
Petter Solnør
Authenticated Encryption M

ethods for Feedback Control System
s

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Petter Solnør

Authenticated Encryption Methods for
Feedback Control Systems

Master’s thesis in Cybernetics and Robotics

Supervisor: Thor I. Fossen

December 2020





Master’s Thesis

Authenticated Encryption Methods for
Feedback Control Systems

Petter Solnør

Submission date: December 22nd, 2020
Supervisor: Thor I. Fossen
Co-supervisor: Slobodan Petrovic

Norwegian University of Science and Technology
Department of Engineering Cybernetics





Master’s Thesis Description

Introduction
This is a master’s thesis written at the Department of Engineering Cybernetics,
NTNU. The work is a continuation of the work described in the TTK4550 project
report completed in the spring of 2020.

Main Objective
The work described in this thesis is motivated by the need to enhance the cyber-
security of feedback control systems. The signals transmitted in feedback control
systems must be made resistant against unauthorized eavesdropping, and spoofed
signals must not be accepted by the feedback control system. The system must be
cryptographically strong while not inducing intolerable latencies or synchroniza-
tion problems that would be detrimental to the overall performance of the system,
possibly resulting in a loss of control.

Tasks

• Conduct a literature study on how researchers have attempted to secure feed-
back control systems using cryptographic methods.

• Demonstrate the cyber-physical vulnerability of feedback control systems.

• Demonstrate that previously proposed schemes are vulnerable to both passive
and active attacks.

• Propose an alternative, cryptographically strong scheme.

• Expand the collection of cryptographic algorithms that were implemented in
TTK4550.

• Standardize the interfaces of the algorithm implementations to create a proper
toolbox.

• Provide enhanced implementations of AES and AEGIS that take advantage
of ARMv8 architecture and x86 architecture hardware acceleration features.

• Assess the performance of the proposed scheme with the algorithm imple-
mentations, in the encryption laboratory that was built in TTK4550.

• Demonstrate that the proposed scheme is robust against attacks.

• Outline some suggestions for future work based on the results and the re-
search.





Abstract

Feedback control systems require that signals are transmitted between sensors,
state estimators, controllers, and actuators. These signal transmissions enable
adversaries to eavesdrop on the signals that are transmitted to conduct system
identification, potentially revealing system parameters and control parameters that
may be considered confidential. Worse yet, an adversary could potentially alter
messages or inject spoofed messages to manipulate the behavior of the controller,
state estimator, or actuator to gain control of the system. The hijacking of a
dynamical system, for example, an Unmanned Surface Vehicle (USV), can result
in catastrophic material and economic consequences if used to inflict damage as part
of a terrorist attack or as an act of war. Therefore, securing the signal transmission
in feedback control systems is of great importance.

We may accomplish this through the use of cryptographic tools. While some re-
search has been conducted in this area in the past, the research that has been
published has consisted of ciphers that are not optimal by modern standards, both
concerning security and performance. The cryptographic algorithms have also been
used in insecure ways, thus enabling attacks. In this thesis, the previously proposed
schemes are analyzed, and attacks are implemented. The attacks demonstrate that
the previously proposed schemes leak information and even enable the injection
of forged messages, contrary to the claims of the authors. This thesis attempts
to improve on the work that has been published by bringing in modern, crypto-
graphically sound techniques. A scheme that is cryptographically strong, and not
vulnerable to the demonstrated attacks, is then proposed.

To implement the proposed scheme, a toolbox containing high-performance im-
plementations of state-of-the-art cryptographic algorithms is developed. The al-
gorithm implementations are benchmarked for considerations such as the latency
that is induced by processing various amounts of data. Other important aspects,
such as synchronization mechanisms and traffic expansion, are also treated. The
experiments are conducted on industrial Raspberry Pis in an encryption laboratory
setup that was built as part of previous project work. The Raspberry Pis are used
to ensure that the results obtained are relevant in an industrial setting in which em-
bedded devices are more likely to be present than powerful desktop machines. The
results show that the state-of-the-art stream cipher implementations outperform
traditional block ciphers. Furthermore, the algorithms induce very little latency,
less than a millisecond on small amounts of data, and are therefore well-suited for
real-time applications.

Keywords: Applied Cryptography, Cryptanalysis, Feedback Control Systems,
Networked Control Systems, Cyber-Physical Systems

i



ii



Sammendrag

Tilbakekoblingssystemer krever at signaler sendes mellom sensorer, tilstandsesti-
matorer, regulatorer og aktuatorer. Disse signalene er s̊arbare for tyvlytting, som
gjør at uautoriserte aktører kan f̊a kjennskap til potensielt konfidensielle system- og
regulatorparametre gjennom systemidentifikasjon. Uautoriserte aktører kan ogs̊a
manipulere komponenter i tilbakekoblingssystemet ved å manipulere signaler og
sende inn falske signaler. Dersom en uautorisert aktør klarer å kapre et slikt
system, for eksempel et ubemannet fartøy, kan det f̊a katastrofale materielle og
økonomiske følger dersom det kaprede fartøyet benyttes som et verktøy i et terro-
rangrep eller i en krigshandling. Sikring av signalene i et tilbakekoblingssystem er
derfor svært viktig.

For å sikre signalene i et tilbakekoblingssystem kan vi benytte oss av kryptografiske
verktøy. Selv om noe forskning er publisert p̊a dette fagomr̊adet tidligere, har
forskere brukt eldre, og tidvis utdaterte, algoritmer. Måtene de kryptografiske al-
goritmene har vært benyttet p̊a har ogs̊a vært mangelfulle, noe som har gjort at
mange av forslagene er svært s̊arbare for angrep. I denne avhandlingen analyserer
vi tidligere forslag og implementerer angrep som viser s̊arbarhetene. Angrepene
demonstrerer at de tidligere forslagene gjør at systemene lekker informasjon og fører
til tap av konfidensialitet, og ogs̊a gjør det mulig å forfalske signaler og dermed ma-
nipulere systemet. Som et alternativ, foresl̊as derfor kryptografisk sterke metoder
som ikke er s̊arbare for disse angrepene.

For å implementere de foresl̊atte kryptografiske metodene blir en verktøykasse
med moderne kryptografiske algoritmer utviklet. Ytelsen til algoritmeimplemen-
tasjonene blir deretter m̊alt ved å m̊ale tidsforsinkelsen til ulike mengder data p̊a
industrielle Raspberry Pi maskiner. I tillegg diskuteres synkroniseringsmetoder
og trafikkekspansjon som er viktig. Resultatene viser at implementasjonene av
moderne flytchiffer har bedre ytelse og gir mindre tidsforsinkelser enn tradisjonelle
blokkchiffer. Implementasjonene gir svært sm̊a tidsforsinkelser, godt under 1 mil-
lisekund for mindre datamengder, og egner seg derfor svært godt for sanntidssys-
temer.

Nøkkelord: Anvendt Kryptografi, Kryptoanalyse, Tilbakekoblede Systemer,
Nettverkskoblede Reguleringssystemer, Cyber-fysiske Systemer

iii



iv



Preface

The work described in this master’s thesis was conducted at the Department of
Engineering Cybernetics, NTNU, in Trondheim during the fall of 2020. The thesis
is submitted as a requirement for the degree of Master of Technology in Engineering
Cybernetics.

I would like to thank my main supervisor, Professor Thor I. Fossen, at the Depart-
ment of Engineering Cybernetics, for inspiring discussions and valuable guidance
during the work described in this thesis. Additionally, I would also like to thank my
co-supervisor, Professor Slobodan Petrovic, at the Department of Information Se-
curity and Communication Technology, who contributed with valuable insights on
the cryptographic aspects of the work. Finally, I would like to thank my colleague,
Øystein Volden, at the Department of Engineering Cybernetics, who, through his
work, used the proposed scheme and the algorithms that were implemented in
the Robot Operating System (ROS) environment. He brought valuable insight and
identified implementation-specific details that made improvements to the algorithm
implementations possible.

It was quickly determined that the work described in this thesis would be a contin-
uation of the work that was described in the TTK4550 project report, submitted
in the spring semester of 2020. In addition to improving and standardizing the al-
gorithm interfaces from the project work, additional algorithms have been included
to form a comprehensive toolbox of cryptographic algorithms. This has resulted
in a journal paper describing the toolbox, which is currently under peer review.
Furthermore, attacks against previously proposed communication schemes used for
feedback control systems that were briefly drafted in the project work have been
fully described and implemented, supporting the claim that these communication
schemes contain several catastrophic weaknesses. The proposed communication
scheme in this thesis resists these attacks and is also robust to disturbances if
attacks are attempted. This is shown towards the end of the thesis.

Petter Solnør
Trondheim, December 2020

v



vi



Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents ix

List of Tables xi

List of Figures xv

List of Listings xviii

List of Abbreviations xix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 A motivating example . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Cryptographic Methods 11
2.1 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Attack models . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Block ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Stream ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



2.3 Integrity and Message Authenticity . . . . . . . . . . . . . . . . . . . 25
2.3.1 Cryptographic hash functions . . . . . . . . . . . . . . . . . . 26
2.3.2 Message authentication codes . . . . . . . . . . . . . . . . . . 28
2.3.3 Attack models . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.4 A word of caution . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Authenticated Encryption . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Generic compositions . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Authenticated encryption modes . . . . . . . . . . . . . . . . 31
2.4.3 Dedicated authenticated encryption algorithms . . . . . . . . 32

2.5 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Traffic expansion . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 The Encryption Laboratory 35
3.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Latency measurements . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 System simulation . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Software Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Endianness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Serialization and deserialization . . . . . . . . . . . . . . . . . 40
3.2.3 Latency measurements . . . . . . . . . . . . . . . . . . . . . . 41
3.2.4 System simulation . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Applied Cryptography in Feedback Control Systems 45
4.1 Analysis of Previous Proposals . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Electronic codebook encryption in feedback control systems . 45
4.1.2 The secure transmission mechanism . . . . . . . . . . . . . . 47

4.2 Authenticated Encryption for Feedback Control Systems . . . . . . . 51

5 Cryptographic Algorithms and the CryptoToolbox 55
5.1 Algorithm Implementations . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Advanced encryption standard . . . . . . . . . . . . . . . . . 56
5.1.2 HC-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.3 Sosemanuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.4 Rabbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.5 ChaCha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.6 AEGIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.7 Keyed-hash message authentication code . . . . . . . . . . . . 70

5.2 Hexadecimal Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Encryption using Rabbit . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Authentication and verification using HMAC-SHA-256 . . . . 76
5.3.3 Authenticated encryption using AEGIS . . . . . . . . . . . . 78

6 Implementing Secure Signal Transmission in Feedback Control
Systems 81

viii



6.1 Secure transmission using Encrypt-then-MAC . . . . . . . . . . . . . 81
6.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Secure transmission using AEGIS . . . . . . . . . . . . . . . . . . . . 84
6.2.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Practical Experiments and Verification 89
7.1 Performance Tests of the CryptoToolbox Implementations . . . . . . 89
7.2 Quantitative Results and Discussion . . . . . . . . . . . . . . . . . . 90
7.3 Qualitative Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.1 Back to the motivating example . . . . . . . . . . . . . . . . 92
7.3.2 Application in the ROS environment . . . . . . . . . . . . . . 92

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Conclusion 99
8.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.1.1 Research question 1 . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.2 Research question 2 . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.3 Research question 3 . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.4 Research question 4 . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.5 Research question 5 . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Reference List 103

A A Cryptographic Toolbox for Feedback Control Systems 111

ix



x



List of Tables

1.1 System parameters used in the hijacking experiment. . . . . . . . . . 4
1.2 Controller parameters used in the hijacking experiment. . . . . . . . 4

3.1 KUNBUS RevPi Connect+ hardware specification. . . . . . . . . . . 36

4.1 Hexadecimal encoding of packets transmitted using the STM pro-
posed by Pang et al. in (Pang et al. 2011, Pang & Liu 2012). . . . . 48

7.1 A comparison of authenticated encryption performance using EtM
compositions of the eSTREAM portfolio stream ciphers and HMAC-
SHA-256, an EtM composition of AES CFB and HMAC-SHA-256,
and the AES GCM authenticated encryption mode from the Crypto++
open-source cryptographic library. . . . . . . . . . . . . . . . . . . . 96

7.2 A comparison of authenticated encryption performance using EtM
compositions of the eSTREAM portfolio stream ciphers and HMAC-
SHA-256, an EtM composition of AES CFB and HMAC-SHA-256,
and the AEGIS authenticated encryption cipher from the Crypto-
Toolbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xi



xii



List of Figures

1.1 A generic feedback control system. . . . . . . . . . . . . . . . . . . . 2
1.2 An illustration of how an adversary can launch attacks against a

feedback control system. . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 An illustration of how a mass-spring-damper system is hijacked and

forced to a state determined by the adversary. Irregularities are
caused by original control signals passing through to the actuator
during the attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 A feedback control system in which the measurement signals and
control signals are encrypted and authenticated before transmission. 5

1.5 The homomorphic encryption scheme proposed by Kogiso & Fujita
(2015). Image courtesy of (Kogiso & Fujita 2015). . . . . . . . . . . 7

2.1 The core concepts of information security. . . . . . . . . . . . . . . . 12
2.2 Two actors seeking to communicate over an insecure channel with

and without encryption. . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 A high-level illustration of how a block cipher acts as a substitution. 16
2.4 An illustration of a typical Feistel cipher round on the left, a typical

substitution-permutation network round in the middle, and a typi-
cal add-rotate-xor round on the right. The add-rotate-xor round is
based on the structure of the Speck cipher (Beaulieu et al. 2015). . 18

2.5 An illustration of a linear feedback shift register with a reducible
feedback polynomial p(x) = 1 + x2 + x4 + x5 = (x+ 1)(x4 + x+ 1).
Such a polynomial does not produce a max-length sequence of period
25−1. A sequence produced by a linear feedback shift register with a
reducible feedback polynomial also carries other statistical properties
that are undesirable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 An illustration of a synchronous stream cipher permitting the use of
an initialization vector. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 An illustration of how two messages map to the same digest via a
cryptographic hash function. . . . . . . . . . . . . . . . . . . . . . . 26

xiii



2.8 An illustration of the three generic compositions discussed in Bellare
& Namprempre (2008). . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 The available instruction set features in the RevPi Connect+. Note
that it claims that the processor is an ARMv7 BCM2835 processor.
However, this is incorrect. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 An overview of the encryption laboratory setup that was used to
assess the performance of the cryptographic algorithms. . . . . . . . 37

3.3 A schematic view of the encryption laboratory setup that was used
to assess the performance of the cryptographic algorithms. . . . . . . 37

3.4 A schematic view of the hardware setup that was used to launch the
hijacking experiment, both with and without encryption. . . . . . . . 38

3.5 An illustration of how a 32-bit integer is mapped to memory on a
little-endian and big-endian architecture, respectively. . . . . . . . . 39

3.6 An overview of the program flow that was used in the encryption lab-
oratory lab when the latency of different cryptographic algorithms
was measured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 An overview of the program flow used in the encryption laboratory
when the latency without encryption in the feedback loop was mea-
sured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 The software setup used in the hijacking experiment with and with-
out encryption and authentication. . . . . . . . . . . . . . . . . . . . 43

4.1 The secure signal transmission proposed by Pang et al. (2011), uti-
lizing DES, MD5, and timestamps. Even though DES is considered
very outdated and was broken in 1992 by Biham & Shamir (1992),
we argue that the scheme is fundamentally flawed independently of
the block cipher used. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Encrypting a message directly using a block cipher in ECB mode. . 48
4.3 ECB encryption mapping two plaintexts to two ciphertexts. . . . . . 49
4.4 A successful known-plaintext attack against the STM, resulting in a

system hijacking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 An enhanced STM, providing proper authenticated encryption. . . . 52

5.1 An overview of the algorithms available through the CryptoToolbox. 56
5.2 The high-level structure of AES. Left hand side illustrate the en-

cryption mode, while the right hand side illustrates the decryption
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 A block cipher operating in CTR mode. Notice that the initialization
vector consists of a nonce and a counter. The counter is incremented
each time the block cipher is iterated, and is usually initialized to a
pre-determined value for each message. The nonce must be shared
between the transmitter and the receiver. . . . . . . . . . . . . . . . 58

5.4 A block cipher operated in CFB mode, with a carry-over IV. . . . . 60
5.5 An overview of the Sosemanuk stream cipher. . . . . . . . . . . . . . 65

xiv



5.6 An illustration of the AES description, the AES-NI operations and
the ARMv8 cryptography extension operations. The difference be-
tween the AES-NI and ARMv8 cryptography extension round func-
tion means that extra operations are required when using ARM
hardware-acceleration to implement AEGIS. This figure is based on
a figure from Crutchfield (2014). . . . . . . . . . . . . . . . . . . . . 69

5.7 The HMAC tag generation algorithm. Based on figure from (Dang
2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.8 An illustration of the ARX-like structure of the SHA-256 block ci-
pher round. Based on figure from (Sanadhya & Sarkar 2008). . . . . 74

7.1 A comparison between the top performing algorithms from the Cryp-
toToolbox and the Crypto++ library, in addition to the popular AES
GCM algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 The mean latency induced by transmitting packets of varying data
sizes, processed by the various cryptographic algorithms from the
Crypto++ library to obtain authenticated encryption. . . . . . . . . . 91

7.3 The mean latency induced by transmitting packets of varying data
sizes, processed by the various cryptographic algorithms from the
CryptoToolbox to obtain authenticated encryption. . . . . . . . . . . 92

7.4 An illustration of the system simulation resisting the spoofed control
signal when using the scheme proposed in Section 4.2. . . . . . . . . 93

7.5 An illustration of the system simulation resisting the replay attack
when using the scheme proposed in Section 4.2. . . . . . . . . . . . . 93

7.6 The CryptoToolbox integrated into the ROS environment. Image
courtesy of Volden & Solnør (2020). . . . . . . . . . . . . . . . . . . 94

7.7 An encrypted video stream in the ROS environment on the left,
with the corresponding recovered video stream on the right. The
video stream was encrypted using the AES CFB algorithm from the
CryptoToolbox. Image courtesy of Volden & Solnør (2020). . . . . . 95

xv



xvi



Listings

3.1 Endianness Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Data struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Serialization and Deserialization . . . . . . . . . . . . . . . . . . . . 40
5.1 AES CTR Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 AES CFB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 AES-NI Intrinsics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 AES x86 AES-NI Compilation. . . . . . . . . . . . . . . . . . . . . . 63
5.5 AES ARMv8 Crypto Extension Compilation. . . . . . . . . . . . . . 63
5.6 The HC-128 Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.7 The HC-128 Keystream Generator Function. . . . . . . . . . . . . . 64
5.8 The Sosemanuk Interface. . . . . . . . . . . . . . . . . . . . . . . . . 64
5.9 A Bitsliced Osvik S-Box for the Serpent Block Cipher. . . . . . . . . 66
5.10 The Rabbit Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.11 The ChaCha Compilation Options. . . . . . . . . . . . . . . . . . . . 67
5.12 The ChaCha Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.13 The ChaCha Quarter-Round Function. . . . . . . . . . . . . . . . . . 67
5.14 The AEGIS Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.15 AEGIS x86 AES-NI Compilation. . . . . . . . . . . . . . . . . . . . . 69
5.16 AEGIS ARMv8 Crypto Extension Compilation. . . . . . . . . . . . . 69
5.17 Reconstruction of AES Round using ARMv8 Intrinsics. . . . . . . . 69
5.18 The HMAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.19 SHA-256 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.20 The Hexadecimal Encoder and Decoder Interfaces. . . . . . . . . . . 73
5.21 Rabbit encryption example . . . . . . . . . . . . . . . . . . . . . . . 74
5.22 Rabbit decryption example . . . . . . . . . . . . . . . . . . . . . . . 75
5.23 HMAC-SHA-256 authentication . . . . . . . . . . . . . . . . . . . . . 76
5.24 HMAC-SHA-256 validation . . . . . . . . . . . . . . . . . . . . . . . 77
5.25 AEGIS encryption and authentication . . . . . . . . . . . . . . . . . 78
5.26 AEGIS validation and decryption . . . . . . . . . . . . . . . . . . . . 79
6.1 The enhanced STM transmitter using an EtM composition. . . . . . 81
6.2 The enhanced STM transmitter using an EtM composition. . . . . . 83

xvii



6.3 The enhanced STM transmitter implemented using AEGIS. . . . . . 84
6.4 The enhanced STM transmitter implemented using AEGIS. . . . . . 85

xviii



List of Abbreviations

USV Unmanned Surface Vehicle
ROS Robot Operating System
MSD Mass-Spring-Damper
PI Proportional-Integral
UDP User Datagram Protocol
IP Internet Protocol
DES Data Encryption Standard
3DES Triple DES
AES Advanced Encryption Standard
ECB Electronic Code Book
MD5 Message Digest 5
STM Secure Transmission Mechanism
HMAC Keyed-Hash Message Authentication Code
LiDAR Light Detection and Ranging
TCP Transmission Control Protocol
DoS Denial of Service
CIA Confidentiality, Integrity and Availability
COA Ciphertext-Only Attack
KPA Known-Plaintext Attack
CPA Chosen-Plaintext Attack
CCA Chosen-Ciphertext Attack
SPN Substitution-Permutation Network
ARX Add-Rotate-XOR
SHA Secure Hash Algorithm
LUT Lookup Table
NIST National Institute of Standards and Technology
CFB Cipher Feedback
OFB Output Feedback
CBC Cipher Block Chaining
CTR Counter

xix



PRF Pseudo-Random Function
OTP One-Time Pad
PRNG Pseudorandom Number Generator
LFSR Linear Feedback Shift Register
S-box Substitution box
IV Initialization Vector
SSSC Self-Synchronizing Stream Cipher
MAC Message Authentication Code
CBC-MAC Cipher Block Chaining Message Authentication

Code
CMAC Cipher-based Message Authentication Code
nonce number-used-only-once
CMA Chosen Message Attack
CRC Cyclic Redundancy Check
SSH Secure Shell
E&M Encrypt-and-MAC
MtE MAC-then-Encrypt
TLS Transport Layer Security
GCM Galois/Counter Mode
EtM Encrypt-then-MAC
CCM Counter with CBC-MAC
OCB Offset Codebook
RTT Round-trip Time
IETF Internet Engineering Task Force
RFC Request For Comment
AES-NI Advanced Encryption Standard New Instructions
CAESAR Competition for Authenticated Encryption: Secu-

rity, Applicability and Robustness

xx



Chapter 1
Introduction

This master’s thesis was written during the fall semester of 2020 at the Department
of Engineering Cybernetics at the Norwegian University of Science and Technology
in Trondheim. This chapter is based on Chapter 1 of the project thesis from
TTK4550, which has been adapted and extended to fit this thesis.

The work described in this thesis is part of an effort to enhance the cyber-physical
security of feedback control systems. The main goal is to provide security against
eavesdropping attacks, data manipulation attacks, and spoofing attacks. In par-
ticular, the thesis focuses on how the signals transmitted between the components
of a feedback control system can be kept confidential and how the authenticity
and integrity of these signals can be ensured. Of great importance is the obser-
vation that these properties should be obtained without inducing adverse effects
such as large latencies and problems with synchronization between transmitters
and receivers. Such effects would be detrimental to the overall performance of the
feedback control system, thus rendering the scheme useless. We seek to achieve
this goal through the use of modern cryptographic methods. By applying encryp-
tion, confidential signal transmission is achieved, and by applying cryptographic
message authentication codes, the authenticity and integrity of the transmitted
signals are ensured. However, these cryptographic methods must be applied in a
cryptographically strong way to obtain the desired properties.

To address the main goal of enhancing the cyber-physical security of feedback con-
trol systems, this thesis treats the three following main topics; The first topic of
this thesis is to evaluate communication schemes that have previously been pre-
sented for feedback control systems, and then propose a new, cryptographically
strong communication scheme. The second topic is to present a toolbox contain-
ing high-performance implementations of state-of-the-art cryptographic algorithms
that may be used to implement the proposed scheme. In the final part, we show
how the proposed scheme may be implemented using the algorithms from the tool-

1



Chapter 1. Introduction

Controller System
Reference Output

Measurement

Control signal

State

Estimator

State Estimate

Figure 1.1: A generic feedback control system.

box, and the performance of the proposed scheme implemented with the algorithm
implementations is assessed.

1.1 Background
A generic feedback control system can be seen in Figure 1.1. Feedback control sys-
tems consist of sensory systems, state estimators, controllers, and actuators. These
components need to communicate by transmitting measurements, state estimates,
and control inputs. Often, these components are connected over a local network
spanning the plant or the vehicle, and the signals are transmitted over this network.
These signals are vulnerable to cyber-physical attacks.

Some systems may have components with confidential system parameters or con-
fidential control parameters. If an unauthorized adversary gains access to the
network over which these signals are transmitted, system identification may be
performed, and confidential parameters may thus be leaked. This could, for exam-
ple, be an attack vector for industrial espionage. With access to the network, an
adversary could also inject spoofed data to alter the behavior of a system compo-
nent and thus alter the behavior of the system as a whole. Such an attack could
cause a loss of control. Worse yet, combined with knowledge of the system param-
eters or control parameters, the adversary could effectively hijack the system. The
system could then be used as part of a terrorist attack. Such attacks have been
contemplated in the past. For example, in 2019, it was shown in a white paper
by Kiley (2019) that an adversary with access to the transmission lines on board
a small aircraft could effectively manipulate the behavior of the craft by injecting
spoofed data. It was argued that small airplanes are rarely closely guarded. Thus,
an adversary could gain physical access to these transmission lines without the
owners or the operators noticing.

We refer to feedback control systems that ‘close the loop’ through a network as
networked control systems, and the cyber-physical vulnerability of such systems has
been investigated in the past. The former attack, in which an adversary eavesdrops
and identifies confidential parameters, is called a system identification attack and
was investigated by de Sá et al. (2017). The latter attack, in which the adversary
attempts to manipulate the behavior of the system by injecting spoofed data, is
called a deception attack and has been discussed in detail by Teixeira et al. (2013).

2



1.1 Background

1.1.1 A motivating example
To illustrate the vulnerability of a feedback control system, a Mass-Spring-Damper
(MSD) system, a Proportional-Integral (PI) controller, and an adversary were im-
plemented (in C++). A server runs the PI controller while a client simulates the
MSD system. The client measures1 the position of the mass and transmits the
measurement to the server running the PI controller. Based on the received mea-
surement and the PI control law, the controller computes a control signal that is
transmitted back to the server. All signals are transmitted over User Datagram Pro-
tocol (UDP)/Internet Protocol (IP) unencrypted and unauthenticated with static
IP addresses.

The MSD system is modeled according to

mẍ = − kx− dẋ+ F (1.1)

ẍ = − k

m
x− d

m
ẋ+ F

m
(1.2)

in which x denotes the position of the mass, k denotes the spring constant, d denotes
the damping constant, m denotes the mass and F denotes the driving force.

The controller is modeled according to

F = Kp · (xr − x) +Ki

∫ t

0
(xr − x) dt (1.3)

in which x denotes the measurement, xr denotes the reference, and Kp and Ki are
the proportional and integral gain parameters, respectively. Both the controller
and the simulator run at a frequency of 50 Hz. Note that if an adversary is capable
of eavesdropping on the transmitted signals, and if the system is in a non-zero,
stationary state (ẍ = 0, ẋ = 0, x 6= 0), the adversary can easily identify the spring
constant by

k = F

x
(1.4)

During the simulation, the coefficients of the MSD system and the PI controller
were set according to Tables 1.1 and 1.2, respectively. The reference signal to the
controller is switched every 20 seconds between xr = 0 and xr = 1. Suppose the
adversary now wants to force the system to the state x = 2. Having identified the
spring constant k by eavesdropping on the transmitted signals and using (1.4), the
adversary can now compute a spoofed control signal given by

1Since it is a simulation, we consider the exact position. No measurement noise of any kind
was added.

3



Chapter 1. Introduction

Table 1.1: System parameters used in the hijacking experiment.

k [N/m] d [N s/m] m [kg]
25 20 1

Table 1.2: Controller parameters used in the hijacking experiment.

Kp Ki

200 70

Controller Actuator

Sensor

Reference Output

Measurement

Control signal

Server Client

Adversary

Spoofed Control signalEavesdropping

Figure 1.2: An illustration of how an adversary can launch attacks against a feedback
control system.

F = kx

= 25 N/m · 2 m = 50 N
(1.5)

At some point during the simulation, the adversary initiates a deception attack by
transmitting the spoofed control signal to the client at a frequency of 100 Hz, twice
the frequency of the controller, to hijack the system. An illustration of the setup
can be seen in Figure 1.2. The client logged the state of the simulated system for
each iteration, and the state was later plotted (using MATLAB®). The successful
hijacking can be seen in Figure 1.3.

To provide security against such attacks, cryptographic techniques can be used to
make system identification difficult through encryption and to make deception at-
tacks difficult by authenticating the origin of the received control and measurement
signals. An illustration of a secured system can be seen in Figure 1.4.

4



1.2 Related Work

0 4 8 12 16 20 24 28 32

Time [s]

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P
o

s
it
io

n
 [

m
]

System Hijacking

Spoof initiated
Reference

Mass Position

Figure 1.3: An illustration of how a mass-spring-damper system is hijacked and forced
to a state determined by the adversary. Irregularities are caused by original control signals
passing through to the actuator during the attack.

Controller System
Reference Output

Encrypted & 

Auth. Measurement

Encrypted & Auth.

Control signal

Encrypt

& Auth.

Decrypt

& Verify

Encrypt

& Auth.

Decrypt

& Verify

State

Estimator

Decrypt

& Verify

Encrypt

& Auth.

Encrypted & 

Auth. Estimates

Figure 1.4: A feedback control system in which the measurement signals and control
signals are encrypted and authenticated before transmission.

1.2 Related Work
In recent years, many researchers have sought to incorporate cryptographic algo-
rithms into feedback control systems. Gupta & Chow (2008) assessed the perfor-
mance of the Data Encryption Standard (DES), Triple DES (3DES), and Advanced
Encryption Standard (AES) applied in the Electronic Code Book (ECB) mode in
a feedback control system. Pang & Liu (2010) extended the scheme from Gupta &
Chow (2008) by applying the Message Digest 5 (MD5) (Rivest 1992) cryptographic
hash algorithm to provide message integrity and authenticity. The same authors
(Pang et al. 2011, Pang & Liu 2012) further enhanced the scheme by including
a timestamp to prevent replay attacks. The latter scheme was named the Secure
Transmission Mechanism (STM). While several papers have questioned the secu-

5



Chapter 1. Introduction

rity of the STM (for example Ulz et al. (2017) and Sparrow et al. (2015)), many
authors have cited the STM as a possible solution, providing confidentiality, in-
tegrity, and message authenticity for the signals that are transmitted in feedback
control systems (for example de Sá et al. (2017), Yang et al. (2017), Liu (2017),
Chen et al. (2017), Wu et al. (2016), Sun et al. (2017), de Sá et al. (2018), d. Sa
et al. (2017), Chen et al. (2019), de Sá et al. (2019), and Yaseen & Bayart (2016)).
Finally, Jithish & Sankaran (2017) proposed an alternative scheme in which the
3DES block cipher operated in ECB mode was combined with the MD5 algorithm
used in conjunction with the Keyed-Hash Message Authentication Code (HMAC)
(Dang 2008). Unfortunately, the security of these schemes is rarely if ever analyzed
properly.

On the applications-side, Matellán et al. (2016) and Rodŕıguez-Lera et al. (2018) in-
corporated the 3DES, Blowfish, and AES encryption algorithms into the Robot Op-
erating System (ROS) environment, a popular middleware used for robot systems.
While cryptographic algorithms are available through open-source libraries such
as PyCrypto (Litzenberger 2020) (used by Matellán et al. (2016) and Rodŕıguez-
Lera et al. (2018)), OpenSSL (OpenSSL Software Foundation 2020), Crypto++ (Dai
2020), and wolfCrypt (wolfSSL Inc. 2020), these libraries may be hard to navigate
and do not provide access to modern stream ciphers such as AEGIS or the stream
ciphers from the eSTREAM portfolio. Therefore, researchers have used crypto-
graphic algorithms that do not typically provide the best performance. Notably,
the DES encryption algorithm is not even considered secure anymore (Biham &
Shamir 1992).

Furthermore, the use of homomorphic encryption in control systems has been pro-
posed, for example, by Kogiso & Fujita (2015) in which both RSA (Rivest et al.
1978) and Elgamal (Elgamal 1985) encryption is considered for which the homomor-
phisms hold for multiplication. The idea is that the controller partially computes
the control signal by computing the multiplications required for the control signal
based on encrypted control parameters, reference signals and measurements as seen
by Figure 1.5, after which other operations (such as additions) must be performed
by the plant. The motivation is that in the event that the controller is compromised
by an adversary, only encrypted information can be extracted from the controller.
Additionally, since the controller does not need to perform any decryption or en-
cryption operations, the controller does not need to store any keys, thus simplifying
the key management. While the former argument is appealing, a homomorphic en-
cryption scheme is malleable by design. Without a scheme to provide message
authenticity, such a scheme is entirely insecure in the face of an active adversary
because the adversary will be capable of passing meaningful, spoofed measurements
and control signals to the controller and actuator, respectively. The topic of mes-
sage authenticity and integrity was not treated by Kogiso & Fujita (2015), nor in
any of the proof-of-concept papers that followed by Kim et al. (2016) and Kogiso
et al. (2018).

In their most recent paper, Teranishi et al. (2020) consider how the quantization
required for the Elgamal encryption affects the stability of the system. This is im-

6



1.3 Previous Work

Figure 1.5: The homomorphic encryption scheme proposed by Kogiso & Fujita (2015).
Image courtesy of (Kogiso & Fujita 2015).

portant in the Elgamal cryptosystem, because the plaintext space in the Elgamal
cryptosystem is limited to a subset of integers, thus inducing significant quantiza-
tion errors. This problem does not occur when symmetric encryption schemes are
used. The use of the Elgamal cryptosystem also suffers from the fact that the ci-
phertext is twice the size of the plaintext, thus significantly increasing the amount
of data that must be transmitted. This is particularily significant for systems that
use vision-based signals such as camera data and Light Detection and Ranging
(LiDAR) data. Not to mention that the Elgamal cryptosystem is computationally
expensive compared to symmetric encryption schemes. In their paper, Teranashi
et al. limits the keysize to 33 bits to ensure real-time operation, a keysize that is
easily brute-forced by modern computers. Finally, the dynamic Elgamal scheme
proposed requires perfect synchronization, an assumption the authors fulfill by
using the Transmission Control Protocol (TCP). However, the TCP protocol is
unsuitable for real-time operation.

An attempt to incorporate homomorphic authenticated encryption in a drone sys-
tem was done by Cheon et al. (2018). In theory, this avoids the malleability of
previously proposed homomorphic encryption schemes. However, the encryption
algorithm proposed has not been critically scrutinized by the cryptographic com-
munity, and the security proofs are perceived as questionable.

1.3 Previous Work
The work described in this thesis is a continuation of the work documented in the
project report submitted as part of the course TTK4550 in the spring of 2020.
In particular, Chapter 2 and Chapter 3 are based on Chapters 2 and 3 from the
project report, respectively, with certain changes and additions. Certain ideas from
Chapter 4 were briefly touched upon in the project report. Also, certain segments
in Chapter 5 are based on the project report. If a segment is based on previous
work, this will be specified at the introduction of each segment. Otherwise, the
work was completed as part of this thesis.

7



Chapter 1. Introduction

1.4 Problem Definition
As illustrated by the motivating example in Section 1.1.1, feedback control systems
are vulnerable to cyber-physical attacks in which an adversary can perform system
identification and disclose potentially confidential information regarding a system
or a controller by eavesdropping on the communication between sensors, estimators,
controllers, and actuators. Worse yet, if parameters are known, the system can be
hijacked by passing spoofed control signals to the actuator of the system or by
passing spoofed measurements to the controller.

To prevent such attacks, it is desirable to ensure that the confidentiality, integrity,
and authenticity of the transmitted signals are ensured. This may be accomplished
through the use of cryptographic tools. However, cryptographically strong algo-
rithms must be used in a cryptographically strong construction. The schemes
proposed by the authors in Section 1.2 are questionable, and the security of several
of these schemes will be investigated in Sections 4.1.1 and 4.1.2.

While the strategies involving homomorphic encryption are intriguing, the moti-
vation for such a scheme is debatable and, at the very least, reserved for a small
subset of feedback control systems. Indeed, for most feedback control systems, the
controller would be considered secure. Furthermore, the majority of the proposed
homomorphic encryption schemes rely on asymmetric encryption techniques such
as the Elgamal cryptosystem. For such schemes, problems related to the quantiza-
tion of signals and parameters arise when dealing with these cryptosystems, as they
only deal with subsets of integers and may not be used on the data directly. This
is not the case for symmetric encryption schemes. Additionally, with the rise of
quantum computing, the future security of such systems is debatable due to Shor’s
Algorithm (Shor 1994), whereas symmetric encryption schemes would only require
a doubling of the current key size due to Grover’s Algorithm (Grover 1996). Thus,
for a system with a long time horizon, the use of symmetric cryptography is likely
to be the most secure option.

Finally, we note that many encryption schemes are stateful. This is the case both
for symmetric encryption schemes such as stream ciphers and for the homomor-
phic encryption scheme proposed by Teranishi et al. (2020). This requires both
the transmitter and the receiver to be synchronized. In (Teranishi et al. 2020),
the synchronization problem was solved by using the TCP protocol. This is un-
fortunate because the TCP protocol can induce significant latencies if packets are
lost and completely break down if an active adversary filters out certain packets.
Preferably, a different synchronization mechanism not requiring the reception of
all the previous messages in the correct order should be used.

As we proceed in this thesis, we seek to answer the following research questions.

RQ1 How do ‘secure’ communication schemes for feedback control systems pro-
posed by researchers from the control community fare against cyber-physical
attacks?

RQ2 May cryptographic techniques be used to enhance the security of feedback

8



1.5 Main Contributions

control systems through a new, more secure communication scheme?

RQ3 How may the transmitter and receiver of a feedback control system achieve
synchronous communication if stateful cryptographic methods are used over
non-reliable communication protocols?

RQ4 To what extent do open-source cryptographic libraries provide access to mod-
ern cryptographic algorithms, and how does their performance compare to
direct implementations of the algorithms?

RQ5 Which cryptographic algorithms provide the best performance, and should
be used to obtain authenticated encryption, in feedback control systems?

1.5 Main Contributions
The following are considered the main contributions of the work described in this
thesis:

• Previously proposed schemes that were designed to provide confidential and
authenticated transmission of signals in feedback control systems have been
shown to fail catastrophically against known-plaintext attacks.

• A new cryptographically strong transmission mechanism for feedback control
systems has been proposed.

• A toolbox containing multiple high-performance cryptographic algorithms
for feedback control systems has been developed. The toolbox contains both
portable software implementations and implementations that take advantage
of enhanced instruction sets on x86 and ARMv8 processors.

• Modern, high-performance cryptographic algorithms are shown to induce lit-
tle latency when used to protect typical signals transmitted in feedback con-
trol systems on embedded devices.

• The work has resulted in a journal paper currently under peer review.

1.6 Organization of the Thesis
As we proceed, the thesis is organized as follows.

In Chapter 2, terms and concepts from cryptology are introduced and defined.
In addition to providing a brief overview of key concepts from cryptology, the re-
search question regarding synchronization between the transmitter and the receiver
(RQ3) is touched upon in this chapter.

In Chapter 3, the hardware and the software of the encryption laboratory are
described. The encryption laboratory was used in the motivating example in Sec-
tion 1.1.1, to demonstrate attacks in Section 4.1.1 and Section 4.1.2, and in the
benchmarks and verification experiments of the algorithms in Chapter 7.

9



Chapter 1. Introduction

In Chapter 4, the security of previously proposed transmission mechanisms for
feedback control systems is analyzed, treating RQ1. Furthermore, a new scheme
is proposed, treating RQ2.

In Chapter 5, the CryptoToolbox is introduced. The CryptoToolbox is a tool-
box containing new implementations of a selection of modern high-performance
cryptographic methods.

In Chapter 6, code examples of how the proposed scheme may be implemented
using the CryptoToolbox algorithms is given, to aid practitioners implementing
the proposed scheme.

In Chapter 7, the cryptographic algorithms from the CryptoToolbox, described
in Chapter 5, are benchmarked in the scheme proposed in Section 4.2. It is also
demonstrated that the scheme proposed in Section 4.2 is robust against distur-
bances, thus providing some security against Denial of Service (DoS) attacks. This
chapter focuses on answering RQ4 and RQ5.

Finally, Chapter 8 concludes the thesis by summarizing the findings and relating
the findings to the research questions posed in Section 1.4.

All figures have been created using Adobe Illustrator®unless stated otherwise, while
all plots have been created using MATLAB®. If a figure is based on an existing
figure, the source is cited in the figure description.

10



Chapter 2
Cryptographic Methods

The goal of this chapter is to give a brief theoretical introduction to the crypto-
graphic methods that are used in Chapters 4 – 7. This chapter is based on Chapter
2 from the TTK4550 project report, with some additions and changes.

There exist different cryptographic primitives designed to achieve different security
goals. In the literature, these security goals are often summarized as Confidential-
ity, Integrity and Availability (CIA), as illustrated by Figure 2.1. In this chapter,
these terms will be elaborated upon, and the cryptographic primitives set to achieve
them are explained. In the following chapter, a notion known as Kerckhoff’s Prin-
ciple is important. Kerckhoff’s Principle states that the security of a cryptosystem
should only rely on the secrecy of the key, not on the secrecy of other parts of the
system. In particular, this statement is orthogonal to that of security through ob-
scurity. That is, the security of the system should not rely on keeping the inner
workings of the system secret. Thus, in the following discussions, is it assumed that
an adversary has full knowledge of the algorithms that are used, and only the key,
and material that is directly derived from the key, are unknown to an adversary.
Examples of material that is directly derived from the key and considered secret
are, for instance, the key schedule of a block cipher or the state of a stream cipher.
These concepts will be described in a later section.

2.1 Algebra
When treating the cryptographic methods in the following sections, certain math-
ematical constructs and properties are of particular interest and importance. The
goal of this section is to define and get acquainted with the notion of a finite field.
For a more detailed treatment on this topic, the reader is referred to a book by
McEliece (1986).

11



Chapter 2. Cryptographic Methods

Confidentiality

Integrity

Availability

Data

Figure 2.1: The core concepts of information security.

To define a field, an algebraic group must be defined. We adopt the definition from
Menezes et al. (1996).

Definition 1 (Group). A group (G, ∗) consist of a set G with a binary operation
∗ on G satisfying the following three axioms.

1. The group operation is associative. That is, a∗(b∗c) = (a∗b)∗c ∀ a, b, c ∈ G.

2. There is an element 1 ∈ G, called the identity element, such that a ∗ 1 =
1 ∗ a = a ∀ a ∈ G.

3. For each a ∈ G there exists an element a−1 ∈ G, called the inverse of a, such
that a ∗ a−1 = a−1 ∗ a = 1.

Additionally, a group is abelian1 if the following criteria is satisfied.

4. a ∗ b = b ∗ a ∀ a, b ∈ G.

Further, if there exists an element g ∈ G such that for each b ∈ G ∃ c ∈ Z+ | gc = b
we call the group cyclic, and g a generator. Using the definition of an abelian
group, defining a field is easy.

Definition 2 (Field). A field (F,+, ·) consists of a set F with two binary operators,
+ and · called addition and multiplication, respectively, such that the following
three properties are satisfied.

1. (F,+) is an abelian group where 0 is the identity element.

2. (F \ {0}, ·) is an abelian group where 1 is the identity element.

3. Multiplication distributes over addition, i.e., a · (b+ c) = a · b+ a · c.

Finally, a finite field can be defined.
1Named after Niels Henrik Abel, a Norwegian mathematician.

12



2.2 Confidentiality

Definition 3 (Finite field). A finite field is a field (F,+, ·) in which the set F
contains a finite number of elements.

The number of elements in the set of a finite field is always pn in which p is a
prime, and n is a strictly positive integer. Furthermore, there only exists one field
with pn elements. The finite field with pn elements is said to be of order pn and
to be of characteristic p. In the digital era, the finite fields of characteristic 2 are
particularly interesting. In the literature, a finite field is often referred to as a
Galois field2, and the finite field with pn elements is often referred to as GF (pn).
This notation will be adopted in this thesis.

Lemma 1. The multiplicative group of a finite field, (F \ {0}, ·), is cyclic.

Lemma 1 ensures that there always exists at least one generator in the multiplica-
tive group of the field. This element is called a primitive element.

The elements of a finite field GF (pn) may be represented by polynomials of degree
strictly less than n with coefficients from the set {0, ..., p − 1}. If the polynomial
a(x) representing an element in the finite field may be factored into two polyno-
mials b(x) 6= 1, c(x) 6= 1, that is, a(x) = b(x)c(x) then a(x) is called a reducible
polynomial. If the polynomial a(x) may not be factored, then a(x) is called an ir-
reducible polynomial. The order of the polynomial a(x) is denoted by the smallest
integer e such that a(x) divides xe−1. Finally, if the polynomial a(x) is irreducible
and has order pn − 1 we say that a(x) is a primitive polynomial.

Given a primitive polynomial α(x) and an irreducible polynomial β(x) any ele-
ment of the finite field GF (pn) may be represented by the polynomial given by
α(x)c mod β(x) for some c ∈ {0, . . . , pn − 1}. Thus, the irreducible polynomials
play the role of prime numbers3 and the primitive polynomials play the role of the
generators. Note that the choice of the primitive polynomial and the irreducible
polynomial merely determines the order of the elements that are generated.

2.2 Confidentiality
The task of keeping information private and inaccessible to unathorized eaves-
droppers is known as confidentiality, and as such, this private information is often
referred to as confidential information. Cryptographic confidentiality is achieved
through the use of encryption.

The goal of an encryption scheme is to ensure that confidential data can be trans-
mitted securely through an insecure channel, as illustrated by Figure 2.2. An
encryption scheme can be symmetric or asymmetric. In a symmetric, or secret key,
encryption scheme, the encryption and decryption keys are easily deduced from
one another and may thus be considered the same. As illustrated by Figure 2.2, a

2Named after Évariste Galois, a French mathematician.
3While a practical analogy in this context, one ought to be careful. It is, in fact, quite easy to

factor a reducible polynomial or to verify that a polynomial is irreducible. Factoring integers or
verifying that an integer is a prime can be quite cumbersome!

13



Chapter 2. Cryptographic Methods

Unauthorized Adversary

Authorized Person Authorized Person

Insecure channel

Unauthorized Adversary

Authorized Person Authorized Person

Insecure channelCipher Cipher

Key source

Secure channels

Figure 2.2: Two actors seeking to communicate over an insecure channel with and
without encryption.

symmetric encryption scheme requires a secure key distribution system as well as
a key generator that is capable of generating highly randomized keys. This is a
problem of its own and is not treated in this report. That is, it is assumed that the
keys that are used are, in fact, highly randomized and pre-distributed.

Asymmetric encryption schemes also exist, in which the decryption key is not
easy to deduce from the encryption key. These schemes typically rely on number-
theoretical problems that are assumed to be computationally hard. Asymmetric
encryption schemes are typically used to exchange a secret key, for example, using
RSA, or to deduce a common secret from which a secret key can be derived, for
example, using the Diffie-Hellman key exchange4. This is because asymmetric en-
cryption schemes are computationally expensive compared to symmetric encryption
schemes, and for this reason, they will not be treated in this report.

Ultimately an adversary may have two goals in mind; uncovering the plaintext of
a particular ciphertext or recovering the key used in the encryption scheme. Thus
it is important that information from the plaintext, nor the key, leaks through to
the ciphertext. The terms confusion and diffusion were used by Shannon (1945)
to describe these goals. Specifically, the confusion component describes the goal
of making the relationship between the ciphertext and the key as complicated as
possible, while the diffusion component describes the goal of making the relation-
ship between the plaintext and the ciphertext as complicated as possible. The
confusion component is often achieved through the use of nonlinear operations, for
example, multiplications, while the diffusion component is often achieved through
rearrangements to spread and hide any plaintext redundancy.

2.2.1 Attack models
When discussing cryptographic algorithms, it is useful to keep attack models in
mind, as certain types of algorithms grant more power to the adversary. The
goal of a particular cryptographic design is to ensure that any reasonable attack
against the particular design is no more efficient than an exhaustive search. That
is, if a symmetric key cipher system claims to provide n-bit security, the most
efficient attack should require an exhaustive search over the keyspace of size 2n. In

4Named after Whitfield Diffie and Martin Hellman, whom with their paper (Diffie & Hellman
1976) practically invented asymmetric cryptography.

14



2.2 Confidentiality

computational complexity terms, an exhaustive search is, on average, of complexity
2n−1.5

Ciphertext-only attack

The most basic attack an adversary can perform is a Ciphertext-Only Attack
(COA). In a COA, the adversary only has access to the transmitted ciphertext.
While being the most basic attack model, an adversary will always be capable
of performing a COA attack. If a COA attack is not feasible, the messages are
presumably transmitted through a secure channel, at which point encryption is
pointless.

Known-plaintext attack

A slightly more advanced attack is a Known-Plaintext Attack (KPA). In a KPA,
the adversary knows some plaintext-ciphertext pairs.

Chosen-plaintext attack

Whereas the plaintext-ciphertext pairs available to the adversary were arbitrary in
the KPA-model, the adversary is capable of controlling the plaintext in a Chosen-
Plaintext Attack (CPA) while observing the resulting ciphertext.

Chosen-ciphertext attack

Finally, in a Chosen-Ciphertext Attack (CCA) attack, the adversary is capable of
controlling the ciphertext while observing the corresponding plaintext. In practi-
cal terms, the CCA-model corresponds to a scenario in which the adversary is in
possession of a decryption device.

Other models

In addition to the attack models mentioned above, there exists a whole host of
other attack models. An exhaustive list will not be given here. However, attack
models such as related-key attacks and side-channel attacks are all important to
consider, depending on the application.

2.2.2 Block ciphers
In modern cryptography, block ciphers have been dominating. Not only do they
provide confidentiality through encryption, but they have also served as the back-
bone of cryptographic hash functions and message authentication algorithms. Mod-
ern block ciphers were introduced with the cipher Lucifer designed by Horst Feistel
in 1971 (Feistel 1971). This was followed by the standardization of the DES in the

5On average, one would have to attempt one half of the total number of keys before finding
the correct key.

15



Chapter 2. Cryptographic Methods

Block

cipher

Plaintext

Ciphertext

(Block

cipher)-1

Ciphertext

Plaintext

Figure 2.3: A high-level illustration of how a block cipher acts as a substitution.

mid-1970s (National Bureau of Standards 1977) and the AES process around the
year 2000, resulting in the AES cipher (NIST 2001).

Block ciphers are permutations F : {0, 1}B × {0, 1}K 7→ {0, 1}B where K denotes
the key size, and B denotes the block size. The block cipher takes a B-bit input,
performs a series of operations, and outputs a B-bit output. Externally the block
cipher can be perceived as a black box, acting merely as a substitution as illustrated
by Figure 2.3. Thus, for a block size B with a total of 2B distinct blocks, there
exists a total of 2B ! block ciphers. For a specific block cipher design, the key
acts as a parameterization, thus limiting the number of block ciphers to 2K . The
job of constructing a block cipher is therefore equivalent to the selection of 2K

substitutions from a total of 2B ! available substitutions. As B becomes large, the
2K substitutions of a block cipher are dwarfed by the total number of 2B ! possible
substitutions.

Modern block ciphers have largely followed one of three design methodologies, all
of which consist of multiple, iterated rounds of nonlinear operations and permuta-
tions, a design known as a product cipher. By iterating through multiple rounds,
increased diffusion and confusion are achieved, effectively increasing the effort re-
quired to perform certain statistical attacks such as linear cryptanalysis and differ-
ential cryptanalysis. Note that each round must be keyed. Otherwise, an adversary
could backtrack through the cipher since the block cipher is a permutation. Thus,
block ciphers usually contain a key schedule that is designed to extract multiple
round keys from the secret master key. Having a complex relationship between
the round keys is necessary. Otherwise, the cipher is vulnerable to cryptanalytical
attacks such as slide attacks, as demonstrated by Biryukov & Wagner (1999). The
round keys may be computed during the encryption and decryption procedures,
or they may be precomputed and stored. The latter is usually preferred, except
on severely constrained devices, or on certain devices with hardware acceleration
support, in which the former is used.

Internally. a block cipher may be constructed in various ways.

16



2.2 Confidentiality

Feistel cipher The Feistel cipher design methodology is motivated by the origi-
nal Lucifer cipher invented by Horst Feistel, and is used in DES. A Feistel cipher
is characterized by splitting the input of each round in two, performing a keyed
nonlinear operation on one half, and then ⊕-ing the output with the other half.
The two halves are then swapped for the next round. In this fashion, at least two
rounds are required for the entire block to be affected by the nonlinear operation.
A beautiful aspect of the Feistel cipher is the observation that decryption merely
consists of the same operations with a reversed key schedule.

Substitution-permutation networks The Substitution-Permutation Network
(SPN) design methodology seeks to separate Shannon’s concepts of confusion and
diffusion (Shannon 1945) in distinct layers and optimize the two separately. This
design methodology is used in the Rijndael cipher, which was later adopted as
the AES. The cipher that came in second in the AES-process, Serpent, is also an
SPN-cipher.

Add-rotate-XOR Finally, the Add-Rotate-XOR (ARX) design methodology
has been used in ciphers such as the Speck cipher and the block cipher used in
the Secure Hash Algorithm (SHA)-2. The operations of the aforementioned Feistel
and SPN designs can be rather complex, for example, involving substitution boxes
requiring multiplications over some finite field GF (2n), and permutations achieved
through matrix multiplications. These operations are computationally expensive,
especially in simple architectures in which multiplications are solved using repeated
additions. On the other hand, pre-computing these operations and storing them
in Lookup Tables (LUTs) may leave the cipher vulnerable to timing attacks6. The
motivation of the ARX design methodology is to enhance performance and resis-
tance against timing attacks by only resorting to operations that are efficient in
hardware, for example, by performing additions over some field GF (2w) where w
is the word size of the architecture, rotations of words, and bitwise addition over
GF (2w), that is, the ⊕-operation. The ARX design methodology has also been
used in the design of stream ciphers, such as the popular ChaCha stream cipher.
Because neither the confusion nor the diffusion component of a round in an ARX
cipher can be optimized with such operations, ARX designs are often characterized
by a high number of rounds compared to SPN and Feistel designs.

An illustration of the round function of a Feistel cipher, an SPN cipher and an
ARX cipher can be seen in Figure 2.4.

Modes of operation

Operating a block cipher directly is known as the ECB mode and provides a form of
stateless encryption in the sense that encrypting the same plaintext always results
in the same ciphertext. This is unfortunate because information about the plaintext

6If the LUT does not fit in the CPU cache, this can result in varying processing time that can
be detected. Timing attacks are an example of side-channel attacks. Notice that it is the cipher
implementation that is attacked, not the cipher itself.

17



Chapter 2. Cryptographic Methods

(Left half )
i-1

(Right half )
i-1

F

(Left half )
i

(Right half )
i

Round key
i-1

(Input)
i-1

(Add round key)
i-1

(Output)
i-1

Substitution layer

Permutation layer

(Left half )
i-1

(Right half )
i-1

(Left half )
i

(Right half )
i

>>> 8

<<< 3
Round Key

Figure 2.4: An illustration of a typical Feistel cipher round on the left, a typical
substitution-permutation network round in the middle, and a typical add-rotate-xor round
on the right. The add-rotate-xor round is based on the structure of the Speck cipher
(Beaulieu et al. 2015).

is leaking through to the ciphertext. To prevent information about the plaintext
from leaking through to the ciphertext, block ciphers may be operated in other
modes of operation that provide a randomization element.

Originally the National Institute of Standards and Technology (NIST) certified four
randomized modes of operation (Dworkin 2001); Cipher Feedback (CFB), Output
Feedback (OFB), Cipher Block Chaining (CBC), and Counter (CTR) mode. While
the details of each of the modes are out of scope for this thesis, the general idea is
that a block cipher by design functions as a Pseudo-Random Function (PRF). Thus,
by ensuring that the input does not entirely depend on the plaintext, the output
is randomized. While a block cipher operating in CBC mode is still considered a
block cipher by most, the CFB, OFB, and CTR modes effectively convert the block
cipher to a stream cipher by introducing a state. Furthermore, the ECB and CBC
modes of operation require that the input is a multiple of the block size B. This is
ensured by using padding schemes, resulting in the transmission of larger amounts
of data. This increase can be significant, especially if each message is small.

In addition to the original modes of operation proposed, additional modes of op-
eration that provide a service known as authenticated encryption exists. These
modes of operation provide both message authenticity and confidentiality. These
will briefly be discussed in Section 2.4.

2.2.3 Stream ciphers
Historically, stream ciphers have been the cornerstone of encryption. In partic-
ular, historical ciphers such as those obtained from the rotary-machines during
the second world war, for example, the German Enigma machine, were stream ci-
phers. Stream ciphers are often referred to as stateful ciphers and consist of a state
transition function and an output function. Depending on whether the state tran-
sition function takes the previous state or the previous ciphertexts as argument,
the stream cipher is referred to as a synchronous or a self-synchronizing stream
cipher.

The motivation of modern stream ciphers is to approximate the One-Time Pad

18



2.2 Confidentiality

(OTP). The OTP is a stream cipher in which a truly random string of the same
length as the message that is to be encrypted serves as the key and is only used
once, hence the name. The Vernam Cipher, patented by Gilbert Vernam in 1919,
is an example of the OTP (Vernam 1919). In the Vernam Cipher, the key is merely
added to the plaintext to encrypt. While Gilbert Vernam could not prove that his
cipher was, in fact, unbreakable, this was later proven by Shannon (1949) using
information theory, by showing that the ciphertext in such a scheme is statistically
independent of the plaintext, thus obtaining what Shannon referred to as perfect
secrecy7.

Unfortunately, as described, the OTP requires a truly random key with equal or
greater length than the message that is to be encrypted. This is problematic because
the generation of truly random numbers is a difficult problem on its own, not to
mention if a high bandwidth is required, for example, if many bits must be gener-
ated in a short amount of time. Furthermore, these keys must be pre-distributed
in advance from the source of the key to the encryption and decryption devices. If
large amounts of data are to be transmitted, this results in the transfer of equally
large amounts of keying material, thus becoming somewhat of a logistical night-
mare. The key distribution could, for example, be solved with a trusted courier,
but with the number of devices that are connected in modern telecommunications,
this is not a feasible option.

It is for these reasons that the OTP has largely been reserved for a select few
communication channels in which only the highest possible level of security has
been required. Rumors have it that the red line between Moscow and Washington,
D.C. used the OTP during the Cold War Era. However, the analytical results
obtained for the OTP make it an attractive target to approximate. In particular,
if one could extend a short truly random string to a much longer pseudo-random
string using a deterministic algorithm, the OTP could be approximated.

While a novice might be tempted to extend the truly random string to a pseudo-
random string by repeating the truly random string (the ‘N-Time Pad’), this results
in a catastrophic failure, as shown by Kasiskis Attack. Suppose two ciphertexts c1,
c2 are encrypted using the same key k (‘Two-Time Pad’). Then an adversary is
capable of obtaining a relationship between the two ciphertexts and the correspond-
ing plaintexts p1, p2 by eliminating the key from the equation. Thus, if at some
point the adversary gains knowledge of one of the plaintexts, for example, p1 in a
KPA as described in Section 2.2.1, the second plaintext p2 is easily recovered as
shown by

7It is emphasized that even an adversary with infinite time and resources will not be capable
of breaking the OTP provided that the key is truly random.

19



Chapter 2. Cryptographic Methods

c1 = p1 ⊕ k
c2 = p2 ⊕ k

c1 ⊕ c2 = p1 ⊕ k ⊕ k ⊕ p2 = p1 ⊕ p2

p2 = c1 ⊕ c2 ⊕ p1 (2.1)

The key itself is easily recovered, and any message encrypted with the same key
is therefore compromised, leaving the cipher completely broken. If the adversary
does not have access to any plaintext, the adversary may resort to a COA attack
known as the crib-dragging attack. The idea of the crib-dragging attack is that
the adversary ‘guesses’ one plaintext encrypted with the key, for example, by going
through common phrases, and if the other plaintext also yields a meaningful result
with the guessed plaintext, then it is assumed that the guess is correct. This is
much more efficient than a brute force attack because plaintext is not at all random.

Thus, it should be clear that a better way of expanding a truly random string to
a much longer pseudo-random string is required. It is noted that if the stream
cipher uses a pseudo-random string expanded from some truly random string to
perform encryption rather than the truly random string itself, as was the case in the
OTP), then the truly random string is referred to as the key while the expanded,
pseudo-random string is referred to as the keystream, sometimes called the running
key.

The goal of a modern stream cipher is, therefore, to efficiently expand a truly
random string to a pseudo-random string such that deducing the key from the
keystream is hard while ensuring that the probability of ever repeating the keystream
is negligible8.

Synchronous stream ciphers

Most stream ciphers are what we refer to as synchronous stream ciphers. A syn-
chronous stream cipher may be described by

σi+1 = g(σi) (2.2)
zi = h(σi) (2.3)

in which (2.2) describes the state transition function and (2.3) describes the output
function. Encryption and decryption then consist of combining the keystream
with the plaintext and ciphertext, respectively. In digital communications, this is
predominantly achieved by addition over GF(2), that is, the exclusive-or operator
(⊕). Because addition over GF(2) is an involution, decryption merely consists of
adding the same keystream to the ciphertext.

8Thus, providing security against attacks such as Kasiski’s attack or the crib-dragging attack.

20



2.2 Confidentiality

Output

Figure 2.5: An illustration of a linear feedback shift register with a reducible feedback
polynomial p(x) = 1 + x2 + x4 + x5 = (x + 1)(x4 + x + 1). Such a polynomial does
not produce a max-length sequence of period 25 − 1. A sequence produced by a linear
feedback shift register with a reducible feedback polynomial also carries other statistical
properties that are undesirable.

The development of a synchronous stream cipher is then reduced to the develop-
ment of a Pseudorandom Number Generator (PRNG) that can expand the key, for
example, the initial state, and an output function with desirable properties.

To prevent Kasiski’s attack and the crib-dragging attack, it is paramount that one
can ensure that the period of the PRNG is at least as long as the message that
is to be encrypted. In practice, the period of a cryptographically strong PRNG
is much longer on the scale of 1050 bits. Furthermore, it is observed that in the
event of a KPA, the adversary has access to both the plaintext and the ciphertext,
and therefore access to parts of the keystream. Thus, it must be infeasible for an
adversary to recover the internal state of the PRNG given its output. By recovering
the internal state of the PRNG, the adversary with knowledge of the cipher will
be capable of producing all future keystream bits, thereby breaking the cipher.
Hence the relationship between the internal state and the output keystream must
be highly nonlinear.

Period The construction of PRNGs with long periods has received much atten-
tion and is rich in theoretical results. Much of the theory was developed in the
1980s with figures such as James L. Massey, Jovan Golic, and Rainer Rueppel.
Their work was centered around the Linear Feedback Shift Registers (LFSRs), and
a thorough treatment on LFSR-based stream ciphers is given in a book by Rueppel
(1986). An LFSR is illustrated in Figure 2.5. For a specific LFSR, it is possible
to associate with it a feedback polynomial, and it was shown that the properties
of the LFSR depend on the properties of the feedback polynomial. In particular, it
was shown that an LFSR with a primitive feedback polynomial would generate a
so-called m-sequence, which is a sequence of maximal length. Thus, if the state was
held in an n-bit register, the sequence produced by the LFSR would have a period
of 2n − 1.9

9The all-zero state is degenerate.

21



Chapter 2. Cryptographic Methods

While some modern stream ciphers such as SNOW, Sosemanuk, and Grain still
rely on the theory of LFSRs, other design approaches also exist. In particular,
design approaches more akin to those of block ciphers have emerged because they
are easily translated to efficient software implementations. Furthermore, the RC4
stream cipher originally invented by Ron Rivest consists of a dynamic substitution
table in which each entry consists of a byte. Following the initialization, the RC4
cipher is remarkably simple, in which each round consists of updating one byte of
the table while outputting another byte of the table, thus producing one byte of
keystream each iteration.

While weaknesses in the RC4 stream cipher were discovered, and the cipher is
now regarded as insecure, the design approach of large substitution tables is still
very relevant. In particular, this design approach is used in the modern software-
oriented stream cipher HC-128 designed by Hongjun Wu. Because the HC-128
cipher operates on 32-bit words rather than 8-bit bytes, the performance of the
HC-128 stream cipher is also significantly better than the RC4 cipher on archi-
tectures with a word-size greater than or equal to 32-bits, which includes most
modern architectures. While the PRNGs of such stream ciphers do not produce
m-sequences, an estimate of the periods of the cycles produced can be obtained.

The state transition function of the HC-128 cipher is invertible, i.e., a permuta-
tion. If it is also assumed that the state transition function is random, one can
apply theory from iterated permutations stating that the expected cycle length of
a random iterated permutation is given by

n+ 1
2 (2.4)

in which n is the total number of elements, that is, states10. Now, for HC-128 the
state, that is, the substitution tables, consists of

2 · 512 · 32 = 32778

bits. Thus, there are 232778 total states, that is, by (2.4), the expected cycle length
in this scenario is

232778 − 1
2 ≈ 232777

Now of course, the expected cycle length is not a lower bound. Furthermore, the
state transition is not a random function. However, this goes to illustrate how
astronomically large the periods can be for such ciphers. Concerning HC-128,
the author did not provide such figures but stated that the average period of

10Source here: http://pnp.mathematik.uni-stuttgart.de/iadm/Riedel/papers/RPS.pdf
page 12. (Accessed May 23rd)

22

http://pnp.mathematik.uni-stuttgart.de/iadm/Riedel/papers/RPS.pdf


2.2 Confidentiality

the keystream is expected to be much more than 2256. Of course, none of this
guarantees that you won’t find a very short period for certain initial states.

Nonlinearity Because the determination of the internal state of the PRNG re-
sults in a complete break of the cipher, the use of, for example, an LFSR directly to
obtain a long period is cryptographically weak. The theory of LFSRs encapsulates
the difficulty in retrieving the internal state given the output in a term known as
linear complexity. The linear complexity of a sequence is defined as the shortest
LFSR that is required to produce a given sequence. In particular, for an LFSR, the
maximum linear complexity L is equal to the length of the register holding the
internal state. Because of the linear relationship between the internal state and
the output, algorithms such as the Massey-Berlekamp-algorithm can synthesize an
LFSR and an internal state producing the same output sequence given 2L bits of
output. Thus, if an LFSR were to be used directly, an infeasibly large register
would be required.

Therefore, rather than outputting the state directly, it is passed through a nonlinear
function. This can be accomplished in various ways, for example, by nonlinearly
combining the output from multiple PRNGs such as LFSRs, by using the output
sequence from one PRNG to decimate the output sequence of another PRNG, or by
a nonlinear filter in which multiple components of the PRNG state is combined in
a nonlinear fashion. As an example, the Sosemanuk cipher, which keeps the state
in an LFSR, uses a nonlinear filter, which is constructed using certain Substitution
Boxes (S-boxes) from the Serpent block cipher. On the other hand, the ciphers
consisting of large substitution tables usually have very simple output functions.
For example, HC-128 has a very simple nonlinear output function consisting of
addition over GF (232)11.

Initialization vectors Modern synchronous stream ciphers usually permit the
use of a public Initialization Vector (IV) as a parameter to an initialization phase.
The initialization phase is designed to deduce an initial state of the keystream
generator from the secret key and the public IV. This process is often referred to
as a key mixing phase and effectively provides a synchronization mechanism. An
illustration may be seen in Figure 2.6. Because the IV is a public parameter that
an adversary potentially could manipulate, this opens a new attack vector in which
an adversary can attempt to recover the key by passing IVs to initialize the cipher
and observing the resulting output. Therefore, the key mixing phase must also
be a highly nonlinear operation. Practically, this is solved in multiple ways, for
example, by passing the IV through a block cipher in which the key serves as the
key to the block cipher. This is done in the Sosemanuk cipher.

11This might seem weird, but while addition over, for example, the real numbers is a linear
operation, it is not a linear operation in GF (2n) for n ≥ 2.

23



Chapter 2. Cryptographic Methods

Initialization Phase

Keystream

generator

Initial State

Initialization Phase

Initial State

Secret Key

IV

Keystream

generator

Plaintext Ciphertext Plaintext

Keystream Keystream

Figure 2.6: An illustration of a synchronous stream cipher permitting the use of an
initialization vector.

Self-synchronizing stream ciphers

At first sight, a Self-Synchronizing Stream Cipher (SSSC) is seemingly quite similar
to a synchronous stream cipher. However, as we shall see, there are profound
differences between the two. Like a synchronous stream cipher, an SSSC can be
described by a state transition function and an output function as seen by

σi+1 = gk(ci, . . . , ci−L) (2.5)
zi = hk(σi) (2.6)

where σi+1 denotes the next state, and zi denotes the keystream output. Notice
that while the state transition function of a synchronous stream cipher (2.2) is
uniquely determined by the previous state, the state transition function of an SSSC
(2.5) is determined by the L previous ciphertext bits, in which L is a finite number.
Because of this, the SSSC can resynchronize in the event of a synchronization loss.
It also means that the SSSC can jump right into an ongoing transmission and
achieve correct decryption after L bits have been correctly received. Also, both
the state transition function (2.5) and the output function (2.6) may be keyed in
the SSSC. In any event, at least one of the two must be keyed. Otherwise, any
adversary in possession of the device could eavesdrop merely by turning on the
device.

While the SSSC does achieve resynchronization easily, the cryptographic proper-
ties of the SSSC have become fundamentally different from that of the synchronous
stream cipher. Because the ciphertext now enters the state of the cipher, an ad-
versary in possession of a device is capable of launching powerful CCAs such as

24



2.3 Integrity and Message Authenticity

differential cryptanalysis, commonly used to analyze block ciphers. This seemingly
minor difference has led many cryptographers to argue that the SSSCs are more
closely related to the block ciphers than the synchronous stream ciphers.

Throughout recent history, attempts of modifying existing synchronous stream
ciphers to construct SSSCs have been made. For example, the Self-Synchronizing
Sober (SSS) based on the SOBER-family (Rose et al. 2005) on the software side,
all of which have been broken, many to CCAs. On the hardware side, the Knot-
family of ciphers, in which Moustique (Daemen & Kitsos 2008) was last in line,
produced a series of new SSSC designs, all of which were also broken. Thus, to
date, the only publicly available SSSCs are those obtained from a block cipher
in the CFB mode of operation. Unfortunately, a block cipher in CFB mode is
inefficient and does not inherit the benefits of the synchronous stream ciphers.

2.3 Integrity and Message Authenticity
While confidentiality provides security against passive eavesdroppers, a dedicated
service ensuring message authenticity12 is required to fend off an active adversary.
Often message authenticity and integrity13 are regarded as even more important
than that of confidentiality, perhaps even more so in a control system. More often
than not, a particular signal, for example, a measurement from an accelerometer or
a control signal to an actuator, need not be kept secret from a passive adversary. As
was shown by the example in Section 1.1.1, while perhaps the system parameters
may not always be confidential, it is almost universally undesirable if an adversary
is capable of manipulating the contents of a signal in a feedback control system, or
even injecting spoofed signals.

Essentially, there are two cryptographic techniques capable of providing message
integrity and authenticity; A Message Authentication Code (MAC) and a digital
signature. A MAC is a symmetric cryptographic technique in which the parties
must share a secret key, akin to a symmetric cipher. The operations used in a
MAC are often quite similar to those seen in symmetric ciphers, and some MACs
are even constructed using block ciphers. On the other hand, digital signatures
are universally constructed using asymmetric cryptographic techniques relying on
number-theoretical problems that are assumed to be computationally hard, much
like asymmetric ciphers. Just as with ciphers, asymmetric digital signatures are
computationally expensive compared to symmetric MACs. However, in addition
to message authenticity, digital signatures also provide a service known as non-
repudiation that is not provided with a MAC. Non-repudiation is a service that is
of most interest in an environment in which the entities cannot be trusted, such
as in a financial transaction. In a control system in which the entities are trusted,

12Message authenticity implies that the recipient of a message can authenticate the origin of
the message. Not to be confused with entity authentication.

13It should be clear that message authenticity also provides message integrity. If an adversary
alters a message in transit, the origin of the altered message is the adversary, not the transmitter
of the original message.

25



Chapter 2. Cryptographic Methods

Message space

Digest space

x
1

x
2

y

f(x
1
)

f(x
2
)

Figure 2.7: An illustration of how two messages map to the same digest via a crypto-
graphic hash function.

that is, there is no rogue controller involved, for instance, non-repudiation is not
particularly interesting. Thus, message authenticity through MAC is the most
attractive option in this context.

2.3.1 Cryptographic hash functions
Before describing MACs, we introduce the notion of a cryptographic hash function.
A cryptographic hash function f : {0, 1}∗ × {0, 1}K 7→ {0, 1}B maps a message of
arbitrary length to a B-bit, fixed-length output called the digest. The second K-bit
input is a public parameter, meaning that the mapping is unkeyed.

Cryptographic hash functions are required to satisfy at least the following three
properties; preimage resistance, second preimage resistance, and collision resis-
tance. The first property, preimage resistance, means that for a cryptographic
hash function fK(x) = y, determining x given fK , y should be computationally
infeasible. The second property and the third property are both linked to the ob-
servation that the domain of the cryptographic hash function is an infinite set while
the range of the cryptographic hash function is a finite set. Thus, by Dirichlet’s
pigeonhole principle, there must exist elements in the range with multiple pre-
images, that is, there must exist collisions as illustrated by Figure 2.7. The second
property, second preimage resistance, states that given fK , x1, y | y = fK(x1),
finding x2 6= x1 | y = fK(x2) is computationally infeasible. The third property,
collision resistance, states that finding any pair x1, x2 | fK(x1) = fK(x2) should
be computationally infeasible.

Collision resistance is generally considered the toughest requirement to satisfy.
Assuming the cryptographic hash function is balanced, the probability of obtaining
an output y given a random input x is 1

2B . The probability of finding an arbitrary
collision, that is, finding any two inputs that map to the same digest, if k elements
are tested is then given by

26



2.3 Integrity and Message Authenticity

P (collision) = 1− P (no collision)

= 1−
[(

2B − 1
2B

)
·
(

2B − 2
2B

)
· . . . ·

(
2B − (k − 1)

2B

)]
= 1−

[(
1− 1

2B

)
·
(

1− 2
2B

)
· . . . ·

(
1− (k − 1)

2B

)]
(2.7)

Assuming k � 2B then k
2B � 1. Using the first-order Maclaurin approximation

for the exponential function given by

ex ≈ 1 + x (2.8)

we may rewrite (2.7) as

P (collision) ≈ 1−
[
e
−1
2B · e

−2
2B · . . . · e

−(k−1)
2B

]
= 1− e

−
∑k−1

i=1
i

2B

= 1− e
−k(k−1)

2·2B (2.9)

in which (2.9) is obtained by exploting that

k−1∑
i=1

i = (k − 1)k
2 (2.10)

By applying (2.8) again, we obtain

P (collision) ≈ −
(
−k(k − 1)

2 · 2B

)
≈ k2

2 · 2B
(2.11)

when k is large. Thus, we expect to find a collision after approximately

k ≈
√

2B

= 2 B
2 (2.12)

27



Chapter 2. Cryptographic Methods

attempts. So, if a cryptographic hash function produces a 256-bit tag, i.e., B = 256,
we would expect to find a collison, that is, break the cryptographic hash function,
after approximately 2 256

2 = 2128 attempts. This is called the birthday problem
(sometimes referred to as the birthday paradox, although it is no paradox ...).

Since cryptographic hash functions are unkeyed, they may not be applied directly
to ensure the integrity of a transmitted message. Instead, they are commonly used
before a digital signature is computed, that is, the digital signature is computed
over the digest of the original message, or they are used as a component of a keyed
MAC.

2.3.2 Message authentication codes
A MAC f : {0, 1}∗ × {0, 1}K 7→ {0, 1}B maps a message of arbitrary length to
a B-bit output called the tag. A MAC is a symmetric-key construct in which
the authorized parties must share a secret K-bit key. The transmitter computes
a tag, before the tag is then appended to the message, after which the message
and tag are sent to the receiver. Upon reception, the receiver recomputes the tag
and compares the received tag with the recomputed tag. If there is a match, the
message is accepted. If the two tags do not match, the message is invalidated and
discarded.

Just as with a cryptographic hash function, the domain of the MAC is an infinite
set while the range is a finite set. Therefore, given a tag size of B bits, finding
a collision, on average, requires approximately 2 B

2 attempts due to the birthday
problem described above. The tag size varies depending on the assumed capabili-
ties of an adversary, and the underlying technical capabilities of the system, such
as the bandwidth, and usually tag sizes range from 32 bits to 512 bits. It should be
noted that a MAC is an abstract construct, which may be designed in various ways.
Among common design methodologies we find MACs based on cryptographic hash
functions, such as the HMAC, and MACs based on block ciphers such as the Ci-
pher Block Chaining Message Authentication Code (CBC-MAC) (Dang 2008) and
the Cipher-based Message Authentication Code (CMAC) (Dworkin 2005). Other
designs are quite different, such as the Poly1305, which is number-used-only-once
(nonce) based (Bernstein 2005). We shall see how a MAC can be constructed from a
cryptographic hash function in Section 5.1.7, when we describe an implementation
of HMAC that uses the SHA-256 cryptographic hash function.

2.3.3 Attack models
In the context of message authenticity, the attack models are somewhat different
from those discussed in the context of confidentiality. In particular, the most
efficient attack an adversary may be capable of is that of a Chosen Message Attack
(CMA). That is, the adversary is free to attempt an attack on a message of their
choice. The goal of an attacker is typically categorized as one of the following:

28



2.3 Integrity and Message Authenticity

Total break

A total break is described as an attack in which the adversary has recovered the
secret key of the message authentication scheme.

Universal forgery

A universal forgery is described as an attack in which the adversary is capable of
forging a valid tag on any message. Note that this is different from that of a total
break in that the adversary has not actually recovered the key.

Selective forgery

A selective forgery is described as an attack in which the adversary has the capa-
bility of forging a valid tag on selective messages.

Existential forgery

An existential forgery is described as an attack in which the adversary has the
capability of forging a valid tag on at least one message.

In the context of a MAC, the scheme should resist existential forgery under CMA.
If it does not, for example, in the context of a control system, the adversary is
capable of forging valid inputs to the control system or the actuators, potentially
resulting in a catastrophic loss of control.

2.3.4 A word of caution
It is important to emphasize that encryption does not provide message integrity
nor message authenticity. This is easily demonstrated by the classical bit-flipping
attack on stream ciphers. As seen in Section 2.2.3, the encryption operation of a
stream cipher often consists of combining the plaintext with the keystream with
the ⊕-operator. Flipping a bit in the ciphertext is, therefore, equivalent to flipping
a bit in the plaintext. Thus an adversary can effectively alter the plaintext in a
meaningful way merely by altering the ciphertext. Such a stream cipher is said to
be malleable. Block ciphers operating in CBC mode and CFB mode have different
error propagation properties. Thus, altering the plaintext in a meaningful way is
not always feasible. However, an adversary can still alter the ciphertext, albeit in a
non-meaningful way. Previous attempts of avoiding the use of dedicated integrity
schemes, for example, by relying on redundancies in the plaintext or by checking
for legal padding in block ciphers, have resulted in efficient attacks.

While the literature on SSSCs is scarce, it is unfortunately littered with dubious
advice. In particular, an often-cited benefit of SSSCs is that the error-propagation
properties provide message integrity and authenticity. Such statements can, for
instance, be found in papers by Maurer (1991), Anderson (1991), and Millerioux
& Guillot (2010), as well as in a book specifically treating stream ciphers by Klein
(2013) and in the Ph.D. thesis of Dravie (2017). It is paramount to realize that this

29



Chapter 2. Cryptographic Methods

is not the case. Some of these assumptions rely on redundancies in the plaintext,
and the dangers of using such schemes was stressed in a paper by Joan Daemen et al.
already in 1992 (Daemen et al. 1992). Relying on the redundancy of the plaintext
to detect altered ciphertext is dangerous and has been demonstrated to be prone
to attacks when used in conjunction with block ciphers. Anderson claims that the
use of an unkeyed Cyclic Redundancy Check (CRC) of the plaintext combined with
the error propagation properties of SSSCs provides message integrity, quite similar
to the integrity scheme used in Secure Shell (SSH) version 1. This is bad practice
at best and comparable to a Hash-then-Encrypt scheme. Such schemes are known
to be vulnerable. An example of an attack against a scheme in which the CRC of
the plaintext serves as an integrity check for an SSSC is found in a white paper
by Futoransky et al. (October, 1998) in which an attack against a block cipher in
CFB mode is described in the context of the SSH version 1.5 protocol.

2.4 Authenticated Encryption
In Section 2.3.4, it was emphasized that encryption alone does not provide message
authenticity and integrity. The bit-flipping attack was given as an example of how
an active attacker can perform successful attacks even if encryption is used, in the
lack of proper authentication methods. Thus, to achieve secure transmission of
signals through an insecure channel in which both passive and active attackers are
present, both encryption and message authentication techniques should be imposed.
This is known as authenticated encryption. Also, in some cases, it may be possible
to authenticate additional data that is transmitted unencrypted along with the
ciphertext. This is known as authenticated encryption with associated data and
can be useful to authenticate the IV. Historically, authenticated encryption and
authenticated encryption with associated data have been achieved through the use
of ad-hoc schemes in which encryption and authentication were applied in some
way. Some of these ad-hoc schemes were vulnerable to attacks, warranting the need
for some standardization.

2.4.1 Generic compositions
In a great effort by Bellare & Namprempre (2008), three commonly used generic
compositions of encryption ciphers and MACs were addressed. Each of these
schemes has been used in real applications, yet the security levels are not simi-
lar. The generic compositions investigated are illustrated in Figure 2.8.

Encrypt-and-MAC The Encrypt-and-MAC (E&M) composition provides au-
thenticated encryption by computing the MAC tag over the plaintext, encrypting
the plaintext, and then appending the tag to the ciphertext before transmission.
Because the MAC is computed over the plaintext and is readily available to eaves-
droppers, this scheme leaks information about the plaintext as the transmission of
the same message twice is set to produce the same tag. The E&M-scheme is, there-
fore, the least secure generic composition. Nevertheless, the E&M composition has

30



2.4 Authenticated Encryption

been used in the SSH protocol and provides sufficient security in some scenarios.

MAC-then-Encrypt The MAC-then-Encrypt (MtE) composition provides au-
thenticated encryption by computing the MAC tag over the plaintext and then
encrypting the plaintext together with the tag. Thus the MtE composition pro-
vides integrity of plaintexts. However, as shown by Bellare & Namprempre (2008),
this does not imply the integrity of ciphertexts. The MtE composition has histori-
cally been used in Transport Layer Security (TLS). As of the most recent version,
TLS-1.3, the generic composition has been replaced by dedicated modes such as
the Galois/Counter Mode (GCM).

Encrypt-then-MAC In the Encrypt-then-MAC (EtM) composition, the plain-
text is first encrypted before the MAC tag is computed over the ciphertext. In
addition to authenticated encryption, the EtM-scheme permits authenticated en-
cryption with associated data by including the associated data in the computation
of the tag. It was shown by Bellare & Namprempre (2008) that the EtM-scheme
achieves the strongest security by providing integrity of ciphertexts, which also im-
plies the integrity of plaintexts. Also, the EtM-scheme is computationally efficient
by verifying the integrity of the message before any decryption is performed. If the
tag validation fails, the message is just discarded and never decrypted. The EtM
composition is, for these reasons, the most common generic composition and has
historically been used in the IPsec protocol.

2.4.2 Authenticated encryption modes
In addition to the generic compositions, the use of dedicated modes for block ci-
phers is available. Indeed, today most authenticated encryption and authenticated
encryption with associated data is achieved with dedicated modes of operation.
In particular, AES in GCM mode (Dworkin 2007) is frequently used, along with
AES in Counter with CBC-MAC (CCM) mode (Dworkin 2004). Unfortunately, all
publicly available authenticated encryption and authenticated encryption with as-
sociated data modes of operation are so-called “two-pass” algorithms. That is, two
passes through the data are required to both authenticate and encrypt the data,
thus affecting the overall efficiency. Note that both CCM and GCM internally are
constructed as a generic composition, although the user only acts on one inter-
face. For example, the CCM mode is just a block cipher operating in CTR mode
combined with the CBC-MAC from the same block cipher in a MtE composition.

Whether or not generic compositions or dedicated modes are preferred have been
a subject open to debate. While some claim that dedicated modes are harder
to misuse, others claim that separation of services providing confidentiality and
integrity yields a “cleaner” design and is easier to analyze. An interesting aspect
supporting the first statement is the fact that many security breaches result from
circumvention of the cryptography, for example, due to implementation error, as

31



Chapter 2. Cryptographic Methods

Plaintext

MAC

Encrypt

CiphertextTag

Plaintext

MAC

Encrypt CiphertextTag

Plaintext MAC

EncryptPlaintext Tag

Ciphertext

Encrypt & MAC

Encrypt-then-MAC

MAC-then-Encrypt

.
Figure 2.8: An illustration of the three generic compositions discussed in Bellare &
Namprempre (2008).

was the case for Heartbleed14, rather than breaking it.

2.4.3 Dedicated authenticated encryption algorithms
Finally, in addition to the generic compositions and the block cipher modes of oper-
ation described above, there exist dedicated authenticated encryption algorithms.
Examples of such dedicated ciphers are the new AEGIS stream cipher, which will
be discussed in Chapter 5, as well as the AES Offset Codebook (OCB) mode. The
latter could be interpreted as a block cipher mode of operation akin to the CCM
and GCM modes. However, it is standardized uniquely with the AES as the under-
lying block cipher and is therefore considered a dedicated authenticated encryption
algorithm. Note that the AES OCB algorithm will not be treated further in this
thesis, as this algorithm is currently patented and encumbered by licenses15.

14Heartbleed was an implementation error in the TLS implementation of the OpenSSL crypto-
graphic library. More information about the error can be found here: https://heartbleed.com/
(Accessed May 7th, 2020)

15It should be stated that the inventor and patent assignee states on his website that he freely
licenses the OCB for most settings. More information can be found here: https://www.cs.
ucdavis.edu/˜rogaway/ocb/ocb-faq.htm#patent:phil (Accessed May 19th 2020)

32

https://heartbleed.com/
https://www.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm#patent:phil
https://www.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm#patent:phil


2.5 Availability

2.5 Availability
The introduction of MACs and encryption can also affect the system in other ways.
In particular, the issue of synchronizing the transmitter and the receiver will be
addressed. Furthermore, addressing the resulting traffic expansion is important,
particularly for systems transmitting small packets at a high frequency.

2.5.1 Synchronization
As discussed in Section 2.2.3, stream ciphers are stateful ciphers, requiring synchro-
nization between the transmitter and the receiver. Relying on reliable transmission
of signals through protocols such as TCP, as was done by Teranishi et al. (2020), is
not a satisfactory solution. In a real-time control system, data is likely to be trans-
mitted in an inherently unreliable fashion, for example, using the UDP protocol.
If a packet is lost or injected into the transmission, synchronization is lost between
the transmitter and receiver, resulting in incorrect decryptions. Without a timely
resynchronization, such a loss of synchronization can result in a loss of control.

In this chapter, we see that symmetric cryptographic methods offer multiple so-
lutions to the synchronization problem. A way of circumventing the problem is
by switching to an SSSC. However, as described in Section 2.2.3, this leaves ineffi-
cient block ciphers in CFB mode as the only option. An alternative solution used
in synchronous stream ciphers, for example, A5/1 (used in GSM), is to transmit
a frame number that is used to indicate an offset from some known position of
the keystream generator. Finally, as seen in Section 2.2.3, modern stream ciphers
permit the use of public IVs that are used to explicitly synchronize the cipher by
reinitializing the cipher for each message.

2.5.2 Traffic expansion
The choice of the encryption algorithm and the choice of tag size used in the MAC
affects the size of the transmitted data. Traffic expansion is especially important
to consider in applications where small messages are transmitted at a very high
frequency, as it will significantly increase the required bandwidth to avoid network
congestion and packet loss.

Choice of cipher

The use of padding for the CBC mode of operation in block ciphers invariably
results in a ciphertext that is larger than the original plaintext. For small amounts
of data, the difference can be substantial and have a significant effect on the network
if packets are transmitted at high frequencies. Also, most encryption algorithms
require IVs to be transmitted along with each message, either for safe operation, for
example, CBC mode, as illustrated by the BEAST attack (Duong & Rizzo 2011),
or to achieve synchronization for synchronous stream ciphers.

Consider the following example: A 4-byte floating-point measurement is to be

33



Chapter 2. Cryptographic Methods

transmitted. Encrypting the measurement using AES in CBC mode first requires
the 4-byte measurement to be padded to a multiple of the block size, that is, 16
bytes. Additionally, each message requires a 16 byte unpredictable IV. Thus the
initial 4-byte measurement results in a 32-byte message, an 800% expansion, and
this does not even include a MAC tag.

Choice of tag size

As mentioned in Section 2.3.2, the tag size determines the effort required to forge
a message. However, the tag size also has a direct impact on the amount of data
transmitted. If the message authenticity scheme is to provide a similar level of
security as an N -bit encryption scheme, the tag should be of size 2N due to the
birthday problem. Thus, if the traffic is encrypted using a cipher providing 128-bit
security, the MAC tag should be 256 bits.

34



Chapter 3
The Encryption Laboratory

This chapter describes the laboratory setup that was built to assess the crypto-
graphic algorithms and to implement the attacks in the coming chapters, in addi-
tion to the software setup that was used during tests and attacks. The laboratory
setup was built as part of the TTK4550 project report, and this chapter is based
on Chapter 3 from the TTK4550 report.

3.1 Hardware Setup
A laboratory setup was built to conduct experiments. The setup consists of two
RevPi Connect+1 industrial Raspberry Pis from KUNBUS with two ethernet in-
terfaces each, powered by a 24V DC power supply. The hardware specification of
the RevPi Connect+ can be seen in Table 3.1. Note that the version of the ARM
Cortex A53 used in the RevPi Connect+, the Broadcomm BCM2837B0, does not
include the ARM Crypto Extension. The available instruction set features on the
RevPi Connect+ can be seen in Figure 3.1. A modified Raspbian Stretch 32-bit
operating system, the RevPi-Stretch-2019-03-14, serves as the operating system.

3.1.1 Latency measurements
For the latency measurements, a direct connection between the two RevPi Con-
nect+ machines was set up with an ethernet crossover cable, and static IP addresses
were set on ethernet interface 1 on both RevPi Connect+ machines. Furthermore,
the two RevPi Connect+ machines were connected to the internet and remotely
accessed via SSH through ethernet interface 0. An illustration of the setup can be
seen in Figure 3.2, while a schematic view of the setup can be seen in Figure 3.3.

1Datasheet available here: https://revolution.kunbus.com/revpi-connect/ (Accessed May
10th, 2020)

35

https://revolution.kunbus.com/revpi-connect/


Chapter 3. The Encryption Laboratory

Table 3.1: KUNBUS RevPi Connect+ hardware specification.

Attribute Value
Processor Type ARM Cortex A53 (ARMv8) BCM2837B0
Number of cores 4

Clock speed 1.2 GHz
Memory (RAM) 1 GB

Figure 3.1: The available instruction set features in the RevPi Connect+. Note that it
claims that the processor is an ARMv7 BCM2835 processor. However, this is incorrect.

3.1.2 System simulation

For the hijacking experiments, the hardware setup was slightly modified. Rather
than transmitting the signals across the ethernet crossover cable, the signals were
transmitted via the router, through ethernet interface 0. The ‘adversary’ consisted
of a laptop connected to the same router through Wi-Fi. The hardware setup for
the hijacking experiments can be seen in Figure 3.4.

36



3.1 Hardware Setup

Figure 3.2: An overview of the encryption laboratory setup that was used to assess the
performance of the cryptographic algorithms.

Router

Switch

eth0

eth1

eth0

eth1

Server

Client

PC

Ethernet Cable

Ethernet Crossover Cable

Figure 3.3: A schematic view of the encryption laboratory setup that was used to assess
the performance of the cryptographic algorithms.

37



Chapter 3. The Encryption Laboratory

Router

eth0

eth0

Server

Client

Adversary Ethernet Cable

Wifi

Figure 3.4: A schematic view of the hardware setup that was used to launch the hijacking
experiment, both with and without encryption.

3.2 Software Setup
In this section, the software setup that was used is described. First we describe
some auxiliary functions that were used, then we proceed by describing two software
lab setups that were used extensively during the experiments. The first lab setup
described was used to measure the latency induced by the cryptographic algorithms.
The second lab setup described was used to perform hijacking experiments and to
attack the communication schemes proposed by other researchers.

3.2.1 Endianness
Because cryptographic algorithms often operate on words rather than bytes, the
way byte arrays are mapped to words is important to achieve the correct output
from algorithms in which the input enters the algorithms and are operated on,
e.g., block ciphers and cryptographic hashing algorithms. Specifically, bytes are
commonly mapped to words in two ways; the big-endian order in which the bytes
are mapped from the least-significant byte at the highest memory address to the
most significant byte at the smallest memory address, hence the name big-endian.
Conversely, the bytes can be mapped from the most-significant byte at the highest
memory address to the least-significant byte at the smallest memory address, a
convention known as little-endian. The difference between the two mappings can
be seen in Figure 3.5.

Most processor architectures today, such as x86 and ARMv8 processors, utilize the
little-endian convention. However, some older algorithms, such as AES and SHA-2,

38



3.2 Software Setup

Address 0x00 0x01 0x02 0x03

Address 0x00 0x01 0x02 0x03

Data

Little-endian

Big-endian

0x0A0B0C0D

0x0A0x0B0x0C0x0D

0x0D0x0C0x0B0x0A

Figure 3.5: An illustration of how a 32-bit integer is mapped to memory on a little-
endian and big-endian architecture, respectively.

are defined using the big-endian convention. Therefore, to verify that algorithm
implementations are correct with the official test vectors, we must be able to change
the endianness of the input to the algorithms. Specifically, for the RevPi Connect+,
running a 32-bit system, we must be change the byte order of the 32-bit words. We
achieve this through the function seen in Listing 3.1.

Listing 3.1: Endianness Swap
// Byte swap changes the endianness of
// words on a 32-bit system.
void byte_swap(uint8_t *output, uint8_t *input, int size)
{

for (int i = 0; i < size/4; i++)
{

uint32_t num = ((uint32_t*)input)[i];
uint32_t swapped = ((num >> 24) & 0xff) |

((num << 8) & 0xff0000) |
((num >> 8) & 0xff00) |
((num << 24) & 0xff000000);

((uint32_t*)input)[i] = swapped;
}

}

Notice that endianness is also often discussed in networking, since in networks byte
arrays are transmitted and therefore, upon reception, one must agree upon how

39



Chapter 3. The Encryption Laboratory

these byte arrays are to be interpreted at the receiving end. This is critical for the
networks in which different systems are connected, since a message could be trans-
mitted from little-endian to big-endian systems and vice versa. For example, in the
Internet Protocol all messages should be transmitted in big-endian order according
to RFC1700 (Reynolds & Postel 1994). However, since we are transmitting data
between little-endian devices only, we do not treat this topic in more detail.

3.2.2 Serialization and deserialization
The data is kept in C structs, as seen by Listing 3.2. While the entries in C
structs may be contiguous in memory, this is not guaranteed due to data align-
ment in memory, i.e., the structs may contain padding. The padding is added,
for example, to ensure that the data is aligned with the word size of the sys-
tem. Notice that for the particular struct illustrated in Listing 3.2, the struct is
very likely to be contiguous in memory on most systems because a double and
a std::chrono::system_clock::time_point is usually a multiple of the underlying
word size. Nevertheless, to guarantee that the data that is to be processed by the
cryptographic algorithms or sent as a UDP packet are contiguous, the data must be
serialized. After a packet is received the packet must be deserialized to recover the
original data format. Serialization and deserialization is done using the functions
described in Listing 3.3, in which the data is kept in the C struct data_struct. The
constant LOAD SIZE describes how much data the struct contains, and can vary, for
example, when assessing the latency induced on data of varying size in Chapter 7.

Listing 3.2: Data struct
struct data_struct {

double load[LOAD_SIZE];
std::chrono::system_clock::time_point time_stamp;

};

Listing 3.3: Serialization and Deserialization
// Serialization function
void serialize(data_struct* data, uint8_t* serialized_data)
{

// Map the data to the buffer
double *x = (double*) serialized_data;
for (int i = 0; i < LOAD_SIZE; i++)
{

*x = data->load[i]; *x++;
}

// Map the timepoint to the buffer
std::chrono::system_clock::time_point *p = (std::chrono::system_clock::

time_point *) x;
*p = data->time_stamp; *p++;

}

40



3.2 Software Setup

// Deserialization function
void deserialize(const uint8_t* serialized_data, data_struct* data)
{

// Map the data to the struct
double *x = (double*) serialized_data;
for (int i = 0; i < LOAD_SIZE; i++)
{

data->load[i] = *x; *x++;
}

// Map the timepoint to the struct
std::chrono::system_clock::time_point *p = (std::chrono::system_clock::

time_point *) x;
data->time_stamp = *p; p++;

}

3.2.3 Latency measurements
During latency testing, one RevPi Connect+ served as a client, for example an
actuator with a sensor, whereas the other RevPi Connect+ served the role of a
server, for example a controller. In a dynamical control system, the client would
play the role of a measurement instrument and an actuator in this setup, whereas
the server serves the role of the control unit where the control signal is computed.
Confidentiality and integrity of the signal transmission in both directions must be
ensured. Therefore, encryption, decryption, MAC tag generation, and MAC tag
validation occur twice.

By transmitting the signals back and forth, the Round-trip Time (RTT), or latency,
could accurately be measured using the clock on the client-side only. The first
timestamp, t1, was taken at the time the struct was generated at the client, and the
second timestamp, t2, was taken at the time the struct was successfully decrypted
at the client. The RTT was then computed according to

RTT = t2 − t1 (3.1)

The software was written in C++. As minimizing latency is emphasized over the
possible loss of a packet, the UDP protocol was preferred over the TCP protocol,
as is common in real-time applications. Sockets were opened on ports 4322 and
4321 for the server, and the client, respectively. The data was transmitted over the
ethernet crossover cable connected to ethernet interface 1 on both devices.

To take advantage of the quad-core processor, the tasks on the client and the
server were split into two threads. On the client-side, one thread handled the
sampling, the encryption, the tag generation, and the transmission of the packets

41



Chapter 3. The Encryption Laboratory

IO Encipher

Transmit

Receive

DecipherLog

DecipherReceive

Transmit Encipher

Client

Server

Tx thread

Rx thread Tx thread

Rx thread

Figure 3.6: An overview of the program flow that was used in the encryption laboratory
lab when the latency of different cryptographic algorithms was measured.

Transmit

Receive

Receive

Transmit

Client Server

IO

Log

Tx thread

Rx thread

Rx thread

Tx thread

Figure 3.7: An overview of the program flow used in the encryption laboratory when
the latency without encryption in the feedback loop was measured.

to the server, while the other thread handled the reception, the tag verification, the
decryption, and the logging of the packets coming from the server. On the server-
side, one thread handled the reception, the tag verification, and the decryption of
the packet coming from the client, while the other thread handled the encryption,
the tag generation, and the transmission to the client. On the server-side, data was
transferred between the two threads using a shared object guarded by mutexes. An
illustration of the signal flow can be seen in Figure 3.6. To measure a base-line
latency without cryptographic techniques involved, the encryption, the decryption,
the tag generation, and the tag verification procedures were simply removed. An
illustration of the setup used when the base-line was measured can be seen in Figure
3.7.

The data structure, given in Listing 3.2, that was passed between the client and
the server contained a timestamp to prevent replay attacks and to measure latency,
and an array to hold the data. The size of the array was changed via the DATA SIZE
constant when the performance on different data sizes was measured.

3.2.4 System simulation
In Section 1.1.1, an example of how a system without encryption and message
authentication could be hijacked was demonstrated. The demonstration was carried

42



3.2 Software Setup

Encrypt &

Auth.
Transmit

Receive

Decrypt &Decrypt &

Validate

Decrypt &

Validate
Receive

Transmit
Encrypt &

Auth.

Client

Server

Tx thread

Rx thread Tx thread

Rx thread
Simulator

Log

Simulator

 thread

Controller

Controller thread

Adversary

Transmit

Transmit

Receive

Receive

Transmit

Client

Server
Tx thread

Rx thread Tx thread

Rx thread

Adversary

Transmit

Simulator

Log

Simulator thread

Controller

Controller thread

Figure 3.8: The software setup used in the hijacking experiment with and without
encryption and authentication.

out in the hardware setup described in section 3.1.2.

The software setup merely consisted of establishing a third thread on the server and
client, running a PI controller, and an MSD simulation, respectively. As before,
data on the server-side was passed between the threads through shared objects, that
is, the received state measurement and the computed control signal. On the client-
side, shared objects were set up to pass the received control signal to the MSD
simulation and the position state from the MSD simulation to the transmission
thread. All shared objects were guarded by mutexes. The adversary software
merely consisted of a brief C++ program that opened a socket and transmitted the
spoofed control signal to the client at a frequency of 100 Hz. The software setup,
with and without encryption, can be seen in Figure 3.8.

Note that, in addition to being used in the motivating example in Section 1.1.1, this
setup was used to implement the attacks described in Chapter 4 and in Chapter 7.

43



Chapter 3. The Encryption Laboratory

44



Chapter 4
Applied Cryptography in Feedback
Control Systems

In this chapter, we begin by analyzing how previously proposed schemes fail to pro-
vide confidential signal transmission or integrity and authenticity of the transmit-
ted signals. Attacks are implemented, demonstrating how they fail in real scenarios
in experiments conducted in the Encryption Laboratory described in Chapter 3.
Finally, we show how proper authenticated encryption can be used to provide confi-
dentiality, integrity, and authenticity of the signals transmitted in feedback control
systems.

4.1 Analysis of Previous Proposals
In Section 1.2, several previously proposed schemes were mentioned. However,
these schemes, while commonly cited as possible solutions, are rarely, if ever an-
alyzed from a critical perspective. In this section, we investigate the security of
these proposals.

4.1.1 Electronic codebook encryption in feedback control
systems

As noted in Section 1.2, many of the proposed schemes apply block ciphers in ECB
mode. Gupta & Chow (2008) argue; As ECB (Electronic Codebook) is considered
the fastest mode of operation, it is used commonly in real time systems. Unfortu-
nately, a block cipher operating in ECB mode merely acts as a fixed substitution,
thus repeatedly encrypting the same plaintext block will always result in the same
ciphertext block. This property causes non-trivial structural information about the
plaintext to leak through to the ciphertext.

45



Chapter 4. Applied Cryptography in Feedback Control Systems

To illustrate how such a scheme fails to provide confidential signal transmission,
consider the STM proposed by Pang et al. (2011) seen in Figure 4.1. The STM may
be implemented (in C++) using the data_struct described in Section 3.2.2, using
the time point struct from the standard library as timestamp and holding the data
in a double. Notice that the data field and the timestamp are (very likely) of size
eight bytes, the same as the block size of DES. DES was implemented and operated
in ECB mode. Finally, the MD5 cryptographic hash function was implemented,
producing a 16-byte digest. Because the size of the timestamp, data field, and MD5
digest all are of a size that is a multiple of the DES block size, they are processed
independently by DES in ECB mode. An illustration of this scenario is shown in
Figure 4.2.

Furthermore, consider a scenario in which the STM is used to transmit signals
from a bang-bang controller to a system. A bang-bang controller only produces
two outputs, i.e., plaintexts; an ‘on’ and an ‘off’ signal. Because the data field
only contains two valid plaintext blocks, we expect the corresponding ciphertext
block, C2, to only contain two distinct blocks, as seen by Figure 4.3. A bang-bang
controller was implemented and used to transmit messages, using the STM, to an
eavesdropper not in possession of the secret key. The eavesdropper then logged the
messages in hexadecimal encoding. A selection of the received packets can be seen
in Table 4.1. Notice that, as expected, the C2 ciphertext block corresponding to
the data field of the message always takes on two values only. Thus, it is trivial
to extract information such as whether a control signal has changed or not. Fur-
thermore, if a valid plaintext-ciphertext pair is ever available to the eavesdropper,
that is, a KPA, all confidentiality is lost for past and future control signals. It is
important to note that such an attack applies to any scheme in which a block ci-
pher is used in ECB mode. Thus, using a ‘more secure’ block cipher such as 3DES
or AES would not make a difference, although with AES the block size would be
different. Note that such a scenario with a bang-bang controller and data sizes that
exactly fit the block size were chosen for illustrative purposes and similar attacks
do apply even if the data field has a large number of valid plaintexts; breaking all
confidentiality would only require a greater number of known plaintext-ciphertext
pairs. In addition, operating a block cipher in ECB mode fails catastrophically if
the data that is to be transmitted contains a lot of structure as this structure leaks
through to the ciphertext. Such problems would be encountered, for example, if
an image stream was being encrypted.

Finally, while Gupta & Chow (2008) claim that ECB offers the highest performance
and should therefore be used in real-time systems, this benefit if true is negligible.
As an example, the CTR block cipher mode of operation is parallelizable just as the
ECB mode, yet CTR mode does not suffer from the problem described above. Such
a negligible difference in performance is in no way justified when it enables attacks
as can be seen above. As a rule of thumb, block ciphers should always be operated
in a mode of operation for which repeated encryption of the same plaintext blocks
is highly unlikely to result in the same ciphertext blocks. Examples of such modes
of operation are the CBC, CFB, OFB, and CTR modes, as discussed in Section

46



4.1 Analysis of Previous Proposals

Secure UDP Sender

Secure UDP Receiver

T

MM

MD5

T

M

H

DES

Encryption

UDP

Sender

KeyT: Timestamp
M: Message
H: Hash digest

Network

UDP

Receiver

DES

Decryption

T’

M’

H’

Key

T’ > T
r

=M’ is rejected
T’

M’
MD5

YesNo

M’ is rejected

T
r

M
r

T’

M’

Yes

No

M
r

T
r
: Timestamp of Register

M
r
: Message in Register

Register

Figure 4.1: The secure signal transmission proposed by Pang et al. (2011), utilizing
DES, MD5, and timestamps. Even though DES is considered very outdated and was
broken in 1992 by Biham & Shamir (1992), we argue that the scheme is fundamentally
flawed independently of the block cipher used.

2.2.2.

4.1.2 The secure transmission mechanism
As illustrated in the preceding section, operating a block cipher in ECB mode is
not a viable option. Thus, one might be tempted to operate the block cipher in the
STM proposed by Pang et al. in a different mode of operation. Unfortunately, the

47



Chapter 4. Applied Cryptography in Feedback Control Systems

E
K

E
K

E
K

E
K

Timestamp Double H(Timestamp || Message)

C
1

C
2

C
3

C
4

Figure 4.2: Encrypting a message directly using a block cipher in ECB mode.

Table 4.1: Hexadecimal encoding of packets transmitted using the STM proposed by
Pang et al. in (Pang et al. 2011, Pang & Liu 2012).

Timestamp Data MD5 digest
550BDEBE34C8AD07 E94DA68CA723B1C1 D155562D239AF118 AFF6CB7C57BEA580
FB37DBFF53E398FF E94DA68CA723B1C1 8F03E61289A402EF CC4BDF300CBA0C66
F2E79339D9D763EF E94DA68CA723B1C1 D8E10C0DA8DAAE42 0A812E517FA9C8BD
3DB452729D6566FD 21C986E4D3AC8173 DB036300D42C1057 32BF91542D9AD2A0
2B147599C412420A 21C986E4D3AC8173 A4E5285923490AD1 B76F1478AE1FB748
E2B865023B1DE2E0 21C986E4D3AC8173 6A6DEB55D859CE76 4A4AAB359F2C123D
7579EB89F3150BF8 21C986E4D3AC8173 274F3DA7B4D2BC54 099BA03FD0E184D7
2E57268A139EBB08 21C986E4D3AC8173 AC2BD63A2CC93245 179815E9339BA5D7
BCBBBB8AF9217BF1 21C986E4D3AC8173 E983900302D2E899 9A68344B96C49FD1

‘Hash-then-Encrypt’-like STM has a fatal flaw that the enables injection of spoofed
messages if this is done, as is illustrated by the following example.

Consider a scenario in which the STM is augmented with AES operating in CTR
mode. Note that CTR mode is parallelizable just like ECB mode and is likely to
perform as well as the ECB mode in most scenarios thus countering the ‘efficiency-
argument’ of Gupta & Chow (2008). Recall from Section 2.2.2, that by operating
a block cipher in CTR mode we essentially transform the block cipher to a syn-
chronous stream cipher by introducing a state determined by a nonce and a counter
value. The block cipher produces a keystream by using an IV consisting of the nonce
and counter value as input. Recall that the IV acts as a synchronization mech-
anism between the transmitter and the receiver, and must not be repeated. Each
iteration produces 128 bits of keystream, after which the counter is incremented.
The plaintext is then encrypted by combining the keystream with the plaintext

48



4.1 Analysis of Previous Proposals

Plaintext Ciphertext

p
1

p
2

c
1

c
2

Figure 4.3: ECB encryption mapping two plaintexts to two ciphertexts.

through the exclusive-or (⊕) operator, according to

C = EncK,IV (P )
= KS ⊕ (T ||M ||H)

(4.1)

Remember that the IV is a public parameter that is usually transmitted along with
the ciphertext in the plaintext.

The recipient, in possession of the secret key, can then generate the same keystream
by feeding the IV into the block cipher and recover the plaintext by combining the
keystream with the ciphertext through the ⊕-operator as seen by

P = DecK,IV (C)
= KS ⊕ C
= KS ⊕KS ⊕ (T ||M ||H)
= (T ||M ||H)

(4.2)

Notice, however, that by this scheme, an adversary in possession of a plaintext-
ciphertext pair, that is, a KPA, is also capable of recovering a valid keystream by
combining the ciphertext with the corresponding plaintext according to

C ⊕ P = KS ⊕ (T ||M ||H)⊕ (T ||M ||H)
= KS

(4.3)

Suppose that an adversary is in possession of a plaintext-ciphertext pair. Fur-
thermore, assume that the adversary would like to manipulate the behavior of the

49



Chapter 4. Applied Cryptography in Feedback Control Systems

system, the controller, or both by injecting a forged message M̃ . Because the STM
uses an unkeyed cryptographic hash function, the adversary can easily compute
H̃ = H(T̃ ||M̃) in which T̃ is a valid timestamp. The adversary is then free to
encrypt any forged message P̃ = (T̃ ||M̃) by combining the keystream recovered by
(4.3) with the forged message using the ⊕-operator according to

C̃ = P̃ ⊕KS

= (T̃ ||M̃ ||H̃)⊕KS
(4.4)

The adversary then prepends the IV that was associated with the plaintext-ciphertext
pair from which the keystream was recovered, and transmits the message.

Upon reception of the forged message the receiver extracts the IV from the message
and generates a keystream to decrypt the message. After decrypting the message
by (4.2), the receiver verifies the validity of the timestamp and the MD5 digest of
the (T̃ ||M̃)-pair. Since the MD5 is unkeyed, the recomputed digest matches the
digest that was transmitted and the receiver accepts the message as authentic as
shown in Figure 4.1. We observe that the adversary is in fact capable of forging
any correctly formatted message, even though the adversary is not in possession of
the secret key. This corresponds to a universal forgery on the STM, as defined in
Section 2.3.3, given a single plaintext-ciphertext pair. We note that this contradicts
the claim of the authors who state that the use of MD5 is secure as long as DES is
not broken!

To illustrate how vulnerable such a scheme is, the STM was augmented with AES
operating in CTR mode. The MSD system and PI controller from Section 1.1.1
were used. This time, a timestamp was associated with each message that is
transmitted between the system and the controller, and the messages are hashed
with MD5 and encrypted with AES in CTR mode. Assume that the adversary
already knows the parameters of the system, and wants to force the system to
the state x = 2 as in the motivating example in Section 1.1.1. The adversary
computes a spoofed control signal using (1.5). The adversary then logs all messages
transmitted between the controller and the system and at some point gains access
to a plaintext that corresponds to a logged ciphertext. The adversary recovers the
keystream from the known plaintext-ciphertext pair using (4.3) and logs the valid
keystream and the corresponding IV. The adversary then uses a valid timestamp,
computes the MD5 digest of the spoofed control signal and timestamp, encrypts the
message using the recovered keystream according to (4.4), and repeatedly transmits
the forged message with the associated IV as described above. The result of this
attack can be seen in Figure 4.4. Since the forged messages are accepted by the
recipient, the system is successfully hijacked and forced to a state chosen by the
adversary.

At this point, it should be clear that breaking AES (or DES) to successfully forge
messages using the STM is not necessary. Again, the choice of block cipher is
irrelevant to the attack, as the cipher is circumvented. Thus, using DES, 3DES

50



4.2 Authenticated Encryption for Feedback Control Systems

0 4 8 12 16 20 24 28 32

Time [s]

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P
o

s
it
io

n
 [

m
]

System Hijacking - Hash-then-Encrypt

Spoof initiated
Reference

Mass Position

Figure 4.4: A successful known-plaintext attack against the STM, resulting in a system
hijacking.

or any other block cipher would not offer greater resistance to a KPA. It is worth
noting that the same attack applies if the OFB mode of operation is used. If the
CBC or CFB mode of operation is used, it is harder to see how such an attack would
apply but these modes are less efficient than CTR mode and are not parallelizable.
However, it should be clear from these examples that the STM is very prone to
attacks. To prevent this attack, one could use a keyed MAC such as the HMAC
algorithm, for example, by augmenting the scheme proposed by Jithish & Sankaran
(2017) by operating the block cipher in another mode of operation than ECB.

Furthermore, the reader might wonder whether it is reasonable to assume that an
adversary is capable of executing a KPA. We argue that in most instances it is;
plaintext is not random and the adversary is often capable of making educated
guesses. Perhaps more importantly, successfully breaking the system would be no
harder than guessing a valid plaintext, which is entirely independent of the key.
Finally, even in a scenario where the plaintext is highly randomized, a leak of logs
would be catastrophic.

4.2 Authenticated Encryption for Feedback Con-
trol Systems

As illustrated in the preceding section, the previously proposed schemes possess
weaknesses that make them vulnerable to attacks, resulting in loss of confidential-
ity or even successful injection of spoofed data. Instead of using ad-hoc schemes
such as the STM, we urge that cryptographically sound constructions that provide
authenticated encryption should be used. The STM could be enhanced as seen in
Figure 4.5, to accommodate this change. As observed in Section 4.1.1, it is im-

51



Chapter 4. Applied Cryptography in Feedback Control Systems

Secure UDP Sender

Secure UDP Receiver

T

M
M

T

M

UDP

Sender

Key
T: Timestamp
M: Message
MT: Message tag

Network

UDP

Receiver

Key

T’ > T
rM’ is rejected

T’

M’

YesNo

M’ is rejected

T
r

M
r

T’

M’

M
r

T
r
: Timestamp of Register

M
r
: Message in Register

Register

IV

C

IV

MT

Authenticated Encryption

Scheme

T’T’

M’
MT’ valid

C’

IV’

MT’

Authenticated Encryption

Scheme

MT’ invalid

Figure 4.5: An enhanced STM, providing proper authenticated encryption.

portant to avoid operating the block ciphers in ECB mode to prevent information
from leaking through to the ciphertext. Furthermore, combining ciphers with keyed
MACs rather than unkeyed cryptographic hash functions is important to prevent
the injection of forged messages.

Remember from Section 2.4 that authenticated encryption may be achieved through

52



4.2 Authenticated Encryption for Feedback Control Systems

generic compositions, dedicated block cipher modes of operation, or dedicated au-
thenticated encryption algorithms. Regarding generic compositions, we note that
the E&M composition suffers from the same problem as the ECB mode of encryp-
tion in the sense that the message tag is computed over the plaintext and is visible
to the eavesdroppers. Thus, the same plaintext results in the same tag, and the
eavesdropper can identify if the same message is sent twice. Although it should be
noted that the tag is computed over the entire plaintext, whereas the ECB mode
of encryption treated each block independently, thus the E&M composition is not
quite as vulnerable. In brief, we choose to combine MACs and encryption algo-
rithms in the EtM composition as this ensures that we are capable of discarding
invalid (message, tag)-pairs without needing to decrypt them first. The pseudocode
to implement the transmitter and the receiver of the enhanced STM, using authen-
ticated encryption achieved through EtM compositions, can be seen in Algorithms
1 and 2, respectively.

Algorithm 1 Enhanced STM Transmitter
1: Initialize MACK , EK,IV

2: while true do
3: Load data.
4: Load fresh timestamp.
5: Plaintext ← Serialize(data and timestamp)
6: Ciphertext ← EK,IV (Plaintext)
7: Tag ← MACK(Ciphertext, IV)
8: Transmit (IV||Ciphertext||Tag)
9: Update IV

10: end while

Algorithm 2 Enhanced STM Receiver
1: Initialize MACK , DK,IV ′

2: while true do
3: Receive (IV’||Ciphertext’||Tag’)
4: Tag ← MACK(Ciphertext’, IV’)
5: if Tag != Tag’ then
6: Reject message.
7: end if
8: Plaintext’ ← DK,IV ′(Ciphertext’)
9: Data, Timestamp ← Deserialize(Plaintext’)

10: if Timestamp invalid then
11: Reject message.
12: end if
13: Update time and pass on the data.
14: end while

53



Chapter 4. Applied Cryptography in Feedback Control Systems

Notice that if an authenticated encryption algorithm is used directly, the plaintext
would be authenticated and encrypted in one function call in the transmitter, and
the authenticity of the ciphertext would be verified and the ciphertext decrypted
in one function call in the receiver.

Consider, for a moment, the proposed scheme implemented with EtM. We find
that even if the adversary recovers a valid keystream through, for example, a KPA
attack as described in Section 4.1.2, the adversary will not be capable of universal
forgery as with the orignal STM. Without knowledge of the MAC key, the adversary
has no way of obtaining a valid tag for the desired ciphertext, except for a brute
force attack of complexity 2B−1 where B is the keysize. An existential forgery is
possible with complexity 2 B

2 due to the birthday problem described in Section 2.3.1,
however, this gives the adversary no control over the resulting IV nor ciphertext,
thus rendering the keystream obtained from the KPA useless. A replay attack is
not possible because the timestamp will be deprecated upon reception.

Note that while the MD5 algorithm is still regarded as secure when used in HMAC
(Bellare 2015), the Internet Engineering Task Force (IETF) issued a Request For
Comment (RFC) in 2011 (Turner & Chen 2011) stating that the use of MD5 as
part of HMAC is not recommended for future applications, listing SHA-2 as an
alternative. Thus, while augmenting the scheme proposed by Jithish & Sankaran
(2017) by not operating the block cipher in ECB mode would be quite secure, we
argue that one should consider replacing MD5 with SHA-2 (for example SHA-256
or SHA-512). Additionally, the 3DES algorithm used by Jithish and Sankaran
is very inefficient in software regardless of the platform it is implemented on by
modern standards and should not be used.

In addition to these generic compositions, we recall from Section 2.4.2 that a block
cipher may be operated in GCM and CCM mode to achieve authenticated en-
cryption directly. Unfortunately, the polynomial multiplication over the finite field
GF (2128), required in the GCM mode, is very inefficient unless special instructions
are available (for example CLMUL on x86), and the CCM mode requires two passes
through the block cipher, providing poor performance unless hardware support for
the block cipher is available (for example AES-NI on x86). Thus, it is of interest to
see whether one can achieve increased performance on embedded devices without
such hardware support through generic compositions of high-performance stream
ciphers and MACs, or through the state-of-the-art stream cipher AEGIS (Wu &
Preneel 2014) which provides authenticated encryption directly, as mentioned in
Section 2.4.3.

54



Chapter 5
Cryptographic Algorithms and the
CryptoToolbox

This chapter gives an introduction to the CryptoToolbox. This work has been
presented in a paper currently under peer review. The paper can be found in
Appendix A.

As seen in Section 1.2, researchers have predominantly resorted to open-source
cryptographic libraries when investigating how cryptographic algorithms can be
used in feedback control systems. Unfortunately, popular cryptographic libraries
such as OpenSSL and pyCrypto primarily support block ciphers and asymmet-
ric cryptographic algorithms and do not support state-of-the-art symmetric cryp-
tographic algorithms and, in particular, high-performance stream ciphers. The
wolfCrypt cryptographic library does offer some high-performance stream ciphers,
notably Rabbit, HC-128, and ChaCha20, while the Crypto++ cryptographic li-
brary is the only open-source cryptographic library to support all of the eSTREAM
stream ciphers, that is, Rabbit, HC-128, ChaCha20/12, and Sosemanuk. No open-
source cryptographic library supports the state-of-the-art authenticated encryption
algorithm AEGIS. Furthermore, the Crypto++ library, providing the widest range
of algorithms, is quite difficult to navigate. Because of this, the CryptoToolbox
was developed.

The CryptoToolbox contains a wide range of algorithms. Figure 5.1 illustrates
the structure of the CryptoToolbox contents. In addition to the cryptographic
algorithms, the CryptoToolbox provides a hexadecimal encoder. Each algorithm
operates on memory buffers, and it is assumed that the data that is to be processed
is contiguous in memory. This can be ensured through serialization and deserial-
ization functions, such as described in Section 3.2.2. The algorithms operate on
buffers of type uint8_t.

55



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

The CryptoToolbox

BlockCiphers

AES

AES ARM

AES x86

AES

CTR

CFB

CTR

CFB

CTR

CFB

Serpent

StreamCiphers

AEGIS

AEGIS

ChaCha

HC-128

Rabbit

Sosemanuk

AEGIS ARM

AEGIS x86

ChaCha20

ChaCha12

ChaCha8

Authentication

HMAC-SHA-256

Encoders

Hex

Hash

SHA-256

Figure 5.1: An overview of the algorithms available through the CryptoToolbox.

Note that it is the user’s responsibility to supply highly randomized keys to the
algorithms. For algorithms that utilize IVs and nonces, it is the user’s responsibility
to ensure that repeated IVs and nonces do not occur for a fixed key. Furthermore,
it is assumed that the keys are pre-distributed. Users who do not adhere to these
guidelines are vulnerable to security breaches.

5.1 Algorithm Implementations
In this section, we describe the algorithms that were implemented primarily from an
implementation and user perspective. All the algorithms described have been made
publicly available through the CryptoToolbox Github repository (Solnør 2020).

5.1.1 Advanced encryption standard
As introduced in Section 2.2.2, the AES was the result of an international effort to
develop a new block cipher around the year 2000. The winner, the Rijndael cipher,
was designed by Vincent Rijmen and Joan Daemen and is an SPN. Figure 5.2
illustrates the structure of the AES cipher. Note that like all block ciphers, AES
is stateless. The AES cipher operates on blocks of 128 bits, thus resulting in a
fixed {0, 1}128 × {0, 1}K 7→ {0, 1}128 substitution parametrized by the K-bit key
if operated directly. The official AES standard accepts three key sizes; 128, 192,
and 256 bits, respectively. The CryptoToolbox implementations support 128-bit
keys. As seen in Section 4.1.1, the direct operation of a block cipher in the ECB
mode leaks structural information from the plaintext to the ciphertext. This leak
is an unfortunate characteristic as shown in Section 4.1.1, and block ciphers are

56



5.1 Algorithm Implementations

Plaintext

MixColumns

Ciphertext

SubBytes

ShiftRows

Add Round Key 0

Add Round Key i

SubBytes

ShiftRows

Add Round Key N

For i = 1 to i = N-1

Ciphertext

Add Round Key N

InverseShiftRows

inverseSubBytes

InverseMixColumns

Add Round Key N-i

InverseShiftRows

inverseSubBytes

Add Round Key 0

Plaintext

For i = 1 to i = N-1

Figure 5.2: The high-level structure of AES. Left hand side illustrate the encryption
mode, while the right hand side illustrates the decryption mode.

therefore primarily operated in other modes of operation such as the CBC, CFB,
OFB, and CTR modes as described in Section 2.2.2. The CryptoToolbox contains
implementations of AES operating in the CTR mode of operation and a modified
CFB mode of operation.

Counter Mode

The CTR mode transforms the block cipher into a synchronous stream cipher by
introducing a state determined by a nonce and a counter value. The nonce com-
bined with the counter value is often referred to as the IV and serves as input to
the block cipher. The output of the block cipher is called the keystream, and after
each iteration, the cipher increments the counter value. The keystream is then
mixed with the plaintext or ciphertext through the ⊕-operator to form the cipher-
text or plaintext, respectively. If packets arrive out of order, or if a message is lost
or injected, the transmitter and the receiver of a transmission encrypted with a
synchronous stream cipher lose synchronization. The IV acts as a synchronization
mechanism to provide robustness against such events. Because the IV is a public
parameter it may be transmitted along with the ciphertext in the plaintext. Note
that only the nonce needs to be transmitted, as the counter value can be agreed

57



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

Block

cipher

Ciphertext

Plaintext

Block

cipher

Ciphertext

Block

cipher

Ciphertext

Plaintext Plaintext

Message 1

Block

cipher

Ciphertext

Plaintext

Block

cipher

Ciphertext

Block

cipher

Ciphertext

Plaintext Plaintext

Message 2

Nonce 1 CTR Nonce 1 CTR++ Nonce 1 CTR++

Nonce 2 CTR Nonce 2 CTR++ Nonce 2 CTR++

Figure 5.3: A block cipher operating in CTR mode. Notice that the initialization vector
consists of a nonce and a counter. The counter is incremented each time the block cipher
is iterated, and is usually initialized to a pre-determined value for each message. The
nonce must be shared between the transmitter and the receiver.

upon beforehand (for example by always initializing the counter value to zero for
each message). The size of the nonce and the counter value depends on the ap-
plication; if small packets are transmitted at a high frequency, the nonce value is
chosen to be large (for example 96 bits for AES). If large packets are transmit-
ted less frequently, more bits can be reserved to the counter value. A common
configuration for AES consists of 96 bits reserved to the nonce value and 32 bits
reserved to the counter value. This is the configuration used by the CryptoToolbox
implementation, and the counter value is always initialized to 1 for a new nonce.
An illustration of a block cipher operating in CTR mode can be seen in Figure 5.3.

The AES CTR cipher is accessed through the interface seen in Listing 5.1.

Listing 5.1: AES CTR Interface
void aes_load_key(aes_state *cs, uint8_t key[16]);
void aes_load_iv(aes_state *cs, uint8_t nonce[12]);
void aes_ctr_process_packet(aes_state *cs, uint8_t *out, uint8_t *in, int

size);

Note that the aes load key() function is only called once per key to derive the round
keys, while the aes load iv() function is called to resynchronize the transmitter and
the receiver using the public nonce, usually on a per-message basis. Both encryption
and decryption is achieved through the aes ctr process packet() function.

58



5.1 Algorithm Implementations

Cipher Feedback Mode

The AES CFB implementation was part of the TTK4550 Project Report.

As discussed in Section 2.5.2, for some applications, it may be desirable to minimize
the amount of data that is to be transmitted. Because stateful ciphers often require
IVs to guarantee synchronous behavior between the transmitter and the receiver,
each message must carry a (unique) IV in addition to the ciphertext.

The CFB mode converts the block cipher to an SSSC by making the state uniquely
determined by a finite number of ciphertext bits. By modifying the CFB mode
slightly, the need for IVs can be removed by using the final ciphertext block of the
previous message as the IV for the next message, thus reducing the amount of data
that must be transmitted. This is referred to this as a carry-over IV design. It may
be tempting to apply a similar modification to the CBC mode, but due to the nature
of the CBC decryption mode, such an implementation is vulnerable to attacks as
shown by the BEAST attack by (Duong & Rizzo 2011). For this reason, NIST
recommends that the IVs for both CFB and CBC mode should be unpredictable
in addition to being unique. Thus, even though no attacks are (publicly) known
against this modified CFB mode, we warn that this implementation defies best-
practice as defined by NIST.

Because the state is uniquely determined by a finite number of ciphertext bits, a
transmission error propagates and results in burst errors. This can happen, for
example, if packets are received out-of-order, if packets are injected, or if packets
are lost in transmission.

An illustration of the carry-over IV CFB mode can be seen in Figure 5.4. Unlike
a block cipher operating in CTR mode, a block cipher operating in CFB mode
must be aware of whether is it used to encrypt or decrypt data. This is done by
passing either of the pre-defined macros ENCRYPT and DECRYPT in the final function
argument.

The AES CFB cipher is accessed through the interface seen in Listing 5.2.

Listing 5.2: AES CFB Interface
void aes_cfb_initialize(aes_state *cs, uint8_t key[16], uint8_t iv[16]);
void aes_cfb_process_packet(aes_state *cs, uint8_t *out, uint8_t *in, int

size, int mode);

The cipher is only initialized once per fixed key using aes_cfb_initialize(), after
which the aes cfb process packet() function is used to encrypt and decrypt.

Table-Driven Round Function

The table-driven AES round function described in this subsection was implemented
as part of the TTK4550 project report.

As seen in Figure 5.2, the AES cipher iterates multiple rounds of the same four op-
erations. A byte substitution element, commonly referred to as an S-box, provides

59



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

Block

cipher

Initialization Vector

Ciphertext

Plaintext

Block

cipher

Ciphertext

Block

cipher

Ciphertext

Plaintext Plaintext

Message 1

Block

cipher

Ciphertext

Plaintext

Block

cipher

Ciphertext

Block

cipher

Ciphertext

Plaintext Plaintext

Message 2

Figure 5.4: A block cipher operated in CFB mode, with a carry-over IV.

the nonlinearity. A shift row and a mix column operation provide the diffusion.
Finally, a round key is added to prevent slide attacks (Biryukov & Wagner 1999).
This is called the AES round function. The round keys are derived from the se-
cret key through a key schedule. Because the byte substitution operates on bytes
and consists of computationally expensive operations such as exponentiations, and
because the mix column operation consists of matrix multiplications, the round
function is very inefficient if implemented directly. At the very least, the byte
substitution should be pre-computed and implemented as a LUT. However, be-
cause most systems today have 32 or 64-bit word sizes and because we still have
to deal with the matrix multiplication step, such an implementation is not very
efficient. Therefore, the CryptoToolbox implementation of the AES round function
uses a time-memory trade-off in which the byte substitution, shift row, and mix
column operations are pre-computed and stored in four 1 KB LUTs. As such, an
iteration of the AES round function requires only 16 table lookups and 16 bitwise
⊕-operations. The precomputed LUTs suggested in the AES specification are used.
The steps to construct these LUTs is shown below.


b0,j

b1,j

b2,j

b3,j

 =


Sub[a0,j ]
Sub[a1,j ]
Sub[a2,j ]
Sub[a3,j ]

 (5.1)

60



5.1 Algorithm Implementations


c0,j

c1,j

c2,j

c3,j

 =


b0,j

b1,j−1
b2,j−2
b3,j−3

 (5.2)


d0,j

d1,j

d2,j

d3,j

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



c0,j

c1,j

c2,j

c3,j

 (5.3)

Equation (5.1) shows a column-wise byte substitution, (5.2) shows how a column
is changed following the shift row transformation and (5.3) shows the matrix mul-
tiplication of the mix column transformation. By substituting (5.1) into (5.2) and
then substituting the resulting equation into (5.3) we get


d0,j

d1,j

d2,j

d3,j

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




Sub[a0,j ]
Sub[a1,j−1]
Sub[a2,j−2]
Sub[a2,j−3]

 (5.4)

Equation (5.4) is then rewritten as a linear combination of the columns of the mix
column matrix, yielding

d0,j

d1,j

d2,j

d3,j

 = Sub[a0,j ]


02
01
01
03

⊕ Sub[a0,j−1]


03
02
01
01



⊕ Sub[a0,j−2]


01
03
02
01

⊕ Sub[a0,j−3]


01
01
03
02

 (5.5)

Equation (5.5) may now be reduced to four LUTs, T0-T3, containing 256 32-bit
words each, that is, a total size of 4096 bytes, and three ⊕ operations as illustrated
by 

d0,j

d1,j

d2,j

d3,j

 = T0[a0,j ]⊕ T1[a1,j−1]⊕ T2[a2,j−2]⊕ T3[a3,j−3] (5.6)

This implementation translates well to the 32-bit platform on the RevPi Connect+.

61



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

AES on x86 and ARMv8

Because of the wide adoption of AES, microprocessor manufacturers have included
enhanced instruction sets that provide hardware-acceleration of the AES opera-
tions. In 2010 Intel included the Advanced Encryption Standard New Instructions
(AES-NI) on their x86-processors. Advanced Micro Devices followed shortly after,
and included AES-NI on their x86-processors. Later, ARM provided an optional
cryptographic extension to their ARMv8-processors, the ARMv8 Crypto Extension.
Therefore, rather than resorting to the table-driven variant of the AES round func-
tion described , we may instead take advantage of these enhanced instruction sets.
These instructions may easily be accessed through intrinsic functions, as seen in
Listing 5.3, in which the encryption mode of AES is implemented using the AES-NI
intrinsics for the x86 architecture accessed through the <x86intrin.h> header.

Listing 5.3: AES-NI Intrinsics.
void aes_encrypt(aes_state *cs, uint32_t keystream[])
{

__m128i B_S = _mm_loadu_si128 ((__m128i*)&cs->reg1);
__m128i B_K0 = _mm_loadu_si128 ((__m128i*)&cs->rk);
__m128i B_K1 = _mm_loadu_si128 ((__m128i*)&cs->rk[4]);
__m128i B_K2 = _mm_loadu_si128 ((__m128i*)&cs->rk[8]);
__m128i B_K3 = _mm_loadu_si128 ((__m128i*)&cs->rk[12]);
__m128i B_K4 = _mm_loadu_si128 ((__m128i*)&cs->rk[16]);
__m128i B_K5 = _mm_loadu_si128 ((__m128i*)&cs->rk[20]);
__m128i B_K6 = _mm_loadu_si128 ((__m128i*)&cs->rk[24]);
__m128i B_K7 = _mm_loadu_si128 ((__m128i*)&cs->rk[28]);
__m128i B_K8 = _mm_loadu_si128 ((__m128i*)&cs->rk[32]);
__m128i B_K9 = _mm_loadu_si128 ((__m128i*)&cs->rk[36]);
__m128i B_K10 = _mm_loadu_si128 ((__m128i*)&cs->rk[40]);

B_S = _mm_xor_si128 (B_S, B_K0);
B_S = _mm_aesenc_si128 (B_S, B_K1);
B_S = _mm_aesenc_si128 (B_S, B_K2);
B_S = _mm_aesenc_si128 (B_S, B_K3);
B_S = _mm_aesenc_si128 (B_S, B_K4);
B_S = _mm_aesenc_si128 (B_S, B_K5);
B_S = _mm_aesenc_si128 (B_S, B_K6);
B_S = _mm_aesenc_si128 (B_S, B_K7);
B_S = _mm_aesenc_si128 (B_S, B_K8);
B_S = _mm_aesenc_si128 (B_S, B_K9);
B_S = _mm_aesenclast_si128 (B_S, B_K10);

_mm_storeu_si128 ((__m128i*)keystream, B_S);
}

On systems with a modern x86 processor with the AES-NI instruction set available,
the user may compile AES CTR and AES CFB using the g++ commands seen in
Listing 5.4 to take advantage of the AES-NI instructions.

62



5.1 Algorithm Implementations

Listing 5.4: AES x86 AES-NI Compilation.
g++ test vectors.cpp aes ctr.cpp ../../../../Encoders/Hex/encoder.cpp -o

test vectors -D x86 INTRINSICS -march=native
g++ main.cpp aes cfb.cpp -o main -D x86 INTRINSICS -march=native

On systems running an ARMv8 processor with the ARMv8 Crypto Extension instruc-
tion set available, the user may compile AES CTR and AES CFB using the g++
commands seen in Listing 5.5 to take advantage of the ARMv8 Crypto Extension
instructions.

Listing 5.5: AES ARMv8 Crypto Extension Compilation.
g++ test vectors.cpp aes ctr.cpp ../../../../Encoders/Hex/encoder.cpp -o

test vectors -D ARM INTRINSICS -march=armv8-a+crypto
g++ main.cpp aes cfb.cpp -o main -march=armv8-a+crypto -D ARM INTRINSICS

If compiled using CMAKE, the preprocessor flags can be set using add definitions().
Note that these hardware-accelerated variants are, in addition to being faster, less
prone to side-channel attacks, that is, attacks that target the algorithm implemen-
tations rather than the algorithms themselves. An example of such a side-channel
attack is the timing attack in which an adversary attempts to extract information
based on the time certain operations take. For example, there may be variations in
the time required to compute multiplication operations depending on the inputs,
and the time needed to access lookup tables depends on where the lookup tables
are stored, such as the level-1 cache or level-2 cache.

5.1.2 HC-128
The HC-128 cipher was implemented as part of the TTK4550 Project Report.

The HC-128 stream cipher was designed by Wu (2008) and rely on large permuta-
tion tables. The HC-128 cipher offers excellent performance on bulk-encryption, at
the cost of a large initialization overhead. The cipher, therefore, suffers from poor
performance if small packets are encrypted frequently.

The HC-128 stream cipher is accessed through the interface seen in Listing 5.6:

Listing 5.6: The HC-128 Interface.
void hc128_initialize(hc128_state *cs, uint8_t key[16], uint8_t iv[16]);
void hc128_process_packet(hc128_state *cs, uint8_t *output, uint8_t *input,

uint64_t size);

The hc128 initialize() function derives an initial state from the secret key and IV
by mapping the key and the IV to the tables containing the state, and iterating the
cipher 1024 times. Once initialized, the hc128 process packet() function is used to
encrypt and decrypt.

63



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

The remarkably efficient keystream generator function of the HC-128 stream cipher
can be seen in Algorithm 3. The CryptoToolbox implementation of the keystream
generator function can be seen in Listing 5.7. Note that g1,2 and h1,2 are functions
consisting only of 32-bit rotations, modular additions, and bitwise ⊕-operations,
while P and Q denote the tables that make up the state of the cipher.

Listing 5.7: The HC-128 Keystream Generator Function.
void hc128_generate_keystream(hc128_state *cs, uint32_t *keystream,

uint64_t size)
{

// Generate keystream
for (int i = 0; i <= (size-1)/4; i++)
{

int j = (i&0x1FF);
if ( (i&0x3FF) < 512 )
{

// Operate on P
cs->P[j] = cs->P[j] + g1(cs->P[(j-3)&0x1FF],

cs->P[(j-10)&0x1FF],
cs->P[(j-511)&0x1FF]);

*keystream = h1(cs, cs->P[(j-12)&0x1FF]) ˆ (cs->P[j]);
keystream++;

} else {
// Operate on Q
cs->Q[j] = cs->Q[j] + g2(cs->Q[(j-3)&0x1FF],

cs->Q[(j-10)&0x1FF],
cs->Q[(j-511)&0x1FF]);

*keystream = h2(cs, cs->Q[(j-12)&0x1FF]) ˆ (cs->Q[j]);
keystream++;

}
}

}

5.1.3 Sosemanuk
The Sosemanuk cipher was implemented as part of the TTK4550 Project Report.

The Sosemanuk stream cipher was the result of a cooperative effort between mul-
tiple French cryptologists and was submitted by Berbain et al. (2008) to the eS-
TREAM competition. The Sosemanuk stream cipher consists of a linear feedback
shift register composed with a nonlinear output function. The nonlinear output
function is constructed using components from the Serpent block cipher designed
by Anderson et al. (2000), which was the runner-up submission to the AES-process.
An overview of the Sosemanuk cipher can be seen in Figure 5.5. The Sosemanuk
cipher is accessed through the interface seen in Listing 5.8.

Listing 5.8: The Sosemanuk Interface.
void sosemanuk_load_key(sosemanuk_state *cs, uint8_t *key, int keysize);

64



5.1 Algorithm Implementations

s
t+9 

s
t+8 

s
t 

s
t+1 

s
t+3 

a-1
 

a
 

MUX

R1 R2Trans

Serpent1
Keystream(4 words)

Figure 5.5: An overview of the Sosemanuk stream cipher.

void sosemanuk_load_iv(sosemanuk_state *cs, uint8_t iv[16]);
void sosemanuk_process_packet(sosemanuk_state *cs, uint8_t *out, uint8_t *

in, uint64_t size);

The sosemanuk load key() function is called once per key, while the sosemanuk load
iv() function is called to resynchronize the transmitter and the receiver by deducing
an initial state of the cipher from the pre-loaded key and an IV. This is usually
done on a per-message basis. Encryption and decryption is achieved through the
sosemanuk process packet() function.

Algorithm 3 HC-128 keystream generation algorithm
1: i = 0
2: while more keystream bits are required do
3: j = i mod 512
4: if (i mod 1024) < 512 then
5: P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511])
6: si = h1(P [j � 12])⊕ P [j]
7: else
8: Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511])
9: si = h2(Q[j � 12])⊕Q[j]

10: end if
11: i = i+ 1
12: end while

65



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

Serpent

The Serpent block cipher is constructed as a SPN like AES. As in AES, the non-
linear component of the cipher consists of S-boxes. However, because the Serpent
S-boxes are {0, 1}4 7→ {0, 1}4 mappings, they do not lend themselves well to LUT
implementations. Instead, a bit-slicing technique may be applied. In the Crypto-
Toolbox implementation, the bit-slicing techniques proposed by Osvik (2000) are
used to implement the Serpent S-boxes. The Serpent block cipher is accessed in-
directly through the Sosemanuk function calls, and it is noted that only the parts
used in the Sosemanuk cipher are implemented. The Serpent block cipher is there-
fore not available as a stand-alone cipher. An implementation of a bit-sliced Osvik
S-box used in the Serpent cipher can be seen in Listing 5.9.

Listing 5.9: A Bitsliced Osvik S-Box for the Serpent Block Cipher.
inline void S4(uint32_t *r0, uint32_t *r1, uint32_t *r2, uint32_t *r3,

uint32_t *r4)
{

*r1 ˆ= *r3; *r3 = ˜(*r3);
*r2 ˆ= *r3; *r3 ˆ= *r0;
*r4 = *r1; *r1 &= *r3;
*r1 ˆ= *r2; *r4 ˆ= *r3;
*r0 ˆ= *r4; *r2 &= *r4;
*r2 ˆ= *r0; *r0 &= *r1;
*r3 ˆ= *r0; *r4 |= *r1;
*r4 ˆ= *r0; *r0 |= *r3;
*r0 ˆ= *r2; *r2 &= *r3;
*r0 = ˜(*r0); *r4 ˆ= *r2;

}

5.1.4 Rabbit
The Rabbit stream cipher is a cipher designed by Boesgaard et al. (2008) that was
a successful entrant to the eSTREAM competition. The theoretical foundation of
the Rabbit cipher comes from the theory of chaotic systems. The cipher deduces
a secret master state from the key, and each IV is mixed with the master state to
produce an initial state of the cipher. The master state can also be used directly,
that is, without an IV. However, if an IV is not used, any packet losses or packet
injections will result in a loss of synchronization.

The Rabbit stream cipher is accessed through the interface seen in Listing 5.10.

Listing 5.10: The Rabbit Interface.
void rabbit_load_key(rabbit_state *cs, uint8_t key[16]);
void rabbit_load_iv(rabbit_state *cs, uint8_t iv[8]);
void rabbit_process_packet(rabbit_state *cs, uint8_t *output, uint8_t *

input, uint64_t size);

66



5.1 Algorithm Implementations

The rabbit load key() function deduces the master state, and is called once per
key. The rabbit load iv() function derives an initial state from the master state
and a public IV. This is usually done on a per-message basis. The rabbit process
packet() function is used to encrypt and decrypt.

5.1.5 ChaCha
The ChaCha stream cipher is a variant of the Salsa-family of stream ciphers and
was designed by Bernstein (2008). The ChaCha stream cipher follows an ARX-
design, and is generally used in three configurations; the full cipher consisting of
twenty rounds (ChaCha20), a round reduced variant consisting of twelve rounds
(ChaCha20/12), and a further round reduced variant consisting of eight rounds
(ChaCha20/8). The round reduced variants offer increased performance at the
cost of reduced security. The CryptoToolbox provides the full ChaCha20 cipher
as default, however, the round reduced variants may be accessed by passing the
-D TWELVE ROUNDS and -D EIGHT ROUNDS preprocessor flags for the twelve and eight
round variants, respectively, as seen in Listing 5.11:

Listing 5.11: The ChaCha Compilation Options.
g++ main.cpp chacha.cpp ../../Encoders/Hex/encoder.cpp -o main
g++ main.cpp chacha.cpp ../../Encoders/Hex/encoder.cpp -o main -D TWELVE

ROUNDS
g++ main.cpp chacha.cpp ../../Encoders/Hex/encoder.cpp -o main -D EIGHT

ROUNDS

All variants of the ChaCha stream cipher are accessed through the interface seen
in Listing 5.12.

Listing 5.12: The ChaCha Interface.
void chacha_initialize(chacha_state *cs, uint8_t key[32], uint8_t nonce

[12]);
void chacha_process_packet(chacha_state *cs, uint8_t *output, uint8_t *

input, uint64_t size);

The chacha initialize() function is used to derive an initial state from the secret
key and the public IV, normally on a per-message basis, after which chacha process
packet() is used to encrypt and decrypt.

The core of the ChaCha stream cipher revolves around the quarter-round function
shown in Listing 5.13. Notice that only modular additions, 32-bit rotations and
bitwise ⊕-operations are used.

Listing 5.13: The ChaCha Quarter-Round Function.
inline void q_round(chacha_state *cs, int a, int b, int c, int d){

cs->state[a] += cs->state[b];
cs->state[d] ˆ= cs->state[a];

67



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

cs->state[d] = ROTL_32((cs->state[d]), 16);

cs->state[c] += cs->state[d];
cs->state[b] ˆ= cs->state[c];
cs->state[b] = ROTL_32((cs->state[b]), 12);

cs->state[a] += cs->state[b];
cs->state[d] ˆ= cs->state[a];
cs->state[d] = ROTL_32((cs->state[d]), 8);

cs->state[c] += cs->state[d];
cs->state[b] ˆ= cs->state[c];
cs->state[b] = ROTL_32((cs->state[b]), 7);

}

5.1.6 AEGIS
Briefly mentioned in Section 2.4.3 and Section 4.2, the AEGIS stream cipher was
designed by Wu & Preneel (2014) and submitted to the Competition for Authenti-
cated Encryption: Security, Applicability and Robustness (CAESAR). The AEGIS
stream cipher is a synchronous stream cipher that is heavily based on the AES
round function and provides authenticated encryption directly. Note that AEGIS
also can be used to provide message authenticity without encryption or to au-
thenticate additional data that is not encrypted. The latter is commonly used to
authenticate the IV in plaintext, in addition to the ciphertext. The AEGIS stream
cipher is accessed through the interface displayed in Listing 5.14.

Listing 5.14: The AEGIS Interface.
void aegis_load_key(aegis_state *cs, uint8_t key[16]);
void aegis_encrypt_packet(aegis_state *cs, uint8_t *ct, uint8_t tag[16],

uint8_t *pt, uint8_t *ad, uint8_t iv[16], uint64_t adlen, uint64_t
msglen);

int aegis_decrypt_packet(aegis_state *cs, uint8_t *pt, uint8_t *ct, uint8_t
*ad, uint8_t iv[16], uint8_t tag[16], uint64_t adlen, uint64_t msglen)

;

The aegis load key() function is called once per key, while the aegis encrypt
packet() and aegis decrypt packet() functions are used to encrypt and decrypt,
respectively. Note that the aegis decrypt packet()-function returns 1 if the (mes-
sage, tag)-pair is valid and 0 otherwise. If the (message, tag)-pair is invalid, the
pt-buffer and the tag-buffer are zeroized. This is done to prevent CCA attacks.

AEGIS on x86 and ARMv8

Because the AEGIS stream cipher utilizes AES operations, the cipher can take
advantage of the enhanced instruction sets provided by some modern microproces-

68



5.1 Algorithm Implementations

AES Description Intel AES-NI ARMv8-A Cryptography Extension

Round 1:

 AddRoundKey

Round 1:

            _mm_xor_si128()

 AddRoundKey

Round 1 to N-1:

            vaeseq()

 AddRoundKey

 ShiftRows

 SubBytes

            vaesmq()

 MixColumns

Rounds 2 to N:

 SubBytes

 ShiftRows

 MixColumns

 AddRoundKey

Final Round:

 SubBytes

 ShiftRows

 AddRoundKey

Rounds 2 to N:

            _mm_aesenc_si128()

 ShiftRows

 SubBytes

 MixColumns

 AddRoundKey

Final Round:

            _mm_aesenclast_si128()

 ShiftRows

 SubBytes

 AddRoundKey

Round N:

            vaeseq()

 AddRoundKey

 ShiftRows

 SubBytes

Final Round:

            veorq()

 AddRoundKey

Figure 5.6: An illustration of the AES description, the AES-NI operations and the
ARMv8 cryptography extension operations. The difference between the AES-NI and
ARMv8 cryptography extension round function means that extra operations are required
when using ARM hardware-acceleration to implement AEGIS. This figure is based on a
figure from Crutchfield (2014).

sors. The CryptoToolbox provides enhanced implementations for x86 and ARMv8
processors featuring AES-NI and ARMv8 Crypto Extension, respectively.

On systems running an x86 processor with the AES-NI instruction set available,
AEGIS is compiled using the g++ command seen in Listing 5.15:

Listing 5.15: AEGIS x86 AES-NI Compilation.
g++ test vectors.cpp aegis 128.cpp ../../../Encoders/Hex/encoder.cpp -o test

vectors -D x86 INTRINSICS -march=native

On systems running an ARMv8 processor with the ARMv8 Crypto Extension instruction
set available, AEGIS is compiled using the g++ command seen in Listing 5.16:

Listing 5.16: AEGIS ARMv8 Crypto Extension Compilation.
g++ test vectors.cpp aegis 128.cpp ../../../Encoders/Hex/encoder.cpp -o test

vectors -march=armv8-a+crypto -D ARM INTRINSICS

Notice in Figure 5.6, however, that the ARMv8 Cryptography Extension intrinsic
functions are not perfectly aligned with the ‘true’ AES round function. Since
AEGIS only utilizes the ‘true’ AES round function and not the first and last rounds,
the round keys must be pre- and post-added. An excerpt from the ARMv8 AEGIS
implementation in the CryptoToolbox illustrates this in Listing 5.17.

Listing 5.17: Reconstruction of AES Round using ARMv8 Intrinsics.
#ifdef ARM INTRINSICS

// ARM INTRINSICS
B S3 = veorq u8(B S3, B KEY);
B S3 = vaesmcq u8(vaeseq u8(B S3, B KEY));

69



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

B S3 = veorq u8(B S3, B KEY);
B TMP = B KEY;
vst1q u8((uint8 t*)cs->s3, B S3);

#else

5.1.7 Keyed-hash message authentication code
The HMAC algorithm was implemented as part of the TTK4550 Project Report.

In addition to the cipher implementations, the HMAC message authentication al-
gorithm was implemented as defined by NIST(Dang 2008). The HMAC algorithm
constructs a keyed MAC from an unkeyed cryptographic hash function. To do this,
the HMAC algorithm requires a secret key of variable length. If the secret key is
shorter than 512 bits, the key is expanded by appending 0-bits until the key length
is 512 bits. If the secret key is longer than 512 bits the key is hashed with the
associated hashing function, and the output, the digest, is appended with 0-bits
until it is of length 512 bits and used as the key.

From the 512-bit key K, an inner key Ki and an outer key Ko are computed
according to

Ki = K ⊕ ipad (5.7)
Ko = K ⊕ opad (5.8)

where ipad and opad are 512-bit patterns obtained by repeating the bit patterns
given by the hexadecimal numbers 0x36 and 0x5C, respectively. These keys may
be pre-computed and stored, or computed on-the-fly when required.

An inner digest is obtained by computing the hash of the inner key prepended to
the message. The outer key is then prepended to the inner digest and fed back into
the hashing algorithm, and the output constitutes the MAC tag. An illustration of
the HMAC algorithm is given by Figure 5.7. Notice that only the digest and the
outer key are processed in the final hashing, thus the HMAC algorithm only passes
through the data once. In the implementation, the key, the inner key and the outer
key are held in a hmac_state-struct. The implementation is accessed through the
interface seen in Listing 5.18.

Listing 5.18: The HMAC Interface
void hmac_load_key(hmac_state *cs, uint8_t *key, int keysize);
void hmac_tag_generation(hmac_state *cs, uint8_t* tag, uint8_t *message,

uint64_t dataLength, int tagSize);
int hmac_tag_validation(hmac_state *cs, uint8_t *tag, uint8_t *message,

uint64_t dataLength, int tagSize);

70



5.1 Algorithm Implementations

Determine Key

K ipadK opad

Message tag

Secret Key Message

 K
i 
|| message

H(K
i
 || message)

K
o
 || H(K

i
 || message)

H(K
o
 || H(K

i
 || message))

Figure 5.7: The HMAC tag generation algorithm. Based on figure from (Dang 2008).

The hmac load key()-function stores the key in the struct and computes the inner
key and the outer key according to (5.7) and (5.8), respectively. The hmac tag

71



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

generation()-function computes a tag for a message, and the hmac tag validation()-
function validates or invalidates a (message, tag)-pair. A full example is also avail-
able in the CryptoToolbox repository. The HMAC implementation was verified in
conjunction with SHA-256 using test vectors from IETF1. The SHA-256 algorithm
is described in the following section.

SHA-256

The cryptographic hash function used in the HMAC algorithm described above
was the SHA-256. The decision to go with the SHA-256 algorithm over the SHA-3
algorithm (National Institute of Standards and Technology 2015) was due to the
reported higher efficiency of the SHA-256 algorithm.

The SHA-256 algorithm is a NIST-certified cryptographic hashing algorithm, spec-
ified in (Dang 2015). The SHA-256 algorithm is a Davies-Meyer construction
consisting of repeated iterations of a block cipher with a block size of 256 bits and
a key size of 512 bits, i.e., F : {0, 1}256 × {0, 1}512 7→ {0, 1}256.

During the pre-processing stage the message is padded to a form a multiple of the
512-bit key size of the block cipher, after which the message is parsed into 512-bit
message blocks, held in sixteen 32-bit words. Finally, the 256-bit initial hash value
is set.

Following the pre-processing stage, the hash computation takes place. The SHA-
256 hash function is based on an ARX-like block cipher, where the ARX-structure
is as described by Section 2.2.2. Each iteration consists of four stages, and may be
described by Algorithm 4. A round of the SHA-256 block cipher is illustrated in
Figure 5.8 where Ch, Maj, Σ0 and Σ1 are given by

Ch(x, y, z) = (x & y)⊕ (¬x & z) (5.9)
Maj(x, y, z) = (x & y)⊕ (x & z)⊕ (y & z) (5.10)

Σ0(x) = (x >>> 2)⊕ (x >>> 13)⊕ (x >>> 22) (5.11)
Σ1(x) = (x >>> 6)⊕ (x >>> 11)⊕ (x >>> 25) (5.12)

, respectively. Ki denotes a round constant, and additions are performed in
GF (232).

Note that the message schedule plays the role of the key schedule of a typical block
cipher, and the working variables play the role of the input and output blocks of the
block cipher. Thus, the message is processed by consuming key material at a rate of
512 bits per iteration. The unkeyed SHA-256 algorithm is also accessible through
the interface displayed in Listing 5.19. Note that an unkeyed cryptographic hash
function should not be used to provide message authenticity and integrity directly,
as it is easy to run into the problems that made the STM vulnerable, as shown in
Section 4.1.2.

1HMAC-SHA-256 test vectors can be found here: https://tools.ietf.org/html/rfc4231

72

https://tools.ietf.org/html/rfc4231


5.2 Hexadecimal Encoding

Listing 5.19: SHA-256 Interface
void sha256_process_message(uint8_t *digest, uint8_t *message, uint64_t

size);

Algorithm 4 SHA-256 Iteration Steps
1: Prepare the message schedule.
2: Initialize the eight working variables, (a, b, c, d, e, f, g, h), with the previous

hash.
3: Iterate through 64 rounds of the ARX network.
4: Compute the hash value.

5.2 Hexadecimal Encoding
In addition to the cryptographic algorithms, the CryptoToolbox contains a hex-
adecimal encoder. The hexadecimal encoder is useful for converting the output
of the cryptographic algorithms into a printable format. Because the algorithms
operate on buffers of type uint8_t, each byte represents a number in the inter-
val [0, 255]. However, only numbers in the interval [32, 255] represent printable
characters, some of which are unintelligible. The hexadecimal encoder abates this
problem by interpreting each byte as a hexadecimal number. The CryptoToolbox
also provides a decoder that interprets a buffer of hexadecimal numbers as uint8_t.
The decoder is generally used in scenarios in which correctly formatted input is
needed to confirm the correct operation of an algorithm with official test vectors.

The hexadecimal encoder from the CryptoToolbox was used in Table 4.1 to show
how a block cipher in ECB mode fails to provide confidentiality. The interfaces for
the hexadecimal encoder and decoder are displayed in Listing 5.20.

Listing 5.20: The Hexadecimal Encoder and Decoder Interfaces.
void hex_encode(char* output, const uint8_t* input, int size);
void hex_decode(uint8_t* output, const char* input, int size);

5.3 Applications
We proceed by showing how the cryptographic algorithms may be used to perform
encryption, authentication, and authenticated encryption. Pseudocode is listed for
the data loading, data transmission, data reception, and the acceptance interface.

5.3.1 Encryption using Rabbit
We begin by showing how data may be encrypted using the Rabbit stream cipher
in Listing 5.21. We assume that the data that is to be encrypted is contiguous in

73



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

a
i-1

b
i-1

e
i-1

f
i-1

c
i-1

g
i-1

h
i-1

d
i-1

a
i

b
i

c
i

d
i

e
i

f
i

g
i

h
i

K
i

W
i

∑
0

∑
1

Ch

Maj

Figure 5.8: An illustration of the ARX-like structure of the SHA-256 block cipher round.
Based on figure from (Sanadhya & Sarkar 2008).

memory.

Listing 5.21: Rabbit encryption example
#include "rabbit.h"
#include <cstring> // for memcpy

int main()
{

/* RABBIT SETUP */
rabbit_state cs;
uint8_t key[16] = {0};

74



5.3 Applications

uint8_t iv[8] = {0};
rabbit_load_key(&cs, key);
/* SETUP FINISHED */

/*One buffer for plaintext and one
buffer for the ciphertext and IV*/

uint8_t plaintext[DATA_SIZE];
uint8_t message[8+DATA_SIZE];

while(1)
{

/* Get new data */
plaintext <- LoadData();

/* RABBIT ENCRYPT */
std::memcpy(message, iv, 8);
rabbit_load_iv(&cs, iv);
rabbit_process_packet(&cs, &message[8], plaintext, DATA_SIZE);
(*(uint64_t*)iv)++;
/* ENCRYPT FINISHED */

/* Transmit (IV || Ciphertext) */
Transmit(message);

}
}

Notice that from the user perspective, the rabbit.h header file must be included to
gain access to the Rabbit cipher. In addition, the rabbit.cpp file must be included
during compilation. Notice that some setup is required initially to instantiate a
cipher struct, the key, and the initial IV. A message-specific initial state is then
deduced using a unique IV, which is transmitted with the message. The estimates
may then be encrypted, after which the IV must be incremented. The 64-bit IV
ensures that a total of 264 messages may be sent per key if a counter is used. If
chosen at random, less than 232 messages should be sent per key due to the birthday
paradox.

On the receiving end, the operations are very similar. The key must be the same
as on the transmitting end, while the message-specific IV is extracted from the
message to ensure synchronous behavior between the transmitter and the receiver.
The corresponding decryption operations can be seen in Listing 5.22, assuming we
receive the message buffer from Listing 5.21.

Listing 5.22: Rabbit decryption example
#include "rabbit.h"

int main()
{

75



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

/* RABBIT SETUP */
rabbit_state cs;
uint8_t key[16] = {0};
rabbit_load_key(&cs, key);
/* SETUP FINISHED */

/*One buffer for plaintext and one
buffer for the ciphertext and IV*/

uint8_t plaintext[DATA_SIZE];
uint8_t message[8+DATA_SIZE];

while(1)
{

/* Receive message (IV || Ciphertext) */
message <- Receiver();

/* RABBIT DECRYPT */
rabbit_load_iv(&cs, message);
rabbit_process_packet(&cs, plaintext, &message[8], DATA_SIZE);
/* DECRYPT FINISHED */

/* Pass on the data */
Accept(plaintext);

}
}

The procedure is very similar to all the other encryption algorithms. A notable
exception is the AES CFB implementation, which is self-synchronizing and does
not require IVs. If the AES CFB algorithm is used, the message buffer would be
of size DATA SIZE.

5.3.2 Authentication and verification using HMAC-SHA-256
We proceed by showing how HMAC-SHA-256 may be used to ensure cryptographic
message authenticity in Listing 5.23.

Listing 5.23: HMAC-SHA-256 authentication
#include "hmac.h"
#include <cstring> // for memcpy

int main()
{

/* HMAC-SHA-256 SETUP */
hmac_state as;
uint8_t a_key[32] = {0};
hmac_load_key(&as, a_key, 32);

76



5.3 Applications

/* SETUP FINISHED */

/* One buffer holds the plaintext,
and the other holds the plaintext
and the 32-byte tag. */

uint8_t plaintext[DATA_SIZE];
uint8_t message[DATA_SIZE+32];

while(1)
{

/* Get new data */
plaintext <- LoadData();

/* COMPUTE TAG */
std::memcpy(message, plaintext, DATA_SIZE);
hmac_tag_generation(&as, &message[DATA_SIZE], plaintext, DATA_SIZE, 32);
/* TAG GENERATION FINISHED */

/* Transmit (Plaintext || Tag) */
Transmit(message);

}
}

The authenticated message generated by the function calls above may then be
validated using the function calls shown in Listing 5.24.

Listing 5.24: HMAC-SHA-256 validation
#include "hmac.h"

int main()
{

/* HMAC-SHA-256 SETUP */
hmac_state as;
uint8_t a_key[32] = {0};
hmac_load_key(&as, a_key, 32);
/* SETUP FINISHED */

/* One buffer holds the plaintext,
and the other holds the plaintext
and the 32-byte tag. */

uint8_t plaintext[DATA_SIZE];
uint8_t message[DATA_SIZE+32];

while(1)
{

/* Receive message (Plaintext || Tag) */
message <- Receiver();

/* HMAC-SHA-256 VALIDATE MESSAGE */

77



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

if (!hmac_tag_validation(&as, &message[DATA_SIZE], message, DATA_SIZE,
32)){

/* TAG IS INVALID */
continue;

} else {
std::memcpy(plaintext, message, DATA_SIZE);

}
/* MESSAGE VALIDATION FINISHED */

/* Pass on the data */
Accept(plaintext);

}
}

Note that you also have to compile add the sha-256.cpp file to the compilation
when using HMAC-SHA-256.

5.3.3 Authenticated encryption using AEGIS
Finally, we show how authenticated encryption may be obtained. An example
of using the authenticated encryption algorithm AEGIS is presented, although
the generic EtM composition of any of the other encryption algorithms and the
HMAC-SHA-256 MAC may also be used. In Listing 5.25, the code to encrypt and
authenticate a message is shown.

Listing 5.25: AEGIS encryption and authentication
#include "aegis_128.h"
#include <cstring> // for memcpy

int main()
{

/* AEGIS SETUP */
aegis_state cs;
uint8_t key[16] = {0};
uint8_t iv[16] = {0};
aegis_load_key(&cs, key);
/* SETUP FINISHED */

/* Buffer for plaintext and
(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];
uint8_t message[16+DATA_SIZE+16];

while(1)
{

/* Get new data*/
plaintext <- LoadData();

78



5.3 Applications

/* AEGIS ENCRYPT & AUTHENTICATE */
std::memcpy(message, iv, 16);
aegis_encrypt_packet(&cs, &message[16], &message[16+DATA_SIZE],

plaintext, iv, iv, 16, DATA_SIZE);
(*(uint64_t*)iv)++;

/*Transmit (IV || Ciphertext || Tag) */
Transmit(message);

}
}

The same message can be validated and decrypted by the code seen in Listing 5.26.
If the message is invalidated, the corresponding plaintext and tag are zeroized, and
a ‘0’ is returned.

Listing 5.26: AEGIS validation and decryption
#include "aegis_128.h"

int main()
{

/* AEGIS SETUP */
aegis_state cs;
uint8_t key[16] = {0};
aegis_load_key(&cs, key);
/* SETUP FINISHED */

/* Buffer for plaintext and
(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];
uint8_t message[16+DATA_SIZE+16];

while(1)
{

/* Receive message */
message <- Receiver();

/* AEGIS VALIDATE & DECRYPT */
if (!aegis_decrypt_packet(&cs, plaintext, &message[16], message, message

, &message[16+DATA_SIZE], 16, DATA_SIZE))
{

// Invalid msg
continue;

}
/*COMPLETED*/

/* Pass on the data */
Accept(plaintext);

}
}

79



Chapter 5. Cryptographic Algorithms and the CryptoToolbox

We may now use these as components to establish secure transmission of signals
between the components of a feedback control system.

80



Chapter 6
Implementing Secure Signal
Transmission in Feedback Control
Systems

After implementing the cryptographic algorithms and the CryptoToolbox, we may
now achieve secure signal transmission in feedback control systems by implementing
the enhanced STM transmitter proposed in Algorithm 1 and the enhanced STM
receiver proposed in Algorithm 2. We adopt the serialization tool we introduced
in Section 3.2.2. We will show how the the schemes may be implemented both
through the generic EtM composition, and through the authenticated encryption
algorithm AEGIS.

6.1 Secure transmission using Encrypt-then-MAC
We first illustrate how the proposed transmitter algorithm, Algorithm 1, may be
implemented using an EtM composition of the HC-128 cipher and the HMAC-
SHA-256 MAC.

6.1.1 Transmitter
We first implement the transmitter described in Algorithm 1. Since we now have
all the tools we need, we merely replace the pseudocode with proper function calls.
The code to implement the secure transmitter can be seen in Listing 6.2.

Listing 6.1: The enhanced STM transmitter using an EtM composition.
#include "hc128.h"
#include "hmac.h"

81



Chapter 6. Implementing Secure Signal Transmission in Feedback Control
Systems

#include <cstring>
#include <chrono>

int main()
{

/* PREPARE HC-128 */
hc128_state cs;
uint8_t e_key[16] = {0};
uint8_t iv[16] = {0};
/* HC-128 READY */

/* PREPARE HMAC */
hmac_state as;
uint8_t a_key[32] = {0};
hmac_load_key(&as, a_key, 32);
/* HMAC READY */

/* Struct to hold data */
data_struct data;

/* Buffers to hold serialized data and the
final message (IV || Ciphertext || Tag). */

uint8_t serialized_data[DATA_SIZE];
uint8_t message[16+DATA_SIZE+32];

/* Operational loop */
while(1)
{

/* New data to transmit */
data.load <- DataAcquisition();

/* Fresh timestamp */
data.timestamp = std::chrono::system_clock::now();

/* Serialize */
serialize(&data, serialized_data);

/* Encrypt */
std::memcpy(message, iv, 16);
hc128_initialize(&cs, e_key, iv);
hc128_process_packet(&cs, &message[16], serialized_data, DATA_SIZE);
(*(uint64_t*)iv)++;

/* Authenticate - generate 256-bit tag */
hmac_tag_generation(&as, &message[16+DATA_SIZE], message, 16+

DATA_SIZE, 32);

/* Transmission */
Transmit(message);

}

82



6.1 Secure transmission using Encrypt-then-MAC

}

Note that only pseudocode is given for the data acquisition step and the transmis-
sion step. This scheme is agnostic to what data is being transmitted, and how it
is transmitted, whether it be directly through sockets or through some abstract
interface.

6.1.2 Receiver
We proceed by showing how the corresponding secure receiver may be implemented.
The code to implement the secure receiver can be seen in Listing 6.2. Pseudocode
is given for the reception and acceptance interfaces.

Listing 6.2: The enhanced STM transmitter using an EtM composition.
#include "hc128.h"
#include "hmac.h"
#include <cstring>
#include <chrono>

int main()
{

/* PREPARE HC-128 */
hc128_state cs;
uint8_t e_key[16] = {0};
uint8_t iv[16] = {0};
/* HC-128 READY */

/* PREPARE HMAC */
hmac_state as;
uint8_t a_key[32] = {0};
hmac_load_key(&as, a_key, 32);
/* HMAC READY */

/* Struct to hold data */
data_struct data;

/* Buffers to hold serialized data
and the final message. */

uint8_t serialized_data[DATA_SIZE];
uint8_t message[16+DATA_SIZE+32];

/* Time point */
std::chrono::system_clock::time_point prev_timestamp = std::chrono::

system_clock::from_time_t(0);

/* Operational loop */
while(1)
{

83



Chapter 6. Implementing Secure Signal Transmission in Feedback Control
Systems

/* Receive data */
message <- Receive();

/* Verify that authenticity of data */
if (!hmac_tag_validation(&as, &message[16+DATA_SIZE], message, 16+

DATA_SIZE, 32))
{

/* Invalid message */
continue;

}

/* Decrypt */
hc128_initialize(&cs, e_key, message);
hc128_process_packet(&cs, serialized_data, &message[IV_SIZE],

DATA_SIZE);

/* Deserialize */
deserialize(serialized_data, &data);

/* Check timestamp */
if(!(data.timestamp > prev_timestamp))
{

/* Invalid message */
continue;

}
prev_timestamp = data.timestamp;

/* Pass on the data */
Accept(data.load);

}
}

6.2 Secure transmission using AEGIS
Instead of using an EtM composition, we may replace HC-128 and HMAC-SHA-256
with an authenticated encryption algorithm directly.

6.2.1 Transmitter
The transmitter would look slightly different when an authenticated encryption
algorithm is used directly. An implementation of the transmitter implemented
with AEGIS can be seen in Listing 6.3.

Listing 6.3: The enhanced STM transmitter implemented using AEGIS.
#include "aegis_128.h"
#include <cstring>
#include <chrono>

84



6.2 Secure transmission using AEGIS

int main()
{

/* PREPARE AEGIS */
aegis_state cs;
uint8_t key[16] = {0};
uint8_t iv[16] = {0};
aegis_load_key(&cs, key);

/* Struct to hold data */
data_struct data;

/* Buffers to hold serialized data
and the final message. */

uint8_t serialized_data[DATA_SIZE];
uint8_t message[16+DATA_SIZE+16];

/* Operational loop */
while(1)
{

/* New data to transmit */
data.load <- DataAcquisition();

/* Fresh timestamp */
data.timestamp = std::chrono::system_clock::now();

/* Serialize */
serialize(&data, serialized_data);

/* Encrypt-and-Authenticate */
std::memcpy(message, iv, 16);
aegis_encrypt_packet(&cs, &message[16],

&message[16+DATA_SIZE], serialized_data,
iv, iv, 16, DATA_SIZE);

(*(uint64_t*)iv)++;

/* Transmission */
Transmit(data);

}
}

6.2.2 Receiver
Similarly the receiver would be adapted, as seen in Listing 6.4.

Listing 6.4: The enhanced STM transmitter implemented using AEGIS.
#include "aegis_128.h"
#include <cstring>
#include <chrono>

85



Chapter 6. Implementing Secure Signal Transmission in Feedback Control
Systems

int main()
{

/* PREPARE AEGIS */
aegis_state cs;
uint8_t key[16] = {0};
uint8_t iv[16] = {0};
aegis_load_key(&cs, key);

/* Struct to hold data */
data_struct data;

/* Buffers to hold serialized data
and the final message. */

uint8_t serialized_data[DATA_SIZE];
uint8_t message[16+DATA_SIZE+16];

/* Time point */
std::chrono::system_clock::time_point prev_timestamp = std::chrono::

system_clock::from_time_t(0);

/* Operational loop */
while(1)
{

/* Receive data */
message <- Receive();

/* Decrypt and verify */
if(!aegis_decrypt_packet(&cs, serialized_data, &message[16], message

, message, &message[16+DATA_SIZE], 16, DATA_SIZE))
{

// Invalid message
continue;

}

/* Deserialize */
deserialize(serialized_data, &data);

/* Check timestamp */
if(!(data.timestamp > prev_timestamp))
{

/* Invalid message */
continue;

}
prev_timestamp = data.timestamp;

/* Pass on the data */
Accept(data.load);

}
}

86



6.2 Secure transmission using AEGIS

87



Chapter 6. Implementing Secure Signal Transmission in Feedback Control
Systems

88



Chapter 7
Practical Experiments and
Verification

In this section, the algorithm implementations described in Chapter 5 are bench-
marked in proper authenticated encryption schemes as proposed in Section 4.2.
The experiments are conducted in the encryption laboratory described in Chapter
3.

7.1 Performance Tests of the CryptoToolbox Im-
plementations

The eSTREAM ciphers and AES, both open-source implementations from Crypto++
and the implementations from the CryptoToolbox described in Chapter 5, were
benchmarked in an EtM-composition with HMAC-SHA-256. The AEGIS stream
cipher implementation from the CryptoToolbox described in Chapter 5 was also
benchmarked, using the version implemented with the 32-bit table-driven variant
of the AES round function. The implementation of AES GCM from the Crypto++
library was also assessed.

To measure the latency induced by the cryptographic algorithms, the RTT was
measured in the encryption laboratory setup introduced in Section 3.1.1 and Section
3.2.3. The client tags the data with a timestamp t1 at which time it was instantiated
to form the plaintext. The plaintext is encrypted, and then authenticated along
with the IV before the ciphertext, tag and IV are transmitted to the controller.
Upon reception, the controller verifies the authenticity of the ciphertext and IV,
decrypts the ciphertext, re-encrypts the recovered plaintext with a new IV, and
authenticates the new ciphertext and IV before transmitting the new ciphertext,
tag and IV back to the client. The client verifies the authenticity of the ciphertext

89



Chapter 7. Practical Experiments and Verification

and IV and decrypts the ciphertext to recover the plaintext. The time at which
the plaintext is successfully recovered t2 is recorded, and the RTT is computed
according to (3.1). Each RTT is then logged, after which a mean RTT and a
standard deviation are computed according to

µ =
∑N

i=1 RTTi

N
(7.1)

σ =

√∑N
i=1(RTTi − µ)2

N
(7.2)

over 10 000 sampled RTTs, i.e., N = 10 000. The mean RTT and standard deviation
of the above scheme is also measured without the use of cryptographic algorithms,
to capture a baseline latency.

7.2 Quantitative Results and Discussion
The results seen in Table 7.1 show the latencies induced by the authenticated en-
cryption schemes using algorithm implementations from the Crypto++ open-source
cryptographic library, while the results seen in Table 7.2 show the latencies in-
duced by the authenticated encryption schemes using algorithm implementations
from the CryptoToolbox. The results show that while AES provides good perfor-
mance on small data, AEGIS and the stream ciphers from the eSTREAM portfolio
significantly outperform AES on larger data. The best performance was seen by
the implementation of the AEGIS stream cipher from the CryptoToolbox, which
is virtually tied with the EtM-composition of Sosemanuk and HMAC-SHA-256
implementation using algorithms from the Crypto++ library, as seen from Figure
7.1. We also observe that, as expected, AES-GCM provides poor performance on
the 32-bit system without carryless multiplication support and should therefore be
avoided in favor of generic EtM-compositions or AEGIS on such systems. Note
that while AES would be expected to perform significantly better in systems with
instruction sets that provide hardware acceleration of AES, these instruction sets
would also increase the performance of AEGIS. The choice of MAC also affects the
performance of the EtM-composition, and choosing a more efficient MAC based on
universal hashing (for example Poly1305 or Blake2b), rather than HMAC utilizing
a cryptographic hash such as SHA-256, could result in increased performance.

Figure 7.2 and Figure 7.3 show the mean latencies induced by the various cryp-
tographic algorithms using implementations from the Crypto++ library and the
CryptoToolbox respectively. Notice that the latency induced grows linearly with
the size of the data that is processed. Also notice the constant initialization time
required for each of the algorithms.

90



7.3 Qualitative Experiments

0 1 2 3 4 5 6 7

Packet size [# Byte] 104

0

5

10

15

20

25

30

35

M
e
a
n
 L

a
te

n
c
y
 [
m

s
]

Plaintext

AEGIS (CryptoToolbox)

AES-GCM (Crypto++)

Sosemanuk - HMAC-SHA-256 (Crypto++)

Comparison - CryptoToolbox and Crypto++

Figure 7.1: A comparison between the top performing algorithms from the CryptoTool-
box and the Crypto++ library, in addition to the popular AES GCM algorithm.

0 1 2 3 4 5 6 7

Packet size [# Byte] 104

0

5

10

15

20

25

30

35

M
e
a
n
 L

a
te

n
c
y
 [
m

s
]

Plaintext

AES GCM

AES CFB - HMAC-SHA-256

HC-128 - HMAC-SHA-256

Rabbit - HMAC-SHA-256

ChaCha20 - HMAC-SHA-256

Sosemanuk - HMAC-SHA-256

Benchmarks Crypto++

Figure 7.2: The mean latency induced by transmitting packets of varying data sizes,
processed by the various cryptographic algorithms from the Crypto++ library to obtain
authenticated encryption.

7.3 Qualitative Experiments
In addition to the quantitative results shown in Section 7.2, some qualitative results
are shown, illustrating how efficient the scheme proposed in Section 4.2 is at resist-
ing attacks when applied in conjunction with algorithms from the CryptoToolbox,
described in Chapter 5. Finally, a successful application of the CryptoToolbox
algorithms in the ROS environment is shown.

91



Chapter 7. Practical Experiments and Verification

0 1 2 3 4 5 6 7

Packet size [# Byte] 104

0

5

10

15

20

25

30

35

M
e
a
n
 L

a
te

n
c
y
 [
m

s
]

Plaintext

AEGIS

AES CFB - HMAC-SHA-256

HC-128 - HMAC-SHA-256

Rabbit - HMAC-SHA-256

ChaCha20 - HMAC-SHA-256

Sosemanuk - HMAC-SHA-256

Benchmarks CryptoToolbox

Figure 7.3: The mean latency induced by transmitting packets of varying data sizes,
processed by the various cryptographic algorithms from the CryptoToolbox to obtain
authenticated encryption.

7.3.1 Back to the motivating example
The MSD system and the PI controller from the motivating example in Section
1.1.1 were implemented, except this time the communication scheme proposed in
Section 4.2 was applied. The AEGIS authenticated encryption stream cipher from
the CryptoToolbox was applied to provide authenticated encryption.

Initially, the same adversary as in the motivating example was used, transmitting
a 50N spoofed control signal at a frequency of 100 Hz to the system simulation.
The result can be seen in Figure 7.4. Notice that the system resists the attack by
dismissing the spoofed packets and is unaffected by the attack.

Later, a replay attack was attempted. That is, a valid ciphertext was recorded and
later replayed. The valid ciphertext was replayed at a frequency of 100 Hz to the
system simulation. Because of the invalid timestamp, the replayed control signal
was dismissed by the system, even though the (message, tag)-pair was valid. The
result can be seen in Figure 7.5. Observe that the replay attack is also successfully
resisted.

7.3.2 Application in the ROS environment
ROS is an open-source middleware and framework commonly used in robotics and
works by having nodes exchange information over topics. A node publishes informa-
tion to a topic that other nodes may subscribe to. However, ROS does not provide
any form of cryptographic security, and an adversary is, therefore, able to both
eavesdrop on the information that is transmitted between the nodes and to inject
spoofed data. While some researchers in the past have tried to integrate crypto-

92



7.3 Qualitative Experiments

0 4 8 12 16 20 24 28 32

Time [s]

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P
o

s
it
io

n
 [

m
]

Spoofing Attempt - AEGIS

Spoof initiated
Reference

Mass Position

Figure 7.4: An illustration of the system simulation resisting the spoofed control signal
when using the scheme proposed in Section 4.2.

0 4 8 12 16 20 24 28 32

Time [s]

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P
o

s
it
io

n
 [

m
]

Replay Attempt - AEGIS

Replay initiated
Reference

Mass Position

Figure 7.5: An illustration of the system simulation resisting the replay attack when
using the scheme proposed in Section 4.2.

graphic methods into the ROS environment previously as described in Section 1.2,
they have largely applied confidentiality-only cryptographic methods such as 3DES
and AES operating in ECB mode or CBC mode. However, as described in Section
4.1.2, a block cipher operating in ECB mode leaks structural information about the
plaintext, of which there is much in an image. No modern stream ciphers were
considered in these works, and the data was never authenticated, thus permitting
injection and manipulation of the data that is transmitted.

93



Chapter 7. Practical Experiments and Verification

Figure 7.6: The CryptoToolbox integrated into the ROS environment. Image courtesy
of Volden & Solnør (2020).

Therefore, the CryptoToolbox algorithms were integrated into the ROS environ-
ment in collaboration with colleague Øystein Volden (Volden & Solnør 2020). Only
cryptographic methods that do not leak structural information were applied, and
proper authenticated encryption methods were used, such as the authenticated en-
cryption algorithm AEGIS, and encryption algorithms and message authentication
algorithms in the EtM construction. The pipeline that was proposed can be seen in
Figure 7.6. Both video and LiDAR data were transmitted between the machines.
Experiments conducted on Nvidia Jetson Xavier machines featuring the ARMv8
Cryptography Extension, permitting the use of the hardware accelerated versions of
AES and AEGIS described in Section 5.1.1 and Section 5.1.6, respectively, showed
that the hardware-accelerated versions were up to 65% faster than the portable
software implementation and managed to encrypt & authenticate and decrypt &
verify a 3.15 MB LiDAR point-cloud in as little as 6.5 milliseconds. AEGIS also
showed the best performance when the hardware accelerated verions were used.
A screenshot of an encrypted video stream and the corresponding recovered video
stream in the ROS environment can be seen in Figure 7.7.

7.4 Summary
By using the cryptographic algorithms as described in Section 4.2, the feedback
control system resists deception attacks and eavesdropping attacks. Also, it is
clear from Section 7.3 that the proposed scheme is robust against disturbances
and guarantees synchronous behavior between the transmitter and the receiver
when under an attack. Thus, the scheme provides some resistance against DoS
attacks. Finally, the versatility of the CryptoToolbox implementations described
in Chapter 5 was shown in Section 7.3.2, where the algorithms were applied in the
ROS environment.

94



7.4 Summary

Figure 7.7: An encrypted video stream in the ROS environment on the left, with the
corresponding recovered video stream on the right. The video stream was encrypted using
the AES CFB algorithm from the CryptoToolbox. Image courtesy of Volden & Solnør
(2020).

95



Chapter 7. Practical Experiments and Verification

Table 7.1: A comparison of authenticated encryption performance using EtM compo-
sitions of the eSTREAM portfolio stream ciphers and HMAC-SHA-256, an EtM compo-
sition of AES CFB and HMAC-SHA-256, and the AES GCM authenticated encryption
mode from the Crypto++ open-source cryptographic library.

Cryptographic Algorithm Crypto++
Encryption Algorithm Authentication Algorithm Mean RTT [ms] Std.Dev [ms]

Data size: 16 bytes µ σ
No encryption No authentication 0.481 0.066

AES GCM 0.695 0.021
AES CFB HMAC (SHA-256) 0.737 0.075
HC-128 HMAC (SHA-256) 0.813 0.028
Rabbit HMAC (SHA-256) 0.711 0.035

ChaCha20 HMAC (SHA-256) 0.712 0.079
Sosemanuk HMAC (SHA-256) 0.736 0.062

Data size: 816 bytes µ σ
No encryption No authentication 0.726 0.104

AES GCM 1.161 0.032
AES CFB HMAC (SHA-256) 1.116 0.104
HC-128 HMAC (SHA-256) 1.150 0.148
Rabbit HMAC (SHA-256) 1.057 0.040

ChaCha20 HMAC (SHA-256) 1.062 0.483
Sosemanuk HMAC (SHA-256) 1.063 0.039

Data size: 8016 bytes µ σ
No encryption No authentication 2.213 0.018

AES GCM 4.398 0.065
AES CFB HMAC (SHA-256) 3.801 0.081
HC-128 HMAC (SHA-256) 3.296 0.040
Rabbit HMAC (SHA-256) 3.274 0.083

ChaCha20 HMAC (SHA-256) 3.295 0.158
Sosemanuk HMAC (SHA-256) 3.209 0.141

Data size: 16016 bytes µ σ
No encryption No authentication 3.613 0.057

AES GCM 7.836 0.107
AES CFB HMAC (SHA-256) 6.638 0.133
HC-128 HMAC (SHA-256) 5.531 0.096
Rabbit HMAC (SHA-256) 5.601 0.120

ChaCha20 HMAC (SHA-256) 5.599 0.044
Sosemanuk HMAC (SHA-256) 5.408 0.046

Data size: 32016 bytes µ σ
No encryption No authentication 6.504 0.112

AES GCM 14.496 0.121
AES CFB HMAC (SHA-256) 12.186 0.129
HC-128 HMAC (SHA-256) 10.023 0.105
Rabbit HMAC (SHA-256) 10.356 0.093

ChaCha20 HMAC (SHA-256) 10.300 0.293
Sosemanuk HMAC (SHA-256) 9.875 0.151

Data size: 64016 bytes µ σ
No encryption No authentication 12.142 0.214

AES GCM 30.133 0.816
AES CFB HMAC (SHA-256) 24.072 0.823
HC-128 HMAC (SHA-256) 19.002 0.094
Rabbit HMAC (SHA-256) 19.778 0.233

ChaCha20 HMAC (SHA-256) 19.822 0.652
Sosemanuk HMAC (SHA-256) 18.753 0.326

96



7.4 Summary

Table 7.2: A comparison of authenticated encryption performance using EtM composi-
tions of the eSTREAM portfolio stream ciphers and HMAC-SHA-256, an EtM composi-
tion of AES CFB and HMAC-SHA-256, and the AEGIS authenticated encryption cipher
from the CryptoToolbox.

Cryptographic Algorithm Direct Implementation
Encryption Algorithm Authentication Algorithm Mean RTT [ms] Std.Dev [ms]

Data size: 16 bytes µ σ
No encryption No authentication 0.481 0.066

AEGIS 0.548 0.019
AES CFB HMAC (SHA-256) 0.533 0.069
HC-128 HMAC (SHA-256) 0.644 0.039
Rabbit HMAC (SHA-256) 0.531 0.025

ChaCha20 HMAC (SHA-256) 0.544 0.093
Sosemanuk HMAC (SHA-256) 0.554 0.016

Data size: 816 bytes µ σ
No encryption No authentication 0.726 0.104

AEGIS 0.872 0.066
AES CFB HMAC (SHA-256) 0.990 0.020
HC-128 HMAC (SHA-256) 1.023 0.088
Rabbit HMAC (SHA-256) 0.926 0.185

ChaCha20 HMAC (SHA-256) 0.930 0.048
Sosemanuk HMAC (SHA-256) 0.996 0.049

Data size: 8016 bytes µ σ
No encryption No authentication 2.213 0.018

AEGIS 3.097 0.063
AES CFB HMAC (SHA-256) 4.463 0.043
HC-128 HMAC (SHA-256) 3.651 0.085
Rabbit HMAC (SHA-256) 3.566 0.232

ChaCha20 HMAC (SHA-256) 3.755 0.109
Sosemanuk HMAC (SHA-256) 4.219 0.049

Data size: 16016 bytes µ σ
No encryption No authentication 3.613 0.057

AEGIS 5.352 0.231
AES CFB HMAC (SHA-256) 8.163 0.399
HC-128 HMAC (SHA-256) 6.360 0.111
Rabbit HMAC (SHA-256) 6.276 0.319

ChaCha20 HMAC (SHA-256) 6.704 0.480
Sosemanuk HMAC (SHA-256) 7.622 0.129

Data size: 32016 bytes µ σ
No encryption No authentication 6.504 0.112

AEGIS 9.646 0.164
AES CFB HMAC (SHA-256) 15.471 0.193
HC-128 HMAC (SHA-256) 11.632 0.282
Rabbit HMAC (SHA-256) 11.838 0.242

ChaCha20 HMAC (SHA-256) 12.647 0.598
Sosemanuk HMAC (SHA-256) 14.185 0.223

Data size: 64016 bytes µ σ
No encryption No authentication 12.142 0.214

AEGIS 18.764 0.231
AES CFB HMAC (SHA-256) 31.315 0.962
HC-128 HMAC (SHA-256) 22.800 0.712
Rabbit HMAC (SHA-256) 22.755 0.607

ChaCha20 HMAC (SHA-256) 24.997 0.669
Sosemanuk HMAC (SHA-256) 29.110 1.013

97



Chapter 7. Practical Experiments and Verification

98



Chapter 8
Conclusion

This thesis has emphasized the importance of protecting the signals transmitted
in feedback control systems. While numerous authors have previously proposed
communication schemes for feedback control systems, these schemes have rarely,
if ever, been properly analyzed. In this thesis, it has been demonstrated that
these communication schemes do not provide the security that was promised. The
deficiencies of previously proposed schemes were not only shown analytically, but
attacks were also demonstrated. As an alternative, a cryptographically strong
communication scheme has been proposed.

A software toolbox containing high-performance implementations of state-of-the-
art cryptographic algorithms has also been developed and made publicly available
in a Git repository. The cryptographic algorithms have been benchmarked and
shown to induce a very low latency on the signals transmitted inside a feedback
control system, making them suitable for real-time systems.

8.1 Summary of Findings
Throughout this thesis, the following key findings have been observed:

• It has been demonstrated that previously proposed schemes using ECB en-
cryption fail to provide confidentiality.

• It has been demonstrated that the STM proposed by Pang & Liu (2012)
either fails to provide confidentiality or is prone to deception attacks.

• A scheme incorporating cryptographically strong authenticated encryption
methods has been presented.

• A toolbox was built, providing easy access to state-of-the-art high-performance
cryptographic algorithms.

99



Chapter 8. Conclusion

• The performance of the implementations in the toolbox was assessed and
benchmarked against an open-source cryptographic library.

• The algorithm implementations are well-suited to be incorporated in software
commonly used in feedback control systems, such as ROS.

Using this information, the research questions posed in Section 1.4 may now be
answered.

8.1.1 Research question 1
In RQ1 we asked: How do ‘secure’ communication schemes for feedback control
systems proposed by researchers from the control community fare against cyber-
physical attacks?

From the analysis in Section 4.1, it is clear that there has been a lack of analysis
of previously proposed schemes. Attacks against the schemes have been proposed
and implemented, demonstrating that the schemes are insecure.

8.1.2 Research question 2
In RQ2 we asked: May cryptographic techniques be used to enhance the security
of feedback control systems through a new, secure communication scheme?

This research question was largely answered in Section 4.2. It was shown that
using proper authenticated encryption rather than the ad-hoc schemes analyzed in
Section 4.1 would significantly enhance the security of feedback control systems.

8.1.3 Research question 3
In RQ3 we asked: How may the transmitter and receiver of a feedback control
system achieve synchronous communication if stateful cryptographic methods are
used over non-reliable communication protocols?

In Section 2.5.1, several ways of synchronizing stateful algorithms were discussed.
In practical terms, two alternatives were used. Using AES in the self-synchronizing
CFB mode with a carry-over IV would automatically ensure synchronous behavior
while minimizing the amount of data that needs to be transmitted. The minimiza-
tion of traffic does come at the cost of having to resort to a less efficient cipher,
as observed in Chapter 7. The other alternative is to explicitly synchronize the
transmitter and the receiver through the use of (public) IVs (or nonces) that must
be transmitted with each message. For small and frequent messages, this would
result in a significant increase in the amount of data that must be transmitted.

8.1.4 Research question 4
In RQ4 we asked: To what extent do open-source cryptographic libraries provide
access to modern cryptographic algorithms, and how does their performance com-
pare to direct implementations of the algorithms?

100



8.2 Future Work

Unfortunately, open-source cryptographic libraries commonly provide access to a
variety of block ciphers, public-key algorithms, and deprecated stream ciphers.
The availability of modern high-performance stream ciphers is comparably low
and largely confined to the Crypto++ library. This resulted in the development of
the CryptoToolbox described in Chapter 5. Through the CryptoToolbox, the user
gains access to a selection of high-performance state-of-the-art stream ciphers. The
results obtained in Chapter 7 reveal that in addition to providing access to crypto-
graphic algorithms that are not available through open-source libraries (AEGIS),
the CryptoToolbox implementations perform very well.

8.1.5 Research question 5
In RQ5 we asked: Which cryptographic algorithms provide the best performance,
and should be used to obtain authenticated encryption, in feedback control systems?

From the results in Section 7.2, it is clear that the AEGIS stream cipher, which
provides authenticated encryption directly, provides the best performance among
the algorithms.

It should be noted that while latency is very important in feedback control systems,
the AES CFB algorithm with a carry-over IV can be used if it is desirable to
minimize the amount of data that must be transmitted. While less efficient, the
difference is negligible for small data packets.

8.2 Future Work
In this thesis, the focus has been on symmetric cryptographic methods and how
these may be applied to provide secure signal transmission in feedback control sys-
tems. It has been shown and demonstrated that symmetric cryptographic methods
achieve this without inducing significant latency and other detrimental effects on
the systems. However, the use of homomorphic encryption schemes in feedback
control systems has also been explored, as mentioned in Section 1.2. It would be
of interest to investigate if a homomorphic authenticated encryption scheme with
sufficient security also could be used in feedback control systems.

Homomorphic cryptography is known to be computationally expensive compared
to symmetric cryptography, and it is therefore expected that the induced latencies
would be significantly higher. In their demonstrations, Teranishi et al. (2020) had
to use a keysize of 33 bits in order to maintain real-time operation when using their
homomorphic encryption method on a state feedback controller. Such a low key
size is not sufficient, and yet they did not apply authentication methods, nor is
their system resilient against synchronization loss. In addition, the homomorphic
encryption schemes using asymmetric cryptographic methods, for example Elgamal
as was done by Teranishi et al. (2020), places constraints on the plaintext spaces,
thus resulting in quantization errors that must be accounted for when considering
the stability of the overall control system, in addition to the latencies that are

101



Chapter 8. Conclusion

induced. A closer look at these aspects would be of interest, and if found suitable,
the CryptoToolbox could be extended with homomorphic cryptographic methods.

While the cryptographic algorithms described in Chapter 5 have been applied
successfully in laboratory setups, including in ROS, full-scale experiments on un-
manned surface vehicles in which weaknesses could first be demonstrated, and
secure operation could later be achieved through application of the algorithms,
would be of great interest.

102



Reference List

Anderson, R., Biham, E. & Knudsen, L. (2000), The case for serpent.

Anderson, R. J. (1991), ‘Tree functions and cipher systems’, Cryptologia
15(3), 194–202.

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B. & Wingers, L.
(2015), The simon and speck lightweight block ciphers, in ‘Proceedings of the
52nd Annual Design Automation Conference’, DAC ’15, Association for Com-
puting Machinery, New York, NY, USA.

Bellare, M. (2015), ‘New proofs for nmac and hmac: Security without collision
resistance’, J. Cryptol. 28(4), 844–878.

Bellare, M. & Namprempre, C. (2008), ‘Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm’, J. Cryptol.
21(4), 469–491.

Berbain, C., Billet, O., Canteaut, A., Courtois, N., Gilbert, H., Goubin, L., Gouget,
A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T. & Sibert, H. (2008),
Sosemanuk, a fast software-oriented stream cipher, Springer-Verlag, Berlin, Hei-
delberg, p. 98–118.

Bernstein, D. (2008), ‘Chacha, a variant of salsa20’.

Bernstein, D. J. (2005), The poly1305-aes message-authentication code, in ‘Pro-
ceedings of the 12th International Conference on Fast Software Encryption’,
FSE’05, Springer-Verlag, Berlin, Heidelberg, p. 32–49.

Biham, E. & Shamir, A. (1992), Differential cryptanalysis of the full 16-round
des, in ‘Proceedings of the 12th Annual International Cryptology Conference
on Advances in Cryptology’, CRYPTO ’92, Springer-Verlag, Berlin, Heidelberg,
p. 487–496.

Biryukov, A. & Wagner, D. (1999), Slide attacks, in L. Knudsen, ed., ‘Fast Software
Encryption’, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 245–259.

103



REFERENCE LIST

Boesgaard, M., Vesterager, M. & Zenner, E. (2008), The Rabbit Stream Cipher,
Springer-Verlag, Berlin, Heidelberg, p. 69–83.

Chen, H., Meng, C., Shan, Z., Fu, Z. & Bhargava, B. K. (2019), ‘A novel low-
rate denial of service attack detection approach in zigbee wireless sensor network
by combining hilbert-huang transformation and trust evaluation’, IEEE Access
7, 32853–32866.

Chen, J., Zhang, F. & Sun, J. (2017), ‘Analysis of security in cyber-physical sys-
tems’, Science China Technological Sciences 60(12), 1975–1977.

Cheon, J. H., Han, K., Hong, S., Kim, H. J., Kim, J., Kim, S., Seo, H., Shim,
H. & Song, Y. (2018), ‘Toward a secure drone system: Flying with real-time
homomorphic authenticated encryption’, IEEE Access 6, 24325–24339.

Crutchfield, C. (2014), Implementing and optimizing encryption algorithms for the
armv8-a architecture, Master’s thesis, California State University - Sacramento,
6000 J St, Sacramento, CA 95819, USA.

d. Sa, A. O., d. C. Carmo, L. F. R. & Machado, R. C. S. (2017), Use of switching
controllers for mitigation of active identification attacks in networked control
systems, in ‘2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure
Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl
Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech)’, pp. 257–262.

Daemen, J., Govaerts, R. & Vandewalle, J. (1992), On the design of high speed
self-synchronizing stream ciphers, in ‘[Proceedings] Singapore ICCS/ISITA ‘92’,
pp. 279–283 vol.1.

Daemen, J. & Kitsos, P. (2008), The Self-synchronizing Stream Cipher Moustique,
Vol. 4986, pp. 210–223.

Dai, W. (2020), ‘Crypto++’. Accessed: 2020-12-16.
URL: https://www.cryptopp.com/

Dang, Q. H. (2008), The keyed-hash message authentication code (hmac) - fips
198-1, Technical report, Gaithersburg, MD, USA.

Dang, Q. H. (2015), Secure hash standard - fips 180-4, Technical report, Gaithers-
burg, MD, USA.

de Sá, A. O., d. C. Carmo, L. F. R. & Machado, R. C. S. (2017), ‘Covert attacks
in cyber-physical control systems’, IEEE Transactions on Industrial Informatics
13(4), 1641–1651.

de Sá, A. O., d. C. Carmo, L. F. R. & Santos Machado, R. C. (2019), Coun-
termeasure for identification of controlled data injection attacks in networked
control systems, in ‘2019 II Workshop on Metrology for Industry 4.0 and IoT
(MetroInd4.0 IoT)’, pp. 455–459.

104



REFERENCE LIST

de Sá, A. O., da Costa Carmo, L. F. & Machado, R. C. (2018), ‘A controller
design for mitigation of passive system identification attacks in networked control
systems’, Journal of Internet Services and Applications 9(1), 1–19.

Diffie, W. & Hellman, M. (1976), ‘New directions in cryptography’, IEEE Trans-
actions on Information Theory 22, 644–654.

Dravie, B. (2017), Synchronization and dynamical systems: application to cryp-
tography, PhD thesis.

Duong, T. & Rizzo, J. (2011), Here come the ⊕ ninjas. Unpublished.

Dworkin, M. (2005), The cmac mode for authentication, Technical report, Gaithers-
burg, MD, USA.

Dworkin, M. J. (2001), Sp 800-38a 2001 edition. recommendation for block cipher
modes of operation: Methods and techniques, Technical report, Gaithersburg,
MD, USA.

Dworkin, M. J. (2004), Sp 800-38c. recommendation for block cipher modes of op-
eration: The ccm mode for authentication and confidentiality, Technical report,
Gaithersburg, MD, USA.

Dworkin, M. J. (2007), Sp 800-38d. recommendation for block cipher modes of op-
eration: Galois/counter mode (gcm) and gmac, Technical report, Gaithersburg,
MD, USA.

Elgamal, T. (1985), A public key cryptosystem and a signature scheme based on
discrete logarithms, in ‘Proceedings of CRYPTO 84 on Advances in Cryptology’,
Springer-Verlag, Berlin, Heidelberg, p. 10–18.

Feistel, H. (1971), ‘Block cipher cryptographic system’.

Futoransky, A., Kargieman, E. & Pacetti, A. M. (October, 1998), An attack on
crc-32 integrity checks of encrypted channels using cbc or cfb modes, Technical
report.

Grover, L. K. (1996), A fast quantum mechanical algorithm for database search,
in ‘Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing’, STOC ’96, Association for Computing Machinery, New York, NY,
USA, p. 212–219.

Gupta, R. A. & Chow, M. (2008), Performance assessment and compensation for
secure networked control systems, in ‘2008 34th Annual Conference of IEEE
Industrial Electronics’, pp. 2929–2934.

Jithish, J. & Sankaran, S. (2017), Securing networked control systems: Model-
ing attacks and defenses, in ‘2017 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia)’, pp. 7–11.

105



REFERENCE LIST

Kiley, P. (2019), ‘Investigating can bus network integrity in
avionics systems’, https://www.rapid7.com/research/report/
investigating-can-bus-network-integrity-in-avionics-systems/.

Kim, J., Lee, C., Shim, H., Cheon, J. H., Kim, A., Kim, M. & Song, Y. (2016),
‘Encrypting controller using fully homomorphic encryption for security of cyber-
physical systems’, IFAC-PapersOnLine 49(22), 175 – 180. 6th IFAC Workshop
on Distributed Estimation and Control in Networked Systems NECSYS 2016.

Klein, A. (2013), Stream Ciphers, Springer Publishing Company, Incorporated.

Kogiso, K., Baba, R. & Kusaka, M. (2018), ‘Development and examination of
encrypted control systems’.

Kogiso, K. & Fujita, T. (2015), Cyber-security enhancement of networked con-
trol systems using homomorphic encryption, in ‘2015 54th IEEE Conference on
Decision and Control (CDC)’, pp. 6836–6843.

Litzenberger, D. C. (2020), ‘Python cryptography toolkit (pycrypto)’. Accessed:
2020-12-20.
URL: https://www.dlitz.net/software/pycrypto/

Liu, G. (2017), ‘Predictive control of networked multiagent systems via cloud com-
puting’, IEEE Transactions on Cybernetics 47(8), 1852–1859.

Matellán, V., Balsa, J., Casado Garćıa, F., Fernández, C., Mart́ın, F. &
Rodŕıguez Lera, F. (2016), Cybersecurity in autonomous systems: Evaluating
the performance of hardening ros.

Maurer, U. M. (1991), New approaches to the design of self-synchronizing stream
ciphers, in D. W. Davies, ed., ‘Advances in Cryptology — EUROCRYPT ’91’,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 458–471.

McEliece, R. (1986), Finite Fields for Computer Scientists and Engineers, The
Springer International Series in Engineering and Computer Science, Springer
US.

Menezes, A. J., Vanstone, S. A. & Oorschot, P. C. V. (1996), Handbook of Applied
Cryptography, 1st edn, CRC Press, Inc., USA.

Millerioux, G. & Guillot, P. (2010), ‘Self-synchronizing stream ciphers and dy-
namical systems: State of the art and open issues’, International Journal of
Bifurcation and Chaos 20, 2979–2991.

National Bureau of Standards (1977), ‘Data encryption standard (des)’, Federal
Information Processing Standards Publication 46.

National Institute of Standards and Technology (2015), Sha-3 standard:
Permutation-based hash and extendable-output functions - fips 202, Technical
report, Gaithersburg, MD, USA.

106

https://www.rapid7.com/research/report/investigating-can-bus-network-integrity-in-avionics-systems/
https://www.rapid7.com/research/report/investigating-can-bus-network-integrity-in-avionics-systems/


REFERENCE LIST

NIST (2001), ‘Specification for the advanced encryption standard (aes)’, Federal
Information Processing Standards Publication 197.

OpenSSL Software Foundation (2020), ‘OpenSSL’. Accessed: 2020-12-20.
URL: https://www.openssl.org/

Osvik, D. A. (2000), Speeding up serpent, in ‘AES Candidate Conference’.

Pang, Z. & Liu, G. (2010), Secure networked control systems under data in-
tegrity attacks, in ‘Proceedings of the 29th Chinese Control Conference’, IEEE,
pp. 5765–5771.

Pang, Z. & Liu, G. (2012), ‘Design and implementation of secure networked pre-
dictive control systems under deception attacks’, IEEE Transactions on Control
Systems Technology 20(5), 1334–1342.

Pang, Z., Zheng, G., Liu, G. & Luo, C. (2011), Secure transmission mechanism
for networked control systems under deception attacks, in ‘2011 IEEE Interna-
tional Conference on Cyber Technology in Automation, Control, and Intelligent
Systems’, pp. 27–32.

Reynolds, J. & Postel, J. (1994), Assigned numbers, RFC 1700, RFC Editor.

Rivest, R. (1992), The md5 message-digest algorithm, RFC 1321, RFC Editor.

Rivest, R. L., Shamir, A. & Adleman, L. (1978), ‘A method for obtaining digital
signatures and public-key cryptosystems’, Commun. ACM 21(2), 120–126.
URL: https://doi.org/10.1145/359340.359342

Rodŕıguez-Lera, F. J., Matellán-Olivera, V., Balsa-Comerón, J., Guerrero-
Higueras, n. M. & Fernández-Llamas, C. (2018), ‘Message encryption in robot
operating system: Collateral effects of hardening mobile robots’, Frontiers in
ICT 5, 11.

Rose, G., Hawkes, P., Paddon, M. & de Vries, M. W. (2005), ‘Primitive specification
for sss’, 28.

Rueppel, R. A. (1986), Analysis and Design of Stream Ciphers, Springer-Verlag,
Berlin, Heidelberg.

Sanadhya, S. K. & Sarkar, P. (2008), Non-linear reduced round attacks against
sha-2 hash family, in ‘Proceedings of the 13th Australasian Conference on Infor-
mation Security and Privacy’, ACISP ’08, Springer-Verlag, Berlin, Heidelberg,
p. 254–266.

Shannon, C. (1945), A mathematical theory of cryptography, Classified report, Bell
Laboratories, Murray Hill, NJ, USA.

Shannon, C. E. (1949), ‘Communication theory of secrecy systems’.

107



REFERENCE LIST

Shor, P. W. (1994), Algorithms for quantum computation: discrete logarithms and
factoring, in ‘Proceedings 35th Annual Symposium on Foundations of Computer
Science’, pp. 124–134.

Solnør, P. (2020), ‘CryptoToolbox’, https://github.com/pettsol/
CryptoToolbox.

Sparrow, R. D., Adekunle, A. A., Berry, R. J. & Farnish, R. J. (2015), Simulat-
ing and modelling the impact of secure communication latency for closed loop
control, in ‘2015 Internet Technologies and Applications (ITA)’, pp. 138–143.

Sun, H.-T., Peng, C., Zhou, P. & Wang, Z.-W. (2017), ‘A brief overview on secure
control of networked systems’, Advances in Manufacturing 5(3), 243–250.

Teixeira, A., Sou, K. C., Sandberg, H. & Johansson, K. H. (2013), Quantifying
Cyber-Security for Networked Control Systems, Springer International Publish-
ing, Heidelberg, pp. 123–142.

Teranishi, K., Shimada, N. & Kogiso, K. (2020), ‘Stability-guaranteed dynamic
elgamal cryptosystem for encrypted control systems’, IET Control Theory Ap-
plications 14(16), 2242–2252.

Turner, S. & Chen, L. (2011), Updated security considerations for the md5 message-
digest and the hmac-md5 algorithms, RFC 6151, RFC Editor.

Ulz, T., Pieber, T., Steger, C., Matischek, R. & Bock, H. (2017), Towards trust-
worthy data in networked control systems: A hardware-based approach, in ‘2017
22nd IEEE International Conference on Emerging Technologies and Factory Au-
tomation (ETFA)’, pp. 1–8.

Vernam, G. (1919), ‘Secret signaling system’.

Volden, Ø. & Solnør, P. (2020), ‘Crypto ROS: Real-time authenticated encryption
of vision-based sensor signals in ROS’, https://github.com/oysteinvolden/
Real-time-sensor-encryption.

wolfSSL Inc. (2020), ‘wolfCrypt’. Accessed: 2020-12-20.
URL: https://www.wolfssl.com/products/wolfcrypt-2/

Wu, G., Sun, J. & Chen, J. (2016), ‘A survey on the security of cyber-physical
systems’, Control Theory and Technology 14(1), 2–10.

Wu, H. (2008), The stream cipher hc-128, in ‘The eSTREAM Finalists’.

Wu, H. & Preneel, B. (2014), Aegis: A fast authenticated encryption algorithm, in
T. Lange, K. Lauter & P. Lisoněk, eds, ‘Selected Areas in Cryptography – SAC
2013’, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 185–201.

Yang, H., Xu, Y., Xia, Y. & Zhang, J. (2017), ‘Networked predictive control for
nonlinear systems with arbitrary region quantizers’, IEEE Transactions on Cy-
bernetics 47(8), 2244–2255.

108

https://github.com/pettsol/CryptoToolbox
https://github.com/pettsol/CryptoToolbox
https://github.com/oysteinvolden/Real-time-sensor-encryption
https://github.com/oysteinvolden/Real-time-sensor-encryption


REFERENCE LIST

Yaseen, A. A. & Bayart, M. (2016), Attack-tolerant networked control system in
presence of the controller hijacking attack, in ‘2016 International Conference on
Military Communications and Information Systems (ICMCIS)’, pp. 1–8.

109



REFERENCE LIST

110



Appendix A
A Cryptographic Toolbox for
Feedback Control Systems

111



Modeling, Identification and Control, Vol. 41, No. 4, 2020, pp. 1–20, ISSN 1890–1328

A Cryptographic Toolbox for Feedback Control
Systems

Petter Solnør

Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Nor-
way. E-mail: petter.solnor@ntnu.no

Abstract

Feedback control systems consist of components such as sensory systems, state estimators, controllers,
and actuators. By transmitting signals between these components across insecure transmission channels,
feedback control systems become vulnerable to cyber-physical attacks. For example, passive eavesdropping
attacks may result in a leak of confidential system and control parameters. Active deception attacks may
manipulate the behavior of the state estimators, controllers, and actuators through the injection of spoofed
data. To prevent such attacks, we must ensure that the transmitted signals remain confidential across the
transmission channels, and that spoofed data is not allowed to enter the feedback control system. We can
achieve both these goals by using cryptographic tools. By encrypting the signals, we achieve confidential
signal transmission. By applying message authentication codes (MACs), we assert the authenticity of
the data before allowing it to enter the components of the feedback control system. In this paper, a
toolbox containing implementations of state-of-the-art high-performance algorithms such as the Advanced
Encryption Standard (AES), the AEGIS stream cipher, the Keyed-Hash Message Authentication Code
(HMAC), and the stream ciphers from the eSTREAM portfolio, is introduced. It is shown how the
algorithm implementations can be used to ensure secure signal transmission between the components of
the feedback control system, and general guidelines that the users must adhere to for safe operation are
provided.

Keywords: Cryptography, Feedback Control System, Networked Control System, Authenticated Encryp-
tion

1. Introduction

By consisting of components such as sensory systems,
state estimators, controllers, and actuators, feedback
control systems are inherently modular. These compo-
nents need to communicate by transmitting measure-
ments, state estimates, and control inputs. Since these
components may be spatially distributed, they are of-
ten connected through a network or a field bus span-
ning the vehicle or plant.

We refer to a feedback control system, in which the
components are connected through a network, as a net-
worked control system (Hespanha et al., 2007). Unfor-

tunately, these signal transmissions also make the feed-
back control systems vulnerable to cyber-physical at-
tacks such as eavesdropping and deception attacks. An
adversary that gains access to the network may eaves-
drop on the transmitted signals and perform unautho-
rized system identification, thus gaining knowledge of
system parameters or control parameters that may be
considered confidential, as discussed by de Sá et al.
(2017). Furthermore, an adversary with access to the
network can also perform deception attacks by inject-
ing spoofed data, thus manipulating the behavior of
the system. Combined with system knowledge, such a
deception attack could even result in a successful sys-

doi:10.4173/mic.2020.4.1 c© 2020 Norwegian Society of Automatic Control



Modeling, Identification and Control

tem hijacking, as discussed by Teixeira et al. (2013).

The leak of system and controller parameters, and
the hijacking of a dynamical system, poses a signifi-
cant risk to the system and its surroundings. Explor-
ing methods that enhance the resilience of feedback
control systems against such cyber-physical attacks is
therefore important.

1.1. Cryptographic methods and feedback
control signals

To prevent system identification attacks, the confi-
dentiality of the transmitted signals must be ensured
across the insecure transmission channels, while the
origin of the transmitted signals must be authenticated
before they are allowed to enter the feedback control
system in order to prevent deception attacks. Both
of these goals may be achieved by using cryptographic
tools. Confidential signal transmission is ensured by
encrypting the signals before transmission, and the ori-
gin of the transmitted signals may be authenticated by
using message authentication codes (MACs).

In recent years, many researchers have investigated
the use of cryptographic algorithms in feedback con-
trol systems, such as Gupta and Chow (2008), Pang
et al. (2011), Jithish and Sankaran (2017), Lera et al.
(2016), and Rodŕıguez-Lera et al. (2018). While cryp-
tographic algorithms are available through open-source
libraries such as OpenSSL (OpenSSL Software Foun-
dation, 2020), Crypto++ (Dai, 2020), and wolfCrypt
(wolfSSL Inc., 2020), these libraries may be hard to
navigate and do not provide access to modern stream
ciphers such as AEGIS or the stream ciphers from the
eSTREAM portfolio. Therefore, researchers have used
cryptographic algorithms that do not typically provide
the best performance, such as the Data Encryption
Standard (DES), 3DES, Blowfish, and the Advanced
Encryption Standard (AES). Notably, the DES encryp-
tion algorithm is not even considered secure anymore.
Worse yet, the algorithms have been used in insecure
configurations, such as the Electronic Codebook (ECB)
mode for block ciphers.

This paper presents a toolbox with implementations
of state-of-the-art high-performance cryptographic al-
gorithms that are ready to use in feedback control sys-
tems. The algorithms have been implemented both
in portable software implementations (in C++) and in
platform-specific implementations that take advantage
of hardware acceleration features available on most
modern x86 processors and a subset of ARMv8 processors
through intrinsic functions. This provides control engi-
neers with a set of accessible high-performance crypto-
graphic algorithms on most popular platforms with full
source code available. Examples are given to show how

the algorithms may be used to secure feedback control
systems against adversaries, and only secure configura-
tions are provided limiting the possibility for misuse.

1.2. Organization of the article

The article is organized as follows. In Section 2, a
scenario in which the CryptoToolbox can be used is
presented. Weaknesses in the control architecture mo-
tivating the need for cryptographic methods are identi-
fied. A brief introduction to cryptographic terminology
is also given. Then, in Section 3, a brief overview of
the CryptoToolbox is presented. The algorithms that
the users may access through the CryptoToolbox are
presented. Key propeties of the respective algorithms
are explained, in addition to important user guidelines.
In Section 4, focus is shifted to how the cryptographic
algorithms may be applied in a concrete example to
secure the guidance, navigation, and control (GNC)
system of a vehicle. Finally, Section 5 concludes the
article.

2. Motivation and terminology

We begin by motivating the need for the cryptographic
algorithms in the CryptoToolbox by describing how
they may be used to enhance the security of feedback
control systems. We introduce a use case for the Cryp-
toToolbox, which will be treated more in detail in Sec-
tion 4 after the cryptographic algorithms contained in
the CryptoToolbox have been introduced.

2.1. Security issues of guidance,
navigation, and control systems

Figure 1: The Otter USV. Image courtesy by Maritime
Robotics (2020).

Throughout the paper, we will illustrate how the
CryptoToolbox algorithms can be used in GNC archi-
tectures prevalent in many autonomous and unmanned
systems. Such systems are becoming more and more

2



P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Control System Actuator

Sensors Kalman Filter

LAN

Guidance and Control

System
Vehicle

Navigation Computer

Control

System
Actuator

Sensors Kalman Filter

Vehicle with centralized

Guidance and Control System
Navigation Computer

Transmission lines vulnerable

to cyber-physical attacks such as

eavesdropping and injection

attacks

Figure 2: A generic schematic of the signal flow in vehicles with a distributed GNC architecture and a centralized
guidance and control computer with a remote navigation computer. Surfaces that are vulnerable to
attacks are marked, and the goal is to make the system resistant against attacks on these surfaces.

common, and securing them against cyber-physical
threats is important. An example would be the growing
industry of autonomous and unmanned surface vessels,
some designed to transport people, others to collect
possibly sensitive information for industrial purposes,
such as the Otter USV seen in Figure 1. While the use
case described in this article is focused on GNC sys-
tems, we emphasize that the algorithms may be used
similarly for other control applications.

An illustration of the typical signal flow in vehicles
with a distributed GNC architecture and a centralized
guidance and control computer with a remote naviga-
tion computer may be seen in Figure 2. In these exam-
ples, we assume that the signals are transmitted across
a network spanning the vehicle, for example, using the
UDP/IP or TCP/IP protocols over ethernet, or a field
bus such as CAN. Since none of these protocols provide
cryptographic protection by default, the signals trans-
mitted between the components may be eavesdropped
upon, and spoofed signals may be injected into the
transmission to manipulate the behavior of the vehi-
cle.

Such attacks are very serious threats. System and
controller parameters may be trade secrets that are
very valuable to businesses and developers, and indus-
trial espionage is a serious concern in high tech indus-
tries. On the other hand, if an adversary is capable of
manipulating the behavior of the vehicle through the
injection of spoofed signals to the GNC components,
the vehicle may be used as a tool in a terrorist attack

or an act of war to inflict great damage. Therefore, the
signals must be secured by other means. At the same
time, it is important that the security measures do not
deteriorate the performance of the GNC system.

2.2. Cryptographic preliminaries

An attack in which an adversary eavesdrops on the
transmitted signals to conduct system identification is
referred to as a passive attack and does not directly af-
fect the system. On the other hand, an attack in which
an adversary manipulates transmitted signals and in-
jects spoofed signals is called an active attack. To pro-
vide protection against passive eavesdropping attacks,
we may apply encryption, and to provide protection
against the active attacks, we may apply MACs.

Encryption

Encryption provides confidential transmission of data
over insecure transmission channels. We refer to unen-
crypted information as plaintext and encrypted infor-
mation as ciphertext. While techniques that provide
perfect secrecy, that is, encryption algorithms that
cannot be broken, exist, these are practically infeasi-
ble to implement. Instead, encryption algorithms that
are practically secure are used. The goal of these en-
cryption algorithms is to ensure that it is infeasible
to break the encryption algorithm in a computational
sense. That is, we assume that potential adversaries

3



Modeling, Identification and Control

have limited time and computational resources. En-
cryption algorithms are typically categorized as asym-
metric or symmetric depending on whether it is easy to
deduce the decryption key from the encryption key or
not. For asymmetric ciphers, this is believed to be com-
putationally infeasible, typically under the assumption
that a particular number-theoretic problem is hard to
solve. For symmetric ciphers, the encryption and de-
cryption keys are easy to deduce from one another and
are typically described as the same.

Asymmetric encryption algorithms are computation-
ally expensive compared to symmetric encryption al-
gorithms, and for this reason, symmetric encryption
algorithms are the main focus in this article. Because
the symmetric encryption algorithms act directly on
memory buffers, the only impact of the symmetric en-
cryption algorithms on the overall stability of a feed-
back control system is the latency that is induced,
provided that the encryption and decryption devices
achieve synchronous behavior.

Since the encryption algorithms are often stateful, a
lost or injected packet will cause the encryption and de-
cryption devices to lose synchronization. Most modern
encryption algorithms solve this by deducing an ini-
tial state for each packet through a public parameter
called an initialization vector (IV) or a nonce1. These
are called synchronous ciphers. Other encryption al-
gorithms solve this by feeding the ciphertext back into
the cipher. These are called self-synchronizing ciphers
because the decryption device automatically synchro-
nizes to the encryption device after a finite number of
ciphertext bits have been received in the correct order.

Cryptographic integrity and authenticity

While encryption algorithms may provide confidential
transmission of signals across insecure channels, they
do not ensure that the data that is received originate
from a trusted source and contains the content of the
data that was originally transmitted. We refer to the
former as data origin authenticity and the latter as data
integrity. Data origin authenticity is a stronger notion
and implies data integrity, and data origin authenticity
is typically achieved through MACs. Note that MACs
are different from non-cryptographic integrity checks,
such as cyclic redundancy checks (CRCs). While CRCs
may be used by the respective protocols, for example,
ethernet and CAN, they are unkeyed and are only suit-
able to detect inadvertent transmission errors. Because
CRCs are unkeyed, an active adversary can easily com-
pute a valid CRC for a spoofed packet. We emphasize
that this is often also true even if the output of the
CRC is encrypted. Encrypting the output of an un-

1Number used only once.

keyed integrity check in order to provide data origin
authenticity is bad practice and should be avoided.

Authenticated encryption

If both data origin authenticity and data confidential-
ity are required, a concept known as authenticated
encryption may be used. While authenticated en-
cryption may be obtained through use of dedicated
algorithms such as AEGIS, it may also be obtained
through generic compositions of encryption algorithms
and MACs although one ought to be careful. The rec-
ommended generic composition is known as Encrypt-
then-MAC, in which the MAC is computed over the
ciphertext. The flow in an Encrypt-then-MAC scheme
would be encrypt → authenticate → validate → de-
crypt. In addition to being the most secure composi-
tion, it is also efficient in the sense that invalid mes-
sages are discarded before they are decrypted (Bellare
and Namprempre, 2008).

3. The CryptoToolbox

The CryptoToolbox (Solnør, 2020) was developed to
give easy-access to state-of-the-art high-performance
cryptographic algorithms and contains a range of cryp-
tographic algorithms that provide either encryption,
MACs, or authenticated encryption. Figure 3 illus-
trates the structure of the CryptoToolbox contents,
while a brief summary explaning the contents of the
CryptoToolbox is found in Table 1. Each algorithm
operates on memory buffers, and it is assumed that the
data that is to be processed is contiguous in memory.

Note that the direct operation of AES, called the
Electronic Codebook (ECB) mode, has been deliber-
ately excluded from the CryptoToolbox. The reason
for this is that the use of ECB mode results in the
same plaintexts consistently being mapped to the same
ciphertexts. Because of this, the structure of the plain-
text leaks through to the ciphertext, and data confiden-
tiality is lost under very real circumstances. The ECB
mode has been misused in multiple previous publica-
tions (for example Gupta and Chow (2008), Pang et al.
(2011), and Jithish and Sankaran (2017)), and because
there is no scenario in which the ECB mode should
be used in a feedback control system, the ECB mode
has been excluded from the CryptoToolbox to limit the
possibility of user errors.

The properties of the cryptographic algorithms in
the CryptoToolbox are summed up in Table 2. As
we proceed, we will show how the cryptographic al-
gorithms from the CryptoToolbox may be used to en-
sure that the feedback control signals remain secure
across the insecure transmission channels shown in Fig-

4



P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Table 1: An explanation of the contents of the CryptoToolbox.

Hash

Cryptographic hash functions are unkeyed, accept
inputs of arbitrary length and produces a fixed-
length output called a digest.

SHA-256
A variant of the Secure Hash Algorithm 2 (SHA-2)
producing a 256-bit digest (Dang, 2015).

Authentication

Contains keyed message authentication codes that
accept inputs of arbitrary length and produces a
fixed-length output called a tag.

HMAC-SHA-256
A variant of the Keyed-Hash Message Authentica-
tion Code (HMAC) using SHA-256 as the underlying
cryptographic hash function (Dang, 2008).

BlockCiphers

Contains stateless encryption algorithms and algo-
rithms deduced from these stateless encryption algo-
rithms.

AES
The Advanced Encryption Standard, a NIST certi-
fied block cipher (NIST, 2001).

AES CFB
A way of operating AES as a self-synchronizing
stream cipher, called the cipher feedback (CFB)
mode (Dworkin, 2001).

AES CTR
A way of operating AES as a synchronous stream
cipher, called the counter (CTR) mode (Dworkin,
2001).

AES x86

An implementation of AES taking advantage of an
enhanced instruction set on (most) x86 processors
called Advanced Encryption Standard New Instruc-
tions (AES-NI), which provides hardware support for
AES.

AES ARM

An implementation of AES taking advantage of an
enhanced instruction set on (some) ARMv8 proces-
sors called the ARMv8 Cryptographic Extension,
which provides hardware support for AES.

Serpent
A block cipher that was the runner up submission
to AES (Anderson et al., 2000). Used as part of the
Sosemanuk stream cipher.

StreamCiphers Contains stateful encryption algorithms.

AEGIS
A stream cipher that provides authenticated encryp-
tion directly. Based on the AES block cipher. Part
of the CAESAR portfolio (Wu and Preneel, 2014).

AEGIS x86
An implementation of AEGIS that takes advantage
of AES-NI.

AEGIS ARM
An implementation of AEGIS that takes advantage
of the ARMv8 Cryptographic Extension.

HC-128
A synchronous stream cipher. Part of the eSTREAM
portfolio (Wu, 2008).

ChaCha

A synchronous stream cipher. Part of the eS-
TREAM portfolio. May be operated as the full
cipher (ChaCha20), or in round reduced variants
(ChaCha12, ChaCha8) for increased performance at
the cost of reduced security (Bernstein, 2008).

Rabbit
A synchronous stream cipher. Part of the eSTREAM
portfolio (Boesgaard et al., 2008).

Sosemanuk
A synchronous stream cipher. Part of the eSTREAM
portfolio (Berbain et al., 2008).

Encoders
Components that convert data to/from specific for-
mats.

Hex Converts data to/from hexadecimal encoding.

5



Modeling, Identification and Control

The CryptoToolbox

BlockCiphers

AES

AES ARM

AES x86

AES

CTR

CFB

CTR

CFB

CTR

CFB

Serpent

StreamCiphers

AEGIS

AEGIS

ChaCha

HC-128

Rabbit

Sosemanuk

AEGIS ARM

AEGIS x86

ChaCha20

ChaCha12

ChaCha8

Authentication

HMAC-SHA-256

Encoders

Hex

Hash

SHA-256

Figure 3: An overview of the algorithms available through the CryptoToolbox.

ure 2. More details regarding the cryptographic al-
gorithms, compilation options, and implementation-
related specifics are found in Appendix A for the inter-
ested reader.

3.1. Important remarks

Note that it is the users’ responsibility to supply keys
to the algorithms. These should be highly randomized
and preferably drawn from a uniform distribution. For
algorithms that utilize IVs and nonces, it is the users’
responsibility to ensure that repeated IVs and nonces
do not occur for a fixed key. This can easily be solved
by incrementing the initialization vectors and nonces
after each message on the encryption device. Further-
more, it is assumed that the keys are pre-distributed. If
these guidelines are not followed, the resulting system
will be vulnerable to attacks.

4. Case study: Securing the GNC
system of an autonomous vehicle

We proceed by showing how the algorithms from the
CryptoToolbox may be used to provide secure signal
transmission in the use case described in Section 2. The
cryptographic algorithms should be applied immedi-
ately before transmission and upon reception, as shown

in Figure 4. Notice that the content of the E and D
blocks would depend on whether data confidentiality,
data origin authenticity, or both is required. In Algo-
rithms 1 and 2, the general flow of the E and D blocks
is outlined in pseudocode if authenticated encryption
is required. If only data confidentiality or data origin
authenticity is required, the excessive lines of code, for
the encryption or MAC, are removed. Now the ques-
tion regarding which algorithms the practitioner should
choose to implement the E and D blocks remain.

Algorithm 1 E block outline.

1: Initialize EK,IV ,MACK

2: while true do
3: Plaintext ← Load Data
4: Ciphertext ← EK,IV (Plaintext)
5: Tag ← MACK(IV, Ciphertext)
6: Message ← (IV||Ciphertext||Tag)
7: Transmit Message
8: Update IV
9: end while

4.1. When to use which cryptographic
primitive?

As described in Section 2.1, it is important to under-
stand that while encryption provides data confidential-

6



P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Table 2: An overview of the properties of the cryptographic algorithms in the CryptoToolbox.

Algorithm
Data

confidentiality
Data origin
authenticity

Additional information

HMAC-SHA-256 X

Used to obtain data origin authentic-
ity to prevent active deception attacks.
May also be used in an Encrypt-then-
MAC composition with an encryption
algorithm to obtain authenticated en-
cryption.

AES CFB X

Converts the AES block cipher to a
self-synchronizing stream cipher. Elim-
inates the need for IVs. Performs well
on small data, subpar performance as
the amount of data increases.

AES CTR X

Converts the AES block cipher to a syn-
chronous stream cipher. Requires IVs,
but offers slightly better performance
compared to the CFB mode. Subpar
performance as the amount of data in-
creases.

AEGIS X X

An authenticated encryption algorithm
with excellent performance, particu-
larly as the amount of data increases,
e.g. on images and point-clouds.

HC-128 X

A synchronous stream cipher with a sig-
nificant initialization overhead. Should
be avoided for small data, but provides
excellent performance on bulk encryp-
tion.

ChaCha20/12/8 X

A synchronous stream cipher with no
initialization overhead. Provides decent
performance on small data, worse as
the amount of data increases. Better
performance achieved for the round re-
duced variants, at the cost of reduced
security.

Rabbit X

A synchronous stream cipher with a
small initialization overhead and excel-
lent performance as the amount of data
increases.

Sosemanuk X
A synchronous stream cipher with a
small initialization overhead. Subpar
performance for large data.

7



Modeling, Identification and Control

ED Control System

E

D Actuator

Sensors ED Kalman Filter

LAN

Guidance and Control

System
Vehicle

Navigation Computer

D
Control

System

E

Actuator

Sensors ED Kalman Filter

Vehicle with centralized

Guidance and Control System
Navigation Computer

Figure 4: An overview of how a vehicle may be enhanced with secure signal transmission. The cryptographic
algorithms are applied immediately before transmission and upon reception. Whether encryption, au-
thentication, or authenticated encryption is applied would depend on which cryptographic properties
are of interest.

Algorithm 2 D block outline.

1: Initialize EK,IV ,MACK

2: while true do
3: Receive (IV’||Ciphertext’||Tag’)
4: Tag ← MACK(IV’, Ciphertext’)
5: if Tag != Tag’ then
6: Reject message.
7: end if
8: Plaintext’ ← DK,IV ′(Ciphertext’)
9: Accept Plaintext’

10: end while

ity, it does not provide data integrity nor data origin
authenticity. For this, MACs must be used. There-
fore, the block ciphers and stream ciphers described
should only be used if data confidentiality is required,
with the notable exception of AEGIS, which can be
used to provide data origin authenticity only, by pass-
ing all the data in as authenticated data and none as
plaintext, or to provide authenticated encryption. The
HMAC-SHA-256 MAC should be used if data origin
authenticity is required, but it does not provide data
confidentiality. We emphasize that using the unkeyed
SHA-256 to generate a digest and then encrypting the
message and the digest is insecure. After the algo-
rithms have been initialized, the run-time of the algo-
rithms increases linearly with the size of the input.

Without AES-NI and ARM Cryptographic Extension
Without hardware acceleration support, the AES block
cipher provides decent performance on small packets
(< 1 KB) with no initialization overhead for each
packet. If traffic expansion and network congestion
is a concern, the self-synchronizing CFB mode may be
used to eliminate the need to transmit IVs. Otherwise,
CTR mode may be used. The HC-128 stream cipher
should be avoided for small packets due to the signifi-
cant initialization overhead. When used in conjunction
with HMAC-SHA-256, the AES, ChaCha, Rabbit, and
Sosemanuk ciphers achieve authenticated encryption
in an Encrypt-then-MAC composition with the cryp-
tographic algorithms inducing less than 1 ms latency
for the encryption & authentication and verification &
decryption processes combined on modern computers
(< 300 µs on a Raspberry Pi 3+).

For mid-range data (1 KB - 64 KB) the ChaCha,
Rabbit, and HC-128 stream ciphers offer the strongest
encryption performance, while the EtM composition of
HMAC-SHA-256 with ChaCha, Rabbit, and HC-128
offer nearly the same authenticated encryption perfor-
mance as the AEGIS stream cipher, with AEGIS gain-
ing the upper-hand as the data size increases.

For large quantities of data, e.g. vision-based signals
such as video streams and point-clouds, the Rabbit and
HC-128 stream ciphers offer the best encryption per-
formance with encryption & decryption combined of
a 1.3 MB image taking less than 4 ms and a 3.2 MB

8



P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

point-cloud taking less than 10 ms on an Nvidia Jetson
Xavier (Volden and Solnør, 2020). For authenticated
encryption on large data AEGIS should be used, with
encryption & authentication and decryption & verifi-
cation combined inducing approximately 8 ms and 18
ms latency on an image and a point-cloud on an Nvidia
Jetson Xavier, respectively (Volden and Solnør, 2020).
Note that these numbers should be used as guidelines,
and will vary depending on the system specification.
However, the relative performance between the algo-
rithms are expected to be similar between different sys-
tems.

With AES-NI or ARM Cryptographic Extension
With hardware support, AES and AEGIS offer the
by far best performance. The AES CTR and CFB
implementations may be considered for encryption-
only operations on small quantities of data, with the
latter being preferred if traffic expansion and net-
work congestion is a concern. For larger quantities
of data and authenticated encryption, AEGIS should
be used. The hardware-accelerated implementation of
AEGIS reduces the induced latency by approximately
65% compared to the portable software implementa-
tion when processing a 1.3 MB image and a 3.2 MB
point-cloud on an Nvidia Jetson Xavier, performing
encryption & authentication and verification & decryp-
tion combined of a 1.3 MB image in 2.9 ms and a 3.2
MB point-cloud in 6.5 ms on an Nvidia Jetson Xavier
(Volden and Solnør, 2020).

4.2. Implementing E and D

To assist the reader in implementing the scheme pro-
posed in Figure 4 to obtain secure signal transmission,
code is provided to obtain data confidentiality, data ori-
gin authenticity, or both in Appendix B. The code is
generic, with pseudocode for the transmitter, receiver,
data loading, and acceptance interface. The DATA_SIZE

parameter is a parameter to denote the number of bytes
that are to be processed. To obtain data confidential-
ity, the reader may use the Rabbit cipher as shown
in B.1. To obtain data origin authenticity, the reader
may use the HMAC-SHA-256 MAC as shown in B.2.
To obtain data confidentiality and data origin authen-
ticity the reader may use the Rabbit cipher and the
HMAC-SHA-256 in an ’Encrypt-then-MAC’ composi-
tion as shown in B.3, or the authenticated encryption
algorithm AEGIS directly as described in B.4.

In the data confidentiality example, and in the
‘Encrypt-then-MAC’ composition, the Rabbit cipher
can be changed with any of the other encryption al-
gorithms that provide data confidentiality. Note that
while the interfaces are quite similar, there may be

some minor differences. If interested, the reader should
consult Appendix A, or look at the sample programs
in their respective CryptoToolbox folders.

Notice that neither encryption nor MACs provide di-
rect protection against replay attacks. Replay attacks
are active attacks in which an adversary has logged
valid messages and inject them into the transmission
at a later stage to disrupt the system. However, protec-
tion against replay attacks is easy to achieve by com-
bining MACs with some additional logic, such as times-
tamps or sequence numbers, to ensure that old packets
are dismissed. The MAC should then be computed
over the timestamp or sequence number in addition to
the data. Encryption may or may not be applied.

5. Conclusion

In this article, the CryptoToolbox for control applica-
tions has been presented. The toolbox contains imple-
mentations of several high-performance cryptographic
algorithms that provide data confidentiality, data ori-
gin authenticity, or both. Examples illustrating how
the cryptographic algorithms may be used to obtain
data confidentiality and data origin authenticity across
insecure transmission channels in feedback control sys-
tems have been shown, and an example with a GNC
system has been presented. The latency induced by
the algorithms is very low and well-suited for real-time
applications, and synchronous behavior is guaranteed
when the algorithms are operated correctly.

Future work

The CryptoToolbox is planned to undergo further de-
velopment, with the addition of additional crypto-
graphic algorithms in the future.

Acknowledgments

This work was supported by the Norwegian Research
Council (project no. 223254) through the NTNU Cen-
ter of Autonomous Marine Operations and Systems
(AMOS) at the Norwegian University of Science and
Technology.

References

Anderson, R., Biham, E., and Knudsen, L. The case
for serpent. 2000.

Bellare, M. and Namprempre, C. Authenticated en-
cryption: Relations among notions and analysis of

9



Modeling, Identification and Control

the generic composition paradigm. J. Cryptol., 2008.
21(4):469–491. doi:10.1007/s00145-008-9026-x.

Berbain, C., Billet, O., Canteaut, A., Courtois, N.,
Gilbert, H., Goubin, L., Gouget, A., Granboulan,
L., Lauradoux, C., Minier, M., Pornin, T., and Sib-
ert, H. Sosemanuk, a fast software-oriented stream
cipher, page 98–118. Springer-Verlag, Berlin, Hei-
delberg, 2008.

Bernstein, D. Chacha, a variant of salsa20. 2008.

Biryukov, A. and Wagner, D. Slide attacks. In
L. Knudsen, editor, Fast Software Encryption.
Springer Berlin Heidelberg, Berlin, Heidelberg,
pages 245–259, 1999.

Boesgaard, M., Vesterager, M., and Zenner, E. The
Rabbit Stream Cipher, page 69–83. Springer-Verlag,
Berlin, Heidelberg, 2008.

Crutchfield, C. Implementing and Optimizing En-
cryption Algorithms for the ARMv8-A Architecture.
Master’s thesis, California State University - Sacra-
mento, 6000 J St, Sacramento, CA 95819, USA,
2014.

Dai, W. Crypto++. 2020. URL https://www.

cryptopp.com/. Accessed: 2020-12-16.

Dang, Q. H. The keyed-hash message authentication
code (hmac) - fips 198-1. Technical report, Gaithers-
burg, MD, USA, 2008.

Dang, Q. H. Secure hash standard - fips 180-4. Tech-
nical report, Gaithersburg, MD, USA, 2015.

de Sá, A. O., d. C. Carmo, L. F. R., and Machado, R.
C. S. Covert attacks in cyber-physical control sys-
tems. IEEE Transactions on Industrial Informatics,
2017. 13(4):1641–1651.

Duong, T. and Rizzo, J. Here come the ⊕ ninjas, 2011.
Unpublished.

Dworkin, M. J. Sp 800-38a 2001 edition. recommen-
dation for block cipher modes of operation: Meth-
ods and techniques. Technical report, Gaithersburg,
MD, USA, 2001.

Gupta, R. A. and Chow, M. Performance assessment
and compensation for secure networked control sys-
tems. In 2008 34th Annual Conference of IEEE In-
dustrial Electronics. pages 2929–2934, 2008.

Hespanha, J. P., Naghshtabrizi, P., and Xu, Y. A sur-
vey of recent results in networked control systems.
Proceedings of the IEEE, 2007. 95(1):138–162.

Jithish, J. and Sankaran, S. Securing networked con-
trol systems: Modeling attacks and defenses. In
2017 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia). pages 7–11, 2017.

Lera, F. J. R., Balsa, J., Casado, F., Fernández, C.,
Rico, F. M., and Matellán, V. Cybersecurity in au-
tonomous systems: Evaluating the performance of
hardening ros. Málaga, Spain, 2016. 47.

Maritime Robotics. The portable usv system. 2020.
URL https://www.maritimerobotics.com/otter.
Accessed: 2020-12-18.

NIST. Specification for the advanced encryption stan-
dard (aes). Federal Information Processing Stan-
dards Publication 197, 2001.

OpenSSL Software Foundation. Openssl. 2020. URL
https://www.openssl.org/. Accessed: 2020-12-20.

Osvik, D. A. Speeding up serpent. In AES Candidate
Conference. 2000.

Pang, Z., Zheng, G., Liu, G., and Luo, C. Secure trans-
mission mechanism for networked control systems
under deception attacks. In 2011 IEEE Interna-
tional Conference on Cyber Technology in Automa-
tion, Control, and Intelligent Systems. pages 27–32,
2011.

Rodŕıguez-Lera, F. J., Matellán-Olivera, V., Balsa-
Comerón, J., Guerrero-Higueras, n. M., and
Fernández-Llamas, C. Message encryption in robot
operating system: Collateral effects of hardening
mobile robots. Frontiers in ICT, 2018. 5:11.
doi:10.3389/fict.2018.00002.

Solnør, P. CryptoToolbox. https://github.com/

pettsol/CryptoToolbox, 2020.

Teixeira, A., Sou, K. C., Sandberg, H., and
Johansson, K. H. Quantifying Cyber-Security
for Networked Control Systems, pages 123–142.
Springer International Publishing, Heidelberg, 2013.
doi:10.1007/978-3-319-01159-2 7.

Volden, Ø. and Solnør, P. Crypto ROS: Real-time au-
thenticated encryption of vision-based sensor signals
in ROS. https://github.com/oysteinvolden/

Real-time-sensor-encryption, 2020.

wolfSSL Inc. wolfcrypt. 2020. URL https://www.

wolfssl.com/products/wolfcrypt-2/. Accessed:
2020-12-20.

Wu, H. The stream cipher hc-128. In The eSTREAM
Finalists. 2008.

10



P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Wu, H. and Preneel, B. Aegis: A fast authenticated
encryption algorithm. In T. Lange, K. Lauter, and
P. Lisoněk, editors, Selected Areas in Cryptography –
SAC 2013. Springer Berlin Heidelberg, Berlin, Hei-
delberg, pages 185–201, 2014.

A. CryptoToolbox Algorithm
Details

This appendix gives the reader a more detailed in-
troducton to the algorithms and the implementations
found in the CryptoToolbox.

A.1. Algorithm implementations

This section presents an overview of the algorithms
that are accessible in the CryptoToolbox. The inter-
faces of the algorithms are explained, along with com-
pilation options that exist for specific algorithms.

A.1.1. The Advanced Encryption Standard

The Advanced Encryption Standard (NIST, 2001)
(AES) was the result of an international effort to de-
velop a new block cipher around the year 2000. The
winner, the Rijndael cipher, was designed by Vin-
cent Rijmen and Joan Daemen and is a substitution-
permutation network. Figure 5 illustrates the structure
of the AES cipher. Note that like all block ciphers, AES
is stateless. The AES cipher operates on blocks of 128
bits, thus resulting in a fixed {0, 1}128 × {0, 1}K 7→
{0, 1}128 substitution parametrized by the K-bit key if
operated directly. The official AES standard accepts
three key sizes; 128, 192, and 256 bits, respectively.
The CryptoToolbox implementations accept 128-bit
keys. The direct operation of a block cipher is known as
the Electronic Codebook (ECB) mode and leaks struc-
tural information from the plaintext to the ciphertext.
This leak is an unfortunate characteristic, and block ci-
phers are therefore primarily operated in other modes
of operation such as the Cipher Block Chaining (CBC),
Cipher Feedback (CFB), Output Feedback (OFB), and
Counter (CTR) modes (Dworkin, 2001). The Crypto-
Toolbox contains implementations of AES operating in
the CTR mode of operation and a modified CFB mode
of operation.

As seen in Figure 5, the AES round function consists
of four operations. A byte substitution element, com-
monly referred to as an S-box, provides the nonlinear-
ity. A shift row and a mix column operation provide
the diffusion. Finally, a round key is added to pre-
vent slide attacks (Biryukov and Wagner, 1999). The
round keys are derived from the secret key. Because

Plaintext

MixColumns

Ciphertext

SubBytes

ShiftRows

Add Round Key 0

Add Round Key i

SubBytes

ShiftRows

Add Round Key N

For i = 1 to i = N-1

Ciphertext

Add Round Key N

InverseShiftRows

inverseSubBytes

InverseMixColumns

Add Round Key N-i

InverseShiftRows

inverseSubBytes

Add Round Key 0

Plaintext

For i = 1 to i = N-1

Figure 5: The overall structure of AES, with the en-
cryption mode on the left and the decryption
mode on the right. For CFB and CTR mode
the encryption mode is used both during en-
cryption and decryption.

the byte substitution operates on bytes and consists
of computationally expensive operations such as ex-
ponentiations, and because the mix column operation
consists of matrix multiplications, the round function
is very inefficient if implemented directly. At the very
least, the byte substitution should be pre-computed
and implemented as a lookup table. However, because
most systems today have 32 or 64-bit word sizes and
because we still have to deal with the matrix multi-
plication step, such an implementation is not very ef-
ficient. Therefore, the CryptoToolbox implementation
of the AES round function uses a time-memory trade-
off in which the byte substitution, shift row, and mix
column operations are pre-computed and stored in four
1 KB lookup tables. As such, an iteration of the AES
round function requires only 16 table lookups and 16
bitwise XOR (⊕) operations. The AES documentation
provides a detailed description of how to compute these
lookup tables.

Counter mode

The Counter (CTR) mode transforms the block cipher
into a synchronous stream cipher by introducing a state
determined by a nonce and a counter value. The nonce
combined with the counter value is often referred to as
the initialization vector (IV) and serves as input to
the block cipher. The output of the block cipher is
called the keystream, and after each iteration, the ci-
pher increments the counter value. The keystream is
then mixed with the plaintext or ciphertext through

11



Modeling, Identification and Control

the ⊕-operator to form the ciphertext or plaintext, re-
spectively. If packets arrive out of order, or if a message
is lost or injected, the transmitter and the receiver of
a transmission encrypted with a synchronous stream
cipher lose synchronization. The IV acts as a synchro-
nization mechanism to provide robustness against such
events. Because the IV is a public parameter it may be
transmitted along with the ciphertext in the plaintext.
Note that only the nonce needs to be transmitted, as
the counter value can be agreed upon beforehand (e.g.
by always initializing the counter value to zero for each
message). The size of the nonce and the counter value
depends on the application; if small packets are trans-
mitted at a high frequency, the nonce value is chosen
to be large (e.g. 96 bits for AES). If large packets are
transmitted less frequently, more bits can be reserved
to the counter value. A common configuration for AES
consists of 96 bits reserved to the nonce value and 32
bits reserved to the counter value. This is the config-
uration used by the CryptoToolbox implementation,
and the counter value is always initialized to 1 for a
new message.

The AES CTR cipher is accessed through the inter-
face seen in Listing 1.

Listing 1: AES CTR Interface

void aes_load_key(aes_state *cs, uint8_t key[16]);

void aes_load_iv(aes_state *cs, uint8_t nonce[12])

;

void aes_ctr_process_packet(aes_state *cs, uint8_t

*out, uint8_t *in, int size);

Note that the aes_load_key() function is only
called once per key to derive the round keys, while
the aes_load_iv() function is called to resynchro-
nize the transmitter and the receiver using the pub-
lic nonce, usually on a per-message basis. Both
encryption and decryption is achieved through the
aes_ctr_process_packet() function.

Cipher Feedback mode

For some applications, it may be desirable to minimize
the amount of data that is to be transmitted. Be-
cause stateful ciphers often require IVs to guarantee
synchronous behavior between the transmitter and the
receiver, each message must carry a (unique) IV in ad-
dition to the ciphertext.

The Cipher Feedback (CFB) mode converts the
block cipher to a self-synchronizing stream cipher by
making the state uniquely determined by a finite num-
ber of ciphertext bits. By modifying the CFB mode
slightly, the need for IVs can be removed by using the
final ciphertext block of the previous message as the IV
for the next message, thus reducing the amount of data
that must be transmitted. This is referred to this as

a carry-over IV design. It may be tempting to apply
a similar modification to the Cipher Block Chaining
mode, but due to the nature of the CBC decryption
mode, such an implementation is vulnerable to attacks
as shown by the famous BEAST attack by Duong and
Rizzo (2011). For this reason, the National Institute
of Standards and Technology (NIST) recommends that
the IVs for both CFB and CBC mode should be un-
predictable in addition to being unique. Thus, even
though no attacks are known against this modified
CFB mode, we warn that this implementation defies
best-practice as defined by NIST.

Because the state is uniquely determined by a finite
number of ciphertext bits, a transmission error prop-
agates and results in burst errors. This can happen
e.g. if packets are received out-of-order, if packets are
injected or if packets are lost in transmission.

An illustration of the carry-over IV CFB mode can
be seen in Figure 6. Unlike a block cipher operating
in CTR mode, a block cipher operating in CFB mode
must be aware of whether is it used to encrypt or de-
crypt data. This is done by passing either of the pre-
defined macros ENCRYPT and DECRYPT in the final func-
tion argument.

The AES CFB cipher is accessed through the inter-
face seen in Listing 2.

Listing 2: AES CFB Interface

void aes_cfb_initialize(aes_state *cs, uint8_t key

[16], uint8_t iv[16]);

void aes_cfb_process_packet(aes_state *cs, uint8_t

*out, uint8_t *in, int size, int mode);

The cipher is only initialized once per fixed
key using aes_cfb_initialize(), after which the
aes_cfb_process_packet() function is used to encrypt
and decrypt.

AES on x86 and ARMv8

Because of the wide adoption of AES, microproces-
sor manufacturers have included enhanced instruction
sets that provide hardware-acceleration of the AES op-
erations. In 2010 Intel included the Intel Advanced
Encryption Standard New Instructions (AES-NI) on
their x86-processors. Advanced Micro Devices fol-
lowed shortly after, and included AES-NI on their x86-
processors. Later, ARM provided an optional crypto-
graphic extension to their ARMv8-processors, the ARMv8

Crypto Extension. These instructions may easily be
accessed through intrinsic functions.

On systems with a modern x86 processor with the
AES-NI instruction set available, the user may com-
pile AES CTR and AES CFB using the g++ commands
seen in Listing 3 to take advantage of the AES-NI in-
structions.

12



P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Block

cipher

Initialization Vector

Ciphertext

Plaintext

Block

cipher

Ciphertext

Block

cipher

Ciphertext

Plaintext Plaintext

Message 1

Block

cipher

Ciphertext

Plaintext

Block

cipher

Ciphertext

Block

cipher

Ciphertext

Plaintext Plaintext

Message 2

Figure 6: A block cipher operated in CFB mode, with a carry-over IV.

Listing 3: AES x86 AES-NI Compilation.

g++ test_vectors.cpp aes_ctr.cpp ../../../../

Encoders/Hex/encoder.cpp -o test_vectors -D

x86_INTRINSICS -march=native

g++ main.cpp aes_cfb.cpp -o main -D x86_INTRINSICS

-march=native

On systems running an ARMv8 processor with the
ARMv8 Crypto Extension instruction set available, the
user may compile AES CTR and AES CFB using the
g++ commands seen in Listing 4 to take advantage of
the ARMv8 Crypto Extension instructions.

Listing 4: AES ARMv8 Crypto Extension Compila-
tion.

g++ test_vectors.cpp aes_ctr.cpp ../../../../

Encoders/Hex/encoder.cpp -o test_vectors -D

ARM_INTRINSICS -march=armv8-a+crypto

g++ main.cpp aes_cfb.cpp -o main -march=armv8-a+

crypto -D ARM_INTRINSICS

Note that these hardware-accelerated variants are,
in addition to being faster, less prone to side-channel
attacks, i.e. attacks that target the algorithm imple-
mentations rather than the algorithms themselves. An
example of such a side-channel attack is the timing at-
tack in which an adversary attempts to extract infor-
mation based on the time certain operations take. For
example, there may be variations in the time required
to compute multiplication operations depending on the
inputs, and the time needed to access lookup tables de-

pends on where the lookup tables are stored, such as
the level-1 cache or level-2 cache.

A.1.2. Sosemanuk

The Sosemanuk stream cipher was the result of a co-
operative effort between multiple French cryptologists
and was submitted by Berbain et al. (2008) to the
eSTREAM competition. The Sosemanuk stream ci-
pher consists of a linear feedback shift register com-
posed with a nonlinear output function. The nonlin-
ear output function is constructed using components
from the Serpent block cipher designed by Anderson
et al. (2000), which was the runner-up submission to
the AES-process. An overview of the Sosemanuk ci-
pher can be seen in Figure 7.

The Sosemanuk cipher is accessed through the inter-
face seen in Listing 5.

Listing 5: The Sosemanuk Interface.

void sosemanuk_load_key(sosemanuk_state *cs,

uint8_t *key, int keysize);

void sosemanuk_load_iv(sosemanuk_state *cs,

uint8_t iv[16]);

void sosemanuk_process_packet(sosemanuk_state *cs,

uint8_t *out, uint8_t *in, uint64_t size);

The sosemanuk_load_key() function is called once per
key, while the sosemanuk_load_iv() function is called
to resynchronize the transmitter and the receiver by
deducing an initial state of the cipher from the pre-

13



Modeling, Identification and Control

s
t+9 

s
t+8 

s
t 

s
t+1 

s
t+3 

a-1
 

a
 

MUX

R1 R2Trans

Serpent1
Keystream(4 words)

Figure 7: An overview of the Sosemanuk stream cipher.

loaded key and an IV. This is usually done on a per-
message basis. Encryption and decryption is achieved
through the sosemanuk_process_packet() function.

Serpent

The Serpent block cipher is a substitution-permutation
network like AES. As in AES, the nonlinear component
of the cipher consists of S-boxes. However, because
the Serpent S-boxes are {0, 1}4 7→ {0, 1}4 mappings,
they do not lend themselves well to lookup table im-
plementations. Instead, a bit-slicing technique may be
applied. In the CryptoToolbox implementation, the
bit-slicing techniques proposed by Osvik (2000) is used
to implement the Serpent S-boxes. The Serpent block
cipher is accessed indirectly through the Sosemanuk
function calls, and it is noted that only the parts used
in the Sosemanuk cipher are implemented. The Ser-
pent block cipher is therefore not available as a stand-
alone cipher. An implementation of a bit-sliced Osvik
S-box used in the Serpent cipher can be seen in List-
ing 6.

Listing 6: A Bitsliced Osvik S-Box for the Serpent
Block Cipher.

inline void S4(uint32_t *r0, uint32_t *r1,

uint32_t *r2, uint32_t *r3, uint32_t *r4)

{

*r1 ^= *r3; *r3 = ~(*r3);

*r2 ^= *r3; *r3 ^= *r0;

*r4 = *r1; *r1 &= *r3;

*r1 ^= *r2; *r4 ^= *r3;

*r0 ^= *r4; *r2 &= *r4;

*r2 ^= *r0; *r0 &= *r1;

*r3 ^= *r0; *r4 |= *r1;

*r4 ^= *r0; *r0 |= *r3;

*r0 ^= *r2; *r2 &= *r3;

*r0 = ~(*r0); *r4 ^= *r2;

}

A.1.3. Rabbit

The Rabbit stream cipher is a cipher designed by Boes-
gaard et al. (2008) that was a successful entrant to the
eSTREAM competition. The theoretical foundation of
the Rabbit cipher comes from the theory of chaotic sys-
tems. The cipher deduces a secret master state from
the key, and each IV is mixed with the master state to
produce an initial state of the cipher.

The Rabbit stream cipher is accessed through the
interface seen in Listing 7.

Listing 7: The Rabbit Interface.

void rabbit_load_key(rabbit_state *cs, uint8_t key

[16]);

void rabbit_load_iv(rabbit_state *cs, uint8_t iv

[8]);

void rabbit_process_packet(rabbit_state *cs,

uint8_t *output, uint8_t *input, uint64_t

size);

The rabbit_load_key() function deduces the master
state, and is called once per key. The rabbit_load_iv()

function derives an initial state from the master state
and a public IV. This is usually done on a per-message
basis. The rabbit_process_packet() function is used
to encrypt and decrypt.

A.1.4. ChaCha

The ChaCha stream cipher is a variant of the Salsa-
family of stream ciphers and was designed by Bern-
stein (2008). The ChaCha stream cipher follows an
Add-Rotate-XOR-design, and is generally used in three
configurations; the full cipher consisting of twenty
rounds (ChaCha20), a round reduced variant con-
sisting of twelve rounds (ChaCha20/12), and a fur-
ther round reduced variant consisting of eight rounds
(ChaCha20/8). The round reduced variants offer in-
creased performance at the cost of reduced security.
The CryptoToolbox provides the full ChaCha20 ci-
pher as default, however, the round reduced variants
may be accessed by passing the -D TWELVE_ROUNDS and
-D EIGHT_ROUNDS preprocessor flags for the twelve and
eight round variants, respectively, as seen in Listing 8:

Listing 8: The ChaCha Compilation Options for
Round-Reduced Variants.

g++ main.cpp chacha.cpp ../../Encoders/Hex/encoder

.cpp -o main -D TWELVE_ROUNDS

g++ main.cpp chacha.cpp ../../Encoders/Hex/encoder

.cpp -o main -D EIGHT_ROUNDS

If compiled using CMAKE, the preprocessor flags can
be set using add_definitions(). All variants of the
ChaCha stream cipher are accessed through the inter-
face seen in Listing 9.

14



P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Listing 9: The ChaCha Interface.

void chacha_initialize(chacha_state *cs, uint8_t

key[32], uint8_t nonce[12]);

void chacha_process_packet(chacha_state *cs,

uint8_t *output, uint8_t *input, uint64_t

size);

The chacha_initialize() function is used to de-
rive an initial state from the secret key and the pub-
lic IV, normally on a per-message basis, after which
chacha_process_packet() is used to encrypt and de-
crypt.

The core of the ChaCha stream cipher revolves
around the quarter-round function shown in Listing 10.
Notice that only modular additions, 32-bit rotations
and bitwise ⊕-operations are used.

Listing 10: The ChaCha Quarter-Round Function.

inline void q_round(chacha_state *cs, int a, int b

, int c, int d){

cs->state[a] += cs->state[b];

cs->state[d] ^= cs->state[a];

cs->state[d] = ROTL_32((cs->state[d]), 16);

cs->state[c] += cs->state[d];

cs->state[b] ^= cs->state[c];

cs->state[b] = ROTL_32((cs->state[b]), 12);

cs->state[a] += cs->state[b];

cs->state[d] ^= cs->state[a];

cs->state[d] = ROTL_32((cs->state[d]), 8);

cs->state[c] += cs->state[d];

cs->state[b] ^= cs->state[c];

cs->state[b] = ROTL_32((cs->state[b]), 7);

}

A.1.5. HC-128

The HC-128 stream cipher was designed by Wu (2008)
and rely on large permutation tables. The HC-128 ci-
pher offers excellent performance on bulk-encryption,
at the cost of a large initialization overhead. The ci-
pher, therefore, suffers from poor performance if small
packets are encrypted frequently.

The HC-128 stream cipher is accessed through the
interface seen in Listing 11:

Listing 11: The HC-128 Interface.

void hc128_initialize(hc128_state *cs, uint8_t key

[16], uint8_t iv[16]);

void hc128_process_packet(hc128_state *cs, uint8_t

*output, uint8_t *input, uint64_t size);

The hc128_initialize() function derives an initial
state from the secret key and IV by mapping the key

and the IV to the tables containing the state, and it-
erating the cipher 1024 times. Once initialized, the
hc128_process_packet() function is used to encrypt
and decrypt.

The remarkably efficient keystream generator func-
tion of the HC-128 stream cipher can be seen in List-
ing 12. Note that g1,2 and h1,2 are functions consisting
only of 32-bit rotations, modular additions, and bit-
wise ⊕-operations, while P and Q denote the tables
that make up the state of the cipher.

Listing 12: The HC-128 Keystream Generator Func-
tion.

void hc128_generate_keystream(hc128_state *cs,

uint32_t *keystream, uint64_t size)

{

// Generate keystream

for (int i = 0; i <= (size-1)/4; i++)

{

int j = (i&0x1FF);

if ( (i&0x3FF) < 512 )

{

// Operate on P

cs->P[j] = cs->P[j] + g1(cs->P[(j-3)&0x1FF],

cs->P[(j-10)&0x1FF],

cs->P[(j-511)&0x1FF]);

*keystream = h1(cs, cs->P[(j-12)&0x1FF]) ^ (

cs->P[j]);

keystream++;

} else {

// Operate on Q

cs->Q[j] = cs->Q[j] + g2(cs->Q[(j-3)&0x1FF],

cs->Q[(j-10)&0x1FF],

cs->Q[(j-511)&0x1FF]);

*keystream = h2(cs, cs->Q[(j-12)&0x1FF]) ^ (

cs->Q[j]);

keystream++;

}

}

}

A.1.6. AEGIS

The AEGIS stream cipher was designed by Wu and
Preneel (2014) and submitted to the Competition for
Authenticated Encryption: Security, Applicability and
Robustness (CAESAR). The AEGIS stream cipher is a
cipher that is heavily based on the AES round function
and provides authenticated encryption directly. Note
that AEGIS also can be used to provide message au-
thenticity without encryption or to authenticate addi-
tional data that is not encrypted. This is commonly
used to authenticate the IV in plaintext, in addition to
the ciphertext. The AEGIS stream cipher is accessed
through the interface displayed in Listing 13.

15



Modeling, Identification and Control

AES Description Intel AES-NI ARMv8-A Cryptography Extension

Round 1:

 AddRoundKey

Round 1:

            _mm_xor_si128()

 AddRoundKey

Round 1 to N-1:

            vaeseq()

 AddRoundKey

 ShiftRows

 SubBytes

            vaesmq()

 MixColumns

Rounds 2 to N:

 SubBytes

 ShiftRows

 MixColumns

 AddRoundKey

Final Round:

 SubBytes

 ShiftRows

 AddRoundKey

Rounds 2 to N:

            _mm_aesenc_si128()

 ShiftRows

 SubBytes

 MixColumns

 AddRoundKey

Final Round:

            _mm_aesenclast_si128()

 ShiftRows

 SubBytes

 AddRoundKey

Round N:

            vaeseq()

 AddRoundKey

 ShiftRows

 SubBytes

Final Round:

            veorq()

 AddRoundKey

Figure 8: An illustration of the AES description, the AES-NI operations and the ARMv8 cryptography extension
operations. The difference between the AES-NI and ARMv8 cryptography extension round function
means that extra operations are required when using ARM hardware-acceleration. This figure is
based on a figure from Crutchfield (2014).

Listing 13: The AEGIS Interface.

void aegis_load_key(aegis_state *cs, uint8_t key

[16]);

void aegis_encrypt_packet(aegis_state *cs, uint8_t

*ct, uint8_t tag[16], uint8_t *pt, uint8_t *

ad, uint8_t iv[16], uint64_t adlen, uint64_t

msglen);

int aegis_decrypt_packet(aegis_state *cs, uint8_t

*pt, uint8_t *ct, uint8_t *ad, uint8_t iv

[16], uint8_t tag[16], uint64_t adlen,

uint64_t msglen);

The aegis_load_key() function is called once
per key, while the aegis_encrypt_packet() and
aegis_decrypt_packet() functions are used to en-
crypt and decrypt, respectively. Note that the
aegis_decrypt_packet()-function returns 1 if the
(message,tag)-pair is valid. If the (message,tag)-pair
is invalid, the pt-buffer is zeroized. This is done to
prevent chosen ciphertext attacks.

AEGIS on x86 and ARMv8

Because the AEGIS stream cipher utilizes AES oper-
ations, the cipher can take advantage of the enhanced
instruction sets provided by some modern microproces-
sors.

On systems running an x86 processor with the AES-
NI instruction set available, AEGIS is compiled using
the g++ command seen in Listing 14:

Listing 14: AEGIS x86 AES-NI Compilation.

g++ test_vectors.cpp aegis_128.cpp ../../../

Encoders/Hex/encoder.cpp -o test_vectors -D

x86_INTRINSICS -march=native

On systems running an ARMv8 processor with the
ARMv8 Crypto Extension instruction set available,
AEGIS is compiled using the g++ command seen in
Listing 15:

Listing 15: AEGIS ARMv8 Crypto Extension Compi-
lation.

g++ test_vectors.cpp aegis_128.cpp ../../../

Encoders/Hex/encoder.cpp -o test_vectors -

march=armv8-a+crypto -D ARM_INTRINSICS

Notice in Figure 8, however, that the ARMv8 Cryp-
tography Extension intrinsic functions are not perfectly
aligned with the ‘true’ AES round function. Since
AEGIS only utilizes the ‘true’ AES round function and
not the first and last rounds, the round keys must be
pre- and post-added. An excerpt from the ARMv8
AEGIS implementation in the CryptoToolbox illus-
trates this in Listing 16.

Listing 16: Reconstruction of AES Round using
ARMv8 Intrinsics.

#ifdef ARM_INTRINSICS

// ARM INTRINSICS

B_S3 = veorq_u8(B_S3, B_KEY);

B_S3 = vaesmcq_u8(vaeseq_u8(B_S3, B_KEY));

B_S3 = veorq_u8(B_S3, B_KEY);

B_TMP = B_KEY;

vst1q_u8((uint8_t*)cs->s3, B_S3);

16



P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

#else

A.1.7. Keyed-Hash Message Authentication Code

The Keyed-Hash Message Authentication Code (Dang,
2008) (HMAC) is a construction that converts an un-
keyed cryptographic hash function to a keyed MAC.
In the CryptoToolbox, the HMAC algorithm is im-
plemented with the Secure Hash Algorithm 2 (Dang,
2015) (SHA-2), SHA-256 to be more specific. Note that
the tag size is a parameter in the range [0, 32] bytes de-
termined by the user. A larger tag size provides greater
security against forgery attacks. The size of the key is
also a parameter determined by the user. A key size of
32 bytes is recommended, provided that it is generated
from a sufficiently random source. The interface to the
HMAC-SHA-256 algorithm is displayed in Listing 17.

Listing 17: The HMAC Interface

void hmac_load_key(hmac_state *cs, uint8_t *key,

int keysize);

void hmac_tag_generation(hmac_state *cs, uint8_t*

tag, uint8_t *message, uint64_t dataLength,

int tagSize);

int hmac_tag_validation(hmac_state *cs, uint8_t *

tag, uint8_t *message, uint64_t dataLength,

int tagSize);

The hmac_load_key() function is only called once
per key, while the hmac_tag_generation() and
hmac_tag_validation is used to generate a valid tag,
and authenticate the validity of a (message,tag)-pair,
respectively. The hmac_tag_validation function re-
turns 1 if the (message,tag)-pair is valid and 0 if in-
valid.

SHA-256

The unkeyed SHA-256 algorithm is also accessible
through the interface displayed in Listing 18. Note
that an unkeyed cryptographic hash algorithm should
not be used to provide message authenticity and in-
tegrity directly.

Listing 18: SHA-256 Interface

void sha256_process_message(uint8_t *digest,

uint8_t *message, uint64_t size);

A.1.8. Hexadecimal encoding

In addition to the cryptographic algorithms, the Cryp-
toToolbox contains a hexadecimal encoder. The hex-
adecimal encoder is useful for printing the output of the
cryptographic algorithms in a printable format. Be-
cause the algorithms operate on buffers of type uint8_t,

each byte represents a number in the interval [0, 255].
However, only numbers in the interval [32, 255] repre-
sent printable characters, some of which are unintelligi-
ble. The hexadecimal encoder abates this problem by
interpreting each byte as a hexadecimal number. The
CryptoToolbox also provides a decoder that interprets
a buffer of hexadecimal numbers as uint8_t. The de-
coder is generally used in scenarios in which correctly
formatted input is needed to confirm the correct oper-
ation of an algorithm with official test vectors.

The interfaces for the hexadecimal encoder and de-
coder are displayed in Listing 19.

Listing 19: The Hexadecimal Encoder and Decoder In-
terfaces.

void hex_encode(char* output, const uint8_t* input

, int size);

void hex_decode(uint8_t* output, const char* input

, int size);

B. Algorithm Applications

This appendix contains examples of how cryptographic
algorithms from the CryptoToolbox may be applied to
obtain data confidentiality, data authenticity, or both.

B.1. Encryption and decryption using
Rabbit

Listing 20: E-block implemented with Rabbit for data
confidentiality

#include "rabbit.h"

#include <cstring> // for memcpy

int main()

{

/* RABBIT SETUP */

rabbit_state cs;

uint8_t key[16] = {0};

uint8_t iv[8] = {0};

rabbit_load_key(&cs, key);

/* SETUP FINISHED */

/*One buffer for plaintext and one

buffer for the ciphertext and IV*/

uint8_t plaintext[DATA_SIZE];

uint8_t message[8+DATA_SIZE];

while(1)

{

/* Get new data */

plaintext <- LoadData();

17



Modeling, Identification and Control

/* RABBIT ENCRYPT */

std::memcpy(message, iv, 8);

rabbit_load_iv(&cs, iv);

rabbit_process_packet(&cs, &message[8],

plaintext, DATA_SIZE);

(*(uint64_t*)iv)++;

/* ENCRYPT FINISHED */

/* Transmit (IV || Ciphertext) */

Transmit(message);

}

}

Listing 21: D-block implemented with Rabbit for data
confidentiality

#include "rabbit.h"

int main()

{

/* RABBIT SETUP */

rabbit_state cs;

uint8_t key[16] = {0};

rabbit_load_key(&cs, key);

/* SETUP FINISHED */

/*One buffer for plaintext and one

buffer for the ciphertext and IV*/

uint8_t plaintext[DATA_SIZE];

uint8_t message[8+DATA_SIZE];

while(1)

{

/* Receive message (IV || Ciphertext) */

message <- Receiver();

/* RABBIT DECRYPT */

rabbit_load_iv(&cs, message);

rabbit_process_packet(&cs, plaintext, &message

[8], DATA_SIZE);

/* DECRYPT FINISHED */

/* Pass on the data */

Accept(plaintext);

}

}

B.2. Authentication and verification using
HMAC-SHA-256

Listing 22: E-block implemented with HMAC-SHA-
256 for data origin authenticity

#include "hmac.h"

#include <cstring> // for memcpy

int main()

{

/* HMAC-SHA-256 SETUP */

hmac_state as;

uint8_t a_key[32] = {0};

hmac_load_key(&as, a_key, 32);

/* SETUP FINISHED */

/* One buffer holds the plaintext,

and the other holds the plaintext

and the 32-byte tag. */

uint8_t plaintext[DATA_SIZE];

uint8_t message[DATA_SIZE+32];

while(1)

{

/* Get new data */

plaintext <- LoadData();

/* COMPUTE TAG */

std::memcpy(message, plaintext, DATA_SIZE);

hmac_tag_generation(&as, &message[DATA_SIZE],

plaintext, DATA_SIZE, 32);

/* TAG GENERATION FINISHED */

/* Transmit (Plaintext || Tag) */

Transmit(message);

}

}

Listing 23: D-block implemented with HMAC-SHA-
256 for data origin authenticity

#include "hmac.h"

int main()

{

/* HMAC-SHA-256 SETUP */

hmac_state as;

uint8_t a_key[32] = {0};

hmac_load_key(&as, a_key, 32);

/* SETUP FINISHED */

/* One buffer holds the plaintext,

and the other holds the plaintext

and the 32-byte tag. */

uint8_t plaintext[DATA_SIZE];

uint8_t message[DATA_SIZE+32];

while(1)

{

/* Receive message (Plaintext || Tag) */

message <- Receiver();

/* HMAC-SHA-256 VALIDATE MESSAGE */

if (!hmac_tag_validation(&as, &message[

DATA_SIZE], message, DATA_SIZE, 32)){

/* TAG IS INVALID */

continue;

18



P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

} else {

std::memcpy(plaintext, message, DATA_SIZE);

}

/* MESSAGE VALIDATION FINISHED */

/* Pass on the data */

Accept(plaintext);

}

}

B.3. Authenticated encryption using
Rabbit and HMAC-SHA-256

Listing 24: E-block implemented with Rabbit and
HMAC-SHA-256 for data confidentiality
and data origin authenticity

#include "rabbit.h"

#include "hmac.h"

#include <cstring> // for memcpy

int main()

{

/* RABBIT SETUP */

rabbit_state cs;

uint8_t key[16] = {0};

uint8_t iv[8] = {0};

rabbit_load_key(&cs, key);

/* SETUP FINISHED */

/* HMAC-SHA-256 SETUP */

hmac_state as;

uint8_t a_key[32] = {0};

hmac_load_key(&as, a_key, 32);

/* SETUP FINISHED */

/* Buffer for plaintext, and

(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];

uint8_t message[8+DATA_SIZE+32];

while(1)

{

/* Get new data */

plaintext <- LoadData();

/* RABBIT ENCRYPT */

std::memcpy(message, iv, 8);

rabbit_load_iv(&cs, iv);

rabbit_process_packet(&cs, &message[8],

plaintext, DATA_SIZE);

(*(uint64_t*)iv)++;

/* ENCRYPT FINISHED */

/* COMPUTE TAG OVER IV AND CIPHERTEXT,

PLACE BEHIND IV AND CIPHERTEXT */

hmac_tag_generation(&as, &message[DATA_SIZE

+8], message, DATA_SIZE+8, 32);

/* TAG GENERATION FINISHED */

/* Transmit (IV || Ciphertext || Tag) */

Transmit(message);

}

}

Listing 25: D-block implemented with Rabbit and
HMAC-SHA-256 for data confidentiality
and data origin authenticity

#include "rabbit.h"

#include "hmac.h"

int main()

{

/* RABBIT SETUP */

rabbit_state cs;

uint8_t key[16] = {0};

rabbit_load_key(&cs, key);

/* SETUP FINISHED */

/* HMAC-SHA-256 SETUP */

hmac_state as;

uint8_t a_key[32] = {0};

hmac_load_key(&as, a_key, 32);

/* SETUP FINISHED */

/* Buffer for plaintext, and

(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];

uint8_t message[8+DATA_SIZE+32];

while(1)

{

/* Receive message (IV || Ciphertext || Tag)

*/

message <- Receiver();

/* HMAC-SHA-256 VALIDATE MESSAGE */

if (!hmac_tag_validation(&as, &message[8+

DATA_SIZE], message, DATA_SIZE+8, 32)){

/* TAG IS INVALID */

continue;

}

/* MESSAGE VALIDATION FINISHED */

/* RABBIT DECRYPT */

rabbit_load_iv(&cs, message);

rabbit_process_packet(&cs, plaintext, &message

[8], DATA_SIZE);

/* DECRYPT FINISHED */

/* Pass on the data */

Accept(plaintext);

}

}

19



Modeling, Identification and Control

B.4. Authenticated encryption using
AEGIS

Listing 26: E-block implemented with AEGIS for data
confidentiality and data origin authenticity

#include "aegis_128.h"

#include <cstring> // for memcpy

int main()

{

/* AEGIS SETUP */

aegis_state cs;

uint8_t key[16] = {0};

uint8_t iv[16] = {0};

aegis_load_key(&cs, key);

/* SETUP FINISHED */

/* Buffer for plaintext and

(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];

uint8_t message[16+DATA_SIZE+16];

while(1)

{

/* Get new data*/

plaintext <- LoadData();

/* AEGIS ENCRYPT & AUTHENTICATE */

std::memcpy(message, iv, 16);

aegis_encrypt_packet(&cs, &message[16], &

message[16+DATA_SIZE], plaintext, iv, iv,

16, DATA_SIZE);

(*(uint64_t*)iv)++;

/*Transmit (IV || Ciphertext || Tag) */

Transmit(message);

}

}

Listing 27: D-block implemented with AEGIS for data
confidentiality and data origin authenticity

#include "aegis_128.h"

int main()

{

/* AEGIS SETUP */

aegis_state cs;

uint8_t key[16] = {0};

aegis_load_key(&cs, key);

/* SETUP FINISHED */

/* Buffer for plaintext and

(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];

uint8_t message[16+DATA_SIZE+16];

while(1)

{

/* Receive message */

message <- Receiver();

/* AEGIS VALIDATE & DECRYPT */

if (!aegis_decrypt_packet(&cs, plaintext, &

message[16], message, message, &message

[16+DATA_SIZE], 16, DATA_SIZE))

{

// Invalid msg

continue;

}

/*COMPLETED*/

/* Pass on the data */

Accept(plaintext);

}

}

20



Petter Solnør
Authenticated Encryption M

ethods for Feedback Control System
s

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Petter Solnør

Authenticated Encryption Methods for
Feedback Control Systems

Master’s thesis in Cybernetics and Robotics

Supervisor: Thor I. Fossen

December 2020


	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	Background
	A motivating example

	Related Work
	Previous Work
	Problem Definition
	Main Contributions
	Organization of the Thesis

	Cryptographic Methods
	Algebra
	Confidentiality
	Attack models
	Block ciphers
	Stream ciphers

	Integrity and Message Authenticity
	Cryptographic hash functions
	Message authentication codes
	Attack models
	A word of caution

	Authenticated Encryption
	Generic compositions
	Authenticated encryption modes
	Dedicated authenticated encryption algorithms

	Availability
	Synchronization
	Traffic expansion


	The Encryption Laboratory
	Hardware Setup
	Latency measurements
	System simulation

	Software Setup
	Endianness
	Serialization and deserialization
	Latency measurements
	System simulation


	Applied Cryptography in Feedback Control Systems
	Analysis of Previous Proposals
	Electronic codebook encryption in feedback control systems
	The secure transmission mechanism

	Authenticated Encryption for Feedback Control Systems

	Cryptographic Algorithms and the CryptoToolbox
	Algorithm Implementations
	Advanced encryption standard
	HC-128
	Sosemanuk
	Rabbit
	ChaCha
	AEGIS
	Keyed-hash message authentication code

	Hexadecimal Encoding
	Applications
	Encryption using Rabbit
	Authentication and verification using HMAC-SHA-256
	Authenticated encryption using AEGIS


	Implementing Secure Signal Transmission in Feedback Control Systems
	Secure transmission using Encrypt-then-MAC
	Transmitter
	Receiver

	Secure transmission using AEGIS
	Transmitter
	Receiver


	Practical Experiments and Verification
	Performance Tests of the CryptoToolbox Implementations
	Quantitative Results and Discussion
	Qualitative Experiments
	Back to the motivating example
	Application in the ROS environment

	Summary

	Conclusion
	Summary of Findings
	Research question 1
	Research question 2
	Research question 3
	Research question 4
	Research question 5

	Future Work

	Reference List
	A Cryptographic Toolbox for Feedback Control Systems

