a folder structure, it is easier to get a quick
overview of the robot application. As a result of the refactoring, the main.c file has now
250 lines of code. The robot was tested at the floor of the office to validate that the folders
did not affect the robot’s functionalities. It was only tested with the IR sensor setup be-
cause of the problems with the lidar, described in 2.4.1. No error was detected with the IR
setup.

2.4.5 Testing autonomous docking
Former students have worked on how to dock the robot automatically. This task demands
that the robot drives backwards into a docking station, after mapping an environment.
Through this master thesis the autonomous docking has been tested as a side project, to
see how far the development has come. The docking station can also double as charging
bay. It is built up of three wooden planks, where there are two metal strips on the back wall.
These metal plates can be connected to the robot charger, and the robot can be powered
by having it’s metal springs touch the strips on the back wall. The autonomous docking
application was tested in the round court, with the docking station inside (figure 2.16).

Figure 2.16: Test setup of the autonomous docking station

23

Chapter 2. Background

Some modification were done in the Java server application as well. In the robot task
manager the variables IsGoingHome and setDock are set to true. A fixed coordinate for the
docking station was also set in the server file Robot. The coordinates were set to x equal
95 and y equal to zero. These coordinates correspond to the docking station’s placement
in the round court, relative to the robot’s initial position. The searching algorithm to find
a path to the docking station was added back into the server. This searching algorithm is
based on the A* algorithm and is found in the Robot Task manager file.

The system was debugged by using the server to print the state of the robot. If the robot
had mapped the area and were going to drive to the docking station, the server would print
”Robot is going home”. After a lot of testing, it was seen that the server was not able to
calculate a path for the robot to go home and that the navigation was not accurate enough.
The only time the robot successfully docked is seen in figure 2.17a. In figure 2.17b, the
robot was not able to dock autonomously. The server printed that the robot was going
home, but no path was found. This problem has not been investigated further but shows
that the robot can have an autonomous docking feature in the future.

(a) Successfully driving to the docking station (b) Unsuccessfully driving to the docking station

Figure 2.17: Different result from testing the autonomous docking application

When working on this side-project, some new ideas have surfaced. If the robot docks
into the charger, to execute an autonomous charging cycle, the robot has to reverse into the
docking station. The second idea that came to mind is to replace the manual switch on the
robot with a diode. The robot can then automatically start charging when the metal springs
touches the back of the docking station. Today a switch must be manually switched on to
close the circuit from the charger to the battery (Switch 1 in figure 2.18). By replacing
Switch 1 with a diode, shown in figure 2.19, the current will be directed from the charger
to the battery, when the charger is connected. This solution removes the need for human
intervention during docking, while still avoiding potential short circuits when the robot is
driving.

24

2.4 Initial work

Figure 2.18: Simplified circuit diagram of the charging system for the robot

Figure 2.19: Simplified circuit diagram of the charging system for the robot with the switch replaced
by a diode

25

Chapter 2. Background

26

Chapter 3
Method

Sources of error in the position estimate will be found by first looking at the system on a
macro level (driving and navigation), before breaking down the system and ending on the
system’s micro-level (the sensors). First, the robots’ driving performance will be looked
at to determine how the position error develops over time, through use of the square test.
The navigation performance will be tested in different testing courts. This test is described
in section 3.1. An evaluation of the estimator module in the robot application is described
in 3.2. After this, the robot’s sensors are reviewed, in section 3.3, to see if there are
inaccuracies in the sensors, that can propagate through the system. In the review of the
sensors, a way to improve the sensor data is also described.

Limitations
Some constraints have been set on the evaluation of the robots position estimation and
investigation into its sources of error. The task is limited to work on the robot’s sensors
and evaluating the position heading in the estimation. The other software modules, for
example the control module, is left out. An analysis of the hardware construction of the
robot, for example looking at the rubber of the wheels on different surfaces, is also left
out. Suggestions to improve the position estimator will be given as theoretical ideas and
an initial design.

3.1 Driving performance

3.1.1 Square test

The square test is a position test that is widely used in previous robot projects. The test
is explained in detail in Jensen 2017. The point of the test is to objectively analyze the
driving performance of the robot. This can be used to indirectly validate the internal po-

27

Chapter 3. Method

sition estimate. The test is done by having the robot drive one meter forward, then rotate
90 degrees and repeat this action, until the robot has driven in a square. The square will
be driven in the clockwise (CW) and counterclockwise (CCW) directions. The robot will
be monitored by the Optitrack Motion system. Using the post analysis script made by
Halvorsen [1], the data will be processed and visualized. The robot is set to manual mode
and will get commands from the operator. The commands are found in table 3.1.

CCW CW

Turn x y x y
1 100 0 100 0
2 100 100 100 -100
3 0 100 0 -100
4 0 0 0 0

Table 3.1: Commands to execute the square tests in the CCW and CW directions

In Dypbukt 2020 [19], an error compensation factor for the gyroscope and the encoder
was implemented. Dypbukt argued for implementing the error factors, the reader can find
this in Dypbukt 2020 [19, p. 36-40]. The square test method aims to find the setup of
the robot application, that gives the most accurate position. The square test method will
be executed two times with each setup, once with encoder error factor, gyro error factor,
and no error factor. Each setup will also be tested in both the CCW and CW direction.
The setup with the lowest absolute value of the error distance will be tested further in the
continuous square test.

To evaluate the position performance, the error distance is found through post analysis
in Matlab. Every square run will be plotted. The distance error will be calculated by using
equation 3.1, where xtar and ytar are the corner targets shown in table 3.1. These coordi-
nates are subtracted from the position coordinates logged by Optitrack, xreal, yreal. The
error distance is defined as the Pythagorean distance between the target and actual point.

d =

√
(xreal − xtar)2 + (yreal − ytar)2 (3.1)

3.1.2 Continuous square test
Another version of the square test will be the continuous square test. The reason for
executing this test is to find a tendency in the position estimate over time. The execution
of this test is similar to the square test, with the exception that this test will consist of the
robot driving multiple squares consecutively. The target is to drive four to five rounds.
The amount is chosen to gather enough data for predicting a trend in the accuracy of the
position. The continuous square tests will be done in the CW and CCW directions, the
same as for the square test. The test will be executed five times per direction.
To quantitatively find the position error, the distance error for every turn will be found. A

28

3.1 Driving performance

comparison of the precision for each round can then be discussed. The average distance
error to each corner will be calculated to find the tendency over time.

3.1.3 The round court

To be able to navigate in any environment, the robot must be able to detect different shapes.
This means that the robot can not detect only straight surfaces. A circular court will be
used to test the navigation performance of the robot with sloped walls. The round court is
150 centimetres in diameter. It has a wooden floor and walls, all painted white. The robot
will be placed in the court approximately 15 centimetres from the wall. The robot will
then be connected to the server with the initial position at the origin. The server navigation
will be used by clicking on the start button in the server GUI. A test is seen as successful
if the robot navigates the court without crashes, while producing a map of the court. If the
robot is successful, the docking station will also be placed in the round court (see figure
3.1) to see the result of the navigation.

Figure 3.1: The round court

3.1.4 Larger tracking court

This method has the objective of determining the precision of the whole system. If the
robot has an accurate position estimate and properly detects the objects, the server’s GUI
map should be a clear birds-eye view of the environment.

The course will be built up of hobby boards. The boards are 22 centimetres wide and
will work as a 22-centimetre tall wall. The walls are tall enough for the IR sensors to
detect them.

29

Chapter 3. Method

The test track will consist of both straight and sloped walls. No incisions can be less
than 30 centimetres wide. The reason for this is restrictions from the server, marking areas
of 15 cm from the wall as slightly restricted, meaning the robot will not explore this area.
A sketch of the testing court is found in figure 3.2. This test will be executed two times to
see the robot’s driving performance. The red X in the figure marks the starting position.
The initial position will be set as the origin, and the robot will operate in navigation mode
with the server.

Figure 3.2: Plan for a larger court for the robot to navigate

3.2 Position estimation
After validating the sensors on the robot, the processing of sensor data can lead to errors.
Therefore, it has been chosen to look closer at the position estimator implementation in the
robot application. The following is a pseudo-code representation of the algorithm found
in the PositionEstimation.c file.

1 void positionEstimation{
2 if !Handshook{
3 Calculate the gyroOffset
4 }
5 if Handshook{
6 Get the global left and right wheel ticks
7 Calculate the number of encoder ticks since last sample
8 Find the distance the robot has traveled since last sample
9 Find the angle from the encoders

10 Extracted gyro data and subtract the offset
11 if gyrZ < 10 deg per sec {
12 gyro weight is 0
13 }
14 if gyrZ > 10 deg per sec{
15 gyro weight is one
16 }

30

3.2 Position estimation

17 Scale the gyro measurement from deg to rad
18 Integrate gyrZ
19 Fuse the sensor data to the predicted heading in this sample:
20 dTheta = (1-gyroweight)*dTheta_enc + gyroweight*gyrZ
21 Calculate the predicted x and y coordinates
22 Integrate the predicted heading of the robot
23 Update pose
24 }
25 }

In this chapter, a description of the method for evaluating the position estimation software
is found. Firstly, a closer look at dTheta, the change in heading. Evaluation of the robot
heading and a theoretical design, fusing all the sensors with an Extended Kalman Filter
(EKF), is found at the end of the chapter.

3.2.1 dTheta
The robot runs the position estimation as a task in FreeRTOS. Each time a task is executed,
there is a fixed time since the start of the previous iteration. This difference is used to
integrate the angular velocity of the robot. In this method, the robot can use gyroscope data
and encoder data to estimate it’s position and rotation. dTheta is the name of the variable
in the robot application, which is a product of the fusion of encoder and gyroscope data. It
is the rate of change in the heading of the robot. By integrating dTheta, an estimate of the
robot heading can be found. In previous master theses, gyroscope data and encoder data
are weighted to calculate dTheta using the following equation:

dTheta = (1− gyroWeight) · dTheta encoder + gyroWeight · dTheta gyro (3.2)

The variable gyroWeight has previously been set dynamically to 1 or 0, depending on
whether the robot is believed to be rotating or standing still, respectively. Since predicted
robot heading is directly calculated from dTheta, it is desirable to see how dTheta devel-
ops over time. As well as what impact gyroscope data and encoder data has on dTheta.
Experimental tests are planned to map out the development of dTheta.

The method is based on selecting different gyroWeight numbers so that the two sensors
are weighted differently, adjusting their influence. The gyro weight number should vary
from zero to one to accommodate the full range of combinations. First, it was natural to
pick zero and one, which means only testing the impact from one sensor at the time. Zero
means only testing the encoder, and one only using the gyroscope. After this the 50 – 50
combination of the gyroscope and encoder value is a logical next step. Where the sensors
evenly contributes to the calculation of dTheta. To get more data points and a lower step
size, values evenly distributed between zero and one are also selected. Based on the pre-
ceding arguments the following gyroWeight values were selected: 0, 0.2, 0.4, 0.5, 0.6, 0.8
and 1.

31

Chapter 3. Method

dTheta during driving and standing still
The sensors can be affected by the robot standing still, or by it moving. Therefore the
method will include both the robot standing still and moving. To answer what dTheta is
when the robot is not moving, the robot will be powered but standing still for five min-
utes. The dTheta value will then be printed and saved for post-processing. The test will
be executed two times for each selection of the gyro weight. The choice of two tests was
considered a trade-off between time and certainty. Two tests allow a repeat of the test if it
seems that either result is an outlier. The same procedure is followed when the dTheta is
evaluated when the robot is driving. The robot will be driving forward in manual mode,
with the distance set to one meter. The number of tests and the choice of gyro value will
be the same as for the test where the robot is standing still.

3.2.2 Robot heading
In further investigation of the internal position estimation, the orientation of the robot
needs to be evaluated. The robot heading value is called predicted theta. The heading is
calculated from dTheta, as explained previously, and is sent to the server. The robot will be
tested when standing still and when driving.The gyro weight has a direct influence on the
calculation of the robot heading. The choice of gyro weight is selected to give a variation
from the whole spectrum from 0 to 1. The choice fell on the following gyro weights: 0,
0.2, 0.4, 0.5, 0.6, 0.8 and 1, based on the same argument as in 3.2.1.

Standing still
The first test will examine the robot’s heading for five minutes, when it is stationary, and
observe the development. The goal is to see how much the gyro weight influences the
heading and how it develops over time. The number of tests and the duration is a trade-off
to get efficiency in the testing. It is also not likely that the robot will stand completely still
for more than five minutes during navigation of an area. The method is similar to what is
described in 3.2.1. The gyroWeight value is identical and selected on the same basis as for
previous tests. The robot will be standing still, and the heading will be extracted. The test
will be executed two times for each gyro weight and plotted in Matlab.

Heading in straight driving
The second test evaluates the robot’s ability to drive longer distances in a straight line.
The ideal test case, will be to have the robot driving for 10 to 15 meters, or more, to be
able to validate the robots ability more accurately. With this distance, it is impossible to
execute the test with the objective oversight of Optitrack at B333, because the room is too
small. This puts a limit on how far the robot can travel in a straight line, during the test.
Due to this limitation, the distance will be three meters. With the data from Optitrack, and
the extracted robot heading, post-processing can be executed to analyze the data in Matlab.

32

3.2 Position estimation

The robot will have different gyro weight values to evaluate the driving performance,
chosen identically to the previous tests. The test will be executed according to the follow-
ing method:
The robot will be placed on a marked starting line. It is connected to the server and set
in manual mode with the initial position in origin and no rotation (x: 0, y: 0, rotation: 0).
The robot will then be commanded to drive three meters straight ahead, by entering x =
300 and y = 0 in the server.

3.2.3 New position estimator design

In the robot application today, only the gyro measurement and the encoder value are used
to calculate the robot position and orientation. Utilising all sensors, that can be used to
estimate the POSE, can in theory improve the position estimation. A suggestion is to im-
plement an extended Kalman filter (EKF). The reason for selecting the extended Kalman
filter over an ordinary Kalman filter is that the ordinary Kalman filter must have zero mean
Gaussian noise and assumes a linear model [50]. The robot motion will be non-linear,
due to sine and cosine inputs. Therefore the extended Kalman filter can be used, with a
linearization of the system. The EKF deign is based on the approach from [4].

Firstly the state must be defined. The robot’s wheel do not allow for sideways move-
ment to reach a target destination. It is constrained to a set of paths to reach the target
configuration and is therefore a nonholonomic system [51] [52]. To model the robots
movement, the state can be defined as shown in equation 3.3. Where x and y are coordi-
nates and θ is the robot heading, while V is the velocity in the heading direction, and ω is
the angular velocity around the z-axis.

β =

x
y
θ
V
ω

 (3.3)

To determine the robot’s position and orientation, a reference from the theoretical
world frame to the robot has to be established, where the robot position and orientation is
represented by x, y and θ in robot frame. A rotation matrix with angle θ, seen in equation
3.4, can describe the relation.

R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (3.4)

The robot can be controlled by linear velocity, V , and angular velocity ω. The robot’s

33

Chapter 3. Method

following motion can be calculated with respect to the world frame pworld.

ṗworld =

ẋẏ
θ̇

 (3.5)

ṗworld = R(θ)−1

V0
ω

 (3.6)

ṗworld =

V cos θ
V sin θ
ω

 (3.7)

This can be used to redefine the state equation 3.3 into what is shown in 3.8.

β̇ =

ẋ
ẏ

θ̇

V̇
ω̇

 =

V cos θ
V sin θ
ω
0
0

 (3.8)

The system has to be discretized to be used in an EKF. The model is based on the
sampling time ∆t. The notation for the sample at time t is subscript k, while the previous
sample uses subscript k − 1. The model is discretized, and the result is as follows.

βk =

xk
yk
θk
Vk
ωk

 =

xk−1 + Vk−1∆t cos θk−1

yk−1 + Vk−1∆t sin θk−1

θk−1 + ωk−1∆t
Vk−1

ωk−1

 (3.9)

The nonlinear function is called f for the system model and h for the measurement
model. wk−1 is the system noise and vk is the measuring noise [53].

βk =f(βk−1) + wk−1 (3.10)
zk =h(βk) + vk (3.11)

Fk−1 =
∂f(β)

∂(β)
|β∗

k−1
(3.12)

To use the EKF, both the measurement and system models have to be designed and lin-
earized, when the model is non-linear. The linearization can be done with the calculation
of the Jacobian around βk. Using this, the following linearization is found.

Fk =

1 0 −∆t sin θk ∆t cos θk 0
0 1 ∆t cos θk ∆t sin θk 0
0 0 1 0 ∆t
0 0 0 1 0
0 0 0 0 1

 (3.13)

34

3.3 Sensors

The measurement model is based on the measurements from each sensor on the robot.
Individually they are found as:

Hgyroscope =
[
0 0 0 0 1

]T
(3.14)

by integrating the gyroscope measurement:

Hheading =
[
0 0 1 0 0

]T
(3.15)

The two encoders can measure linear acceleration by counting the encoder ticks between
subsequent iterations of the FreeRTOS task.

Hencoder =

[
0 0 0 1 l/2
0 0 0 1 −l/2

]T
(3.16)

Where l is the distance between the wheels.
By integrating the acceleration measurement, it is possible to find the velocity.

Haccelerometer =
[
0 0 0 1 0

]T
(3.17)

Using the compass, the global heading can be measured.

Hcompass =
[
0 0 1 0 0

]T
(3.18)

With this, the following algorithm can be used to predict and update the extended
Kalman filter.

β∗−k =f(β∗+t−1, uk) (3.19)

P−
k =FkPt−1F

t
k +Qk (3.20)

Kk =P−
k H

T
k (HkP

−
k H

T
k +Rk)−1 (3.21)

β∗+k =β−
k +Kk(zk − h(β∗−k)) (3.22)

P+
k =P−

k −KkHkP
−
k (3.23)

Where H is equal to [Hheading Hencoder Haccelerometer Hcompass]. Q and R are the
covariance matrices for the process and measurement noise, respectively [54].

3.3 Sensors
Today the Arduino robot uses only encoders and a gyroscope to calculate the internal
estimate of its position and orientation. Earlier theses disagree on whether the compass
improved the position estimate, or if it actually made it worse. Therefore, the compass will
be tested here. The accelerometer will be tested as well. Finally, methods for testing and
calibrating the IR sensors are described, this is done so that the robot can find the precise
location of obstacles in it’s environment.

35

Chapter 3. Method

3.3.1 Gyroscope

The gyroscope in the IMU is used to measure angular velocity, in other words, speed of
rotation. The sensor is mounted under the front of the robot, it gives its output in degrees
per second (dps). An offset value is subtracted from the gyroscope measurement before it
is used in the positionEstimation.c file. The offset value is found before the robot connects
to the server. The offset is an average of 300 measurements when the robot is standing
still. This is the method recommended by Sparkfun, the distributor of the IMU [55].

The gyro data is stored in the variable called gyrZ, in positionEstimation.c. This value
is multiplied by a fixed time step, which is the time since the last iteration of the position
estimation task. Resulting in an integration of the velocity, which gives the robot heading.

Drift and noise
Most, if not all, sensors can be subject to bias and noise. A gyroscope can also drift over
time. This will be tested by leaving the robot on for 30 minutes, connected to the server
over BLE or by using the USB cable. The robot must stand still, i.e., velocity equaling
zero. By extracting the gyrZ variable and plotting it in Matlab, it would be possible to see
a potential drift. This test could be performed five times to ensure that the data is valid.
The argumentation for testing the robot five times is based on the following: By executing
only one test, there is nothing to compare the data to, so it is not possible to see if the
data is valid or only a bad measurement. By only executing two tests, it is impossible to
determine which test is valid or a bad sample. Having five tests will allow for more valid
data, and any faulty tests will more likely stand out. By having more runs, a higher validity
is possible. However, due to the length of the test, it was decided that having more than
five tests would take too long.

The robot can generate noise from the different hardware components, or the noise can
originate in the sensor itself. To quantify the noise in the gyroscope, the measurement will
be extracted for a couple of minutes, while the robot is standing still. A successful test
would be that gyrZ is steady around zero, when the robot is at rest. The variance of the
noise can be calculated to quantify the amount of noise. The standard deviation will so be
calculated to find how far the signal fluctuates from the mean [56, chapter 2].

Bias
The offset that is calculated before the robot is connected to the server serves the purpose
of counteracting any bias in the sensor. This initial calibration ensures that the sensor has
the right starting value. This offset is always subtracted from the gyro measurement before
it is used in the position estimator. The offset is constant after the robot has made contact
with the server, and has a direct impact on the calculation of the position estimate. To
validate that the offset is calculated correctly every time, the robot will be powered, and
the offset value will be printed. This test will be done 20 times to ensure that the robot
is tested thoroughly. If the offset is a value that is more or less the same in every test,
it can be concluded that the calculation is correct. Since the test is executed in the same
environment and with no physical changes, the offset is expected to be the same. If the
results vary a lot, this could be an indication that the sensor is broken or the algorithm is

36

3.3 Sensors

wrong. If only some results can be characterized as outliers, it is likely that something
wrong has happened during the initial calculation of the offset.

90 degree test
In this test, the aim is to see if the gyroscope correctly measures a rotation of 90 degrees.
This test will extract the estimated robot heading predicted theta, using only the data from
the gyroscope. predicted theta is the same variable that is sent over BLE to the server.
The reason why the test uses 90 degrees is the simplicity of creating a 90-degree corner,
by using the property that a straight sides normal to another straight side gives 90 degrees.
Creating a 90 degree corner is easier than creating a corner with angles such as 110 degrees
or 45 degrees.

To inspect the gyroscopes ability to measure 90 degrees, the robot is placed on a book.
This will enable a smooth rotation of the robot. The book and the robot are placed with
the front against a wall. The book is then rotated around a fixed point, marked on the floor,
until the book and the robot are parallel with the wall. This test will be executed both in
the clockwise and counter-clockwise directions. The test will be executed five times in
each direction to ensure the validity of the data.

Figure 3.3: Visual description of the 90 degree test as described in 3.3.1

37

Chapter 3. Method

Improving the gyroscope data

As explained previously, the measurement signal can be corrupted by noise and drift. Mit-
igating drift, by only looking at the gyroscope data, is not possible. A more complex
solution with multiple sensors can be used in the robot-application. An example is that the
gyroscope value is kept the same if the robot is standing still (i.e., motors not activated).
For reducing noise, different filters can be used. A filter is an operation on the measured
data signal, which reduces the noise [57].

Noise can have different characteristics, to combat this there exists a wide range of
filters. Digital filters are usually groped into Inifinte Impulse Response (IIR) and Finite
Impulse Response (FIR) filters. IRR filters generally has lower sidelobes compared to FIR
filters of the same order [57, chapter 10]. The choice of filter is often based on the com-
plexity and properties of the filter. Halvorsen 2020, implemented an exponential moving
average (EMA) filter [1, chapter 3.3.1], because there was not enough memory on that
robot to handle a more complex filter. In figure 3.4 the frequency response of five different
filters are shown. Any filters have pros and cons, but it is clear that the alternatives all have
sharper roll-off1 than the EMA-filter used by Halvorsen. The decision on exactly which
filter to use should take into account whether notches are accepted, as well as the permis-
sible amount of ripple in the passband. If avoiding notches in the response is desired, and
some passband ripple is accepted, a Chebyshev I filter is suggested as a good option. Oth-
erwise, the Butterworth filter is proposed, as it is flatter in the passband than Chebyshev I
filters [58]. Tools for designing these filters are available and should be considered to be
used in this project, one such tool is the Matlab DSP toolbox. If Matlab is used, C-code
for the filter can be generated using Matlab Embedded Coder [59].

Figure 3.4: Frequency response of different filters

1Decrease of amplitude at the cut-off frequency

38

3.3 Sensors

3.3.2 Accelerometer

The IMU also has a 3-axis accelerometer. The accelerometer has not been used in the
robot project for many years. In previous master theses and specialization projects (e.g.
Dypbukt 2020 [19]) the accelerometer is used to resolve the problem of wheel slip.

Accelerometers measure changes in velocity i.e., linear acceleration. To ensure that
the sensor is working properly, the accelerometer data will be extracted. By extracting
the measurement data in x-, y-, z-directions, when the robot is standing still on a hor-
izontal surface, the following result should be seen. The x and y data should be zero,
while the z-axis should have a value of one. The accelerometer gives data in the unit of g
(1 g = 9.81 m

s2), meaning the z-component should show 1 g. This is because the gravita-
tional field will be parallel to the z-axis, but orthogonal to the x- and y-axes. This method
verifies that the z-axis gives the correct measurement. The same test will be executed in
all three positive axes, to determine if they all give a valid result. If all axes show 1 g,
when pointing in the positive direction of the gravitational force, the accelerometer can
be assumed to be operational. An image of the coordinate systems in the test is shown in
figure 3.5, this is shown relative to a world coordinate frame.

Figure 3.5: Coordinate system of the three tests of the positive gravitational force

Another test is when the robot is moving forward. During this operation, it is expected
that the acceleration in the x-direction will have a spike from driving begins until the ve-
locity is constant, or the robot stops. This will be tested by extracting the accelerometer
data when the robot drives forward.

A USB cable and the Putty software will be used to extract and log the acceleration
measurement. Putty is a desktop program that allows reading serial communication from
a COM-port [60]. Using serial communication over USB ensures that the test will not

39

Chapter 3. Method

be disturbed by an unstable BLE connection, and it is possible to log all the data from
the x-, y- and z-axes at the same time. The drivers for communicating from the robot to
Putty is written by Torgeir Myrvang, and the steps to use Putty is described in appendix A.5

Improving the accelerometer data

The IMU is not placed in the centre of rotation, in the robot frame. The placement has
no impact on the gyroscope’s angular velocity, but it has a significant impact on the ac-
celerometer. The accelerometer will pick up the rotational movement of the robot, not only
linear movement. To get valid acceleration measurements, the IMU must then be local-
ized in the centre of rotation. Due to the complexity of moving the sensor, it is desirable to
design a mathematical description of the accelerometer position. A suggested solution is
a mathematical transformation of the accelerometer data from the IMU frame to the robot
frame.

First, some definitions and constraints have to be set. The robot frame, also called body
frame, has the notation xb, yb and zb. The measurement from the IMU has the notation
xm, ym and zm. The parameters pwb and pwm are the origin of the body frame and the
measurement frames respectively, measured in a fixed world frame. The vector rbbm is the
IMU displacement, relative to the body, expressed in body frame.

Figure 3.6: Coordinate frame of the robot and the IMU, b is the body frame, m is the measurement
frame and w is the fixed world frame

40

3.3 Sensors

From the accelerometer the linear measurement has the notation ẍ, ÿ and z̈. The gyro-
scope will give the angular velocity measurements p, q and r. When the IMU is not placed
in the center of rotation, the accelerometer will measure linear acceleration, centripetal ac-
celeration and traversal acceleration [61]. The goal is to transform the accelerometer data,
to only contain the linear acceleration. Equation 3.24 shows the extracted measurements
from the IMU, i.e., the acceleration (a) and gyroscope (ω) measurements.

awm =

ẍÿ
z̈

 , ωbwb =

pq
r

 (3.24)

The relationship between the body’s origin and the IMU position can be expressed as in
equation 3.25. Where Rwb is the rotation matrix from the body frame to the world frame.

pwb = pwm −Rwb rbbm (3.25)

The velocity is then found by taking the time derivative of equation 3.25. The result of
this derivation can be seen in equation 3.26.

ṗwb = ṗwm − Ṙwb rbbm −Rwb ṙbbm (3.26)

vwb = ṗwm −Rwb S(ωbwb)r
b
bm (3.27)

The following properties have been used to find equation 3.27, derived in [51].

ṗwm =vwm = Rwb v
b
m (3.28)

Ṙwb =Rwb S(ωbwb) (3.29)

Where S(a) is the skew-symmetric matrix and ωbwb = [p, q, r]T is the angular veloci-
ties expressed in body frame. ṙbbm is equal to zero, as the IMU is assumed rigidly attached
to the robot and is therefore constant in the body frame.

The acceleration is found by taking the time derivative of equation 3.27. Resulting in
the expressions seen in equations 3.30 and 3.31.

v̇wb = Ṙwb v
w
m +Rwb v̇

w
m − Ṙwb S(ωbwb)r

b
bm −Rwb Ṡ(ωbwb)r

b
bm −Rwb S(ωbwb)ṙ

b
bm (3.30)

awb = Rwb S(ωbwb)v
b
m +Rwb a

b
m −Rwb S2(ωbwb)r

b
bm −Rwb S(ω̇bwb)r

b
bm (3.31)

Where ω̇bwb = [ṗ, q̇, ṙ]T is the angular acceleration expressed in body. This will be found
by time derivation of the measurement from the gyroscope. The centripetal acceleration
is found as the third expression in equation 3.31, and is Rwb S

2(ωbwb)r
b
bm. The traversal

acceleration is the expression Rwb S(ω̇bwb)r
b
bm. By subtracting both, the linear acceleration

is left. The measurement from the encoders is expressed asRwb S(ωbwb)v
b
m+Rwb a

b
m = awm.

To realise this theory, the distance of rbbm and the rotation matrix Rwb has to be found. The
distance from the origin between the robot frame and the IMU frame can be measured and
become the rbbm. The rotation matrix from the robot frame to the world frame can be seen
as a rotation around the z-axis, as drawn in figure 3.7.

41

Chapter 3. Method

Figure 3.7: Reference between fixed world frame and robot frame

With the notation of an Euler angle, the rotation matrix can be expressed as seen in
equation 3.32. This assumes no translation between the world frame and robot frame. In
other words that the two reference frames have the same origin, at the robots center of
rotation.

R(θ)z = Rbw =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (3.32)

3.3.3 Encoders

The problem of determining how far a wheel has rotated, can be solved by using an en-
coder. A quadrature encoder, like the ones mounted to the Uxcell motors, consists of two
sensors that react to the pattern of an incrementally coded disc. The encoder sensors are
fastened with a 90 degree offset. This will give a 90 degree phase shift between the en-
coder signals. A visual representation of this is seen in figure 3.8. To improve the software
for the system, the phase shift can be used to determine the direction the wheel is rotating.
This is done by checking whether phase B is leading or lagging compared to phase A.
Today, determining the direction of rotation is done by assuming that the wheel rotates in
the requested direction. This decision couples the motor controller software and encoder
software modules more than necessary.

Figure 3.8: Quadrature encoder concept

42

3.3 Sensors

The initial plan was to validate the number of encoder ticks from the DAUG motors.
Since the motors were broken and new ones had to be used instead, a new wheel factor had
to be calculated. The wheel factor is a constant in the robot application and describes the
relationship between the wheel circumference and the motor’s rotation. The wheel factor
is defined in the robot application as seen in equation 3.33.

Wheel factor =
circumference

encoder ticks per wheel rotation
(3.33)

It is customary to have the number of encoder ticks and gear ratio listed in the datasheet.
Because this information is not listed in the technical specification [49], experimental
methods must be executed to determine this. Since the wheel factor only uses encoder
tics per wheel rotation, the goal is to find this number. Two tests will be executed. In
both methods, the counting of encoder ticks is the key. For registering the encoder ticks,
the existing function vMotorEncoderRightTicsFromISR(...) and vMotorEncoderLeftTics-
FromISR(...), in the robot application will be used.

The first method will find the average number of encoder ticks, by manually rotating
the wheel. It is chosen to rotate the wheel 20 times, to get a large data set and reduce
the impact of human error. With a mark on the wheel, it is possible to visually determine
when the wheel has rotated one turn. The encoder ticks are printed continuously. The last
encoder value will represent the accumulated number of encoder ticks for the 20 rounds.
The total number of encoder ticks will be divided by 20 to find the average number of ticks.

The code to get this data is written in list 3.1. sei() switches interrupts on. The while
loop will run as long the robot is powered. The interrupt service routine (ISR) registers
the motor ticks, which are retrieved using vMotorEncoderRightTickFromISR(...) and vMo-
torEncoderLeftTickFromISR(...). The total counted wheel ticks is finally printed to Putty.

1 sei();
2 int16_t leftWheelTicks = 0;
3 int16_t rightWheelTicks = 0;
4 uint8_t leftEncoderVal = 0;
5 uint8_t rightEncoderVal = 0;
6 uint8_t gLeftWheelDirection = 0;
7 uint8_t gRightWheelDirection = 0;
8

9 while(1){
10 ATOMIC_BLOCK(ATOMIC_FORCEON){
11 leftEncoderVal = gISR_leftWheelTicks;
12 gISR_leftWheelTicks = 0;
13 rightEncoderVal = gISR_rightWheelTicks;
14 gISR_rightWheelTicks = 0;
15 }
16 vMotorEncoderRightTickFromISR(gRightWheelDirection, &rightWheelTicks,

rightEncoderVal);
17 vMotorEncoderLeftTickFromISR(gLeftWheelDirection, &leftWheelTicks,

leftEncoderVal);
18

19 printf("Encoder left Wheel: \t %d \t \n",leftWheelTicks);
20 }

Listing 3.1: SW to extract the encoder ticks from let wheel

43

Chapter 3. Method

In the second method, the robot will drive forward. By connecting the robot to the
server, controlling it with manual navigation, it is possible to command the robot to drive
one meter straight forward. Then, by measuring how far the robot has driven, calculating
how many times the wheel has rotated, is easily done. During this method, the encoder
ticks will also be extracted. The encoder ticks per wheel rotation can be found by dividing
the total number of ticks by the total number of wheel rotations.

Improving the encoders

The number of encoder ticks per rotation is a fixed value. The exact amount is the result
of the hardware in the encoder. Therefore it is not possible to improve the resolution of
the encoder itself. On the other hand, the current design only uses one of the two encoder
phases, meaning the total resolution can be doubled by using both phases. XOR’ing the
signal from each phase results in a new signal with a frequency of two times the original
signal, see figure 3.9. The combined signal can be used where the single-phase is used
in the software now, allowing the current framework for counting ticks to be used. If one
also counts both positive and negative edges of this combined signal, the resolution can be
improved by a factor of four, compared to the original design.

Figure 3.9: XOR phase A and B to improve the resolution

3.3.4 Compass

The compass has been discussed in previous reports. The disagreement between earlier
results raises an interesting question on whether the compass could improve the position
estimation or not. As the robot only operates in the xy-plane, compass data from the z-axis
will not be used. By rotating the robot 360 degrees, and log the x- and y-data from the
compass, it is possible to visualise the data after the test. The robot will rotate by itself, by
requesting the motors to drive in opposite directions of each other, meaning the robot will
rotate around its own z-axis.

An ideal compass will have the measurement orientated as a circle around the origin.
Matlab will be used to plot the x and y values from the compass, to get this visualisation.
A perfect compass with no distortion is shown in figure 3.10. The image is taken from the
Vectornav page about compasses and calibration [62]. The test will be executed two times
to look for a trend in the accuracy of the compass. It is not seen as beneficial to execute
the test more times.

44

3.3 Sensors

Figure 3.10: Compass measurement with no distortion, image taken from [62]

Compass Calibration

In 2016, Ese [15] did the initial work on the compass, including calibration. There is no
evidence that the compass has been calibrated since then. Therefore calibration of the sen-
sor should lead to an improvement of the compass. The calibration method is similar to
the calibration done by Ese in 2016, [15, p. 43].

All measurements, in general, are expected to have errors and distortions, this is also
true for compasses. The distortion is categorised into hard and soft iron. An object that
produces a magnetic field is categorised as a hard iron [62]. The object could cause a
constant bias if the object is fastened in the same reference frame as the compass. Soft
irons are changes in the existing magnetic field, like direction. Compared to the hard iron
distortion, the distortion from soft irons is more challenging to measure and counteract.

The method for calibrating the compass, to counteract the hard iron distortion, is sim-
ilar to the compass testing. While the robot turns 360 degrees, the x- and y-data from the
compass is extracted. The lowest and highest value from the x and y variable is found. The
computation for finding the x and y offset i shown in equation 3.34 and 3.35. To ensure
good communication and that no data is lost, the robot will be connected via USB, and the
data value is printed to Putty.

xComOff =

(
xComMax− xComMin

2

)
− xComMax (3.34)

yComOff =

(
yComMax− yComMin

2

)
− yComMax (3.35)

45

Chapter 3. Method

3.3.5 IR sensors
Even if the IR sensors are not used directly for finding the internal estimate of the robots
position, it is important for the mapping. It is used so that the robot can determine the true
distance to obstacles. For the goal of creating a correct map, it is desirable to check the
precision in the distance measurements, and potentially calibrate the sensors.

The IR sensors, as described previously in 2.1.2, uses the reflection of light to calcu-
late the distance, and outputs a voltage based on the distance [63]. Objects with different
colours will reflect different frequencies of light [64], and can influence the IR sensor
measurements. As seen in figure 3.11, the distance found for the grey and white paper is
slightly different. This deviation only emerges when the distance is over 45 centimetres.
Due to the small deviation, the light beige walls used to test larger mapping (see section
3.1.4), will be used to test and calibrate the IR sensors.

Figure 3.11: Voltage to distance curve from IR-sensor datasheet [30]

The current IR calibration will be tested to see how accurate it is. This will be done
by printing the distance found from the four IR sensors. The data is transmitted over a
serial link and is showed in Putty to ensure all measurements are logged. The servo will
not be initialized in main.c to ensure that the sensor tower does not rotate, making it easier
to get a correct and consistent set of measurements. One of the light beige walls, used in
section 2.1.2, will be placed at a known distance from the robot, and then the IR-sensor
measurements are extracted. The setup is visualized in figure 3.12. Each sensor will then
be tested to measure different fixed distances between 10 and 80 centimetres. This range
is where the IR measurements are valid. The accuracy of the IR sensors will be done at
10 cm intervals. A smaller step size of five centimetres is used in the range of 10 to 30
centimetres. This is because the expected curve has a higher gradient at shorter distances,
as seen in figure 3.11. Another reason for reducing the step size is the importance of the
robot having precise measurements at short distances, to prevent collisions.

46

3.3 Sensors

Figure 3.12: Test setup for distance measurement

New calibration

Calibration of the IR sensor will be done with a method called curve fitting [65]. This
method is used to find a mathematical function based on a set of data points. For the curve
fitting method, a data set of distances with corresponding voltages will be saved, for each
IR sensor. This will be used to find the power function that best fits the individual sensors.

The goal is to have only a few lines of code that gives the distance from an IR mea-
surement, instead of the current implementation that uses a large array as a look-up table.
This modification will reduce the amount of program memory used. It will also be a more
flexible solution, where the result is less coupled with the specifics of the ADC used (e.g.
reference voltage and resolution). This can hopefully provide more accurate distance mea-
surements, which will give a more accurate mapping.

A visualization of the data flow that the new calibration will lead to is shown in figure
3.13. The IR measurement has IR light as an input and will output a voltage. The ADC
reads this, and it transforms the signal into a digital value. The bit value then has to be
calculated back to determine the input voltage. This voltage is used in the calculation of
the distance.

Figure 3.13: Data flow for IR measurements in the robot

When calibrating the IR sensor the full resolution of the ADC will be used (compared
to the old 8-bit resolution). By using 10 bits the resolution is four times higher than with
8 bits, see calculation in equation 3.36. A better resolution will improve the result of the
new IR calibration. In summary, it is seen as beneficial to use 10 bits instead of 8. The
software code to read the ADC is found in listing 3.2.

47

Chapter 3. Method

210

28
= 22 = 4 (3.36)

1 uint16_t ui16DistSens_readAnalog(uint8_t distSensDir){
2 uint16_t ui16_analogValue;
3

4 /* Choose channel */
5 ADMUX = distSensDir;
6

7 /* Enable internal 2,54V AREF */
8 ADMUX |= (1<<REFS1) | (1<<REFS0);
9

10 /* Start conversion */
11 ADCSRA |= (1<<ADSC);
12 loop_until_bit_is_clear(ADCSRA, ADSC); // Macro from avr/io.h: Wait

until bit bit in IO register sfr is clear.
13

14 /* Join the data from the two ADC registers, creating a 10-bit value */
15 ui16_analogValue = ((ADCH & 0x03)<<8) | (ADCL);
16 return ui16_analogValue;
17 }

Listing 3.2: Software design of a new IR calibration

As shown in the data flow, the ADC bits have to be converted into a number represent-
ing the voltage. This is done by multiplying the ADC signal with a coefficient, defined
in this thesis as C. From the datasheet and documentation in the robot application, it is
found that Vref equals 2.56 V and that the ADC has 10 bits of resolution [20]. With this
information it is possible to calculate the coefficient C, using equations 3.37 to 3.40. It can
be noted that the number of possible digital values used are 210 − 1, this is done to ensure
that the largest readable input (Vref) will be 11 1111 1111 instead of wrapping around to
10 zeros. The result of equation 3.40 gives the voltage for one bit (denoted LSB). In the
code, this coefficient C is multiplied with the output of the ADC, converting it to a value
representing the voltage.

LSB =
C

Vref
· (210 − 1) (3.37)

C =
LSB · Vref

210 − 1
(3.38)

C =
1 · 2.56

1023
(3.39)

C = 0.00250244379 (3.40)

After the voltage has been found, the distance can be calculated with the new voltage-
to-distance method. The type of function for this conversion is a power function, as found
in the datasheet [30]. This can be used in the calculation of the distance, by applying
equation 3.41, where d is the distance from the object, and v is the measured voltage,
while a and b are the coefficients found through curve fitting.

d = a · vb (3.41)

48

3.3 Sensors

The curve fitting method uses knowledge about the shape of the measurement curve,
shown in figure 3.11. From 10 centimetres to 80 centimetres, the curve is a power function.
A modified version of the setup used to validate the old calibration (see figure 3.12), will
be used to obtain data for the curve fitting method. The main addition is that the analogue
voltage is measured via an oscilloscope, instead of extracting the measured distance from
the IR sensor. This data gathering for the calibration is executed by taking three samples
of the voltage, at each distance. It will ensure a better data set for the calculation of the
coefficients. Because of the large gradient in the IR sensors’ theoretical measurement
output, the distance has to have a low step size in the lower range. Therefore the distances
found in table 3.2 are chosen.

cm 10 11 12 13 14 15 20 25 30 40 50 60 70 80

Table 3.2: Distance to calibrate the IR sensors

After all the measurement have been executed, the curve fitting method will be applied.
The plan is to do this using the Matlab curve fitting toolbox. This software will calculate
the coefficients based on a data set and a desired type of function.

To evaluate the new method, the new calibration will be implemented in the robot ap-
plication. More exactly in the function ui8DistSens calib readCM(...) in distSens g2d12.c.
With a simple switch statement, it is easy to have the conversion for all the sensors in the
same function, seen in list 3.3. Finally, the new calibration will be tested with the same
method and setup as for the old calibration, as described previously.

1 uint8_t ui8DistSens_calib_readCM(uint8_t sensorDirection){
2 uint16_t ui16_analogValue;
3 uint8_t ui8_cmValue;
4

5 /* Choose channel */
6 ADMUX = sensorDirection;
7

8 /* Enable internal 2,54V AREF */
9 ADMUX |= (1<<REFS1) | (1<<REFS0);

10

11 /* Start conversion */
12 ADCSRA |= (1<<ADSC);
13 // Macro from <avr/io.h>, wait until bit bit in IO register is set.
14 loop_until_bit_is_clear(ADCSRA, ADSC);
15

16 /* Join the data from the two ADC registers, creating a 10-bit value

*/
17 ui16_analogValue = ((ADCH & 0x03)<<8) | (ADCL);
18

19 // ADC-coefficient
20 float volt = 0.0025024437927664 * ui16_analogValue;
21 switch (sensorDirection)
22 {
23 case distSensLeft:
24 ui8_cmValue = a1 * pow(volt, b1);
25 break;

49

Chapter 3. Method

26

27 case distSensFwd:
28 ui8_cmValue = a2 * pow(volt, b2);
29 break;
30

31 case distSensRight:
32 ui8_cmValue = a3 * pow(volt, b3);
33 break;
34

35 case distSensRear:
36 ui8_cmValue = a4 * pow(volt, b4);
37 break;
38

39 default:
40 ui8_cmValue = 0;
41 }
42 }

Listing 3.3: Software design of a new IR calibration

50

Chapter 4
Result

In this chapter, the result from executing the methods described in chapter 3 are shown
and reviewed. The rotation of the acceleration data is not implemented and is therefore not
tested. The same is true for the extended Kalman filter, due to the limited time available
for such a project.

4.1 Driving preformance

When executing some of these tests, the Optitrack system was used. The calibration of
the system was done according to what is described in A.6. The wanding was done until
the software showed the status: ”Wanding quality: very high”. After the calibration was
complete, the calibration quality was shown as Very High, which indicates a mean error of
less than 0.5 millimetres.

4.1.1 Square test

The test was executed in B333 at NTNU. The error-factors implemented by Dybpukt for
the gyroscope and encoder measurement were tested to see how it affected the position
estimate. The gyro weight was set according to what was initially described in section 3.2,
i.e., gyro weight equal to zero if the robot is not turning, and one if it is turning.

Some of the visualised results of the square test are shown in appendix B.1. During
post-processing the error distance was calculated. It shows the error from where the robot
was, compared to the target corner. This result is found in figure 4.1. It can be seen that
the overall error is lower when not using the error factor.

51

Chapter 4. Result

Figure 4.1: Error distance in square test

4.1.2 Continuous square test

The robot will drive the continuous square tests to find the precision in position over longer
intervals. The error factors where disabled for this test, as this is what gave the best result
in the single square test.

The data was post-processed, and each run was plotted (shown in appendix chapter
B.2). The actual position at which the robot turned, was compared to the point intended.
The distance from the real position to target was then calculated. The result is shown in
figure 4.2. The average distance error is calculated to find the error distance over time,
this is found in figure 4.3. Here it can be seen that the average error distance varies from
corner to corner.

52

4.1 Driving preformance

(a) CCW direction

(b) CW direction

Figure 4.2: Result of the continuous square test

The continuous square test was executed in room B333 at NTNU. The calibration of
the Optitrack system went without trouble. The robot got the commands for the square
test, with the server in manual mode. Some unforeseen problems were discovered, in

53

Chapter 4. Result

some cases the robot would not move forward, and a buzzing sound from the motors was
heard. Another challenge was that the robot lost connection to the server. The problem
occurred when other Bluetooth devices, such as Bluetooth headphones, were active in the
room. After the other devices were turned off, the robot had no problem connecting to the
server.

The robot was tested when driving CCW and CW. All the tests were executed with
five continuous squares, with the exception of test 3 in the CCW direction, which had just
four rounds, caused by a mistake by the operator. This mistake was not detected until the
data was post-processed, and a new test has not been conducted. In the CW direction, one
test resulted in a substantial error, seen in figure 4.4. This test has been excluded from
the results, because of the large and unlikely position error. In the post-processing of the
continuous square test, the data was plotted with a colour gradient indicating time. This
was done to more easily separate each round in the plots.

From figure 4.2a and 4.2b it can be seen that the distance to each corner varies. A clear
tendency is that the position accuracy gets worse from round one to round five in both
directions. The average error has a tendency to increase over time, seen in figure 4.3, the
data is available in appendix B.2.

Figure 4.3: Average distance error from the multiple square test run

54

4.1 Driving preformance

Figure 4.4: Outlier from the multiple square run in the CW direction

55

Chapter 4. Result

4.1.3 The round court
The robot was tested in a round court, to test the detection of non-straight walls. The
navigation and mapping were done in server mode. After the first, successful, mapping
of the round court, an object was placed there, to see if the robot would have problems
navigating the area without crashing. It is evident from the graphical map in the server,
shown in figure 4.5, that the robot can detect obstacles with sloped edges.

(a) Successful mapping of the
round court

(b) Drift of the wall, non-
successful mapping

(c) Successful mapping with ob-
stacle

Figure 4.5: Different outcomes of mapping the round court on the server, the name of the robot was
LIDAR-IR, even though the lidar was not used

4.1.4 Larger tracking court
A larger environment was set up to test the robots ability to navigate over a more extended
time period. The method used to test the robot is described in section 3.1.4. The larger
testing court was built according to the drawings in figure 3.2. A picture of the actual court
is shown in figure B.9 in the appendix. As seen in the result, figure 4.6, the robot could
not map the environment clearly.

Figure 4.6: Result of mapping the larger court

56

4.2 Position Estimation

4.2 Position Estimation

In this section, the results from testing the robot heading is presented. The method used is
described in chapter 3.2.

4.2.1 dTheta

The different gyro-weights were set, and both tests executed as planned. In the first test,
where the robot was standing still, dTheta was seen to be noisy when the gyroscope was
used. This is seen in figure 4.7. When using only the encoder while the robot was at rest,
gave results without outliers or noise, seen in figure 4.8. In the second test where the robot
was driving one meter forward, noise is observed in every test. This is seen in figure 4.9
and in figure 4.10.

Figure 4.7: dTheta value when the robot is standing still, for different gyro weights

57

Chapter 4. Result

Figure 4.8: dTheta value using only encoders, robot is standing still

Figure 4.9: dTheta value when the robot is driving, for different gyro weights

58

4.2 Position Estimation

Figure 4.10: dTheta value using only encoders, robot is driving

4.2.2 Robot heading

Drift in heading
The code used to compute and print the robot heading is found in listing B.1 in the ap-
pendix. The robot heading results when the gyro weight was zero, is found in figure 4.11.
Here it is observed that the heading is zero the entire time. The results of using other gyro
weights can be seen in figure 4.12.

Figure 4.11: Robot heading during five minutes of standing still with gyro weight = 0

59

Chapter 4. Result

Figure 4.12: Logged robot heading during five minutes standing still

The final orientation from the five minute test is found in table 4.1. Here it is seen that
the heading varies but that the best result is when the gyro weight equals zero. The largest
error in the robot heading is found when the gyro weight is one.

60

4.2 Position Estimation

Robot heading
Gyro weight Test 1 Test 2
0 0.0 0.0
0.2 0.044 0.111
0.4 0.35 0.40
0.5 0.12 0.072
0.6 0.110 -0.833
0.8 0.57 0.11
1.0 1.51 -1.026

Table 4.1: Robot heading [deg] after five minutes

Straight driving and heading
The straight driving test was executed in the camera-room, B333, at NTNU. The robot was
able to drive 3 meters on the floor. The test was executed two times for each gyro weight.
Data from Optitrack is plotted, showing the driving distance in the x and y directions, the
results are presented in figures 4.13 and 4.14. The driving distance, error distance and
average error distance are summarized in table 4.2.

Figure 4.13: Result from the robot driving three meters in a straight line

61

Chapter 4. Result

Figure 4.14: Result from the robot driving three meters in a straight line, with gyro weight = 0

From table 4.2, the distance error varies between 2.2 and 17.8 centimetres. On average,
the tests where low gyro weight values are used gives the least accurate position. The
most accurate position estimates, on average, is when the gyro Weight equals 0.6. The best
position accuracy in a single run, is found when the gyro weight is equal to 0.4 (test 2), with
an error distance of 2.2 centimetres. The greatest contribution to the error distance comes
from the error in the y-direction, rather from the x-direction. In the x-direction, xerror
varies from -13 to 1.2 centimetres, compared to the y-direction, where yerror varies from
-12.8 to 14.5 centimetre. It can also be seen that the error in y-position is greater than,
or equal to, the error in x-direction in 10 of the 14 tests. The robot heading was extracted
during the driving test. This data is seen in figures 4.15 and 4.16. A summary of the results
are written in table 4.3.

Gyro weight runn x y xerror yerror Distance error Average

0 test 1 3.007 -0.145 -0.007 0.145 0.145 0.1615test 2 3.133 -0.118 -0.13 0.118 0.178

0.2 test 1 3.017 0.113 -0.017 -0.113 0.114 0.1210test 2 2.991 0.128 0.009 -0.128 0.128

0.4 test 1 3.072 -0.142 -0.072 0.142 0.159 0.0905test 2 2.988 -0.019 0.012 0.019 0.022

0.5 test 1 3.052 0.023 -0.052 -0.023 0.057 0.0760test 2 3.056 -0.077 -0.056 0.077 0.095

0.6 test 1 3.023 -0.032 -0.023 0.032 0.039 0.0470test 2 3.035 -0.043 -0.035 0.043 0.055

0.8 test 1 3.067 0.038 -0.0670 -0.038 0.077 0.0530test 2 3.025 0.01 -0.025 -0.01 0.029

1 test 1 3.05 -0.076 -0.045 0.076 0.091 0.0880test 2 3.06 -0.06 -0.06 0.06 0.085

Table 4.2: Data measurement from Optitrack during the three meter test, unit [m]

62

4.2 Position Estimation

Figure 4.15: Predicted robot heading when the robot is driving

63

Chapter 4. Result

Figure 4.16: Predicted robot heading when the robot is driving, with gyro weight = 0

In table 4.3, it can be seen that the result varies more than the test where the robot was
standing still. There is no clear correlation between increasing gyro weigh and final robot
heading. On average, the best result was when the gyro weight was 0.6, this is the same
result found for the position (shown in table 4.2).

Robot heading
Gyro weight Test 1 Test 2
0 -4.62 0.66
0.2 -2.88 -0.97
0.4 0.52 -3.14
0.5 0.91 -0.03
0.6 0.39 -0.2
0.8 -1.93 0.70
1.0 0.54 0.49

Table 4.3: Final robot heading after driving 3 meters, given in degrees

64

4.3 Sensors

4.3 Sensors

The sensors are tested to determine if the inputs used to calculate the position, makes it
feasible to determine it accurately. If the incoming sensor data is corrupted, it is harder to
calculate an accurate position, without additional operations to compensate for the error
in the sensors. And in some cases, the error can not be compensated for in a satisfactory
manner.

4.3.1 Gyroscope

As described in chapter 3.3.1, four tests will be executed to validate the accuracy of the
gyroscope sensor data. The tests were executed as planned.

Drift in the gyroscope
The first test was to detect if there is drift in the gyro measurement. The execution of the
test went according to the original plan. In the result, some drift and noise in the sensor
measurements are observed, see figure 4.17. Three of the logs have relatively little drift,
about 0.005 degrees, compared to the first test, which has a drift of 0.02 degrees after 30
minutes. Some individual spikes can also be seen in the measurements, but non are greater
than 0.025 degrees. These spikes could be caused by external factors, such as sudden
vibrations in the environment.

Figure 4.17: Data from the gyroscope, while the robot is standing still for 30 minutes

65

Chapter 4. Result

Noise in the gyroscope
A sensor can be affected by noise. Therefore, we can see from measurements how much
the noise corrupts the data. One test can be seen in figure 4.18. The data from the other
tests is found in appendix B.5, figure B.10. The variance of each test was calculated. The
result is found in table 4.4.

Test 1 Test 2 Test 3 Test 4 Test 5
Mean 0.0348 0.0477 0.0350 0.0405 0.0140

Variance 0.0021 0.0023 0.0022 0.0022 0.0023
Standard deviation 0.0458 0.0479 0.0471 0.0467 0.0475

Table 4.4: Calculated variance and standard deviation of the gyro measurement [deg]

Figure 4.18: Result of gyroscope noise

66

4.3 Sensors

Bias
The bias from the gyroscope was extracted with the robot connected to the server. This
test was executed 20 times, shown in figure 4.19. In total 18 out of 20 tests lie between -5
and -6 dps. Two times the bias was measured with an increase of over 300%.

Figure 4.19: Bias test: Offset values from 20 separate tests

Accuracy
For testing if the gyroscope can detect a 90-degree rotation, the test was executed as de-
scribed in section 3.3.1. The result from the 90-degree test is found in figure 4.20. The
result shows the robot heading to be 90 degrees ±1 degree. The exact values from the test
are shown in table 4.5.

(a) Counter clockwise (b) Clockwise

Figure 4.20: Result from the gyroscope test with 90 degrees turn

67

Chapter 4. Result

CCW CW

number start end start end
1 0.008 89.95 -0.004 -89.40
2 -0.00006 89.35 0.010 -89.32
3 -0.001 89.86 -0.0124 -89.59

Table 4.5: Detailed result from the 90 degree turn test

4.3.2 Accelerometer
The accelerometer has not been used in the robot project previously. Extracting the sensor
data when the robot was standing on a table, gave the result found in figure 4.21.

Figure 4.21: Acceleration data when the robot is at rest, with various rotations

Table 4.6 shows the mean value from the data in 4.21. As seen, the acceleration data
in the z-direction is not 1, and the values in x and y directions are not equal to 0. This
shows that the sensor is not mounted horizontally on the robot. The results are similar for
all positive axes.

68

4.3 Sensors

Vertical axis X Y Z
x - measurement 1.032 0.029 0.029
y - measurement 0.062 1.049 0.038
z - measurement -0.089 -0.041 0.968

Table 4.6: Measurement from acceleration test, with the different orientations of the accelerometer

From these results, it became desirable to determine what position the robot should
have to get the sensor data to be correct. By carefully lifting the support wheel slightly, the
robot was tilted forward and the sensor data became as expected. This is shown in figure
4.22. The figure shows one test where the robot is standing still on a horizontal surface
and one test where the robot was tilted. The result is an improvement when tilted, which
may indicate that either the IMU is attached incorrectly or the robot is not horizontal when
resting on the support wheel.

Figure 4.22: The improvement of the accelerometer data when the robot was tilted to be horizontal

Also, the acceleration has been tested when the robot drove forward. The result is
seen in figure 4.23. The execution of this test, ensured logging of data had started before
the robot accelerated. It started accelerating approximately three seconds into the log, in
figure 4.23 it is indicated by a red line. The acceleration is noticeable as a small spike in

69

Chapter 4. Result

the measurement. The spikes have different amplitude for the three tests logged in figure
4.23. When the robot is driving forward, ripples can be seen in the measurements. The
results show that it is difficult to measure when the robot start to move forward. This is
expected, as the result from when the robot is standing still indicated that the robot, or the
IMU, is not horizontal. Finally, it can be seen that the magnitude of the noise in the signal
is close to that of the quantity measured. Finding the position through integration would
therefore most likely give a significant integration error.

Figure 4.23: Acceleration results when the robot moves forward

4.3.3 Encoder

The result was extracted with the robot application functions vMotorEncoderLeftTick-
FromISR(...) and vMotorEncoderRightTickFromISR(...). The results from when the wheel
was manually rotated can be seen in figure 4.24 and table 4.7. The encoder ticks were
also found by calculations with the robot driving a known distance. This, as well as the
resulting wheel factor, is found in table 4.8. The calculation of the wheel factor was done
according to equation 3.33.

70

4.3 Sensors

Figure 4.24: Encoder ticks from rotating the wheel 20 times

The total encoder value from each test is presented in table 4.7. The amount of encoder
ticks per revolution, found in the manual wheel rotation test, varies by twelve. Resulting
in 86 to 98 encoder ticks per round, meaning 3.6 to 4 degrees of angular resolution. When
the robot drives one meter straight forward, the result shows that the encoder tics vary be-
tween 534 to 542, seen in table 4.8. The resulting value then varies from 103 to 109 ticks
per wheel rotation, giving a resolution of 3.3 degrees per tick.

Total ticks Ticks Wheel factor
Direction test 1 test 2 per round
Left Forward 1762 1977 88 98 2.3182 2.0816
Left Backwards 1901 1892 95 95 2.1474 2.1474
Right Forwards 1724 1736 86 87 2.3721 2.3448
Right Backwards 1878 1860 93 93 2.1935 2.1935

Table 4.7: Total encoder tics found from 20 manual wheel rotations

71

Chapter 4. Result

Total ticks Distance [cm] Tick per round Wheel factor
Left test 1 534 102 103.94 1.9065
Left test 2 539 101.5 108.3 1.8831
Left test 3 539 102 107.8 1.8924

Right test 1 535 101 108.059 1.8879
Right test 2 539 102.5 107.2741 1.9017
Right test 3 542 106 104.3 1.955

Table 4.8: Result from finding encoder values from driving

After discussing the results for encoder ticks per wheel rotation, with fellow students
working on the robot project, the result of around 100 ticks per rotation seemed wrong
compared to what others had found. As others had found a value closer to 200, it was
decided to investigate further. The result was that the already existing function vMotorEn-
coderLeftTickFromISR(...) and vMotorEncoderRightTickFromISR(...), which divided the
ticks by two before returning the result, were modified to no longer perform that division.
The driving test was then executed again, as this is the test that was considered most reli-
able, and least susceptible to human error. The result was that a higher value for encoder
ticks per revolution was found, and a new calculation of the wheel factor was done. All the
new results were between 224 and 225, all the numbers are shown in table 4.9. Extensive
testing was not possible for the new wheel factor, as this error was found late in the project.

Test Total encoder ticks Encoder ticks per round Wheel factor
Left 1 4491 224.55 0.9085
Left 2 4499 224.95 0.9075
Right 1 4499 224.95 0.9075
Right 2 4496 224.80 0.9075

Table 4.9: New encoder ticks and calculation of wheel factor

4.3.4 Compass
The compass was tested and then calibrated as described in section 3.3.4, except that the
plan was to use the motors to rotate the robot. An unexpected problem was that the robot
rotated too fast to log a good dataset. The speed of the motors was then lowered, which
resulted in the robot not being able to rotate smoothly. It was therefore decided to rotate
the robot by hand. This was done by placing the robot on a book, then rotating it 360
degrees. After the logging the compass data the offset was calculated using equations 3.34
and 3.35. The compass offset used was x offset = -456 milligauss and y offset = 246 milli-
gauss.

72

4.3 Sensors

Figure 4.25 shows the measured compass output and the result of the theoretical cali-
bration on the same test. In the last test, the new calibration was tested on the robot. The
offset was set in the robot application, and the robot was rotated 360 degrees as before. The
result is shown in figure 4.26. Here it is seen that the new calibration drastically improved
the compass measurement.

Figure 4.25: Compass measurement and theoretical improvement with the calibration

Figure 4.26: Compass measurement with the implemented calibration

73

Chapter 4. Result

4.3.5 IR measurement

The curve fitting method for the IR sensors was executed as described in section 3.3.5.
The robot was put at a fixed distance from the object, and the voltage was read. On the
oscilloscope, three data points were logged. The data is shown in appendix B.6. This
result was loaded into Matlab and the Matlab curve fitting toolbox was used to calculate
the coefficients a and b. The curve fitting was done by inserting the distance (as Y data)
and voltage (as X data) from the data set and selecting the general mathematical model of
a power function, f(x) = a · xb. The result of the curve fitting is found in table 4.10.

The result of the curve-fitting is shown in figure 4.27. Here, the new calibration is
overlaid onto the original datasheet, the curve is similar to what is shown in the datasheet
[30, figure 5]. The theoretical error of the new IR calibration is also calculated. This is
found in figure 4.28.

Figure 4.27: Curve-fitting from IR sensors, with coefficient from table 4.10

74

4.3 Sensors

Coefficient a b
Rear sensor 27.26 -1.164
Right sensor 26.82 -1.179
Left sensor 26.23 -1.177
Forward sensor 25.61 -1.097

Table 4.10: Result from curve fitting using the Matlab toolbox

Figure 4.28: Theoretical error from the new calibration

The method described in section 3.3.5 was executed again to compare the new and old
calibrations. This time printing the results over USB. By doing this, it was possible to have
data from both calibration methods at each distance. The measured distance is found in
table 4.11.

To compare the results, and evaluate which calibration is the most accurate, the calcu-
lated distances from the IR sensors are subtracted from the actual distance. By doing this,
the error from the IR measurement is found, and a comparisons between the calibration
methods done. The result is seen in figure 4.29.

75

Chapter 4. Result

10 15 20 25 30 40 50 60 70 80 cm
New FrW 10 15 19 25 29 40 48 57 64 70
New Right 10 14 19 24 29 39 47 55 62 72
New Left 9 13 18 23 28 38 47 57 62 70
New Rear 9 15 19 25 29 38 47 53 61 69
Old FrW 11 16 22 28 33 46 55 65 71 79
Old Right 11 15 21 25 30 41 51 56 64 71
Old Left 10 15 21 25 31 41 51 60 65 71
Old Rear 10 15 21 26 31 40 49 56 62 68

Table 4.11: Result of IR calibration method

Figure 4.29: Error from measured distance and actual distance from the IR sensors

The new calibration measures the distance a bit shorter than it actually is, while the
old calibration outputs a distance that is too large. For both calibration methods the error
increased, as the distance became larger. This matches what was predicted, looking at the
theoretical error (see Fig. 4.28).

76

Chapter 5
Discussion

The objective of this master thesis has been to investigate the Arduino robot’s estimation
error. In this chapter, the method, execution and result of the tests will be discussed.
Firstly, the driving accuracy in the square test, and navigation precision when the robot
maps different tracks, has been evaluated. Further, the discussion goes more in-depth into
the system by looking at the data processing in the robot application. In the end, the
sensors, the fundamental building blocks for the POSE estimation and object detection,
are evaluated.

5.1 Driving performance

5.1.1 Square test
The square test is a method that is often used in the Robot project to examine driving per-
formance. An advantage of this test is the manual control of the robot and the control over
the position target. In addition, the method can be supervised using the Optitrack system.
The measurement of driving distance with Optitrack is more accurate than manual mea-
surements. When using the Optitrack system, some post-processing of the data must be
performed. For example, the robot might be placed with a heading that is not parallel to
the x-axis of the Optitrack system. This is accounted for in the post-processing by making
a vector to compensate for the heading direction. All data in the set is then calculated with
respect to the direction of this vector.

In this master thesis, the square test was used to find which setup gave the best position
estimate. The test could have been executed more than two times to get a larger data set.
The test results showed that the position estimate of the robot is more accurate without the
use of the error factor on the gyroscope or encoder.

During the execution of the square test, the robot would, on a few occasions, not drive
forwards. At the same time, the motors made a buzzing sound. It could be due to the bat-

77

Chapter 5. Discussion

tery being discharged. The robot was then connected to the charger, but would not charge,
a sign that the battery is close to fully charged. After this, the robot was turned on, and
the driving performance was back to normal. This happened four times during the square
tests. This bug has not been possible to reproduce, and it is not clear why it happened. A
hypothesis is that the robot’s initialisation had not been successful. Another possibility is
that the applied voltage to the motors was too low or that there are one or more unstable
hardware connections in the robot.

5.1.2 Continuous square test

This method aims to evaluate eventual changes in the position estimate over a period of
time. In the method’s description, the target is described as the robot driving four to five
rounds. This gives a total driving distance of 16 to 20 meters and an operation time of three
to four minutes. A larger data set could be generated by executing the continuous square
test more times, and would get a clearer trend in the development of the position error. The
average error in each corner varied between both rounds and tests. The tendency for the
CW error was increasing more rapidly, compared to the CCW direction. Since the average
distance error changes over time, a good prediction for how the position error develops has
not been found.

To further investigate how the error develops over time, it is desirable to look at the
net error. This net error describes the increase in error from round to round, between each
time the robot passes the same target corner. For each round in the continuous square test
the equation 5.1 is used to find the net error. Where xp and yp are the coordinates of the
robot in the previous round. The coordinates x and y are the position of where the robot
was in the current round. The i is in range 1-4 and indicates which corner that is under
investigation.

enet =

√
(x(i)− xp(i))2 + (y(i)− yp(i))2 (5.1)

The data is stored in table B.1 in the appendix and is visualized in figure 5.1 and 5.2.
From the net calculation, it is seen that the net error from each round is not constant, seen
in both the CCW and CW driving directions. In the CW direction, the net error will prob-
ably increase every round. In the CCW direction, the net error is more steady, but the total
error will grow.

The reasons for this increasing error can be noise or faulty sensor measurements from
the gyroscope and the encoders. Alternatively, the software calculates the POSE wrongly
or there is another fault in the software design. All of these can be reasons for the error in
position varying over time.

78

5.1 Driving performance

Figure 5.1: Net error for every round in the continuous square test, CCW direction

Figure 5.2: Net error for every round in the continuous square test, CW direction

5.1.3 Round court
The robot was tested in the round court, to confirm the robot’s ability to detect, and map,
slopes. Both this and the larger track method provide challenges for getting good quan-
titative results. The objective measurements from Optitrack cannot be directly compared
with the measurements from the robot. The Optitrack system and the robot do not have the
same coordinate systems, or the same time stamping of data. All this results in a challeng-
ing and complex post-processing, for the test to yield more quantifiable results. Contrasted
against the square test, where quantitative data can easily be processed and evaluated.

The round track was navigated both with and without the docking station inside. As
the test was carried out only once, the data set was small and the same outcome can not be
guaranteed in future tests. From previous tests during the master thesis, it is seen that the
robot can behave somewhat stochastic. The round track test concludes that the robot can

79

Chapter 5. Discussion

navigate the court without crashing, and the mapping of sloped obstacles works, which
was the point of this test.

5.1.4 Larger track

The main goal of the robot project is to map an unknown environment, using an au-
tonomous robot. Therefore, the robot has been tested in a larger court. This benchmarks
the robot’s driving and navigation performance with the initial robot application. The
method described in section 3.1.4 describes a court with multiple corners and one sloped
wall. The track has different elements that tests the robot’s driving performance. An im-
provement could be varying the design of the court between runs, to see if some courts are
easier to navigate than others.

In the execution of this test, the robot was placed on the same starting position each
time. The robot could have been initially placed at different starting positions, to see if
this affected the mapping. The result of the tests are deviating, as the mapped result from
the GUI did not have the same shape as the testing court (see figure 5.3). Note that the red
’X’ in figure 5.3b is the starting position of the robot. The blue ’X’ in figure 5.3a is the
next position target for the robot, given by the server. A drifted wall can clearly be seen
(figure 5.3a), while not all walls are clearly mapped with a black line. The final result is
an unsatisfactory mapping of the environment.

(a) Server GUI map (b) Model of the testing track

Figure 5.3: Comparison of the larger tracking test

5.2 Position estimation

Even with good sensor data, bad software application design can worsen the accuracy
of the final position estimate. Today the robot uses the gyroscope and the encoder data,
whereas at the start of the project, the robot only emphasized the gyroscope data when
turning.

80

5.2 Position estimation

5.2.1 dTheta

Testing dTheta, the fusion of encoder and gyroscope measurements, with different weight-
ing of the gyroscope and encoder, has allowed a visual result of the robot heading. The
collected data set could be improved by running five or more tests with every gyro weight.
The method could be improved by selecting the gyro weights with smaller step size, e.g.,
a step size of 0.05, giving a set of 0.05, 0.10, 0.15 etc. up to 1.

The execution of the test went as planned. An improvement would have been to extract
both dTheta and predicted robot heading from the robot application. The advantage of ex-
tracting both variables would have been comparing both sets of data from the same test
run. The data could then have been used to conclude how the error in the dTheta affects
the predicted robot heading. With the extraction of dTheta and robot heading separated
into different runs, it is not accurate to compare these results directly. Nevertheless, it can
still be used to indicate a connection.

The results from when the robot is standing still, show that the gyroscope introduces
noise in dTheta, seen in figure 4.7 in 4.2.1. In an ideal case, when the robot is standing
still, the value should have been zero. The only test that showed this result was when
only the encoder ticks were used in the calculation of dTheta. No voltage will be sent to
the motors when the robot is standing still, resulting in no encoder ticks being generated.
On the other hand, when driving forward, the fluctuations of dTheta are largest when the
robot uses only the encoders. Regarding the precision in the robot’s orientation, it can be
concluded that it is best to use the encoder when the robot is at rest. When the robot is
driving forward, a combination where the gyro is weighted higher than the encoders seems
to work best.

5.2.2 Robot heading

In the tests for observing the heading, where the robot is driving forward, an important
criticism is that the control system is not taken into account. The control system does not
use the heading as a control variable for the target point. The robot only concerns itself
with the x and y position, rather than which heading it has. This means that the robot’s
heading at the end of the test is not a factor for the control module. At the same time, the
robot should, in theory, have the same heading in the ending, as in the beginning, since
the robot is only driving straight forward. In this method, the control module’s impact
has not been considered, which could have affected the result of the heading. The control
module cannot be neglected and can be the reason for some of the spikes in the results.
The execution of the test matched the planned method. The results show that the robot
heading drifts more using the gyroscope than using the encoders. This can be caused by
integration of the noise introduced into dTheta by the gyroscope. The heading oscillates
in all the tests where the robot moves forward. The largest spikes are found when only
the encoders are used. This matches what is observed and concluded regarding dTheta,
that a setup where the gyroscope is combined with the encoders significantly improves the
heading estimate, when the robot is driving.

81

Chapter 5. Discussion

5.3 Precision in sensors

All tests in this section were executed at the office. The first tests were to investigate
each sensor. Some sensors are calibrated to improve accuracy. A general problem was an
unsteady connection between the robot and the server. The connection ended when the
other students at the office tested their robots over BLE. To bypass this problem, the robot
was connected by USB to print over Putty, rather than using the server.

5.3.1 Gyroscope

Drift
The first test was done to look for tendencies in the drift. The method is described in sec-
tion 3.3.1, where the robot is standing still for 30 minutes. An improvement of the method
would have been to calculate the trend line for the drift. An estimate of the drift without
the effect of noise and bias, can be found by looking at the slope of the trend line.
It can not be concluded from this data alone, why one test-run gives a larger drift than
the rest. One possibility is that the offset calculated in the beginning is incorrect and that
this error accumulates throughout the 30 minutes of the test. This can be investigated by
repeating the test, with the addition of extracting the offset, and looking for a correlation
between the drift and the offset.

Noise
The gyroscope was also tested to look at noise on the signal. The five tests show the cor-
ruption of the sensor data. To compare the tests, the mean, variance and standard deviation
were calculated. The variance, and standard deviation, is almost identical in every test.
This can be interpreted as the noise having the same effect on the sensor throughout all the
tests. The tests show the noise in the measurement when the robot is stationary.

The question of where the noise is introduced into the measurements arises. Many dif-
ferent sources of error can have an impact. If the sensor is not rigidly fastened, vibrations
can affect the signal. When a sensor is attached, the sensor can be exposed to mechanical
stress, as explained in the datasheet [34]. The sensors offset must be found to compensate
for the mechanical stress. In the gyroscope, this is done by finding the bias offset. Inside
the MEMS gyroscope the measurement itself can also be affected by noise. The analogue
signal will be quantized by the ADC (inside the gyro). This operation will introduce a
quantization error (and other errors such as INL) [57, chapter 4.3]. After the signal is
quantized, the digital signal is represented by bits. Bit-flips that will corrupt the data is
less prevalent than noise on analogue signals. It has not been possible to quantify each
of these factors, but the primary effects are assumed to be in mounting of the sensor, and
inside the gyroscope. A visualization of how, and where, the different errors can enter the
signal chain is shown in figure 5.4.

82

5.3 Precision in sensors

Figure 5.4: Conceptual diagram of potential sources of error in the gyroscope

An improvement to this method is to test the gyroscope for noise when the robot is
driving. When the robot is running forward, noise can be introduced from the robot’s mo-
tors or other hardware, such as rotation of the sensor tower. This can easily be tested with
the same test setup as described, with the addition of activating the sensor tower.

Bias
From the bias test, it is seen that the gyroscope offset can vary. The bias test results show
that the offset lies between -5 and -6 dps. In two cases, the offset was found to be -19
and -22. This is an increase in the gyro offset by over 300%. How large impact this offset
has on the position estimation can be investigated further by evaluating the offset value
with the corresponding square test of the robot. By doing this, the offset’s impact can be
directly seen in the performance of the square test. In the bias test execution, the robot was
moved, rotated, and tilted before a test was executed. This was done to simulate the robot
being moved to the testing site. This has had no impact on the gyroscope measurement. It
can be concluded that the gyroscope is not broken, but the calculation of the offset can, in
some cases, be wrong.

83

Chapter 5. Discussion

Accuracy
In the fourth test, the accuracy of detecting a 90-degree turn was executed. One potential
improvement in the method would have been securing the robot to something that rotated
only 90-degrees. This could remove the inaccuracy in the manual rotation. A challenge
in the execution was rotating the robot around a point, that was only marked on the ta-
ble. This may have introduced translation into the intended rotation. A solution to this is
to have a mechanically fixed point of rotation. The robot was also placed on a notebook,
instead of a book with a hard cover, which might have reduced the precision of the rotation.

The turning of the robot was executed three times in each direction. It can be argued
that the test should have been executed more than three times to get a better average of
the results. The test results show that the gyroscope can detect a 90-degree turn with an
inaccuracy of less than one degree, in both the CCW and CW directions. There are some
uncertainty connected to this result, but all the tests show the same result and is therefore
believed.

5.3.2 Accelerometer

The method described in section 3.3.2 was executed according to plan. Based on the re-
sults of this, it can be concluded that the accelerometer is working well. When extracting
the sensor data, during driving, the support wheels in the rear of the robot should have been
larger. If the robot had a larger supporting wheel, the IMU would have been tilted to be
horizontal, removing some error from the measurement. When the robot was standing still
and manually tilted horizontally, the accelerometer data was as expected. The value for
acceleration in the x- and y-directions equaled zero g, while it in the z-direction equaled
one g.

As the IMU is not mounted horizontally, a small error can be seen in the data when
standing still or moving. The offset is measured to have an average of 0.04 g, and is listed
in the datasheet [34, p. 20]. This offset equals 0.4 m/s2. One could naively try to inte-
grate the accelerometer data twice to get an estimate for the travelled distance. In the 10
seconds (see figure 5.5) the robot uses to drive approximately one meter, the small offset
in the accelerometer data would result in an estimated distance of 40 m. This shows how
important an adjusted and calibrated accelerometer is. Because of this, it is hard to eval-
uate whether the sensor values can be used in the position navigation without further work.

The estimated time of 10 seconds, for the robot to drive one meter is found in data
from the square test. In figure 5.5, the time versus distance in the x-direction can be seen.

84

5.3 Precision in sensors

Figure 5.5: Time the robot used to drive approximately one meter

An improvement to the method of finding out how the accelerometer could have been
used, would be gathering data when the robot drives with different speeds. This could
have resulted in an acceleration that was easier to detect in the accelerometer. If the IMU
was moved into the rotation centre, the accelerometer could have been tested again, with
an expected result of zero in the x-and y-directions while turning around the z-axis (as
it would not experience any linear acceleration). Alternately, the implementation of the
mathematical rotation and translation of the acceleration data, described in section 3.3.2,
could improve the measurement. An easier task is to calibrate the sensor. As explained in
the datasheet for the IMU, it is recommended to calibrate the sensor after it is mounted,
[34, chap. 4.6.2]. This can be done by extracting the offset when the robot is placed on a
horizontal surface. The measurement has to be the average from a longer period of time.

In conclusion, the accelerometer itself worked well and the results were as expected.
The low acceleration of the robot could pose problems for estimating the position. To use
the accelerometer data in calculation of the position, the data has to be integrated twice,
yielding an estimate of the distance. Today the data is too noisy to be used in such a
method. As an example the integration of an imperfect signal is shown in figure 5.6. Here
it is seen how the calculation will introduce a large integration error for even a small bias.

85

Chapter 5. Discussion

Figure 5.6: Illustration of a signal with a small bias, and the resulting single and double integral
errors

5.3.3 Encoder

To find the precision of the encoder, the number of encoder ticks produced by the sensor
has to be compared to the information in the datasheet. With the new motors, the number
of encoder ticks were not listed. Because of this, it was determined to estimate the number
of encoder ticks, and then calculate the new wheel factor.

The method in this thesis does not find the gear ratio of the motors, only the encoder
ticks used in the position estimation. The method did not consider the frequency of the
task, or the runtime, as these should have no impact on the results. This is because the
encoder value is registered in an interrupt handler. This means that every encoder tick is
registered regardless of task frequency. The two tests to find the wheel factor were exe-
cuted as true as possible to the planed method. To improve the method, where the robot
drives a fixed distance, one could execute the test in the camera room B333. In this way,
a more accurate measurement of how far the robot has driven would have been found by
Optitrack. Using Optitrack would be instead of using a measuring tape, with the lower
resolution, an higher uncertainty, arising from using a coarse manual measuring tool. The
other test, where the wheel is rotated by hand, looks at the average of 20 rotations. It can
be argued that ten rotations could be enough and that the test should be executed more
times.

86

5.3 Precision in sensors

In the robot application, the wheel factor had to be set. And the conclusion was to use
the result from the test where the robot drives one meter. The driving test result was em-
phasized more because the robot behaves the same way when it navigates an environment.
A conclusion on why the two tests were different has not been found. A hypothesis is that
the driving test is more accurate and less prone to human error.

To get maximum resolution from the encoder, the robot application software has to
be adjusted. The functions vMotorEncoderLeftTickFromISR(...) and vMotorEncoder-
RightTickFromISR(...), has to be changed so that the encoder-ticks are not divided by two.
A new test was done with these changes, which yielded 225 encoder ticks per wheel rota-
tion. This comes out to a resolution of 1.6 degrees. If this solution is to be used, the wheel
factor has to be updated to 0.9075.

5.3.4 Compass
During the testing of the compass, a few weaknesses in the method was discovered. An
improvement to the execution can be found in the accuracy of manually rotating the robot.
It is not easy to rotate the robot around a fixed centre. This may have had an impact on
the result and weakened the conclusion. It is possible to have a board rotating around a
fixed point and then place the robot on top. Such a solution could remove some outliers
in the measurements. An greater improvement could be found by having the robot rotate
slowly around is own z-axis with the motors turning in the opposite direction of each other.
The movement of the robot would then be more similar to the movement during normal
operation.

The result from the compass calibration shows an improvement. The new calibration
centres the data around the origin, as expected for an ideal compass (shown in figure 3.10).
Because of plausible errors in the manual rotation of the robot, it is not possible to see if
the outliers in the data are from the test or from the sensor itself. A filter is not applied
to the data, but as the signal is potentially affected by noise, this could be beneficial.
Before the compass is used in the robot application, tests of noise would be preferable.
Results of such a test can be used to dimension the filter. Such a test can be performed by
letting the robot have a constant heading over some time, extracting the compass data, and
then plotting, and analyzing it. Looking at the signal in the frequency domain, one can
potentially identify the frequencies of noise in the data.

5.3.5 IR sensor
The method used for calibrating the IR sensors was curve fitting. The execution of the IR-
calibration went as described in 3.3.5. An improvement to the calibration method would
have been to increase the number of samples (from three) at each distance. During testing
of the new calibration, a larger fluctuation of the measured distance, compared to the old
calibration was also detected. This can be the result of integer casting in the robot appli-
cation. For example, if the IR sensor is placed 12 centimetres away from an obstacle and
the IR sensor’s measurement is oscillating between 11.9 and 12.1 centimetres, the output
of casting from a float to an integer will oscillate between 11 and 12 centimetres. Casting

87

Chapter 5. Discussion

from float to integers in C, happens by discarding the fractional part, behind the scene,
causing this issue. In summary this is perceived as the distance measurement from the
sensor fluctuating. A solution for this could be to either extract the distance in millimetres,
by multiplying the data by 10, or to round the distance before the cast from a float to an
unsigned integer.

The fluctuating distance measurement in the new calibration was decisive in the choice
of using the old calibration. The result from the sensors are not perfect with either calibra-
tion. It is observed that the sensors have some uncertainty in the measurement, although
the value for this is not given in the datasheet for the sensor [30]. The other main source of
error is in the internal ADC of the ATmega. The datasheet for the ATmega 2560 gives an
Absolute Accuracy of ±3 LSB1, defined by the datasheet [22] as “[Absolute Accuracy] is
the compound effect of offset, gain error, differential error, non-linearity, and quantization
error.”. With the 2.56 V internal reference used, ±3 LSB comes out to ±7.68 mV. As an
example using the new calibration for the left sensor, a measured voltage of 0.6987 V gives
a distance of 40 cm, while a voltage of 0.6987 V + 7.68 mV = 0.7064 V gives a distance
of 39.5 cm. As shown by this example, the accuracy of the ADC is not negligible when
discussing precision in the IR-sensors. It should be noted that this will be worse for larger
distances, as the slope of the conversion function is steeper for lower distances. The result
of this calculation, and the trend explained, are shown in figures 5.7 and 5.8.

Figure 5.7: Theoretical worst-case of ADC error in the left IR sensor

1Found using Table 31-9 in [22], knowing that the Arduino has a 16 MHz crystal (seen in the schematic), and
that the ADC is initialized with a prescaler of 16 in the application

88

5.3 Precision in sensors

Figure 5.8: Zoomed image of theoretical worst-case of ADC error in the left IR sensor

This imprecise measurement has no impact on the position estimation today, as the
IR-sensors are only used in object detection and not for estimating the robot’s position.
It should therefore be prioritized lower in the work to improve the position estimate. In
the future, the IR-data could be used to detect the docking station, and from knowing the
docking position, re-calibrate the internal position of the robot. This is saved as future
work for improving the robot autonomy in the project.

It could be argued that inaccuracy in the servo, controlling the sensor tower, can impact
the measured distance and position to an obstacle. The servo is seen as relatively accurate,
and the sensor tower can perhaps have one to two degrees error in the angle. If the angle
error in the servo were 10 degrees, the measured distance would be one centimetre wrong
at a distance of 80 centimetres. Compared to the already measured error from the IR
sensor, the servo is not a significant part of the distance measurement error. However,
even if the measured distance is only one or two centimetres wrong, the error in angle
impacts the x-y coordinates. Example, measure a distance in the heading direction to be
80 centimetres, but the sensor towers angle is two degrees wrong. The x-y coordinates are
then x: 80.049 centimetres and y: 2.792 centimetres. Ergo their position is almost three
centimetres wrong. If the measured distance is 40 centimetres, the error in the y-direction
is 1.39 centimetre. This decrease in the position coordinates’ error supports the already
implemented distance restriction in the server application. Here, the server disregards
measurements from the robot that are over 40 centimetres, which reduces the mapping
error.

Conclusion
The conclusions from this chapter are found in the beginning of the thesis, at page v.

89

Chapter 5. Discussion

90

Chapter 6
Further work

Through the work on this master thesis, several thoughts on future assignments for the
project have emerged. The tasks are grouped into the improvement of the robot’s position
estimate, and making the robot able to behave more autonomously.

To improve the position estimation the following tasks can be looked at:

• Implement and test different filters to minimize the impact of noise in the sensors

• Move the IMU, or use calculations to transform the accelerometer data to the center
of rotation, see 3.3.2

• Implement a new position estimator based on the extended Kalman filter (EKF), see
3.2.3

• Investigate the possibility of using sensor models to improve the sensor data, see
[66]

• Improve the seemingly stochastic behavior of the robot, by investigating the initial-
isation of the robot application and its use of FreeRTOS

Increasing the autonomous capabilities of the robot can be done through the following
tasks:

• Implement a new communication system based on the nRF52 dongle.

• Complete the work on battery management. Control over the battery level would
allow the robot to check for low battery, and for future projects to see if low battery
impacts the driving performance

• Continue development on autonomous docking. The robot could then be able to
have the docking marked as a fixed point, and when seeing it again, update it’s own
position estimate based on that.

91

Chapter 6. Further work

92

References

[1] Karoline Halvorsen. Investigation of sources of error and a way to minimize the
error in position estimation of an NXT robot. Tech. rep. Cybernetic institution, Nor-
wegian University of Science and Technology, Norway, 2020.

[2] T. Hobbes & W. Molesworth & Homer & Thucydides. The English works of Thomas
Hobbes of Malmesbury. London, J. Bohn, 1839.

[3] Epicor. What is Industry 4.0—the Industrial Internet of Things (IIoT)? Last ac-
cessed 04.01.2021. URL: https://www.epicor.com/en/resource-
center/articles/what-is-industry-4-0/.

[4] E. I. Al Khatib et al. “Multiple sensor fusion for mobile robot localization and nav-
igation using the Extended Kalman Filter”. In: 2015 10th International Symposium
on Mechatronics and its Applications (ISMA). 2015, pp. 1–5. DOI: 10.1109/
ISMA.2015.7373480.

[5] Definition Dead Reckogning. Last accessed 20.09.2020. URL: https://www.
dictionary.com/browse/dead-reckoning.

[6] Håkon Skjelten. Fjernnavigasjon av LEGO-robot. Tech. rep. Cybernetic institution,
Norwegian University of Science and Technology, Norway, 2004.

[7] Dictionary Autonomy. Last accessed 02.09.2020. 2020. URL: https://www.
dictionary.com/browse/autonomy.

[8] Megan Wallace. “What is GPS?” In: NASA (2019). URL: https://www.nasa.
gov/directorates/heo/scan/communications/policy/what_
is_gps.

[9] Rob Matheson. “Fleets of drones could aid searches for lost hikers”. In: MIT News
(2018). URL: https://news.mit.edu/2018/fleets-drones-help-
searches-lost-hikers-1102.

[10] Room location B333 at NTNU. Last accessed 08.11.2020. 2020. URL: https:
//bit.ly/3n3h8nn.

[11] Microship. Atmel Studio 7. Last accessed 15.10.2020. 2020. URL: https://www.
microchip.com/mplab/avr-support/atmel-studio-7.

93

https://www.epicor.com/en/resource-center/articles/what-is-industry-4-0/
https://www.epicor.com/en/resource-center/articles/what-is-industry-4-0/
https://doi.org/10.1109/ISMA.2015.7373480
https://doi.org/10.1109/ISMA.2015.7373480
https://www.dictionary.com/browse/dead-reckoning
https://www.dictionary.com/browse/dead-reckoning
https://www.dictionary.com/browse/autonomy
https://www.dictionary.com/browse/autonomy
https://www.nasa.gov/directorates/heo/scan/communications/policy/what_is_gps
https://www.nasa.gov/directorates/heo/scan/communications/policy/what_is_gps
https://www.nasa.gov/directorates/heo/scan/communications/policy/what_is_gps
https://news.mit.edu/2018/fleets-drones-help-searches-lost-hikers-1102
https://news.mit.edu/2018/fleets-drones-help-searches-lost-hikers-1102
https://bit.ly/3n3h8nn
https://bit.ly/3n3h8nn
https://www.microchip.com/mplab/avr-support/atmel-studio-7
https://www.microchip.com/mplab/avr-support/atmel-studio-7

REFERENCES

[12] Arduino. Arduino IDE 1.8.13, Downloads. Last accessed 01.10.2020. 2020. URL:
https://www.arduino.cc/en/software.

[13] AVRDude - AVR Downloader. Last accessed 01.10.2020. 2009. URL: https://
www.arduino.cc/en/software.

[14] Microsoft Project. Last accessed 17.09.2020. 2019. URL: https://www.microsoft.
com/microsoft-365/project/project-management-software.

[15] Ese. “Sanntidsprogrammering på samarbeidande mobil-robotar”. MA thesis. Nor-
wegian University of Science and Technology, Norway, 2016.

[16] Sondre Martin Jensen. Arduino-Robot med LIDAR - sensor. Tech. rep. Cybernetic
institution, Norwegian University of Science and Technology, Norway, 2017.

[17] Tor Andersen & Mats Rødseth. “System for Self-Navigating Autonomus Robots”.
MA thesis. Norwegian University of Science and Technology, Norway, 2016.

[18] Sondre Martin Jensen. “Autom-robot med LIDAR-sensor”. MA thesis. Norwegian
University of Science and Technology, Norway, 2018.

[19] Erlend Velle Dypbuukt. “Position Estimation og Arduino SLAM - Robot”. MA
thesis. Norwegian University of Science and Technology, Norway, 2018.

[20] Arduino MEGA 2560. Last accessed 16.11.2020. 2020. URL: https://www.
arduino.cc/en/Main/arduinoBoardMega2560/.

[21] Arduino Mega rev 3. URL: https://store.arduino.cc/arduino-
mega-2560-rev3.

[22] Data sheet ATmega 2560. URL: https://ww1.microchip.com/downloads/
en / devicedoc / atmel - 2549 - 8 - bit - avr - microcontroller -
atmega640-1280-1281-2560-2561_datasheet.pdf.

[23] UK 1122, L298 H. Brige Dual Bidirectional. datasheet. Cana Kit. URL: https://
gzhls.at/blob/ldb/2/5/9/3/68f832cf5a93c55a77c3577450b56e3e7f59.
pdf.

[24] Motor Driver 2A Dual L298 H-Bridge. URL: https://www.kr4.us/motor-
driver-2a-dual-l298-h-bridge.html.

[25] DAGU 120:1 Motor. Last accessed 21.08.2020. URL: http://dlnmh9ip6v2uc.
cloudfront.net/datasheets/Robotics/DG01D.pdf.

[26] Hobby Gearmotor DAGU. Last accessed 21.08.2020. URL: https : / / www .
sparkfun.com/products/13302.

[27] simple Encoder Kit. Last accessed 21.08.2020. URL: http://cdn.sparkfun.
com/datasheets/Robotics/multi-chassis%20encoder001.pdf.

[28] SO50 STD. Last accessed 07.11.2020. URL: https://cdn.sparkfun.com/
datasheets/Robotics/S05NF%20STD.pdf.

[29] ROB-10333 - SO50 STD. Last accessed 07.11.2020. URL: https://www.digikey.
com/en/products/detail/sparkfun-electronics/ROB-10333/
5766904.

94

https://www.arduino.cc/en/software
https://www.arduino.cc/en/software
https://www.arduino.cc/en/software
https://www.microsoft.com/microsoft-365/project/project-management-software
https://www.microsoft.com/microsoft-365/project/project-management-software
https://www.arduino.cc/en/Main/arduinoBoardMega2560/
https://www.arduino.cc/en/Main/arduinoBoardMega2560/
https://store.arduino.cc/arduino-mega-2560-rev3
https://store.arduino.cc/arduino-mega-2560-rev3
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://gzhls.at/blob/ldb/2/5/9/3/68f832cf5a93c55a77c3577450b56e3e7f59.pdf
https://gzhls.at/blob/ldb/2/5/9/3/68f832cf5a93c55a77c3577450b56e3e7f59.pdf
https://gzhls.at/blob/ldb/2/5/9/3/68f832cf5a93c55a77c3577450b56e3e7f59.pdf
https://www.kr4.us/motor-driver-2a-dual-l298-h-bridge.html
https://www.kr4.us/motor-driver-2a-dual-l298-h-bridge.html
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Robotics/DG01D.pdf
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Robotics/DG01D.pdf
https://www.sparkfun.com/products/13302
https://www.sparkfun.com/products/13302
http://cdn.sparkfun.com/datasheets/Robotics/multi-chassis%20encoder001.pdf
http://cdn.sparkfun.com/datasheets/Robotics/multi-chassis%20encoder001.pdf
https://cdn.sparkfun.com/datasheets/Robotics/S05NF%20STD.pdf
https://cdn.sparkfun.com/datasheets/Robotics/S05NF%20STD.pdf
https://www.digikey.com/en/products/detail/sparkfun-electronics/ROB-10333/5766904
https://www.digikey.com/en/products/detail/sparkfun-electronics/ROB-10333/5766904
https://www.digikey.com/en/products/detail/sparkfun-electronics/ROB-10333/5766904

REFERENCES

[30] IR sensor. Last accessed 19.08.2020. 2017. URL: https://www.sparkfun.
com/datasheets/Components/GP2Y0A21YK.pdf.

[31] How to Convert the Analog Signal to Digital Signal by ADC Converter. URL: https:
//www.elprocus.com/analog-to-digital-adc-converter/.

[32] Lidar v3 Datasheet. Last accessed 20.08.2020. 2016. URL: http://static.
garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_
Technical_Specifications.pdf.

[33] Lidar v3 image. Last accessed 20.08.2020. URL: https://www.sparkfun.
com/products/14032.

[34] IMU Datasheet. Last accessed 09.11.2020. 2015. URL: https://cdn.sparkfun.
com/assets/learn_tutorials/4/1/6/DM00133076.pdf.

[35] 3-Axis Digital Compass IC HMC5883L. datasheet. Sparkfun. URL: https://
cdn.sparkfun.com/datasheets/Sensors/Magneto/HMC5883L-
FDS.pdf.

[36] Franco D. “Earth’s magnetic field and its changes through time”. In: 116 (2020). Ac-
cessed 22.11.2020. URL: https://researchoutreach.org/articles/
earths-magnetic-field-changes-through-time/.

[37] S. R. Nilssen. “Autonom karlegging av labyrint med Lego robot”. MA thesis. Nor-
wegian University of Science and Technology, Norway, 2018.

[38] Distance of BLE. Last accessed 14.09.2020. 2015. URL: https://devzone.
nordicsemi.com/f/nordic-q-a/5470/distance-of-ble%5C#
post-id-29191.

[39] nRF51-Dongle. URL: https://www.nordicsemi.com/Software-and-
tools/Development-Kits/nRF51-Dongle.

[40] Li-Ion Battery H2B181. Last accessed 14.09.2020.

[41] FreeRTOS. Last accessed 07.11.2020. URL: https://www.freertos.org/
RTOS.html.

[42] Brian S. Dean. AVRdude. Last accessed 28.08.2020. 2006. URL: https://www.
cs.ou.edu/˜fagg/classes/general/atmel/avrdude.pdf.

[43] Eirik Thon. “Mapping and Navigation for collaborating mobile Robots”. MA thesis.
Norwegian University of Science and Technology, Norway, 2016.

[44] C. Cadena et al. “Past, Present, and Future of Simultaneous Localization and Map-
ping: Toward the Robust-Perception Age”. In: IEEE Transactions on Robotics 32.6
(2016), pp. 1309–1332. DOI: 10.1109/TRO.2016.2624754.

[45] Richard Hartley & Andrew Zisserman. Multiple View Geometry in computer vision.
Second Edition. Cambridge university press.

[46] OptiTrack. Motive Documentation. Last accessed 14.09.2020. 2020. URL: https:
//v22.wiki.optitrack.com/index.php?title=Motive_Documentation.

95

https://www.sparkfun.com/datasheets/Components/GP2Y0A21YK.pdf
https://www.sparkfun.com/datasheets/Components/GP2Y0A21YK.pdf
https://www.elprocus.com/analog-to-digital-adc-converter/
https://www.elprocus.com/analog-to-digital-adc-converter/
http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
http://static.garmin.com/pumac/LIDAR_Lite_v3_Operation_Manual_and_Technical_Specifications.pdf
https://www.sparkfun.com/products/14032
https://www.sparkfun.com/products/14032
https://cdn.sparkfun.com/assets/learn_tutorials/4/1/6/DM00133076.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/4/1/6/DM00133076.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Magneto/HMC5883L-FDS.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Magneto/HMC5883L-FDS.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Magneto/HMC5883L-FDS.pdf
https://researchoutreach.org/articles/earths-magnetic-field-changes-through-time/
https://researchoutreach.org/articles/earths-magnetic-field-changes-through-time/
https://devzone.nordicsemi.com/f/nordic-q-a/5470/distance-of-ble%5C#post-id-29191
https://devzone.nordicsemi.com/f/nordic-q-a/5470/distance-of-ble%5C#post-id-29191
https://devzone.nordicsemi.com/f/nordic-q-a/5470/distance-of-ble%5C#post-id-29191
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF51-Dongle
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF51-Dongle
https://www.freertos.org/RTOS.html
https://www.freertos.org/RTOS.html
https://www.cs.ou.edu/~fagg/classes/general/atmel/avrdude.pdf
https://www.cs.ou.edu/~fagg/classes/general/atmel/avrdude.pdf
https://doi.org/10.1109/TRO.2016.2624754
https://v22.wiki.optitrack.com/index.php?title=Motive_Documentation
https://v22.wiki.optitrack.com/index.php?title=Motive_Documentation

REFERENCES

[47] Microchip. Atmel Studio Installation. Last accessed 14.09.2020. URL: http://
atmel-studio-doc.s3-website-us-east-1.amazonaws.com/
webhelp/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD-en-
US-5/index.html?GUID-68EF3FD3-CE37-4DBE-BADF-A1BE5D642220.

[48] Microchip. Atmel Studio 7 crashes - Unable to lanch Atmel Studio - Debugging
steps. Last accessed 14.09.2020. 2020. URL: https://microchipsupport.
force.com/s/article/Atmel-Studio-7-crashes---Unable-
to-launch-Atmel-Studio---Debugging-steps.

[49] uxcell DC 12V 220RPM Encoder Gear Motor with Mounting Bracket 65mm Wheel.
Last accessed 27.10.2020. Amazon. URL: https : / / www . amazon . com /
gp / product / B078HYX7YH / ref = ox _ sc _ act _ title _ 1 ? smid =
A1THAZDOWP300U&psc=1.

[50] R. Kalman. “A new approach to linear filtering and prediction problems”. In: ASME.
J. Basic Eng. (1960).

[51] Seth Hutchinson Mark W. Spong and M. Vidyasagar. In: Robot Modeling And Con-
trol. WILEY, 2006.

[52] Robins Mathew and Somashekhar S. Hiremath. “Trajectory Tracking and Control
of Differential Drive Robot for Predefined Regular Geometrical Path”. In: Procedia
Technology 25 (2016). 1st Global Colloquium on Recent Advancements and Ef-
fectual Researches in Engineering, Science and Technology - RAEREST 2016 on
April 22nd & 23rd April 2016, pp. 1273–1280. DOI: https://doi.org/10.
1016/j.protcy.2016.08.221. URL: http://www.sciencedirect.
com/science/article/pii/S2212017316305758.

[53] Extended Kalman Filters. URL: https://se.mathworks.com/help/
fusion/ug/extended-kalman-filters.html.

[54] Robert Grover Brown and Patrick Y C Hwang. Introduction to random signals and
applied kalman filtering: with MATLAB exercises and solutions; 3rd ed. New York,
NY: Wiley, 1997.

[55] Gyroscope, tutorials. Webpage host: Sparkfun. Last accessed 09.11.2020. URL:
https://learn.sparkfun.com/tutorials/gyroscope.

[56] P. Scott. Uncertainty in measurement: Noise and how to deal with it,” in Intermedi-
ate lab manual. 2000.

[57] Dimitris G. Manoakis Johan G. Proakis. Digital Signal Prosessing, 4th edition.
Pearson Prentice Hall, 2006.

[58] Tushar Malica, Singdha Shekhar, and Zakir Ali. “Design and comparison of butter-
worth and chebyshev type-1 low pass filter using Matlab”. In: (Sept. 2011).

[59] Introduction to Filter Designer. Webpage host: Mathworks. Last accessed 06.01.2021.
URL: https://www.mathworks.com/help/signal/ug/introduction-
to-filter-designer.html.

[60] PuTTY.org. Last accessed 06.01.2021. URL: https://www.putty.org/.

96

http://atmel-studio-doc.s3-website-us-east-1.amazonaws.com/webhelp/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD-en-US-5/index.html?GUID-68EF3FD3-CE37-4DBE-BADF-A1BE5D642220
http://atmel-studio-doc.s3-website-us-east-1.amazonaws.com/webhelp/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD-en-US-5/index.html?GUID-68EF3FD3-CE37-4DBE-BADF-A1BE5D642220
http://atmel-studio-doc.s3-website-us-east-1.amazonaws.com/webhelp/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD-en-US-5/index.html?GUID-68EF3FD3-CE37-4DBE-BADF-A1BE5D642220
http://atmel-studio-doc.s3-website-us-east-1.amazonaws.com/webhelp/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD-en-US-5/index.html?GUID-68EF3FD3-CE37-4DBE-BADF-A1BE5D642220
https://microchipsupport.force.com/s/article/Atmel-Studio-7-crashes---Unable-to-launch-Atmel-Studio---Debugging-steps
https://microchipsupport.force.com/s/article/Atmel-Studio-7-crashes---Unable-to-launch-Atmel-Studio---Debugging-steps
https://microchipsupport.force.com/s/article/Atmel-Studio-7-crashes---Unable-to-launch-Atmel-Studio---Debugging-steps
https://www.amazon.com/gp/product/B078HYX7YH/ref=ox_sc_act_title_1?smid=A1THAZDOWP300U&psc=1
https://www.amazon.com/gp/product/B078HYX7YH/ref=ox_sc_act_title_1?smid=A1THAZDOWP300U&psc=1
https://www.amazon.com/gp/product/B078HYX7YH/ref=ox_sc_act_title_1?smid=A1THAZDOWP300U&psc=1
https://doi.org/https://doi.org/10.1016/j.protcy.2016.08.221
https://doi.org/https://doi.org/10.1016/j.protcy.2016.08.221
http://www.sciencedirect.com/science/article/pii/S2212017316305758
http://www.sciencedirect.com/science/article/pii/S2212017316305758
https://se.mathworks.com/help/fusion/ug/extended-kalman-filters.html
https://se.mathworks.com/help/fusion/ug/extended-kalman-filters.html
https://learn.sparkfun.com/tutorials/gyroscope
https://www.mathworks.com/help/signal/ug/introduction-to-filter-designer.html
https://www.mathworks.com/help/signal/ug/introduction-to-filter-designer.html
https://www.putty.org/

REFERENCES

[61] Michael Stanley. “Accelerometer Placement – Where and Why”. In: NXP (2012).
Last accessed: 15.12.2020. URL: https://www.nxp.com/company/blog/
accelerometer-placement-where-and-why:BL-ACCELEROMETER-
PLACEMENT.

[62] Magnetometer errors and calibration. Last accessed 19.11.2020, education mate-
rial. URL: https://www.vectornav.com/resources/magnetometer-
errors-calibration.

[63] Light Sensors. URL: https://www.electronics-tutorials.ws/io/
io_4.html.

[64] Lucas Kittmer. Which Colors Reflect More Light? URL: https://sciencing.
com/colors-reflect-light-8398645.html.

[65] Stephanie Glen. ”Curve Fitting”. URL: https://www.statisticshowto.
com/curve-fitting/.

[66] Ahmad Kamal Nasir and Hubert Roth. “Pose Estimation By Multisensor Data Fu-
sion Of Wheel Encoders, Gyroscope, Accelerometer And Electronic Compass”.
In: IFAC Proceedings Volumes 45.4 (2012). Last accessed 5.01.2021, pp. 49–54.
DOI: https://doi.org/10.3182/20120403-3-DE-3010.00068.
URL: http://www.sciencedirect.com/science/article/pii/
S1474667015404410.

[67] Tenergy Universal Smart Charger. Last accessed 04.01.2021. URL: https://
nuxx.net/gallery/v/stuffivemade/bicycle_video_recorder/
IMG_5101.jpg.html.

[68] Download PuTTY. Last accessed 04.01.2021. URL: https://www.chiark.
greenend.org.uk/˜sgtatham/putty/latest.html.

97

https://www.nxp.com/company/blog/accelerometer-placement-where-and-why:BL-ACCELEROMETER-PLACEMENT
https://www.nxp.com/company/blog/accelerometer-placement-where-and-why:BL-ACCELEROMETER-PLACEMENT
https://www.nxp.com/company/blog/accelerometer-placement-where-and-why:BL-ACCELEROMETER-PLACEMENT
https://www.vectornav.com/resources/magnetometer-errors-calibration
https://www.vectornav.com/resources/magnetometer-errors-calibration
https://www.electronics-tutorials.ws/io/io_4.html
https://www.electronics-tutorials.ws/io/io_4.html
https://sciencing.com/colors-reflect-light-8398645.html
https://sciencing.com/colors-reflect-light-8398645.html
https://www.statisticshowto.com/curve-fitting/
https://www.statisticshowto.com/curve-fitting/
https://doi.org/https://doi.org/10.3182/20120403-3-DE-3010.00068
http://www.sciencedirect.com/science/article/pii/S1474667015404410
http://www.sciencedirect.com/science/article/pii/S1474667015404410
https://nuxx.net/gallery/v/stuffivemade/bicycle_video_recorder/IMG_5101.jpg.html
https://nuxx.net/gallery/v/stuffivemade/bicycle_video_recorder/IMG_5101.jpg.html
https://nuxx.net/gallery/v/stuffivemade/bicycle_video_recorder/IMG_5101.jpg.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

REFERENCES

98

Appendix A
Manuals to operate the system

A.1 Set up Netbeans IDE
This section describes what is done to install and make Netbeans work on a windows
computer.

1. Downloaded Java 8 for windows x64, from this webside https://www.oracle.
com/java/technologies/javase/javase-jdk8-downloads.html

2. Downloaded NetBeans IDE 8.0.2, and allowed every packet extention to be down-
loaded as well. Direct download link: https://netbeans.org/downloads/
8.0.2/start.html?platform=windows&lang=en&option=all

3. Start NetBeans and open the SSNAR project

4. First time open the SSNAR project to the robot project an error will shown. This is
resolved by finding the correct files and connect this to the project. This is found in
SSNAR-cart→ libraries NB: it is worth noticing that no file is the same

A.2 Use of the Netbeans server
The server runs in Netbeans. To use the server in the correct way, the following steps has
to be followed.

1. Insert the server dongle in the host computer that will run the server application

(a) In windows - device handle, see what COM port the dongle is connected to

2. Build the server application, press the hammer icon or press F11, or Run→ Build
file if an error occurs, cheek that all libraries are resolved under the installation or
build one more time

99

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://netbeans.org/downloads/8.0.2/start.html?platform=windows&lang=en&option=all
https://netbeans.org/downloads/8.0.2/start.html?platform=windows&lang=en&option=all

Chapter A. Manuals to operate the system

Figure A.1: Resolving error in Netbeans

3. Run the project, press the arrow button or Run→ Run Project

4. Then a pop-up window shows, and you can choose which mode the server is going
to run. Today you can choose Simulated World or Real World

5. In Real World: select setting and choose the COM port where the server dongle is

6. Turn on the robot and see the dongle on the robot and server connect by blinking
and light red

7. The robots name will appear in the pop-up window

8. Click on connect

9. A new pop-up window will appear, insert the initial position

(a) If you want the manual mode, check this in the check box

10. To start the navigation controller in the server: press Start

A.3 Flash script
This is to program the robot with a hex file, using AVRdude commands without Atmel
Studio.

1 :: Requirements:
2 :: * First argument should be the relative path to the hex-file you want

to flash. Example: 100920\lidarz to flash the file called lidarz.hex
in the 100920 folder.

3 :: * The path to avrdude.exe must be added to your path
4 :: * The arduino installation must be on your
5 C:\ drive, and under " C:\Program Files (x86)\ "
6

100

A.4 How to charge the robot

7 @echo off
8 avrdude -F -v -p atmega2560 -c wiring -P COM5 -b 115200 -D -U flash:w:

"%CD%\%1.hex":i -C "C:\Program Files (x86)\Arduino\hardware\tools\avr\
etc\avrdude.conf"

9

10 :: * %CD% returns current directory for the script
11 :: * %1% returns the first argument for the script
12 :: * Example:
13 :: * Running the command: C:\...\flash_lidar>flash 100920\lidar
14 :: * Converts "%CD%\%1.hex" into "C:\....\flash_lidar\100920\lidar.hex"

Listing A.1: SW script to flash the robot with AVR over terminal

A.4 How to charge the robot
The charger is a universal smart charger from Tenergy, and must be set to 11.1 V (nominal
battery voltage), to charge the robot. The wiring for 0 V or ground (the black wire) is
connected to the springs closest to the ground. The red wire is fastened to one of the
springs positioned higher. The switch on the side of the robot must then be switched
on. This closes the circuit so that the current can flow to the battery. While the robot is
charging, the charger will signal this with a red light, which is explained on the back of
the charger.

Figure A.2: The commercial charger, image from [67]

A.5 How to debug via Putty
In theory, the robot can be debugged through the server, but the unresolved problem of
making the debug function restricts the logging. Therefore Torgeir Myrvang developed
software to print values from the robot using Putty via USB.

Install Putty
To install Putty, the link in [68] was used. By selecting the software that fits the computer
description, it is then only to follow the guidelines during installation.

Using Putty.exe
To use Putty with the robot, the following has to be set in the Putty configuration. Under
Session, select serial, under connection type. The port number where the USB is con-
nected to the robot is written under serial line. Set speed to 9600. Under logging, it is

101

Chapter A. Manuals to operate the system

possible to select the name and where the log file is to be saved. In terminal, check of the
box implicit CR in every LF, this allows the data to be printed on the left of the terminal.
To start putty, select load.

In the robot application
To print over Putty from the robot, some setting has to be in place. Include the files
”Serial print.h” and ”AVR uart.h” in the c-file that will print something. The function
has to be initialized in main by writing:

1 USART0_init(USART_BAUD_PRESCALE(USART_BAUD_9600));
2 Enable_print();

After this is done the printf function from c, can be used.

Limitation
A problem with the Putty-printing is the conflict with the USART, used by the Dongle
communication. This limits the printing to be done without been connected to the server.

A.6 How to use the Optitrack system
Steps to use the Optitrack system and to save the data. The hardware and the camera and
software is found at NTNU room B333 [10].

Steps to use the Optitrack system:

1. Calibration

I After powering the SW, click on calibrate the system in the menu.

II Click on Block visible points. This is to ensure that there are no false markers
that can destroy the calibration.

III Press Start wanding. Then take the wand (see figure A.3) and move it over the
testing area, in a continuous movement. In the documentation is said to draw
the figure eight or brush the dust in the air. It is important to cover the whole
testing space and get sufficient samplings. The point of this is to let the
cameras detect the wand.

IV Continue to want until the quality is set to very high.

V Press Calculate. Here the program trajectories the samples from each 2D
image to a 3D image.

VI Press Apply result, after the software is finishing with the calculation. A
pop-up window with the calibration result is shown.
During this project the following calibration result was achieved:
Calibration result: Exceptional
Calibration Quality: Very High

2. Set ground plane:

102

A.6 How to use the Optitrack system

I To determine the ground and origin, the calibration figure L, must be placed
in the testing area. In this project the L was placed in a marked corner, where
the robot will start, like in figure A.4.

II In the software tool, mark the points from the calibration figure and click Set
ground plane.

3. Tracking the robot

I Remove the calibration figure out of the testing area.

II Place the robot at the origin where the testing figure was.

III In the software application: mark the points, right click and select make rigid
body from selected marks.

IV In capture layout (button in the top right window), it is easy to click record
and stop record.

4. Exporting tracking data

I After the tracking, the file is shown with a time stamped on the left side of the
screen.

II Right click on the file and select trajectories.

III Right click on the file again and select export tracking data.

IV Save the file as CSV file. The CSV file can be imported to Matlab using code
written by Matlab.

Figure A.3: Wand used to calibrate the Optitrack camera, image from [46]

103

Chapter A. Manuals to operate the system

Figure A.4: Placement of the calibration L in the testing area

A.7 Lidar pinout
Since this master thesis did not use the lidar, the lidar was detached from the robot. For
future work on the lidar, the method of attachment and connection of the wiring is docu-
mented in this section. The mounting of the lidar on the sensor tower is seen in figure A.5.
The method for attaching the lidar is quite fragile, meaning tape has been used to addition-
ally secure the sensor. For wiring the lidar to the self-made PCB the pin-out described in
table A.1 must be used.

Figure A.5: Lidar mounted on the sensor tower

Wire Pin
Black 1
Blue 2
Green 3
Red 4

Table A.1: Lidar pin-out

104

Appendix B
More results from testing

B.1 Square test

The square test has generated a large data set. Some of the results are viewed in this
section. The reader is referred to the chapter 4.1.1 for the post-processed result.

Figure B.1: Square test result with no error factor implemented

105

Chapter B. More results from testing

Figure B.2: Square test result with gyro error factor implemented

Figure B.3: Square test result with encoder error factor implemented

B.2 Continuous square test

All plotted results from the continuous square test test is found in this section. Tables that
view the error from the continuous test is found in table B.1 ans B.2.

106

B.2 Continuous square test

(a) Square test CCW test 1 (b) Error distance from CCW test

(c) Square test CCW test 2 (d) Error distance from CCW test

(e) Square test CCW test 3 (f) Error distance from CCW test

Figure B.4: Result of distance from continuous square test, CCW direction

107

Chapter B. More results from testing

(a) Square test CCW test 4 (b) Error distance from CCW test

(a) Square test CCW test 5 (b) Error distance from CCW test

Figure B.6: Result of distance from continuous square test, CCW direction

108

B.2 Continuous square test

(a) Square test CW test 1 (b) Error distance from CW test

(c) Square test CW test 2 (d) Error distance from CW test

Figure B.7: Result of distance from continuous square test, CW direction

109

Chapter B. More results from testing

(a) Square test CW test 3 (b) Error distance from CW test

(c) Square test CW test 4 (d) Error distance from CW test

Figure B.8: Result of distance from continuous square test, CW direction

Net error

In table B.1 the result of the net error from each turn in the continuous square test are
found. The result is rounded to the nearest thousandth. The visualization of the net error
is found in figure 5.1 and 5.2.

110

B.2 Continuous square test

CCW
Turn 1 2 3 4

Round 1 0.0537 0.1057 0.1340 0.0735
Round 2 0.1059 0.1442 0.1205 0.0373
Round 3 0.0307 0.0202 0.0180 0.0829
Round 4 0.0989 0.1557 0.1945 0.0840
Round 5 0.0453 0.0065 -0.0135 0.1027

CW
Turn 1 2 3 4

Round 1 0.0359 0.1030 0.1352 0.1566
Round 2 0.0902 0.0290 0.0334 0.0464
Round 3 0.1109 0.1930 0.2632 0.2400
Round 4 0.1198 0.0716 0.0505 0.0816
Round 5 0.1432 0.2623 0.3055 0.2576

Table B.1: Result of the net error calculation from the continuous square test

Average error

The average distance error is calculated and the result is viewed in table B.2. The result is
viewed in chapter 5 in figure 4.3.

CCW
Turn 1 2 3 4

Round 1 0.1508 0.1391 0.1674 0.2033
Round 2 0.1590 0.1407 0.1484 0.1890
Round 3 0.1827 0.1427 0.1701 0.1918
Round 4 0.1533 0.1333 0.1556 0.1871
Round 5 0.1615 0.1389 0.1604 0.1928

CW
Turn 1 2 3 4

Round 1 0.1364 0.1872 0.1999 0.2276
Round 2 0.1260 0.1677 0.1664 0.2046
Round 3 0.1437 0.1860 0.1891 0.2181
Round 4 0.1354 0.1803 0.1852 0.2168
Round 5 0.1354 0.1803 0.1852 0.2168

Table B.2: Result of average distance error of the continuous square test

111

Chapter B. More results from testing

B.3 The larger track
Figure B.9 shows the larger track used to test the robot.

Figure B.9: The larger track that was tested

B.4 Robot heading
SW code to extract the robot heading from main. The data was extracted with Putty.

1 void main(){
2 //snipped code for encoder ticks
3 float gyroWeight = 0.8;
4 uint16_t samples = 300;
5 float gyro = 0;
6 float dRobot = 0;
7 float gyroOffset = 0.0;
8 for (i = 0; i<=samples; i++){
9 gyro+= fIMU_readFloatGyroZ();

10 }
11 gyroOffset = gyro / (float)i;
12

13 while (1){
14 _delay_ms(500);
15

16 ATOMIC_BLOCK(ATOMIC_FORCEON){
17 leftEncoderVal = gISR_leftWheelTicks;
18 gISR_leftWheelTicks = 0;
19 rightEncoderVal = gISR_rightWheelTicks;
20 gISR_rightWheelTicks = 0;
21 }
22

23 vMotorEncoderLeftTickFromISR(gLeftWheelDirection,&leftWheelTicks,
leftEncoderVal);

24 vMotorEncoderRightTickFromISR(gRightWheelDirection,&rightWheelTicks,
rightEncoderVal);

112

B.5 Gyroscope data

25

26 float dLeft = (float)(leftWheelTicks - previous_ticksLeft) *
WHEEL_FACTOR_MM;

27 float dRight =(float)(rightWheelTicks - previous_ticksRight) *
WHEEL_FACTOR_MM; /

28 previous_ticksLeft = leftWheelTicks;
29 previous_ticksRight = rightWheelTicks;
30 dTheta = (dRight - dLeft) / WHEELBASE_MM;
31

32 // for the gyroscop
33 gyrZ = fIMU_readFloatGyroZ()-gyroOffset;
34 gyrZ *= period_in_S * DEG2RAD;
35 dTheta = (1 - gyroWeight) * dTheta + gyroWeight * gyrZ;
36 predicted_Robotheading += dTheta;
37 printf("Robot Heading: %f \n", predicted_Robotheading);
38 }
39 }

Listing B.1: SW to extract the encoder ticks from let wheel

B.5 Gyroscope data

Image B.10 shows the result of the noise test of the gyroscope.

Figure B.10: Noise in the gyroscope, result from test explained in chapter 3.3.1

113

Chapter B. More results from testing

B.6 Data from IR calibration
The data is found by executing the method described in chapter 3.3.5. The result is shown
in table B.3.

cm
10

10
10

11
11

11
12

12
12

13
13

13
un

it
Fr

W
2.

23
4

2.
24

4
2.

23
9

2.
06

8
2.

07
9

2.
06

3
1.

92
9

1.
92

4
1.

92
6

1.
81

1.
80

1.
85

[V
]

L
ef

t
2.

30
6

2.
31

2
2.

29
5

2.
12

5
2.

14
1

2.
11

5
1.

96
0

1.
96

5
1.

95
5

1.
83

6
1.

85
2

1.
83

6
[V

]
R

ig
ht

2.
27

5
2.

26
4

2.
27

0
2.

13
5

2.
14

1
2.

14
0

1.
99

6
2.

00
7

1.
99

1
1.

86
2

1.
85

7
1.

86
7

[V
]

R
ea

r
2.

45
0

2.
50

7
2.

44
0

2.
10

5
2.

13
0

2.
09

9
2.

02
2

2.
04

8
2.

01
2

1.
87

8
1.

87
8

1.
86

7
[V

]
cm

14
14

14
15

15
15

20
20

20
25

25
25

Fr
W

1.
70

7
1.

71
2

1.
70

7
1.

59
4

1.
59

9
1.

60
4

1.
23

3
1.

23
8

1.
22

7
1.

02
1

1.
01

6
1.

31
[V

]
L

ef
t

1.
68

7
1.

68
1

1.
70

7
1.

59
4

1.
59

9
1.

60
9

1.
26

9
1.

27
4

1.
28

9
1.

03
7

1.
04

2
1.

05
7

[V
]

R
ig

ht
1.

77
4

1.
78

5
1.

76
9

1.
66

6
1.

66
1

1.
67

1
1.

31
5

1.
30

0
1.

30
5

1.
03

7
1.

04
2

1.
05

7
[V

]
R

ea
r

1.
76

4
1.

79
0

1.
75

9
1.

65
1

1.
67

6
1.

64
5

1.
28

9
1.

32
0

1.
28

9
1.

05
7

1.
06

2
1.

08
8

[V
]

cm
30

30
30

40
40

40
50

50
50

60
60

60
Fr

w
0.

86
6

0.
88

2
0.

89
2

0.
67

0
0.

67
5

0.
70

6
0.

57
2

0.
56

2
0.

55
7

0.
45

4
0.

45
0

0.
44

4
[V

]
L

ef
t

0.
88

7
0.

89
2

0.
87

1
0.

67
5

0.
69

6
0.

68
1

0.
55

7
0.

56
2

0.
57

7
0.

49
5

0.
50

0
0.

51
5

[V
]

R
ig

ht
0.

90
2

0.
89

7
0.

91
3

0.
71

1
0.

70
6

0.
72

2
0.

59
3

0.
58

8
0.

59
3

0.
49

5
0.

50
0

0.
50

5
[V

]
R

ea
r

0.
90

8
0.

92
8

0.
93

3
0.

71
1

0.
70

6
0.

73
7

0.
58

8
0.

62
4

0.
59

3
0.

49
5

0.
52

1
0.

49
0

[V
]

cm
70

70
70

80
80

80
Fr

w
0.

39
7

0.
40

0
0.

39
5

0.
35

5
0.

35
4

0.
35

6
[V

]
L

ef
t

0.
43

8
0.

45
4

0.
43

8
0.

38
1

0.
37

6
0.

39
7

[V
]

R
ig

ht
0.

43
8

0.
43

3
0.

44
3

0.
39

7
0.

40
7

0.
40

0
[V

]
R

ea
r

0.
43

3
0.

42
8

0.
46

4
0.

39
7

0.
41

7
0.

39
2

[V
]

Ta
bl

e
B

.3
:V

ol
ta

ge
m

ea
su

re
m

en
tf

ro
m

th
e

IR
se

ns
or

ca
lib

ra
tio

n

114

H
alvorsen, Karoline

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Halvorsen, Karoline

Analysis of position estimation in a
dead reckoning navigation robot

Master’s thesis in Cybernetic and robotik
Supervisor: Onshus, Tor

January 2020

	Preface
	Problem Description
	Summary
	Sammendrag
	Conclusion
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	The Robot Project
	Motivation
	Equipment
	Hardware
	Software tools

	Background
	Robot description
	Previous work
	Hardware
	Software
	Programming with Atmel Studio

	Server application
	Tracking the robot
	Initial work
	Challenges
	Software application changes
	Merging IR and lidar application
	Folder structure
	Testing autonomous docking

	Method
	Driving performance
	Square test
	Continuous square test
	The round court
	Larger tracking court

	Position estimation
	dTheta
	Robot heading
	New position estimator design

	Sensors
	Gyroscope
	Accelerometer
	Encoders
	Compass
	IR sensors

	Result
	Driving preformance
	Square test
	Continuous square test
	The round court
	Larger tracking court

	Position Estimation
	dTheta
	Robot heading

	Sensors
	Gyroscope
	Accelerometer
	Encoder
	Compass
	IR measurement

	Discussion
	Driving performance
	Square test
	Continuous square test
	Round court
	Larger track

	Position estimation
	dTheta
	Robot heading

	Precision in sensors
	Gyroscope
	Accelerometer
	Encoder
	Compass
	IR sensor

	Further work
	References
	Appendix
	Manuals to operate the system
	Set up Netbeans IDE
	Use of the Netbeans server
	Flash script
	How to charge the robot
	How to debug via Putty
	How to use the Optitrack system
	Lidar pinout

	More results from testing
	Square test
	Continuous square test
	The larger track
	Robot heading
	Gyroscope data
	Data from IR calibration

