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Problem Description

The main objective of this project is to improve upon the general behavior and
position control of the Arduino IR. This includes finding better way of interfacing
hardware, making the robot more reliable and investigate a new position controller.
The goal of the project can be divided into three mayor parts:

1. The first part is to asses the Arduino IR robot by conducting a performance
test using motion tracking equipment in a dedicated motion tracking lab.
Investigate hardware and software issues related to the Arduino IR robot
will also be a focus.

2. The next part is to develop solution motivated by fixing any issues, add
missing functionalities and improve the robot.

3. The third part is dedicated to investigate a new form of position control for
the robot. This involve develop and implementation of a feedback control
system, using a set of developed PID controllers. The new controller shall
also be put trough a series of performances tests in the motion tracking lab.

One can summarize the main approach to the problem as
• Improve the general behavior of the robot and develop a new position con-

trol system
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Summary and conclusion

This report, associated with the course TTK4551 - Engineering Cybernetics, Spe-
cialization project, describe the implementation and development done on the Ar-
duino IR robot. At the start of the project a performance test on the robot was
conducted in the motion tracking lab. The test reviled sporadic and random move-
ment and the robot was deemed nonoperational at the start of the project.

During the project three significant hardware issues were identified. One of these
issues was short circuiting between the Arduino board and the PCB extension card.
In addition, several issues in the provided software for the Arduino IR robot were
identified. Among other things, errors in hardware drivers and missing features.
The main goal for the project was shaped by these observations. As a result, the
focus was to fix the hardware issues, improve the general behavior of the robot.
This was motivated by building a solid foundation for the new position controller.

Most of the drivers on the Arduino 2018 saw mayor to minor changes. This was
motivated by making the position controller as accurate as as possible. The struc-
ture of the running tasks was streamlined to increase responsiveness of the robot.
The new position controller used the notion of artificial attractive potential field.
To support this, a method for discrete PID control was developed, where the new
position controller uses two of these. One for minimizing the distance between the
robot current position and a target position. The second minimize the deviation
between the angle to target and the orientation of the robot. A motor controller
was developed to manipulate the motors in such a way that one could controller
the speed and orientation of the robot using two inputs. The outputs of the two
PID controllers was used as inputs for the motor controller.

Moreover, the new implementation was tested in the motion tracking lab. Three
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position tests were conducted; "Square test", "Staircase test" and "Zik Zak test".
In addition, two simple fault tolerance test were performed by introducing hard-
ware fault to the system. From the different position test one could see a response
that resulted in fast and smooth movement of the robot. There was observed an
consistent offset proportional to the traveled distance. This was in the range of 50
- 150 millimeters. Although, the robot was able to reach a target position within
acceptable deviations, as well as, consistently being successful in returning to the
starting position.

The fault tolerance test reviled a weakness with the controller. As the controller
depends on the position and orientation of the robot, the accuracy is determined
by how good the estimation is. Despite this, the fault tolerance test also reviled
the strength of the new implementation, as the robot was able to maneuver despite
introducing simulated faults.



Preface

The content presented in this report is affiliated with the course TTK4551 - En-
gineering Cybernetics, Specialization project. This is a 7.5 credit course with ex-
pected work load of 11.25 hours per week. The project is given by supervisor Tor
Onshus. This report act as standalone document describing the work carried out in
the project.

The content that was provided at the start of the project, in which forms the found-
ation of said work includes: Source code for the selected robot, source code for
the server and reports, documents and other related text based content carried out
by students from earlier years. For equipment, a workstation was provided, ac-
cess to the motion tracking lab in B333, Campus NTNU, Gløshaugen, table with
test track and oscilloscope for measurements. As this project was carried out dur-
ing the spring of 2020, the Covid-19 pandemic and the following national meas-
ure imposed on the public, impacted the planned road map. As the Campus was
closed during this period, critical equipment was not available for half of the pro-
ject period. This meant that some planned work was not feasible.

Special thanks to Tor Onshus for providing source material, vital guidance and
consulting during the project. A thanks also goes to the follow students in 313b for
providing discussion and useful information. In addition, tanks to fellow student
Arild Stenset for lending private soldering bit for carry out vital repairs on the
robot.
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Chapter 1

Introduction

The selected topic for this project revolve around small robots for mapping and
localization given by supervisor Tor Onshus. The project is part of a collective
collaboration under the nickname The Lego project that dates back to 2004. As of
writing this report, the collective consist of four small robots. The robots can be
categorized as:

• The Arduino IR robot
• The Arduino LiDAR robot
• The NTX robot
• The nRF52 robot

The robots communicate with a main server over wireless BLE (Bluetooth Low
Energy) communication. The server is implemented by previous students using
the programming language Java. The robots have various devices used for map-
ping, including IR-sensors and LiDAR. This data is sent to the server, which carry
out the localisation and mapping using an implementation of SLAM (Simultan-
eous localization and mapping). The server sends commands to the robots in the
form of position coordinates, in which, the robot respond to by maneuvering to the
target location. The software running on the robots are manly developed using the
programming language C.

From the start in 2004, each year students are tasked with finding ways of improv-
ing and adding new useful functionalities to the robot. The collective is motivated
by using off the self, easily available parts and scientific methods for making robust
and functional robots.

1



1.1. Problem description 2

1.1 Problem description
The selected focus for this project and report is the Arduino IR robot. The robot
have suffered lack of maintenance over the years and is in bad structural shape.
The software running on the robot dates back to 2016 and was original made by
Ese [5]. Over the years various small changes have been made to it, without any
unified direction. A consequence of this is the accumulation of small bugs and er-
rors that have resulted in overall reduced performance. Also, as stated by Nilssen
[13], the code appears unclear and not intuitive.

For the reason stated above, the main objective of this project is to improve upon
the general behavior of the robot and how the robot is controlled when maneuv-
ering. This includes finding better way of interfacing hardware, making the robot
more reliable and investigate a new scheme for position control. The goal of the
project can be divided into three parts:

1. The first part is to asses the Arduino IR robot by conducting a performance
test using motion tracking equipment in a dedicated motion tracking lab.
The focus will also be in investigate hardware and software issues related to
the Arduino IR robot

2. The next part is to develop solution motivated by fixing any issues, add
missing features and improve the robot.

3. The third part is dedicated to investigate a new form of position control for
the robot. This involve develop and implementation of a position feedback
control system, using a set of developed PID controllers. One will also
conduct performance tests for validating the system.

One can summarize the main approach to the problem as
• Improve the general behavior of the robot and investigate new position con-

trol system
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1.2 Project scope
To make a clear deviation between own implementation and previous work related
to the robot, all software and hardware present before the project will be referred
to as Arduino 2018 in this report. When referring to Master thesis or project from
other students, their name, type of assignment and date, as well as, citation will
be given. Including the introduction, this report can be structured in the following
way
• Chapter 1 - Introduction
• Chapter 2 - Background: Here the reader will be presented with the neces-

sary theory and definition related to the project.
• Chapter 3 - System description: This chapter focus on providing an overview

of the Ardiuno 2018 system, including both hardware and software.
• Chapter 4 - Performance test and Issues: The chapter is dedicated to describe

and detail how the Ardiuno 2018 system performs and discovered issues.
• Chapter 5 - Implementation: Description of the implementation made for

making the robot operational, improving the behavior of the robot and de-
velopment of new position controller.
• Chapter 6 - Result: In here, the reader will be presented with the result from

the performance tests.
• Appendix - Provide theory related to rigid motion.



Chapter 2

Background

2.1 Theory
Feedback control
For single input, single output feedback control a PID compensator can be used.
The control gain u for the PID compensator can be defined as

u(t) = Kpe(t) +

∫
e(τ)dτ +

d

dt
e(t) (2.1)

The error e is defined as
e = yr − ym (2.2)

where yr is the reference signal and ym is the measured or sampled signal.[10] The
continuous form of eq. (2.1) can be also be expressed as the transfer function

C(s) =
u(s)

e(s)
= KP +

KI

s
+ sKD (2.3)

A discrete version of the continuous PID compensator can be obtained by trans-
forming eq. (2.3) using bilinear z-transform

s =
2

Ts

z − 1

z + 1
(2.4)

where Ts is the sampling time. [6] This result in the following transfer function

C(z) =
U(z)

E(z)
=

b0 + b1z
−1 + b2z

−2

a0 + a1z−1 + a2z−2
(2.5)

which can be transformed to the following difference equation [6]

u[k] = −a1
a0
u[k − 1]− a2

a0
u[k − 2]

+
b0
a0
e[k] +

b1
a0
e[k − 1] +

b2
a0
e[k − 2]

(2.6)
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Path planning
Path planning is method of position control that uses an artificial attractive poten-
tial field Uatt. In this scheme, the potential field is used to guide the search for
an object that moves from its current location to an specified final location. The
function describing the field Uatt should be monotonically increasing with the dis-
tance.[10] One such field is the Euclidian distance between a current location q
and the final location qfinal

pf (q) = ||q − qfinal||

2.2 Digital Systems
This section concerns with defining and giving an overview of background related
to the system of the robot. The reader will be present with description of terms
and methods used in Embedded and digital systems. The section provide an over-
view of topics related to real-time systems and FreeRTOS - an real time kernel for
embedded systems.

Protocols and Interfaces
PWM
Pulse width modulation or PWM is a method for modulation a digital output to
generate analogue signals. It generates a pulse train, where the magnitude of the
signal is constant and the width of the pulse is modulated. The width of the pulse
is described as duty cycle and specify the percentage of the signals high state and
the amount of low state for a given frequency. [23]

ADC
Analog to Digital Converter or ADC is a device that converts an analog signal to
digital signal. It can be used to measuring voltage and other analog signals. An
ADC device uses an appropriate circuits to generate a voltage proportional to the
quantity to be measured. [23] The resolution of the ADC dictates the number of
discrete values it can generate for a given voltage rate. [3]

USART
The Universal Synchronous and Asynchronous serial Receiver and Transmitter is
a serial communication protocol. It is used for sending and receiving serial data
to and from devices by converting parallel data to a serial bit stream using a shift
register. [3]

SPI
The Serial Peripheral Interface is a type of synchronous master-slave protocol, that
provides a simple interface between microcontrollers and other small peripheral
devices. Devices uses a common clock signal which is generated by the designated
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master device. Slave devices synchronize the acquisition of received data by using
the clock signal. [3]

Real-time System
A definition for Real-time System can be taken from (Burns & Wellings 2005)
which refers to (Randell 1995): [1] A real-time system is a system that is required

to react to stimuli from the environment within time intervals dictated by the envir-
onment

In real-time system on can define two form of deadlines:
• Soft real-time: A deadline is stated, but not meeting the deadline would not

render the system useless.
• Hard real-time: A deadline is defined and breaching the deadline would

render the system useless, or result in failure of the system. [11]

For resources shared between different task or threads ensuring mutual exclusion is
of importance. Mutual exclusion means that a task or thread have exclusive access
to a resource until it is returned to a consistent state. [11] Mutual exclusion and
synchronization between task can be achieved with message passing. This involves
using some form of First-In First-Out queue system where each task has its own
queue. [1] Semaphores are another method that can be used. A Semaphores is an
integer that can be initialized but can only be altered by atomic methods. These
methods increments or decrements the value and ensures mutual exclusion [4]

FreeRTOS
FreeRTOS is a real-time kernel for use in small embedded systems. It is owned,
developed and maintained by Real Time Engineers Ltd and is provided for free
to develop real-time operation software. [11] The FreeRTOS API provides an in-
terface for concurrent operation of multiple task on a single processor. It allows
applications to be organized as a collection of independent threads of execution.
[11]

The FreeRTOS provides among other thing the following standard features:

• Preemptive or cooperative operation
• Priority assignment
• Task notification
• Queues
• Semaphores



Chapter 3

System description

This section is dedicated to give an overview of both hardware and software system
for the Arduion IR robot as it was before the project start. The chapter can be
divided into two parts.

1. Hardware description
2. Software description

The first section focus on how the robot is built, what components the robot uses
and how these interact with each other. Next, the second part deals with describing
how the robots software is structured, what kinds of drivers and interfaces that
are present, as well as overview of the task that are originally defined. One can
summarise the main contribution for this specific system to Ese (Master 2016)
[5], Andersen & Rødseth (Master 2016) [20], Lien (Master 2017) [8] and Nilssen
(Master 2018) [12].

7
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3.1 Hardware system description
Main components

Figure 3.1: Picture of the Arduino IR robot. Photo: Myrvang 2020
.

Figure 3.1 shows a picture of the robot. Overall the Arduino IR robot consist of
the following main parts:

Atmega 2560 Rev 3 8-bit AVR RISC-based microcontroller.
nRF51422 BlueTooth Low Energy dongle
Dual Motor Driver Bidirectional motor controller card
Motor Encoders Two neodymium 8-pole magnets and two hall-effect sensors
IMU LSM6DS3 Six Degrees of Freedom inertia sensor
Sharp G2D12 Infrared Proximity Sensors
Servo PWM controlled servo
"Li-ion" Rechargeable 11.1 volt Litium-ion battery
PCB shield Extension card for the Atmega 2560 [12]

The Atmega 2560 microcontroller is the main logic controller for the robot. It runs
all the necessary software on the robot. The nRF51 dongle is responsible for trans-
mission and reception of data from the server. The motor controller card controls
the direction and speed for the two DC-motors. [8] The motor encoders, mounted
on each of the two motors, generates pulses that can be counted for measuring the
speed and travel of the wheels. [12] The IMU is used to find the orientation of the
robot. The infrared proximity sensor is used for measuring distance and mapping
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the surroundings. [12] The robot uses four of them and are mounted on the servo.
The litium-ion battery is the main power supply for the system on the robot. Fig-
ure 3.2 shows the layout of the main components used in the system and how they
communicate with each other.

Figure 3.2: Components layout for the Arduino IR lego robot.[20] Illustration: Myrvang
2020

.

Arduino Mega 2560
The Arduino Mega 2560 board uses the Atmega 2560 chip and have 54 general
purpose I/O lines. Figure 3.3 shows the specific board. The Atmega 2560 chip
is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture
and have 54 general purpose I/O lines. The controller have 256 Kb in-system
programmable flash and 8 Kb of SRAM. [2]
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Figure 3.3: The Arduino Mega 2560 card. Source: [17]
.

The feature of the microcontroller includes, but not limited to; [2]
• Real time counter
• Six Timer/counter, four 16-bits and two 8-bits
• Interrupt support
• Four USART modules
• 10-bit ADC
• Watchdog Timer
• SPI serial port

nRF51422
The nRF51 dongle is responsible for transmission and reception of data from the
server. The nRF51422 dongle is an ultra-low power 2.4 GHz wireless system on
chip. The dongle can be seen in figure 3.4. It support Bluetooth Low Energy and
can be used for, among other things, remote control and Personal area networks.
[14]

Figure 3.4: The nRF51422 dongle. Source: [19]
.

IMU LSM6DS3
The IMU LSM6DS3 is an integrated circuit featuring 3D digital accelerometer and
a 3D digital gyroscope, is used to measure motion and orientation. [9] The device
supports SPI which can be used to access the registers in the device. The register
can be used to control the device behavior and retrieve raw angular rate [dps] and
linear acceleration [g].
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Figure 3.5: The IMU LSM6DS3 sensor. Source: [18]
.

Sharp G2D12
The sensor Sharp G2D12 is a distance measuring sensor unit, with a range of 10
to 80 cm. [21] The device outputs a voltage corresponding to the detected distance
and four ADC channels on the Atmega2560 controller is used to measure this
voltage.
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3.2 Software system description
As a continuation from the hardware description of the robot, this section focus on
the software that runs on the robot and how it is implemented. As an overview,
the robot runs several concurrent task using the real-time kernel FreeRTOS. The
robot communicate with a server and exchange update and order messages. The
server was developed by Andersen & Rødseth [20] and is implemented using the
Java programming language. Arduino 2018 also includes implemented drivers for
controlling the two DC motors, reading sensor data from the IMU, the IR sensor
and the encoders, as well as handling communication with the server.

Drivers
The Arduino 2018 have the implemented drivers for the two motors, the servo, IR
sensor, IMU and server communication. The motor driver implements method for
controlling the speed and direction of the two motors. It uses a 8-bit timer gener-
ating a PWM signal for controlling the speed of the motors. The direction is set by
activating and deactivating specific output pins. The state of each motors is stored
in a pointer variable. [5] The servo driver is used for rotating the Sensor tower
based on a angle input. The driver uses a PWM signal for setting the position of
the servo and static predefined array for mapping between the angle input and the
PWM signal.[5] The IR sensor driver implements methods for reading the for four
ADC channels corresponding to the four IR sensors. It maps the raw sensor data
to distance using predefined array. [24] [5]

A network stack forms the basis for the communication with the server and consist
of four layers. The top layer of the stack is responsible for converting Order,
Update, handshake and other messages to a arrays of bytes. The next layer handles
multiple connections and connection id, as well as, sending acknowledge messages
to the server. Continuing, the third layer is responsible for encoding and decoding
transmitted and received packages. The usart layer is responsible for transmitting
the bytes holding the messages. Reception and storing is handled by a interrupt
service routine. [8]

Tasks
There are total of five task that runs on the Arduino IR robot, whereas four of them
can be categorised as the main tasks of the system. [5] The four main tasks are:

1. Communication task
2. Position estimation task
3. Position control task
4. Sensor tower task
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Communication task
The Communication task handles the communication to and from the Java server.
It uses a form of acknowledge based messaging, where the robot send a response
to received messages. On power-up or reset of the robot, the task initiate the con-
nection to the server through sending a connection and handshake message. The
handshake message contains the name of the robot and physical parameters. The
task also activates a additional sender task, that sends data to the server every 20
ms. The communication task uses a global data structure for reception of data.
This variable is handled by temporally disables all system interrupts. Incoming
messages contains commands and includes among other things, set or resetting a
global handshake flag for activating the other tasks. [8]

Position Estimation task
The Estimation task is responsible of computing the position and orientation of the
robot based on sensor reading from the IMU and wheel encoders. The task runs
periodically and is activated using the global handshake flag set in the communic-
ation task. Ticks from the wheel encoders are sampled for each motor. From these
reading the distance traveled and angle for each wheel is computed based on the
arc length of a circle. The task also samples the angular rate from the IMU. This
is processed by multiplying the value by a given period. The position estimate is
stored in a global variable and semaphore is used for synchronize the variable. [5]

Position controller task
Position controller task handles the motion-control of the robot and uses two simple
speed controller for each wheels. The task is activated and deactivated based on
the global handshake flag. It takes in a global variable for the estimated position
and orientation, as well as the set-point coordinates. The set-point is distributed
from the communication task using a queue. The two controllers are simple im-
plementation of the PID controller in eq. (2.1). It uses predefined threshold for
handling various angels between the robot and the set-point and in some cases
constant speed gain. The task computes delta values δx, δy between the estimated
position and set point. These are used to compute the distance using eq. (2) and
angle using eq. (3) for the target value and current position. An reference for the
left and right motor is computed by using ticks from the wheel encoder. [12]

Sensor Tower task
This task runs periodically and is responsible to read the four IR sensor on the
sensor tower and rotate the tower using the servo. The amount of rotation for the
servo is based on the direction of the two motors. The Sensor Tower task is also
responsible for sending the update message to the server, as well as sending idle
messages after a counter have expired. [12]



Chapter 4

Performance of the Arduino 2018
system and issues

The problem description in section 1.1 described that the first task was to asses
the performance of the robot. During the span of the project several hardware
and software related issues were discovered. The robot does not seem to be very
well behaved running the Arduino 2018 software, and during testing sporadic and
random movement of the robot was observed. The following chapter will detail
this and can be divided into two mayor parts:

• Testing of the system
• Issuses

Part one will describe how the system was tested, as well as, discuss the obtained
result. The next part details the discovered issues. Again, one can divide the
second part into two sub parts:

• Hardware issues
• Software issues

14
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Testing of the system
For testing the Arduino 2018 system, a so called Square test was performed. The
test was carried out in a motion tracking lab for recording the true position of the
robot. The square test consist of issuing a series set-point coordinates to the robot
using the Java server. For the test, the following coordinates was used

SP: SP1 SP2 SP3 SP4

Coordinate [mm] (1000 , 0) (1000 , 1000) (0 , 1000) (0 , 0)

0 200 400 600 800 1000 1200 1400 1600
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Figure 4.1: Square test running the Arduino 2018 software
.

Figure 4.1 shows the result from the square test. One can observe that the robot
manages to complete SP1 and SP2, but fails to complete the third. From the plot
one can see that the robot starts to move in the opposite direction, before spiraling
around its own axis. At that point one attempted to abort the test by disconnecting
the robot, which resulted in the robot speeding up and became completely uncon-
trollable. It was then necessary to manually reset the robot.
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SP Value [mm] End [mm] textbfStart-Finish time [s]

SP1 (1000 , 0) (1324.0 , −81.0) ∼ 24.7s
SP2 (1000 , 1000) (1308.1 , 1135.2) ∼ 31.7s
-
-

Table 4.1: Result from Square test running Arduino 2018.

One thing that is not shown in figure 4.1, is the complete behaviour of the robot.
From table 4.1 one can see that the robot used upward to half a minute to cover
a distance of 1 meter. It also went back and fourth when maneuvering and had
jagged motion for each motor. There was also a problem of getting the robot to
start the test in the first place. This is part to the fact that the robot sends messages
every 20 ms. [8] This causes the server to sporadically crash and reconnecting
was necessary by resetting the robot. This behavior was consistently observed
over several trials. From the observed result one concluded that the robot was not
operational at the time of project start.

Issuses
Hardware
For hardware related issuses, there were discovered especially two issues resulting
in failure of the system:

1. Shorting between the extension card and a shield covering the USB port on
the Arduino board.

2. Swapped wires for a 10-pin cable running from the extension card and the
motor controller card.

Figure 4.2 shows the USB port (bottom) and the extension card. Soldering points
for the the black 10-pin comes in contact with the USB shield.
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Figure 4.2: Picture showing of the shorting issues
.

Figure 4.3 shows the 10-pin connector running from the the extension card to the
motor controller card. (Note: the header in the picture have the right connection)

Figure 4.3: Picture showing the 10-pin connector
.

Another issues was a bad soldering point connecting the battery to a fuse on the
robot. This eventually broken off, resulting in somewhat hazardous handling of
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the robot. Figure 4.4 shows a picture of the fuse.

Figure 4.4: Picture shown the connection for the fuse
.

Software
Including the behavior observed in the test, other issues and lack of functionalities
were also discovered

• There is no functionalities for reconnecting to the server in the event of
connection losses
• System crash when the robot is disconnected before it have reached the tar-

get coordinate.
• The robot send to many messages and to fast causing the server to crash.
• System running out of RAM from bad dynamic memory management.
• Inefficient way of converting sensor data and actuator outputs.
• The servo does not move when the robot is moving.
• Uneven and insufficient control of the motors.
• Inadequate control for maneuvering to a given target coordinate.
• Drifting in the IMU sensor readings.
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Some of the issues related to the software can be categorised as:

• Lack of readability and clear interfaces
• Convoluted code
• Extensive memory use

As this is a real-time system with multiple concurrent tasks, the behavior of the ro-
bot is in some notion non-deterministic. This makes it hard to pin down the exact
points of failure. There is also the accumulation of small, seemingly insignificant
bugs, that combined result in reduce performance and unexpected behavior. This
in combination with lack of readability and convoluted code makes it difficult to
debug the system. The whole code lacks readability and have in many cases weak
interfaces. The problem have also be identified in earlier reports. [13]

An example of bad interfacing is the motor drivers that activates all the neces-
sary register for controlling the motors, but also activates external interrupt for the
nRF51 dongle. Another is the sensor tower task that is responsible for sending up-
date to the server, which is an odd choice when one have defined a communication
task.

An example of odd design choices is the use of a static defined array for mapping
angle to PWM signal for controlling the servo. This is also apparent for mapping
ADC voltage readings from the four IR sensors to distance in cm. This is a 4×256
sized matrix, where each element is one byte, resulting in at least 1Kb for storing
the variable.

The current implementation also uses up to 80% of the available RAM. The net-
work task uses dynamic memory allocation. There is guards and events for freeing
this memory, but it have been observed that the robot runs out of RAM, meaning
there is no guarantee that it always frees the memory. An check in the main-file
for this error is also defined, indicating that this have been a problem in the past.



Chapter 5

Implementation

From the content presented in the previous chapter, it was concluded that the robot
was not operational at the start of the project. The following chapter will present
the changes that were made to make the robot operational and improvements made
to the system. The chapter is also dedicated to document and describe how the new
position controller for the robot was implemented. The chapter can be divided into
three parts:

1. Hardware fixes
2. Software implementation and improvements
3. Position controller for the robot

5.1 Hardware fixes
As described in chapter 4 there were discovered three mayor hardware faults. This
was the shorting between USB port and the extension card, swapped wires in
header connector and broken connection for the fuse. A considerable amount of
time was used to find the first two issues, due to the nature of both. In both cases,
the majority of the hardware and connection on the robot was checked. For the
shorting issues it was found that one or more solder terminals for the a 10-pin
male header connection on the extension card came in contact with a metal shield
covering the USB port on the Arduino card. Among other things, resulted in the
left motor failing to rotate backwards.

In this case, an extensive debugging were carried out on the robots electronics.
This involved checking every connection on the extension card for short circuit-
ing using a multi-meter. The problem was hard to pin down, as it depended on
the amount the extension card was pressed down on the Arduino card. Due to this

20
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"Heisenbug" effect, the fault was discovered late in the project and hampered other
developments. Due to limited resources, it was partial fixed by isolating the USB
with electrical tape.

For the swapped wires, the robot was completely taken apart and every wire run-
ning to the extension card were checked. This fault was odd, as some tools were
required to open the plastic cover off the header pin and would normally not come
off naturally or without using excessive force. Due to the events described in
the Preface, soldering equipment dedicated to integrated circuit was off limited.
Because of this, the broken connector running to the fuse was partial fixed by sol-
dering equipment designed for electrical equipment in cars.

5.2 Software implementation and improvements
The software improvements are limited to parts that directly and indirectly affects
the performance of the position control for the robot. The methods and imple-
mentations described in this section all forms the backbone for the new position
controller, which will be detailed later on. It is important to note that the new
implementation uses the Arduino 2018 as a basis described in 3.2. Therefore, the
most significant changes to the software will be presented. The section can be
structured into the following parts:

1. Utility library
2. Drivers
3. Interfaces
4. Tasks

In the following sections will also briefly describe how the following issues where
addressed:

• Reduced memory use and removal of dynamic memory allocation
• Improvement to the motor, IR sensor, IMU and communication drivers
• Abstraction for controlling the movement of the robot
• Watchdog timer for handling system crashes
• Improvement to the task implementations
• Improved the responsiveness of the system
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Utility library
This library was added such that different methods and functionalities not directly
related to the robot could easily be reused. It is also indented reduced the repetition
of code and memory impact. This is an extension and improvements of the original
implementation that had small collection of these in a file called functions. The
library includes functionalities, such as operations on arrays, various math related
functions, control flow functions and type operations. Some of the most important
methods are

Discrete PID A discrete PID implementation of eq. (2.3)
with the use of bilinear transform

Linear mapping Linear mapping of inputs values in the range [inmin, inmax]
to a output in the range [Outmin,Outmax]

Set/Rest Latch Software Set/Reset latch used for flag operations
Stack Interface for pushing and popping elements onto a Stack

with a predefined sized array

Discrete PID
To enable reusing a PID controller for various regularization task and providing a
robust controller for handling fast dynamics, an interface was made to provide this
functionality. The interface was developed by analytically transforming the con-
tinuous time PID controller in eq. (2.3) to the z-domain using bilinear transform.
From the resulting transfer function which has the from defined in eq. (2.5) a differ-
ence equation on the form eq. (2.6) was obtained. The parameters b0, b1, b2, a0, a1, a2
where analytically found to be

b0 = (4 + 2TsN)KP + (2Ts +NT 2
s )KI + 4NKD

b1 = −8KP + 2NT 2
sKI − 8NKD

b2 = (4− 2TsN)KP + (NT 2
s − 2Ts)KI + 4NKD

a0 = (4 + 2NTs)

a1 = −8

a2 = (4− 2NTs)

(5.1)

The discrete PID implementation uses a structure for storing the variables
uk, uk−1, uk−2, ek, ek−1, ek−2, computed weights and Ts,N . Three methods for
the PID controller where implemented:

1. INIT PID CONTROLLER

2. UPDATE PID WEIGHTS



5.2. Software implementation and improvements 23

3. PID CONTROLLER

The method INIT PID CONTROLLER computes the weights u and e with 5.1 based
on on the parametersKP ,KI ,KD, Ts, N . The method UPDATE PID WEIGHTS re-
computes b0, b1, b2 and allow changes of the weights on run time, as well as, para-
meter based PID control. The method PID CONTROLLER computes the control
input u and shift the previous value of uk and ek into uk−1, uk−2 and ek−1, ek−2.

Linear mapping
As the robot interface various hardware devices and have to scale different vari-
able from one range to another, a compact and small method for doing this was
sought after. A simple yet highly useful function called LINMAP was implemen-
ted and can be used to convert various input -to -output values. For a given input,
it calculates the output using the following relationship

In =
Outmax −Outmin

Inmax − Inmin
(Out−Outmin) + Inmin

Drivers
Atmega2560 drivers
Three new drivers for interfacing functionalities for the Atmega2560 were added
to the source code. These are external interrupt, watchdog timer and GPIO. The
GPIO driver is meant to simplify manipulation of the register for controlling the
IO-ports on the Atmega2560 micro-controller. For this, three function have been
made:

Configure Port pin Method for configure a IO-port as input or output
Set pin state Method for changing the state of a IO-port
Get pin state Method for extracting the bit value for a IO-port

Continuing, the ADC driver used for the IR sensors, as well as, the driver inter-
facing USART was changed. For the ADC driver an interface for selecting the
individual ADC channels have been implemented. A filtering scheme for ADC
readings is also employed, where a fixed sample mean have been implemented.

The original USART implementation had FreeRTOS elements in it, such as sema-
phores and accommodated only the specific communication with the server. This
was changed in favour of a more general USART driver. The driver implements
basic transmission of bytes or character, as well as, an array of character over the
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two USART port USART0 and USART2. It is implemented such that the two
other USART ports mention in section 3.1 can easily be added for latter use.

Motor driver
One of the task in the problem description was to improve the drivers such that it
accompanied the new position controller. For that reason, three significant changes
was made to the motor driver.
• The first is the resolution of the PWM for controlling the motors. This

is changed from 8-bit to 16-bit such that the range can be extended from
[0, 255] to [0, 2000].
• The second was to abstract away the need to input a specific PWM value

by making use of the LINMAP function described in section 5.2. The input
value is now in the range [0, 1000] and a corresponding PWM signal is
calculated for the motor speed.
• The last change is the addition of a method called GET_MOTOR_STATE for

getting the state of each motors. In the Arduino 2018, the direction of each
motor is stored as pointer values. Problem with this method is that it will
not give the exact state of each motor as it depends on the running time of
the tasks using the values. This is changed to a method that directly reads
the register that holds the value for the output pins controlling the motors.

Servo driver
The section 4 briefly stated that the problem with the servo driver was the use of
a static declared array for mapping between angle in degrees to a corresponding
PWM signal [22] As this is a problem of converting from one range to another, the
driver was changed to use the LINMAP function instead.

IR sensor driver
Following the convention established in the introduction of this section and ob-
servation made of the four IR sensors, it was found that this driver also needed
improvements. For making the IR sensor more memory efficient and easier to
modify, the static 1000 element array for mapping between ADc values and dis-
tance in cm, as mention in section 3.2, is now removed. This is replaced with the
LINMAP function.
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Interfaces
To further bridge the gap between the drivers and the task, as well as, bringing
more abstraction to the implementation, two new interfaces was developed. The
two interfaces are for controlling the speed and direction of the robot and sampling
data from the IMU sensor.

Motor controller
The main idea for this implementation was simplify further the controlling of the
speed and direction of the robot using the two mounted DC motors. A similar
design could be found in the Arduino 2018. The main difference the Arduino
2018 controller and the new controller is the number of inputs and the way the
direction and speed of each motor is handled. The motor controller is meant to
abstract away the intricate details of controlling a robot using two bidirectional
motors. The method uses a state based design and a form of joystick control where
the sign and magnitude dictates the direction and speed of the robot. The method
takes in two inputs xaxis and yaxis that controls the speed and direction of the robot.
The method can be divided into three parts:

1. Calculate direction based on the sign of input
2. Calculate turning speed
3. Set speed and direction for the left and right motor

First the direction is decided based on five axis region with the following rules:

Input (xaxis), yaxis Axis region

(0, 0) 0
(angle > 0, speed > 0) 1
(angle < 0, speed > 0) 2
(angle < 0, speed < 0) 3
(angle > 0, speed < 0) 4

Likewise for the first part, the second parts divide the calculation of the turning
speed in three cases. The amount of turning for the robot is not only dictated by
the angle input, but also the speed of the robot. For this reason, three turning mode
are defined, and two speed values Speed_increased and Speed_reduced.
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Turn mode Speed

Turn sharp Speed_increased = yaxis

Speed_reduced = yaxis

Turn normal Speed_increased = yaxis + xaxis

Speed_reduced = yaxis

Turn increased Speed_increased = yaxis + yaxis/xaxis/100
Speed_reduced = 0

The first case in the second part is based on a threshold value S, where exceeding
this causes opposite direction for each motor. The last part, sets the appropriate
speed and direction based on the axis region. Figure 5.5 shows a illustration of
how the motors are set based on the axis region and turning mode. Only axis
region 0, and 1 is shown, whereas region 2, 3 ,4 have similar structure and the last
two are used for backwards motion.

Figure 5.1: Illustration of the activation of each motor in the motor controller. Illustration:
Myrvang 2020

.

IMU controller
During the project it was observed that the IMU suffered drifting in the calculated
angle and noisy measurement. Because of this, an effort was put into investigate
the behavior of the sensor. As mention in chapter 4, the Arduino 2018 suffered
from being convoluted. The previous IMU driver contributed to this. The code
was re-implemented to be more memory efficient. Another problem spotted in Ar-
duino 2018, was that the driver used only the lower part of the register holding the
sensor data. As the IMU sensor stores the senor data in two registers [9], the code
was changed to extract the two values and concatenate them together.
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In dealing with the noisy measurement a method CRUDE_RUNNING_MEAN was
developed and gives a sufficient filtering of the data. The was discovered a pos-
itive bias in the raw data sampled for the IMU. This was handled by subtracting
the data with an appropriate offset value. For a more precise approximation of the
angle from the measured raw angular velocity data, two methods were developed;
CONVERT_GYRO_DATA and PROCESS_GYRO_DATA.

The method CONVERT_GYRO_DATA converts the raw data read from the IMU
sensor by using a scaling factor. It uses a separate scaling factor for when the data
is positive and negative, where both values was found empirically. The method
PROCESS_GYRO_DATA was designed utilising the following relationship:

ω = θ̇

= sθ
(5.2)

eq. (5.2) was converted using bilinear transform and a difference equation for θ
was analytically found as

θk = θk−1 +
K

Ts
(ωk + ωk−1) (5.3)
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New task implementation
The changes from the previous sections, in which all individual components where
tested to ensure correct behavior, made the task implementation from Arduino
2018 somewhat less compatible. This and the issues mention in chapter 4 it was
decided to re-implement all of the current task. As mention in section section 3.2
there was an communication task, pose estimation task and pose controller task,
as well as, sensor tower task in the original implementation. In this project mayor
changes were made to the communication task, and pose controller task. The
sensor tower task and estimator task saw only minor changes. The new system
uses now the following task:

System monitor task
Server communication task
Position controller task
Position estimation task
Sensor tower task

A new task have also been added for system monitoring. As of now, this task is
responsible for resetting the watchdog timer and have, relative to all the other task,
the highest priority.

Figure 5.2: New structure for the source code. Illustration: Myrvang 2020
.

The decision of re-implementing the task system open up the opportunity to stream-
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line the communication and synchronization between the tasks. The new imple-
mentation relies exclusively on queues and notification signaling interfaces provided
by the FreeRTOS kernel. Figure 5.2 shows a illustration on how the different tasks
interact with each other. Each task is designed to be independent of each other, in
the sens that they do not share resources with each other and only exchange read-
only data. A advantage of this is the limited need of using semaphore and mutex
mechanics. This is a mayor department compared to the original implementation,
which used a combination of queues, global variables and semaphores for sharing
information and synchronization. One of the problem with semaphores is that they
do not scale well, where changes to one task result in the need to change all de-
pendent task. This can be avoided by using queues and message passing, where
one only need to define input and output channel for each task.

Figure 5.2 also illustrate the communication flow, where one can see the commu-
nication flow starts when the robot receive a new set point. The data is then for-
warded to the Position controller task, in which takes appropriate actions. Among
other thing, signaling the estimator task to send the latest position and orientation
estimate.

All the task are now periodically, with the respective period as follows
Name Period (ms) Priority
System monitor task 3940 10
Server communication task 485 3
Position control task 25 4
Position estimation task 50 5
Sensor tower task 80 2

The periods are selected such that the interference between the task is reduced.
The priority assignment is based on the critically of the task. As such, the pos-
ition controller relies on the latest estimate to function properly. Therefore, the
estimator task have a higher priority than the position control task.
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Senor tower task
The Sensor tower task uses the the improved driver for the IR sensor described
in section 5.2. One of the issues described in chapter 4 is that the servo does not
move when the robot moves. This is now been addressed by using a implemented
ramp function for continuously increasing and decreasing the angle of the servo.

As mentioned in section 5.2 the ADC driver employs filtering and the four IR
sensors are further filter in the Sensor tower task. It uses a low pass filter, which
was originally used in the Arduino 2018 for filtering the Gyro measurement. Con-
tinuing, the task also uses the LINMAP function described in section 5.2 for map-
ping the raw sensor data in the range [0, 1023] to distance in the range [80, 5].
The output range for this mapping is inverted such that low values of the raw data
correspond to large values in the output distance.

Estimator task
As with the senor tower task, only minor changes to the Estimator task have been
made. One difference for the estimator task is the use of queue instead of a global
variable for distributing the estimated position and orientation. The task also uses
the function GET MOTOR STATE described in section 5.2 for getting the direction
of the motor instead of a variable. For calculating the orientation of the robot it
was found that using the encoder resulting in large deviation and drifting. As a
consequence of this the estimator task use only the gyro for finding the angle of
the robot using the methods described in section 5.2.

Communication task
As mention in chapter 4 the robot did not reconnect in the event of losing the
connection and the issue of exception on the server side, as well as insufficient
handling of semaphore made system crashes on several occasions. During the
research of the Arduino 2018 it was noted that the robot only need to send and re-
ceive messages with a maximum size of 50 bytes. Because of this and the mention
issues it was decided to streamline and reduce the impact of the communication
on the system.
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Figure 5.3: New structure for the source code. Illustration: Myrvang 2020
.

The communication task uses a stated based design. Figure 5.3 gives a overview
of the execution flow of this task. At the start of the program it goes into to the
CONNECT TO SERVER state. After a connection message is sent the task will enter
a LISTEN ON PORT state where it will check for any received messages. If the
message contain a new set-point coordinate it will then transferred this to a queue
and send it to the Position controller task.

The communication stack is now reduced to three layers. The network layer have
now been transformed to a state based design for reception. In similar fashion as
the Arduino 2018, the new implementation uses an interrupt service routine ISR
for capturing bytes received over USART. What differs is the amount of operation
carried out in this routine. The old implementation used a large buffer with a loop,
in side the interrupt routine. These types of ISR should not use operation exceed-
ing 10 ms [2]. Therefore, changes have been made such that the bytes are pushed
to a stack described in section 5.2. The new implementation uses a SR-latch for
signaling when a complete massages is received and lock the reception of further
bytes until the message is processed. The processing is done in a separate method.
The reception in the server communication layer is also state based. As the com-
munication between the server is acknowledge based, the reception method send
an acknowledged message for each received massage.
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Position controller task

Figure 5.4: Illustration of the main states and events for the position controller task. Illus-
tration: Myrvang 2020

.

A state based design was also found fitting for the position controller task. It a state
machine, where the structure can be divided into three states; IDLE, UPDATE SP
and COMPUTE CONTROL INPUT. New set-point coordinate and estimate posi-
tion from the communication task and estimator task is used as the main event in
the state machine.

Figure 5.4 gives an simple overview of how the task is structured. The controller
starts in the IDLE state. Here it waits for new set-point coordinates to be sent from
the communication task. If a new SP is added to the queue, then the task will lock
a latch variable and go to the state UPDATE SP. In this state, the content from the
queue is read and copied to a local variable. Distance for the set-point value is
also computed here, as well as, sending a notification to the estimator task. After
finishing computation, the task will the go back to the idle state and wait for new
estimated position and orientation from the Estimation task. When a new estimate
is available necessary parameters are computed and the task goes to the COMPUTE

CONTROL INPUT.
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5.3 Position controller
In chapter 4 it was stated that the robot suffered from jagged motion and inefficient
control when maneuvering. This motivate further the stated objective of develop a
new position controller for the robot. The previous section described implement-
ation and changes to improve the general behavior for the robot and forms the
foundation for the new position controller. The Position controller task is respons-
ible for running the new position controller.

The new position controller utilize the open-loop motor controller described in
section 5.2 that makes it possible to control the robot using only to inputs. Corres-
pondingly, a natural choice for regulating the speed and heading of the robot was
to use two discrete PID controller described in section 5.2 for feedback control of
the position and orientation.

Figure 5.5: Block diagram of the position controller. Illustration: Myrvang 2020
.

Figure 5.5 shows a block diagram of how the controller is structured. The control-
ler scheme uses notion of attractive filed described in section 2.1, with the two PID
controller referred to as PIDdist and PIDangle. The output of PIDdist is used as
the speed input and the output of PIDangle is used as the angle input in the motor
controller. Both controllers outputs values in the range of [-10000, 10000]. This is
scaled down two [-1000, 1000] for the the motor speed and [-2000, 2000] for the
motor angle. using the LINMAP function described in 5.2.



5.3. Position controller 34

Figure 5.6: Relationship between the SP position and the position of the robot. Illustra-
tion: Myrvang 2020

.

For making the attractive field method work with the two PID controllers, some
new parameters had to be defined. Figure 5.6 shows a illustration of the paramet-
ers used in the controller scheme and how the relate to each other. The set-point
distance dsp is the distance between the set-point coordinate and the origin. dr is
the distance traveled for the robot and θat is the distance between the set-point co-
ordinate and estimate position. One important detail about the PIDangle controller
is that it uses degrees as unit. The reason is that the angle values and the related
variables can be stored as an 16-bit integers. This result in less memory usage
while maintain the benefit one might had from using radian as unit and floating
point values.

For minimizing the the distance between the target position and the current pos-
ition of the robot, the PIDdist is used. For PIDdist, dr is used as the measured
process value and the input reference is zero. The second controller PIDangle is
used to minimize the deviation between the orientation of the robot θr and the
angle to target θat. In similar fashion to the PIDdist, the PIDangle also have a zero
input reference. ∆θ is the process value for PIDangle and is the difference between
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current angle of the robot θr and θat.

Because both θat and θr are computed using the atan2 function defined in sec-
tion .1, the angle can jump from -179 to 180 and vise versa. For that reason,
method for handling the discontinuities when computing ∆θ was devised. ∆θ is
defined as

∆θ =


(θat − θr)− 360 (θat ≥ 90, θr < ε)

360− (θat − θr) (θat ≤ −90, θr > ε)

(θat − θr)
(5.4)

where the bound ε is change based on the detection of a jump from -179 to 180.
The jump is detected by finding the change between the previous θat and the cur-
rent θat, as well as, recording the sign of the current change and the previous
change. Based on this, ε is updated using the following rule:

ε =

{
0 signk + signk−1 = 0

90 otherwise



Chapter 6

Result

In the same fashion the previous chapter presented various implementation, this
chapter is dedicated to present and discuss the result obtained from the project.
As mention in section 5.2, the main focus was to making the robot operational, as
well as, investigate a new scheme for position control. This chapter present result
obtained from performance tests conducted on the motion tracking lab, for testing
the new controller scheme and the system as a whole.

In the sense of system performance, two fault tolerance test were also devised.
These test were made to see how well the robot respond to hardware faults and
how well the robot is able to maneuver when these are present.

6.1 Position tests
For maneuverability and performance of the position controller, three position tests
were devised:

1. Square test
2. Zik zak test
3. Staircase test

Each test was conducted by manually inputting set-point coordinates SP from the
Java server, were the task of the robot was to reliable receive the message and man-
euver to the given coordinate, within a reasonable time frame. By reasonable time
frame, means that the robot should cover a distance of 1 meter within 1 minute.

Another purpose was to implicitly test the whole system. Accordingly, one require
a functional communication task for communication with the server, reasonable
estimate of the position, fast responsiveness and reliable interfaces for the hard-
ware devices. The square test was carried out by inputting coordinates forming
squares of 1, 1.5 and 2 meters. Table 6.1 shows the specific coordinates inputted
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for each tests.

Name SP
Square 1 [(1000, 0), (1000, 1000), (0, 1000), (0, 0)] [mm]
Square 1.5 [(1500, 0), (1500, 1500), (0, 1500), (0, 0)] [mm]
Square 2 [(2000, 0), (2000, 2000), (0, 2000), (0, 0)] [mm]

Table 6.1: SP coordinates for Square test 1, 1.5 and 2.

The Staircase test was conducted by inputting coordinates that form the shape of
a staircase. This test was used to see how well the robot maneuvered over small
distances and was meant to simulate coordinates outputted by the localization al-
gorithm on the Java server. Table 6.2 shows the specific SP coordinates

Name SP
Staircase [(200, 0), (200, 200), · · · , (1000, 1000)(0, 0)] [mm]

Table 6.2: SP coordinates for the Staircase test

Likewise, the Zik zak test was meant to see how well the robot respond to large
deviation in the target angle and how the robot maneuver when these are present.
Table 6.3 shows the specific SP coordinate

Name SP
Zik zak [(1500, 0), (0, 1000), (1500, 2000), (0, 2000), (0, 0)] [mm]

Table 6.3: SP coordinates for the Zik zak test

Square test
The square test 1, 1.5 and 2 was conducted on the new implemented system with
the use of the new position controller scheme. Figure 6.1, 6.2 and 6.3 shows the
test for 1, 1.5 and 2 meters respectively. Table 6.4, 6.5 and 6.6 reports the recorded
target coordinates for the robot and the time it took to complete each SP .
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Square test 1
SP SP value [mm] Recorded [mm] Start-Finish time [s]

SP1 (1000 , 0) (1070 , 20.9) ∼ 4.0s
SP2 (1000 , 1000) (1095.0 , 1170.0) ∼ 4.2s
SP3 (0 , 1000) (65.5 , 1133.5) ∼ 4.2s
SP4 (0 , 0) (26.7 , 27.5) ∼ 4.1s

Table 6.4: Result from Square test 1
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Figure 6.1: Square test 1 running the new software
.



6.1. Position tests 39

Square test 1.5
SP SP value [mm] Recorded [mm] Start-Finish time [s]

SP1 (1500 , 0) (1609.3 , −41.0) ∼ 4.8s
SP2 (1500 , 1500) (1682.2 , 1540.0) ∼ 5.2s
SP3 (0 , 1500) (−0.2 , 1642.6) ∼ 5.0s
SP4 (0 , 0) (−16.6 , 63.1) ∼ 5.3s

Table 6.5: Result from Square test 1.5
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Figure 6.2: Square test 1.5 running the new software
.
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Square test 2
SP SP value [mm] Recorded [mm] Start-Finish time [s]

SP1 (2000 , 0) (2129.8 , −78.5) ∼ 6.7s
SP2 (2000 , 2000) (2227.0 , 2023.4) ∼ 6.5s
SP3 (0 , 2000) (46.7 , 2091.3) ∼ 5.9s
SP4 0 , 0) (−45.7 , −184) ∼ 6.0s

Table 6.6: Result from Square test 2
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Figure 6.3: Square test 2 running the new software
.

From figure 6.1 one can see that the deviation in the final destination for each SP
is in the range of 150 milliliters. To put that number in perspective, the width
of the robots wheelbase is measured to 155 mm. One interesting observation, is
the consistency of these values. This gives a positive indication for the controller
and its ability to perform over different ranges. It is worth noting that the target
threshold was set to 30 mm for each test. For each one can see the time to suc-
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cessfully move from one location the the next is drastically reduced compared to
the times observed from the test conducted in chapter 4. Another observation to
be made, is the consistency of the time for each SP in a given test, indication that
the robot is equally effective when maneuvering in each direction. One can see arc
paths forming while the robot is moving, which is especially prominent in Square
test 1 and 1.5. The magnitude of these paths are in the range of 100 mm and the
shape is consistent for Square 1, 1.5 and 2.

The formed paths can be caused by the final orientation of the robot as it reaches
the target position. This can be related to the behavior of the new controller
scheme. in which the calculated angle to target will constantly change. As PIDdist

described in section 5.3 outputs a value corresponding how close the robot is to
the target, PIDangle will output a value corresponding to minimizing the error
between the target angle and the orientation of the robot. As the robot closes to the
target position, the angle to target will increase significantly and causes the robot
to change direction as it approaches the destination. Because of this, the next path
is closely related to how the robot approached the previous path. Nevertheless, the
robot is able to successfully reach a position that is close to the target value and is
able to return to origin within an acceptable error. This is due to the fact that the
position controller tries to both minimize the distance to target as well as the angle
deviation at the same time. Therefore, the robots initial orientation does not affect
its ability to reach the target destination, only the path formed when maneuvering.
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Staircase test
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Figure 6.4: Staircase test. Length for each SP is 200 mm
.

Staircase test
SP Start [mm] End [mm]

SP1 (200 , 0) (187.8 , −15.5)
SP2 (200 , 200) (205.2 , 188.4)
...
SP9 (1000 , 800) (1080.3 , 834.9)
SP10 (1000 , 1000) (1096.2 , 1078.7)
SP11 (0 , 0) (36.8 , 30.4)

Table 6.7: Result from the Staircase test
.
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From figure 6.4 it is observed that the angle between two target values are mar-
ginal. In addition, from table 6.7 one can see that the robot is able to maneuver
back to the origin with in a error equal to the target threshold. However, one can
see a steady and increasing offset in the position of the robot, as it progress to the
target positions. This shows the importance of the test, which is designed to test
the robots ability to cover small distances while change direction for every set-
point values. It is also worth noting that the final recorded position have similar
deviation as Square test 1.

The offset can be caused by the use of the wheel encoders for calculating the
position. As mention in the Square test, the robot uses a target threshold of 30
mm. By inspecting the first two target coordinates one can see that the robot stops
at position that is close to this. By taking this into account, the estimated position
have a relative small error, yet significant for achieving better precision.

Zik zak test
Figure 6.5 shows the result from the Zik zak test.
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Figure 6.5: Plot of the result from the Zik zak test.
.
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Zik zak test
SP Start [mm] End [mm]

SP1 (1500 , 0) (1598.9 , −24)
SP2 (0 , 1000) (58.7 , 1098.9)
SP3 (1500 , 2000) (1623.9 , 2190.5)
SP4 (0 , 2000) (−63.7 , 2152)
SP5 (0 , 0) (−39.1 , 30.8)

Table 6.8: Result from the Zik zak test
.

The test is meant to challenge the controller scheme, as SP2 and SP3 require the
robot to turn more than 90 degrees. As the controller uses a PID controller for the
angle, one would suspect overshoot for large deviation in the target angle. From
figure 6.5 one can see that this is reduced compared to that observed in each of the
Square tests. This gives an indication that the tuned values for the controller gain
is more optimal for larger angles.

The deviation between the target value and the recorded position of the robot is
similar to that observed in the Square tests. From table 6.4, one can observe a sim-
ilar start-end deviation and offset, in which can be linked to the factors mention in
the Square and Staircase test.

In the tuning process for the two PID controllers, one had to balance the respons-
iveness of the system. To small gain Kp in the angle controller would result in a
large arc forming as the robot approached the target position. The opposite, large
Kp gain would result in large overshooting when turning. One could combat this
by having an equal large Kd gain but this resulted in high frequency oscillation
when maneuvering.

On the contrary, the behavior is partly combated by the motor controller, in which
for large errors in the angle, causes the the robot to turn around by its wheel-
base axis. For the sharp turn mode, the speed of each motor is determined by the
PIDdist controller. As with Square test 2, one can observe that the robot runs more
and more smoothly as the distance increases. This can be the fact that a small
integral gain is used for both the PIDangle and PIDdist. As the distance increases
the error accumulation of angle deviation increases and would eventually result in
a large enough output gain.
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An interesting observation can be made about the controller and its relationship
with the artificial potential field. If one tuned the PIDangle to act slowly by having
a large integral gain, would result in a spiraling effect when the robot comes closer
to the target position. The movement was similar to the motion of objects revolving
around planet. The formed path had also a similar shape as a stable linear system
with complex eigenvalues.[7]

Summary position test
General for each of the position tests is the deviation between the set-point co-
ordinate and the recorded position of the robot. A common observation is that the
offset increases with the travel of the robot. An interesting aspect is the Staircase
test have a similar offset as Square test 1. One thing to note is that the controller
operates on the estimated position of the robot, which limits how accurate it can
be. A way to improve the position controller is to improve the estimation of the
position and orientation, as well as, more accurate sensor readings. Another aspect
is that the controller is reactive to changes in the dynamics of the robot. This is a
disadvantage of the controller as changes to the estimated position and orientation
would mean re-tuning of the controller.

During development and testing, it was observed that changes to, example para-
meters for the wheel encoders would impact the final orientation of the robot when
it reach the target. As it have been observed, the controller manages to give good
performance for orienting the robot in the range [-160,160] and adequate control
in the critical region [-179.180]. However, the result from the Zik zak test indic-
ates that the tuned values for the controllers are more optimal larger deviation.
To improve the performance, one can employ several controller gain for separate
angle regions. A challenge with this is to handle the change from one region to
another. One solution is to utilise a hysteresis mechanism for switching between
controller gains. A prototype for this was developed, but further testing is required.

One of the challenges for the new controller scheme was the region [-179, 180] for
the target angle. Test where conducted without handling this critical region, which
resulted in the robot oscillating back and forth, unable to move in the desired dir-
ection. This critical region was handled using the implemented method described
in section 5.3. The method does not completely eliminate the oscillation scenario,
but rather reduce the risk of it happening. Again this has to be taken into account
when tuning the controllers, as to high responsiveness increases the risk of getting
the robot stuck at the critical region.
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6.2 Fault tolerance test
Two simple fault tolerance test were conducted. For each of the tests, the code
was altered in such a way to simulated hardware fault for the two motors. As the
estimator task depends on the encoders for estimating the robots position, a fault
was introduced by swapping the left and right encoder pins. This was used in both
of the tests. For the first test, the left motors ability to go backwards was removed.
This was done by keeping the correspondingly output pin on the Arduino board
constantly low. This was to simulate broken output pin or short circuiting. For the
second, the speed gain of the right motor was greatly reduced, to simulate worn-out
motors.
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Figure 6.6: Fault tolerance test 1

.
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Fault tolerance test 1
SP Start [mm] End [mm]

SP1 (1000 , 0) (1071.7 , −224.4)
SP2 (1000 , 1000) (1071.7 , 1055.4)
SP3 (0 , 1000) (−220.1 , 977.4)
SP4 (0 , 0) (198.4 , −317.4)

From figure 6.7 one can see that small ripples forming as the robot is only able
to exert most force on the right motor. As expected, the robot struggles to keep a
straight line when maneuvering, but is able to maneuver in some degree. As men-
tion in section 5.2 the motor controller have a sharp turning mode, when exceeding
a threshold value causes one of the motors to change direction. This means that
when the angle error is great enough, the PIDangle will output a correspondingly
value, which in turn, activates the sharp turn mode in the motor controller.

However, the test reveals a weakness with using the wheel encoders for position
estimate. As the robot rock back and fourth trying to correct its course, the accu-
mulated error in the estimate will increase. A resulting consequence is the large
offset between the target position and where the robot stops.
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Figure 6.7: Fault tolerance test 1

.

Fault tolerance test 1
SP Start [mm] End [mm]

SP1 (1000 , 0) (1075.1 , 67.5)
SP2 (1000 , 1000) (1042.7 , 1164.6)
SP3 (0 , 1000) (72.4 , 1081.1)
SP4 (0 , 0) (64.8 , 73.8)

From figure 6.7, one can see that the the robots ability to do sharp turns is greatly
reduced. As the encoder pins are swapped, this would result in error in the calcu-
lated position, which in turn result in errors in the angle to target value. One also
see that the arcs when maneuvering are larger when introducing the output pin er-
ror. However, as seen in table 6.2, the robot is able to reach the target position,
within an acceptable error. In fact, the end position of the robot is in pair with the
observed deviation in Square test 1. This indicates a strength of using only the
gyro for orientation measurement. It also indicates that swapping the encoder pin
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have little effect on the estimated position.

This in some sense contradict the observation made for figure 6.7. On the contrary,
the robot will only stop when it detects a estimated position that is within the target
threshold value. For that reason, using the encoders is still an inaccurate way of
estimating the relative position of robot, as it depends to much on the particular
wheel moments. To increase the accuracy of the estimate and resulting position
controller one may seek other sensors that is independent of the wheels.



Chapter 7

Further work

7.1 Getting the robot fully operational
The robot is in most part operational.The result in section 6.1 showed that the
robot is able to maneuver to a target location within an acceptable time frame and
error margin for the position. It handles well connection and re-connection to the
server, as well as, sending and receiving data. One problem that is not fully sorted
is the sending of update messages. The server is able to detect the correct form of
the messages but only sporadically make any response. One suspect that this is a
problem on the server side, due to the long scheduling period of the communication
task on the robot for reducing the interference to the rest of the system. The main
issue with fixing this problem is the limitation one has to impose on the system
running on the robot. However, in the latter years the focus have been shifted to
using a thread network which was investigated by Petersen (Master 2019) [16].
For that reason, further improvements to the communication may be focused on
making the robot compatible with the thread network.

7.2 Further improve the position controller
The newly implemented position controller is show to give smooth movement of
the robot considering it only uses two sets of PID controllers. The discrete PID
controller is able to respond to small and sudden changes in the speed and direc-
tion of the robot. The biggest factor hampering the performance of the controller is
the critical region [-179, 180]. A better way of handling this is required for making
the controller work across all angle ranges.

It was also during testing noted a significant difference between the speed of the
two motors. A solution may involve utilizing the output of the PIDangle. This
value can act as a set-point for a new PID controller that is responsible for con-
trolling the individual speed of each motors. One hypothesizes that combining

50



7.3. Finding dynamic model of the robot 51

some form of speed controller with the implemented position controller will im-
prove the behavior of the robot. However care must be taken to avoid convoluted
code that plagued the Arduino 2018 code, as well as, how it should be implemen-
ted. For measuring the speed of the wheels one can use the encoders, but one need
to consider how this should be integrated into the system.

7.3 Finding dynamic model of the robot
The result gave insight that the implemented position controller related closely to
the dynamics of the robot, as observed by the paths formed. Therefore, finding
a complete dynamic description of the robot open up the possibility of utilizing
a wast amount of established theories and methods for making the controller op-
timal. This is perhaps the greatest strength of the controller as it is based on a series
of sequential equations, where parameters found from the model can directly be
transferred to the robot.

7.4 Sensors
The The Arduino LiDAR robot mention in chapter 2 have a magnetic compass.
The PBC sheild on the Arduino IR robot have the supported connection for this
sensor. This can be added to further improve the position estimate and make the
robot less dependent on the inaccurate reading from the wheel encoders. From the
IMU sensor one can also extract linear acceleration, which can be useful in the
position estimation.

7.5 Collision detection and path planning
The background section mention the notion of artificial potential field for guiding
the robot to the desired destination. From this, one can also make the use of re-
pulsive filed for avoid objects. [10] An idea that have sprung up during the project,
is to utilise the four IR sensor to detect objects in the surrounding and make the
robot avoid objects while moving.

The data collected by the four sensors can be stored in some data structure and
be used to build up a repulsive filed, similar to that describe in section 2.1. By
combining both the attractive filed and the repulsive field one can use a form of
gradient descent method to find an intermediate set-point coordinate for the robot.
This set-point can then be used in the implemented position controller. By doing
this, one can make the robot not only stops in the present of nearby objects, but
searches for a new path and change the course accordingly.
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7.6 Distributed system
As the development of the robot will continue and more functionalities will be
added, the limited resource of the controller becomes a mayor concern. One idea
is to add a second Atmeg2560 controller that runs in parallel to the current one.
This way, the task can be distributed over two devices and achieve a true parallel
system. There have been also mention in the past Petersen (Master 2019) [16] of
utilising a programmable nRF52 dongle [15] that is used in the thread network to
distribute the workload.
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.1 Rigid monition
The field of rigid motions seek to describe the different methods used for repres-
enting the orientation and position for rigid objects using points and vectors in
Euclidean space. Among other things, describing the method for transformation
between different coordinates frames using homogeneous transformation matrices.
[10] In Cartesian coordinate system a point is described in three dimensional space
using the coordinates [10]

p =

xy
z

 (1)

The Euclidean distance between two points can be found using [10]

||p|| =
√

(x2 − x1) + (y2 − y1) + (z2 − z1) (2)

For finding the correct and unambiguous angle between a point and a fixed co-
ordinate systems x-axis, as well as, the angle between two point one can use the
atan2 function defined by [10]

atan2(x, y) =



arctan( yx) ifx > 0

arctan( yx) + π ifx < 0 and y ≥ 0

arctan( yx)− π ifx < 0 and y < 0
π
2 ifx = 0 and y > 0

−π
2 ifx = 0 and y < 0

(3)

which is defined for all (x, y) 6= 0 and returns the angle in the range (−π < θ ≤
π). For representing relative position and orientation between two or more rigid
bodies and their attached frames one can use homogeneous transformation matrix
defined by [10]

H0
n =

[
R0
n o0n

0 1

]
(4)

a point can then be described in the base frame given its position in the object
frame as [

p0n
1

]
= H0

n

[
pn

1

]
(5)

where
p0n = R0

np
n + o0n (6)

For rotation around a fixed z axis, one can define the basic rotation matrix [10]

Rz,θ =

cθ −sθ 0
sθ cθ 0
0 0 1


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