
Unsupervised methods for in-situ
classification of plankton taxa

January 2021M
as

te
r's

 th
es

is

M
aster's thesis

Eivind Salvesen

2021
Eivind Salvesen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Unsupervised methods for in-situ
classification of plankton taxa

Eivind Salvesen

Master’s thesis in Cybernetics and Robotics
Submission date: January 2021
Supervisor: Annette Stahl
Co-supervisor: Aya Saad

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Abstract

Planktonic species are of great importance in the marine ecosystem, standing for about half
of the earth’s primary production and being a fundamental part of the marine food chain.
Yet, our understanding of these vital creatures and the consequences of small changes in
their habitats, creating profound shifts in planktonic dispersion and abundance, is still lim-
ited. Recent development and innovation within autonomous underwater vehicles (AUV)
makes it possible to utilize AUVs for in-situ identification and classification of plankton
taxa resulting in faster and more reliable calculations of its distributions than any exist-
ing sampling and classification platform. For accurate image classification, the system is
heavily dependent on accurate and attested machine learning techniques. Currently, deep
convolutional neural networks have proven especially effective for this task. Yet, the suc-
cess is fixed to supervised learning, which requires an extensive amount of labeled training
data. Such methods thus require a comprehensive and time-consuming labeling effort.

The scope of this work is to make a deep learning framework for plankton classification
training on images that contain no ground truth labels. This work extends the work of the
specialization project by proposing new feature extraction methods using state of the art
unsupervised training schemes. These models can then be used to extract features that can
improve a separate clustering algorithm. For comparison to the specialization project, the
models are tested over existing planktonic data sets. The most successful methods are then
adapted onto the image data acquired from the AUV missions in the Trondheim fjord.

Three methods for improved feature learning, DeepCluster [15], a generative adversarial
network (GAN) model and a rotation-invariant autoencoder were selected for this thesis.
The former two were chosen as they represent some promising new directions within the
unsupervised deep learning and have shown recent success at learning essential features on
large image data sets. The rotation invariant autoencoder is an extension of a conventional
autoencoder, which is more robust to similar class objects with different rotations. The
proposed methods were then used as feature extractors to significantly improve different
clustering algorithms in regards to classification performance over planktonic data. The
chosen methods demonstrate some of the possibilities within the unsupervised domain,
but the gap towards supervised learning is still significant.

i

Sammendrag
Plankton spiller en enormt viktig rolle i marine økosystemer. De står for om lag halv-
parten av jordens primærproduksjon i tillegg til å være en fundamental brikke i den ma-
rine næringskjeden. Vår forståelse av disse viktige skapningene og konsekvensene av små
endringer i deres habitat som forårsaker store endringer i plankton spredning og tallrikhet
er likevel liten. Nyskapning innen autonome undervannsfarkoster (AUV) for in-situ iden-
tifikasjon og klassifikasjon av plankton arter kan gi raskere og mer pålitelige beregninger
av deres utbredelse og fordeling enn eksisterende prøvetaknings og klassifikasjonsplat-
tformer.

For nøyaktig klassifisering av tusenvis av bilder, kreves nøyaktige og utprøvde maskin-
læringsmetoder. For øyeblikket har convolutional neural networks (CNN) demonstrert
at de er spesielt effektive innenfor slike oppgaver. Suksessen er likevel kun knyttet til
veiledet (supervised) læring som krever store mengder inndata-utdata par hvor merkingen
av inndataen er veldig arbeids og tidskrevende.

Dette arbeidets omfang er å lage et dypt lærings rammeverk for klassifikasjon av plankton
uten å benytte forhåndsmerket data. Arbeidet videreutvikler resultatene gjort fra spesialis-
eringsprosjektet ved å introdusere nye metoder for å lære viktige trekk ved plankton arter
ved hjelp av ikke veiledet (unsupervised) læring. Disse metodene kan deretter brukes til å
hente ut de viktigste trekkene ved hvert bilde for slik å forbedre treffsikkerheten til ulike
grupperingsalgoritmer. For å kunne sammenligne modellene brukt i spesialiseringspros-
jektet er metodene testet over eksisterende plankton datasett. De beste metodene er deretter
tilpasset dataene hentet fra AUV ekspidisjonene i Trondheimsfjorden.

Tre metoder for forbedret læring over plankton data, DeepCluster [15], et generative ad-
versarial network (GAN) nettverk og en rotation-invariant autoencoder, er valgt ut til
denne oppgaven. De to førstnevnte ble valgt ut ettersom de representerer lovende nye
retninger innen ikke veiledet læring og har vist seg kapable til å lære viktige trekk ved
bilder fra en rekke store datasett. The rotation invariant autoencoder er en utvidelse av
de tidligere utprøvde autoencoderne med bedre egenskaper i forhold til roterte bilder fra
samme objektklassse. De foreslåtte metodene er brukt til å forbedre ulike grupperingsal-
goritmer. Metodene demonstrerer noen av mulighetene innen ikke veiledet læring, men
avstanden til veiledete algoritmer er fortsatt betydelig.

ii

Preface
This master thesis, TTK4900, is carried out in the department of Engineering cybernetics
at the Norwegian University of Science and Technology. The report is a part of the multi-
disciplinary AILARON1 project, and the work is conducted under the project’s computer
vision department.

This thesis is a continuation of the undersigned’s specialization project [100], carried out
during the spring of 2020. Because the basic parts are fundamental for the understanding
and work in both the specialization project and the master thesis, altered and greatly im-
proved versions of the theory chapters from the specialization-project are therefore present
in this report. Chapter 2 contains background material on planktonic species. The chap-
ter gives a brief introduction to planktonic species and presents previous work on plank-
tonic sampling and classification. Finally, some publicly available data sets are presented.
Chapter 3 contains the basic theory of artificial intelligence and deep learning being the
fundamental building blocks of this thesis.

I want to thank my head supervisor, Annette Stahl, for her valuable ideas and guidance
throughout the thesis. I am also truly grateful for the help and guidance from my sec-
ond supervisor, Aya Saad. Her high spirits and belief in my work has been extremely
motivating and helped me perform as good as possible.

Eivind Salvesen

Trondheim, January 10, 2021

1AILARON is a multidisciplinary project seeking to extend the knowledge of planktonic species and their
real-time distributions. The project goal is an in-situ, fully automatic sampling and classification pipeline in-
stalled on autonomous underwater vehicles. This research is funded by the RCN FRINATEK IKTPLUSS pro-
gram (project number 262741) and supported by NTNU AMOS.

iii

iv

Table of Contents

Summary i

Sammendrag ii

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xii

Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions and challenges . 3
1.3 Contribution . 4
1.4 Outline . 5

2 Previous work on the planktonic domain 7
2.1 Planktonic organisms and their importance to the environment 7
2.2 Traditional and modern sampling approaches 8
2.3 Previous work on plankton classification 9

2.3.1 Supervised plankton classification 10
2.3.2 Unsupervised plankton classification 10
2.3.3 Specialization-project . 11

2.4 Plankton datasets . 13
2.4.1 AILARON . 13
2.4.2 Luo plankton set . 15
2.4.3 Pastore plankton set . 16

v

2.4.4 WHOI . 16
2.4.5 Kaggle . 17

3 Artificial intelligence 19
3.1 Disciplines of artificial intelligence . 19
3.2 Machine learning basics . 20

3.2.1 Machine learning approaches 21
3.2.2 Generalization, over- and underfitting 22
3.2.3 Classification metrics . 23

3.3 Computer vision and image classification 25
3.3.1 Feature extraction . 26
3.3.2 Unsupervised classification based on feature extraction 28

3.4 Deep Learning . 29
3.4.1 Artificial neural network . 30
3.4.2 Activation functions . 32
3.4.3 Neural network layers . 32
3.4.4 Loss functions . 37
3.4.5 Optimizers . 37
3.4.6 Regularization . 37
3.4.7 Data quality and pre-processing 39
3.4.8 Training and tuning a neural network 40
3.4.9 Research datasets . 41

3.5 Supervised deep learning . 42
3.6 Unsupervised deep learning . 44

3.6.1 Untrained neural network . 45
3.6.2 Autoencoder . 45
3.6.3 Generative adversarial networks 47
3.6.4 Unsupervised models for better feature extraction 48
3.6.5 Unsupervised deep learning classification 50

3.7 Visualization tools . 52
3.7.1 PCA . 52
3.7.2 T-SNE . 53
3.7.3 CAM . 54
3.7.4 Grad-CAM . 55

4 Methodology 57
4.1 Unsupervised classification framework 57
4.2 Data pre-processing . 58
4.3 Feature extraction network . 60

4.3.1 Traditional unsupervised feature extraction models 61
4.3.2 Autoencoder model . 61
4.3.3 GAN . 63
4.3.4 Deep cluster model . 65

4.4 Classification model . 67
4.4.1 Machine learning cluster algorithms 67
4.4.2 Deep learning embedded clustering 68

vi

5 Experiments and implementation details 69
5.1 Software platforms and important code libraries 69
5.2 Deep learning model requirements . 71
5.3 Computer specifications . 72
5.4 Experiments . 72

5.4.1 Experiment 1 - Unsupervised feature extraction algorithm 72
5.4.2 Experiment 2 - Choosing the appropriate building blocks of the

framework . 73
5.4.3 Experiment 3 - Evaluation on the AILARON data 74

6 Results and reflections 75
6.1 Experiment 1 - Unsupervised feature extraction algorithm 75

6.1.1 Baseline methods . 75
6.1.2 Traditional machine learning feature extractors 78
6.1.3 Autoencoder . 79
6.1.4 GAN . 81
6.1.5 Deep cluster results . 85

6.2 Experiment 2 - Choosing an appropriate unsupervised framework 89
6.2.1 Model capability over unseen test data 89
6.2.2 Validation of confusion matrix and cluster assignments 90
6.2.3 Model adaption to new classes 94
6.2.4 Capability of the classification part 94

6.3 Experiment 3 - Evaluation on the AILARON data 96
6.3.1 Baseline methods . 96
6.3.2 Unsupervised models . 98

7 Discussion 103
7.1 Deep unsupervised feature extraction . 103

7.1.1 Autoencoder . 103
7.1.2 GAN . 104
7.1.3 Deep Cluster . 105

7.2 Unsupervised clustering . 106
7.3 Application in the plankton domain . 106
7.4 General view of unsupervised deep learning 108

8 Conclusion 111

9 Future Work 113

Bibliography 115

vii

viii

List of Tables

2.1 Number of samples and classes in the AILARON data sets 15
2.2 Number of samples and classes in the Kaggle data sets 18

3.1 Commonly used deep learning regularization methods 38

4.1 Overview of the rotation invariant autoencoder architecture 63
4.2 Overview of the GAN model architecture 65

5.1 Description of important code libraries and software platforms 70
5.2 Description of the computer specifications 72

6.1 Baseline classification results on Kaggle-DB1 76
6.2 Supervised neural network training performance on Kaggle-DB2 76
6.3 Baseline classification results on Kaggle-DB1 79
6.4 Autoencoder classification results on Kaggle-DB1 80
6.5 GAN classification results on Kaggle-DB1 84
6.6 Deep Cluster training performance on Kaggle-DB2 86
6.7 DeepCluster classification results using different backbone networks on

Kaggle-DB1 . 87
6.8 Classification results on unseen data samples from the Kaggle data set . . 90
6.9 Comparison of the feature extraction models ability to adapt to new unseen

classes . 94
6.10 Classification results on Kaggle-DB1 using different clustering algorithms 95
6.11 Baseline classification results on AILARON-DB1 97
6.12 Supervised neural network training performance on AILARON-DB2 . . . 97
6.13 Traditional machine learning classification results on the AILARON-DB1 99
6.14 Classification results on AILARON-DB1 using different clustering algo-

rithms . 100

ix

x

List of Figures

2.1 Example of the feature representations obtained by the specialization-project
models . 12

2.2 A selection of images from the AILARON data set 13
2.3 Example of raw photo obtained by the SilCam camera module 14
2.4 Histogram depicting the AILARON class distribution 15
2.5 A selection of images from the WHOI data set 16
2.6 A selection of images from the Kaggle data set 17
2.7 Histogram depicting the Kaggle class distribution 18
2.8 Selected five classes for the self constructed Kaggle-DB1 data set 18

3.1 Overview of the different fields within artificial intelligence 20
3.2 Evaluation of overfitting, underfitting and generalization error 23
3.3 Example task for utilizing the Hungarian method 25
3.4 Example of a dendrogram produced using connectivity-based clustering . 28
3.5 Visualization of an artificial neuron . 31
3.6 Simple feedforward neural network structure 31
3.7 Fully connected layer . 33
3.8 Example of a convolution operation . 34
3.9 Example of max-pooling operator . 35
3.10 Example of transposed convolution operation 35
3.11 Visualization of the group convolution operation 36
3.12 Examples of different image augmentations 39
3.13 Depicting various images from the MNIST AND CIFAR10 data base . . 41
3.14 Visualization of the 5-CONV architecture 43
3.15 Visualization of the VGG16 architecture 43
3.16 ResNet residual blocks . 44
3.17 Schematic presentation of the autoencoder architecture 46
3.18 Schematic presentation of the GAN architecture 47
3.19 Examples of synthetic MNIST like images generated by a GAN network . 48

xi

3.20 Schematic presentation of the DeepCluster method 50
3.21 Example of image dimensionality reduction utilizing PCA 53
3.22 Comparison of PCA and t-SNE dimensionality reduction on the MNIST

data . 54
3.23 Schematic presentation of the class activation map method 55

4.1 Schematic presentation of the unsupervised classification framework . . . 58
4.2 Example of image augmentation applied on the Kaggle and AILARON data 60
4.3 Schematic presentation of the autoencoder feature extractor 62
4.4 Schematic presentation of the GAN feature extractor 64

6.1 Visualization of the supervised models low dimensional representation . . 77
6.2 Visualization of a supervised low dimensional representation with over-

layed plankton images . 78
6.3 Visualization of the feature descriptors using SIFT and SURF 79
6.4 Visualization of Kaggle images and the autoencoder reconstructions . . . 80
6.5 Visualization of the autoencoder low dimensional representation 81
6.6 Visualization of the autoencoder class activation map 81
6.7 Time series depicting GAN image generation 82
6.8 Assessing overfitting in the GAN network 83
6.9 Visualization of the GAN low dimensional representation 84
6.10 Visualization of the GAN class activation map 85
6.11 DeepCluster loss and cluster reassignments 86
6.12 Visualization of the DeepCluster low dimensional representation using t-

SNE . 87
6.13 Visualization of the DeepCluster low dimensional representation using PCA 88
6.14 Visualization of the DeepCluster class activation map 88
6.15 T-SNE visualization over unseen test images with overlaying plankton im-

ages . 90
6.16 DeepCluster feature representation and confusion matrix 92
6.17 Autoencoder feature representation and confusion matrix 93
6.18 Time consumption of cluster algorithms 95
6.19 Low dimensional T-SNE visualizations on the AILARON data 98
6.20 Visualization of the feature descriptors using SIFT and SURF on AILARON

data . 98
6.21 Low dimensional T-SNE visualizations on the AILARON data using un-

supervised deep feature extraction . 99
6.22 Visualization of the DeepCluster low dimensional representation with over-

layed plankton images . 101

xii

Abbreviations
Abbreviation Description
AE Autoencoder
AI Artificial intelligence
ANN Artificial Neural Network
API Application programming interface
AUV Autonomous underwater vehicle
BCE Binary cross entropy
BIRCH Balanced Iterative Reducing and Clustering using Hi-

erarchies
CAM Class Activation Mapping
CNN Convolutional Neural Network
DAE Denoising autoencoder
DC Deep Cluster
DCEC Deep convolutional embedded clustering
DEC Deep embedded clustering
FC Fully connected (neural network layer)
GAP Global average pooling
GAP-CAM Global Average Pooling - Class Activation Mapping
GPU Graphics Processing Unit
HAB Harmful Algal Bloom
IFCB Imaging FlowCytobot
ISIIS In Situ Ichthyoplankton Imaging System
KL Kullback-Leibler divergence
ML Machine learning
MSE Mean squared error
NMI Normalized Mutual Info
ReLU Rectified linear unit
SC Spectral clustering
SIFT Scale invariant feature transform
SURF Graphics Processing Unit
SVM Support Vector Machine
T-SNE T-distributed stochastic neighbor embedding
VAE Variational autoencoder
WHOI Woods Hole Oceanographic Institution (data set)

xiii

xiv

Chapter 1
Introduction

Throughout history, the oceans have played an essential role in the evolution of humankind.
Covering almost three-quarters of the Earth’s surface, the global ocean is a vital part of the
global climate system. The oceans supply important food resources and other valuables
and provide a highway for trade and commerce. However, even today, our understand-
ing of the ocean ecosystem’s complexity and its impact on the global system are limited.
Rapid changes in the marine environment due to increased temperatures, pollution, and
overfishing can create large and unforeseen consequences, affecting the entire world.

The base of the ocean ecosystem is formed by small plants and animals called plankton.
Albeit small, photosynthetic plankton species are considered to produce up to fifty percent
of the Earth’s primary production. Furthermore, the larger animal species, which graze
on the former, are the primary food source in the aquatic food chain. As such, changes in
plankton ecology may affect the surrounding marine areas and the entire global ecosystem.
Consequently, increased knowledge of planktonic species and their population dynamics
seems a critical starting point to understand the long and short-term consequences of the
ocean climate changes.

1.1 Motivation

In recent years several underwater camera systems been proposed for image-based sam-
pling of plankton and other microscopic particles [20, 26, 86]. These methods have made
sampling easier, less time consuming and much more affordable than traditional sampling
methods. Furthermore, the possibility of continuous real time surveillance makes it possi-
ble to develop rapid detection systems or gather long time-series of plankton data which is
important for plankton research. However, classifying and assessing the increasing quan-
tities of planktonic images is rapidly becoming impractical since traditional classification

1

Chapter 1. Introduction

requires extensive effort from domain level experts.

In other domains, similar problems have been solved by training a machine learning (ML)
algorithm to perform the image classification. Therefore, it is of little surprise that the
increase in readily available planktonic image datasets have resulted in several attempts of
adapting ML to the plankton domain. In the beginning, the methods relied on careful se-
lection of hand-designed features, which were subsequently used to train the ML classifier
[41]. Even though several methods show promising results [105, 123], the challenge re-
lated to labor-intensive work partially remain. The careful selection and manual design of
feature descriptors that are required to get a well functioning ML model, can unfortunately
be both difficult and labor-intensive [43].

In the last decade, attention has turned to deep learning models that are capable of learning
good feature descriptors on its own. Especially, Convolutional Neural Networks (CNN)
have proven capable of detecting and classifying a wide set of plankton classes [71, 78, 87,
98]. The recent successes are, however, tied to the supervised domain where labeled data
is an necessity. Labeling effort is thus easily getting unmanageable since deep learning
models require a training sets containing thousands of images.

Observing the shortcomings of the above methods, a model of preference should be able to
deduce the important aspects of the data without requiring any labor intensive supervision.
Inspired by the studies of the brain, unsupervised deep learning are by many considered to
be the future of deep learning [66]. Deep unsupervised models avoid not only the tiresome
labeling effort, but can utilize the enormous amount of existing unlabeled data. Albeit far
behind supervised models in regards to classification performance, unsupervised models
are capable of learning impressive representations of complex data. The goal of this thesis
is to adapt such methods into the planktonic domain and showcase the applicability of the
up and coming unsupervised domain.

This thesis is a part of an overall program called the AILARON project. The project aims
at streamlining plankton detection and classification by integrating camera systems and ad-
vanced machine learning algorithms onto an autonomous underwater vehicle (AUV). The
system should provide in-situ observations of plankton and provide a real-time overview
of the plankton distributions. One of the difficult tasks is to provide a detection and classi-
fication framework that can differentiate varying species accurately within a short amount
of time. Furthermore, it is likely that new classes that the network has not seen before will
appear. Thus, as time passes, the framework must be able to adapt to the new conditions.
For now, much effort has been put into finding an applicable (CNN) network suitable for
the task [99]. As of yet, the given training data contains seven classes and a low number
of images. As the project proceeds and new species are collected, these samples must be
labeled by experts in a continuous manner until all possible species are discovered. Solely
relying on supervised learning seems, therefore, inadequate. Therefore, a major motivation
is to improve the prediction abilities of the framework previously mentioned by adopting
new techniques that are less dependent on human supervision. Furthermore, unsupervised
models base their knowledge upon general traits of the underlying data. Despite strong
variations between planktonic species, the existence of common characteristics between

2

1.2 Research questions and challenges

classes might make it possible to predict unseen species.

1.2 Research questions and challenges
This section’s main motivation is to showcase some of the challenges and important re-
search questions that need to be solved for successfully adapting unsupervised machine
learning models to the plankton domain. Hopefully, the selected topics will provide some
context and insight into the work conducted in this thesis and encourage further reading.

Unsupervised feature learning for classification

Deep unsupervised models are typically trained on tasks that differ from the task the model
is actually intended for. For instance, in the specialization-project [100], an autoencoder
(AE), which is trained to reconstruct its inputs, was used as a feature extractor for subse-
quent classification. Therefore, the question is: Are the learned representations obtained
by a deep neural network on one task transferable to a different task? In 2016, Xie et al.
[117] showed a training method that adapted the learned autoencoder feature space for im-
proved clustering. In the same manner, Hartono et al. observed that the ”labels of the data
influence the internal organization” [47, Hartono, p. 3] when they mixed supervised and
unsupervised training. These observations clearly suggest that the novel autoencoder train-
ing scheme results in the model obtaining feature representations that are partially distinct
from the optimal features for classification. Therefore, it might be necessary to find other
training schemes that better facilitate the goal of making an unsupervised classification
framework.

Rotation invariance

From the novel experiments conducted in the specialization-project [100] a consistent
problem for all deep feature extraction models turned out to be the lack of rotation invari-
ance. Visualization showed that identical objects with different orientations were split into
separate groups. This is a significant problem for unsupervised clustering since separate
groups indicates the presence of several distinct groups of objects. Therefore, an important
requirement of the final deep feature extraction model is to obtain a feature representation
that split objects belonging to different classes but avoids the separation of objects similar
in all but orientation.

Plankton datasets, image diversity and quality

According to Goodfellow et al., the best way to improve a machine learning model’s per-
formance is to train it on more data [43]. However, obtaining large plankton datasets
of high quality requires a lot of effort and time from a relatively small community. The
Kaggle dataset [20] which was utilized in the specialization-project only contains thirty
thousand images, which is considered a small data set for a deep learning algorithm [78].
Furthermore, plankton datasets suffers from large class imbalance and, according to [24]
possibly high number of miss-classifications. How these traits affect the representations
that can be learned by state of the art models adapted to the plankton domain is therefore

3

Chapter 1. Introduction

hard to predict. Luo et al. [78] for instance, experienced a large drop in classification accu-
racy when testing their supervised network on unseen data. However, when they removed
all non-rare species from the test set, the model reached over 90% accuracy.

Plankton is not one class of strikingly similar images. Instead, the species are defined
by their inability to move independently from ocean currents. Plankton is, therefore, a
group of vast diversity in size and shape. Gelatinous species have transparent bodies,
which makes them nearly invisible. Other species such as diatoms form colonies. These
colonies are easier to detect at the cost of varying feature characteristics. Consequently,
differing image quality and object features make plankton classification tough even for
human experts. High performing machine learning models usually achieve results close to
those achieved by humans making the domain equally difficult for computers.

Transferability to the AILARON project

The experiments conducted in the specialization-project [100] were performed on the Kag-
gle [21] dataset to find an adequate model to be used in the AILARON project. Thus, the
ground assumption is that training over different data provides insight into the model ca-
pability when transferred to the AILARON task. The Kaggle dataset was chosen due
to apparent similarities in the extraction method, which suggests potential similarities in
the end image format. Unfortunately, the ongoing development of the AILARON image
database shows that these expectations are a little optimistic. Which conclusions one can
draw from the Kaggle experiments are therefore difficult to answer.

Speed, computational power and memory consumption

Connecting deep learning with robotics set strict limits on the use of deep learning archi-
tectures since many are very computationally expensive. For the AILARON project, the
classification framework is expected to produce real-time predictions using as little mem-
ory and computational resources as possible. Concerning the prediction speed, the camera
module captures between five to seven frames per second, which contain around five to
six objects. To avoid a bottleneck in the classification part of the pipeline, the framework
must predict around forty images per second. The use of deep learning also sets some
initial hardware constraints on the robotic hardware. A graphics processing unit (GPU)
is therefore inevitable to achieve reasonable timing demands. In regards to memory con-
sumption, a standard VGG16 [104] network with image size 150× 150 and batch size 32
was measured to use approximately 9 gigabytes when training. The minimum memory
requirements should probably lie around this number.

1.3 Contribution
This thesis’s main objective is to find an applicable unsupervised deep learning framework
to detect and classify planktonic species. This work is a continuation of the specialization-
project [100] which revealed some promising model architectures and several challenges
with unsupervised training. Therefore, a secondary objective is to resolve these issues and

4

1.4 Outline

implement an unsupervised framework that improves the specialization-project results.
Based on these goals, the objectives of this thesis can be summarized as:

I. Conduct a literature study to acquire insight from previous work and relevant ma-
chine learning applications in the plankton domain. Further assess the feasibility of
adapting the current state of the art methods for plankton classification.

II. Implement and validate the most promising unsupervised deep models over plankton
data sets and investigate their potential as feature extraction models.

III. Implement and validate different unsupervised clustering algorithms and estimate
their ability to perform classification over the plankton data.

IV. Propose the building blocks of an unsupervised framework to detect and classify
planktonic species.

V. Based on these studies, assess the possibilities for: 1. Integrating the model onto the
AUV. 2. Use unsupervised learning in the labeling process to facilitate faster anno-
tation and discovery of seen and unseen samples and soften the effort from expert
biologists.

This thesis’s contribution is to review and test several promising unsupervised deep learn-
ing frameworks for use in plankton classification. For this purpose, a significant literature
review was conducted within the field of deep learning and computer vision. Furthermore,
several state of the art unsupervised deep learning feature extraction models and a self-
proposed rotation invariant autoencoder model were implemented and trained over plank-
ton image data. A comprehensive test and validation regime was further created using real-
world planktonic image data to assess and verify these models’ performance and learned
image representations. Finally, an unsupervised framework is introduced and evaluated
on the AILARON data providing valuable insight into the applicability, the shortcomings,
and possible future improvements of deep unsupervised learning within the AILARON
project. The combined work of specialization-project and the master thesis led to new
contributions to unsupervised learning of plankton taxa. Part of the detailed work was pre-
sented at Global OCEANS 2020: Singapore – U.S. Gulf Coast Conference1 at the student
competition track and is published in IEEE Xplore [101].

1.4 Outline
The rest of the thesis is organized as follows. Chapter 2 introduces the realm of planktonic
species and presents the previous work in plankton sampling and classification. The last
part of the chapter presents a number of relevant and readily available planktonic data
sets that can be utilized in machine learning. Chapter 3 introduces the relevant theory
within the field of artificial intelligence, providing the necessary background information

1OCEANS is a global marine conference and exhibition presented by the Marine Technology Society and the
IEEE Oceanic Engineering Society. The conference gathers people from all over the world to discuss topics and
recent trends in the marine sector. The official website is accessible at: https://gulfcoast20.oceansconference.org/

5

Chapter 1. Introduction

as well as a more comprehensive study of the deep learning domain. Chapter 4 presents
the proposed unsupervised framework detailing its structure and components. Chapter 5
describes how the experiments were conducted and provides the relevant implementation
details and code requirements. Chapter 6 presents the results of the experiments mentioned
above, followed by a summary and reflection for each experiment. Chapter 7 provides a
more general discussion answering the research questions and challenges provided in this
chapter. Chapter 8 concludes this thesis by emphasizing the most important findings.
Chapter 9 ends the thesis by presenting promising future directions and challenges which
will be assessed in future work.

6

Chapter 2
Previous work on the planktonic
domain

This chapter gives an introduction to the realm of planktonic species and presents the fun-
damental work within plankton sampling and classification: First, a brief introduction to
planktonic species, their definition and their environmental importance to nature are pre-
sented. Second, important traditional and modern sampling methods are explained, high-
lighting the possible advances which can by achieved by the AILARON system. Third,
an evaluation of existing work for both supervised and unsupervised plankton classifica-
tion is presented. This includes the previous work conducted in the specialization-project,
explained in section 2.3.3, which this thesis builds upon. Lastly, a review of some of the
available plankton datasets are presented.

2.1 Planktonic organisms and their importance to the en-
vironment

The term plankton derives from Greek meaning ”to drift” and refers to a collective group
of organisms containing small plants, animals, bacteria, and viruses living in the water.
Many of the species can change their depth through active swimming, but they are still
drifting at the mercy of currents [13]. Planktonic species are usually very small in size
ranging from microns to centimeters, but some species, including gelatinous jellyfish’s,
can be much larger. Plankton is generally divided into two groups. Phytoplankton mainly
consists of single-celled organisms that can convert light energy into chemical energy.
These organisms form the bottom of the marine food chain and are, therefore, often re-
ferred to as the ”grasses of the sea” [106, Suthers et al. p. 2]. Phytoplankton is, in turn,
grazed by larger zooplankton, which are the main ocean primary consumers. Zooplankton

7

Chapter 2. Previous work on the planktonic domain

is a group of vast diversity, including groups such as millimeter-sized copepods and meter
tall gelatinous jellyfish spending their whole life as plankton (holoplankton). Others, such
as fish larvae, are zooplankton for only parts of their life (meroplankton).

Plankton is a crucial component of marine life and forms the base of the marine food chain.
Phytoplankton stands for about 45% of the earth’s primary production, producing oxygen
and processing many of the pollutants disposed by humans [106]. Phytoplankton is such
an essential part of the cycle of carbon, drawing carbon dioxide from the atmosphere.
Grazing on the smaller phytoplankton, zooplankton is, in turn, ”suitably sized food items
for predators including commercially important fish and great whales” [13, Brierley et al.
p 1].

The species have, in general, short generation time [109] and a short life span. Also,
being sensitive towards minor changes in water components such as light, nutrients, pol-
lution, and water flow can cause great and rapid changes in the diversity and population
abundance of planktonic species. Rapid increase in phytoplankton population is called a
bloom. Many blooms happen regularly and are vital to the survival of other species, such
as fish larvae [48]. Blooms can, however, also impact the ecosystem negatively. Harm-
ful algal blooms (HABs) can create water toxins or lead to localized depletion of oxygen,
causing fish kills on wild and farmed fish [106]. The produced toxins can further accumu-
late in shellfish, becoming a direct threat to humans when consumed [34]. Environmental
changes in the ecosystem also impact larger plankton species. Jellyfish blooms are be-
coming an increasing problem to the fishing industry, tourism and can even block coastal
powers and seawater intakes, affecting human infrastructure [76].

Changes in plankton distributions can also provide valuable information about water qual-
ity and long term climate changes. As such, Suthers et al. [106] refers to plankton as
”canaries-in-a-coal mine” [106, Suthers et al. p. 1], stating the effectiveness of using
plankton as at tool for monitoring water quality. In comparison to nutrient analysis of
water quality, plankton is a water quality indicator providing information about past and
current water disturbances [9, 109]. Furthermore, because few planktonic species are com-
mercially exploited and are affected by changing temperatures and ocean currents, scien-
tists believe long term changes of plankton distributions to be an excellent indicator of the
environmental impact of climate changes [48].

2.2 Traditional and modern sampling approaches

Depending on the precision and available budget, several sampling methods are available.
Buckets or water bottles are a cheap and effective way of gathering point samples pro-
viding information of present species. The sampling area can be increased by utilizing
a towed net or fine-grained mesh at the cost of missing the smallest species. Another
technique is measuring watercolor using satellite images, making it possible to cover vast
areas and provide a broader description of large plankton distributions [106]. However,
this comes at the cost of less precise measurements. Finally, one of the most important
instruments currently in use is the continuous plankton recorder which have been used to

8

2.3 Previous work on plankton classification

monitor plankton taxa for more than seventy years. This instrument can be towed over
vast distances and provides invaluable information about phyto- and zooplankton abun-
dance [48].

In recent years underwater imaging technology has progressed, making optical in-situ
sampling much more effective. The Imaging FlowCytobot [86] can work unattended for
months at a stationary point providing continuous long-term image samples. Increasing
the sampling area, the In Situ Ichthyoplankton Imaging System (ISIIS) [20] can be towed
behind a ship capturing species in the range from 1 mm in size and larger. By adopting
such methods onto existing underwater vehicles, such as the zooglider [85], a more pre-
cise estimation of plankton abundance and distribution can be achieved. Building on this
work, the AILARON project strives to make an autonomous sampling and classification
platform [26, 27].

2.3 Previous work on plankton classification

Traditional plankton classification is based on specialized human labeling using micros-
copy. Such work is very labor-intensive and requires highly specialized individuals [106].
The introduction of new image-based sampling methods offers an exciting solution as
machine learning algorithms have shown excellent performance in image classification.

The most successful approaches are tied to the supervised classification domain, where the
models rely on labeled training data. Albeit often resulting in well-performing classifica-
tion algorithms, the labeling effort can be extensive and put much load on existing human
resources to acquire the training set. Furthermore, the supervised model’s dependency on
existing labeled samples is generally limiting their classification ability on new unseen
objects.

The unsupervised classification domain requires no prior knowledge of the correct class
labels, which significantly reduces labeling effort. For classification, the models are gen-
erally built around feature extraction and then clustering of the extracted features. This
approach might help discover new unseen classes because the new class species, having
different feature characteristics, are likely to form new clusters.

Machine learning can provide a robust and efficient classification of plankton at a low cost.
Still, there are some drawbacks and challenges that are important to understand. Single
phytoplankton objects are usually too small for image sampling methods. However, they
often form algal groups such as filaments, chains, or colonies, which are easier to spot,
at the cost of varying size and shape characteristics. Sampling of gelatinous species are
generally improved using image-based methods as the soft-bodied organisms often are de-
stroyed using net sampling. Unfortunately, their close to water densities and almost trans-
parent body types typically make image prediction difficult. Furthermore, machine learn-
ing is currently not ideal for differentiating the same class species into more fine-grained
categories. For instance, different types of copepod species are typically determined based
on the design of the fifth leg [106]. Such small distinctions are complicated to differentiate

9

Chapter 2. Previous work on the planktonic domain

given the current image quality and capabilities of machine learning models.

2.3.1 Supervised plankton classification
The novel approaches of supervised learning are based upon handcrafted feature extraction
and then training a separate machine learning algorithm. In 2007 Sosik et al. provided
a support vector machine (SVM) classifier achieving up to 88% on selected data [105].
Gorsky et al. [45] trained a random forest algorithm over a larger number of classes
achieving comparable classification results. Other studies related to these approaches are
well summarized by Gonzales et al. [40].

Recently, approaches using supervised convolutional neural network (CNN) architectures
have overcome the traditional machine learning approaches except in some special cases.
Zheng et al. [123] used handcrafted features to train a multiple kernel learning algorithm.
Their approach achieves worse than deep learning models on large data sets, but can also
be applied successfully on much smaller data sets. Solving a similar problem, Rodrigues
et al. [95] trains a CNN network on a large plankton data set. The CNN is then used to
extract features from a smaller data set to train an SVM algorithm.

However, the most effective classifiers on plankton imagery given enough labeled data is
conventional CNN networks. In 2015 Orenstein et al. set the baseline for their WHOI
plankton data set [87] using a VGG16 [104] as a backbone network. They achieved an
accuracy of 93.8 % over 70 classes of plankton. However, since the data set have high
class imbalance, the unweighted F1 score was only 0.42. Lee et al. [68] later improved the
model results on small sized classes, while Lumini et al. [77] achieved better performance
by combining deep learning with traditional feature extraction.

In 2015, the Data Science Bowl1 competition challenged people to come up with a plank-
ton classification framework. Using the Kaggle data set [21], the winners achieved 81.5%
accuracy using an ensemble of over 40 deep CNN networks. The performance indicates
some of the challenges of plankton imagery compared to other computer vision tasks as
the accuracy score is often much higher. Furthermore, for real-world classification, en-
sembles of networks might not be a feasible solution. Constraints such as low memory
consumption and fast prediction rates might require smaller networks. In such a manner,
Py et al. [90] proposes an inception [107] inspired network and Li et al. [71] a ResNet
[49] model which can achieve close to state of the art on the Kaggle data set.

2.3.2 Unsupervised plankton classification
Plankton classification using unsupervised algorithms is still a relatively unexplored field
of research. In 2020, Pastore et al. [88] proposed the plankton classifier being a set of mod-
els for unsupervised classification and detection of plankton. Their proposed data pipeline

1The Data Science Bowl, https://datasciencebowl.com/, is a yearly data science competition
presented by Booz Allen Hamilton and Kaggle. The competition brings together participants from all over the
world and challenges them to tackle real-world problems using data and technology. Examples of previous events
include plankton classification, diagnostics of heart disease, and diagnostics of lung cancer.

10

https://datasciencebowl.com/

2.3 Previous work on plankton classification

starts by reducing large images into cropped versions containing only a single planktonic
organism. From these images, handcrafted features are extracted and fed into a fuzzy-K-
means clustering algorithm. This pipeline achieved well over an image data set containing
640 images, scoring an accuracy of 89%. Furthermore, an extension to this framework is
proposed training supervised models using the k-means clustering labels. This approach is
tested on a selected uniform set of the WHOI data set, achieving a classification accuracy
of 63% using a random forest classifier.

Comparing to the plankton classifier framework, a sub-goal of this thesis is the extrac-
tion of features provided by a self-learned deep learning network. The unsupervised fea-
ture learning is in this regard more related to the deep learning algorithms proposed by
Kyzminykh et al. [65] and Wang et al. [114], that are presented next.

Kuzminykh et al. [65] proposed a variation of an autoencoder architecture to improve im-
age classification using their self-proposed feature extraction technique. Their framework
was, among others, tested on the Kaggle data set. Importantly, their objective was not
to find an appropriate framework for plankton classification but to prove the efficiency of
their self-proposed gram pooling technique. In this regard, the plankton data, containing
objects positioned with different translations and rotations proved valuable to demonstrate
their framework’s capability. Since their focus was not to achieve state of the art results
in image classification, they restricted the autoencoder into a shallow architecture. The
model was first trained to learn an adequate data representation. Assuming that a better
classification score is due to a better latent representation of the data, a supervised clas-
sifier was then trained on top of the feature extraction network. The overall framework
showed promising results, achieving an accuracy of 62.2%, which was nearly a 10% in-
crease to a traditional autoencoder. Furthermore, their framework proved the value of
rotation invariant networks in regards to plankton classification.

The CGAN-plankton proposed by Wang et al. [114] is made for solving class imbalance
problems by creating new synthetic images that look at least superficially realistic. A
generator network creating fake data competes against a discriminator network deciding
whether the image is real or fake. The ability to create authentic images is thus connected
to the networks ability to learn the important structures and features of the training data.
Whereas their main contribution is the creation of realistic images, they also show their
models ability to improve classification. Using the weights obtained by distinguishing
real from fake data in the discriminator, the model is fine-tuned using supervised learning
to improve the classification accuracy over CNN networks trained from scratch or using
transfer learning from other non-related data sets.

2.3.3 Specialization-project

The specialization-project [100] was performed during the spring of 2020 by the under-
signed. The project’s main aim was to gain deeper insight into the domain of unsupervised
deep learning through a literature study and the exploration and implementation of two
basic frameworks over existing plankton data sets. The proposed frameworks were an
adaption of the autoencoder model of [92] and the deep convolutional embedded cluster-

11

Chapter 2. Previous work on the planktonic domain

ing of Guo et al [46].

In the specialization-project work, the autoencoder (AE) was built symmetrically using
an encoder function, converting the input data to a lower dimension and then converting
it back to its original shape using the opposing decoder function. The structure is highly
flexible, making it possible to test several regularization schemes and switch backbone
network testing, respectively: 1. a fully connected neural network (FC), 2. VGG16 [104]
and 3. A 5-layer CNN (5-Conv) [98]. After training, the encoder part was used for feature
extraction, and classification was performed using a separate clustering algorithm. A deep
convolutional feature extractor proved capable of improving both a k-means clustering
algorithm from 44% accuracy up to 65% on five selected classes from the data set. Due
to the encoder’s non-linear output, a spectral clustering (SC) algorithm outperformed the
k-means scoring up to 76% on the same selection of data. Albeit outperforming the k-
means in terms of accuracy, the nearest neighbor selection performed by SC has high time
complexity and requires much support data. Such requirements might be infeasible for the
in-situ classification.

Noteworthy, an autoencoder algorithm is constructed with the purpose of image recon-
struction and might not provide optimal traits for classification. Guo et al. [46] proposed
an autoencoder with an incorporated k-means based clustering layer to improve the fea-
ture extractions in regards to classification. The network can then be jointly trained using
reconstruction- and classification loss. 71% accuracy was achieved over the five selected
classes using the same regularization and backbone networks. Compared to the autoen-
coder + k-means approach, the feature space became more optimal for clustering models
using the euclidean distance metric. Furthermore, the DCEC has only a slightly higher
time complexity making it the ideal choice for in-situ classification.

Figure 2.1: The figure depict the t-SNE visualization of the different autoencoder feature repre-
sentations. Left image: Features extracted from a fully connected (FC) network. Middle image:
Features extracted from a convolutional autoencoder (AE). Right image: Features extracted from a
DCEC model. Illustrated in [100, Salvesen p. 35-38]

Figure 2.1 shows the quality of the learned feature representations extracted by a fully con-
nected, an autoencoder, and a DCEC model, respectively. The fully connected model is
clearly worst, proving the power of using an architecture with convolutional layers. For the
deep convolutional autoencoders, the space only differed slightly depending on the back-
bone network. This leads to the belief that it is the latent layer choice, such as a GAP or

12

2.4 Plankton datasets

sparse layer, which is more critical for the performance. Another interesting discovery was
the separation of red class points into two classes, depending on their orientation. Class
separation is problematic because the unsupervised clustering algorithm can be tricked
into believing several more classes exist.

2.4 Plankton datasets
A key factor for the performance of deep learning algorithms is the data on which they are
trained. In this regard, training on lousy input data, even the most superior deep learning
networks can achieve next to nothing. For image recognition, aspects such as image qual-
ity, data set size, and uniform class distribution are fundamental parts of a good performing
neural network. For supervised learning methods, an additional requirement is also that
the labeling accuracy for the priorly defined correct classes is high. The following sections
give a description of some of the existing and readily available plankton data sets. Albeit
images of plankton data, the data sets contain very different images. Therefore, it is not
certain that a model producing good results on one data set can be transferred to another
data set. Lastly, it is worth mentioning that the labeling quality of human domain level
experts is much debated in the plankton community2.

2.4.1 AILARON
The specialization-project provided concept models tested over publicly available data
sets. Albeit applicable over these data sets, it is not given that the models will perform well
when applied to the autonomous in-situ sampling and classification pipeline. Therefore, it
is important to test the model on data with similar characteristics as the data that appears
in the real task environment. A data set captured by the autonomous under water vehicle
(AUV) is currently under construction and will provide valuable insight into the actual
model performance. For now, the test data is captured using the same camera system, but
the system is fixed to a stationary profiler. Still, it is believed that the captured images are
very similar to the images captured by the moving underwater vessel.

Figure 2.2: Examples extracted from random classes of the AILARON data set. Observe that
the different samples vary greatly in size and same class images are taken using different image
resolutions.

2The quality of the labeling regarding human experts ability to identify planktonic species correctly is of
much debate. Culverhouse et al. [24] set a much-referenced benchmark reporting 67–83% self-consistency over
planktonic data. Luo et al. [78] argue that this benchmark is too low, given that Culverhouse et al. experienced
a complicated identification task trying to differentiate within class species from each other. According to Luo
et al. [78], to distinguish broad plankton classes is much easier, making a potential human labeling benchmark
closer to 90%.

13

Chapter 2. Previous work on the planktonic domain

The data was captured in the Trondheim fjord between 2015 and 2017, using the SINTEF
developed SilCam [26] camera. Every second, the camera system takes up to 7 overview
photos, see figure 2.3, containing particles and organisms ranging from 50µm to several
cm in size. Note that due to the telecentric receiving optics, the sample size is the same
regardless of the distance to the camera. The overview photos are then cropped into re-
gions of interest seen in figure 2.2, providing smaller images that can be labeled by expert
biologists.

Figure 2.3: Raw overview image taken with the SilCam. From these images, areas of interest are
cropped into regions of interest. Illustrated in [25, Davies]

The data is split into two data sets, denoted by the prefixes ’DB1’ and ’DB2’ in table 2.1.
DB2 is a labeled data set containing all data samples. Unfortunately, the set suffers from
an unknown number of misclassifications, making it unreliable for supervised training
and validation. DB1 is a smaller subset of DB2 that is considered to have a much lower
labeling error. The data set consists of 7 classes, namely bubble, copepods, diatom chains,
faecal pellets, oily gas, oil and other. As can be seen in fig 2.4, the distribution of samples
is uneven. Nearly 60% of the set consists of the ’others’ class, whereas only 0.67% of the
data is from the ’oily gas’ class. Each image is in RGB format with pixel values ranging
from 0-255. The image dimensions are inconsistent, some having only a width or height
of 2 pixels, whereas the largest images have dimensions of more than 1300 pixels.

14

2.4 Plankton datasets

Table 2.1: Number of samples and classes in the AILARON data sets

Data set Number of species Number of classes
DB1 7728 7

DB2 68792 7

(a) DB1 (b) DB2

Figure 2.4: Histogram of AILARON-DB1 (a) and AILARON-DB2 (b) showing the class distri-
bution of the seven different AILARON data classes. Observe that the Other class contains nearly
two-thirds of the data set.

An apparent drawback of the current data set version is the small number of classes and,
of these, an even smaller number of relevant plankton classes. Furthermore, many of the
appropriate images containing plankton are taken using different image resolutions. This
results in same class images having very different feature characteristics. This can be a
real challenge in unsupervised representational learning because classes can be split based
on the different traits. Other problems include the large class imbalance and a seemingly
high number of misclassifications, making it more challenging to validate the models suc-
ceeding the training. This leads to the conclusion that other plankton data sets might also
provide important information towards choosing an applicable model.

2.4.2 Luo plankton set
The Luo plankton set is a dataset used in the Luo et al. [78] paper to build their plank-
ton segmentation and classification pipeline. The dataset strongly resembles the Kaggle
dataset using the same ISIIS system and similar preprocessing steps. However, the data
collection was done in 2011 between July and August in the northern part of the Gulf of
Mexico. The dataset contains over 40 000 images sorted into 108 classes. Similarly to
the Kaggle dataset, some classes contain under 20 species, while others contain more than
2000. The images’ size is equivalently inconsistent, varying from 20x20 pixels to over

15

Chapter 2. Previous work on the planktonic domain

400x400 pixel-wise size.

2.4.3 Pastore plankton set

The Pastore plankton set is a dataset used in the Pastore et al. paper [88] for training
their unsupervised plankton classifier. The data was collected using lensless microscopy
and was originally a set of RGB colored videos containing several freshwater planktonic
species. From these video frames, images are cropped out to include only single species.
The dataset contains 5000 images sorted evenly into ten classes. The images are of varying
sizes. The smallest are under 40× 40 pixels, while the largest are 128× 128 pixels.

2.4.4 WHOI

The Woods Hole Oceanographic Institution (WHOI) [87] dataset was collected using the
Imaging FlowCytobot (IFCB) [86] in the Woods Hole Harbor water. The sampling began
in 2006 and resulted in a sample set of more than 700 million samples in 2014. A set
containing over 3.5 million images of marine plankton was extracted from random time
frames from two weeks period and labeled into 103 categories from this data. The data is
thus a representation of ”the aggregated natural variability of the class distributions over
time” [87, Orenstein et al. p. 1]. As might be expected, the set thus contains classes of
varying sizes. The mix class, containing small undifferentiated particles, covers approxi-
mately 60% of the set, whereas, for instance, the akashiwo class only contains about 0.01%
of the data. Examples of species are depicted in figure 2.5 Providing a starting point for
plankton classification, Orenstein et al. [87] also set a baseline using different machine
learning classifiers, achieving an accuracy of 93.8% using a CNN network.

Figure 2.5: Examples extracted from random classes of the WHOI [87] data set. Observe that the
different samples vary greatly in size.

16

2.4 Plankton datasets

2.4.5 Kaggle
The Kaggle - national science bowl [21] dataset was collected using the In Situ Ichthy-
oplankton Imaging System (ISIIS) [20] from the Straits of Florida. Compared to the static
IFCB system, the ISIIS system is towed by a boat and can collect samples from much
larger areas. For this dataset, nearly 50 million samples were collected between May and
June in 2014. From these, a set of 30 000 images were labeled by Hatfield marine scien-
tists and published as a training set for the Kaggle - data science bowl 2015 competition.
An additional unlabeled test set containing over 160 000 images was also provided to val-
idate the competing team’s performance. The images are categorized into 121 classes,
some of which have fewer than ten species. Because the images are segmented from much
larger frames, they vary a lot in pixel-wise size. The smallest ones are only about 30× 30
pixels, whereas the largest are over 400 × 400 pixels wide. As the dataset was used for a
competition, it has provided great knowledge of supervised machine learning capabilities.
The winners, Deep Blue, achieved an accuracy of over 80% using an ensemble of CNN
networks. Given that human labeling accuracy is following the findings of Culverhouse
et al. [24], the Deep Blue performance is close to the labeling accuracy of domain level
experts.

Figure 2.6: Examples extracted from random classes of the Kaggle [21] data set.

The excellent image quality, wide range of classes, and relatively large dataset size made
it an ideal choice as an exploration set in the specialization-project [100]. Therefore, the
dataset is also used in this work to make a fair comparison to the specialization-project
algorithms. Following the specialization-project implementation, the data is split into two
data sets, denoted by the prefixes ’DB1’ and ’DB2’ in table 2.2. DB2 refers to the full

17

Chapter 2. Previous work on the planktonic domain

Kaggle dataset containing all the labeled data samples. The histogram in fig. 2.7 shows
the DB2 data distribution. Evidently, the set is relatively imbalanced, with the smallest
classes containing close to zero samples, while the largest classes contain close to two
thousand species.

Table 2.2: Number of samples and classes in the Kaggle data sets

Data set Number of species Number of classes
DB1 3720 5

DB2 30336 121

(a) DB1 (b) DB2

Figure 2.7: a): Showing the class distribution of the five classes in the Kaggle DB1 data set. (b):
Showing the class distribution of the 121 different classes in the Kaggle DB2 data set.

DB1 is a subset of DB2 containing only five classes. This was created to make it easier
to visualize and compare the quality of different feature extractions. The five classes are
depicted in fig. 2.8 being ”acantharia protist”, ”copepod calanoid”, ”diatom chain
string”, ”faecal pellet” and ”protist other”. The classes were selected with the goal of
finding species with a diverse set of features. Furthermore, the set has is more even in
regards to the number of species per class.

(a) Achantaria (b) Copepod (c) Diatom chain (d) Feacal pellet (e) Protist

Figure 2.8: Examples of species from Kaggle DB1. From left to right: ”acantharia protist”, ”cope-
pod calanoid”, ”diatom chain string”, ”faecal pellet” and ”protist other”.

18

Chapter 3
Artificial intelligence

Artificial intelligence (AI) is a field within computer science aiming to achieve machines
that can mimic human intelligence through rational thinking or humanlike performance
[97]. A more formal definition is the ”system’s ability to correctly interpret external data,
to learn from such data, and to use those learnings to achieve specific goals and tasks
through flexible adaptation” [55, Kaplan et al. p. 1]. From its early beginnings and great
enthusiasm in the nineteen fifties, the field has gone through periods of significant advance-
ments and renewed optimism into periods of recession and subsequent disappointment. In
1997 a breakthrough seemed close when Deep Blue, an IBM developed AI, defeated chess
world champion Garry Kasparov. Albeit having slower progression and being less impact-
ful than expected, AI experienced a boom at the beginning of the new century. In 2008
Google launched a successful speech recognition algorithm available for all smartphone
users. In 2011Watson proved capable of understanding complex questions beating humans
in a game of Jeopardy. As of today, with the availability of more extensive data set sizes
and increased computational power AI is now an integrated part of fields such as computer
vision, speech recognition, machine translation, and autonomous vehicles [97].

This chapter gives an introduction to the theoretical background within the field of AI and
computer vision. The goal of this chapter is not to dwell on theoretical details but rather to
provide an overview of the key principles of the field. First, section 3.1 - 3.3 provides the
relevant background information about the field of AI and machine learning, then section
3.4-3.7 dives into the deep learning domain.

3.1 Disciplines of artificial intelligence

Because of the broad definition of AI, there exists a wide variety of disciplines and at-
tempts to achieve machine intelligence. These domains are broadly depicted in figure 3.1,

19

Chapter 3. Artificial intelligence

showing relations between important AI disciplines. Many projects have focused on mak-
ing a machine learn to perform in a limited domain known as a ”microworld” where the
environment’s formal rules are hard-coded a priory. However, such approaches are very
limiting because the legal restrictions can be impossible to define appropriately. Machine
learning approaches avoid such explicit domain definitions and make their own logic by
finding patterns in the input data [43]. Given sufficient data, such models can predict, for
instance, future wine prices or risk of diabetes with better accuracy than those achieved
by humans. However, the machine learning model’s capability to find relationships and
patterns in the data, is highly dependent on the data having a good set of feature repre-
sentations. In many cases, it is difficult to find such relationships from raw data and good
performance is thus reliant on the programmer’s ability to design a good set of feature
representations. Models that can learn to extract such features themselves are known as
representational learning models. In domains such as computer vision and speech recog-
nition, where it can be challenging to provide hand-crafted features of the image concepts,
multilayered neural networks or deep learning models have proven incredibly successful.

Figure 3.1: Venn diagram depicting the relationship between various domains within artificial intel-
ligence.

3.2 Machine learning basics

According to Mitchell et al., machine learning deals with computer programs that can im-
prove their performance through experience [83]. The machine’s capability of “learning”
refers to the algorithms ability to find statistical patterns in the provided training data. The
self-acquired knowledge can then be used to predict outcomes on data the model has not
seen before. Machine learning has proven especially adequate in domains where the in-
formation load is huge or precise commands are hard for the programmer to define. This
section gives a brief introduction to the field of machine learning, starting with the basic
terminology and concepts. Then, the most important machine learning algorithms utilized
in this thesis are presented.

20

3.2 Machine learning basics

3.2.1 Machine learning approaches
Depending on the available data and the kind of problem, machine learning is traditionally
divided into three main categories, namely: supervised, unsupervised, and reinforcement
learning. Some models are also overlapping, making semi-supervised learning a potential
fourth category.

Supervised learning

The objective of supervised learning is to find a function which approximates an unknown
function that maps input data into a corresponding output. To learn this function, the model
is trained over samples consisting of an input vector and a corresponding output label [97].
For instance, in computer vision, the input data set typically consists of input images along
with their corresponding ground truth labels. Thus, the training strategy is to search for
image patterns or commonalities between images, so that the same pictures end in the same
class. If the model predictions are far from the correct class labels, the search continues
until the model cannot improve its prediction ability. Its most significant strength is also
the biggest weakness as gathering and labeling large loads of data can be very costly and
time-consuming. Today, supervised learning is successfully applied to domains such as
computer vision, speech recognition, spam detection, banking, and market analysis [72].

Unsupervised learning

The task of learning the properties of the data without any knowledge of the ground truth
labels is called unsupervised learning. The goal is typically to observe structures or
useful patterns in the data for which no prior knowledge of the data is required. Machine
learning models, generally improve their performance when trained over large amounts of
data [43]. Thus, unsupervised models can in theory surpass the performance of strictly
supervised models by utilizing the vast amount of existing unlabeled data. Still, models
trained in a supervised fashion are, in general, superior except in very special scenarios.
Today, as stated by Russel et al., clustering is one of the main unsupervised tasks [97]
aiming to find useful commonalities within groups of data. Another typical use case is
dimensional reduction, where high dimensional data is mapped down to a few dimensions
for visualization or storage purposes [10].

Reinforcement learning

The goal of reinforcement learning is to find appropriate actions for a given set of cir-
cumstances that maximizes the reward. The method is strongly influenced by real-life sce-
narios where players learn to behave in their surrounding environment through experience.
Similarly to a real-world environment, there are usually no labels describing an optimal set
of actions for a given scenario. Instead, the model has to discover a set of actions that lead
to an ultimate goal through trial and error [10]. The model must thus choose its decisions
based on previous experience or try new actions to acquire new knowledge. Typically the
final goal will require many different actions over a long time period. The model must
thus choose actions that might not give an immediate reward but which are profitable in

21

Chapter 3. Artificial intelligence

the long run. Reinforcement learning methods are typically applied in automation robotics
and computer games.

Semi-supervised learning

In practice, the distinction between machine learning approaches are not so transparent
[97]. In many situations, it is possible to acquire at least a small amount of ground truth
labels. However, these labels might be of varying quality, and one might have a cor-
responding big unlabeled data set. Semi-supervised learning lives at this cross edge
between the supervised and the unsupervised domain. Thus, the goal is to utilize both
domains’ advantages, for instance, by learning the patterns and data structures using un-
supervised learning and then fine-tune over the labeled data. Semi-supervised learning
methods are typically applied in real-life applications to speed up the image annotation
task or situations where it is difficult to obtain a large labeled data set.

3.2.2 Generalization, over- and underfitting

The goal of a machine learning algorithm is to find a function that best fits the patterns and
structures of the data. However, a function that perfectly matches the training data might
turn up misleading because the machine learning algorithm has put too much emphasis
on irrelevant or random features. This problem is referred to as overfitting and often
occurs if the number of training samples is small or the model is too complex [43]. An
overfitted model will therefore make erroneous predictions on unseen test data. Therefore,
the requirement for a well-performing algorithm is to achieve low loss on the training
data and achieve a similar performance on unseen test data. This property is called model
generalization. Opposite to overfitting, underfitting happens if the model is incapable of
finding an appropriate function to describe the data. It is thus not obtaining an adequate
performance over the training data. The problem of underfitting typically arise from a
model that is too simple to capture the complex structures within the data.

22

3.2 Machine learning basics

E
rr

o
r

Model complexity

Generaliza�on error

Training error

Under��ng Over��ng

Generaliza�on gap

Figure 3.2: The graph shows the general relationship between error and model complexity. Under-
fitting can happen if the model is too simple and incapable of learning essential data features. Un-
derfitting models can often significantly improve their performance by increasing model complexity.
However, an overly complex model easily overfit learning irrelevant variations in the training data.
This leads to poor performance over the test data or equivalently increased generalization error. The
figure is inspired by the illustration in [43, Goodfellow et al. p. 115].

Figure 3.2 describes the trade-off between performance loss and model complexity show-
ing the relation between generalization, over-, and underfitting. A simple model, for in-
stance, only capable of fitting linear functions would suffer significantly when it is given
data with polynomial features. The solution to reduce the error is to increase the model
complexity allowing more complex function representations. However, increasing the
complexity too much might result in a model capable of learning the noise or variance
of the data [83], subsequently leading to overfitting and increased generalization error.
The simplest but possibly most resource-intensive solution to avoid overfitting is to pro-
vide more data samples. Another common strategy, called early stopping, is to stop the
training when the generalization gap increases over a predefined threshold.

3.2.3 Classification metrics

When deciding which machine learning algorithm is better, the best strategy is to compare
their performance using predefined performance metrics. The choice of the metric must
correspond well to the system application, and one must be able to distinguish between im-
portant and less important aspects of the performance. For instance, it might be of higher
importance for an autonomous car to avoid collision than always being on schedule. For
classification, the goal is often to find the model which can map most input data samples
together with its corresponding ground-truth label. The most straightforward metric is the
accuracy, given in equation 3.1, which measures the ratio of correctly classified samples
divided by the total number of samples.

Acc =
True positive+ True negative

Total
(3.1)

23

Chapter 3. Artificial intelligence

Accuracy is easy to understand and is often a suitable performance indicator. However, if
the goal is only to predict samples belonging to a specific class, accuracy is less indicative.
Another issue appears if the data set have large class imbalance. For instance, in the WHOI
dataset one class contains over 60% of the samples. Any model can thus achieve a decent
score predicting all samples into the same category.

To avoid such issues, one can utilize metrics based on precision, equation 3.2a, and recall,
equation 3.2b. Precision measures each class’s quality, meaning that a predicted class with
high precision has more correct than incorrect elements. Recall is, in contrast, a measure of
quantity, calculating the number of same category elements that were correctly classified.

Precision =
TP

TP + FP
(3.2a)

Recall =
TP

TP + FN
(3.2b)

Except in the case of a perfect prediction, there exists a trade-off between the two. High
precision usually means a high False Negative rate, and thus a lower recall. Or equivalently
high recall results in higher False Positive rate, thus leading to low precision measure. F1-
score, given in equation 3.3, is a metric that balances precision and recall by calculating
an average of the two. Compared to accuracy, the F1-score depends more on the number
of misclassifications. This makes it more ideal for situations where the consequences of
wrong predictions are greater or in cases with significant class imbalance.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(3.3)

For unsupervised models determining the prediction accuracy is not as simple as com-
paring the predicted labels against the ground truth labels. Obviously, an unsupervised
prediction task for which there exists no ground truth labels make any comparison attempt
futile. However, having a set of human annotated labels, a direct comparison might still
be impossible because the unsupervised algorithm might have produced a different label-
ing order. As an example, the class ”cat” in a human annotated set might be labeled as
class ”1” but in the clustering algorithm having no information about the relative labeling
order decides that images with cat features belong to class ”2”. A clustering algorithm
is thus likely to produce group labels that mismatch with the ground truth labels even if
all samples were grouped correctly. In the case of semi supervised prediction with exist-
ing ground truth labels a fair comparison can be achieved by using one of the following
algorithms:

• The Hungarian method was developed by Kuhn [64] in 1955, seeking to find the
minimum cost of assigning a set of workers to a set of jobs. In the case of a mul-
ticlassification problem with labels 1,2,3 and predictions 1*,2*,3* the problem can
be represented by the 3× 3 adjacency matrix depicted in figure 3.3. In this case, the

24

3.3 Computer vision and image classification

goal is to find the mapping which assigns the predicted samples to the ground truth
class that maximises the number of samples in each class. In other words, the al-
gorithm finds the mapping that makes the sum of diagonal matrix values maximum.
After the matching is done, the mapped predictions can be compared to the ground
truth labels using the accuracy, precision and recall metrics described above.

Figure 3.3: The figure depicts a typical unsupervised multiclassification problem where predictions
1*,2*,3* does not yet correspond to the labels 1,2,3. The Hungarian method [64] solves this by
finding the mapping that best matches number of sample predictions and ground truth predictions.

• Mutual info is a measure of the shared information shared between the ground truth
labels and the predictions. In other words, how much information does the data pre-
dictionsX tell us about the true labels Y . More mathematically mutual information,
given in equation 3.4 calculates the reduction in entropy of the true labels H(Y)
given the entropy of H(Y |X). Taking the normalized mutual information (NMI) of
the variables, the assignments X and Y are totally independent if the NMI is zero
whereas a NMI of one means they are perfectly correlated [15].

I(X;Y) = H(Y)−H(Y |X) (3.4)

3.3 Computer vision and image classification
The field of computer vision involves machines capable of solving complicated tasks
using extracted information from digital images, and videos [121]. Inspired by the hu-
man visual system, computer vision tasks typically seek to replicate human visual abilities
[43] for the purpose of automation of repetitive and labor-intensive tasks. Industrial ap-
plications include inspection and quality control of manufactured goods, adaptive cruise
control, fingerprint analysis, and medical computer-assisted diagnosis [5, 28]. The benefits
of automation are the low operating costs of having machines that can work continuously

25

Chapter 3. Artificial intelligence

and provide consistent and improved results. Achieving such systems is, however, not
trivial. Computer vision tasks that are seemingly easy for the human visual system have
turned out to be very difficult to replicate in computer systems [28]. Additionally, many
of the tasks have inherent real-time requirements, stressing the need for fast and expensive
hardware.

The application of visual sensing machines are most commonly used within the field of
object recognition. This domain can be divided into three categories: Object classifica-
tion is used to predict the one class or the list of classes to which the image is likely to
belong. Object classification is thus limited to predict only the ”most striking” object cat-
egory in the image. To find more than one object and possibly mark the different objects
with a bounding box, object localization is utilized. Finally, object detection is a com-
bination of the former two approaches, first locating the presence of various objects and
then categorizing them.

This section presents the necessary foundation for object classification within computer
vision. The necessity and importance of feature extraction is presented first. This subsec-
tion includes an introduction to feature extraction approaches from the machine learning
and deep learning domain. The last subsection is then dedicated to classification models
that make predictions using the extracted features. A more comprehensive review of the
deep learning domain is dedicated to section 3.4.

3.3.1 Feature extraction
For the task of image recognition, the easiest solution is to treat the input image as a vector
and feed it into a machine learning algorithm. This, however, is not very effective because
of the high dimensionality of real-world images. The problem of high dimensional data
is referred to as the curse of dimensionality. First, machines typically suffer from high
computational load and memory issues when trained on high dimensional data. However,
the curse of dimensionality is more severe because machine learning algorithms easily
overfit if the number of observations is much lower than the number of input dimensions
[28]. Yet, real images may contain similarities and structures such as shapes and colors,
making it possible to capture the essence of the image with much fewer parameters [5].

Thus, the task of object recognition relies heavily on the machine learning algorithms abil-
ity to extract the meaningful information from the images and discard the rest. This ability
is referred to as feature extraction. In general, models produce either features describing
the full image (global features), or features describing smaller regions or parts of the image
(local features). Such choices depend on the classification, but normally global features
are useful for rough segmentation and large data sets, whereas local features are used for
more fine-grained classification [5].

Machine learning feature extraction

Early on, the conventional approach to image feature extraction was based upon the selec-
tion of hand-crafted image attributes such as object size, shape, and color. Albeit providing

26

3.3 Computer vision and image classification

adequate features for the specified task, such an approach require carefully designed filters
and is dependant on domain knowledge [119]. Furthermore, since the extraction method is
specialized to a specific domain, it cannot be adapted to other tasks. Therefore, a require-
ment for more effective implementation and utilization of feature extraction algorithms are
their ability to adapt to a wide variety of image domains [5]. The scale-invariant feature
transform (SIFT) [74] and the Speeded Up Robust Features (SURF) [6] models presented
next are among the more versatile models. The SIFT is a method that detects key points
from various image locations and then extracts distinctive features based on the gradient
around these points. Lowe in [74, Lowe p. 1], claims the method to be ”invariant to im-
age scale and rotation” and to provide robust matching under different distortions such as
lightning, noise, and affine transformations. The SURF model shares many commonali-
ties with the SIFT algorithm detecting and extracting information from relevant key points
within the image. However, it is much faster, and according to Bay et al. [6], the algorithm
is more robust to different image transformations compared to SIFT. Yet, the best per-
forming model can vary significantly from scenario to scenario. A thorough comparison
of the two models over various image transformations and deformations was conducted by
Karami et al., finding that the SIFT algorithm outperformed the SURF in most scenarios
[56].

Deep learning feature extraction

In recent years, deep artificial neural networks have achieved great results on many diffi-
cult image classification tasks1. Deep neural networks typically consists of several stacked
layers extracting relevant information from the input before a final layer outputs a predic-
tion. One of the biggest strengths of ANNs is the capability of the first layers to learn the
important structures and patterns in the input data and gradually evolve these structures
into finer concepts [43]. This learning process is called representation learning and sim-
ilarly to a conventional feature extractor, the learned concepts can be extracted and used
as features in an independent classification algorithm. For instance, for supervised deep
learning models, the feature extraction is done by the first layers, whereas the last fully
connected layer can be seen as a linear classifier. However, deep learning feature extrac-
tion as a single step is typically associated with the semi- or unsupervised domain where
a deep learning model is trained separately from the classifier.

The typical example of an unsupervised representational learning model is the autoen-
coder. An autoencoder can learn important data representations by reducing the image to a
few dimensions in its encoder part and then reconstruct the image using a mirrored archi-
tecture of the encoder, the decoder part. After training, the encoder part can be utilized as
a feature extractor [4]. A remaining question, however, is whether such representational
learning provides optimal features for classification. In his paper, Hartono claimed that
the ”labels of the data influence the internal organization” [47, Hartono, p. 3]. His re-
search suggests that models trained for classification might emphasize features that better
separates groups of data. With such notions in mind, Xie et al. [117], and Guo et al. [46]
developed models which refines the autoencoder representational space by incorporating

1For more details about ANN properties see section 3.4.1.

27

Chapter 3. Artificial intelligence

a clustering layer into the model. Following this success, the most recent approaches
to deep representational learning for classification utilizes conventional neural networks
trained solely on ”fake” labels produced by unsupervised clustering algorithms.

3.3.2 Unsupervised classification based on feature extraction
Several methods are applicable to make predictions after utilizing the feature extraction
technique. The most effective models are based on the supervised domain requiring a given
amount of ground truth labels. However, this amount can, in general, be relatively low due
to the reduced dimensionality of the data. A few of the more influential models include
linear classifiers, support vector machines, naive Bayes, and decision tree algorithms.

In the unsupervised domain, having no access to ground truth labels, the classification
technique is based on grouping examples based on their feature similarities [43]. These
methods are referred to as clustering methods containing among others; connectivity-,
partitional- and density-based models. Which algorithm to choose can vary greatly de-
pending on the data because all the models, to some extent, make assumptions on the data
structure. Connectivity-based clustering is built around the idea that neighboring points
are likely belonging to the same class. Typically the algorithm starts with all objects be-
longing to singleton clusters. Then, the ”closest”2 items or set of objects are merged into
a new cluster in a repeated loop until all items belong to the same class. The result can
then be depicted in a dendrogram, where distinct classes can be found by cutting the den-
drogram at specified levels. An example is shown in figure 3.4 where 269 elements are
gradually clustered together. Observe that the black line cuts the graph so that the elements
are grouped into seven classes. However, a general problem with connectivity-based mod-
els is the time, and memory complexity limiting the application of those algorithms on
large scale data sets [118].

Figure 3.4: Showing an example of connectivity based clustering visualized in a dendrogram. Ob-
serve that the two closest groups/points are merged until finally all points belong in the same group.

2The term ”closest” is a relative measure depending on the choice of distance metrics. Usually, connectivity-
based models use some variant of euclidean based measure, but other options are also applicable.

28

3.4 Deep Learning

In contrast to the iterative grouping of similar points, partitional-based clustering meth-
ods seek to divide the data into K distinct clusters. A classical algorithm is the K-means
in [80], which aims to minimize the sum of squared errors between each cluster center
and its assigned items. A great advantage in the K-means is the approximately linear time
complexity, making K-means a good candidate for large scale datasets [118]. However,
the conventional k-means algorithm easily fall short when the data is spherical or contains
an uneven number of points per class. Moreover, K-means requires an initial number of
clusters. In a purely unsupervised task, such knowledge can be challenging to obtain. To
achieve better performance on non-linear data, k-means can be extended by transforming
the data into a more k-means friendly space before the clustering. One such approach
is the spectral clustering method (SC) [103]. SC starts by sorting the data points into a
similarity matrix, for instance, by applying the k-nearest neighbor algorithm. Based on
this matrix, the graph Laplacian and its corresponding eigenvalues and eigenvectors are
calculated. Finally, the k-means algorithm is run using the K first eigenvectors. Accord-
ing to Luxburg in [113], SC often yields much better results than models using euclidean
based metrics. However, the time and memory complexity needed when constructing the
similarity matrix makes the method less applicable to large data sets.

3.4 Deep Learning
The field of deep learning is an advanced part of the machine learning domain where the
models are capable of solving difficult tasks by finding relationships and complicated pat-
terns in vast amounts of data [108]. From its infancy, many have regarded deep learning
models as the future of machine learning because their structure and processing of input
signals are very similar to how processing is done in the biological brain [30]. The earliest
attempts can be dated back to the late nineteen sixties, but especially due to the non-convex
properties of the networks and respective difficulties of finding an adequate solution made
the field less impact-full. Instead, research progressed on simpler models with convex op-
timization functions such as support vector machines [38]. Today, especially due to the
increase in computational power and the increasing availability of large training data sets,
the field is experiencing a new wave. In contrast to other machine learning approaches,
deep learners have proven extremely useful in domains such as natural language process-
ing and image recognition solving tasks that are ”easy for people to perform but hard for
people to describe” [43, Goodfellow p. 1].

The term deep refers to the models consisting of many layers connected after each other
forming a larger structure. The results provided by the network are thus coming from mul-
tiple concurrent interactions between connected neurons. Thus, deep learning models are
often treated as ”black boxes” because it is very difficult to interpret how the results arrived
based on the provided input. According to Goodfellow et al. [43], there exists two views
on why deep learners are so successful. First, the networks are in contrast to other machine
learning models capable of learning complicated concepts without explicit information or
knowledge by gathering information from the simpler concepts and discoveries earlier in
the network. Secondly, the networks can store state information such as preceding events,
which possibly helps organize the data and make future predictions easier.

29

Chapter 3. Artificial intelligence

As of today, deep learning models have become the workhorse in data applications such as
big data, speech recognition, and in computer vision [30]. In some of these domains, such
as image recognition, models have already surpassed human capabilities for given data
sets. With the growing computational power and continuous increase in the availability of
large quantities of training data, the possibilities are still huge. How far the domain can
reach is yet to be seen.

This section covers the necessary background information to understand the deep learning
algorithms utilized in this thesis. Subsection 3.4.1-3.4.6 covers the fundamental principles
and important building blocks of deep learning. Subsection 3.4.7-3.4.8 then presents some
practical concerns including image pre-processing and basic training of neural networks.
Finally, subsection 3.4.9 gives a brief presentation of the most used research data sets
within deep learning. Note that the theory presented in this section is not restricted to the
supervised or unsupervised domain. Distinctions between these domains are elaborated in
the next sections 3.5 and 3.6 respectively.

3.4.1 Artificial neural network

An artificial neural network (ANN) are one of the most common network structures of
deep learning. As the name suggest, artificial neural networks have drawn much inspira-
tion from the biological brain consisting of a web of interconnected ”neurons” that obtains
”intelligent” behavior by propagating an input signal through the network [83]. These
webs and neurons are, however, very simple compared to the biological brain. According
to Mitchell et al., ”biological neurons output a complex time series of spikes” [83, Mitchell
et al. p. 82] whereas a typical artificial ”neuron” only outputs a real-valued number based
on a single weight and bias parameter. During training, these parameters can be adjusted
to find a function approximation that explains the input data.

Figure 3.5 illustrates an artificial neuron which is connected to a number of previous nodes
with output values x1−xn. The neuron calculates a sum based on the input multiplied with
a corresponding weightw1−wn and the bias parameter. Lastly, the value is sent through an
activation function, which essentially decides if the node should activate or not. Observe
that a neural network is essentially only a linear function of sums and multiplications.
Thus, different activation functions are added to make the network capable of learning
non-linear traits of the input data.

30

3.4 Deep Learning

Input

x1

x2

.

xn

.

. .

Weights Bias

w1

w2

wn

(.) y

Output

Figure 3.5: Model of a artificial neuron with non linear activation function. The figure is inspired
by the illustration in [23, Csáji, p. 6].

Figure 3.6 shows a simple yet effective network structure called a feed forward neural
network where information flows from input to output without any feedback. Such net-
works consist of an input layer receiving the input data signal. The input is then connected
to many hidden layers that perform intermediate computations before the output layer
computes the network prediction. To learn patterns in complex input data, the network
capacity can be increased by increasing the number of nodes in the existing network or
by making the model deeper by adding more hidden layers. In theory, a single-layered
network with an unknown but finite number of parameters is sufficient for approximating
a wide number of functions [23]. In practice, however, deeper models tend to be more
easily optimized and hence obtaining better performance.

Input

Hidden

Output

Figure 3.6: Feedforward neural network architecture showing one input, one output, and one hidden
layer.

To obtain a well performing network over the given input data, requires careful tuning of

31

Chapter 3. Artificial intelligence

various parameters and selection of building blocks. These configurations are generally
referred to as hyperparameters describing static values which are not adjusted by the
learning algorithm [43]. Such options includes the number of hidden layers, types of lay-
ers, activation functions and learning rate. Important and commonly used hyperparameters
and building blocks are discussed in the next sections.

3.4.2 Activation functions

As depicted in 3.5 the activation function succeeds the calculation between the input and
learned parameters determining the neuron’s final output response. In contrast to the
node’s weight and bias parameter, the activation function is predefined and normally a
fixed function. Its purpose is to transform the node’s linear summation into a non-linear
output response that makes the network capable of approximating non-linear data.

There exists a wide variety of such functions with different strengths and weaknesses,
making a choice heavily dependent on the application. The most commonly used are the
sigmoid and the related tanh [30] which squeezes the output into the [0,-1] or [-1,-1] do-
main respectively. The downsides are, among other things, an added expense when com-
puting gradients, and especially the problem referred to as vanishing gradient problem3.
According to Goodfellow et al. [43], modern neural network architectures are therefore
defaulting to the rectified linear unit (ReLU) activation. The ReLU is a piece-wise linear
function, passing the identity value for all positive values and zero for all negative val-
ues. The gradient computation and subsequent convergence is thus much faster for ReLU
activated networks. Furthermore, because of the allowance of large positive values, it gen-
erally suffers less from vanishing gradient descent. A well-known problem occurs if a
neuron starts outputting zero regardless of input. This is referred to as the dying ReLU
problem [75] potentially making extensions such as the leaky ReLU and parametric ReLU
more tractable.

3.4.3 Neural network layers

An artificial neural network usually consists of a hierarchy of different types of layers
stacked on top of each other. Fundamental blocks include the fully connected and the
convolutional layers consisting of a set of connected nodes that are optimized during the
training. Other layers such as the max-pooling layer does not contain trainable weights
but outputs a deterministic output based on the input. This section introduces the most
fundamental layers of artificial neural networks and their applications.

3The vanishing gradient problem is an issue in artificial neural networks which makes it difficult to update
the network weights. The problem is especially encountered when using activation functions such as the sigmoid
which ”squash” the input signal into a small output. A node output is thus only slightly varying regardless of
input values. For a deep model with many layers, a ”large” response in the first layer will thus only result in a
tiny response in the final output. As the function loss gets smaller, the gradients of the first layers can become
exceedingly small or ”vanish” thus making it impossible to refine these weights.

32

3.4 Deep Learning

Fully connected

A fully connected layer (FC), depicted in figure 3.7, consists of a set of neurons where
each neuron are connected to all the outputs of the previous layer. Historically, the first
neural networks where effectively utilizing architectures consisting of only such layers.
Albeit, used effectively in many domains, fully connected layers require a large amount of
parameters making them dependent on excessive memory and expensive computations.

Figure 3.7: Figure showing all 16 connections (colored arrows) between a 4 valued input and a fully
connected layer with 4 neurons.

Convolutional

In real-world applications, data such as, for instance, time series or images most often
contain structures where nearby points are more closely related than more distant ones.
Fully connected layers ignore such local interrelations making the network suffer from the
aforementioned ”curse of dimensionality” and excessive memory consumption for large
input data. In contrast, convolutional layers are using multiple kernels which basically
is a grid of connected weights. The kernels can thus learn the relationships between close
data points, making them much more capable of exploiting local structures in the data. The
output of the convolutional layer is calculated by ”sliding” the kernel over the input. For
each ”slide,” a value measuring the correlation between the kernel and the current input
image slice is computed, as depicted in figure 3.8, and stored in an output feature map.
A feature map is thus a measure of the presence of a particular feature in the input. Archi-
tectures that utilize several convolutions layers have proven excellent at feature extraction.
The first layers can learn how to extract low-level features such as corners, edges, and
blobs of pixels, whereas later layers can merge such features into higher level concepts
[83].

33

Chapter 3. Artificial intelligence

Figure 3.8: The figure shows a convolution operation using a 3× 3 kernel (light blue) over a 4× 4
input (dark blue) resulting in an output feature map (light green).

One of the main advantages of the convolutional layer is the capability of detecting im-
portant features using a minimal number of weights. Sparse connectivity and parameter
sharing is obtained by keeping the kernel much smaller than the input, and the weights
fixed across all image slices [43]. For instance, given an input of size 500 × 500 × 1, a
typical kernel of size 5 × 5 only contains 25 parameters, whereas a fully connected layer
with one node would require 250000 parameters. Furthermore, the convolution operation
is approximately invariant to translation since a shifted input only results in the output
feature map’s values being equally shifted [83].

For the last decade, convolutional layers have become a fundamental building block of
most neural networks being used on applications such as visual recognition and time series
where nearby data is related. For instance, the layer is an important part of the tremen-
dously successful convolutional neural networks (CNN), which are the current state of the
art models for a wide variety of tasks.

Pooling

Pooling layers are most commonly used together with a convolution layer to reduce the
size of the output feature maps. Thus, the network needs fewer parameters for the follow-
ing layers, meaning increased computational efficiency and reduced memory consumption
[43]. Furthermore, the reduced input dimension forces the network to remove fine details
and preserve only the most apparent features. Pooling is thus encouraging network gener-
alizability as well as adding robustness to local translations [30]. The pooling operation is
performed as depicted in 3.9 by concatenating nearby points using a predefined function.
Basic pooling layers include the max-pooling which chooses the highest value in a region
and drops the rest, and average-pooling which computes the average over that region. Ad-
ditionally, a more extensive approach is the global-pooling operations, which reduces the
output feature map into one single value.

34

3.4 Deep Learning

Figure 3.9: The figure shows a max-pooling operation on a 3× 3 input image (dark blue) resulting
in a 2× 2 output (light green).

Transposed convolutional layer

The transposed convolution layer is essentially the opposite of a convolution and pooling
operation, resulting in an up-scaling of the input dimensions [32]. The operation, depicted
in figure 3.10, is performed by first increasing the input using zero padding before a con-
volution operation is performed on the resulting map. In computer vision, the layers are
an important part of deep models such as auto-encoders and generative models, which
produces ”real” high dimensional images from low dimensional input vectors [36]. Equiv-
alently to convolution layers, transposed convolutions generally provide better results at
lower computational cost than up-scaling using fully connected layers.

Figure 3.10: The figure shows a transposed convolution operation using a 2 × 2 input (dark blue).
The input is first padded, then a convolution operation with a 3× 3 kernel (light blue) is performed
resulting in an 3× 3 output feature map (light green).

Group convolution and group pool

Observe, from section 3.4.3, that convolutional layers are approximately invariant to im-
age translations. However, there is no inherent equivariance to other image symmetries,
such as rotations and reflections. Instead, deep learners tend to learn rotated copies of the
same filter to achieve partial invariance to translation [69]. Inspired by such observations,
Cohen et al. proposed a new layer that can ”increase the expressive capacity of the net-

35

Chapter 3. Artificial intelligence

work without increasing the number of parameters” [19, Cohen et al. p. 1]. Their new
convolution operation is depicted in figure 3.11 where parameters are shared over several
kernels that are flipped ninety degrees in relation to each other. The four output feature
maps resulting from the input convolution with the four kernels are thus in combination
equivariant to ninety degrees rotations.

Figure 3.11: Example of an input being transformed into four feature maps by performing four
convolutional operations with a ninety degree rotated kernel.

To get a more intuitive understanding, the normal convolution operation used in most deep
learning frameworks, is defined in equation 3.5 based on the Cohen et al. notation [19,
Cohen et al. p. 4]. Here, the kernel K is shifted over an input X resulting in an output
feature map.

(X ∗K)[n] =
∑
y∈Z2

X(y)K(n− y) (3.5)

The group convolution operation, defined in equation 3.7, is quite similar to normal con-
volution. However, instead of performing the calculation once, the kernel K is rotated
ninety degrees using the parametrization defined in equation 3.6 where the integer r sets
the degrees of rotation, and u and v represents a point coordinate in the kernel matrix.

g =

cos rπ/2 − sin rπ/2 u
sin rπ/2 cos rπ/2 v

0 0 1

 (3.6)

(X ∗K)[g] =
∑
y∈Z2

4∑
m=1

X(y)Km(g−1y) (3.7)

Observe that given a constant number of unique kernels, the number of convolution oper-
ations and resulting feature maps are quadrupled. This results in increased computational
cost and memory consumption. Compared to a similar size convolutional network, group
convolutional networks must therefore have fewer learnable kernels. The price is, thus,
a reduction in the network capability of learning many unique input patterns. However,
based on the assumption that rotated kernels are very useful in convolutional networks,

36

3.4 Deep Learning

the group convolutions clearly increase network capacity without increasing the number
of parameters.

Group pooling is a simple operation which can be utilized together with group convo-
lutions to extract rotation-invariant features from the network. Observe that the output
feature maps are only rotation invariant in groups of four. To extract rotation-invariant fea-
tures, Baasveeling [112] therefore made an operation that combines rotated features maps
into one by averaging their values.

3.4.4 Loss functions
The training of a deep learning model is generally a search for the weights that provides the
”best” output result. This measure is formalized using a loss function which ”reduces all
the various good and bad aspects of a possibly complex system down to a single number”
[93, Reed et al. p. 155]. The model results can be improved by searching for weights
that minimize this value. The problem, of course, is to find a performance measure that
fully represents the model goals. For supervised models, the measure is typically a direct
comparison between the prediction and the ground truth labels. This can be captured
by loss functions like Cross-Entropy for classification and Mean squared error (MSE) for
regression tasks [93]. In the unsupervised domain, where ground truths are unspecified, the
loss functions instead measures model aspects that are believed to be important for a well-
performing model. For instance, MSE is used to compute the pixel by pixel reconstruction
loss in autoencoders and Kulback-Leibler divergence to measure the divergence between
the model distribution and, for example, a gaussian function.

3.4.5 Optimizers
Deep learning optimization refers to the search for model parameters that minimize the
error defined by the loss function. The most used optimization strategies for deep learning
models are built on gradient descent, where weight updates are performed using the gradi-
ent of the loss function with respect to model parameters [96]. However, the optimization
poses multiple challenges, especially due to the highly non-convex error functions that are
common for deep learning networks. Training can, therefore, quickly halt at saddle points
or in multiple local minima [96]. Stochastic gradient descent, which is currently the most
used optimization strategy [43], have proven especially susceptible to such challenges.
Training is thus heavily dependent on fine-tuning parameters like learning rate, batch size,
and momentum to achieve acceptable results. Seeking to make training more straight-
forward and more efficient optimization strategies such as RMSProp, AdaDelta and Adam
have been proposed. According to Goodfellow et al. [43] there are, however, no consensus
about the optimal choice.

3.4.6 Regularization
Regularization refers to a collection of methods that are designed to increase model gen-
eralization and avoid over-fitting [83]. For simple machine learning models, the classic
example of such a method is an added constraint in the loss function that penalizes overly

37

Chapter 3. Artificial intelligence

complex models. The regularization thus forces the model to find a function that achieves
a sufficiently small training loss while still keeping the model complexity low. However,
deep learning models are almost always applied in complicated domains where the data
approximation cannot be found by tuning the number of parameters. Instead, regulariza-
tion in the deep learning domain focuses on methods which encourages generalization of
large models with fixed parameters [43]. The most basic regularization methods are briefly
mentioned in table 3.1 while data augmentation is detailed in the next sub-section.

Table 3.1: Commonly used deep learning regularization methods

Description
Weight decay Weight decay is used to penalize large parameter values.

The model complexity is thus constrained by forcing most
weights close to zero which essentially reduces overfitting.

Batch normalization Batch normalization applies rescaling and centering to the
input of all layers. The rationale behind this is that small
shifts in input can cause large changes in the input at deeper
layers. By applying normalization, large shifts are avoided.
Empirically batch normalization can provide faster learning
rates and much better performance [53].

Dropout Dropout is a method that during training randomly selects
a number of neurons that are temporarily removed from the
network. Dropout can such force the network to rely on
information from several parts of the network instead of
only specific parts [43].

Early stopping Model performance over the training and validation data is
generally improving up to a point where the model is
improving on the training set at the expense of the
validation. Stopping at this point is called early-stopping
and is believed to help avoid overfitting.

Data augmentation

One of the most effective ways to improve model performance is to increase the number of
training samples. Goodfellow et al. states that ”a rough rule of thumb is that a supervised
deep-learning algorithm will generally achieve acceptable performance with around 5,000
labeled examples per category” and can surpass human capability having over 10 million
samples [43, Goodfellow et al. p. 36]. In practice, however, data sets this large are hard
to obtain and potentially require much labeling effort. Most deep learning algorithms are
therefore trained on limited data sets.

To still achieve a sufficient amount of training examples, a common strategy is to aug-
ment the existing data [8]. ”New” training samples can thus be achieved by adding small
changes to the original images such as rotations, translations, scaling, flips, and color trans-

38

3.4 Deep Learning

formations. An example can be seen in figure 3.12. The goal is such to avoid over-fitting
by adding new unseen samples that are not too different from the original class samples.
It is worth noting that data augmentation only works if applied with caution. First of all,
data augmentation is essentially a regularizer that hinders model over-fitting by avoiding
the same image to appear multiple times. To adapt to new data, the model is still dependent
on enough real samples to capture the data’s essential features. Gathering enough data is,
therefore, still an important requirement. Secondly, data augmentation must not alter the
data in a way that does not represent the true environment. For instance, by flipping a car,
the model would learn that cars can be upside down, which is not true in the real world.

Figure 3.12: Augmenting an image into nine different samples by adding random rotations, hori-
zontal flips and translations.

3.4.7 Data quality and pre-processing
The goal of a deep learning model is to learn an approximation of the training data to
perform well on unseen data. Needless to say, the complexity and nice traits of any model
is therefore heavily dependent on the quality of the underlying data. Data sampling is thus
an essential part of any successful deep learning framework.

Having obtained good quality data, pre-processing might be necessary to convert raw data
into an acceptable format [2]. A typical data set might contain features with missing val-
ues, text strings, number values in different scopes, redundancies, and other problems,
which makes it unfeasible to input raw data into the machine learning model. The first
steps of pre-processing is thus, data cleaning, normalization and standardization of fea-

39

Chapter 3. Artificial intelligence

ture values. Afterward, pre-processing might contain work such as feature engineering to
create valuable features based on domain knowledge.

In computer vision, data samples are usually not expected to have missing values or dif-
ferent types of features. However, images can still be of different shapes, contain noise
and other intractable characteristics. Image pre-processing is therefore focusing on simply
standardizing images to the same format and potentially incorporate operations like gaus-
sian smoothing which reduces noise [37] and specific filters that enhances edges [126].
Other important pre-processing steps, for instance, in real time classification are dimen-
sionality reduction to reduce computation speed drastically [83].

For deep learning models applied in computer vision, most of the more sophisticated pre-
processing steps are usually skipped [43]. However, most models require that the input
images have the same image dimensions making image resizing a common pre-processing
step. Other operations as done in the ResNet [49] framework include pixel-wise rescaling
to a small value domain such as [-1,1] and subtracting the the per-pixel mean. Gener-
ally speaking, image pre-processing is less valuable for deep learning models because the
network itself can learn many of the human hand-designed pre-processing steps.

3.4.8 Training and tuning a neural network

In practical applications, the most successful approaches to deep learning are training a
mainstream model over the data and subsequently tuning its hyper-parameters [43]. The
first baseline is set by choosing a common network architecture, an appropriate loss func-
tion, and an optimization algorithm. The network is then trained to produce better result.
Training is performed in iterations starting with a forward pass for which input data is
flown through the network resulting in an output prediction. The loss between the output
prediction and the optimal target is then calculated by the loss function. Finally, a back-
ward pass is performed where the network weights are updated by gradient calculation to
produce a smaller loss.

After setting the initial baseline, improving the model follows the graph in figure 3.2. If
the initial model does not achieve a satisfying result, the model is likely underfitting due to
bad data quality or because the model is too simple. After assessing that the image quality
and the pre-processing steps are appropriate, the solution is to increase model complexity.
When good training results are achieved, the model’s ability to generalize is tested by
applying the model to a separate test set. Note that good training results usually4 implies
a similar potential on the test set. However, deep models easily overfits to the training
data leading to bad generalization traits and bad test results. Regularization constraints are
therefore applied to increase generalization with the potential cost of increasing training
error.

4A partial truth with many pitfalls. Because deep learning models are quite complex and difficult to interpret,
they can achieve ”good” results with unwanted behavior. For instance, learning ”that all women wear red t-shirts”
is an example of training over too few samples, thus adapting to useless features. Forgetting to shuffle the data is
another mistake leading to perfect results by simply remembering the sample order.

40

3.4 Deep Learning

3.4.9 Research datasets
Research and innovations within deep learning are mostly performed on a number of well
known and readily available data sets. This section provides a brief introduction to the
most important research sets and how model performance on these sets should be valued.

MNIST

The MNIST [67] data set, depicted in figure 3.13, is a collection of handwritten digits.
The database contains a total of 70 000 images where all are black and white and 28× 28
pixels large. For classification purposes MNIST is today considered a relatively simple set
that gives good results for both traditional machine learning and neural network models.
This year, the current state of the art performance for a single model was 99.79% [14],
and an off the shelf model can easily achieve over 99.0%. Despite this, the data set is still
considered an important benchmark set used in many publications.

Figure 3.13: Example images taken at random from the research data sets. Left image: Images
from the MNIST [67] data base. Right image: Images taken from the CIFAR10 [61] data base.

CIFAR 10

The CIFAR 10 [61] data set, depicted in fig. 3.13, consists of 60000 images distributed
into ten evenly sized classes. The images are RGB colored and 32× 32 pixels large. The
data set is generally considered more difficult than the likes of MNIST with state of the art
neural networks only reaching 79% accuracy in 2010 [60]. Today, however, the state of
the art neural network achieved 99.5% [31].

ImageNet

The ImageNet [29] data set is one of the biggest image databases in the world for object
classification containing more than 15 million labeled samples belonging to over 22 thou-

41

Chapter 3. Artificial intelligence

sand categories [62]. The images are RGB colored and of varying size. From 2010 until
2017, a subset of this set containing 1.2 million images and 1000 categories has been used
every year in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). It is on
this subset many of the famous neural network benchmarks are set. In 2012, AlexNet [62]
achieved a top-5 accuracy of 84.7%. In 2015 ResNet [49] achieved 96.43% exceeding
human labeling performance before the seNet [51] set the final score to 97.75% in 2017.

3.5 Supervised deep learning
As explained in section 3.4.8, current deep learning models are trained by predicting some
outcome and then update its weights based on the resulting loss. Naturally, a training
method that compares the model prediction against the ground truth seems an ideal way
to optimize the model. Of course, for many domains, there might not exist one absolute
answer. Still, supervised deep learning models have proven tremendously successful and
have become the current state of the art in computer vision.

Even though this thesis’s focus is unsupervised deep learning, the recent success of su-
pervised deep learning is interesting in many ways. First, in many unsupervised research
projects, the goal is to reach similar results as supervised models without using the la-
beled data. Furthermore, the lines between unsupervised and supervised learning are often
blurred [43]. Many neural network structures can, therefore, be utilized in both domains.
Thus, a deep neural network that performs well in a supervised setting might produce
useful results when adapted to the unsupervised domain.

In image classification, the neural network architectures are typically very similar regard-
less of the training domain. In this domain, state-of-the-art supervised models are convo-
lutional feedforward networks, consisting of a number of convolutional layers followed by
a small number of fully connected layers. The first part of the network can be viewed as a
feature extractor that gradually learns the feature representations. This information is then
passed to the last layer, which acts as the network classifier. Albeit trained end to end,
supervised models thus have very similar structures as their unsupervised counterparts.
Therefore, a goal of unsupervised classification models should be to learn similar feature
representations as the seemingly superior supervised networks.

There are several existing supervised networks which have provided excellent results in
image recognition and object recogntition Because of their good performance it is gener-
ally believed that the architectures are especially good for such purposes. Therefore these
architectures or parts of them are often adapted to the unsupervised domain and used as
backbones for the unsupervised model. The important architectures utilized in this thesis
is:

5-CONV

5-CONV is a deep neural network consisting of five convolutional layers which extracts
information to five succeeding fully connected layers. For plankton classification the
network have provided excellent results at the AILARON data set with over 95% accu-

42

3.5 Supervised deep learning

racy [99]. The network architecture is depicted in figure 3.14 showing a structure with
strong resemblance to the VGG16, but being much more shallow. As suggested in the
specialization-project [100], a shallow structure might prove beneficial when the data set
size is small. The network were thus less susceptible to over-fit providing as good results
as much deeper networks.

in
p

u
t

im
a

g
e

6
4

x
6

4
x

3

CONV1

BN

M
AXPOOL

6

4

lt
e

rs

CONV2

BN

M
AXPOOL

1
2

8

lt
e

rs

CONV3

BN

M
AXPOOL

2
5

6

lt
e

rs

FC FC FC FC

7
 n

o
d

e
s

CONV4

BN

M
AXPOOL

2
5

6

lt
e

rs

CONV5

BN

M
AXPOOL

2
5

6

lt
e

rs

5
1

2
 n

o
d

e
s

2
5

6
 n

o
d

e
s

2
5

6
 n

o
d

e
s

cl
a

ss
 a

ss
ig

n
m

e
n

t

Figure 3.14: The 5-CONV architecture. Illustrated in [99, Saad et al. p. 45]

VGG16

The VGG16 are a deep network proposed by Simonian and Zisserman in 2015 [104]. As
the name suggest, the VGG16, seen in figure 3.15, consists of sixteen sequential layers
of which thirteen are convolutional and three are fully connected. Compared to previous
state of the art models, such as AlexNet [63], the network have more layers but a much
smaller receptive field with kernels of size 3× 3. The architecture formed the backbone in
the authors ILSVRC-14 submission ending second in classification with a top-5 accuracy
of 93.2%. As suggested by the authors, the increased network depth compared to previous
ILSVRC submissions clearly proved beneficial. The cost of having a larger network with
more parameters is the requirement of bigger computational memory. Furthermore, the
complex structure can be notoriously hard to train and can easily over-fit on small data
sets. Overfitting can, however, be overcome by proper regularization and added batch-
normalization [73].

Figure 3.15: The VGG16 architecture. Illustrated in [39, Gong, p. 1].

43

Chapter 3. Artificial intelligence

ResNet

Residual neural network (ResNet) [49] is a class of very deep neural network architec-
tures that delivered astounding results in the ILSVRC-15 challenge. The networks consist
of several skip connection blocks, known as residual blocks, which make it possible for
the output signal to shortcut several layers. According to He et al. [49], the ResNet ar-
chitecture makes it easier to optimize networks of large depth, making it feasible to train
networks with up to 152 layers. The ResNet-34 design draws much inspiration from the
VGG network using 3×3 kernels and keeping the number of filters constant between each
downsampling operation. Of course, the biggest difference is that the layers are grouped
into residual blocks, depicted in figure 3.16 (a), where the signal can skip over two consec-
utive convolutional layers. Afterward, this design was improved in the ResNet-50 design,
which replaced the initial residual blocks with a block, depicted in figure 3.16 (b), con-
sisting of three convolutional layers. This model was then expanded into the ResNet-152
architecture, which won the ILSVRC-15 challenge with a top-five accuracy of 96.43%.

(a) Residual block of ResNet-34 (b) Residual block of ResNet-101

Figure 3.16: The figure depicts the two variations of residual blocks used in the ResNet design.
Left image: Depicting the ResNet-34 design consisting of two convolutional layers and one skip
connection. Right image: Depicting the Resnet-50 design consisting of three convolutional layers
and one skip connection. Illustrated in [49, He et al. p. 6]

3.6 Unsupervised deep learning
Unsupervised deep learning is essentially a sub-field of the broader unsupervised domain
described in section 3.2.1. In contrast to other unsupervised algorithms, however, deep
models are typically more complex and better capable of acquiring knowledge of abstract
concepts which is more informative than the sum of its parts [70]. Note that the relatively
clear distinctions between learning approaches in machine learning are less distinctive
for deep learning models. Goodfellow et al. informally states that; ”unsupervised learning
refers to most attempts to extract information from a distribution that do not require human
labor to annotate examples” [43, Goodfellow et al. p 146]. Unsupervised models have,
therefore, no access to annotated labels but can use other constructed target functions to

44

3.6 Unsupervised deep learning

optimize the weights similarly as in supervised training. A simple example is using the
inputs as targets, which is done by autoencoders. Such models can learn important data
features by making identical copies of the input.

A primary motivation behind unsupervised training is that learning without labels seems
much closer to how knowledge is acquired in real world biological systems. Many thus
believe that the next break-through of intelligent computer systems will emerge from this
domain [66]. While it is difficult to predict future advancements, it is clear that deep learn-
ing models greatly benefit from large amounts of training data [8]. Therefore, an apparent
advantage of unsupervised training is the capability to utilize the enormous amount of
available unlabeled data [70]. Still, the domain of computer vision is dominated by su-
pervised models except in special cases where the number of labeled samples are minimal
[43].

Throughout the last decade, unsupervised deep learning has been used in a wide variety
of applications. First, unsupervised learning played a major part in the resurrection of
deep learning in early 2000 when pre-training made it possible to train deeper and more
complex models [11]. Today, deep supervised models are less dependent on pre-training
[111], so the research has shifted more towards applications such as feature extraction,
dimensionality reduction, and denoising. This section takes a deep dive into the domain of
unsupervised feature extraction, providing necessary background material and presenting
the important models utilized in this thesis.

3.6.1 Untrained neural network
One of the easiest strategies to obtain an unsupervised feature extraction network is to
simply utilize a untrained network. In image feature extraction, CNN networks with ran-
domly initialized filters often works quite good [43]. Untrained CNN feature extraction
was introduced by Ulyanov et al. [110] who demonstrated that their network was capable
of extracting low-level statistics. The authors attest this capability to the invariant proper-
ties of convolutions and when stacking convolutional layers, their ability to capture greater
pixel relationships. These findings coincide with the experiments of Chang et al. [16] who
claim that randomly initialized filters are excellent edge detectors. Importantly, the choice
of network architecture affects the initial performance which ultimately affects how good
results an equivalent trained model can achieve. To choose an appropriate network archi-
tecture an effective strategy according to Goodfellow et al. [43] is therefore to train only
the last layer of several different architectures. The best performing network can then be
trained using a more expensive approach.

3.6.2 Autoencoder
An autoencoder is a neural network architecture that learns to create an identical copy of
the input. In theory the network can learn a perfect mapping by simply remembering a one
dimensional code for each input image or by remembering all the pixels. The networks
are therefore constrained with various architectural constraints and regularizers making
the networks unable to achieve perfect reconstructions [38]. An autoencoder can for in-

45

Chapter 3. Artificial intelligence

stance have a bottleneck structure that forces the input to be represented using only few
parameters. The network is thus encouraged to describe only the most important aspects
of the data.

Encoder Decoder

Input data Reconstruc�onLatent representa�on

Figure 3.17: The figure describes the autoencoder architecture. First, input data is transformed to
a latent representation by the encoder part before the input is reconstructed by the decoder part.
Illustration inspired from [94, Rocca].

The most common type of autoencoder architecture is depicted in figure 3.17. It can be
seen as an extension of the feed-forward neural networks sharing the same architectural
building blocks and training strategies [43]. Albeit not necessary, the architecture is usu-
ally symmetric [3] consisting of an encoder and its inverse decoder part. The encoder first
maps the input data into a smaller data dimension before the decoder tries to reconstruct
the input based on the low dimensional representation. The network can such be opti-
mized by finding the encoder (eθ) and decoder (dθ) weights that reduces the synthetic loss
function defined in equation 3.8 with respect to the input data (x).

L(x, x’)) =

n∑
i=i

(xi − dθ(eθ(xi))) (3.8)

The ultimate objective is, however, not to achieve a perfect reconstruction. Instead the
hope is that the network have learned informative representations that is useful for other
tasks. Autoencoder pre-training have provided a starting point for training deep supervised
models [50]. However, it remains an open question if such implicit training schemes can
provide optimal solutions [7]. For instance in classification, Hartono et al. pointed out that
labeled training seemed to ”influence the internal organization” [47, Hartono, p. 3]. Task
specific training might therefore learn a different set of features which is more optimal
than the set of features obtained by autoencoder training.

Since the start of the new deep learning wave, autoencoders have been extensively stud-
ied and applied to a wide variety of tasks. Such tasks include dimensionality reduction
and feature extraction [38]. More recently, the decoder part of a special type of autoen-
coders has started getting renewed attention as they can learn to make interesting artistic

46

3.6 Unsupervised deep learning

illustrations [3].

3.6.3 Generative adversarial networks
The generative adversarial network (GAN) is a relatively new idea which were proposed
by Goodfellow et al. [44] in 2014. The proposed idea is essentially based on a zero-sum
game between to opposing players where one player tries to trick the other player into
believing that a fake data sample is actually real. The model, seen in figure 3.18, consists
of two parts: The generator network first creates a number of fake images. Together with
a selection of real samples, the fake images are then fed into the discriminator network
which tries to distinguish the real data from the fake. The competition can thus be defined
by the minimax loss defined in equation 3.9 given in [44, Goodfellow et al. p. 3]. Here, G
is the generator, D the discriminator, x true data and G(z) synthetic data.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1−D(G(z)))] (3.9)

Upon reaching equilibrium, the generator should be able to make synthetic data which
is so similar to the real data that the discriminator is forced to guess [38]. Reaching the
equilibrium can, however, be extremely difficult. First of all the GAN can be quite unstable
since the loss is oscillating up and down depending on which network part that is currently
performing better. Another problem, called mode collaps, can happen if the generator finds
it easier to fake a particular class. The model can then be good at faking and recognising
a specific class, but forget everything about the other classes [38]. This year, Yazici et
al. [120] proved against earlier intuition that GAN networks can overfit by memorizing
the data set. The generator can thus win the game by making a copy of existing data
which complicates learning further. Training of GAN networks is thus usually a tedious
task which requires careful selection and fine tuning of the model architecture and hyper-
parameters [43].

Real sample

Input vector
Fake sample

Generator

Discriminator

Predic�on

Figure 3.18: GAN architecture. The generator network takes a randomized input vector and pro-
duces fake images. These images are then tried distinguished from the real samples by the discrimi-
nator part.

47

Chapter 3. Artificial intelligence

After training the model successfully, the general use case is to create synthetic samples
which can look amazingly realistic. As an example, Karras et al. [57] created human faces
of amazing quality while Elgammal et al. [33] showed impressive art design. Figure 3.19
shows synthetic MNIST numbers created by a small GAN network. More important than
artistic capabilities, new and unseen data samples can be used to increase a data set or to
reduce class imbalance [81]. GANs can therefore be an important tool for increased deep
learning performance.

Figure 3.19: Synthetic data which are very similar to the original MNIST [67] data, described in
section 3.4.9. The image was produced by a deep convolutional GAN using a Wasserstein loss.

3.6.4 Unsupervised models for better feature extraction
In the domain of image classification, supervised results are today performing much better,
compared to unsupervised or even semi-supervised algorithms. This makes it natural to
question whether models such as autoencoders or GANs, which are trained to learn dif-
ferent tasks, actually obtain feature representations that are also optimal for classification
purposes. Instead, the supervised end to end training using labeled data might be a more
effective method for learning good classification features. Inspired by such observations,
Xie et al. [117] proposed in 2016, the deep embedded clustering (DEC) algorithm which
creates a feature space that is better for linear clustering. First, an autoencoder is trained
end to end. Afterwards, the encoder weights are refined based on the high confidence
assignments from an added clustering layer. The DEC method and later improvements
[46, 59] have sucessfully shown their capability of manipulating the feature space of au-
toencoders for improved clustering. However, they are only tested using simple CNN

48

3.6 Unsupervised deep learning

networks on relatively small data sets with few classes.

With a similar purpose, Yang et al. [119] tried to achieve a better representation space
by training a CNN network on labels provided by a clustering algorithm. Their Joint
Unsupervised LEarning (JULE) model is trained step wise. First, the labels are provided
from an early stage of an agglomerative clustering model. The network is then trained on
these labels for around twenty epochs before repeating the steps. The algorithm proved
capable of obtaining a useful feature space on the MNIST dataset. However, it might be
challenging to scale the framework to bigger datasets [15]. In 2019, Caron et al. [15]
therefore proposed the Deep Cluster (DC) which simply train a deep CNN network using
labels obtained from a K-means clustering algorithm. The model is trained very similar as
the JULE framework by iteratively update the network weights and reassign the clustering
labels. Even so, the framework are successfully applied to the ImageNet data. Interestingly
the measured NMI between the true labels and the pseudo labels reveals a high amount of
misclassifications. Nonetheless, the model is capable of gradually improving its initial
feature representation to one which greatly improves the clustering accuracy. Finally, the
model is used as feature representation is used to achieve state of the art can be used for
feature extraction

Deep cluster model

In 2018, Caron et al. [15] at Facebook AI Research proposed a deep learning algorithm that
could learn useful feature representations by training on ”pseudo-labels”. As mentioned
in the previous section 3.6.4, their work belongs to a relatively new class of unsupervised
deep learning models which tries to augment the feature representation by incorporating
some form of labeled training. The Deep Cluster method depicted in figure 3.20 consists
of a conventional CNN network in combination with a K-means clustering algorithm. The
model starts by extracting features using the untrained CNN network and then labeling
these features using the K-means algorithm. The network is then trained in a supervised
fashion for one epoch before the first step is repeated.

49

Chapter 3. Artificial intelligence

DeepCluster

Predic�on

Clustering

Convolu�on

Neural Network

Figure 3.20: The Deep Cluster is trained using supervised learning. However, prior to each epoch,
the training labels are created by a clustering algorithm.

Note that the clustering usually results in a rather bad labeling accuracy meaning the net-
work trains on data containing many labeling errors. Prior to the first training epoch, Caron
et al. [15] reported a clustering accuracy of around 12% on the ImageNet data set mean-
ing nearly 90% of the set is misclassified. However, as training progresses the network
is gradually improving its feature extractions and thus increasing the clustering accuracy.
Albeit seemingly bad clustering results at the start of the training, the clustering accuracy
is much better than what a k-means algorithm can achieve on its own. A key factor for the
methods success is therefore the CNN networks capability of extracting relevant features,
as discussed in section 3.6.1, without any training. This is important since the DC method
achieves an adequate starting point which make it possible to improve the discriminative
power using clustering labels.

3.6.5 Unsupervised deep learning classification

The typical framework structure in unsupervised classification consists of a deep feature
extraction part and a separate classification layer. The big drawback of this separation is
that the classification part can’t influence how the feature extraction layer represents the
data. In section 3.6.4 several methods were described that partially solves this drawback by
introducing techniques that augments the feature representation to be more classification
friendly. However, the approaches are still focused on improving the feature extraction
part and then add a separate clustering model. Clearly, a preferable solution would be to
embed the classifier into the network structure and then train the parts together. Albeit a
seemingly reasonable solution, defining a loss function without knowledge of the ground
truth labels is, of course, the major challenge of unsupervised learning. Still, there exist

50

3.6 Unsupervised deep learning

some promising attempts of embedding clustering into the neural network structure. The
following sections attempt to give a more profound description of some of these methods.

DEC

The Deep Embedded Clustering (DEC) [117] is a method that facilitates for embedding the
clustering part into the deep learning structure. First, an autoencoder is trained to obtain
a good initial data representation. Then the decoder part is dropped, and the encoder is
merged with the clustering layer. The network is then fine-tuned using Kullback-Leibler
divergence L = KL(Q||P) between the clustering assignments Q and an auxiliary target
distribution P . The cluster assignments are calculated based on the students-t probability
distribution in equation 3.10 measuring the similarity between the output feature vector z
and the clustering center µ.

qij =
(1 + ||zi − µj ||2)−1∑
j(1 + ||zi − µj ||2)−1

, (3.10)

Here qij represents the soft cluster assignment which is the likelihood for the ith output
feature vector zi to belong to the jth cluster center.

The auxiliary target distribution p, given in equation 3.11 is then calculated by squaring
the soft assignments qij and then normalizing over frequency per cluster

∑
i qij .

pij =
q2ij/

∑
i qij∑

j(q
2
ij/

∑
i qij)

, (3.11)

Thus, the training can be seen as a form of self-training where the network tries to adapt its
predictions based on the initial high confidence assignments. In [117], Xie et al. observed
that the method gradually improves performance, which shows that the model can ma-
nipulate the feature representation to improve classification. However, the model is only
tested using relatively simple network architectures and relatively simple data sets such
as the MNIST [67]. The method’s capacity, when applied on more sophisticated tasks, is
therefore uncertain.

DAC

The Deep Adaptive Clustering (DAC) [16] is another technique to embed the clustering
process into the deep learning architecture. However, different to the above method, DAC
is trained in one single stage, skipping any pretraining stage. The algorithm starts by
selecting pair-wise similar images by computing the dot product between the soft label
assignments Ii and Ij given in equation 3.12.

51

Chapter 3. Artificial intelligence

rij :=


1, if Ii · Ij > u(λ)

0, if Ii · Ij < l(λ)

None, otherwise,
(3.12)

Where u and l represent the upper and lower thresholds for selecting the labeled pair as
similar or dissimilar, and λ is an adaptive parameter. Furthermore, the assignments I are
constrained by the L2 norm so that ||Ii||2 = 1. In this way, the vectors tend to be one-hot
vectors. Based on these obtained labels, the network is then trained in a supervised fashion.
Note that the network is trained in iterations by alternating the labeling and the training
process. The DAC algorithm is tested on several research datasets achieving great results
on simple datasets and an accuracy of convincingly 52% on the ImageNet [29] dataset.

3.7 Visualization tools

As deep neural networks’ network structures get more profound and complex, it gets ever
more difficult to interpret how the parameter values and their interconnection affect the
output prediction. Thus, deep learning neural networks are often referred to as ”black
boxes,” where the network internals are unknown. Deep neural networks’ performance
are, therefore, often based on metrics such as accuracy in which model predictions are
compared against human-annotated labels. However, entirely relying on such metrics is
a pitfall since the network may have learned to partition the data in a way that was not
intended. For instance, a much-used example in deep learning is the story of the very
expensive development of a neural network that was capable of separating American and
Russian tanks with 100% certainty [35]. However, when further examinations were made,
it turned out that the images were taken in different weather conditions meaning the net-
work had only learned to distinguish sunny and cloudy pictures. Albeit most likely an
urban legend, the story gives an important lesson not to rely solely on single metrics. This
section presents techniques that offer other ways to learn about the internals of the neural
network. These include methods that visualize the network’s low dimensional feature rep-
resentations and practices that reveal the image regions the network finds more interesting.

3.7.1 PCA

Principal component analysis [115] (PCA) is an effective and well proven method for di-
mensionality reduction and feature visualization [10]. The goal of PCA is to represent the
input data into a low dimensional space using only a selected number of principal compo-
nents while retaining as much information as possible. Figure 3.21 shows an example of a
PCA reduction showing that the important information can be kept by a much lower num-
ber of dimensions. Given an input x the method calclulates the covariance matrix given in
eq. 3.13 and then performs a linear eigendecomposition given in eq. 3.14.

52

3.7 Visualization tools

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T (3.13)

uT1 Su1 = λ1 (3.14)

Where λ1 is an eigenvalue and u1 an eigenvector of the covariance matrix S given in eq.
3.13. The eigenvector u1 with the largest eigenvalue λ1 is the first principal component.
More informally, the first component is the vector that explain the most variance in the data
and thus retain most information. Often, most information can be kept by only a handful of
such components. Dimension reduction can thus make it much easier to explore the data
and speed up machine learning training without reducing the accuracy. However, PCA are
limited by its linear nature. The method therefore fails when the data points correlate in
non-linear ways such as spherical shapes.

Figure 3.21: The figure shows PCA dimensionality reduction on the MNIST [67] data set. Left
image: Original image having 28 × 28 = 784 dimensions. Middle image: Same image reduced
to 236 dimensions retaining 90% of explained variance. Right image: Same image reduced to 141
dimensions retaining 80% of explained variance.

3.7.2 T-SNE

T-Distributed Stochastic Neighbor Embedding [79] (t-SNE) is a method for dimension-
ality reduction and visualization of high dimensional data. As mentioned in the section
above, PCA and other linear visualization techniques perform badly on non-linear data.
According to Maaten et al. [79], linear techniques focus on separating dissimilar points
apart while keeping the low-dimensional representations of similar points close. The t-
SNE minimizes the mismatch between the conditional probabilities pij and qij defined in
equation 3.15 and 3.16 reproduced from [79, Maaten p. 2584].

pj|i =
exp(−||xi − xj ||2/2σ2)∑
k 6=i exp(−||xk − xl||2/2σ2)

(3.15)

53

Chapter 3. Artificial intelligence

qj|i =
exp(−||yi − yj ||2)∑

k 6=l exp(−||yk − ylk||2)
(3.16)

Where pi|j converts the high dimensional data points x into probabilities using the Eu-
clidean distance between points and their probability mean. Equivalently, qi|j is calculated
using the low dimensional points y. The t-SNE algorithm now searches for a representation
of the points x and y so that the distribution p equals q. An example of a two dimensional
PCA and t-SNE plot is seen in figure 3.22. The t-SNE model are evidently a very strong
tool for visualization of non-linear data and clearly manage to preserve some of the lo-
cal structure and data groupings. An important note is that the t-SNE algorithm does not
retain the distances between points. One must therefore tread carefully when measuring
class similarities based on point-wise distance.

Figure 3.22: The figure show a two dimensional representation of the MNIST [67] data using the
PCA (left image) and t-SNE (right image) algorithms. Similar colored points belong to the same
class as the ground truth labels. Observe that the two dimensional space produced by the t-SNE
algorithm seems much better at keeping similar points close and separating dissimilar groups.

3.7.3 CAM
Class activation mapping CAM is a method that visualizes the image regions that were
more important in the CNN classification decision. The method builds on the idea that the
last convolutional output feature maps displays high-level concepts and details of certain
regions easily visualized in a heatmap. Furthermore, by tying these maps to a specific
class, the network reveals information about which image aspects the predictions were
based upon. The method was proposed by Zhou et al. [124] and used to describe neural
network behavior on the ImageNet [29] data set. The required network architecture follows
conventional CNN networks, but the classification layer is constrained to a GAP layer
followed by a fully connected softmax layer. As seen in figure 3.23, a heatmap for a
specific class can then be calculated by summing the class weights and the output feature

54

3.7 Visualization tools

maps from the last convolutional layer.

Figure 3.23: The figure show the construction of a CAM. The map is constructed by summing the
class weights and the output feature maps from the last convolutional layer in the neural network.
Note that the method requires a particular network structure to work.

3.7.4 Grad-CAM
A drawback with the CAM algorithm, described in the above section 3.7.3, is the re-
quirement of a particular network structure. Many networks does not have this structure
meaning the method cannot be used. The recently proposed Grad-CAM method [102]
is a generalization of the CAM method that works on several more CNN model types.
As in the original CAM method the algorithm first calculates the forward pass and stores
the output feature maps and class predictions. However, in the Grad-CAM method, the
weights are calculated using the gradient of class score with respect to the feature map
activation’s of a convolutional layer. The method thus circumvent the necessity of a strict
network structure making it much more accessible.

55

Chapter 3. Artificial intelligence

56

Chapter 4
Methodology

This chapter presents the proposed unsupervised classifier framework in this thesis. A de-
tail on the model implementation and experiments is further elaborated hereunder. First,
section 4.1 presents the proposed unsupervised classification framework’s general setup
which consists of three main components. These components are depicted in figure 4.1
and each component is detailed more closely in its own section. First, the data and prepro-
cessing pipeline is detailed in section 4.2. Then, section 4.3 describes the deep learning
feature extraction part. Finally, section 4.4 presents the classification and subsequent im-
age labeling.

4.1 Unsupervised classification framework
The basic classification framework follows the traditional object recognition approach de-
scribed in section 3.3. The framework is visualized in figure 4.1 and consists of three main
parts:

1. The images are transformed into a consistent format in the pre-processing part.

2. The feature extraction network transforms a high dimensional input image into a
low dimensional feature representation.

3. The produced low dimensional representation is fed to a classification model that
maps the input to a category.

Observe that the different components in this framework can be adopted in most object
recognition algorithms. For instance, the convolutional layers of a supervised CNN net-
work are used to extract useful features, which are then fed to the classification part rep-
resented by the last fully connected layer. However, the main purpose of this framework

57

Chapter 4. Methodology

is the adoption of the integrated approaches in the unsupervised learning domains. Fea-
ture extraction is done using deep learning while the classification is performed using an
additional layer or a separate machine learning clustering algorithm. Section 4.3 presents
the different feature extraction alternatives and section 4.4 describes the clustering models
used for classification.

Figure 4.1: The proposed unsupervised classification framework. Input images are mapped to a low-
dimensional space by the feature extraction network and subsequently classified by the clustering
model.

4.2 Data pre-processing
This section explains the pre-processing and image augmentation steps over the Kaggle
and AILARON data set, respectively. Based on the theory in section 3.4.7, the image
pre-processing was kept simple so that the deep learning models can learn the best way to
pre-process the data on their own. The same conclusion was drawn in the specialization-
project were some novel attempts of enhancing image quality using hand-designed filters
were tested without noticeable improvements. Some pre-processing steps are, however,
performed in this thesis. Due to architectural constraints, the images need to have similar
dimensions. Image resizing is therefore applied. Furthermore, deep neural networks usu-
ally work better on small input data. It was thus decided to standardize the pixel values
into a small domain. Data augmentation is applied at training time to avoid overfitting
and increase model generalizability. Since the plankton objects are depicted in all possible
orientations, this allowed for a quite aggressive augmentation in regards to rotation and
translation.

The data pre-processing over the Kaggle and AILARON data mainly follows the specialization-
project steps to ensure a valid comparison. Furthermore, the data pre-processing is kept
simple in accordance to the general requirement discussed above and current best prac-
tise in the deep learning domain. The steps are as follows: 1. The images are resized to
64 × 64 pixels which was the image format used by Saad et al. [99] in the supervised

58

4.2 Data pre-processing

classification domain. 2. The data is centralized around zero by subtracting the mean.
3. The data is normalized to the [-1,1] domain. Lastly, the models are constructed for
the purpose of classifying RGB images (which are the format of the AILARON data set).
The one-dimensional images are therefore copied three times to fit the three-channel input
while the AILARON dimensions are kept.

Unless stated otherwise, the algorithm training is conducted using data augmentation to
increase generalization and avoid model overfitting. An example of these random aug-
mentations applied on a copepod image can be seen in figure 4.2. During training, the
following functions were applied at random to each batch:

• Rotations: Random rotations between zero and ninety degrees.

• Shifts: Random horizontal and vertical shifts which moves the object at most 10%
in either direction.

• Zoom: Increasing or decreasing the object size by adding or interpolating pixels
respectively. The range is set to 20% in either direction.

• Flip: Random horizontal or vertical flips of the image.

59

Chapter 4. Methodology

Figure 4.2: Example of data augmentations applied to a copepod image in the Kaggle and the
AILARON data set.

4.3 Feature extraction network

This section explains the second step of the framework explained in section 4.1. Conven-
tional machine-learning clustering methods usually have poor performance on high dimen-
sional data [82]. Therefore, deep learning feature extraction methods are used to map the
data into a feature representation space where existing clustering methods can more easily
classify the data. Today, a wide variety of methods seek to learn a clustering-friendly data
representation using neural networks. First, the traditional machine learning approaches
for feature extraction are presented in section 4.3.1. Then, three different unsupervised
deep learning methods are presented next for improved feature extraction. Section 4.3.2
presents an autoencoder network. Then, in section 4.3.3 a GAN network is described.
Finally, in section 4.3.4 the DeepCluster algorithm is presented.

60

4.3 Feature extraction network

4.3.1 Traditional unsupervised feature extraction models

Prior to deep learning-based feature extraction, image feature extraction was typically per-
formed by less complex machine learning algorithms. Such models might prove beneficial
for the AILARON task as they are much faster and easier to train and require less memory
compared to the more complex neural network models. In this work, the SIFT [74] and
the SURF [6] algorithms, described in section 3.3.1, are utilized. These models are among
the most successful machine learning classifiers, albeit usually surpassed by deep learning
networks in recent applications.

4.3.2 Autoencoder model

Autoencoders have, for a long time, been considered one of the most promising unsuper-
vised deep learning models. Related to this work, there have been several attempts at utiliz-
ing them for feature extraction, and subsequent classification [18, 92]. However, few great
successes have been achieved, and the focus has gradually shifted to purely supervised
models. As discussed in section 2.3.3, autoencoders were revisited in the specialization-
project, and the feature extraction capabilities of several architectures was notoriously
tested. The deep convolutional models proved capable at learning data representations
where similar samples were grouped and separated from dissimilar ones. However, a con-
sistent problem was the separation of similar species of different rotation.

This thesis copies the same general autoencoder approach as done in the specialization-
project. However, the proposed architecture is changed to create a more robust model to
similar species with different rotations. Such an autoencoder idea was explored in the work
of Kuzminykh et al. [65] who created an autoencoder that is invariant to thirty degrees
rotation. However, their work is not publicly available, which makes it challenging to
adapt their model. Furthermore, their work focuses on extracting invariant features using
a new extraction technique. Their network is, therefore rather shallow and with a very
different structure. Other relevant works include the supervised Group-equivariant CNN
network created by Veeling et al. [112]. This network becomes rotation invariant to ninety
degrees rotations by utilizing group convolution layers. The proposed method is depicted
in figure 4.3 where the model is trained end to end by learning to reconstruct planktonic
images. At test time, the decoder part is removed, and the latent representation learned by
the encoder part is fed to a separate clustering algorithm.

61

Chapter 4. Methodology

Encoder Decoder

Training

Encoder

Tes�ng

Clustering

algorithm

Input

Input

Feature space

Feature space

Reconstruc�on

Figure 4.3: The autoencoder is trained by copying input to output. At test time, the decoder part is
removed and the encoder is used to extract features to a separate classification algorithm.

The architecture is partly symmetric, using an encoder based on the 5-CONV architecture
and an inverted decoder part. Different from previous networks, the convolutional and
transposed convolutional layers of the encoder are replaced by group-convolutions fol-
lowed by group-batch normalization. The full architecture is depicted in table 4.1 where
G-Conv layer refer to the collective group consisting of group-convolutions, group-batch
normalization and leaky-ReLU activations. The network takes an input image of dimen-
sions height, width and channelsH×W ×C = 64×64×3. Information is then extracted
in four stages where the number of output feature maps are doubled and the feature map
size reduced by four. Similarly, the decoder part upscales the input and reduces the dimen-
sions using four inverse stages. The final output is a 64×64×3 reconstruction transformed
by a tanh activation function.

The architecture is constrained into an hourglass shape where input dimensions are grad-
ually reduced to prevent model overfitting and force learning of important features. The
middle layer, referred to as the ”bottleneck layer,” consists of two layers. First, the feature
maps are grouped into 512 rotation invariant feature maps using a group-pool layer. These
maps are then transformed into a 1×512 vector by a GAP layer. A GAP layer was chosen
as it worked well as a regularization term in the specialization-project and has gradually
started replacing traditional dense layers implementations in recent state of the art models
[91]. The loss function is defined similar to the specialization-project using MSE which
is a well-attested choice to measure reconstruction loss [22]. Based on the loss function
explained in equation 3.8 the loss thus becomes:

MSE =
1

n

n∑
i=i

(xi − dθ(eθ(xi)))2 (4.1)

Where dθ(eθ(xi)) is the encoder-decoder reconstruction of the input x. Finally, the op-
timizer was chosen based on trial and error resulting in the Adam [58] algorithm with

62

4.3 Feature extraction network

standard settings.

Table 4.1: Overview of the rotation invariant autoencoder architecture

Layer Kernel Channels Output dimension

Input - 3 64x64
G-Conv 3x3 256 64x64
Max pool 2x2 256 32x32
G-Conv 3x3 512 32x32
Max pool 2x2 512 16x16
G-Conv 3x3 1024 16x16
Max pool 2x2 1024 8x8
G-Conv 3x3 2048 8x8
Max pool 2x2 2048 4x4
G-Conv 3x3 2048 4x4

G-pooling - 512 4x4
GAP - - 512

Dense - - 32768
Reshape - 2048 4x4
Trans-Conv 3x3 512 8x8
Trans-Conv 3x3 256 16x16
Trans-Conv 3x3 128 64x64
Trans-Conv 3x3 64 64x64
Trans-Conv 3x3 3 64x64
Number of parameters: 45 801 795
Loss function: MSE
Optimizer: Adam

4.3.3 GAN

The recently proposed GAN networks offer another way to learn the underlying data rep-
resentations without ground truth labels. These networks have gained much attention, es-
pecially due to the excellent new images created by the generator part. However, Observe
that the learning scheme also results in a discriminator part which trained to distinguish
fake from real samples. To differentiate these samples, the discriminator thus needs to
learn the data’s main features. As visualized in figure 4.4, an unsupervised classification
framework can be obtained by training the GAN network and then use the discriminator
for feature extraction. In their work to improve GAN training such attempt was made by
Radford et al. [91]. However, they proved the feature extraction capabilities by training a
supervised classifier on top of the extraction network. More importantly, their work have
partially solved many of the problems making GAN networks notoriously hard to train.
Goodfellow states that ”most GANs today are at least loosely based on the DCGAN archi-
tecture” [42, Goodfellow p. 27]. As mentioned in section 2.3.2, Wang et al. [114] partially

63

Chapter 4. Methodology

solved the problem of class imbalance over the WHOI [87] plankton data set by using an
architecture very similar to the DCGAN. Their findings, albeit focused on the generator
part, suggest that GAN networks can be adapted to the planktonic domain.

Real sample

Input vector
Fake sample

Generator

Discriminator

Predic�on

Discriminator

Real sample
Latent representa�on

Clustering

algorithm

Training

Tes�ng

Figure 4.4: The GAN is trained using two competing networks. The generator creates fake images
which is then distinguished from real images by the discriminator. At test time, the generator part is
removed and the discriminator is used to extract features to a separate classification algorithm.

The full GAN architecture is presented in table 4.2 basing the implementation on the Ten-
sorFlow exemplary model [1] and using general guidelines from [38, 91]. The generator
part, first inputs a randomized vector of size 1×100. Based on this input, the network pro-
duces 512 output feature maps of size 4×4 using a fully connected layer with leaky-ReLU
activation. These maps are then transformed into a 64 × 64 image over four stages us-
ing transposed convolutions followed by leaky-ReLU activation and batch-normalization.
Lastly, the output is transformed into a 64×64×3 image using a convolutional layer with
tanh activation function.

The discriminator model mainly follows the overall design of conventional CNN networks.
The input image is either real or generated with dimensions height, width and channels
H×W×C = 64×64×3. Information is then extracted in four stages using convolutional
layers followed by leaky-ReLU activation and batch-normalization. Furthermore, dropout
regularization was applied to reduce the convergence speed. After the convolutional part,
the feature maps are then reduced into a 1× 8192 vector using a flattening operation. The
flattening is then followed by two fully connected layers, where the last layer predicts
whether the image is true or false. Observe that the final fully connected layer has no
activation. According to the guidelines, a sigmoid activation is recommended, but such
activation seemed to make the discriminator too powerful, making the generator incapable
of learning. The loss is measured using Cross Entropy based on the discriminator image

64

4.3 Feature extraction network

predictions, The optimizer follows the parameter assignment from Radford et al. [91]
using the Adam [58] optimizer with learning rate α = 0.0001 and β 1 = 0.5.

Table 4.2: Overview of the GAN model architecture

Generator
Layer Kernel Channels Output dimension

Input - - 100
Dense - - 8192
Reshape - 512 4× 4
Trans-Conv 5× 5 512 8× 8
Trans-Conv 5× 5 256 16× 16
Trans-Conv 5× 5 128 32× 32
Trans-Conv 5× 5 64 64× 64

Trans-Conv 5× 5 3 64× 64

Discriminator
Layer Kernel Channels Output dimension

Input - 3 64× 64
Conv 5× 5 64 32× 32
Conv 5× 5 128 16× 16
Conv 5× 5 256 8× 8
Conv 5× 5 512 4× 4

Flatten - - 8192
Dense - - 256
Dense - - 1
Number of parameters: 18 122 817
Loss function: Cross Entropy
Optimizer: Adam

4.3.4 Deep cluster model

The theoretical observations in section 3.6.4 and the DCEC experiments conducted in the
specialization-project shows the importance of finding models that can learn more optimal
feature representations for classification. One of the current state of the art models is
the Deep Cluster [15], described in section 3.6.4, that have achieved good performance
on the ImageNet [29] data set. Encouraged by these results, the method was adapted
to the unsupervised research of this thesis. The core of the Deep Cluster code1 remains
unchanged in this thesis model adaption. However, the programming platform is changed

1Code available at https://github.com/facebookresearch/deepcluster.

65

https://github.com/facebookresearch/deepcluster

Chapter 4. Methodology

from PyTorch to TensorFlow to fit into the already created framework and make the results
better comparable to the other extraction networks.

In the original DeepCluster work [15], Caron et al. used the AlexNet [63] and the VGG16
[104] models as backbone networks. However, the choice of the backbone network is very
flexible, making it possible to try other network architectures. The framework was thus
tested using three different CNN architectures adapted from the supervised domain: 1.
5-CONV [99], 2. VGG16 [104] and 3. ResNet [49]. The first network was chosen due to
its good performance on the AILARON data, while the other two have achieved excellent
results on other computer vision tasks.

Training of the Deep Cluster follows the procedure listed in Algorithm 1. First, from lines
2-4, the framework is initialized. The input is a set images having input of dimensions
height, width and channels H ×W × C = 64 × 64 × 3. The model is one of the three
backbone networks described above, and the clustering algorithm is K-means. Second,
from lines 6-9, the pseudo-labels are created by clustering the backbone network’s feature
extractions. Then, from lines 11-14, the backbone network is trained on the image/pseudo-
label data set for one epoch before the loop repeats. The loss function was defined as
categorical cross-entropy and the optimizer was stochastic gradient descent with learning
rate lr = 0.005 and momentum m = 0.05.

Algorithm 1 Deep Cluster

1: procedure
2: Input← Images
3: Model← CNN network
4: Cluster algorithm← K-means
5: for Epoch 1 to 100 do
6: if Get pseudo-labels then
7: CNN← Remove classification layer
8: Features← CNN(Input)
9: Labels← Kmeans(Features)

10: if Train then
11: CNN← Add new classification layer
12: dataset← (Images, Labels)
13: for data in dataset do
14: Train CNN(data)

return Model

Number of clusters

An important hyperparameter in the Deep Cluster framework is the number of clusters
k. A rational number would be k = 121, same as the actual number of classes in the
Kaggle data set. In the ideal case, the clustering should thus result in a data set containing
pseudo-labels similar to the human annotated ground truth labels. However, Caron et al.
found that some amount of over-segmentation was beneficial and set their k = 10000 on
the ImageNet [29] data set. Like Caron et al. in [15] different numbers of k were tested

66

4.4 Classification model

in this thesis, and the resulting models were tested and validated. The number of clusters
and hence the number of training categories was chosen to be be k = 200 on the Kaggle
data and k = 20 for the AILARON data.

4.4 Classification model
The previous section 4.3 discussed the different methods used for feature extraction. The
second part of the unsupervised classification framework, described in section 4.1, is the
classification model. In most previous unsupervised works, the classification part is sep-
arated from the extraction network [82]. Data is first transformed into a low dimensional
representation and then clustered by a traditional clustering algorithm. However, a very
recent branch of deep unsupervised learning focuses on embedding the clustering part
into the deep learning model to obtain more clustering-friendly representations and sub-
sequently increased model performance [82]. This section presents classification compo-
nents from both domains. First, several classical clustering algorithms that are separated
from the extraction network are presented in section 4.4.1. Then, the DEC approach that
aim to embed the classification into the feature extraction model are presented in section
4.4.2.

4.4.1 Machine learning cluster algorithms

This subsection describes the clustering algorithms that are utilized using the traditional
unsupervised approach. First features are extracted using a deep learning model, and then
the algorithms described underneath are used for classification.

K-Means

K-means [80] is a partition-based clustering algorithm aiming to minimize the Euclidean
distance from each sample point to one of the k cluster centers. These k clusters must be
defined before the algorithm is run. The algorithm is well attested, much used, and quite
fast compared to many other clustering algorithms. However, the method usually performs
poorly on non-linear data, elongated clusters, or on irregular shapes.

Spectral Clustering

Spectral Clustering [113] (SC) is a group of clustering methods which is more robust,
as opposed to linear methods, when handling non-linear features. The algorithm can be
seen as a combination of centroid- and connectivity-based clustering techniques. The
algorithm first uses a connectivity-based algorithm to construct a similarity graph where
each edge represents a connection between two similar points. Based on this graph, the
algorithm creates a low dimensional embedding so that connected points end up closer and
non-connected points end up relatively far away. Finally, the points now represented in a
low dimensional space are clustered by a centroid-based clustering algorithm (K-means is
implemented in Scikit-Learn [89]).

67

Chapter 4. Methodology

Gaussian-mixture

The Gaussian-mixture model is a clustering algorithm that assumes the data to come
from different Gaussian distributions. Clusters, typically ellipsoidal groups of points, are
formed by points that are likely to have been produced by the same distribution. The al-
gorithm starts by randomly assigning initial components (cluster centers), which are then
iteratively improved using Expectation-Maximization (EM). First, the probability of each
assignment being generated by each component is calculated. Then, the mean and variance
of each component are tweaked to better accommodate these assignments.

BIRCH

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [122] is an algo-
rithm designed to work efficiently on large data sets. The core of BIRCH clustering is to
build a tree structure, called Clustering Feature Tree, which holds necessary information
about the data, thus avoiding to store all data points. This structure can then be used to
quickly assign new points to a desired class.

4.4.2 Deep learning embedded clustering
Current state of the art models in computer vision are supervised deep neural networks
trained end to end. Therefore, it would seem beneficial to also train the unsupervised deep
learning framework end to end so that the weights of the feature extraction layers can adapt
to the clustering layer. Of course, the problem with this strategy, as opposed to supervised
training, is that unsupervised models do not know the ground truth labels, meaning one
must make various assumptions on the data structure. The following method incorporates
a clustering layer into the unsupervised deep learning structure and makes it possible to
train end to end.

DEC

Deep Embedded Clustering (DEC) [117], explained in section 3.6.4, is a framework that
makes it possible to incorporate the clustering method into the neural network structure.
The network can thus learn to extract features that are better adapted to clustering. In
the original work, the proposed architecture is an autoencoder that first learns a feature
representation by learning to reconstruct images. The pre-trained encoder part is then
connected to the clustering layer and fine-tuned using the KL-divergence between the soft
assignments and an auxiliary target distribution [82]. The DEC implementation in this the-
sis follows the original work except for the feature extraction networks being pre-trained
in various ways.

68

Chapter 5
Experiments and implementation
details

This chapter provides information about the code framework and necessary implementa-
tion details for building the unsupervised framework described in chapter 4. The chapter
then presents the details and purpose of the three experiments conducted. The structure of
the chapter is the following. First, section 5.1 provides a short description of the important
software platforms used in this work. Section 5.2 then details the software packages used
to build the deep learning algorithms. Next, in section 5.3 the computer specifications
are listed. Lastly, section 5.4 presents the experiments explaining the approach and the
objective of each task.

5.1 Software platforms and important code libraries

The code implementation was done using several different software packages. Some are
directly related to the deep learning and computer vision task while others serve more ba-
sic functionality such as image pre-processing, and image visualization. An overview of
the relevant software can be found in table 5.1. The main code implementation was done
using python 3.6, and Tensorflow [1] using the Keras [17] high-level API. The code imple-
mentation can be found in the following Github repository, https://github.com/
AILARON/Unsupervised-classification, where further dependencies are noted
in the install.txt file.

69

https://github.com/AILARON/Unsupervised-classification
https://github.com/AILARON/Unsupervised-classification

Chapter 5. Experiments and implementation details

Table 5.1: Description of important code libraries and software platforms

Description
Tensorflow Tensorflow [1] is an open source platform specifically desi-

gned for deep learning and computationally heavy algorithms.
It was developed by the GoogleBrain team and is frequently
utilized in Google’s own services. Geron et al. claims in
[38, Geron et al. p 376] that TensorFlow is today ”the most
popular Deep Learning library (in terms of citations in papers,
adoption in companies, stars on GitHub, etc)”. Furthermore, in
the latest release TensorFlow adopted Keras as its official high-
level API and greatly improved the documentation which have
made the platform much easier to work with [38].

Keras Keras [17] is a high level API that provides building blocks for
building and training deep learning neural networks. Albeit a
simplistic and often easy to use interface, it is very flexible and
can be used to build a wide variety of network architectures [38].

Scikit-learn Scikit-learn (Sklearn) [89] is an open-source machine learning
library which is well integrated with the Python programming langu-
age. Scikit-learn provides both classic and state of the art implemen-
tations including supervised, clustering and regression algorithms.

OpenCV Open Source Computer Vision Library (OpenCV) [12] is an open-
source machine learning and computer vision library. It contains
more than two thousand optimized algorithms as well as readily
available functions for image pre-processing and model evaluation.

CUDA To train deep neural networks within a reasonably amount of time,
it is necessary to make the computations using a GPU unit. CUDA
[84] is a Nvidia developed programming model which enables the
parallelizable code parts to run in parallel over the GPU cores.

Faiss Faiss [54] is an open-source library for efficient similarity search
and clustering. It is well integrated with the Python programming
language and many of the algorithms have GPU support. Further-
more, many of the clustering methods can be utilized even if the
data does not fit in RAM.

GrouPy and
keras gcnn The GrouPy [19] library is a python library that implements the

necessary modules to create group convolutional neural networks.
This library is further extended into a Keras library called
keras gcnn [112].

70

5.2 Deep learning model requirements

5.2 Deep learning model requirements
With the interest and increased focus on deep learning for industrial applications, the code
libraries and software development platforms are rapidly changed and improved. As older
code versions are unlikely to be compatible with the new version, this results in the need
to utilize different models using different versions of the same software platforms. This
section provides an overview of the third-party libraries and versions necessary to run the
deep learning models.

Autoencoder

The rotation invariant autoencoder described in section 4.3.2 was implemented using an
older version of TensorFlow due to compatibility issues with the the Groupy and Keras gcnn
third-party libraries. The code is tested and run successfully with the packages listed be-
low.

1. Tensorflow 1.15.0

2. Keras 2.3.1

3. groupy1

4. keras gcnn2

GAN

The GAN model described in section 4.3.3 was implemented using TensorFlow and Keras.
The main model architecture is built using the Keras high-level API whereas the training
loop is constructed using TensorFlow functions. The code is tested and run successfully
with the packages listed below.

1. Tensorflow 2.0.0

2. Keras 2.3.1

Deep Cluster

The DC model described in section 4.3.4 is adapted from PyTorch code using Tensor-
Flow and Keras. The backbone network architectures and the network training are mostly
constructed using the Keras high-level API embedded in TensorFlow. Furthermore, the
models are trained on labels constructed by a clustering algorithm. In line with the imple-
mentation in [15] the clustering is run using the Faiss library. The code is tested and run
successfully with the packages listed below.

1. Tensorflow 2.0.0
1Code available at https://github.com/tscohen/GrouPy
2Code available at https://github.com/basveeling/keras-gcnn

71

Chapter 5. Experiments and implementation details

2. Keras 2.3.1

3. Faiss3

5.3 Computer specifications
The training and testing are performed on a lab computer with the specifications listed
in table 5.2. All experiments were conducted on a single GPU with 11 GB of internal
memory and over four thousand cores.

Table 5.2: Description of the computer specifications

OS: Ubuntu 18.04.2 LTS
CPU: Intel LGA1151 i9 - 9900K
GPU: 2x ASUS RTX2080Ti Turbo
RAM: 64 GB
SSD: Crucial MX500 2TB
HDD: Seagate Skyhawk 6TB

5.4 Experiments
This section provides details about the experiments conducted in this thesis. The purpose
is to provide a better overview of the work and experimental setup and to explain the
intention behind each experiment.

5.4.1 Experiment 1 - Unsupervised feature extraction algorithm
A sub-goal of this thesis is to discover a self-learned deep learning network capable of
extracting useful features for subsequent classification. Experiment 1 is thus dedicated to
validate and assess the different feature extraction models explained in section 4.3. Note
that the first attempts at obtaining such a model were conducted in the specialization-
project. This experiment follows the same approach and test specifications to ensure a
valid comparison to these networks. The training is thus performed on the Kaggle-DB2
while extraction capabilities are validated over the Kaggle-DB1.

The first part of the experiment sets a baseline by training several state of the art supervised
CNN and validating their feature extraction capabilities. This was done to make a better
comparison to the existing supervised work in the domain and to get an indication of what
results to expect from the unsupervised models. Then, the extraction capabilities of the
SIFT and the SURF unsupervised machine learning models are validated. Finally, the three
feature extraction networks described in section 4.3 are trained in their own respective
way before being thoroughly tested and validated. The following validation methods and
performance metrics are used to assess the model performance:

3Code available at https://github.com/facebookresearch/faiss

72

5.4 Experiments

• Assessment of the training and validation loss to reveal how the model generalizes
to the plankton data.

• Model accuracy using k-means and SC clustering. The cluster labels are assigned
using the Hungarian method and compared against the ground truth labels. The test
assumes that in accordance with Kuzminykh et al. in [65], a higher performance
implies that the deep network has learned a better representation of the data.

• Visualization of representational space using t-SNE and PCA. How the data is grou
-ped in the 2D plot is assumed to reveal information about how the deep network
represents the data.

• Visualization of the network class activation maps. The goal is to reveal some of the
network thought processes or discover networks that do not behave in the intended
way.

5.4.2 Experiment 2 - Choosing the appropriate building blocks of the
framework

In the first experiment, several feature extraction models were tested and validated follow-
ing the specialization-project approach. Experiment 2 aims to further assess the suitability
of the best feature extraction models from the previous experiment and fit these networks
with an appropriate clustering algorithm to finalize the proposed framework.

The experiment is mainly conducted over the Kaggle-DB1 data set using models trained
on the Kaggle-DB2 data set. A problem with this setup is that the larger data set includes
all samples from the smaller validation set so that the validation data is seen during the
training. Note that this approach is following recent work in the unsupervised domain
[16, 46, 117, 119]. However, to prove that the feature extraction models are unbiased to the
validation data, the first part of this experiment is dedicated to test the model performance
on a small subset consisting of 100 unseen samples from the Kaggle-DB1 data set.

Then, to gain more insight into how the feature extractions and clustering assignments
are connected, the feature representations are visualized using t-SNE and compared to the
corresponding confusion matrix. Lastly, the clustering algorithms, described in section
4.4, and their performance is more thoroughly investigated with the hope of finding a
more suitable model for the AILARON tasks. The additional validation methods and
performance metrics used in this experiment are the following:

• Classification performance between the cluster assignments and the ground truth la-
bels. In their unsupervised survey, Min et al. [82], in accordance with other previous
work [16, 46, 117], recommends the following metrics: 1. Accuracy using the Hun-
garian algorithm [64] to map ground truths and cluster assignments. 2. Normalized
Mutual Info Score between ground truth and cluster assignments.

• Evaluate the clustering assignments by comparing the deep learning feature repre-
sentations, using the t-SNE algorithm, and the classification matrix. The goal is

73

Chapter 5. Experiments and implementation details

to reveal plankton species and their characteristics, which are challenging for the
framework to label correctly.

• Classification speed measuring the prediction time over an increasing number of
samples. The goal is to determine which classification algorithms that are feasible
for real-time classification.

5.4.3 Experiment 3 - Evaluation on the AILARON data
This thesis aims to provide an unsupervised framework that can be used in the AILARON
project to detect and classify planktonic species. However, as discussed in section 2.4.1,
the current data set version has many drawbacks, which made it more appropriate to evalu-
ate the proposed framework and its parts over different plankton data. Still, it is interesting
to measure the feasibility of applying unsupervised deep learning into the AILARON do-
main. Experiment 3 is, in this way, a continuation of the past two experiments conducting
some of the same tests and performance evaluations over the AILARON data.

74

Chapter 6
Results and reflections

This chapter presents the results of the experiments explained in section 5.4. The next
three sections, 6.1-6.3 presents the results where each section contains one experiment
followed by a summary and reflection part discussing the findings.

6.1 Experiment 1 - Unsupervised feature extraction algo-
rithm

This section presents the results of experiment 1, which is described in section 5.4.1. The
results are presented in the following order. First, the baseline results achieved in the
specialization-project and by supervised deep learning are presented. These methods set
the baseline for what is realistic accomplishments using unsupervised learning. The sub-
sequent sections provide results of the unsupervised models. Section 6.1.2 presents results
obtained using traditional machine learning methods. Then section 6.1.3 presents the re-
sults after training the autoencoder model. Section 6.1.4 describes the results of the GAN
model while section 6.1.5 show the results of the DeepCluster model. The section ends
with a brief summary and reflection of the overall results.

6.1.1 Baseline methods
The baseline classification results are depicted in table 6.1 showing the baseline results
achieved using feature extraction followed by K-means and SC clustering. For reference,
the results obtained without using feature extraction and the results using the ”Auto-GAP”
model are taken from the specialization-project report [100, Salvesen p. 40]. In the
specialization-project clustering was improved using unsupervised feature extraction by
over 15% showing the benefits of using deep learning feature extraction. Similarly, the
most successful image classification models, and hence state of the art feature extraction

75

Chapter 6. Results and reflections

models, are currently supervised CNN networks. Replacing the frameworks feature ex-
traction part with a supervised deep learning algorithm is thus useful to form an upper
benchmark. By switching to a supervised deep learning feature extraction model, denoted
as ”5-CONV”, ”VGG16,” and ”ResNet,” the performance is further improved, reaching
a clustering accuracy of 96% in the best cases. The great improvement obtained using
supervised deep learning indicate their superiority at learning good feature representations
of the data.

Table 6.1: Baseline classification results on Kaggle-DB1

Feature extractor K-means SC
- 0.44 0.61

Auto-GAP 0.62 0.76

5-CONV 0.92 0.95

VGG16 0.91 0.96

ResNet101 0.95 0.96

Table 6.2 shows the obtained training results after testing the proposed backbone CNN
networks using supervised training. The networks were trained over 100 epochs using the
same hyperparameters and early stopping regularization. The 5-Conv reached the stopping
criterion after about 60 epochs, whereas the deeper network trained for about 80 epochs.
All models achieved good performance over the unseen validation set, but the results in-
dicate an increased performance when a deeper architecture is used. However, the very
deep ResNet architecture performs no better than the VGG-16 network. These findings
accord well with the clustering results from table 6.1 using the networks as feature ex-
tractors. Observe that the deepest networks provide features that make the clustering over
96% accurate.

Table 6.2: Supervised neural network training performance on Kaggle-DB2

Model Training loss Training ACC Validation loss Validation ACC
5-Conv 0.70 0.76 1.14 0.67

VGG16 0.5827 0.79 0.95 0.71

ResNet 0.63 0.79 0.99 0.72

A visualization of the learned feature representations are depicted in figure 6.1. The results
are obtained on the Kaggle-DB1 using the t-SNE algorithm to reduce the representations
down to two dimensions. The visualization of the SIFT and SURF feature representations’
provided no interesting findings since all points were lumped together. Therefore, the fea-
ture visualizations are limited to those provided by the CNN networks. The traditional
machine learning methods’ inability pinpoints the expressive power of CNN networks
when trained over complex image data. Furthermore, compared to the specialization-
project representations in figure 2.1, similar points are better grouped and separated from

76

6.1 Experiment 1 - Unsupervised feature extraction algorithm

the other classes. Therefore, it seems evident that the supervised training provides better
representations for classification than those provided by the specialization-project unsu-
pervised models. Lastly, there are no clear differences in the three feature representations.
Albeit observed clear differences in the classification performance in table 6.2, the similar-
ities when the representations are reduced to two dimensions indicates that the networks
learned the same main features.

Figure 6.1: Low dimensional visualization of the learned representations using supervised training.
Left image: Feature representation using 5-CONV as backbone network. Middle image: Feature
representation using VGG16 as backbone network. Right image: Feature representation using
ResNet50 as backbone network.

Figure 6.2 provides the same t-SNE visualization as in figure 6.1 using a VGG16 as back-
bone. However, the point samples are replaced by the real images used to make the
two-dimensional embedding. Observe that the feature representation clearly separates the
acantharia protist (yellow samples) and copepods (blue samples) from the rest. The pro-
tist other (cyan samples) class are more or less separated from the others but somewhat
stretched out. This seems reasonable since the class contains a diverse set of species with
very varying features. Lastly, the most similar classes are seemingly diatom chains (red
samples) and faecal pellets (green samples), having an overlapping region of points. This
is only to be expected since a broad class of faecal pellets have features that look more
similar to the long thin, and transparent diatom chains1 than the thick and curvy shapes of
other class members.

1Notably, some faecal pellet species share similar characteristics with the diatom chains making it difficult
to distinguish these objects for human non-experts. This is possibly not true in the case of using domain level
experts.

77

Chapter 6. Results and reflections

Figure 6.2: Low dimensional visualization of the learned representations using supervised training.
The backbone network is VGG16. For each colored sample point, the corresponding test image is
pictured. Observe that the model has difficulties separating some species from the diatom chain
class (red samples) and faecal pellet class (green samples) resulting in an overlapping region.

6.1.2 Traditional machine learning feature extractors

Figure 6.3 shows the features detected using the SIFT and the SURF machine learning
algorithms. Observe that the models are only capable of capturing a small number of fea-
tures from each image. The images shows that the models can better detect round objects
with darker contours, whereas transparent bodies and long antennas are easily missed. This
pinpoints how challenging it is to find commonalities in plankton data compared to many
other data sets for which the SIFT and SURF algorithm are much more efficient. Table
6.3 depicts the classification results using the machine learning feature extractors followed
by the k-means and SC clustering algorithms. Clearly, none of the extraction methods
proved much better than the other one. Using K-means and SC clustering, an accuracy
of around 40% was achieved. This is a decrease in accuracy compared against clustering
without first performing feature extraction showing the infeasibility of traditional machine
learning feature extraction for this task.

78

6.1 Experiment 1 - Unsupervised feature extraction algorithm

Figure 6.3: The figures show the found feature descriptors (red circles) on random images from
the Kaggle-DB2. Left image: The resulting feature descriptors using the SIFT algorithm. Right
image: The resulting feature descriptors using the SURF algorithm.

Table 6.3: Baseline classification results on Kaggle-DB1

Feature extractor K-means SC
SIFT 0.40 0.41

SURF 0.42 0.40

6.1.3 Autoencoder

The autoencoder model described in section 4.3.2 was trained for 100 epochs yielding a
training loss of 0.0429 and a validation loss of 0.0546. Compared to the specialization-
project models, the loss is nearly ten times as high, and there is a bigger gap between
training and validation loss. The relatively high loss values might suggest underfitting.
However, there might also be several reasonable explanations for the higher loss values.
First, as data augmentation is applied, the regularization might reduce the model’s ca-
pability to learn a good reconstruction. However, a more likely explanation is that the
incorporated rotation in-variance removes information about the exact object positions.
Since the loss is measured pixel against pixel, a low loss can only be achieved if the object
is identical and perfectly placed in relation to the input. This theory is supported by the
reconstructed images depicted in figure 6.4. Clearly, the decoder part constructs images
that contain some main object features. However, the images are noisy, and object bodies
are placed at several locations in the same image. Interestingly, the round image samples
seem to have better image reconstructions. This is fitting since positional information is
less important for objects that are equal in all directions.

79

Chapter 6. Results and reflections

Figure 6.4: Left image: Random images from the Kaggle-DB2 data set. Right image: Image re-
constructions after passing the images through the autoencoder model. Observe that the model has
learned different plankton features. However, the rotation in-variance seems to affect the model’s re-
construction capability. Without knowledge of the exact position, the decoder part seems to ”guess”
the more likely placement of the object’s main body.

Table 6.4 shows the proposed rotation invariant model’s clustering results, denoted as
”Rot-Auto,” tested on the Kaggle-DB1. Compared to the specialization-project reference
model, the classification performance is increased by 11% and 17% for the K-means and
SC algorithm, respectively. The increased results indicate that the rotation invariant model
has learned feature representations that are better for classification. As experienced in the
specialization-project, the SC algorithm outperforms the K-means clustering model. This
suggests that the learned feature representation have non-linear traits.

Table 6.4: Autoencoder classification results on Kaggle-DB1

Model K-means SC
Rot-Auto 0.73 0.93

By examining the plots in figure 6.5 acquired using the t-SNE and PCA algorithm, it
becomes clear that a non-linear algorithm better represents the features. From the t-SNE
plot, it is evident that the new autoencoder model is much better at treating similar class
objects of different rotation compared to the specialization-project models. Furthermore,
the feature representation seems close to those obtained by a supervised feature extraction
model.

80

6.1 Experiment 1 - Unsupervised feature extraction algorithm

Figure 6.5: Low dimensional visualization of the learned autoencoder feature representation space.
Left image: T-SNE representation. Right image PCA representation.

To validate that the model has indeed learned important features, the model was tested
using the GAP-CAM method. Note that the network is trained to reduce the error between
the input and the reconstruction, suggesting a focus on the entire image and more general
feature shapes. The GAP-CAM visualization are shown in figure 6.6 proving that the net-
work is clearly identifying important image regions. As expected, the network seems more
interested in large clusters of dark pixels. Still, different parts and features are clearly fo-
cused depending on the input species. Observe that long and thin features such as antennas
seem focused in several images. This might be important since many species are easily
differentiated based on such features.

Figure 6.6: The figure depicts a heatmap of the specific image regions the autoencoder model finds
more interesting based on different plankton images.

6.1.4 GAN
The GAN model described in section 4.3.3 was trained for 100 epochs using the Kag-
gle DB2 with data augmentation. The model losses are slowly converging closer to zero,
but in contrast to conventional neural networks, the two losses are constantly fluctuating

81

Chapter 6. Results and reflections

depending on which model performs better. Thus, it was hard to interpret how the loss
represents what the model has learned, and tuning was mostly done based on visualiza-
tion of the constructed generator images. The GAN model proved very challenging to
train and required extensive hyperparameter training to achieve realistic-looking images.
Furthermore, running several training rounds on the same settings provided very different
performance results. Since the deep learning model is a black-box approach, it is chal-
lenging to assess the varying model performance reasons. However, a likely explanation
is that the oscillatory weight shifts endured during training makes the model convergence
more unstable. Another reason for the poor performance might be because the network
structure is quite shallow and constrained. Making the discriminator more complex or less
regularized resulted in the generator network being unable to converge to a proper solu-
tion. The model is therefore not fine-tuned for better extractions but tuned with respect to
the generator model.

Figure 6.7: The figure visualizes the generated images at different time steps of the GAN training.
Observe that the images slowly gets more complex and more detailed.

A time series can be depicted in figure 6.7 showing how the generated images slowly get
more complex. After about ten epochs, the generator part manages to create shapes and
forms that are seemingly similar to real planktonic images. As the training progresses, the
quality and image details are increasing, which, according to Wang et al. [114] suggests

82

6.1 Experiment 1 - Unsupervised feature extraction algorithm

that the discriminator part is learning to distinguish based on more fine-grained details.2

Observe that especially the round objects seems to become more elongated at later time
steps. This might be a deficit due to the image augmentation, where images are shifted,
rotated, and zoomed. Training was thus also performed without augmenting the images.
Removing the data augmentation seemed to improve the generated images slightly but also
decreased the later classification results.

The fluctuating and non-converging function loss made it difficult to analyze the potential
model overfitting in the conventional way. In accordance with Yazici et al. in [120] each
generated image was therefore compared to the closest pixel-wise neighbor in the training
set. As depicted in figure 6.8 the generated images (left) are clearly not the same as the true
images (right), which shows that the model has not overfitted by learning exact copies of
the training data. Furthermore, by generating several different images based on different
input vectors, results showed a wide variety in plankton species indicating that the model
does not suffer from mode collaps.

Figure 6.8: The image shows a set of generated images (left image) compared against the closest
neighboring images from the training set (right image). Observe that the images are not the same,
suggesting that the model does not directly copy the input images.

The classification results can be depicted in table 6.5 the GAN model is denoted ”GAN”.
The GAN model was trained five times, and the average performance over these runs are
presented. At best, the model achieved an accuracy of 0.7 and 0.79 for the K-means and
SC, respectively, which is a clear improvement over the specialization-project models and
close to the supervised baseline networks. However, the classification results were varying,
resulting in an average result of 0.64 and 0.73, which is similar to the specialization-project
models. In short, the best classification results show that the GAN model has a potential
as a feature extraction model. Still, the varying classification performance makes it less

2Note that the quality of specific features and the quality of the images compared to real plankton species are
difficult to assess without a more profound understanding of biological taxa. Still, it is evident that the images
are strongly related to planktonic species, which indicates that the network has captured essential features and
structures of the data.

83

Chapter 6. Results and reflections

attractive compared to the other models.

Table 6.5: GAN classification results on Kaggle-DB1

Model K-means SC
GAN 0.64 0.73

The GAN feature representations using the t-SNE and PCA algorithm, depicted in figure
6.9, shed some more light on the classification results. The t-SNE visualization (left image)
shares many commonalities with the visualizations obtained in the specialization-project,
indicating that the learned feature representation is very similar. The close resemblance
in classification results are therefore only to be expected. Furthermore, the GAN is also
sharing the problem of class separation due to similar species with different rotations3. In
contrast to the supervised multi-classification training scheme, the binary GAN training
does not augment the representation space towards a more rotation invariant space. Lastly,
in the PCA representation (right image), similar class samples are not very well grouped
and separated from the other categories. This indicates that that the learned representation
have non-linear traits, which is less compatible with linear classifiers.

Figure 6.9: Low dimensional visualization of the learned GAN feature representation space. Left
image: T-SNE representation. Right image PCA representation.

Similar to the rotation invariant autoencoder, a visualization of the image regions that were
more important for decision making is depicted in figure 6.10. The image is created by
the grad-CAM approach since the GAN have a structure which is not compatible with the
GAP-CAM method. Evidently, the decisions are based on important image regions and
clearly focusing on different parts depending on the planktonic species. However, for most
images, the network emphasizes the large and pixel intense areas, whereas antennas and
other tiny artifacts further from the body center are easily missed. Therefore, it seems

3The class separation is especially visible in the red class consisting of diatom chains that are either vertically
or horizontally aligned.

84

6.1 Experiment 1 - Unsupervised feature extraction algorithm

evident that the training scheme based on distinguishing real from fake images does not
focus on specific and highly discriminate plankton features.

Figure 6.10: The figure depicts a heatmap of the specific image regions the GAN model finds more
interesting based on different plankton images.

6.1.5 Deep cluster results

The Deep Cluster model described in section 4.3.4 was trained using three different back-
bone networks, 5-CONV, VGG16, and ResNet, respectively. All networks were trained for
a maximum of 80 epochs but stopped earlier using an early stopping criteria to avoid over-
fitting. Note that the supervised training scheme makes it possible to assess overfitting by
comparing the training loss against the validation loss. However, since the pseudo-labels’
quality compared to the ground truth labels is relatively poor, the loss comparison is less
valuable. The training was, therefore, stopped based on two conditions: 1. The training
loss between several consecutive epochs is not decreasing noteworthy. 2. The number of
samples that change cluster between several successive epochs is not reducing noteworthy.
These metrics are plotted in figure 6.11 where the DC using VGG16 as backbone is trained
for 50 epochs. Clearly, the loss is saturating at about epoch 40, whereas the reassignment
score measured using NMI saturates earlier. This resulted in the 5-CONV being trained
for 15 epochs, VGG16 for 40, and ResNet for 60 epochs.

85

Chapter 6. Results and reflections

Figure 6.11: The upper figure depicts the NMI score comparing the labeling of consecutive rounds.
Observe that about 30% of the samples change labels every time. The lower image depicts the loss
measured using the model predictions and the pseudo labels. The loss seems to stabilize around
epoch 40.

The Deep Cluster training loss, training accuracy, and cluster reassignments are reported
in table 6.6. Note that these results only give an indication about the true model per-
formance as the model assignments are compared against the pseudo-labels. The deeper
neural network models perform better, with the VGG16 performing slightly better than the
ResNet. The NMI is saturating at about 0.7, meaning that a large fraction of images are
reassigned every epoch. Caron et al. observed the same phenomenon in [15], but claim
that the reassignments do not result in model divergence.

Table 6.6: Deep Cluster training performance on Kaggle-DB2

Backbone Training loss Training ACC Cluster reassignments
5-Conv 2.59 0.33 0.7

VGG16 1.77 0.48 0.74

ResNet 2.01 0.46 0.74

Table 6.7 depicts the average classification results over five independent runs on the Kaggle-
DB1 where DC models are denoted, based on the backbone network, as ”DC-5-CONV”,
”DC-VGG16” and ”DC-ResNet”. The best classification accuracy is obtained using VGG16
as backbone, achieving an accuracy of 88% and 92% for the K-means and SC algorithm,
respectively. Compared to the best specialization-project model, the K-means performance
has improved by 22% indicating that the representation space is more friendly to linear

86

6.1 Experiment 1 - Unsupervised feature extraction algorithm

classifiers. Replacing the VGG16 backbone with the 5-CONV or ResNet architecture
showed a similar increase in linear classifiers performance. Still, the models did not man-
age to obtain the same performance using the SC algorithm and perform more similar to
the specialization-project models.

Table 6.7: DeepCluster classification results using different backbone networks on Kaggle-DB1

Model K-means SC
DC-5-Conv 0.69 0.76

DC-VGG16 0.88 0.92

DC-ResNet 0.68 0.71

Visualizations of the deep cluster feature representations over the Kaggle-DB1 are de-
picted in figure 6.12 and 6.13. The t-SNE plot in figure 6.12 clearly show that that the
models are able to learn strong representations that mostly group similar points and sepa-
rate the different classes. The t-SNE visualization is much better than those obtained by the
specialization-project models showing the strength of the DC technique. Furthermore, the
striking similarities in the three feature representations indicating the DC methods robust-
ness to changes in the backbone network. Still, the DC method with a VGG16 backbone
network seems to produce a slightly better feature representation, which is in line with the
findings in table 6.6 above. Altogether, the t-SNE visualizations show that the DC method
can produce representations that looks as good as the features produced by the rotational
autoencoder and close to those provided by the supervised networks. Of similar interest is
the PCA plot in figure 6.13. Compared to the other unsupervised networks, similar classes
seem better grouped and separated from the other classes suggesting that the models can
learn more linear feature representations.

Figure 6.12: Low dimensional visualization of the learned DC feature representation space using
the t-SNE algorithm. Left image: DC model with 5-CONV backbone. Middle image DC model
with VGG16 backbone. Right image DC model with ResNet backbone.

87

Chapter 6. Results and reflections

Figure 6.13: Low dimensional visualization of the learned DC feature representation space using
the PCA algorithm. Left image: DC model with 5-CONV backbone. Middle image DC model
with VGG16 backbone. Right image DC model with ResNet backbone.

The model’s class activation maps are visualized in figure 6.14 to validate that the models
have learned relevant image features. The map is created using the grad-CAM approach
since the network structures are not compatible with the original CAM approach. The
5-CONV network seems to highlight important regions for most images. However, for
some images, the network activates around the object, which indicates a failure in recog-
nizing class specifics. The ResNet model seems even worse, focusing on the same regions
regardless of the input image. These problems are not apparent in the VGG16 activation
map. In this map, the decisions seem focused on essential areas irrespective of input. Still,
the network appears more focused on large and pixel intense areas, whereas antennas and
other tiny artifacts further from the body center are missed in some cases.

Figure 6.14: The figure depicts a heatmap of the specific image regions the DC model finds more
interesting based on different plankton images. Left image: DC model with 5-CONV backbone.
Middle image: DC model with VGG16 backbone. Right image: DC model with ResNet backbone.

Summary and reflection

This experiment revisits and extends the work conducted in the specialization-project with
the goal of finding a better model for unsupervised feature extraction. The baseline experi-
ment manifested the challenges of using machine learning in the plankton domain. The tra-
ditional machine learning models were seemingly incapable of extracting a set of features

88

6.2 Experiment 2 - Choosing an appropriate unsupervised framework

that could improve the subsequent clustering. The performance increased by switching to
an unsupervised deep feature extraction network. Of the three networks, the GAN network
gave the least satisfying results and did not improve performance over the specialization-
project models. The rotation invariant autoencoder proved to be much better and greatly
improved the performance over the specialization-project models. Furthermore, the re-
sults from the t-SNE visualization and the classification accuracy using SC gave results
very similar to those obtained by the supervised baseline models. However, this was not
true when using a linear classifier, suggesting that the feature space includes several non-
linear relations. As experienced by the other methods, an increase in network depth is
likely to improve the model’s representational capability. Unfortunately, the large increase
in feature maps proved to be very memory expensive, making it impossible to increase the
depth over that of a 5-CONV network with the current computer specifications. The DC
approach provided excellent results when using a VGG16 backbone. Of special impor-
tance was the large increase in linear clustering results and the seemingly well-separated
representation space using PCA which suggest an ability to learn a linear representation of
the data. In contrast to the supervised baseline results, the ResNet model did not give sat-
isfying classification results and the class activation map revealed that the ResNet model
does not focus on particular class characteristics. A suggestion is that the network’s de-
sign with several skip connections that give increased learning speed and larger gradients
makes the model more vulnerable to ever changing labels and several misclassifications.
Overall the best performing networks were the rotation invariant autoencoder and the DC
model using a VGG16 as the backbone. These networks are therefore picked and used as
feature extraction models in the next experiments.

6.2 Experiment 2 - Choosing an appropriate unsupervised
framework

This section presents the second experiment results described in section 5.4.2 using the
best feature extraction models from the previous experiment. The results are presented in
the following order. First, in section 6.2.1, the deep learning feature extractors are vali-
dated over a test set of unseen samples from the Kaggle data. Second, in section 6.2.2, the
classification matrix and its relation to the learned feature representations are investigated.
Third, section 6.2.3 presents the models ability to adapt to new unseen plankton categories.
Fourth, section 6.2.4 reveal the performance results of several different classification mod-
els. Finally, the section results are summarized and briefly reflected upon.

6.2.1 Model capability over unseen test data

The feature representation of the hundred unseen images are depicted in the t-SNE visual-
ization in figure 6.15. Evidently, both models seem to have generalized well and manage
to group the same class species and separate the different categories. Overall, the DC
model seems to produce a slightly better representation with fewer outliers. However, the
set is tiny and does not contain enough samples to represent the same category species’
vast variation.

89

Chapter 6. Results and reflections

Figure 6.15: Low dimensional visualization of the learned representations using 100 unseen test
images. Left image: Features extracted from the rotation invariant autoencoder model. Right
image: Features extracted from the DC model using a VGG16 as backbone.

A similar conclusion can be drawn from the classification results given in table 6.8 where
features are extracted by the autoencoder and DC networks and the resulting feature vec-
tors clustered using the k-means algorithm. Observe that the clustering accuracy is higher
than when clustering is performed on the seen samples from the Kaggle-DB1. This indi-
cates that the extraction models have not overfitted to the seen data. The DC algorithm is
performing slightly better. This was expected since the first experiment revealed that the
DC models produced a better linear representation. Furthermore, as seen in figure 6.15 the
few outliers in the autoencoder representation have a great impact when the sample size is
small.

Table 6.8: Classification results on unseen data samples from the Kaggle data set

Model ACC F1 NMI
Auto-K-Means 0.82 0.82 0.70

DC-K-Means 0.93 0.93 0.86

The model performance does not seem to have noticeable deviations from the results ac-
quired when the models are tested on parts of the seen training data. Thus, to increase the
validation data set size to get a more comprehensive prediction and clustering analysis, the
following tests are done on the Kaggle-DB1, which is a part of the larger Kaggle-DB2.
Importantly, this setup follows the practice of several previous works [16, 46, 117, 119] in
the unsupervised domain.

6.2.2 Validation of confusion matrix and cluster assignments
The DC feature representations and a corresponding k-means based classification matrix
is depicted in figure 6.16 to get a better understanding of how the representations affects
the clustering and which categories that are more difficult to classify correctly. Note that

90

6.2 Experiment 2 - Choosing an appropriate unsupervised framework

the true classes are denoted 0-4 in the classification matrices correspond to the five classes
seen in figure 2.8. The faecal pellet (true label 2) class seems to be the most difficult class
to differentiate from the other categories, which can be seen by the large number of as-
signments to cluster 2 and especially from the protist (true label 3) class. The high number
of misclassifications is not surprising as the faecal pellet class consists of a wide range
of differently shaped objects. More specifically, the main problem seems to be a wrong
assignment of a small set of protist samples are treated as outliers by the feature extraction
model. Secondly, the feature representation had problems separating diatom chains (true
label 0) against light and straight samples from the faecal pellet class. This is expected
as these categories share many similarities making it difficult to separate them even for
human non-experts. It is evident that the cluster groups are made up of species with very
similar traits, which increases the trustworthiness of the DC models ability to extract key
features from the data. Furthermore, the model can produce a linear representation space
that makes it possible to use Euclidean distance-based classification algorithms.

Similar to the evaluation above, the autoencoder feature representations and its corre-
sponding SC based classification matrix is depicted in figure 6.17. Note that the SC
algorithm was chosen over k-means as it was much more accurate and the feature rep-
resentation is much less ideal using a linear classifier. Observe that almost 70 samples
from the protist (true label 3) class are wrongly assigned to the achantaria (true label 4)
class. These errors can be depicted in the t-SNE plot as the as a set of yellow samples
which in reality belongs to the blue class. These particular images are, however, indistin-
guishable from the achantaria class for the untrained eye having small round bodies and
antenna-like extensions. A second error source comes from the faecal pellet (true label
2) class assigned to the diatom chain (true label 0) class. In the t-SNE plot, these errors
come from the border between the light and red class and is unsurprising as the feature
representation have trouble differentiating light and straight samples from the faecal pellet
class against the very similar diatom samples. Overall, the clustering performance is good,
providing only a small number of labeling errors. In the case of wrong assignments, it is
evident that the misclassifications are based on samples sharing very similar traits as the
predicted class.

91

Chapter 6. Results and reflections

Figure 6.16: The figure is showing the confusion matrix and t-SNE visualization of the predictions
from a DC network and a k-means algorithm. The classes are 0: ”diatom chain string” 1: ”copepod
calanoid” 2: ”feacal pellet” 3: ”protist other” 4: ”acantharia protist.

92

6.2 Experiment 2 - Choosing an appropriate unsupervised framework

Figure 6.17: The figure is showing the confusion matrix and t-SNE visualization of the predictions
from an autoencoder network and a SC algorithm. The classes are 0: ”diatom chain string” 1:
”copepod calanoid” 2: ”feacal pellet” 3: ”protist other” 4: ”acantharia protist.

93

Chapter 6. Results and reflections

6.2.3 Model adaption to new classes

Table 6.9 depicts the classification results when the feature extraction models are tested
over unseen data samples. The models denoted by ”Missing-” refers to the deep learning
feature extractor trained on a subset of the Kaggle-DB2 with several classes removed. All
models are then tested over data sets, including the missing classes. Comparing the DC
models, one can observe a performance decline when the model has not been trained over
all classes. This indicates that the model has not learned to extract sample specific features
making the model less adaptive to new and unseen classes. The performance decline is, in
comparison, very minor for the autoencoder models. This suggests that the autoencoder
training method is better capable of learning general feature representations that are easily
adapted to unseen classes.

Table 6.9: Comparison of the feature extraction models ability to adapt to new unseen classes

Model Kaggle-DB1 Kaggle-DB2
ACC NMI ACC NMI

Auto-SC 0.93 0.81 0.14 0.27

Missing-Auto-SC 0.92 0.78 0.15 0.27

DC-SC 0.90 0.80 0.10 0.26

Missing-DC-SC 0.67 0.64 0.10 0.25

6.2.4 Capability of the classification part

Table 6.10 presents the classification performance of the classification models described
in section 4.4 using features extracted from the Autoencoder (Auto) and the DC model.
First, observe that the three classification metrics seem to correspond quite well, increas-
ing the credibility of the results being correct. The best performance is achieved by the
SC algorithm independent of the feature extraction network. The results fit well with
the findings in the specialization-project and in [113] which states that the SC algorithm
most often yields much better results compared to linear distance-based clustering models.
The other conventional classification algorithms performs slightly worse, with the BIRCH
method being moderately better than the others. Lastly, the DEC approach did not improve
the classification results but instead worsened the learned data representation, resulting in
poor performance. Note, however, that the DEC layer is based on the k-means algorithm
meaning that an untrained version can perform as good as this clustering model.

94

6.2 Experiment 2 - Choosing an appropriate unsupervised framework

Table 6.10: Classification results on Kaggle-DB1 using different clustering algorithms

Model ACC F1 NMI
Auto-K-Means 0.75 0.72 0.61

Auto-SC 0.93 0.93 0.81

Auto-Birch 0.74 0.72 0.63

Auto-Gaussian 0.73 0.72 0.60

Auto-DEC 0.60 0.57 0.46

DC-K-Means 0.77 0.76 0.71

DC-SC 0.90 0.91 0.80

DC-Birch 0.84 0.84 0.74

DC-Gaussian 0.81 0.81 0.71

DC-DEC 0.72 0.72 0.68

Figure 6.18 depicts the time consumption for an increasing image load using the aforemen-
tioned clustering algorithms and a VGG16 feature extraction network. Observe that the
SC is a much slower algorithm than the others and requires a substantial amount of com-
putation time. The k-means and the k-means based DEC model have the fastest prediction
times where the most time-consuming part is the overhead from the extraction model.
The BIRCH and the Gaussian mixture model have a slightly higher time consumption but
are still capable of predicting over 800 images per second, which is over the AILARON
real-time requirements.

Figure 6.18: The figure depicts the time consumption for an increasing image number using differ-
ent clustering algorithms and the VGG16 feature extraction model.

Summary and reflection

This experiment explored the capabilities of the two best feature extraction models, namely
the rotation invariant autoencoder and the DC model with VGG16 as backbone, from the
previous experiment and tested the performance of several classification models. First, the

95

Chapter 6. Results and reflections

feature extraction models were tested on 100 test samples to prove the models’ ability to
generalize to unseen data samples. The results proved very similar to those conducted on
the seen samples from the Kaggle-DB1, proving good generalization qualities. However,
validating performance using a small test set proved less ideal since the data does not fully
represent the large variations in the data, and small prediction errors greatly impact the
classification results. Further experiments were therefore conducted on the larger, albeit
seen, Kaggle-DB1 data set. First, the feature representations and clustering assignments
were inspected more closely by examining the classification matrix’s commonalities and
the t-SNE image visualization. Both models showed excellent representative capability
finding that the feature extraction and clustering errors seem to come from samples that
share many of the given class characteristics. Overall this indicates that the unsupervised
deep learning models have learned strong and robust representations of the underlying
data. However, the DC model did not adapt very well when used to extract information
from data, including plankton categories the model was not trained to recognize. This
might relate to the training scheme indicating the downside of organizing the feature rep-
resentation space based on labeled training data. In comparison, the autoencoder model
was much better able to adapt to unseen data emphasizing the models’ ability to learn
general feature characteristics. Albeit an effective way to learn good feature representa-
tions, the introduction of pseudo-labels seems thus to negatively affect other important
traits of the deep learning feature extraction. Finally, the classification models, explained
in section 4.4, was tested and validated on the Kaggle data. The best performing algorithm
in regards to classification accuracy and NMI score was the SC outscoring the rest irre-
spective of feature extraction model. Unfortunately, the transductive properties of the SC
algorithm meaning it does not generalize to new data, is a big drawback of this method.
The SC algorithm must therefore observe the test data before making predictions, which
proves to be very time-consuming. In contrast, the other algorithms can generalize using
training data and can, thus, make much faster predictions. The BIRCH is therefore a good
alternative if the task requires faster prediction times.

6.3 Experiment 3 - Evaluation on the AILARON data
This section presents the third experiment results described in section 5.4.3 testing the
proposed framework over the AILARON data. The results are presented in the following
order. First, in section 6.3.1, the baseline is set using no feature extraction prior to cluster-
ing as well as assessing the capabilities of supervised deep feature extraction. Second, in
section 6.3.2, different components of the proposed unsupervised framework is validated
and assessed over the AILARON data. Finally, the section results are summarized and
briefly reflected upon.

6.3.1 Baseline methods
The baseline classification results over the AILARON data are depicted in table 6.11. The
K-means obtains 59% cluster accuracy and the SC 63% cluster accuracy without using
feature extraction. By switching to a supervised deep learning feature extraction model,
denoted as ”5-CONV”, ”VGG16,” and ”ResNet,” the performance is slightly improved,

96

6.3 Experiment 3 - Evaluation on the AILARON data

reaching a clustering accuracy of 73% in using the ”VGG16” network. However, com-
pared to the Kaggle data set results, the performance gain by adding a deep feature extrac-
tion model is only minor. This suggests that the supervised deep learning networks are
less able to find good feature representations over the AILARON data.

Table 6.11: Baseline classification results on AILARON-DB1

Feature extractor K-means SC
- 0.59 0.63

5-CONV 0.67 0.62

VGG16 0.73 0.73

ResNet 0.66 0.63

To gain more insight about the supervised deep learning performance, table 6.12 depicts
the training and validation results after training the proposed backbone networks in a su-
pervised fashion. The networks are trained over the AILARON-DB2 using the same pa-
rameter settings as done on the Kaggle data in section 6.1. Similar to the Kaggle data
results, the deeper network architectures achieved better performance over the data in-
dicating a stronger representational capability. However, as mentioned above, the good
training performance, which indicates good representational capability, is contrasted by
the low performance when combining deep feature extraction and clustering in table 6.11.

The low-performance increase can partly be answered by comparing the low dimensional
t-SNE image representation of the AILARON data with and without the deep feature ex-
traction part. Without using a feature extraction algorithm (left image), several of the
categories are mixed together. In contrast, the samples are much better grouped according
to their class and separated from the others when using a deep learning feature extractor
(right image). However, the most decisive contribution to the classification accuracy is to
correctly classify the red points representing the ”bubble” class and pink points represent-
ing the ”other” class, which collectively stands for nearly 65% of the data set. A machine
learning classifier can, based on the t-SNE plot, clearly separate the ”bubble” points (red
class) from the other classes. By clustering the groups of mixed samples into the five re-
maining categories, the accuracy easily surpasses 60%. The deep feature extraction seems
to obtain better groupings of similar points but also splits the ”bubble” points (blue class)
into two cluster groups. The split results in a significant drop in accuracy despite a much
more precise clustering of the minor classes (red, purple, and pink class).

Table 6.12: Supervised neural network training performance on AILARON-DB2

Model Training loss Training ACC Validation loss Validation ACC
5-Conv 0.70 0.76 1.14 0.67

VGG16 0.5827 0.79 0.95 0.71

ResNet 0.35 0.85 0.33 0.85

97

Chapter 6. Results and reflections

Figure 6.19: Low dimensional t-SNE visualizations on the AILARON data. Left image: T-SNE
visualization without feature extraction. Right image: T-SNE visualization using supervised deep
learning feature extraction.

6.3.2 Unsupervised models

Figure 6.20 shows the results of performing feature detection using the SIFT and the SURF
machine learning algorithms. The models clearly struggle to detect useful structures re-
sulting in zero features for some images and detect several background points that are not
part of the image object. However, the models are clearly better at finding structures in the
images depicting planktonic species compared to images of oil and gas, showing to some
extent the suitability of the AILARON camera system for capturing details in planktonic
imagery. However, the models better detect darker areas of the plankton images, whereas
transparent body parts and long antennas are easily missed. The overall low detection ca-
pability seems validated by the classification results in table 6.13 showing a performance
decrease compared to clustering without any feature extractor.

Figure 6.20: The figures show the found feature descriptors (red circles) on random images from
the AILARON-DB2. Left image: The resulting feature descriptors using the SIFT algorithm. Right
image: The resulting feature descriptors using the SURF algorithm.

98

6.3 Experiment 3 - Evaluation on the AILARON data

Table 6.13: Traditional machine learning classification results on the AILARON-DB1

Feature extractor K-means SC
SIFT 0.39 0.43

SURF 0.44 0.37

Visualizations of the autoencoder and DC feature representations are depicted in figure
6.21. The plots have strong similarities to the t-SNE visualization created without using
deep learning feature extraction shown in figure 6.20. This indicates that deep learning
models have not adapted very well to the underlying data and cannot produce feature
representations that clearly distinguish the seven categories. Furthermore, the supervised
feature representation depicted in the same figure shows a seemingly much better data
representation proving the potential of deep learning feature extraction in the AILARON
domain. Therefore, the unsupervised models seem inadequate for adaption to the recent
version of the AILARON data.

Figure 6.21: Low dimensional t-SNE visualizations on the AILARON data using unsupervised
deep feature extraction. Left image: T-SNE visualization of the DC model. Right image: T-SNE
visualization using the autoencoder model.

A similar conclusion can be drawn by looking at the classification results in table 6.14
using the feature extraction networks followed by a clustering algorithm. Albeit clearly
improving the results compared to using traditional feature extraction models, the perfor-
mance is not improved over the baseline clustering without deep feature extraction. An
important observation is the relative higher NMI score compared to cluster accuracy. This
is likely a result of the red class being clustered into two groups resulting in a lower accu-
racy. However, the assignments are not random, which is shown by the NMI metric.

99

Chapter 6. Results and reflections

Table 6.14: Classification results on AILARON-DB1 using different clustering algorithms

Model Accuracy NMI
DC-K-Means 0.58 0.66

DC-SC 0.63 0.69

DC-BIRCH 0.59 0.66

DC-K-Means 0.60 0.62

AUTO-K-Means 0.62 0.70

AUTO-BIRCH 0.65 0.69

The DC feature visualization in figure 6.22 provides a better insight into the representa-
tional capabilities of the network and some of the problems with the AILARON data set.
Most of the ”bubble” samples (red class) are gathered in the lower-left corner. However,
several of the ”oil” droplets (magenta class) and ”oily gas” (yellow class) are grouped to-
gether with the ”bubbles.” These samples look strikingly equal, suggesting human labeling
errors or class characteristics that are indistinguishable for the untrained eye. The samples
gathered at the bottom are mostly consisting of ”bubble” samples (red class), which look
very different from the remaining class samples. It is thus unsurprising that this class
is divided into two parts. The middle grouping consists of points belonging to a mix of
varying classes. The ”faecal pellets” (light blue class), ”diatom chains” (green class), and
”copepod” (blue class) are somewhat separated, which shows that the model has learned
some distinctions within the data. However, the group is dominated by the ”other” samples
(black class), which, dependent on their characteristics, are placed together with the other
classes. Finally, the rightmost two groups are mostly containing the same class objects
showing to some extent the model capability at learning relevant features.

100

6.3 Experiment 3 - Evaluation on the AILARON data

Figure 6.22: Low dimensional visualization of the learned representations using the DC feature
extractor on the AILARON data. For each colored sample point, the corresponding test image is
pictured.

Summary and reflection

Experiment 3 explored the capabilities of the unsupervised deep learning models when
adapted to the AILARON data. First, the baseline experiment proved that supervised deep
learning slightly improves the classification results over clustering models that do not uti-
lize deep feature extraction. However, the performance increase was only minor, indicating
the difficulties of learning representations that fully distinguish the different classes. This
was further confirmed by the traditional machine learning feature extraction algorithms,
which worsened the classification results compared to the lower baseline. Furthermore,
the experiment showed that the proposed unsupervised deep learning networks did not im-
prove the classification results. However, the models did show some abilities to separate
the data and did not severely under-perform compared to the clustering results when using
features from a supervised deep learning network.

101

Chapter 6. Results and reflections

First and foremost, the experiment manifested the shortcomings and poor quality of the
current AILARON data set. The data set is strongly dominated by blurry and undefined
objects with extreme variations in feature characteristics. Furthermore, the unsupervised
models seemed to reveal several sample misclassifications, which makes the performance
results less trustworthy. Furthermore, the images are captured using different camera res-
olutions, which naturally makes the feature characteristics extremely varying within the
same class species. Lastly, the round, blurry and related images of bubbles, oil droplets,
and gas does not serve as a good representation of the framework’s capability in detecting
varying planktonic species.

102

Chapter 7
Discussion

This chapter presents a discussion and reflection of several key areas and important find-
ings presented in this thesis. First, a review of the unsupervised framework and its parts
are presented. Then, the second part presents a discussion of the applicability of unsu-
pervised learning applied to the planktonic domain and its challenges. Finally, the third
section presents the perspectives and views of present unsupervised learning and its future.

7.1 Deep unsupervised feature extraction
The baseline results proved the inefficiency of clustering high dimensional data without
first performing feature extraction. This was an expected result as the similarity measures
in machine learning clustering algorithms are usually quite simple and unfit when the num-
ber of data dimensions are extensive. Therefore, deep feature extraction proved a vital step
in the overall framework to map the image data into a lower-dimensional space that is more
easily separable for machine learning classifiers. Naturally, the deep learning networks’
low dimensional feature representations had slightly different properties and capability to
preserve important image information. In the following sections, the three deep learning
feature extraction methods’ findings and results are elaborated and discussed.

7.1.1 Autoencoder
The rotation invariant autoencoder model was proposed as a continuation of the studies
conducted in the specialization-project. In the specialization-project experiment, a consis-
tent problem for all deep feature extraction models turned out to be the lack of rotation
invariance were the same class objects with different orientations were split into separate
groups. The change in architecture replacing conventional convolution layers with group
convolutions proved very successful and resulted in more robust groupings of same class

103

Chapter 7. Discussion

species, which greatly improved feature representations and classification results.

Furthermore, the non-linear t-SNE visualization and the SC results showed that the learned
feature representations provided by the model was not too different to those obtained by
supervised deep learning models. This indicates that an autoencoder can learn relevant
features for classification given the right architecture and architectural constraints, albeit
trained for a different task. In accordance with Ulyanov et al. in [110] this illustrates that
developing new deep learning architectures can be as important as finding new training
methods to improve performance. However, the improvement is tied to the non-linear
domain, and the autoencoder model did not provide equally good features for linear clas-
sification. Albeit the DEC [117] algorithm proving unsuccessful in this work, it might still
be relevant to utilize approaches to slightly augment the feature space for better classifi-
cation in future work. Another interesting finding was the models seemingly unchanged
performance when new and previously unseen classes are introduced. In contrast to deep
learning models trained over labeled data, training by reconstructing images seems to pro-
vide more general features of the data, which are useful for extracting information regard-
less of whether the model has been trained to recognize the object.

Autoencoder training usually results in image reconstructions, which resemble close copies
of the input image. However, the reconstructions using the rotation invariant model did not
give optimal results. This is likely a consequence of the rotation invariance, making it chal-
lenging for the model to retain information about object position. As a result, the decoder
part seems to ”guess” the more likely placements of the object’s main body. Still, failure
to reconstruct the input images might indicate improved performance by switching to a
more complex model. Unfortunately, the large increase in feature maps proved to be very
memory expensive, making it impossible to increase the depth and complexity with the
current computer specifications.

7.1.2 GAN

In recent years it has been an increased focus on generative models in unsupervised learn-
ing, and the deep convolutional GAN model tested in this thesis showed promising results.
From a theoretical point of view, GAN models have gotten the most attention due to their
excellent abilities at creating new and very realistic imitations of real-world data. This was
also experienced in this thesis observing images that look utterly realistic to none experts.
For the purpose of feature extraction, the capability to create realistic images from the
generator part emphasizes an equal capability to distinguish images by the discriminator.
However, the GAN network gave the least satisfying results of the three unsupervised deep
learning methods and did not improve performance over the specialization-project models.

The t-SNE visualization showed that the model has similar problems with the same cat-
egory objects with different rotations as the models from the specialization-project. This
partially explains the bad classification results and emphasize the potential for increased
performance by switching to a more complex or rotation invariant architecture. Unfortu-
nately, the complexity of the discriminator part is heavily constrained by the generator part.
Thus, increasing the discriminator capability resulted in non-convergence as the generator

104

7.1 Deep unsupervised feature extraction

is unable to find images that fool the discriminator.

In contrast to the autoencoder training method, the discriminator training can solve a bi-
nary classification problem that seems more related to the final task. Therefore, one might
expect the learned feature representations of the discriminator to be more optimal for clas-
sification purposes. Naturally, due to the challenges mentioned above of GAN training, the
performance was not spectacular. However, the PCA visualization seems slightly better
than the autoencoder results, which indicate an improved representation of linear features.

As of yet, the model does not provide feature extraction results, which makes the model
suitable in the proposed framework of this thesis. However, the field is still relatively new,
and the model dynamics and training mechanics are still not perfectly understood by the
research community [38]. The GAN model is still not ideal but shows interesting potential
as a feature extraction model.

7.1.3 Deep Cluster

The recently proposed deep cluster approach is a method that is more specifically designed
for learning good feature representations for feature extraction and subsequent classifica-
tion. Unlike the other unsupervised training schemes, a great advantage is that the deep
learning backbone can easily be replaced. Thus, it is possible to train a wide variety of
backbone CNN networks with only minor modifications. With the rapid development of
new supervised architectures, the future state of the art networks are therefore likely to
improve the results also in the unsupervised domain.

In this thesis, the most successful backbone network proved to be the VGG16 network,
which also yielded good results in the original DC paper [15]. Compared to the shallower
5-CONV architecture, the increased performance seems well connected with the increased
complexity of adding model depth. However, this finding is not supported by the ResNet
model, which did not provide very satisfying results. However, compared to the other
networks, the ResNet design is quite different. Therefore, a suggestion for the poor per-
formance is that the networks increased learning speed and larger gradients due to the skip
connections makes the model more vulnerable to a training scheme with rapidly changing
labels and several misclassifications.

Using the VGG16 as backbone, the t-SNE visualization and the SC classification results
show that the learned feature representations provided by the model share strong connec-
tions with those obtained using supervised deep learning. This prove that the DC approach
is clearly useful for learning feature representations unsupervised. However, the good per-
formance is not tied to the non-linear domain, and the PCA visualizations and k-means
classification results shows that the model is able to find image representations which sep-
arates the data in the linear domain. According to Bengio et al. [7] a quality of good feature
representations are their simplicity and typically linear dependencies. In this regard, the
learned DC representations are seemingly superior to the other unsupervised deep learning
methods.

105

Chapter 7. Discussion

The DC models ability to map the high dimensional data into a more linear space seems
related to the aforementioned observation by Hartono et al. [47] concerning the influence
labels have on the learned feature representation. Labeled training might therefore be an
important part of representational learning for classification. Unsupervised training over
pseudo-labels produced by a machine learning clustering algorithm seems an effective way
of imitating supervised deep learning. Furthermore, as the pseudo-labels provided in this
work shared low resemblance with the ground truth labels and still gave good results, it is
likely that new and more accurate classification can further improve the results. However,
the labeled training’s negative side effect seems to be the model’s inability to adapt to new
and unseen classes.

7.2 Unsupervised clustering
Albeit obtaining unsupervised feature representations that share clear similarities with the
ones obtained using supervised learning, the final classification results are far from those
that can be obtained by supervised classifiers. The clustering part seems, therefore, to
be the weak point of the framework. This seems reasonable as clustering, albeit used for
classification, is a partly distinct task for the purpose of identifying object similarities and,
based on these characteristics, group the similar objects together. In comparison, classi-
fication is often used to separate similar type objects based on small distinctions, which
makes it necessary to know the ground truth labels. As an example, the framework is
clearly capable of obtaining good results when performing over a limited number of quite
distinct plankton classes. In comparison, the accuracy is quite low when classifying over
the full Kaggle data set containing several more categories. However, this is not very sur-
prising as the categories separate between, for instance, copepods with different types of
antenna. Arguably such specific distinctions of copepod species are impossible to perform
without knowledge of the expected ground truth classes and seem like an unreasonable
difficult task.

Of the tested clustering algorithms, the SC method achieved the most accurate and more
stable performance over the Kaggle data. The improved performance over the other mod-
els is likely due to the feature extractions containing non-linear properties. Unfortunately,
the method is transductive, meaning it cannot generalize to new unseen data. This is a
severe drawback as the prediction time is very time consuming, and the model requires a
relatively large set of training samples to compare against the unseen data. These issues
are not experienced in the other algorithms making the BIRCH model, which achieved the
second-best results, a good alternative.

7.3 Application in the plankton domain
The automatic sampling of planktonic and other microscopic particles from the recently
developed underwater camera systems provides new and unexplored possibilities within
the oceanic domain. However, classifying and assessing the increasing quantities of plank-
tonic images using human domain level experts are clearly impractical, putting pressure on

106

7.3 Application in the plankton domain

finding ways to automate this work. The experiments conducted in this thesis show that an
unsupervised framework is, to some extent, able to group and correctly classify different
groups of planktonic species. However, the framework is only precise when performing on
a small number of plankton categories, and a significant decrease in accuracy is observed
when trying to detect several more classes. Furthermore, the framework results are still far
behind those obtained using supervised deep learning.

The benefits of introducing machine learning algorithms to the plankton domain are,
among others, faster, continuous, and much less labor-intensive predictions of planktonic
species. However, the cost is likely to decrease the accuracy and potential inability to
assign the samples based on specific taxonomic properties, requiring close examination
under the microscope. In a similar fashion, the introduction of unsupervised algorithms
avoids the need to build a training data set based on labeled data, which further decreases
the workload on human operators. Based on this thesis’s experiments, the cost is a further
decrease in accuracy and reduction in the ability to differentiate species based on small
distinctions. Therefore, the question to decide in each particular case is if a decrease in
performance is worth sacrificing for the great reduction in labor intensive work.

1. Integrating the model onto the AUV: A framework consisting of the DC feature
extraction model combined with the BIRCH clustering algorithm is able to work un-
der the real-time and strict hardware constraints related to the in-situ classification.
Despite the impressive increase in accuracy compared to the specialization-project
models, the model does not provide adequately robust and accurate predictions.
Thus, it is unlikely that an unsupervised approach would provide satisfying results
on its own, making it more recommendable to utilize the framework in assistance
with a supervised classifier. However, how these approaches should be combined
remains a question for further work.

2. Utilize unsupervised learning in the labeling process: The second applicable task
is to utilize unsupervised deep learning as a tool to increase the labeling speed and
soften the labeling burden of expert biologists in the work at creating a data set for
supervised learning. For this purpose, an unsupervised framework could be espe-
cially useful in providing a quick grouping and division of the data set samples,
which can then be assessed more closely by the domain level experts. For this pur-
pose, a framework consisting of the autoencoder feature extraction model and the
SC algorithm is much more applicable as there are no real-time constraints. Apart
from its high classification score, a great benefit of this setup is its ability to adapt
to new and unseen classes, which is a likely scenario to endure when creating a new
data set.

Data set shape

An important but less discussed topic in image classification is how to treat images with
varying sizes and shapes. This is a particular problem with the existing planktonic data
sets as the images usually vary in quite large size ranges. For instance, for the Kaggle
dataset, described in section 2.4.5, the smallest images are around 30×30 pixels while the

107

Chapter 7. Discussion

largest are over 400× 400. The most common approach for handling different size inputs
is to reshape the data to a fixed input. In accordance with similar work on plankton data
[99], the data was reshaped to a fixed size of 64× 64 in this thesis. However, reshaping to
a fixed size is problematic since it is easy to clutter and destroy important information in
the images. The choice of image dimension should, therefore, be well-founded.

To gain a deeper insight into the problem, the deep learning models were tested over sev-
eral different image sizes, but without observing noticeable changes in the model perfor-
mance. Furthermore, some minor work was conducted using tools such as zero-padding
to enlarge the images to the largest data set sample without changing their properties and
relative size. However, this resulted in an enormous decrease in training speed without a
noticeable increase in accuracy. Still, for future experiments, this should be further exam-
ined.

Data set size and class imbalance

An extensive training data set is generally associated with good machine learning perfor-
mance stressing the importance of increasing the data set. However, carelessly adding
images to the data set might turn out problematic as increasing class imbalance can greatly
affect the model performance. In the plankton domain, these issues are especially prob-
lematic as most objects are impossible to categorize and thus ending up in a collective
majority group of ”mix,” ”other,” or ”unknown” species while the number of classifiable
objects are much smaller. The already challenging task of learning the class specifics is
thus increased as the model must also distinguish these samples from the highly varying
mix of unknown samples. This problem seems inherent in the AILARON data as the
model learns a representation where several small classes are grouped together with the
larger ”other” class. This problem might prove a major obstacle when applying unsuper-
vised models over planktonic data with unknown diversity and likely a high number of
unidentifiable objects.

7.4 General view of unsupervised deep learning

Unsupervised deep learning played an important part in the revival and renewed interest
in deep learning at the beginning of the new century. Since unsupervised learning shares a
strong resemblance to human and animal learning, the domain has naturally been associ-
ated with great expectations without achieving the anticipated results. As opposed to the
much more successful supervised deep learning domain, the primary challenge is to find
a target function and training method that relates to the task at hand. Therefore, deep un-
supervised models are usually trained on a partially different task with the hope that they
can obtain useful properties to solve the actual objective. As experienced in this thesis, the
goal of finding a useful unsupervised classification model turned out difficult as the task
of classification is more closely associated with supervised learning. The acquired unsu-
pervised models, albeit capable of learning useful properties, were not trained explicitly to
categorize different class objects and proved only sub-optimal for the prediction task.

108

7.4 General view of unsupervised deep learning

Another prevalent problem for deep learning models is how to determine the quality of
the learned model representations and the subsequent classification capabilities. Because
of the challenge of getting insight by studying the internal structure of neural networks,
other metrics are usually used. In this work, such metrics included clustering accuracy,
and visual inspection of the representation and activation maps. However, these results’
interpretation is mainly based on what the researcher assumes is the best solution. It is
thus not given that the best deep learning model corresponds to the assumingly best metric
results. This was also evident in this thesis as the performance over the different metrics
did not always match, making it infeasible to rely on a single metric to determine the true
model quality.

Furthermore, an important question is whether such metrics are accessible in the true
model environment. Of course, for an unsupervised task, one would expect it to be no
ground truth labels making metrics based on classification performance infeasible. Thus,
performance might be based entirely on different visualization tools, which might not pro-
vide the best standalone results. Furthermore, the utilization of performance metrics for
the purpose of model tuning and validation can be seen as inferring some form of supervi-
sion, which destroys the purpose of self-learning.

Due to the challenges and apparent difficulties within the unsupervised domain, much of
the recent work [15, 52, 116, 125], is shifting towards the semi-supervised domain. A
typical approach combines unsupervised feature extraction trained over a vast amount of
unlabeled data and validates its performance using a supervised machine learning classi-
fier, which is fine-tuned over a small amount of labeled data. In this way, it is possible to
obtain excellent results with only minimum labeling effort.

109

Chapter 7. Discussion

110

Chapter 8
Conclusion

This thesis assesses the building blocks that can contribute and form an unsupervised
framework for plankton detection and classification. The work resulted in a proposed
framework consisting of three components; pre-processing, feature extraction and classi-
fication. The framework is highly modular making it possible to test a wide variety of
network architectures. This made it encouraging to implement and validate different un-
supervised methods to improve the results from the specialization-project and find the best
combination of components.

For feature extraction three different unsupervised deep learning methods was imple-
mented and tested. The rotation invariant autoencoder model was proposed as an improve-
ment of the less robust autoencoders tested in the specialization-project. In addition to the
improved processing of similar species of different rotation the model learned greatly im-
proved feature representations resulting in a classification accuracy of 93% using SC over
the Kaggle-DB1 data set. The DC method, using a VGG16 backbone network, provided
very similar classification accuracy using the SC algorithm scoring 92% over the same
data set. However, the DC results are much better when comparing the methods using
linear metrics making the method more ideal for linear classification. The GAN model,
albeit able to generate superficially authentic plankton images, was not able to improve the
result over those obtained in the specialization-project. Still, the method showed interest-
ing potential as a feature extraction model and is likely to improve its performance when
models of higher complexity are available.

Several different clustering algorithms were then tested for the purpose of classification.
The best classification accuracy was obtained using SC regardless of feature extraction
network. Unfortunately the algorithm is very time consuming making it less ideal in real-
time applications when speed is crucial. Thus, the BIRCH algorithm might turn out a better
option providing much faster predictions at the cost of slightly lower accuracy. However,

111

Chapter 8. Conclusion

the models only provides robust results when the data contains only a few species and
failed considerably when predicting several more categories.

Overall, the proposed framework shows interesting potential and might be a valuable clas-
sification tool when the size of the data set is small. In the current process of improving
the AILARON data set, the framework thus seems a practical tool that can provide a rough
first assignment of the planktonic species. Therefore, the main application appears to be a
classification tool that helps domain level experts speed up the labeling process.

112

Chapter 9
Future Work

This thesis covers a broad spectrum of machine learning research and state of the art ap-
plications within the unsupervised deep learning domain. However, with the limited time
available, several more research questions and directions for future work still exist. This
chapter summarizes some of the major tasks which must be assessed in future work.

1. This thesis has explored the realm of unsupervised learning, provided insight into
the model capabilities, and studied their applicability to the planktonic domain. Still,
the proposed framework is not yet adopted into the AILARON real-time classifica-
tion pipeline, and the framework’s area of use is, therefore, yet to be explored. First,
the experiments showed that the supervised neural networks are still superior in
regards to classification performance, making a standalone unsupervised classifier
a less ideal choice. However, no further investigation of the classification when
combining the two approaches has been conducted, making it possible for the unsu-
pervised models to assist the existing supervised framework. Furthermore, unsuper-
vised models have other advantages that might prove very useful. A much-referred
problem in plankton classification is data set drift [40] which refers to the testing
conditions varying over time. Thus, it is paramount to obtain an algorithm capa-
ble of adjusting to the varying conditions and adapting to new and unseen plankton
categories.

2. The current choice of employing a supervised classification algorithm as the predic-
tion model in the AILARON pipeline is first and foremost problematic due to the
requirement of extensive labeling effort. The unsupervised framework has already
shown a promising potential at grouping similar species and adapt to new and un-
seen classes making it ideal for assisting human experts in the annotation process.
How such an annotation tool should work and how the unsupervised resources are
best combined with human expertise needs further research.

113

Chapter 9. Future Work

3. A problem which was not further assessed in this thesis was deciding the number
of categories in the existing data set. Following the state of the art work in the
unsupervised domain [16, 46, 117], the number of classes was regarded as priorly
known and set to a fixed number before training. However, in a fully unsupervised
setting, such information might not be available making it difficult to choose an
appropriate number of clusters. Therefore, a further improvement of the proposed
unsupervised framework is to explore and implement an algorithm that can propose
a likely number of categories existing in the input data.

4. The most emphasized model structure in this work consisted of a deep learning fea-
ture extraction model and a separate clustering algorithm. A drawback of this struc-
ture is that the classification part cannot influence the feature extraction model’s
feature representations. This problem might result in a less satisfying result. Albeit
an apparent drawback, reasonable solutions are challenging to obtain in the unsuper-
vised domain. The DEC approach was tested in this thesis but provided unsatisfying
results. Still, there exists several similar techniques such as the DAC [16], and the
DCEC [46] algorithm, which might provide better results over the plankton data.

5. One of the most significant advantages of unsupervised learning is the capability of
increasing performance by utilizing large amounts of unlabeled training data. The
current version of the AILARON-DB2 data set only contains a few classes with few
dominant feature characteristics, making it difficult to learn a suitable data represen-
tation and extract useful features. Therefore, a focus point for future development
should be to gather several more training samples from a wider domain of plankton
classes.

114

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] V. Agarwal. Research on data preprocessing and categorization technique for smart-
phone review analysis. International Journal of Computer Applications, 975:8887,
2015.

[3] C. C. Aggarwal et al. Neural networks and deep learning. Springer, 2018.

[4] J. Almotiri, K. Elleithy, and A. Elleithy. Comparison of autoencoder and principal
component analysis followed by neural network for e-learning using handwritten
recognition. In 2017 IEEE Long Island Systems, Applications and Technology Con-
ference (LISAT), pages 1–5. IEEE, 2017.

[5] A. I. Awad and M. Hassaballah. Image feature detectors and descriptors. Studies in
Computational Intelligence. Springer International Publishing, Cham, 2016.

[6] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In
European conference on computer vision, pages 404–417. Springer, 2006.

[7] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798–1828, 2013.

[8] A. Bhardwaj, W. Di, and J. Wei. Deep Learning Essentials: Your hands-on guide to
the fundamentals of deep learning and neural network modeling. Packt Publishing
Ltd, 2018.

115

[9] F. Bianchi, F. Acri, F. B. Aubry, A. Berton, A. Boldrin, E. Camatti, D. Cassin, and
A. Comaschi. Can plankton communities be considered as bio-indicators of water
quality in the lagoon of venice? Marine Pollution Bulletin, 46(8):964–971, 2003.

[10] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[11] M. A. Boden. AI: Its nature and future. Oxford University Press, 2016.

[12] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[13] A. S. Brierley. Plankton. Current Biology, 27(11):R478–R483, 2017.

[14] A. Byerly, T. Kalganova, and I. Dear. A branching and merging convolutional
network with homogeneous filter capsules. arXiv preprint arXiv:2001.09136, 2020.

[15] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsuper-
vised learning of visual features. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 132–149, 2018.

[16] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering.
In Proceedings of the IEEE international conference on computer vision, pages
5879–5887, 2017.

[17] F. Chollet et al. Keras. https://keras.io, 2015.

[18] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 215–223, 2011.

[19] T. Cohen and M. Welling. Group equivariant convolutional networks. In Interna-
tional conference on machine learning, pages 2990–2999, 2016.

[20] R. K. Cowen and C. M. Guigand. In situ ichthyoplankton imaging system (isiis):
system design and preliminary results. Limnology and Oceanography: Methods,
6(2):126–132, 2008.

[21] R. K. Cowen, S. Sponaugle, K. L. Robinson, J. Luo, and C. Guigand. Planktonset
1.0: Plankton imagery data collected from f.g. walton smith in straits of florida from
2014-06-03 to 2014-06-06 and used in the 2015 national data science bowl (nodc
accession 0127422). national oceanographic data center, noaa. dataset. 2015.

[22] A. Creswell, K. Arulkumaran, and A. A. Bharath. On denoising autoencoders
trained to minimise binary cross-entropy. arXiv preprint arXiv:1708.08487, 2017.

[23] B. C. Csáji et al. Approximation with artificial neural networks. Faculty of Sciences,
Etvs Lornd University, Hungary, 24(48):7, 2001.

[24] P. F. Culverhouse, R. Williams, B. Reguera, V. Herry, and S. González-Gil. Do
experts make mistakes? a comparison of human and machine indentification of
dinoflagellates. Marine ecology progress series, 247:17–25, 2003.

116

https://keras.io

[25] E. Davies. https://github.com/emlynjdavies/PySilCam/wiki.
[Online; accessed November 11, 2020].

[26] E. J. Davies, P. J. Brandvik, F. Leirvik, and R. Nepstad. The use of wide-band
transmittance imaging to size and classify suspended particulate matter in seawater.
Marine pollution bulletin, 115(1-2):105–114, 2017.

[27] E. J. Davies and R. Nepstad. In situ characterisation of complex suspended particu-
lates surrounding an active submarine tailings placement site in a norwegian fjord.
Regional Studies in Marine Science, 16:198–207, 2017.

[28] E. R. Davies. Computer vision: principles, algorithms, applications, learning. Aca-
demic Press, 2017.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[30] L. Deng and D. Yu. Deep learning: methods and applications. Foundations and
trends in signal processing, 7(3–4):197–387, 2014.

[31] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[32] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning.
arXiv preprint arXiv:1603.07285, 2016.

[33] A. Elgammal, B. Liu, M. Elhoseiny, and M. Mazzone. Can: Creative adversarial
networks, generating” art” by learning about styles and deviating from style norms.
arXiv preprint arXiv:1706.07068, 2017.

[34] A. Fabre, L. Ortega, S. Mendez, and A. Martinez. Climate shift triggers shellfish
harvesting bans in uruguay (south-west atlantic ocean). Marine and fresh-water
harmful algae, pages 18–20, 2016.

[35] A. A. Freitas. Comprehensible classification models: a position paper. ACM
SIGKDD explorations newsletter, 15(1):1–10, 2014.

[36] H. Gao, H. Yuan, Z. Wang, and S. Ji. Pixel transposed convolutional networks.
IEEE transactions on pattern analysis and machine intelligence, 42(5):1218–1227,
2019.

[37] E. S. Gedraite and M. Hadad. Investigation on the effect of a gaussian blur in image
filtering and segmentation. In Proceedings ELMAR-2011, pages 393–396. IEEE,
2011.

[38] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

117

https://github.com/emlynjdavies/PySilCam/wiki

[39] J. Gong. Refining a deep learning model for object detection. https:
//blogs.sas.com/content/subconsciousmusings/2019/03/05/
refining-a-deep-learning-model-for-object-detection/,
2019. [Online; accessed May 19, 2020].

[40] P. González, E. Álvarez, J. Dı́ez, Á. López-Urrutia, and J. J. del Coz. Validation
methods for plankton image classification systems. Limnology and Oceanography:
Methods, 15(3):221–237, 2017.

[41] P. González, A. Castaño, E. E. Peacock, J. Dı́ez, J. J. Del Coz, and H. M. Sosik. Au-
tomatic plankton quantification using deep features. Journal of Plankton Research,
41(4):449–463, 2019.

[42] I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

[43] I. Goodfellow, A. Courville, and Y. Bengio. Deep learning. Adaptive computation
and machine learning. MIT Press, Cambridge, Mass, 2017.

[44] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[45] G. Gorsky, M. D. Ohman, M. Picheral, S. Gasparini, L. Stemmann, J.-B. Romag-
nan, A. Cawood, S. Pesant, C. Garcı́a-Comas, and F. Prejger. Digital zooplankton
image analysis using the zooscan integrated system. Journal of plankton research,
32(3):285–303, 2010.

[46] X. Guo, X. Liu, E. Zhu, and J. Yin. Deep clustering with convolutional autoen-
coders. In International conference on neural information processing, pages 373–
382. Springer, 2017.

[47] P. Hartono. Mixing autoencoder with classifier: conceptual data visualization. arXiv
preprint arXiv:1912.01137, 2019.

[48] G. C. Hays, A. J. Richardson, and C. Robinson. Climate change and marine plank-
ton. Trends in ecology & evolution, 20(6):337–344, 2005.

[49] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[50] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

[51] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7132–7141,
2018.

[52] J. Huang, Q. Dong, S. Gong, and X. Zhu. Unsupervised deep learning by neigh-
bourhood discovery. arXiv preprint arXiv:1904.11567, 2019.

118

https://blogs.sas.com/content/subconsciousmusings/2019/03/05/refining-a-deep-learning-model-for-object-detection/
https://blogs.sas.com/content/subconsciousmusings/2019/03/05/refining-a-deep-learning-model-for-object-detection/
https://blogs.sas.com/content/subconsciousmusings/2019/03/05/refining-a-deep-learning-model-for-object-detection/

[53] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[54] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus.
arXiv preprint arXiv:1702.08734, 2017.

[55] A. Kaplan and M. Haenlein. Siri, siri, in my hand: Who’s the fairest in the land? on
the interpretations, illustrations, and implications of artificial intelligence. Business
Horizons, 62(1):15–25, 2019.

[56] E. Karami, S. Prasad, and M. Shehata. Image matching using sift, surf,
brief and orb: performance comparison for distorted images. arXiv preprint
arXiv:1710.02726, 2017.

[57] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[58] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[59] M. Kolla and T. Venugopal. Semantic image clustering with global average pooled
deep convolutional autoencoder. HELIX, 8(4):3561–3566, 2018.

[60] A. Krizhevsky and G. Hinton. Convolutional deep belief networks on cifar-10.
Unpublished manuscript, 40(7):1–9, 2010.

[61] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[62] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[63] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[64] H. W. Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[65] D. Kuzminykh, D. Polykovskiy, and A. Zhebrak. Extracting invariant features from
images using an equivariant autoencoder. In Asian Conference on Machine Learn-
ing, pages 438–453, 2018.

[66] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[67] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[68] H. Lee, M. Park, and J. Kim. Plankton classification on imbalanced large scale
database via convolutional neural networks with transfer learning. In 2016 IEEE in-
ternational conference on image processing (ICIP), pages 3713–3717. IEEE, 2016.

119

[69] K. Lenc and A. Vedaldi. Understanding image representations by measuring their
equivariance and equivalence. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 991–999, 2015.

[70] M. Leordeanu. Unsupervised Learning in Space and Time. Springer, 2020.

[71] X. Li and Z. Cui. Deep residual networks for plankton classification. In OCEANS
2016 MTS/IEEE Monterey, pages 1–4. IEEE, 2016.

[72] Q. Liu and Y. Wu. Supervised Learning. Springer US, Boston, MA, 2012.

[73] S. Liu and W. Deng. Very deep convolutional neural network based image classi-
fication using small training sample size. In 2015 3rd IAPR Asian conference on
pattern recognition (ACPR), pages 730–734. IEEE, 2015.

[74] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

[75] L. Lu, Y. Shin, Y. Su, and G. E. Karniadakis. Dying relu and initialization: Theory
and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

[76] C. H. Lucas, S. Gelcich, and S.-I. Uye. Living with jellyfish: management and
adaptation strategies. In Jellyfish blooms, pages 129–150. Springer, 2014.

[77] A. Lumini and L. Nanni. Ocean ecosystems plankton classification. In Recent
Advances in Computer Vision, pages 261–280. Springer, 2019.

[78] J. Y. Luo, J.-O. Irisson, B. Graham, C. Guigand, A. Sarafraz, C. Mader, and R. K.
Cowen. Automated plankton image analysis using convolutional neural networks.
Limnology and Oceanography: Methods, 16(12):814–827, 2018.

[79] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[80] J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics, pages 281–297, Berkeley, Calif., 1967. Uni-
versity of California Press.

[81] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C. Malossi. Bagan: Data
augmentation with balancing gan. arXiv preprint arXiv:1803.09655, 2018.

[82] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long. A survey of clustering
with deep learning: From the perspective of network architecture. IEEE Access,
6:39501–39514, 2018.

[83] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[84] NVIDIA, P. Vingelmann, and F. H. Fitzek. Cuda, release: 10.2.89, 2020.

120

[85] M. D. Ohman, R. E. Davis, J. T. Sherman, K. R. Grindley, B. M. Whitmore, C. F.
Nickels, and J. S. Ellen. Zooglider: an autonomous vehicle for optical and acoustic
sensing of zooplankton. Limnology and Oceanography: Methods, 17(1):69–86,
2019.

[86] R. J. Olson and H. M. Sosik. A submersible imaging-in-flow instrument to analyze
nano-and microplankton: Imaging flowcytobot. Limnology and Oceanography:
Methods, 5(6):195–203, 2007.

[87] E. C. Orenstein, O. Beijbom, E. E. Peacock, and H. M. Sosik. Whoi-plankton-a
large scale fine grained visual recognition benchmark dataset for plankton classifi-
cation. arXiv preprint arXiv:1510.00745, 2015.

[88] V. P. Pastore, T. G. Zimmerman, S. K. Biswas, and S. Bianco. Annotation-free
learning of plankton for classification and anomaly detection. Scientific reports,
10(1):1–15, 2020.

[89] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[90] O. Py, H. Hong, and S. Zhongzhi. Plankton classification with deep convolutional
neural networks. In 2016 IEEE Information Technology, Networking, Electronic
and Automation Control Conference, pages 132–136. IEEE, 2016.

[91] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[92] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of
invariant feature hierarchies with applications to object recognition. In 2007 IEEE
conference on computer vision and pattern recognition, pages 1–8. IEEE, 2007.

[93] R. Reed and R. J. MarksII. Neural smithing: supervised learning in feedforward
artificial neural networks. Mit Press, 1999.

[94] J. Rocca. Understanding variational autoencoders (vaes).
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-
f70510919f73. [Online; accessed October 10, 2020].

[95] F. C. M. Rodrigues, N. S. Hirata, A. A. Abello, T. Leandro, D. La Cruz, R. M.
Lopes, and R. Hirata Jr. Evaluation of transfer learning scenarios in plankton image
classification. In VISIGRAPP (5: VISAPP), pages 359–366, 2018.

[96] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[97] S. Russell and P. Norvig. Artificial intelligence: a modern approach. Prentice Hall
series in artificial intelligence. Pearson Education, 2016.

121

[98] A. Saad, E. Davies, and A. Stahl. Recent advances in visual sensing and machine
learning techniques for in-situ plankton-taxa classification. presented at Ocean Sci-
ences Meeting 2020, San Diego, CA, 16-21 Feb., 2020. 636384.

[99] A. Saad, A. Stahl, A. Våge, E. Davies, T. Nordam, N. Aberle, M. Ludvigsend,
G. Johnsen, J. Sousa, and K. Rajan. Advancing ocean observation with an ai-driven
mobile robotic explorer. Oceanography, 33:42–51, 2020.

[100] E. Salvesen. Unsupervised methods for in-situclassification of plankton taxa, 2019.
This file is attached to the thesis document as a supplementary material.

[101] E. Salvesen, A. Saad, and A. Stahl. Robust methods of unsupervised clustering
to discover new planktonic species in-situ. In OCEANS 2020/IEEE SINGAPORE.
IEEE, 2020.

[102] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-
cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, pages 618–
626, 2017.

[103] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[104] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[105] H. M. Sosik and R. J. Olson. Automated taxonomic classification of phytoplankton
sampled with imaging-in-flow cytometry. Limnology and Oceanography: Methods,
5(6):204–216, 2007.

[106] I. Suthers, D. Rissik, and A. Richardson. Plankton: A guide to their ecology and
monitoring for water quality. CSIRO publishing, 2019.

[107] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[108] T. Taulli and M. Oni. Artificial Intelligence Basics. Springer, 2019.

[109] R. Thakur, R. Jindal, U. B. Singh, and A. Ahluwalia. Plankton diversity and wa-
ter quality assessment of three freshwater lakes of mandi (himachal pradesh, india)
with special reference to planktonic indicators. Environmental monitoring and as-
sessment, 185(10):8355–8373, 2013.

[110] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 9446–9454,
2018.

[111] H. Valpola. From neural pca to deep unsupervised learning. In Advances in in-
dependent component analysis and learning machines, pages 143–171. Elsevier,
2015.

122

[112] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling. Rotation equiv-
ariant cnns for digital pathology. In International Conference on Medical image
computing and computer-assisted intervention, pages 210–218. Springer, 2018.

[113] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[114] C. Wang, Z. Yu, H. Zheng, N. Wang, and B. Zheng. Cgan-plankton: towards large-
scale imbalanced class generation and fine-grained classification. In 2017 IEEE
International Conference on Image Processing (ICIP), pages 855–859. IEEE, 2017.

[115] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics
and intelligent laboratory systems, 2(1-3):37–52, 1987.

[116] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3733–3742, 2018.

[117] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering
analysis. In International conference on machine learning, pages 478–487, 2016.

[118] R. Xu and D. Wunsch. Clustering, volume 10. John Wiley & Sons, 2008.

[119] J. Yang, D. Parikh, and D. Batra. Joint unsupervised learning of deep represen-
tations and image clusters. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5147–5156, 2016.

[120] Y. Yazici, C.-S. Foo, S. Winkler, K.-H. Yap, and V. Chandrasekhar. Empirical
analysis of overfitting and mode drop in gan training. In 2020 IEEE International
Conference on Image Processing (ICIP), pages 1651–1655. IEEE, 2020.

[121] S. R. Yoshida. Computer vision. Computer science, technology and applications.
Nova Science Publishers, New York, 2011.

[122] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering
method for very large databases. ACM sigmod record, 25(2):103–114, 1996.

[123] H. Zheng, R. Wang, Z. Yu, N. Wang, Z. Gu, and B. Zheng. Automatic plankton
image classification combining multiple view features via multiple kernel learning.
BMC bioinformatics, 18(16):570, 2017.

[124] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep fea-
tures for discriminative localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929, 2016.

[125] C. Zhuang, A. L. Zhai, and D. Yamins. Local aggregation for unsupervised learning
of visual embeddings. In Proceedings of the IEEE International Conference on
Computer Vision, pages 6002–6012, 2019.

[126] D. Ziou, S. Tabbone, et al. Edge detection techniques-an overview. Pattern Recog-
nition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii,
8:537–559, 1998.

123

124

