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Problem Description

The objective for this thesis is to investigate how theoretical methods and tech-
niques can be utilized to find practical implementation for providing autonomous
control for the Arduino IR robot. The problem description for this thesis is based
on the issues and proposed further work from a previous specialization project for
the Arduino IR robot [19]. The objectives is summarized in the following bullet
points:
• Investigate inexpensive methods for improving the computational perform-

ance of the robot by dividing the workload over several identical micro con-
trollers, as well as, providing parallel capabilities
• Provide a foundation for autonomous control by improving the position es-

timation of the robot by investigate methods for filtering and processing of
the sensor data
• Improve the motion of the robot by implement speed control for each wheel

and investigate the use of state feedback and LQR for motion control.
• Develop procedure for path planning and object avoidance on the robot

based on the IR sensors and artificial gravitational field
• Furbish the software system found in Arduino IR V1 and improving support

functionalities such as the server communication
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Summary and conclusion

The thesis deals with finding practical implementation for providing autonomous
control for the Arduino IR robot and based on the foundation made in the special-
isation project. This was carried out by improving several aspect the robot and
implementing new functionalities. The improvements dealt with topics such as,
hardware changes, system response, position estimation and server communica-
tion. The new functionalities includes; path planning running on the robot, motion
control and support tasks.

Hardware changes included replacing the servo, IMU, encoders and motors found
on the original robot, on top off, extending the computational capabilities of the ro-
bot by adding another MCU to the system. Drivers for the IMU and encoders was
implemented, alongside, designing a node communication protocol for providing
the link between the two MCU’s. The server communication was improved, in
addition to, implementation of support task for coordinating and providing virtual
layer between logical nodes.

The position estimate of the robot was improved by integrating the accelerometer,
alongside, implementing static filtering of raw measurement using the sample
mean and variance. The heading estimation was further improved by implement-
ing Kalman filtering on the raw measurement from the gyroscope. The motion
controller was implemented as a cascaded system using a reference feed forward
state feedback LQR controller for guiding the robot to a target coordinate and two
PI controllers for each wheel. The LQR implementation was made possible by
formulating a linear dynamic model of the robot. A path planner procedure was
implemented on the robot for making it capable of navigating the environment and
less dependable on the server. The implemented path planning procedure applies
artificial potential field for navigation. The procedure utilizes the IR sensors for
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consecutive constructing scan fields and several features of the environment in a
weighted sum for finding augmented target set-point coordinates.

The integration of another MCU was successful and extended the memory, IO and
computational capabilities of the robot. The node communication link provided
fast and reliable transfer of data. The average deviation in the position estimated
was found to be in the range of 10− 15 millimeters and ±0.75 degree in the head-
ing estimation. The use of reference feed forward state feedback LQR controller
was found to give mayor improvements comparing to the old PID implementation.
The controller provided fast and smooth response, in addition to tight control of
the position of the robot. The straight-line deviation for the controller was in the
range of 15− 20 millimeters. The path planner procedure was found successful in
navigating a static environment given a sensible target set-point coordinate. The
path planner procedure showed best result when it was used with the navigation
on the server.



Oppsummering og konklusjon

Oppgaven tar for seg å finne praktisk implementering for å gi autonom kontroll
av Arduino IR-roboten og er basert på grunnlaget lagt av fordypningsprosjek-
tet. Dette ble utført ved å forbedre flere aspekter av roboten i tillegg til imple-
mentasjon nye funksjoner. Forbedringene tok for seg emner som sånn, maskin-
vareendringer, systemrespons, posisjonsestimering og serverkommunikasjon. De
nye funksjonene inkluderer; navigeringsprosedyre utført av roboten, posisjonskon-
troll og andre støtteoppgaver.

Maskinvareendringer inkluderte erstatning av servo, IMU, enkodere og motorer
på den opprinnelige roboten, på toppen av, og utvidet prosesseringsytelsen til ro-
boten ved å innføre en ny MCU i systemet. Drivere for IMU og enkodere ble
implementert, i tillegg til, design av en node kommunikasjonsprotokoll for å lo-
gisk koble sammen MCU-ene. Serverkommunikasjonen ble forbedret, i tillegg til
implementering av støtteoppgave for koordinering av oppgaver og virtuelt lag mel-
lom logiske noder.

Posisjonsestimatet til roboten ble forbedret ved å integrere akselerometeret inn i
estimatet og implementere statisk filtrering av rå signaler ved å benytte beregnet
gjennomsnitt og varians. Vinkelestimatet ble videre forbedret ved å implementere
Kalman- filtrering av rå-målingene til gyroskopet. Posisjonskontrolleren er de-
signet som et kaskadesystem ved hjelp av referanse foroverkobling og tilstandstil-
bakekoblet LQR-kontroller for å styre roboten til ett referanse-målkoordinat og to
hastighetsregulerte PI-kontrollere for hvert hjul. Bruken av LQR ble oppnådd ved
å finne en lineær dynamisk modell av roboten basert på lineær -og vinkel hast-
igheten. En ruteplanleggingsprosedyre ble implementert på roboten for å gjøre
den i stand til å navigere i et miljø og gjøre den mindre avhengig av serveren.
Den implementerte ruteplanleggingsprosedyren bruker kunstig potensielt felt for
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navigering. Prosedyren bruker IR-sensorene for fortløpende konstruksjon av et
skannefelt. Egenskaper fra feltet er bruk i en vektet sum for å finne ett augmentert
referanse-målkoordinat.

Integrasjonen av en annen mikrokontroller var vellykket og utvidet minne, IO
og prosesseringsytelsen til roboten. Node kommunikasjonsprotokollen ga rask
og pålitelig overføring av data. Avviket i posisjonsestimatet ble funnet å være i
området 0 − 15 millimeter og ±0.75 grader i vinkelestimatet. Bruken av refer-
anse foroverkobling og tilstandstilbakekoblet LQR-kontroller gi merkbare sam-
menlignet med den gamle PID-implementeringen. Kontrolleren ga rask og jevn
respons, i tillegg til stram regulering av posisjonen til roboten. Rettlinje avviket
var i området 15 − 20 millimeter. Navigering av roboten i ett statisk miljø et
med bruk av ruteplanleggingsprosedyren var vellykket med bruk av fornuftige
referanse-målkoordinater. Ruteplanleggingsprosedyren viste seg å gi best resultat
når den ble brukt i kombinasjon med navigeringen på serveren.
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Chapter 1

Introduction

1.1 Background for the thesis
The project is part of a collective collaboration under the nickname The Lego pro-
ject that dates back to 2004 and is given by supervisor Tor Onshus. As of writing
this report, the collective consist of three small robots; The Arduino IR robot, The
Arduino LiDAR robot and The nRF52 robot.

Figure 1.1: Picture of the Arduino
IR robot. Myrvang ( Project 2020)
[19]

.

The Master thesis is based upon a specializ-
ation project carried out Spring 2020, Myr-
vang (Project 2020) on the Arduino IR robot
[19]. The robot can be categorized as a bat-
tery operated differential drive mobile robot. It
uses an embedded MCU micro controller of
the type Atmega2560 for main logic control
and communicate wirelesses with a server over
BLE Bluetooth Low Energy. There have been
several previous students that have contributed
in some for or another to the Arduino IR ro-
bot. The main contributes can said to be Ese
(Master 2016) [8], Andersen & Rødseth (Mas-
ter 2016) [24], Lien (Master 2017) [13] and
Nilssen (Master 2018) [20]. fig. 1.1 shows a
picture of the robot as it was at the beginning

of the thesis. Detailed description of the system will be given in chapter 2. During
the the specialization project several software and hardware issues were discovered
on the Arduino IR robot [19]. The project dealt with fixing these issues in addition

1



1.2. Problem description 2

to lay the ground work for further improvements on the system. The system from
the specialization project will hereby be referred to as Arduino IR V1 and includes
the software and hardware as it was at the final stage of the project. The robot and
implemented system carried out during this thesis will be referred to as Arduino IR
V2. Arduino IR is refereed to as a joint designation for current and past software.

1.2 Problem description
The problem description for this thesis is based on the conclusion and proposed
further work from the specialization project. The project concluded that the robot
was in most part operational [19]. However there was still pending issues and
limitations. The following bullet points can be said to be the main limitation within
the hardware of the robot:
• The encoders have only one signal pin and cannot give information of the

direction of the motors. The hall effect sensor found on the encoders are
particular sensitive to external influences as they are not encapsulated. [19].
• The DC motors used in the robot suffer from wear and being underpowered.

This result in large difference between the left and right motors and greatly
impacts the performance of the robot.
• The servo used for controlling the servo tower is broken and need to be

replaced. [19]

The software of the Arduino IR V1 have the following limitations:
• The use of PID controllers gives adequate control but suffer from large arcs

and oscillatory behaviour. The "black box" design does not take into account
the dynamics of the system. This makes it harder to tune the system and
dynamical properties are not exploited for providing optimal control.
• There are no methods for filtering the angular velocity measured from the

IMU. The nRF robot have support for Kalman filtering and is of interest to
implement it on the Arduino IR.
• The non-linearity of the IR sensor is not taken into account when using the

IR sensor.
• The server task running on the robot is not fully reliable and have problem

syncing outgoing massages to the server, in addition to no support for send-
ing update messages.
• The robot is entirely dependent on the main server for navigating an envir-

onment. The server have shown unstable behaviour and the robot cannot
operate if the server freezes or crashes.

The objective of this master thesis is to address these issues, along side implement
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solution for the following points described as further work in Myrvang (project
2020) [19]:
• Finding a dynamic model of the robot
• Collision detection and path planning
• Distributed system

Formulations of objectives
The thesis have several objective which can be summarized in the following bullet
points:
• Furbish the software system found in Arduino IR V1 and improving support

functionalities such as the communication with the main server.
• Investigate inexpensive methods for improving the computational perform-

ance of the robot by dividing the workload over several identical micro con-
trollers, as well as, providing true parallel capabilities.
• Provide a foundation for autonomous control by improving the position es-

timation of the robot by investigate methods for filtering and processing of
the sensor data.
• Further improve the position control of the robot by implement speed control

for each wheel and investigate the use of state feedback and LQR.
• Develop procedure for path planning and object avoidance on the robot using

the IR sensors and artificial gravitational field.

The objective of the master thesis can be summarized as:
Investigate how theoretical methods and techniques can be utilized to find practical
implementation for providing autonomous control to an embedded mobile robot.

1.3 Project scope and report structure
The project focuses on improving and extending the functionalities for the Arduino
IR robot.This report can be divided into the following chapters
• chapter 1: Introduction
• chapter 2: Background on the hardware and software of the Arduino IR V1,

as well as, an assessment of the system.
• chapter 3: Hardware changes and soft devices. Changes made to the robot

for forming the structure of Arduino IR V2.
• chapter 4: Task implementation and architecture. Description of the task

architecture and support tasks running on Arduino IR V2.
• chapter 5: Improvements of the position estimation. Describe the improve-

ments and additions made for the position estimate.
• chapter 6: Improvements of the motion control of the robot. Describe the

implementation of mayor changes made to the motion control of the robot.
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• chapter 7: Implementation of a path planning procedure running on the ro-
bot. Describe the developed method and task implementation for enabling
navigation on the robot.
• chapter 8: Discussion and further work.

Any theory used or necessary to describe an implementation or improvements are
provided at the start of respective chapter. To clearly differentiate between own de-
velopment and sources, a citation on the form of [number] is given after a equation
or statement taken from a source.

1.4 Tools used

• The software running on the robot is implemented using C and compiled
using AVR gcc. FreeRTOS API [17] is used for enabling concurrent task
operation on the MCU.

• The code is developed using Atmel Studio 7.0 by Microchip on a host com-
puter and the code is downloaded to the robot using an Atmel-ICE debugger.

• Processing and visualization of result data is carried out by using MATLAB.

• Optitrack - Motion Capture system was used to record the real life behaviour
of the robot. The position is recorded by placing markers on the robot.

• The report is written in LaTeX.



Chapter 2

Background

This section is dedicated to give an overview of both the hardware and software
system for the Arduio IR V1. The chapter will also include a performance test
and discussion of the limitation of the Arduio IR V1 design. This is meant as
a motivation and bringing into context the solution described in further chapters.
The chapter can be divided into two parts.

1. System description
• Main server section 2.1
• Hardware section 2.2
• Software section 2.3

2. Assessment of Arduino IR V1 section 2.4

2.1 Main server
There exist to implementation of the main server; a Java server and a Thread server.
The Java server is written in Java and was first developed by Andersen & Rødseth
(Master 2016) [24]. Similarly, the Thread server is written in C++ and the latest
development was by Mullins (Master 2020) [18]. The Main server refers to the
Java server in this report, as it was exclusively used during the project.

Java Server
The Java server provides a GUI Graphical Interfaces for controlling the robot
and navigating the robot through an environment. A nRF51 Bluetooth dongle
provides wireless communication between the server and the robot. The server also
provide a manual mode where target set-points coordinates can be manually issued
to the robot. The server utilize the sensor readings from the robot to construct
a grid map of the given environment. However, the robot needs to perform the

5
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scaling or processing of the raw IR measurement. The server provides a limited
support for collision handling of the robot. The collision handler and navigation
controller was developed by Thon (Master 2016), where the navigation unit is
implemented using a grid map based A* algorithm [28]. The communication with
the server is acknowledge based and have several types of messages defined, where
both the server and the robot agree on the meaning of the messages. The main
communication stack was developed by Lien (Master 2017)[13]. The messages is
defined as:
• Handshake: is sent from the robot to the server containing ID, name and

parameters for the robot.
• Confirm: is sent from the server confirming that the robot is successfully

connected to the server.
• Finish: is sent from the server when it is disconnected.
• Order: is sent from the server containing a target set-point coordinate on the

form (xsp, ysp).
• Update: is sent from the robot containing processed IR measurement and

estimated position. The rate of which the update messages can be sent from
the robot is limited to 200 ms due to the response time of the server.
• Idle: is sent from the robot indicating that it is not busy.
• Ping: is sent from the robot. However, no action is taken by the server but

can be used for alive signaling.

Thread Server
The Thread server provides all of the basic functionalities provided by the Java
server, in addition to have a SLAM implementation developed by Mullins (Master
2020) [18]. The nRF robot is the only robot that have the support for communic-
ating with the Thread server, latest development by Stenset (Master 2020) [27].
Blom (Master 2020) have implemented local networking on the Thread server us-
ing a Raspberry PI as a MQTT border router and nRF52840 dongles for interfacing
between the robot and the router. The nRF52840 dongle is interfaced to the nRF
robot using I2C.[3]

2.2 Hardware of Arduino IR V1
The hardware of Arduino IR V1 is based on off-the-shelf parts and is built by
previous students such as Andersen & Rødseth (Master 2016) [24] and Nilssen
(Master 2018) [20]. The design of the Arduino IR V1 uses two DC motors with
integrated encoders as the main motion actuators and interfaced by a bidirectional
motor controller card of the type 2A Dual L298 H-Bridge. The encoders consist
of two neodymium 8-pole magnets and two hall-effect sensors. Further the robot
have a six degrees of freedom IMU inertial measuring unit of the type LSM6DS3
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for measuring linear acceleration and angular velocity in the x, y, z-axis [16]. In
addition, the robot have a senor tower compromising of four Sharp G2D12 IR
Infrared proximity sensors mounted on top of a PWM Pulse Width Modulation
controlled servo. A nRF51422 dongle is used to provide wireless communica-
tion in the form of BLE 2.4 GHz [21]. The main logic controller is a 8-bit AVR
RISC-based Atmega2560 microcontroller integrated on a Arduino Mega SoC with
external 16 MHz clock [1]. An extension card made by Nilseen (Master 2018)
[20] is mounted on top of the Arduino Mega SoC for interfacing of the various
components. The main power supply of the robot is a 11.1 volt lithium-ion bat-
tery. fig. 2.1 gives a simplified overview over the system structure of Arduino IR
V1 and the interfacing between the components.

Figure 2.1: Overview of the main components used in the robot. Illustration Myrvang
2020 [19]

.

The Atmega2560 controls the speed of the two DC-motors by modulating the duty
cycle of a PWM pulse generated by a built in timer on the MCU. The direction of
each motor is controlled by enable signals generated by GPIO-pins General Pur-
pose Input/Output. The two DC-motors have builtin gear reduction for providing a
higher torque to each wheel.[20]. The angular velocity of each wheel is measured
by the integrated encoders, which generates pulses that are counted using external
interrupts pins on the MCU. The encoders only have one signal line each and there-
fore only provide limited information by the state of the wheels. The Atmega2560
fetches data from the IMU senor using a Master/Slave SPI communication. The
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IR-sensors outputs a voltage corresponding to a detected distance[25] which is
read using internal ADC units on the MCU. The servo is controlled by modula-
tion the duty cycle of a PWM signal in a similar manner as the motor controller
card. The nRF51422 act as an intermediate wireless transducer for communicat-
ing with the main server, where as, communication to and from the dongle and
the Atmega2560 controller is carried out by USART Universal Synchronous and
Asynchronous Receiver-Transmitter.

2.3 Software of Arduio IR V1

Figure 2.2: Overview of how the software
running on the Arduino IR V1 is structured

The software running on the robot is
written in C, using the AVR instruc-
tion set [1]. The software system
uses FreeRTOS API for enabling mul-
titasking and can be structured by ab-
straction layers as shown in figure 2.2.
Drivers for accessing and changing re-
gisters within the Atmega2560 con-
troller can be found on the lowest level
and task implementation at the top.
The system also includes drivers for in-
terfacing the different units described
in section 2.2. The robot have im-
plemented several task, among other
things, communication to and from the

server, estimation of the position of the robot based on optometry from the en-
coders and angular velocity from the IMU, task for position control using two
discrete PID controllers for driving the robot to a target set-point coordinate and a
task for reading the IR-sensors and rotating the sensor tower.

Drivers and utility
The various input/output signals for interfacing the units, such as, the motor con-
troller card, encoders and servos is implemented within the AVR driver group. This
also includes the communication protocols for accessing units such as the nRF51
dongle and the IMU. These functionalities are again wrapped into robot specific
interfaces, such as controlling the direction and speed of the motors, setting a spe-
cific angle for the servo, as well as, extracting data from the IMU and encoders
[19].

Encoders: The pulses generated by the encoders are counted using external
interrupts. The count has to be reset after each sampling and is carried out
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in the task layer. [26]
Motor: The motor driver provides interface for setting the direction and
speed of each of the two motors. This is carried out by inputting a virtual
torque Tn in the range [0 , 1000] that is mapped to a corresponding PWM
signal. It also provide information about the direction of the motors. This is
combined with the encoders in the task layer to provide information about
the direction of the measured wheel speed.[26]
Servo: The servo driver provides an interface for setting the servo to a
specific angle within the range of [0, 90] degrees.
IR sensor: The IR sensor drivers provides functionalities for reading each
of the four IR sensors. Each measurement consist of a sample mean of
successive 8 ADC samples.[26]
IMU: The IMU driver is used to obtain the raw measurement of the linear
acceleration and angular velocity from the IMU.[26]

The Arduino IR V1 also provides a utility library with useful functions [19].
table 2.1 list important functions that will be used and referenced further in this
report.

Discrete low pass filter Provides filtering for sampled signals tuned with the weight w
Discrete PID A discrete PID implementation with the use of bilinear transform
LinMap Linear mapping of an input in the range [inmin, inmax]

to an output in the range [Outmin, Outmax] based on
the point slope linear equation

Set/Rest Latch Software Set/Reset latch used for flag operations
Stack Interface for pushing and popping integer sized keys onto a Stack

with a predefined sized array
FIFO Queue Interface for enqueuing and dequeuing integer sized keys

using a predefined sized array

Table 2.1: utility library

The discrete low pass filter uses eq. (2.1), the LinMap function uses eq. (2.2)
and the output from the discrete PID controller is defined by eq. (2.3), where the
weights wu1,2 and we1,2,3 are based on the gains Kp,KI ,KD [19].

y = (1− w)xk−1 + wxk (2.1)

Out =
Outmax −Outmin
inmax − inmin

(in− inmin) +Outmin (2.2)

uk = wu1uk−1 + wu2uk−2 + we1ek + we2ek−1 + we3ek−2 (2.3)
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Task implementation
The Arduino IR V1 have various task for providing and running the main func-
tionalities of the system. The system consist of five tasks; System monitor task,
Server communication task, Position controller task, Position Estimation task and
Sensor tower task. All task runs periodically with the period listed in table 2.2.
Data is shared using FIFO queues and task notification is used for synchronizing
and signaling between the task, both provided by the FreeRTOS API.

Figure 2.3: Flow diagram of the system running on Ardunio IR V1. Illustration: Myrvang
2020 [19]

.

Task name Priority Scan time [ms]

Sensor tower task 2 135
Server Communication task 3 485
Position estimation task 5 25
Position control task 4 50
System Monitor task 10 3940

Table 2.2: Task scan time and priority

Figure 2.3 shows the communication and signaling between the tasks, where TF
means Task notification, SP Set-point target coordinate and POS Position estimate.
The task notification from the server task to the position controller task is used to
stop the robot when disconnected from the server. The position controller task
uses task notification to request a new position update from the position estimation
task.



2.3. Software of Arduio IR V1 11

Sensor tower task

Figure 2.4: Layout of the IR sensor tower. Illustration: Myrvang 2020
.

The Sensor tower task is responsible for rotating the sensor tower and sampling
the IR measurement from the four IR sensors. Each sample from the IR sensors
is filtered using a discrete low pass filter. fig. 2.4 shows the placement and the
naming for each IR sensor.

Server Communication task
The Arduino IR V1 have a partial implemented task for communication with the
main server. It can handle the reception of orders, as well as, automatic connection
and re-connection to the server. The communication stack can be divided into two
layers:

1. nRF51 port: Handle the reception and transmission of bytes received from
the server.[19] For each message encoded and decoded for transmission and
reception respectively using consistent overhead byte stuffing [13].

2. Server message: Converting connection, orders and update massages to byte
streams and providing means for acknowledged incoming massages.

Position estimation task
The Position estimation task is responsible for estimating the position of the ro-
bot. The Arduino IR V1 uses a combination of sampled measurement from the
IMU gyroscope z-axis and sampled tick counts from the encoders to estimate the
position of the robot. The position estimator uses two reference frames; a frame
moving with the robot R and a world frame W stationary to the starting point
of the robot. The Arduino IR V1 uses equation 2.4 for estimation the position
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pWk = [xW,k, yW,k, zW,k]
T of the robot in the world frame. θWz,k is the current

heading of the robot in the world frame and pRk = [xR,k, yR,k, zR,k]
T is the robot

current position in the R frame defined by the kinematic equation in eq. (2.5) [26].

pWk = pWk−1 + RθWz,k
pRk (2.4)

pRk =


Lk cos θR,k

Lk sin θR,k

0

(2.5)

Lk = (KlCl,k +KrCr,k)/2 (2.6)

θWz,k = θWz,k−1 + θR,k (2.7)

θR,k = Kgz
Ts
2

(ωz,k + ωz,k−1) (2.8)

Lk is the linear position found using eq. (2.6) for the left and right tick speed Cl,k
and Cr,k. θR,k is estimated using eq. (2.8), which is a numeric integration method
found by bi-linear transformation, where θR,k−1 = 0, Kgz is constant scaling
factor and ωk is the angular velocity from the IMU. θR,k uses degrees as unit such
that it can be represented by a 16-integer and therefore save memory space on
the microcontroller. The heading θWz,k is found using the relationship defined in
equation 2.7. θWz,k is in radians and θR,k is scaled accordingly [19].

yz,k = gz + wz (2.9)

rz,k = yz,k − of (2.10)

rz,k =

{
rz,krz,k > |rT |
0rz,k < |rT |

(2.11)

rz,k = (rz,k + rz,k−1)/2 (2.12)

Arduino IR V1 assumes the relationship in equation 2.9 when processing the meas-
ured raw value from the IMU gyroscope z-axis. yz,k is the sampled measurement
from IMU gyroscope z-axis, gz is the true raw value, wz is additive noise [19]. For
avoiding drifting in θR,k, when the robot is stationary, rz,k is processed sequen-
tially using equation 2.10, 2.11 and 2.12. of is a constant value found empirically
to shift rz,k closer to zero. rz,k is further processed by rejecting any value below
a certain threshold rT . When the robot is moving rz,k is processed by a simple
sample mean of two.

Position control task
The position controller task is responsible for driving the robot to a specified set
point coordinate defined by xsp = [xsp, ysp]

T using a position controller. The
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controller uses a notion of attractive field for the error between the heading of the
robot θr and the angle to target θat, as well as, the current traveled distance of the
robot and the distance to target using the following equations:

dr = ||xr|| (2.13)

ddt = ||xsp|| (2.14)

ddt = dsp − dr (2.15)

θat = atan2((ysp − yr), (xsp − xr)) (2.16)

θd = θat − θr (2.17)

ed = −ddt (2.18)

ea = θd (2.19)

The controller uses a set of two discrete PID controllers PIDa and PIDd defined
by eq. (2.3) [19].

Figure 2.5: Block diagram of the controller structure for Arduino IR V1. Illustration:
Myrvang 2020 [19]

.

The controller PIDa tries to minimize the deviation between the heading of the
robot θr and the angle to target θat. Likewise, the controller PIDd tries to minim-
ize the deviation between the traveled distance of the robot dr and the distance to
target ddt. Figure 2.5 shows a block diagram of the controller structure. The output
of the two controllers are scaled using the LinMap function eq. (2.2). The scaled
values are feed to the open loop motor mapper, that maps the controller outputs to
a corresponding input torque and direction. The motor controller uses a form of
fussy logic based on the values of the control output. The interface takes in two
inputs ux and uy The speed for each wheel is calculated by the intermediate values
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Tinc and Trec defined in eq. (2.20).

[
Tinc
Trec

]
=



[
ux

ux

]
ux > I

[
uy + ux

uy

]
ux > 400

[
uy +

uy(ux
20 )

100

0

]
I > ux > 400

(2.20)

case 1: TLeft = Tinc DirLeft = FO
TRight = Trec ux < I: DirRight = FO ux > I: DirRight = BA

case 2: TLeft = Trec ux < I: DirLeft = FO ux > I: DirLeft = BA
TRight = Tinc DirRight = FO

case 3: TLeft = Tinc DirLeft = BA
TRight = Trec ux < I: DirRight = BA ux > I: DirRight = FO

case 4: TLeft = Tinc ux < I: DirLeft = BA ux > I: DirLeft = FO
TRight = Trec DirRight = BA

Table 2.3: The four cases for setting the virtual torque and direction for the left and right
motor

Table 2.3 shows how TLeft and TRight is set using equation 2.20, in addition to
the direction for the left and right wheel, where FO and BA is the forward and
backward direction respectively [26].
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2.4 Assessment of Arduino IR V1
Square test
To form a baseline and motivation for the thesis, a performance test was conducted
on Arduino IR V1. The particular test can be nicknamed Square test and consisting
of driving the robot to a set of target coordinates forming a 1m×1m and a 2m×2m
square using the values defined in table 2.4. The respective position controller uses
a target threshold of 30 mm. fig. 2.6(a) and fig. 2.6(b) shows the resulting trajectory
for Square test 1000×1000 [mm] and Square test 2000×2000 [mm] respectively
using the hardware and software described in section 2.2 and section 2.3.

Name SP
Square 1 [(1000, 0), (1000, 1000), (0, 1000), (0, 0)] [mm]
Square 2 [(2000, 0), (2000, 2000), (0, 2000), (0, 0)] [mm]

Table 2.4: Coordinate set point used in the two sqaure test for Arduino IR V1

Result
Table 2.5 shows the resulting end coordinate for each set point coordinate, which
reviles a considerable large error between the recorded and indented end-point co-
ordinate. At the same time, the deviation is consistent for each point, indicating a
large, but constant error. In its basic form, the position controller used in Ardunio
IR V1 has its strength of handling disturbances. From Myrvang (project 2020) it
was concluded that the disturbance was produced by a considerable difference in
the output torque for the two DC motors used in Arduino IR V1 [19]. The method
in its purest form have the advantage that its only need a input coordinate and two
controllers to get reasonable close to a target coordinate within a certain radius
relative to the robot.

Name Result
Square 1 [(1072,−0.8), (1038.4, 1103.6), (4.7, 1041.1), (−4.5,−72.8)] [mm]
Square 2 [(2106.8, 78.78), (2114.3, 2190.7), (5.87, 2049.9), (59.5, 17.2)] [mm]

Table 2.5: Recorded end points for the two square test for Arduino IR V1
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(b) Result of the 2000 × 2000 mm square test for Arduino IR V1
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However the use of PID controller can in most cases only give adequate control.
The motion results in large arcs as the robot is driving to the target set-point co-
ordinate as seen in fig. 2.6(a) and fig. 2.6(b). As concluded from Myrvang (project
2020) this is mostly due to the rotation of 90 degrees, which result in a large pro-
portional input error and resulting large output gain. A way of combating this is
to use gain scheduling for different turn angels. To the contrary this makes the
controller harder to tune as one have to deal with multiple gain parameters. The
controller also uses a form of "black box" design, which is one of the less positive
aspect of using PID controllers for this particular task. Far more desirable would
be to obtain a dynamical description of the robot and using this model to provide
a more optimal control.

It was also concluded from the project that the position controller can only be as
good as the position estimate of the robot. [19] There are several problems with
the estimation method used in Arduino IR V1. First, the estimation is only loosely
based on a kinematic equation and expresses some oddities that makes it harder
to reason about the applied method. Furthermore, the position estimate also lacks
proper filtering of the angular velocity obtained from the IMU. The threshold for
removing noise when the robot is stationary is not based on the properties of the
signal. From Myrvang (project 2020) it was observed that the noise level of the
raw data increases correspondingly to the decrease in the charge of the battery.
This result in the value no longer holds when the robot is used over time. The
encoders are also insufficient, in that they cannot give information about the direc-
tion of each wheel. This must be handled by reading the logical state of the motor
controller signal pins. This means that there can be a significant delay from the
actual direction of the wheel and the observed direction.



Chapter 3

Hardware changes and soft
devices

The general performance of the Arduino IR robot relies greatly, in a broader sense,
on the underlying hardware. This is especially true when addressing the object-
ives concerning improving the position estimation and motion control. Topics that
indirectly deals with improving the performance of the robot is the main theme of
this chapter. This chapter will describe changes made to the robot that constitute to
the foundation of implementation described in future chapters and will detail how
new hardware is integrated into the system and related soft devices. The chapter
can be structured in the following way

1. The new robot section 3.1
2. Soft devices section 3.2

3.1 The new robot - Arduino IR V2
The robot have underwent mayor changes to its structure and components. fig. 3.1(a)
and fig. 3.1(b) gives a profiled view from the side and from above of the new ro-
bot. The original LSM6DS3 6 Dof IMU found on the Arduino IR V1 has been
replaced. The new robot has been equipped with an ICM 20948 9 Dof IMU. This
change is made due to the later IMU deliver more functionalities in one package, in
the form of gyroscope, accelerometer and magnetometer [7]. Components such as
the servo and DC motors has been replaced due to being either broken or worn out,
as discussed in section 2.4 and Myrvang (project 2020) [19]. The new DC motors
for the Arduino IR robot is based on suggestion from Stenset (Master 2020) [27]
providing wheels with a smaller diameter and wider wheel base, in addition to,
higher torque for the motors as specified in table 1. This can provide better trac-

18
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tion and reducing the moment of inertia for the wheels compared to the original
wheels. The integrated encoders on the new motors have two hall-effect sensors
which can be used to measure the speed and direction of rotation for the wheels as
opposed to the encoders found on Arduino IR V1.

(a) Side view of the new hardware setup for Ardu-
ino IR V2.

.

(b) View of the Arduino IR V2 robot from above.

.

One of the objectives in section 1.2 is to design a distributed system for dividing
the work load and provide parallel capabilities. For the distributed system, an em-
bedded MCU have in general highly limited memory and computational resources
but provide robust IO interfacing and low energy operation [1]. The aspect of
limited resources affect all of the software on the system, but especially the tasks
running on the robot. The scheduling of task becomes harder as more task are
added and jittering introduced by hardware interrupts. It becomes increasingly
difficult to guaranteeing real-time requirements using only one MCU. Therefore,
dividing the workload over several MCU is an inexpensive method for improving
the performance of the robot.

This is carried out alongside with, extending the computational capabilities of the
robot, by adding another Atmega2560 microcontroller to the robot. Choosing
this controller is attractive for ensuring efficient implementation of higher level
functionalities, as Myrvang (project 2020) [19] dealt with providing more reliable
driver functionalities for the Atmega2560 microcontroller.
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Components layout

Figure 3.2: Illustration showing the layout of the components for Arduino IR V2.

In order to better accompany the new components and make the robot more rigid,
the placement and arrangement of the devices used in the Arduino IR robot has
also been changed. An illustration of the new layout can be seen fig. 3.2 . Both
the two Atmega2560 controllers, the IMU and servo are all mounted on the top
chassis frame. In Arduino IR V1, the IMU was mounted on the underside of the
bottom chassis frame. In the new layout this is not preferred. The IMU is placed
on the top chassis to reduce the noise induced by the motors. In addition, the servo
and the IMU is mounted as close as possible to the center of rotation for the wheel
axis. This advantageous when using the IMU for computing the heading of the
robot and using the IR sensors for distance measurements. The IR sensor layout
is the same as shown in fig. 2.4. The motor controller card is mounted on the un-
derside of the top chassis as represented by the dotted lines in fig. 3.2. The given
layout provides ease of access for the wiring to the motors, encoders and battery
by flipping the top cover. The top and bottom chassis frames are held together by
7 mounts and provides a highly rigid frame for the robot. Howevet, due to limited
mounting points on the robot chassis frame, the motor are mounted with a positive
offset, which also apply for the battery.

System structure
Figure 3.3 shows a block diagram of the new system design using two Atmega2560
controllers in parallel. The two controllers are designated as logic Node 1 and logic
Node 2. Logic node 1 is responsible for estimating the position and controlling the
motion of the robot. Therefore, node 1 is used to sample the sensor reading from
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the encoders and IMU, in addition to handle the control of the two DC motors.
Logic node 2, as seen to the left in fig. 3.3 is responsible for interface the four IR
sensors, controlling the servo and interface the nRF51 dongle. It is also responsible
for handling the communication to the main server.

Figure 3.3: Block diagram for peripherals for Arduino IR V2.

3.2 Soft devices
IMU

Figure 3.4: Wiring diagram between the Atmega2560 and the ICM 20948 IMU

fig. 3.4 shows how the IMU is connected to the Atmega2560 controller. I2C is
used to interface the MCU to the IMU. The raw values from the 3-axis gyroscope
and 3-axis accelerometer found on the IMU, have an output resolution of 16-bit
and is delivered as signed 16-bit integers. The sensor measurement from the IMU
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is sampled every 50 ms by the microcontroller. The values are extracted by suc-
cessive reading a high and low 8-bit registers, which are concatenated to form the
raw values rg and ra, corresponding to the angular velocity and linear accelera-
tion. The IMU is configured with the parameters shown in table 3. The gyroscope
measure the angular velocity in dps and the accelerometer linear acceleration in g
[7]. To find the angular velocity and linear acceleration, eq. (3.1) and eq. (3.2) is
used, where

ωgz,y,x =
rg

FSF,g ± og
[dps] (3.1)

az,y,x = 9806 ∗ ra
FSF,a

[g] (3.2)

(3.3)

og is a scaling offset, FSF,g and FSF,a are sensitivity scaling factors found in
table 3.

Encoders

Figure 3.5: Wiring diagram between the Atmega2560 and the encoders

The two integrated encoders on the motors have two signals pins e1 and e2 each
that generates pulses according to the movement of the wheel. fig. 3.5 shows how
the encoders are connected to the Atmega2560 controller.

Depending on the direction off the motors, the pulse from e2 is either −90 or 90
phase shifted relative to e1. The phase shift is used to differentiate the forward
and backward rotational direction of the wheel. fig. 3.6 gives an illustration of
the signals generated by e1 and e2, as well as, correspondingly phase shift. The
sampled raw tick speed of the left and right wheel defined as Cl,k and Cr,k can
be found by counting the pulses, sampling the count with a sampling time ∆t and
resetting the count after each sample.
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Figure 3.6: Encoder signal e1 and e2

However, the logical level between
e1 and e2 can be in one of the four
combination 00, 01, 10, 11 when the a
wheel stops moving. Therefore, only
the pulses generated by the e1 are
counted up or down depending on the
logical level of e2. To achieve this,
as well as, to making the driver en-
capsulated, two ISR interrupt service
routines are used. An external ISR is
used to count the pulses and a timer
overflow ISR is used for sampling the

tick speed. As illustrated in fig. 3.6, the external ISR is set to trigger on a
rising edge for the signal e1. Within the ISR, the pulse count from e1 is either
added or subtracted by one depending on the truth table in table 3.1 for e2.
The Atmega2560 controller have only a limited number of timer prescale val-
ues used for generating the timer overflow,where the highest is 1024 [1]. As
a consequence, the timer overflow ISR is set to trigger every 16.32 ms and a
sampling counter is used for sampling the tick speed Cl,k and Cr,k every 49 ms.

e1 1 1 add
e2 1 0 subtract

Table 3.1: Truth table for counting the en-
coder pulses

Within the timer overflow ISR, the
sampled tick speed is copied to vari-
ables for the left and right wheel re-
spectively and the pulse count is zer-
oed. The variables are global variables
only visible to the scope of the driver.
This means that the tick measurement

is effectively seen as a read-only value to any application outside the driver and
makes the read functionalities thread safe.

Ktw =
Ticks per wheel rev

2π
(3.4)

ωm,k =
1

Ktw

Ck
∆t

Rad/s (3.5)

vm,k = Kvw
Ck
∆t

mm/s (3.6)

Kvw =
rw
Ktw

(3.7)

The sampled tick speed needs to be scaled such that the velocity for each wheel
can be extracted. The angular velocity for each wheel can be expressed in radian
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defined in eq. (3.5) per second by converting the the sampled tick speed Cl,k and
Cr,k using the scaling factor in eq. (3.4). The linear velocity is found by using
eq. (3.5), where Ktw is the scaling factor for scaling the ticks to angular velocity,
ωm,k is the sampled angular velocity for the wheels, rw is the wheel radius and
vm,k is the sampled velocity. The parameters in table 2 is used.

Node communication
As described in section 3.1 the new design is a distributed system with two logical
units for dividing the workload, As a result, a communication link between the
nodes are needed. The link is designed to provide a physical communication inter-
face with a virtual layer, such that the two units act as one, in addition to, enabling
information given by FreeRTOS queues and events to be shared between the two
nodes. Another goal of the design is to transfer bytes of data with the least amount
of overhead, such that the impact of the communication is minimal. The interface
is designed as a USART/SPI hybrid and provides half duplex communication. The
interface uses USART as basis and two GPIO-pins on the Atmega2560 control-
lers. The GPIO-pins have a double purpose, where they act both as control signal
for message termination and synchronization when sending and receiving. fig. 3.8
shows how the two nodes are connected.

Figure 3.7: Wiring diagram for the node communication interface

The output signal pin from one node is connected to the input signal pin of the
other and vice versa. The synchronization is performed by locking the USART
port when transmission and receiving, hindering the node to transmit at the same
time. The USART port on the two Atmega2560 controllers uses the specification
stated in table 3.2

Frame format: 8 data, 2 stop bit
Baud rate: 250 Kbps or 31 KB/s

Table 3.2: USART specification for the node communication
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ID (1 byte) Data size (1 byte) Data (0 - 255 bytes)

Table 3.3: Caption

The massage format consist of a header of two bytes and the data as shown in
table 3.3. The first byte of the header is used for identifying the type or shape of
the data. The next byte is the size in bytes of the variable to be transmitted. The
identifier byte is used by the node participant to convert a received message to its
respective variable.

ID type
0 Ignored
1 Error ID
2-5 Events
20-255 Robot data

Table 3.4: ID specification for the node com-
munication

table 3.4 shows the legal variables that
can be used to reconstruct a received
byte stream. Serial USART transmis-
sion and reception of the value zero
is normally treated as a delimiter and
is automatically added when sending a
byte stream. In the node communica-
tion design, delimiting of a messages is
carried out by the GPIO pins. There-
fore, the protocol specifies that an ID

with value of zero is considered illegal and will be ignored by the nodes. The
interface also needs to support any type, from single variables as int and float to
composed types, such as, structs. As a result, the data is converted to a serial byte
stream by extracting the memory address of the variable and coping the content
to a buffer which correspond to the message format in 3.3. The structure of the
interface can be divided into three abstraction levels

1. Node port: Device specific for interfacing with the USART port, hardware
interrupts for reception and pin signal termination.

2. Node transfer: Provides the means for converting to serial stream and trans-
ferring data, as well as, reception and data integrity check.

3. Node task: Provide the virtual layer between the nodes such that FreeRTOS
queues and events can be exchanged.

The reception and transmission of a byte stream in the Node port layer is carried
out by first reading the input signal pin to check if the port is busy. The protocol
specifies that the port is considered busy when the input signal pin is logical high
and correspondingly not busy when the pin is logical low. Second, if the port is
not busy, the out signal pin is pulled high, locking the port for both participants.
The first two header bytes are sent first, followed by the data bytes. Lastly, the
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node releases the port after the last byte is sent by pulling the out signal pin low.
The receiving node uses a ISR for capturing the data sent over the link. When
the first byte is received, the receiving node pull its own out signal pin high. The
falling edge of the out signal pin from the transmitting node is used as message
termination. The receiving node uses an external pin ISR for detecting this change.
The out signal pin from the receiving node will stay high until the data is processed.
The data received is buffered into a FIFO queue. A "data ready" flag is set when
the external pin ISR is triggered. fig. 3.8 gives an illustration of the reception and
transmission signaling.

Figure 3.8: Signaling for transmission and reception

The Node transfer provides functionalities for processing outgoing and incoming
messages. Listed in algorithm 1 is the handler used for transmission a byte stream.
The port is locked corresponding to the output pin specified in the Node port layer.
The transmission handler will set a "Transmission-Not-Success" flag if the port is
used. If the port is available, the ID and Size byte is transmitted first, followed by
the data bytes.Handler listed in algorithm 2 is used for message reception. When a
message is received, the ID and Data size header is extracted from the FIFO queue
found in the Node port layer. To check if the data was sent correctly, the Data size
byte is compared with the number of elements left in the FIFO queue. If these
two numbers don’t mach, a received error flag is set. The receiving node will then
prematurely realise the port and send an error massage to the transmitting node,
containing the error ID. If the number of elements received matches with the data
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size header, the data is transferred to a data buffer and the FIFO queue is flushed.

Algorithm 1: Transmission handler
if Port NOT busy then

Lock port
Transmit(ID byte)
Transmit(Data Size Byte)
for Data size do

Transmit(Data Bytes)
end for
Release Port

else
Set "Transmission-Not-Success" flag

end if

Algorithm 2: Node reception handler
if Data NOT Fetched then

ID← Dequeue(Rx ISR buffer)
Data size← Dequeue(Rx ISR buffer)
if Data size = Elements in Rx buffer then

for Data size do
Data buffer← Dequeue(Rx ISR buffer)

end for
else

if ID = Error ID then
Set Transmission Error

else
Set Reception Error

end if
end if

end if



Chapter 4

Task architecture

This chapter seek to give an overview of the complete software system implemen-
ted on the Arduino IR V2. An overview of the task architecture and communic-
ation is given, in addition to providing information about support task such as,
task implementation of the Node communication protocol, complete implementa-
tion of the server communication and the coordination of the tasks. The chapter is
structured into two parts:

1. Task architecture section 4.1
2. Support tasks section 4.2

4.1 Task implementation and architecture
The system design of Arduino IR V2 uses the tasks described in section 2.3 as
basis. However, the new system have seen mayor changes to the original design
found on Arduino IR V1. Two key aspects are the introduction of the two logic
nodes and definition of new tasks. table 4.1 shows the tasks designated to each
node.

Node 1 Node 2

System monitor task System monitor task
Node communication task Node communication task
Position estimation task Server communication task
LQR control task Coordinator task
Speed control task Path planner task

Table 4.1: List of defined task and assignment between the nodes

Node 1 runs the tasks that are responsible for handling the robot. The estimation
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task runs the code for estimation the position of the robot, described in chapter 5.
The LQR control task, described in chapter 6, carries out the control for guiding
the robot to a target set-point coordinate. The Speed control task handles the con-
trol for maintaining a given angular velocity for each wheel, detailed in chapter 6.

Node 2 runs the tasks that are responsible for coordinating, communication with
the main server and observing the environment. The Server communication task
handle the communication with the main server. The Coordinator task is used to
determine and coordinate which operation the robot should perform based on re-
quest, events and data queues produced from both nodes. The Path planner task,
detailed in chapter 7, is responsible for navigating the robot in an environment by
computing augmented target set-point coordinate based on the observation extrac-
ted from the IR sensors.

Node 1 Priority Period [ms]

System monitor task 6 1948
Node communication task 4 75
Position estimation task 5 50
LQR control task 3 60
Speed control task 4 27

Table 4.2: Priority and period for the tasks on Node 1

Node 2 Priority Period [ms]

System monitor task 6 1948
Node communication task 5 75
Server communication task 3 100
Coordinator task 4 28
Path planner task 5 60

Table 4.3: Priority and period for the tasks on Node 2

All of the tasks found on both of the nodes runs periodically with the respective
periods defined in table 4.2 and table 4.3. The periods and priorities are assigned
based on the critically of the task and the total system performance. The periods
are set to reduce the interference between the tasks. They are set to be not multiple
of each other, such that the lower priority does not suffer starvation.



4.2. Support Tasks 30

Figure 4.1: Block diagram showing the signaling between internal tasks and the two
nodes.

.

Each task have a modular and encapsulated design, where a task have a set of input
and output channels for which data is exchanged. Likewise for the design in Ardu-
ino IR V1, data is shared using FreeRTOS queues. FreeRTOS events are used for
signaling and sending data request. The two nodes communicate with each other
using the node communication task, where each node runs an identical instance of
the task. The Node communication protocol, described in section 3.2, provide a
virtual layer for which data can be exchanged and the node communication task
act as an interface. The signaling and data exchange between internal task and the
two nodes are shown in fig. 4.1. E stands for event/request, SP is a target set-point
coordinate, POS is the position estimate, U is the IR sensor update and REF is
reference input torque. Both SP, POS, U and REF are exchanged using queues.

4.2 Support Tasks
Coordinator task
The purpose of the Coordinator task is to coordinate and tie together the operation
of all the other tasks. The task enables action of higher abstraction to be performed
by the robot. The coordinate task acts on incoming events and data queue from
the other tasks and decide appropriate action to be taken by sending out request.
Several other task needs data produced and operations performed by each other. To
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only transfer data when a task needs it, request flag is implemented as events. All
request and events are forwarded to the coordinate task such that the robot is able
to perform different actions and perform these in a asynchronous manner. Some
examples are:

• Enable position controller by sending a start signal and SP.
• Align the robot to the target coordinate by sending a start request.
• Move the robot to the target coordinate by sending a start request.
• Reset the LQR controller by sending a reset request.
• Get position update by issuing a position request.
• Request the Path planner task to find out if the current target coordinate is

safe to traverse or compute a augmented target.
• Request the Path planner task to perform an a scan of the environment for

either sending sensor updates to the Server communication task or rerouting
the robot.

Node communication task
The node communication task is used to provide a virtual layer between the nodes
such that implemented task on each node can communicate with each other by
using FreeRTOS queues and events. The task implementation gives a clean ab-
straction for hiding the complexity in the Node transfer layer and Node port layer
described in section 3.2. The task is responsible for conversion between the FreeR-
TOS queues and events and serial byte streams. The conversion is carried out by
utilizing an ID look-up table, where both nodes agree on the same ID to variable
mapping. The task is designed as a state machine as illustrated in fig. 4.2.

Figure 4.2: Flow chart for the node communication task
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The task is set to run periodically, where the default state is the Listen state. Within
the state, the "Data-ready" flag is polled, as well as, any newly received internal
FreeRTOS events or queue updates. The ID for pending data to be sent over the
node communication link is stored in a FIFO queue. If a new message is received,
the task goes to the Handle reception state, where the receive handler listed in
algorithm 3 is used. Received data, stored in the data buffer, is compared with
the ID look-up table. If there is an ID for the defined variable, the content from
the data buffer is copied to the respective variable. Any reception error thrown
by the RX data fetcher handler listen in algorithm 2 in section 3.2 is handled
by releasing the node port and sending an error signal to the transmitting node.

Algorithm 3: Node task reception handler
Extract buffer from RX data fetcher using algorithm 2
if NOT Reception Error then

Fetch Data type conversion from ID look-up table
Convert data buffer to data type
if NOT Data Error then

Set event if Event type
Place data in FreeRTOS queue if data type
Go to state Listen

end if
else

Handle error by release the node port and flush the reception buffer
Send error signal to the transmitting node

end if
The task transition to the Handle transmission state listed in algorithm 4, if there
is no incoming messages and the TX ID FIFO queue is populated. The task will
try to send the messages by a given amount of times as shown in fig. 4.2. If the
number of unsuccessful attempts exceed the Timeout condition, the respective ID
is placed back into the FIFO queue and the task returns to the Listen state.

Algorithm 4: Node task transmission handler
Based on ID look-up table: Copy content from Data type to data buffer
Send data using Transmission handler in algorithm 1
if Transmission NOT success then

Retry transmission
if TIMEOUT then

Place ID in transmission queue
end if

end if
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Server communication task
The Server communication task found on Arduino IR V1 have been re-implemented
due to the lack of support for sending update messages and synchronization issues.
The automatic re-transmission of message from the server require the syncing of
a request number. The server send back an acknowledged message for any incom-
ing message containing the request number. For solving the synchronization issue,
the request number is fetched from all acknowledged message received from the
server and used in all outgoing transmission from the robot. The new implementa-
tion is designed to bulk stream sensor updates, as well as, sending periodically out
ping response to the server. The robot does therefore not implement re-sending of
messages as it is not critical if an update message is lost. The ping response is used
as an alive signal for checking if the server is responding. The new Server com-
munication task offer a richer set of features and a more modular design. fig. 4.3
shows the program flow of the Server communication task.

Figure 4.3: Block diagram illustrating the program flow of the Server communication task

The task is designed as a modular state machine where variables corresponding
to a given state is queued into a FIFO queue based on a given event. The task
decide the next state to run based on the first element in the queue. This allows for
multiple events occurring at the same time and the task sequentially runs the states
in queued order. The task uses a state machine with the following states:

Idle: Default state for the server communication task
Handle server message: Handles incoming messages
Send update: Sends update messages containing distance measurement ob-
tained from the IR sensors merged with position estimate fetched from Node
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1.
Connect to server: Transmit connection and handshake message every 2
seconds
Send ping response: Sends a ping response to the main server every 10
seconds for checking if the server is still operational.
Send idle response: Sends a idle response to the server, indicating that the
robot is not busy.
Timeout: Clears a "connected-to-server" and signals the other task by send-
ing a "disconnect-from-server" event.

Any generated events are checked in an event table and the corresponding state
is queued into the state FIFO queue. The Handle server message state, polls
a "message-received" flag that is set based incoming messages, handled in the
nRF51 port layer asynchronously as described in section 2.3. A timeout counter
is incremented when there is no new messages received and likewise reset every
time the "message-received" flag is set. A timeout event is triggered if the timeout
counter expires and the task disconnects from the server when the Timeout state
is executed.

For sending updates, processed IR Measurement are buffered into an array which
is used in combination with an index FIFO queue. If there is element in the index
FIFO queue, the Send update is triggered, where the position estimate is com-
bined with the IR measurement to form the update message. The events for the
states Connect to server, Send ping response and Send idle response uses coun-
ters for triggering. A "connected-to-server" flag using the SR-latch described in
section 2.3 is used along side the event counter for connecting to the server in
the Connect to server state. The event counter for the Send idle response state
is combined with a SR-Latch based "send-idle" flag. The flag is set based on a
FreeRTOS event signaled by the Coordinator task. The Send ping response state
is triggered periodically by the event counter.



Chapter 5

Improvements of the position
estimate

From section 2.4 it was concluded that the errors in the position estimate greatly
impacts the performance of the robot. This is most evident in the position con-
troller, as it directly relies on accurate position estimate. Therefore, the imple-
mentation in chapter 6 and chapter 7 indirectly depend on improvements in the
position estimate. The estimation method used in Arduino IR V1 was in some
part empirical and makes it hard to reason about the cause of the inaccuracies.
This motivates the investigation of the kinematic formulation and how the sensors
values is processed based on physical parameters. Similar to Arduino IR V1, the
position estimate in the new system is based on the sensor measurement from the
encoders and the IMU. The first step to improve the position estimate was de-
scribed in chapter 3 by replacing the original IMU and encoders. It is observed
that the encoders have an accumulative effect on the error in the position estim-
ate. This is a result of the encoders being dependent on the rotation of the wheels,
which consequently introduce errors by wheel slippage. The accelerometer found
on the IMU is independent of the wheels is utilized for combating the errors intro-
duced by the encoders.

As described in section 2.3 and section 3.1, the gyroscope outputs the angular ve-
locity, where numerical integration is used to calculate the heading of the robot.
This makes the robot sensitive to noise and resulting in drifting of the heading. Ar-
duino IR V1 made an effort of dealing with the drifting [19] by rejecting any value
below a certain threshold. However, it had it limitation of not taking advantage
of the statistical properties of the signal, as well as, using only a simple mean for
smoothing. Kalman filtering is a method that do take advantage of these proper-
ties and can be used to give a more accurate measurement for signals corrupted by
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noise. [10]. The method is briefly described in section .3.

5.1 Filtering of sensors data
A common form is additive noise and, within the software system on the robot, is
first observed in the raw values extracted from the sensors. The focus within the
improvements of the position estimate lays within the filtering of the raw sensor
values. The filtering scheme applies a similar method found in Arduino IR V1.
However, the statistical properties from the signals sampled from the gyroscope
and accelerometer is utilized for better filtering, in addition to a tighter threshold
in the signal rejection. In addition, Kalman filtering is used for the raw measure-
ment from the gyroscope z-axis.

The sensor reading from the IMU can be classified as a Stochastic discrete random
signal [11]. It is observed that the raw angular velocity and raw linear acceleration
from the IMU described in section 3.1 is a constant added with noise when the
robot is not moving.
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Figure 5.1: Recorded signal from the IMU gyro-z axis
.

fig. 5.1 shows the observed signal from the IMU gyro-z axis when the robot is
stationary. Assuming the the raw signals from the gyroscope and the accelero-
meter takes the form of random signals with additive noise, it can be described by
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eq. (5.1) when the robot is stationary and eq. (5.2) when the robot is moving.

r[n] = µr + w (5.1)

r[n] = X[n] + w (5.2)

where the noise is assumed to be white Gaussian noise with zero mean and a
variance σ2. The signal in eq. (5.1) is also assumed to have a normal distribution
centered around the mean µr, as well as, the properties of the noise is the same
for eq. (5.1) and eq. (5.2). The robot is battery operated and the noise from the
gyroscope and the accelerometer may increase over time. As a result, both µr and
σ2 is computed online on the robot using the sample mean defined in 5.3 [29] and
the sample population variance defined in eq. (5.4) [29].

µ =
1

n

n∑
i=1

(5.3)

σ2 =
1

n

n∑
i=1

(xi − µ)2 (5.4)

The static filtering applied for the accelerometer and gyroscope is carried out in
three steps

1. Offset the signal to zero using the mean µr of the signal.
2. Filtering out high frequency noise using the digital low pass filter in eq. (2.1).
3. Reject any value below a threshold defined by ±σ.

The Kalman filter in section .3 can be computational expensive as it relies on mat-
rix operation if several states are to be estimated. A compromise is made, that favor
system response, by only using Kalman filtering on the raw measurement obtained
from the gyroscope z-axis. This is justified by noting that noise from the gyro-
scope is a mayor contributor to the error in the position estimate. As the Kalman
filter is only used for the raw measurement from the gyroscope z-axis, all of the
functions in section .3 can be implemented as scalar functions. The implemented
scalar Kalman filter for the gyroscope z-axis is initialized by

hgz = 1 + ∆t (5.5)

q = σ2
gz (5.6)

r = µgz (5.7)
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5.2 Kinematic model of the robot
The discrete kinematic equation used in Arduino IR V1 is altered to accompany
the introduction of the accelerometer into the position estimate. The new system
uses the definition of the coordinate frame R and W as described in section 2.3,
as well as the position defined by eq. (2.5) and eq. (2.4). The frame R is set to be
a inertial frame of reference to two new frames ci and ri. The robot fixed to the
ri frame moves in a straight relative to the x-axis in the R frame. The ci frame
stationary to the center of rotation rotates around the z-axis in the R frame.

Figure 5.2: Illustration of the two coordinate frames ci and li

Both frames have its origin in the center line of the wheel axis of the robot as
illustrated in fig. 5.2. In the favor of embedded system design, the definition of
the frames combined with the placement of the sensors allows the motion of the
robot to be described with the linear and circular equation of motion in eq. (5.8)
and eq. (5.9). The full kinematic equation for estimating the position of the robot
is now:

θci,k = ωgz,k∆t (5.8)

Lri,k = ve,k∆t+
1

2
aax,k∆t

2 (5.9)

prk =

Lri,kcos(θci,k)Lri,ksin(θci,k)
0


pwk = pwk−1 +Rwr p

r
k

∆t is the sampling time, θci,k is the current heading of the robot in the R frame,
ωgz,k is the sampled angular velocity from the IMU gyro z-axis, ve,k is the velocity
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from the encoders and aax,k is the linear acceleration from the accelerometer. The
integration for obtaining the heading in the world frame uses the full trapezoid
method found by bilinear transformation [11] defined as

θw,k = θw,k−1 +
∆t

2
(ωgz,k + ωgz,k−1) (5.10)

5.3 Position estimation task
Algorithm 5: Estimation task

Sample raw data from the IMU
switch (State)
case Calibrate:

switch (Calculation mode)
case Mean:

Calculate µr using eq. (5.3)
if µr ready then

Go to Variance
end if

case Variance:
Calculate σ2

r using eq. (5.3) ans µr
if σ2

r ready then
Go to state Operational

end if
end switch

case Operational:
Sample Cr and Cl from the encoders
Filter Cr and Cl using the Low pass eq. (2.1)
Use static filtering on ra,x and rg,x
Use Kalman filtering filtering on rg,z
Scale ra,x using eq. (3.2) to obtain ax
Scale rg,z using eq. (3.1) to obtain gz
Integrate gz using eq. (5.10)
Find position in frame R using eq. (5.9), eq. (5.8) and eq. (2.5)
Find position in frame W using eq. (2.4)

end switch
The Position estimation samples the raw linear acceleration and the angular ve-
locity from the IMU and the encoder speed ticks from the drivers described in
section 3.2. The task is designed with two states Calibrate and Operational. The
Calibrate state is run on system start up ,or when a system reset is performed, and
calculates the sample mean and population variance for the raw measurement from
the IMU. The position estimation is performed in the Operational state.
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5.4 Evaluation of the position estimation
The gyroscope will be evaluated with respect to filtering and processing, as the it
have the most effect on the accuracy of the position estimate. For testing the head-
ing estimate with the new filtering scheme, the robot is rotated ± 90 degrees. The
position of the robot is recorded and the raw values from the IMU is logged from
the robot. The angle for each recorded sampling point is found using the atan2 in
described in eq. (11). Lastly, a complete test, joining the described methods, for
testing the position estimate is performed. This is carried out by pushing the robot
in a random direction without causing the wheels to slip and record the position.
The code for estimating the position is recreated within MATLAB and ran using
the logged raw values, using the same types used in the robot. The parameters in
table 4 is used for each the test.

Filtering and processing
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Figure 5.3: Static filtering of the stationary raw angular velocity from the IMU gyro z-axis
.
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Figure 5.4: Kalman filter on the raw angular velocity from the IMU gyro z-axis
.

The result in fig. 5.3 shows how the static filtering of the raw signal from the
gyroscope z-axis performs, where a sample mean µ̂ = 3 and variance σ̂2 = 4 was
used. Both µ̂ and σ̂ may vary as they are calculated each time the robot is powered
on. It is however observed that they tend to be around the values in table 5.1.
By using the calculated sample mean and variance, the noisy raw signal is effect-
ively removed as represented by the red line in fig. 5.3. Shifting the signal by µ̂
and utilizing low pass filtering in combination with utilizing the variance as bound
in the threshold rejecting means that only raw values corresponding to angular ve-
locity in the range of [0.2, 0.5] [dps] are lost. The trade-off is in favour of the
static filtering, as the robot usually cannot rotate that slowly. Correspondingly,
using the static filtering means that the heading obtained from eq. (5.10) does not
dramatically shift and making the measurement from the gyroscope useless.

µ̂ ∼ 3− 4

σ̂2 ∼ 4

Table 5.1: Nominal values for µ̂ and σ̂

fig. 5.4 shows the effect of the Kal-
man filtering of the raw signal from
the gyroscope z-axis, where the para-
meters q and r have been initialized
with the calculated µ̂ and σ̂. As shown
by the red line, the combined filtering

scheme of static filtering and Kalman filtering is successful in removing the addit-
ive noise in the raw signal, as well as, preserving the form of the raw signal. The
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result also indicates that the use of µ̂ and σ̂ in q and r is successful for providing
automatic tuning of the Kalman filter.

Heading estimation
fig. 5.5 and fig. 5.6 shows the resulting estimated heading of the robot in the world
frame compared to recorded heading. The estimating heading is compared with
and without the Kalman filtering as shown in fig. 5.4. The red dotted line is the
estimated angle with Kalman filtering, the green without and the blue is the real
angle when rotating 90 and -90 degree respectively. The real angle is found by cal-
culating the recorded position of the robot and using eq. (11). Using this method
the real angle is in some form estimated. table 5.2 and table 5.3 shows the final
angle, the final error, in addition to, the mean error between the recorded and estim-
ated angle. The number of samples logged by the robot and the samples recorded
from the Motion lab is not equal. To provide some numerical evaluation of the
difference between the real and the estimated angle, a sample error is calculated
by

eθ,k = |θr,k| − |θe,k|

where θr,k and θe,k are correspondingly sampled real and estimated points.
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Figure 5.5: Estimated heading for rotation 90 degrees with and without Kalman filtering
.
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Figure 5.6: Estimated heading for rotation -90 degrees with and without Kalman filtering
.

Rotation 90 degree

Recorded angle E. A with Kalman filtering E. A without Kalman filtering
θr : 90.35 θr : 89.10 θr : 84.86

e : 1.25 e : 5.49
me 0.38 me : 2.15

Table 5.2: Statistics from the estimation of the 90 degree rotation

Rotation -90 degree

Recorded angle E. A with Kalman filtering E. A without Kalman filtering
θr : −89.10 θr : −90.04 θr : −85.75

e : −0.944 e : 3.34
me − 0.75 me : 1.2607

Table 5.3: Statistics from the estimation of the 90 degree rotation

The result from fig. 5.5 and fig. 5.6 indicates good agreement when comparing the
real and the estimated angle with applied Kalman filtering. It can be observed that
the estimated angle without using Kalman filter is comparable with the Kalman
filtered angle up to sample point 1300 and 900 for the positive and negative ro-
tation respectively. However the intention with the Kalman filter is to make the
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estimated angle more consistent a shown from fig. 5.4. Therefore, the mean error
0.38 −0.75 from table 5.2 and table 5.3 for the positive and negative estimated
angle with Kalman filtering gives an indication of a more accurate measurement.
The final error of 5.4 and 3.3 when not using the Kalman filtering for the positive
and negative estimated angle is consistent with final values observed from logging
when rotating the robot. The mean error of 2.6 and 1.2 is also fit the observed
offset when rotating the robot back to zero. Likewise, when using the Kalman
filtering for heading estimation, an error in the range of ±1 degree has been ob-
served, indicating that the final values of 1.2 and −0.94 are reasonable.

An important observation to be made when using the Kalman filtering is the negat-
ive sign in the mean error for rotation −90 degree. This suggest that the estimated
heading using the Kalman filter will be ahead when rotation in the negative direc-
tion and lag behind when rotating in the positive direction. The result from fig. 5.5
and fig. 5.6 also gives an agreement of this observation. As a consequence, rotat-
ing the robot in one direction over a extended period of time will eventually result
in deviation between the real and the estimated heading. Regardless, under normal
operation the robot will not drive exclusively in one direction. It has been observed
that the drift error tend to be minimal when rotating the robot equally in a positive
and negative direction.

Position estimation
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Figure 5.7: Comparison between the estimated and recorded position from random walk
1

.
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Figure 5.8: Comparison between the estimated and recorded position from random walk
2

.

fig. 5.7 and fig. 5.8 shows the estimated position of the robot in the world frame
and the recorded position. The estimation relies on the filtering scheme in sec-
tion 5.1 and the kinematic equation eq. (2.5) in section 5.2. The recorded position
is compared against three estimation methods. Method one is the estimated posi-
tion without Kalman filtering and accelerometer measurement. The second is the
estimated position with Kalman filtering and without accelerometer measurement.
The third method uses both Kalman filtering and the measurement from the ac-
celerometer. For obtaining the final error and the mean error for each estimation
method, a similar calculating as the heading estimation was done to compare the
estimated against the recorded position. The distance from the origin was also
calculated for each sampled point.
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Random walk 1 [mm]
rx : −149.55 ry : 562.27

Method 1 ex : 53.46 ey : −121.97 mex : −3.79 mey : −44.63

Method 2 ex : −13.03 ey : −14.55 mex : −12.51 mey : −6.09

Method 3 ex : 5.89 ey : −2.80 mex : −3.13 mey : −2.03

dr : 581.82

Method 1 d2 : 690.96 ed − 109.13 me2 − 53.98
Method 2 d3 : 599.30 ed − 17.47 me3 − 13.41
Method 3 d1 : 583.05 ed − 1.22 me1 − 4.75

Table 5.4: Error statistics for random walk 1

Random walk 2 [mm]
rx : 991.90 ry : −476.53

Method 1 ex : −51.24 ey : 0.51 mex : −22.88 mey : −1.0

Method 2 ex : −33.73 ey : −4.10 mex : −11.23 mey : −4.41
Method 3 ex : 10.18 ey : 23.55 mex : 15.86 mey : 14.28

dr : 1100.43

Method 1 d2 : 1146.62 ed − 46.19 me2 − 20.81
Method 2 d3 : 1132.67 ed − 32.23 me3 − 12.401
Method 3 d1 : 1081.18 ed 19.25 me1 20.44

Table 5.5: Error statistics for random walk 2

As seen in fig. 5.7, the deviation for method one is considerable, whereas both
method two and three are close to matching the recorded position. The result
in table 5.4 indicates that method three produces an average error in the x-and
y-direction in the range of 5 millimeters, whereas method two have an average
error in the range of 15 millimeters for random walk one. The result from also
fig. 5.7 gives a strong indication for the importance of the Kalman filtering. On
the contrary, all of the methods, within a reasonable degree, matches the recorded
position in fig. 5.8. A reason for this, is that the path in fig. 5.7 have considerable
more arcing, meaning the heading of the robot is constantly shifting. In contrast,
the path from random walk two in fig. 5.8 resembles more of a series of connected
lines. Still, the result from table 5.5 indicates, that method one have an average er-
ror in the x-and y-direction in the range of 20 millimeters. table 5.5 also reviles that
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method two, which do not utilize the accelerometer, performs better than method
three. However the calculated mean error and final error in the x-and y-direction
for method two is not as consistent as method three. Aspects to be aware of is that
the accelerometer is sensible to vibrations, as well as a less smooth motion was
needed to form the path in fig. 5.8 comparing to the path in fig. 5.7. This gives an
indication that jerking in the motion of the robot seems to negative affect the pos-
ition estimate when using the accelerometer. However, this seems to only impact
the final position for method three in fig. 5.8. Isolated, the paths from fig. 5.7 and
fig. 5.8 produces somewhat conflicting results. However, combining the behavior
observed from random walk one and two with the result in table 5.4 and table 5.5
indicates that the average error in the x -and y-axis for both cases is within the
range of 15 millimeters.

Even thought the accelerometer is sensible to vibration and jerking in the motion
of the robot it is still beneficial to use it in the position estimate. The result from
the heading estimation reviled that rotating the robot in both positive and negat-
ive direction tend to minimize the drift error. Similar, the accelerometer possesses
the properties for combating the accumulated error produced by the encoders. As
observed from both table 5.4 and table 5.5 the error for method two is constantly
negative. This means that using method two which, relying only on the encoders
for the translation motion, would result in a constant shift in the estimated com-
pared to the real position. In contrast, the result for method three indicates that
using the accelerometer would produce an error such that the estimated position
would tend to stay within a region of the real position.



Chapter 6

Control of the robot

The assessment of Arduino IR V1 in section 2.4 found that using PID control-
lers only gives adequate control for the motion of the robot. As concluded in
section 2.4, the main issue is the oscillatory behaviour and large overshoot exper-
ienced when the robot is maneuvering, along with disturbance produced by the
motors used in Arduino IR V1. This is partly resolved by replacing them as de-
scribed in section 3.1. Still, the response for each motor may not be equal and a
speed controller for each motor is required to decrease the difference. The "black
box" design of Arduino IR V1 does not take in to account the dynamics of the
robot. Applying the linear and angular velocity into a state feedback control law
on the form of eq. (6.1) [9] can better suit the MIMO system for controlling the
robot to a target coordinate.

u = −Kx (6.1)

However, this require a linear time invariant description of the system on the form

ẋ = Ax−Bu (6.2)

The state feed back can be combined with reference feed forward to form the
following control law in eq. (6.3), using the definition in eq. (6.4) for Kr [23].

u = Krr−Kx (6.3)

Kr = [(BK−A)−1B]−1 (6.4)

Granted that a reasonable description exist, as well as being time invariant and
controllable, any state of the system can be brought to another in finite time by
applying a appropriate control output u [9]. Another advantage of applying state
feed back is that optimal control in the form of LQR Linear quadratic regulator
can be used, as eq. (6.1) is the solution for minimizing the quadratic cost function

48
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defined in eq. (6.5) [9] [2].

J =

∫ ∞
0

xT (t)Qx(t) + uT (t)Ru(t) (6.5)

where Q and R are positive definite matrices and

K = R−1BTS (6.6)

is the solution to the Algebraic Riccati Equation in eq. (6.7) [9].

ATS + SA− SBR−1BTS + Q = 0 (6.7)

The proposed solution is to obtain a linear dynamic model of the robot and use
it to design a reference feed forward state feedback control law on the form of
eq. (6.3). The controller is designed as a LQR controller where the gain matrix K
that minimize eq. (6.5) along with eq. (6.4) is found using MATLAB. The calculated
values of K and Kr is transferred to the Atmega2560 controller and an explicit
control law of eq. (6.3) is implemented. The complete controller is structured as a
cascaded system, where the LQR controller is responsible for guiding the robot to
a target coordinate. The outputs from the controller is used as reference in a speed
controller, which is responsible for maintaining a given speed for each wheel. The
speed controller make use of the discrete PID implementation in eq. (2.3) described
in section 2.3.

The chapter can be structured in the following way
• section 6.1 Dynamic model of the robot
• section 6.2 Optimal control using LQR
• section 6.3 System response
• section 6.4 Square test of the new controller
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6.1 Dynamic model of the robot
Using LQR require a linear model for describing the dynamic of the robot. The
kinematic equation in eq. (2.5) is clearly not linear and cannot be used without
linearization. Moreover, the dynamics is not exclusively dependent on being de-
scribed in the world frame. Justified by the fact that the robot is designed to move
around on a flat surface where no external forces, except friction, is assumed to
apply in the horizontal direction. Furthermore, the controller is in its basic form
a velocity controller and the dynamics can be described with respect to the linear
and angular velocity of the robot.

Figure 6.1: Dynamic model of the robot

The behaviour of the robot is described
using two separate coordinate frames,
a transnational and rotational similar to
the frames ci and ri in section 5.2. The
Euler-Lagrange equation described in
section .4 is used to formulate the dy-
namic model of the robot. The total
kinetic energy of the robot with the
general coordinates q = [dri, θci] is
formulated in eq. (6.8), where mr is
the mass and Jr is the moment of in-
ertia of the robot.

K =
1

2
mrḋ

2
ri +

1

2
Jrθ̇

2
ci (6.8)

Using the Euler-Lagrange equation in eq. (9) for [driθci] and eq. (6.8) result in

mrd̈ri = Fri

Jrθ̈ci = Tci

As shown in fig. 6.1, the force Fl and Fr from the left and right wheel is the
applied forces of the robot and rwb is the wheel base radius. The force Fri can
be expressed as the average between the horizontal force from the left and right
wheel. The torque Tci is expressed as Tci = rwb(Fr − Fl), which result in the
dynamic equations in eq. (6.9) and eq. (6.10).

mrd̈ri =
1

2
(Fr + Fl) (6.9)

Jrθ̈ci = rwb(Fr − Fl) (6.10)

As the robot is categorized as a differential drive mobile robot, the two motors
with wheels are the main actuators of the robot. The dynamics of each wheel with
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motor can be modeled by eq. (6.11) [22], where Tu is the input torque, TL is the
load torque acting on the motor and Jm is the moment of inertia of the wheel.

Jmω̇m,r,l = Tu,r,l − TL (6.11)

TL = Tc +Bωm (6.12)

Tu,l,r ≥ Tc (6.13)

Tc ≤ Tu,l,r ≤ rwFc (6.14)

The load torque TL is viewed as a friction torque and simplified model of TL is
stated in eq. (6.12), where Tc is the Coulomb friction and the dampening B is
a coefficient of the viscous friction [22]. The dampening is related to the internal
losses in the motor. The static friction can be view as the minimum torque required
to make the wheels rotate when in contact with the surface, constraining the input
torque to eq. (6.13).

The wheels need to satisfy the constraint of rolling without slipping, such that
vm = rwωm can be used [9]. The total constraint of the input torque is expressed
in eq. (6.14), where Fc is the static coulomb friction given by Fc = µfmRg, for a
friction coefficient µf [22]. Another aspect is that Tu have generally not a linear
response. However the dynamic equations are to be applied to the controller and
implemented into the software system of the robot, where the torque is controlled
by a PWM signal as described in section 2.2 and section 3.1. This result in the free-
dom of simply finding the necessary mapping such that the region [Tu,minTu,max]
is a linear operation region and that any Tu 6= 0 result in a movement of the robot,
without slipping of the wheels, assuming constant µf . Applying this, the input
torque can be described as

T̂u = (Tu − Tc) + Tu,min (6.15)

This result in the following dynamic model for the left and right motor with wheels

ω̇ml =
1

Jw

(
T̂ul −Bωl

)
(6.16)

ω̇mr =
1

Jw

(
T̂ur −Bωr

)
(6.17)

ω̇ml =
rw
Jw
Fl (6.18)

ω̇mr =
rw
Jw
Fr (6.19)

Using eq. (6.19) and eq. (6.18) in eq. (6.9) and eq. (6.10), the dynamical model of



6.1. Dynamic model of the robot 52

the robot can be expressed as

d̈ri =
1

2

1

mr

(
Fd −Bḋri

)
(6.20)

θ̈ci =
rwb
Jr

(
Fθ −Bθ̇ci

)
(6.21)

where the moment of inertia of the robot is modelled as a solid rod in eq. (6.22)

Jr =
1

12
mrwb

2 (6.22)

and ḋri, θ̇ci, Fd and Ftheta found from the relationships

ḋri =
1

2
(
vr + vl
rw

) = ve

θ̇ci = rwb(
vr − vl
rw

) = ωg,z

Fd = Tur + Tul

Fθ = Tur − Tul

The dynamics of the robot in eq. (6.20) and eq. (6.21) is described as two linear
second order differential equations. By reformulating ḋri and θ̇ci as vri and ωci, a
continuous state space equation on the form

ẋ = Ax + Bu

y = Cx

with the states x = [vri ωci]
T and ẋ = [v̇ri ω̇ci] can be formulated as[

v̇ri
ω̇ci

]
=

[
− B

2mr
0

0 −Brwb
2Jr

] [
vri
ωci

]
+

[ 1
2mr

0

0 rwb
Jr

] [
uri
uci

]
(6.23)

and [
yri
yci

]
=

[
1 0
0 1

] [
vri
ωci

]
(6.24)

where u = [uri uci] = [Fd Fθ] and vri and ωci is provided by the estimated linear
and angular velocity from the estimation task. Utilizing the controllability matrix
defined in eq. (10) [5], the system is found to be controllable where rank(C) = 2.
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6.2 Optimal control using LQR
The complete controller is structured as a cascaded system. The LQR controller is
responsible for guiding the robot to a target coordinate and uses the state feedback
with reference feed forward described in eq. (6.3) with the model in eq. (6.23),
where K and Kr is found using eq. (6.5) and eq. (6.4). The calculated output from
the LQR controller is used as an reference to the a speed controller, responsible
for maintaining a given wheel speed. The velocity of each wheel is controlled by
two separate discrete PID controller described by eq. (2.3) in section 2.3. fig. 6.2
shows a block diagram of the complete controller.

Figure 6.2: Block diagram of the complete controller with the LQR reference feed forward
state feedback controller

To run the compact expression in eq. (6.3) and solving eq. (6.7) within the system
on the Atmega2560 controller is not feasible. Taking advantage of the time invari-
ant properties of A and B in eq. (6.23), the matrix Kr and K is computed offline
using MATLAB. The matrix K and found using the built in function lqrd [15] and
Kr is found using eq. (6.4). The implemented LQR controller on the Atmega2560
runs the explicit control law in eq. (6.25) and eq. (6.26).

ud,k = r11rvri,k − k11ve,k (6.25)

uθ,k = r22rωci,k − k22ωg,z,k (6.26)

Similar to Arduino IR V1, the LQR controller takes in a target set-point coordinate
[xsp ysp] and the goal is to ddt −→ 0 and θda −→ 0 for the distance and heading
defined in eq. (2.15) and eq. (2.16). Arduino IR V1 had issues with the com-
puted θda [19]. This is solved by using eq. (1) in combination with eq. (2). The
LQR controller guides the robot to the target coordinate in a sequentially manner
using two logical sates Align to target and Move to target. The robot is first
aligned to the target coordinate based on θda using only the angular state feedback
in eq. (6.26). When the robot is within a angle threshold δthrs,θ, the robot stops
and the movement of the robot is controlled in the Move to target state using both
eq. (6.25) and eq. (6.26). The target is considered reached when the robot is within
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a region threshold δthrs,d. The reference state r = [rvrirωci ] in the LQR controller
utilize the values of ddt and θda. As the motion of the robot is controlled sequen-
tially, only rωci is used in the Align to target state. In this state, the reference rωci

is ramped up to a value proportional to θda defined in eq. (6.27). rωci uses θda
directly in the Move to target state.

rωci,k =


δci,k |δci,k−1| > |rωci,k−1|
rωci,k−1 − sramp sign(δci,k−1) < 0

rωci,k−1 + sramp sign(δci,k−1) > 0

(6.27)

In similar fashion, a value proportional to ddt is used for rvri in the Move to target
state. To make the robot accelerate smoothly and enforce the non-slip condition,
rvri is ramped up to a value proportional to δri,k, defined in eq. (6.29), by a step
size sramp defined by eq. (6.28), where Kv is an appropriate scaling factor.

rvri,k =

{
rvri,k−1 + sramp rvri,k−1 < δri,k

δri,k rvri,k ≥ δri,k
(6.28)

δri,k =
ddt,k
Kv

(6.29)

The control outputs [uri uci] in eq. (6.25) and eq. (6.26) are feed into the mo-
tor mapper where the references [Tref,l Tref,l] as well as the motor directions
[Rdir Ldir] are found. The outputs [uriuci] is transformed to [Tref,lTref,r] using
the mapping method described in table 2.3. To gain better response when the robot
is turning and adapting the new motors described in section 3.1, the intermediate
values Tinc and Trec is now defined as

[
Tinc
Trec

]
=



[
ux − ITT
ux − ITT

]
ux > ITT

[
sat(uy + 2ux)

sat(uy − 2ux)

]
ux < IT1

[
sat(uy + 2ux)

0

]
ITT > ux > IT1

(6.30)

The speed controller is responsible for maintaining a reference speed for each
wheel, where a feed forward PID controller used to maintain a reference wheel
tick speed based on a reference input Tref . fig. 6.3 shows a block diagram of
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the speed controller. The speed controller uses eq. (6.31) for maintaining a given
left and right wheel speed based on the tick speed from the encoders, utilizing the
implemented discrete PID controller in eq. (2.3) under section 2.3

Tu,r,l = Tref,r,l ± uPID,r,l (6.31)

The reference input Tref,l,r is both used as a baseline for Tu,l,r and as a reference
in the PI controller, which add or subtract the baseline value using the error in
eq. (6.32).

er,l =
Tref,l,r

10
− LinMap(vm,l,r, [vm,min vm,max], [0 100]) (6.32)

where the measured tick speed is mapped to a range [0 1000] using the LinMap
function in eq. (2.2).

Figure 6.3: Block diagram of the PID controller used to maintain a reference tick spped

LQR control task
The task is designed with several states defined as:

• Check for new events
• Compute control output
• Set stop
• Send output

As illustrated from fig. 6.4, the task starts at the Check for new events state, where
it checks if the control signals; start, stop and reset have been set, in addition to,
received target set-point coordinates and position updates. The control signal set
internally latch variables. The control signals are in the form of FreeRTOS events
that are generated by the Coordinator task at Node 2 and transferred over the node
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communication link. Both target set-point coordinates and position updates are in
the form of FreeRTOS queues. The position updates are sent from the Position
Estimator task.

Figure 6.4: Flow chart for the LQR controller task

A start condition is used for allowing the task to transition to the Compute con-
trol output state. The target set point coordinate is latched when it is received
and reset when the robot reaches the target coordinate. The start condition re-
quires the start-latch to be set in addition to the target set point coordinate latch
and a new position update. The task goes to the Compute control output state if
the start condition is meet and no stop signal have been issued. Within the Com-
pute control output state, the two states Align to target and Move to target are
used along side eq. (2.15) and eq. (2.16) for computing ddt and θat from (xsp, ysp).

For both internal cases, the task transition to the Send output if the threshold con-
dition is not meet. If the condition is meet, then the task will first go the the Set
stop state, where both uri and uci is zeroed and the "start-control" latch is reset
along side the "target set-point" latch. The task immediately returns to the Send
output state, where the output from Compute control output or Set stop is trans-
ferred to the Speed controller task via a FreeRTOS queue. The task will return to
Check for new events after the output have been sent and the cycle the procedure.

The internal states Align to target and Move to target in Compute control out-
put allows the task to control the alignment and movement separately. However in
normal operation, the task execute the Align to target first followed by Move to
target. As described previously, only the reference rci and the output uci is used
in the Align to target state. The state uses the threshold condition in eq. (6.33).

|θda| < |
θat
5
| (6.33)

The state Move to target uses the full reference feed forward state feedback con-
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trol law in eq. (6.25) and eq. (6.26). The heading reference rci uses θda directly
and the distance reference rri is computed by eq. (6.28). The threshold condition
in Move to target make use of the position update, where (xr, yr) has to be within
a region of (xsp, ysp) defined by the threshold δthrs and

(xsp − δthrs) ≤ xr ≤ (xsp + δthrs) ∧ (ysp − δthrs)yr ≤ (ysp + δthrs)

is computed by eq. (6.27) and the heading gain output is computed by the control
law in eq. (6.26).

Wheel speed control task
The task is simple in design. The Speed controller receive the output gain u from
the LQR controller and applies the motor mapper in eq. (6.30) and table 2.3 to
obtain TRight TLeft from u. The task stops the motors if the reference is zero,
else it maintains the given reference speed using eq. (6.31) as shown in fig. 6.3.
The motors are also stopped if the task doesn’t receive any new reference from the
LQR controller task or if the encoders measure zero over a given period of time.
Listing in algorithm 6 shows an simplified representation of the task.

Algorithm 6: Speed controller task
Uses motor mapper on u to find TLeft,Right and DirLeft,Right
if Stop Or Timeout then

Stop motors
else

Obtain Cr and Cr by sampling the encoders
Map Cl,r to Tref,l,r
Apply eq. (6.31) on the left and right motor.
if Cr Or Cr = 0 then

increment Timeout counter
end if

end if

6.3 System response
Speed Controller
The reference input torques [10, 100, 200, ..., 900, 1000] is used for testing the
open and closed loop response of the Speed controller. The tick speed from each
encoder is logged from the robot and the respective reference input torques is ap-
plied long enough for the wheels to reach a steady state. The left and right PI
motor controller uses the KP and KI gains in table 6.1.
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Right Kp = 2.7 KI = 1.2
Left Kp = 2.6 KI = 1.1

Table 6.1: Gains for the left and right PI motor controller

Result
fig. 6.5 and fig. 6.6 shows the result of the open and closed loop response. Each
point correspond to a average tick speed calculated in the steady state region for
each encoder. The input torque correspond to a mapping of the PWM signal that
is applied on the motor controller card. fig. 6.5 shows that the mapped torque
produces a response for the left and right motor that is linear up to a value of 800
and that there is significant difference in the angular tick speed. This confirms that
the input torque range [Tu,min Tu,max] gives a operation region that is close to
being linear. This is a vital property, as the feed forward PI controller in eq. (6.31)
and the mapping in eq. (6.32) assume linear response.
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Figure 6.5: Open loop response for the input torque and average tick speed for the left
and right encoders

.
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Figure 6.6: Closed loop response for the input torque and average tick speed for the left
and right encoders

.

0 20 40 60 80 100 120 140

60

80

100

120

140

0 20 40 60 80 100 120 140

0

5

10

15

Figure 6.7: Response of the speed controller with Tref = 100
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fig. 6.6 shows that the implemented PI speed controller produces a satisfactory
output gain for matching the speed of the left and right wheel. fig. 6.7 shows the
steady state response for a reference input torque of 100. As observed from fig. 6.7,
the applied output gain Tu,l and Tu,r result in an equally response for the left and
right wheel. It also produces a relative fast response, where the both the left and
right wheel reaches a steady state within 5 iterations. The speed controller runs
on a period of 25 ms and means that the controller is able to bring each wheel to
a equal speed within 125 ms. fig. 6.7 also shows small ripples in the steady state
region. The ripples are the reason for using a PI and not a full PID controller. In
addition, the ripples will produce a slight offset between the left and right wheel
and the robot will still experience a small disturbance when applying a constant
torque. This shows that heading correction is necessary. Nevertheless, the speed
controller is not the main control mechanism in the system and provide adequate
adjustment.

LQR controller
The LQR controller is the master controller in the cascaded system. The speed
controller have shown to give a reasonable response and is able to match the speed
of each wheel. The heading controller is the most important part of the system.
Therefore, the LQR controller is tested in an extreme situation where the controller
only use the Move to target and a target set-point coordinate of (0, 1000) mm is
issued to the robot. The heading controller is also tested in the normal condition,
where the robot is rotated 180 degree by issuing a target set-point coordinate of
(−500, 0). For testing the system response, the gain for K and Kr was found
using the function lqrd [15] and lqr [14] in MATLAB based on eq. (6.23) and
the parameters in table 5.

K =

[
Kri,d

Kci,d

]
=

[
1.1732
0.5489

]
Kr =

[
rri
rci

]
=

[
4.899
5.707

]
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Result
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(a) Logged distance to target ddt, reference rri and output gain uri at the top figure and linear
velocity vri per sampling interval ∆t at the bottom
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(b) Logged x and y position for the LQR controller without angle alignment
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fig. 6.8(a) shows the recorded distance to target ddt, reference rri, output gain uri
and the linear velocity vri per sampling interval ∆t for the LQR controller using
only the Move to target state. fig. 6.8(b) shows the recorded position for the same
test. fig. 6.8(a) shows that ddt steadily decrease to the target coordinate. Secondly,
the figure shows how the ramped reference rri effect the applied output gain uri.
fig. 6.8(a) also show the resulting linear velocity vri, where it can be observed that
there is no change in the value for the 10 first iterations. The same observation can
be seen in ddt and indicates that the robot does not move within this time period.
This may suggest that the applied output gain does not have any effect for any
value below 100. On the contrary, the robot has to rotate 90 degree, indicating
the robot is able to rotate at the spot without any considerably deviation in the
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position. This is also made clear by the fact that ddt does not increase and have the
observed smooth curve. fig. 6.8(b) also shows that the controller is able to apply
an output gain that result in a smooth acceleration and de-acceleration of the robot.
fig. 6.8(b) shows the logged position of the robot is under 20 millimeters and that
the controller produces a smooth curve without any oscillation. It also shows that
the position flatten out between the region 200 to 600 [mm] in the y-axis.
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Figure 6.9: Recorded θr, θat and θda for the LQR controller
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Figure 6.10: Output gain uci and recorded ωr for the LQR controller
.



6.3. System response 63

fig. 6.9 and fig. 6.10 shows the response for the heading controller in eq. (6.26)
using only the Move to target state and θda directly in the reference rωci,k

. fig. 6.9
shows the measured heading of the robot θR, as well as, the angle to target θat and
the delta angle θda. Any output gain over IT > 250 will cause one of the wheels to
change direction and means that the applied output gain is effectively lower than
what is suggested in fig. 6.10. It also allow the robot to turn on the spot.

It can be observed that there is no, to little, osculating in both θR and θda and both
reaches a steady state within 20 iteration, corresponding to 1.2 seconds. fig. 6.10
shows a response that is considerable thigh. This is also strengthened by the obser-
vation made for ddt and vri in fig. 6.8(a). All of these observations combined with
the resulting curves for θR and θda suggest the heading controller produces an out-
put gain that result in a critical damped response. On the contrary, the small output
gain produced from the heading controller between iteration 40 to 60 as shown in
fig. 6.9, combined with the observation made for the position in fig. 6.8(b), sug-
gest the presence of steady state error in the position of the robot. This is in some
for expected, as the LQR controller does not offer any integral effect that could
combat the steady state error.
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Figure 6.11: Output gain uci, reference rci and recorded ωr for the LQR controller with
angle alignment

.

fig. 6.11 shows the response of the angular velocity, the heading reference rci
applying eq. (6.27) and the output gain uci applying eq. (6.26). The offset seen in
uci is the result of adding a constant of 250, forcing the robot to adjust the heading
with opposite direction of the wheels. fig. 6.11 shows the measured heading of the
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robot θR, as well as, the angle to target θat and the delta angle θda. As observed, θR
is steadily increasing and θda is steadily decreasing. The robot is stopped within
26 iteration, corresponding to 1.56 seconds and with a final heading of 144 degree.
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Figure 6.12: Recorded θr, θat and θda for the LQR controller with angle alignment
.

The observation indicates a fast and smooth response. As θat is calculated from
the difference between the set-point coordinate and the position of the robot using
eq. (11), small deviation in the position can cause θat to switch sign when it is
at 180 degree. θat remains close to constant, an important property for avoiding
discontinuous jump in the output gain. Mayor issues with this region with the
controller in Arduino IR V1, where the output gain would flip sign and result in
the robot rock back and fourth. In contrast, as the reference feed forward state
feedback law in eq. (6.26) does not use θat directly, flipping would only cause the
reference rci to ramp down and decrease the output gain.

6.4 Square test of the new controller
In similar fashion to the square test conducted on Arduino IR V1 described in
section 2.4, six square tests are to be conducted on the new implementation. The
result from section 6.3 gave insight to the response of the new controller in an
isolated manner. The square tests are meant to test the complete system, including
the position estimation described in chapter 5. Two 1000 × 1000 [mm] and two
1500×1500 [mm] square test are carried out for both clockwise (CV) and counter
clockwise (CCV) directions. Two 1000 × 1000 [mm] alternative square test for
CV and CCV are also conducted for testing how the robot performs without the
angle alignment described in section 6.2. This can be considered the most similar
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setup compared to the controller found in Arduino IR V1. All of the square tests
consist of issuing a series target set-point coordinates to the robot using the values
in table 6.2.

Name SP
Square CCV 1000 mm [(1000, 0), (1000, 1000), (0, 1000), (0, 0)]
Square CV 1000 mm [(0, 1000), (1000, 1000), (1000, 0), (0, 0)]

Square CCV 1500 mm [(1500, 0), (1500, 1500), (0, 1500), (0, 0)]
Square CV 1500 mm [(0, 1500), (1500, 1500), (1500, 0), (0, 0)]

Table 6.2: Target set-point coordinates used in the square tests for Arduino IR V2

The Square CCV and Square CV 1000 mm uses a threshold of 15 [mm] and
Square CCV Square CV 1500 mm, as well as, the alternative Square CCV and
Square CV 1000 mm uses a threshold of 30 [mm]

Result
fig. 6.13(a) and fig. 6.13(b) shows the result of the 1000 × 1000 mm square test
for counter clock wise and clock wise respectively. fig. 6.14(a) and fig. 6.14(b)
shows the result of the 1500 × 1500 mm square test for counter clock wise and
clock wise respectively. Lastly, fig. 6.15(a) and fig. 6.15(b) shows the result of the
1000 × 1000 mm for the alternative controller in counter clock wise and clock
wise respectively.

CCV 1000 mm
x 1009.12 998.45 -9.76 4.69
y -4.28 983.01 1009.84 14.27

CV 1000 mm
x 8.12 987.69 987.43 22.25
y 980.00 991.15 13.15 -0.73

CCV 1500 mm
x 1456.64 1457.48 -38.15 -33.28
y -2.26 1457.124 1487.92 -14.22

CV 1500 mm
x -12.55 1438.97 1442.29 -14.14
y 1440.30 1455.33 -38.95 -57.33

CCV 1000 mm alt
x 997.21 990.90 -3.28 -1.29
y 0.02 969.05 967.57 -4.14

CV 1000 mm alt
x 5.00 962.04 969.32 19.04
y 968.31 987.01 3.58 -8.12

Table 6.3: End point result for each square test
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Figure 6.13: Square test 1000 mm with the use of the implemented LQR controller
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Figure 6.14: Square test 1500 mm with the use of the implemented LQR controller
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Figure 6.15: Square test 1000 mm with the use of the implemented LQR controller and
without angle alignment
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As seen from fig. 6.13(a) and fig. 6.13(b) the LQR controller produces a path that
resemble a perfect line. For a perfect line, the robot would have followed a path
similar to the yellow dotted line. Observation made from the result in fig. 6.13(a)
and fig. 6.13(b) reviles that the overall deviation between the line and the path of
the robot is in the range of 10 − 20 millimeters. The deviation observed in both
of the 1500 × 1500 shown in fig. 6.14(a) and fig. 6.14(b) have a similar range.
The overall deviation for the LQR controller without angle alignment, shown
in fig. 6.15(a) and fig. 6.15(b) is within the range of 20 − 30 millimeters. The
overall deviation is consistent with the deviation logged on the robot as shown in
fig. 6.8(b). The LQR controller does does not align the robot perfectly with the tar-
get coordinate when using the angle alignment in Align to target. Nevertheless,
the observed path for each test in combination with the response from fig. 6.9,
shows that the controller offer a response that tightly correct the heading of the
robot. In addition, the controller provide a similar response when controlling the
motion of the robot exclusively in the Move to target state as shown in fig. 6.15(a)
and fig. 6.15(b). The combined result shows that the LQR controller offer a very
tight and smooth control for guiding the robot to a target coordinate.

A consistent trend observed from the end-point result in table 6.3 is that the end-
point values are below the target threshold when the robot is rotated ±90 degrees.
An aspect to consider given this observation, is that the position of the robot is
tracked using markers. The recorded position calculated at a center point from
all of the markers. Given the shape of the robot as seen in fig. 3.1(a), there is an
indication that there is an offset between the actual center of rotation for the robot
and the recorded one. The presence of the offset is strengthened by by the fact
that the recorded position is consistently shifted 20 millimeters back when the ro-
bot is rotating ±90 degrees. The result from fig. 6.12 shows that θat, found from
eq. (2.16), does not change considerable when the robot is alignment to the target,
meaning the the position of the robot does neither change considerably when ro-
tating. Assuming the presence of the offset, the end-point result in table 6.3 would
be within the given target threshold. However, there is still error in the position
estimate. The result from section 5.4 gave an indication that the mean error in the
position estimate is within the range of 10−15 millimeters. It also showed that the
accelerometer made the error in the position estimate stay within a region of the
actual position. This is in contrast with the constant offset error occurring when
only using the encoders. The end point result from table 6.3, in addition to, the
result in fig. 6.13, fig. 6.14 and fig. 6.15 is consistent with the observation made in
section 5.4 about the error and the use of the accelerometer.

Over several runs, the wheel will accumulate dirt. However, the accumulation
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seems to saturate, resulting in a initial decrease in the traction of the wheels. This
changes the condition in eq. (6.14) and the maximal acceleration of the robot. The
ramping of the reference rri, as well as, target alignment limits the maximum ac-
celeration the robot can experience. Still, the target alignment can pose an issue
with the position estimate as the robot rotates on the spot. This means that the
accelerometer cannot combat the error from the encoders. The reduce traction can
result in the robot overshooting the target angle followed by an output gain that
result in a sudden change in the direction of the robot. The sudden change can lead
to wheel slip and resulting error in the position estimate.

Regardless, using reference feed forward with state feedback for controlling the
motion of the robot is a solid improvements comparing to the control system found
in Arduino IR V1. Achieving the same result with the "black box" PID controller
found in Arduino IR V1 would have been far more difficult. Applying the same
output gain in the old system would have resulted in an opposite large output gain
and decreasingly smaller ripples. As the LQR controller uses state feedback, it
seems to indirectly predict the movement of the robot by utilize the angular velo-
city. Using LQR for finding the state gain K also provide an automatic tuning of
the system, as most of the work was in the development of the dynamic model in
eq. (6.23).



Chapter 7

Path planning and object
avoidance

The current system is entirely dependent on the main server for safely navigating
the robot within an environment as described in section 2.1. Relying entirely on
the server for making good decision is, in the perspective of fault tolerance, an
inadequate approach as the robot is not able to operate without the main server.
This is combined with several issues observed from the server side. The issues are
first and foremost in the form of un-handled exceptions that result in the server
being unresponsive. Another problem is that the real position of the robot can-
not be exactly known and drifting cannot be entirely eliminated, even thought the
result from chapter 5 have shown to give good accuracy in the position estimate.
This poses a problem, especially in asymmetric environments, where divergence
between the position known to the server and the real position of the robot can
cause the robot to crash into an object by an ill-advised target set-point coordinate.

It is still possible to develop a path planning procedure feasible to implement on
the robot that makes it less dependent on a stable operation of the server. The use
of artificial potential field is a potential method, that is based on constructing a po-
tential field U(q) with an attractive component Uatt(q) and a repulsive component
Urep(q) on a given configuration space q based on eq. (7.1) [9].

U(q) = Uatt(q) + Urep(q) (7.1)

The robot in the configuration space is treated as an point particle and the attractive
field is used to guide the robot to a point qfinal. The repulsive field Urep is used to
repel the robot from obstacles.[9]. However, the highly limited computational re-
sources found on the robot is a mayor factor that restrict how the artificial potential
field method is implemented. The robot cannot store or base a search on the whole

71
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configuration space with the complete field U . Therefore a method designed from
scratch needs to be implemented.

The proposed solution is to consecutive construct a field from the scanning the
environment using the sensor tower and the current measurement from the IR
sensors. Information about the environment is extracted by combining the IR
measurement with the current position and heading of the robot. Based on this
information, an algorithm is developed to determine if the robot can drive dir-
ectly to the initial target set-point coordinate or constructing a series of augmented
coordinates for avoiding colliding with objects in the environment. The motion
controller described in chapter 6 provide the attractive field as the result from sec-
tion 6.4 has showed that the robot traverse a given path in a fairly straight line
with only small deviations. The procedure is to be run in combination with the
algorithm found in the main server. This way the server can focus on finding an
optimal target set-point coordinate at the edge of the discovered map and the robot
can find a path to that coordinate that is safe to traverse. Given a initial target set-
point coordinate from the main server, the robot utilize the four IR sensors to find
the location of an object relative to the robots current position and heading. Based
on this, an intermediate or augmented set-point coordinate is found such that the
robot does not collide with the object. A series of these augmented set-point co-
ordinates can be then connected to form a path to the original target.

The chapter is structured in the following way:

• Processing and filtering of the IR sensors section 7.1
• Description of Path planning procedure section 7.2
• Task implementation of the Path planning procedure section 7.3
• Evaluation of the Path planning procedure section 7.4

7.1 Sensors processing and filtering
As the path planning procedure realises on the distance measured from the the IR
sensors, an accurate mapping from the measured voltage to a physical distance is
needed. The intensity from the IR measurement is not linear with the distance.
and the raw data from a IR sensor is inverted. A mapping proposed by Navarro,
Benet & Blanes (Conference paper 2008) that is based on the inverse square law is
recited in eq. (7.2) where V is the measured voltage, α is a parameter for the IR
intensity and η is the angle incident to the measured target [6].

d =

√
α

V

√
cos(µ) (7.2)
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However, the model in eq. (7.2) does not exactly fit the measurement from the
Sharp G2D12 IR sensors. For that reason, an own model was developed based
on a modified version of eq. (7.2), as well as, empirically fitment of observed IR
measurements. The model was found to be

dIR(∝) = KIRLunit

[√
1

∝
− 0.1

]
, ∝> 0 (7.3)

where∝ is a scaled intensity in the range of [∝min, 100], Lunit is a gain for scaling
the measurement in the range of [0, Lunit] and KIR is a correction gain. The
constant of 0.1 is added such that

dIR(100) = 0

The model was implemented into the system with a max and min saturation using
eq. (7.4).

dIR(∝) =


0 ∝> Lunit

Lunit ∝<∝min
KIRLunit

[√
1
∝ − 0.1

]
∝min≤∝≤ Lunit

(7.4)

7.2 Method definition
Objects in front of the robot is most important to detect for determining, with
respect to the current position and heading of the robot, if the current path is safe
to traverse or some form of re-routing is required. The measurement from the
forward and right IR sensor are used to construct a scan field F defined by

F =


f0

f1
...

fj−1

fj

 (7.5)

where the size of the vector is the scan resolution Rs. The scan field forms a
horizontal semi circle of 180 degree around the forward direction of the robot. This
is carried out by successive sampling the right and forward IR sensor and rotating
the servo with an angle θs. The right sensor start at index 0 and the forward sensor
starts at an index Rs/2 that is proportional to a 90 phase shift, as shown in fig. 7.1.
Combining the measurement from the right and forward sensors means that the
sensor tower only need to rotate 90 degree to complete a 180 degree scan.
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Figure 7.1: Index mapping for the scan field using the forward and right IR sensor
.

An angle θf is mapped to each sampling point using the LinMap function de-
scribed in section 2.3. The defined range of θf is [−90, 90], where an index of 0
correspond to an angle of−90, as well as the initial location of the right IR sensor.
The initial location of the forward sensor is at 0 degree. Given a complete scan,
the minimum of F can be used with eq. (7.3) in combination with θf to find a
coordinate within the world frame using eq. (7.6).[

xwk+1

ywk+1

]
=

[
xwk + dIR cos(θf )
ywk + dIR sin(θf )

]
(7.6)

However, using solely F is not adequate to construct a augmented coordinate that
is safe to traverse. Therefore a weighted sum defined by eq. (7.7)

zk = w ·x (7.7)

is used to construct a vector z defined by eq. (7.8) with size Rs × 1

z =


z0

z1

. . .
zj−1

zj

 (7.8)

and the element of z with the minimum sum using eq. (7.9) is used to find a
sampling point of F to construct the augmented set-point target coordinate.

i = min(z) (7.9)
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The weighted sum in eq. (7.7) uses the weight vector w with elements [wΓ, wΘ, wP ]
and the three state vectors Γ Rs×1, Θ RS ×1 and P RS ×1 defined in eq. (7.10)
is used as features of the obtained scan field F.

Γ =


γ0

γ1
...

γj−1

γj

 Θ =


θ0

θ1
...

θj−1

θj

 P =


ρ0

ρ1
...

ρj−1

ρj

 (7.10)

The features are used to take into account constraint poses by the robot and the
environment. They relies on information obtained by the scan field F in combina-
tion with the current position and heading of the robot, as well as the distance and
angle to a given target coordinate. Γ contains a normalized IR measurement, Θ
contains linear increasing values corresponding to the angle to target coordinate.
P contains a proxy value indicating if a scaled IR measurement using eq. (7.3)
have a radius less than the target radius.

The angle to target feature Θ
The Θ feature is constructed by mapping a given index j in the range [0, jend] to a
weight in the range of [−100, 100]

θk = LinMap(j, [0, jend], [−100, 100])− φ (7.11)

where φ is found by a pivot index jp

φ = LinMap(jp, [0, jend], [−100, 100])

jp = LinMap((θat − θw), [−90, 90], [0, jend])

The proxy to target feature P
P contains a value for each sampling point indicating if a sampling point is larger
than a radius equal to the distance to target

wad,k =
1

( ddt
KIRLunit+0.1)2

(7.12)

and

ρk =

{
0 (fk − wad,k) < 0

100
ddtLunit

(fk − wad,k) ≥ 0
(7.13)
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The normalized scan field Γ
The normalization of F to obtain Γ is carried out by using discrete convolution for
a finite set defined by eq. (7.14) [4].

(Γ ∗ k)[n] =
K∑
m=0

k[m] ·Γ[n−m] (7.14)

The convolution is normally used between two signals, but it can also be used with
a signal and a kernel k with size 1×K and the weights

k = [k0, k1, . . . , ki−1, ki] (7.15)

as well as normalizing the discrete convolution with k, resulting in the definition

(Γ ∗ k)[n] =
K∑
m=0

1

K
k[m] ·Γ[n−m] (7.16)

For obtaining Γ, a kernel size of three is used with the elements k = [k0, k1, k2].
The convolution is implemented on the Atmega2560 MCU represented by the
pseudo code in algorithm 7 that handles the edges of the scan field using a slide
index.
Algorithm 7: Normalized convolution

Make temporary array T ofF
n←− length of F
m←− length of kernel k
for i = 0 TO (n-1) do

for i = 0 TO (m-1) do
slideindex = n−m+ 1
if slideindex < 0 then

slideindex = 0
else if slide index = (length of F− 1) then

slide index = (length of F− 1)
end if
T [n+ 1] = T [n] + k[m] ·F[slide index]

end for
T [n] = T [n]

K
end for
Copy content from T to Γ
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Finding the minimum of z
The system only need to store the scan field F which is transformed to Γ using
eq. (7.16). The vector Θ is found by eq. (7.11) and P is found using eq. (7.13).
For the path planning procedure the explicit weighted sum in eq. (7.17) is used.

zk =
100(wΓγk + wΘθk − wP |ρk| − 0.2γthrs,k)

3
(7.17)

Algorithm 8: Finding the minimum of zk
Obtain Γ using algorithm 7
for j = 0 TO R do

Compute θj using eq. (7.11)
Compute ρj using eq. (7.13)
Compute zj using eq. (7.17)
if zo < z1 then
z1 = z0

store index j as the current jmin
end if

end for
The vector zk is also memory optimized by using a vector for two elements z =
[z0, z1] where z1 is replaced by z0 for finding the minimum. algorithm 8 shows a
pseudo code of the method for finding the minimum sampling point.
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Constructing the augmented target set-point coordinate

Figure 7.2: Illustration of variables used for calculating the augmented target set-point
coordinate based on the scan field

The index containing the minimum of z is used to construct the augmented target
set-point coordinate, which is found using eq. (7.6) and a augmented minimum
angle and distance. The mapping of the scan step angle θssa for each index in the
vector z in combination with ∆awd, corresponding the change in the scan field, is
utilized to find the augmented minimum angle. The augmented distance applies
eq. (7.3) based on the sample point corresponding to the inverse mapping of the
augmented minimum angle to a scan field index. The scan step angle θssa is found
by hashing the the minimum index jmin using

θssa =

{
0 jmin = R/2

LinMap(jmin, [0, jend], [−90, 90]) jmin 6= R/2
(7.18)

The angle weight direction ∆awd found by eq. (7.19) is used to push θssa in either
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a left or right direction based on the shape of the scan field. ∆awd is computed
by the difference between the min sample point and a left and right sample point
given by Rdsi.

∆awd =


γ[jmin −Rdsi]− γ[jmin] jmin = R−Rdsi
γ[jmin]− γ[jmin +Rdsi] jmin = Rdsi

γ[jmin −Rdsi]− γ[jmin +Rdsi] jmin

(7.19)

The augmented angle θaug,min is found by eq. (7.20), limited to the range [−π, π]
and where Kdist,rep is the repulsive angle gain.

θaug,min = θssa +Kdist,rep arctan

(
∆awd

8

)
(7.20)

As θaug,min no longer correspond to the minimum sample point, a heading reflec-
tion index jhfi is computed by eq. (7.21).

jhfi = LinMap(θaug,min, [−90, 90], [0, jend]) (7.21)

and the corresponding sample point from Γ(jhfi) is used with eq. (7.3) and the
values KIR = 1.65 and Lunit = 400 to find the augmented distance

daug = dIR(Γ(jhfi))−Kdist,rep (7.22)

where Kdist,rep is the repulsive distance gain. The augmented distance daug to-
gether with θaug,min is used to construct the augmented target set-point coordinate[

xwaug,k+1

ywaug,k+1

]
=

[
xwk + daug cos(θaug,min)
ywk + daug sin(θaug,min)

]
(7.23)

Overall the method is fairly simple and offer a low computation cost considering
this is to be run on a embedded microcontroller with highly limited resources.
algorithm 9 shows the complete algorithm used for finding the augmented set-
point coordinate.

7.3 Path planner task
The Path planner task is designed to offer two scan modes; augmented scan used
for algorithm 9 and a ordinary scan using all of the four IR sensors. The Path
planner task uses a state based design with the four states;

• Idle: Wait and poll scan request in the form of FreeRTOS events.
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Algorithm 9: Finding an augmented target coordinate
Scan the environment for obtaining F
Use algorithm 8 to find the minimum index jmin
Find θssa using eq. (7.18) with jmin
Find ∆awd using eq. (7.19) with jmin
Compute θaug,min using eq. (7.20) with θssa and ∆awd

Find daug using Γ(jhfi) in eq. (7.3)
Based on θaug,min and daug, find augmented target set-point coordinate using
eq. (7.6)

• Ordinary scan: Sample the IR sensor and map the measurement to a dis-
tance using eq. (7.3), as well as, put mapped distance into a buffered FreeR-
TOS queue and send update to the Server communication task for each scan
step.
• Augmented scan: Construct scan field F using the right and forward IR

sensor.
• Compute augmented target: Compute an augmented target coordinate us-

ing algorithm 9 based on the obtained F.

The computation of an augmented target set-point coordinate is performed when
a new target set-point coordinate is received from the server. The task will con-
tinue to compute augmented target set-point coordinate until the original target is
reached. An ordinary scan is performed when the robot is connected to the server
and each time the robot reaches a target set-point coordinate. For computing an
augmented target set-point coordinate, the Path planner task require a position up-
date produced from the Estimator task and a series of motion operation provided
by the LQR controller task on Node 1.

Figure 7.3: Block diagram of the two scan mode on the Path planner task
.

fig. 7.3 shows the operation for performing an ordinary or augmented scan. The
task returns to the Idle state after an ordinary scan. After an augmented is com-
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pleted, the current position of the robot is compared with the original target set-
point coordinate. If the position is under a given threshold, the task goes to the
Compute augmented target state, where a new augmented target set-point co-
ordinate is calculated. The Path planner task work along side the Coordinator task,
which decide when to perform an ordinary or augmented scan. The coordinator
task issue the following request for computing an augmented target set-point co-
ordinate:

1. Send received target from server and Start signal to the LQR controller.
2. When the robot is aligned to target: Send reset signal to LQR controller and

augmented scan request to the Path planner, which send in return an internal
position request.

3. Forward position request to Position estimator task.
4. When new position update received: Set position updated event.
5. When augmented target computed: Forward computed augmented target

and Start signal to the LQR controller.
6. When robot is aligned to augmented target: Send Start signal to the LQR

controller.
7. When robot have reached the augmented target: Send a ordinary scan re-

quest to the Path planner task.
8. When ordinary scan complete: Repeat step 2 to 7 until the robot have reached

the server target coordinate.

7.4 Evaluation of the Path planner task
eq. (7.4) is used for testing the mapping of the four IR sensors. The values in
table 7.1 for KIR and Lunit is used in the mapping.

KIR 5.4
Lunit 800
∝min 14

Table 7.1: Parameters used for the IR mapping

Three test are used for the Path planner procedure; the first is to confirm the con-
struction of the scan field and implemented algorithm in algorithm 9 for finding an
augmented target coordinate. The second test is concerned with confirming if the
robot is able to safely navigate the environment for an issued target set-point co-
ordinate. And lastly, the mapping and navigation capabilities of the robot is tested.
The parameters in table 7.2 is used for testing the Path planner procedure
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Kernel [1.05, 1.20, 1.05]
Rs 40
Kθ,rep 0.44
Kdist,rep 100
Rdsi 5
wz [1.2, 0.06, 0.15, 0.2]

Table 7.2: Parameters for obtaining the augmented target set-point coordinate

Testing the IR mapping
To test the model, markers equal to [800, 600, 400, 200, 0] mm where measured
and a plate was placed on the respective markers and the calculated distance was
logged.

Result
fig. 7.4(a),fig. 7.4(b),fig. 7.5(a) and fig. 7.5(b) shows the resulting mapping of the
scaled intensity ∝ to the distance [800, 600, 400, 200, 0] mm. As shown, it is able
to give a reasonable mapping for all of the sensors using the same KIR and Lunit
for all sensors.
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(a) Mapped raw IR measurement to distance in
mm for the forward IR sensor

.
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(b) Mapped raw IR measurement to distance in
mm for the right IR sensor

.
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(a) Mapped raw IR measurement to distance in
mm for the left IR sensor

.
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(b) Mapped raw IR measurement to distance in
mm for the rear IR sensor

.

Path planner scans
fig. 7.6(a) and fig. 7.6(b) gives a 2D illustration of the two common scan scenarios.
The first is the robot facing a wall and the second is two walls located on the side
of the robot. For both scenarios, the position and the heading of the robot in the
world frame is (0, 0)mm and 0Deg respectively and a target set-point coordinate
of (500, 0) is issued to the robot.

(a) Straight (b) Side

Figure 7.6: Illustration of two different scan scenarios

Result
fig. 7.7(a) and fig. 7.7(b) shows the obtained scan field and the normalized field for
the two scenarios. By inspections of fig. 7.7(a) and fig. 7.7(b) it is clear that the
intensity for the scaled IR measurement can provide the properties for deciding a
sample point for finding the augmented target set-point coordinate. For both the
straight and side wall scenario, the intensity is high for scans close to a wall and
low for open or free spaces. fig. 7.7(a) and fig. 7.7(b) also shows the smoothing
produced by the convolution.
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(a) Obtained scan field for the straight wall scan.
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(b) Obtained scan field for the side wall scan

.

Figure 7.7: Blue is the raw scan field and the normalized field in red.
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Figure 7.8: Obtained features and weighted sum for the straight wall scan
.

fig. 7.8 shows the elements from the four features Γ, Θ, P and Γthrs, in addition
to the elements from each weighted sum in z for the straight wall scan. As mention
previously, Γ is the normalized scan field, containing the scale IR intensity meas-
urement. The proxy to target P contains the mapped distances of the elements in
Γ using eq. (7.3). As the P favour any elements that have a radius less than the
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distance to target relative to the center point of the robot, points on both the right
and left side of the robot have a strong negative value. The feature Γthrs is also
helps favouring open space. In this scenario it is not that relevant, as the target set
point coordinate have a relative short distance. As shown in fig. 7.8 there exists
sample points that have distances larger than 500 millimeters on the left and right
side. Γthrs is mainly used for cases where the distance to target is larger than the
maximal range of 800 millimeters for the IR sensors. As the relative position of
the robot is zero in the world frame, the resulting angle to target θat is zero for the
target coordinate (500, 0). As shown from fig. 7.8, Θ contains linear increasing
elements that penalize sample points that are further away from θat. As shown in
the illustration in fig. 7.1, the resulting pivot index jp is 20, corresponding to the
forward direction of the robot. Therefore, the feature Θ attracts the robot to the
target coordinate.
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Figure 7.9: 2D visualization of the straight wall scan
.

fig. 7.9 shows a 2D visualization of each scanned sample points mapped to a dis-
tance using eq. (7.3) and the parameters in table 7.1 for the straight wall scenario.
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The colors visualize each element of z. As seen from fig. 7.8, both the left and
right side of the wall have the lowest sum of z. The resulting min index jmin
found from the scan, running the algorithm algorithm 8 on the robot was index
11. The step angle θssa corresponding to the angle of the min sample point found
from eq. (7.18). For the index jmin = 11 result in θssa = −39 degree. The initial
angle of θssa is pushed further to the left using ∆awd, based on the slope of the
scan field in fig. 7.7(a). The magnitude of ∆awd is damped by the slope in the right
side of the min index, resulting in an augmented minimum angle θaug,min of −66
degree. Together with a augmented min distance of 300 millimeters and eq. (7.6),
the resulting augmented set point coordinate is[

xwaug,k+1

ywaug,k+1

]
=

[
122 [mm]
−274 [mm]

]
As shown in fig. 7.9 and the corresponding augmented target set-point coordinate
(122,−274) confirms the described algorithm listed in algorithm 9.
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Path planner courses

(a) Box course

.
(b) Slalom course

.

(c) Final course

.

Figure 7.10: Different courses fro the testing the path planner procedure

fig. 7.10 illustrate the three different courses used for testing the path planner pro-
cedure. The goal of the robot is to find a path in the environment such that it
reaches a given target coordinate without crashing into the walls. fig. 7.10(a) shows
the Box course, where the robot starts on the outside and a target set-point coordin-
ate of (1000 , 0) is issued to the robot. The coordinate is within the box, marked 1.
The black line represent the opening or gate into the designated area. fig. 7.10(b)
shows the Slalom course, where a target set-point coordinate of (2000 , 0) is
issued. The robot has to traverse three sectors marked 1, 2 and 3. fig. 7.10(c)
shows the Final course, where two target set-point coordinates, (1000 , 0) and
(1000 , 1000), is issued to the robot. Likewise, the robot has to traverse three
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restricted sectors marked 1, 2 and 3, in addition to reroute 90 degree.

Result
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Figure 7.11: Running the path planner procedure for finding the path in the Box course
.
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Figure 7.12: Running the path planner procedure for finding the path around the Slalom
course

.
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Figure 7.13: Running the path planner procedure for the Final course
.

fig. 7.11 shows the result of the path planner procedure for finding a safe path to
the target coordinate in the Box course. The red dotted line visualize the direct
path the robot would have taken. The robot would obvious fail to reach the target
coordinate and collide with the wall represented by the black dotted line. The blue
sold line shows the traversed path using the path planner procedure. As shown in
fig. 7.11, the traversal of the Box course required seven augmented target set-point
coordinates represented by the green dots. The Box course can be considered the
easiest of the three courses, as the box is surrounded by open space. However, all
of the feature in described in section 7.2 plays a part for computing a "intelligent"
target set-point coordinates. As seen from the augmented target coordinate 4 and
beyond, the robot is guided into the box, showing how the angle weight feature Θ
is favored.

fig. 7.12 shows the result of the more advanced Slalom course. As with the box
course in 7.11, the black dotted lines represent the walls, the red dotted line rep-
resent the direct path, the blue solid line represent the traversed path of the robot
and the green dots represent the intermediate set-point coordinates produced by
the path planner procedure. Again, the robot required seven augmented target set-
point coordinates for safely traversing the course. In this course, the robot has
to go into a restricted area, as well as, avoiding two walls before it can reach the
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target coordinate. Another aspect is that the issued target set-point coordinate of
(2000, 0) is far beyond the maximum range of the IR sensor. As consequence,
the proximity feature P is zero for the augmented target coordinates from 1 to 4.
Also, the robot cannot favor the angle to target feature Θ in sector 2 shown in
fig. 7.10(b). However, the combination of the different feature with the weights
given in table 7.2 in combination with the amount of repulsion in θaug,min makes
the robot successful in traversing the entire course.

fig. 7.13 shows the result of the final course, where the robot required three aug-
mented target set-point coordinate for traversing both of the paths. The Final
course can be considered the most advanced of the three. In similar fashion to
the Slalom course, the robot has to navigate highly restricted areas. Despite, the
designed algorithm in algorithm 9, with the given parameters in table 7.2, does
produce augmented target set-point coordinates that result in the safe path for tra-
versal of the environment. The parameters in table 7.2 plays a mayor part in the
successful traversal of all the courses. The weights used for the the feature for
obtaining z in eq. (7.7) have been found empirically based on observed behavior
of the robot when it is navigating an environment. Both Kθ,rep and Kdist,rep plays
a part in the repulsiveness of θaug,min and daug,min. These have also been tuned
empirically for obtaining the result. As seen from the result in the Slalom course
in fig. 7.12, in sector 4, at target coordinate 3, the given Kθ,rep forces the robot to
go to a coordinate close to the upper wall. The importance of the gain Kθ,rep is
also shown in the Final course at the transition between sector 2 and 3. At target
coordinate 4, the particular gain Kθ,rep result in an angle θaug,min that forces the
robot to the leftmost wall.

The resolution of the scan field affects the performance of the procedure. A high
enough resolution is needed such that the robot is able to resolve the shape of an
object. The resolution is especially important when the robot is located near the
edge of a wall with free space in front. This will provide the enough information
to find a good angle scan step θssa and the slope for providing adequate pushing
of the augmented angle θaug,min. However, higher resolution would mean longer
scan times and more data to process. A resolution of 40 was found to give enough
sampling points for the procedure to resolve small edges.

An observed issue with the procedure is in the computation of the augmented angle
θaug,min, where the angle scan step θssa and the angle weight direction ∆awd can
cancel each other out. This means that the robot wont make the appropriate ad-
justment in the heading and that the path planner procedure cannot guarantee that
the robot avoid objects in all cases. The suspected cause for the cancellation is in
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the constant index used for calculating ∆awd, as the issue has been observed when
there are several dips and bumps in the scan field, in addition to be depended on the
position and heading of the robot relative to several objects, with its own relative
position and heading. Although this may be true, issuing sensible target set-point
coordinate based on the relative position of the robot in the mapped environment,
made for safe traversal.

However, the result in fig. 7.11, 7.12 and 7.13 shows that the robot is successful
in navigating increasingly more difficult courses given sensible target set-point
coordinates. In all of the three cases, the path planner procedure is able to find a
safe path to the target coordinate using the extracted data from the IR sensors and
calculating augmented set-point target coordinates.

Mapping
Two courses are used for testing the mapping capabilities of the robot, the Final
course shown in fig. 7.10(c) and an easier course, called the Circle circle as shown
in fig. 7.14.

Figure 7.14: Circle course

Two mapping cases are used: First, the
Path planner procedure along side the navig-
ation procedure running on the server. And
second, exclusively using the Path planner
procedure for navigating and manual imput-
ing a target set-point coordinate that is out
of bound for the given course. For the
manual test, the feature Θ is disabled in
the Path planner procedure, meaning that the
robot will follow the path with most open
space.

Result
fig. 7.15(a) and fig. 7.15(b) shows the result of the mapped Circle track when
running the Path planner procedure with and without the server. fig. 7.16(a) and
fig. 7.16(b) shows the result of the mapped Final course when running the Path
planner procedure with and without the server. The robot did not fail, in the form
of colliding into any object, for both courses. The result in fig. 7.15 and fig. 7.16
shows that, solely using the path planner procedure produces a similar mapping
result for when it is used along side the server.
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(a) Mapping of the circle course using the server
in combination with the path planner procedure
running on the robot

.

(b) Mapping of the circle track using exclusively
the path planner procedure running on the robot

.

Figure 7.15: Mapping of the Circle course

(a) Mapping of the final course using the server in
combination with the path planner procedure run-
ning on the robot

.

(b) Mapping of the final course using exclusively
the path planner procedure running on the robot

.

Figure 7.16: Mapping of the Final course

The Path planner procedure does not produce any augmented target set-point co-
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ordinates that result in any rotation over ±90 degrees. This means that the objects
in front of the robot is always considered. For the manual case, the feature Θ was
disabled. Without Θ, sample points closer to the target coordinate is not favored,
any path into highly restricted areas are avoided. This result in the tendency of
seeking out natural opening in the environment and avoiding getting close to the
walls. Another positive aspect, is that the path planner procedure is based on the
relative current position and heading of the robot and produces a correspondingly
relative augmented set point coordinate. This have the effect that the robot does
not collide with the walls in simpler environments such as the Circle course. When
testing the path planner procedure with the server in manual mode, the robot suc-
cessfully mapped the Circle course for over 20 minutes.

It was observed that the mapping using the server along side the path planner
procedure was slower compared to using only the path planner. A reason for this
was that the collision handler running on the server seemed to conflict with the
path planner procedure. An example was in the opening in sector 2 in the Final
course. As described in section 7.3, for a issued target set-point coordinate, the
procedure will continue to calculate augmented target set-point coordinates until
the target has been reached. When the robot was in the operation of seeking out
a path, the collision handler would issue a target set-point coordinate causing the
robot move back to the starting point and back to the original target. Disabling the
collision handler on the server, made for more efficient mapping when using the
path planner procedure along side the server. This had the effect, that the server
was only responsible for finding sensible target set-point coordinates based on the
current mapping of the environment and the path planner procedure on the robot
was responsible for finding a safe path to the target. Therefore, this mode made
for the most successful and safest navigation and mapping of the environment.



Chapter 8

Discussion

During development, the Arduino IR robot have seen mayor changes and improve-
ments. The accumulation of all the improvements described in the report is what
makes the robot perform as it does. A focus have been to make the implementa-
tion memory efficient and providing good response time. The implemented code
in Node 1 required 30 Kb program memory and 5 Kb data memory. Node 2 re-
quired 28 Kb program memory and 5.6 Kb data memory. table 8.1 shows the worst
case running time for each task. This was found by setting a GPIO pin high at the
start of the task and pulling it low at the end. The resulting pulse was measured
using an oscilloscope. As seen from table 8.1 all of the task meets the deadline
defined by the period in table 4.2 and table 4.3. The result also shows that the
given implementation for each task gives a good system response and low interfer-
ence between tasks considering the clock speed of the MCU is 16 MHz.

Task Worst case running time
Node communication task 2.0 ms
Position estimation task 3.5 ms
Position control task 1.0 ms
Wheel speed control task 1.0 ms
Server communication task 30.0 ms
Coordinator task 150.0 µs
Path planner task 20 ms

Table 8.1: Worst case running time for each task

The Server communication task have the highest worst case running time and hap-
pens when the task transmit the handshake message. System response was favored
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in the implemented if the position estimation, as seen from table 8.1. Likewise, the
result in chapter 5 shows that using Kalman filtering on the gyroscope resulted in
a heading error of ±1 degree. Using the accelerometer in the position estimation
resulted in an error such that the estimated position would tend to stay within a
region of the real position, in comparison to the constant drifting when only using
the encoders. The result from chapter 5 also indicated that the average error is in
the range of 15 millimeters.

The implemented reference feed forward with state feedback LQR controller also
gave a solid improvements comparing to the control system found in Arduino IR
V1. However, the controller have a steady state error in the control of the position
of the robot. Regardless, the deviation of 20 millimeters is almost trivial comparing
to the deviation found on Arduino IR V1. The explicit feedback law in eq. (6.25)
and eq. (6.26) that runs on the Atmega2560 controller is also less computationally
expensive comparing to the discrete PID implementation in eq. (2.3). As the AVR
instruction set on the Atmega2560 controller is based on the 8-bit RISC architec-
ture [1], a considerable amount of instructions is needed to do computation with
floating point numbers. The de-compilation of the discrete PID implementation
show that it require up to 500 instructions, whereas eq. (6.25) only requires 60
instructions.

For the Path planner task, an ordinary scan take 5.0 ms, augmented scan 2.5 ms
and the worst case running time is when it calculates an augmented target set-point
coordinate. The worst case running time of 20 ms shows promising real-time cap-
abilities of the procedure. The mayor limitation of the Path planner procedure is
the calculation of the θauf,min using the angle weight direction ∆awd. For highly
dynamic scan fields where there are several peaks and valleys in the scan field,
the calculated direction of θauf,min may cancel out θssa. However, using the con-
stant Rdsi for the sector size used for computing ∆awd and the constant Kθ,rep

for the angle repulsion works in most of the cases but cannot account for all. sec-
tion 7.4 showed that the the path planner procedure is successfully in navigating
the environment when using sensible target set-point coordinates. By disabling the
collision handler on the server, combining the path planner with the server showed
the best result.



Chapter 9

Further work

9.1 Further improve the position estimate
The new IMU have also a magnetometer build into it [7]. This can be used to
extended the available sensors for estimating the position. Implementing multidi-
mensional Kalman filtering for sensor fusion can be beneficial. On the contrary,
the implementation need to give a significant improvements in the position estim-
ate. In this implementation, Kalman filtering was only applied to the gyroscope as
it had the most impact on the reduction of the error in the position estimate and
system response was favored.

9.2 Improving the Path planner procedure
The mayor limitation with the path planner procedure is the us the constant field
sector when computing ∆awd. The Path planner procedure can be improved by find
a way to dynamically adjust the angle weight direction ∆awd or other ways to avoid
canceling in θaug,min. It may also be beneficial to investigate other features that is
extracted from the information of the scan field or other measurements. Another
improvements is to find ways to automate the tuning of the weights and investigate
if the sample point and corresponding features can have separate weights.

9.3 Extended the capabilities of the Path planner procedure
Finding way for the path planner procedure to handle moving objects. As de-
scribed in chapter 7, each sampled point correspond to a coordinate in the envir-
onment. It currently takes 1.2 seconds to complete a scan. This is way to slow
for using the current method directly for handling moving objects. This means
that scanning the environment while the robot is moving, would require saving the
corresponding coordinate for each sampling while it is sampled. Another solution
can be to scan faster. However, this may lead to electrical issues and the period
of the task while scanning cannot be less than the time it takes to complete each
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sampling. This means that faster scanning would require both hardware and soft-
ware implementations.

Without considering different edge cases where, the path planner finds a coordinate
that is safe to traverse. This means that each of the coordinates can be saved to form
a road map from the starting point. The coordinates can be saved in the form of a
stack allowing some form of depth-firs search or as a graph allowing connecting
coordinates together.

9.4 Making the robot compatible with the Thread server
The Arduino IR robot need to be made compatible with the Thread server for
maintaining operational status, as the Java server is in the process of being phased
out in favor of the Thread server [18]. As described in section 2.1 the Thread
server uses the nRF52840 dongles as a gateway for connecting to the robot. Pin
connector for communicating over I2C have been added to the extension card on
Node 2. The nRF52840 can be added to the robot and interfaced via I2C, as there
exists available code for the gateway application [3]. The latest code developed for
the nRF robot by Stenset (Master 2020) [27] can be used as a starting point.
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.1 Parameters
Various parameter used in this report and the Arduino IR V2 software.

Motor Gear ratio Torque
Old 120:1 0.08 Nm
New 34:1 0.118 Nm

Wheel Width Wheel radius
Old 14 mm 32.5 mm
New 26 mm 38 mm

Table 1: Specification comparison between the old and new motors

∆t 49 ms
rw 32.5 mm
Ticks/Wheel_rev 285
Ktw 45
Kvw 0.707

Table 2: Parameters for the encoders

Gyroscope
Low-pass filtering 119 Hz 3DbBW

Averaging filtering ×8

Output scale ±2000 [dps]

Sensitivity Scale Factor FSF,g 16.4

Accelerometer
Low-pass filtering 50 Hz 3DbBW

Averaging filtering ×16

Output scale ±2 [g]

Sensitivity Scale Factor FSF,a 16384

Table 3: Configuration parameters used for the ICM 20948 IMU [7]



∆t 0.05
Kvw 0.707
accel scale 16384
gyro scale 16.4
gyro offset 0.635
accel mean 40
accel std 400
gyro mean 4
gyro std 4
Q 4
R 4

Table 4: Parameters used in the position estimate

mw 0.1 [kg]
mr 2.0 [kg]
rw 33.5 [mm]
wb 198 [mm]
rwb 99 [mm]
Jm 56.11 [kg ·mm2]
Jr 6534 [kg ·mm2]

Table 5: Physical parameters for the robot

.2 Angle mapping
To calculated the difference ∆θ between two angles θ1 and θ2 in the range [−2π, 2π]
eq. (1) [26].

∆θ =


(θ2 − θ1)− 2π θ2 >

π
2 θ1 < −π

2

2π − (θ2 − θ1) θ2 < −π
2 θ1 >

π
2

(θ2 − θ1) −π
2 ≤ θ2 ≤ π

2 − π
2 ≤ θ1 ≤ π

2

(1)

eq. (2) can be used to limit an angle in the range [−π, π] [26].

θ =


−(2π − θ) θ > π

θ + 2π θ < −π
θ −π ≤ θ ≤ π

(2)



.3 Kalman Filtering
The Kalman filter predict the state vector x in four steps defined in section .3,
section .3, section .3, section .3 [12] [10].

1 : Kk = Pk−1H
T (HPk−1H

T + R)( − 1) (3)

2 : x̂k = x̂k−1 + Kk(yk −Hx̂k−1) (4)

3 : Pk = (I − K̂kĤk)P̂k(I − K̂kĤk)
T + K̂kR̂vkK̂

T
k (5)

4 : x̂k+1 = F̂kx̂k + Ĝkûk (6)

P̂k+1 = F̂kP̂kF̂
T
k + Q̂w (7)

x̂k, x̂k−1 is the previous and current estimate of the state. x̂k+1 is the predicted
estimate. yk is the measurement, Kk is the Kalman Gain, F̂ is the state transition
matrix and H is observation matrix. P̂,k is used as a priory estimate uncertainty
and is updated for each iteration after a prediction is made. R is the measurement
uncertainty and Q̂w is the co-variance matrix [12].

.4 Euler-Lagrange equation
The Euler-Lagrange equation is a partial differential equations for describing the
dynamics of a mechanical system subject to holonomic constraints [9]. The equa-
tions makes use of generalized coordinates q and the the Lagrangian L defined
as

L = K − P (8)

which is the difference between the kinetic and potential of a mechanical system.
The Euler-Lagrange equation is defined by eq. (9) [22] [9].

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= τi, i = 1, . . . , n (9)

.5 Controllability matrix
A linear time invariant system is said to be controllable if the controllability matrix
C have full rank [5]. The matrix C is defined as

C = [B AB A2B . . . An−1B] (10)

.6 Atan2
The atan2 function is used to find the correct angle in the range [−ππ] between
a point and a fixed coordinate systems x-axis defined by eq. (11) [9] [19] for



∀(x, y) 6= 0 .

atan2(x, y) =



arctan( yx) ifx > 0

arctan( yx) + π ifx < 0 and y ≥ 0

arctan( yx)− π ifx < 0 and y < 0
π
2 ifx = 0 and y > 0

−π
2 ifx = 0 and y < 0

(11)

.7 Kinematic equation
The homogeneous transformation matrix defined by eq. (12) can be used for rep-
resenting position and orientation between two or more rigid bodies [9].

H0
n =

[
R0
n o0

n

0 1

]
(12)

where R0
n is the rotation matrix and o0

n a position translation. The position a point
in the n frame can be represented by eq. (13).

p0
n = R0

np
n + o0

n (13)

For rotation around a fixed z axis, the rotation matrix Rz,θ is defined by section .7.

Rz,θ =

cθ −sθ 0
sθ cθ 0
0 0 1
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