
Andreas L. Teigen
Few

-shot open w
orld learning

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Andreas L. Teigen

Few-shot open world learning

Master’s thesis in Cybernetics and Robotics

Supervisor: Annette Stahl

September 2020

Andreas L. Teigen

Few-shot open world learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
September 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Summary

Computer vision systems are gradually seeing an increased use in real world applications
in a variety of domains. However, this transition from controlled lab environments to
a real-world setting introduces several new problems. Instead of encountering only the
classes used during training, potentially any class can be presented to the model in an open
world scenario. As a result, in addition to the normal classification, the model must be able
to identify the new classes and efficiently learn to adapt to these new classes, preferably
with minimal downtime. This is known as the Open World Learning Problem, and it
is comprised of two sub-problems: Incremental learning, which deals with the updating
and continuous learning of the model, and open world classification which deals with the
classification and discovery of new classes.

This thesis proposes a framework as a solution to the open world learning problem
based on few-shot classification strategy in combination with an outlier detection module.
The few-shot classifiers employ a similarity-based classification scheme and are highly
adept at generalization, requiring no training and only a few labelled examples of a new
class before adapting to it, natively presenting a good solution to the incremental learning
problem. The discovery of new classes is performed by the outlier detection module that
utilizes the similarity space created by the few-shot classifier to identify samples that are
sufficiently different from the known classes and removes them from the classification
process.

Based on extensive experimentation with different combinations of few-shot classi-
fiers, outlier detectors and open set recognition algorithms, this thesis highlights the ideal
variations of the proposed framework for different applications. The results show that
the framework is realizable with a moderately low accuracy loss compared to standard
few-shot classifiers.

i

Preface

I would like to first thank my supervisors Associate Professor Annette Stahl and Postdoc-
toral Fellow Aya Saad who have helped me enormously during the writing of this thesis
and encouraged me to write a paper based on this work. The paper was accepted by the
OCEANS 2020 Gulf Coast conference and is to be published in IEEE, see appendix. This
work is part of the AILARON project which is funded by CN FRINATEK IKTPLUSS
program (project number 262701) andsupported by NTNU AMOS.

I also want to thank my parents for letting me occupy their cabin while working on this
thesis without asking for anything in return. It has been a huge help to focus and concen-
trate in a peaceful environment.

The framework presented in this thesis is targeted towards the plankton domain for use
in autonomous underwater vehicles, so all experiments and results are based on planktonic
datasets, but no dataset dependent specialization is performed on the framework, so the
models presented are also generalizable to other datasets and domains.

Table of Contents

Summary i

Preface ii

Table of Contents v

List of Tables viii

List of Figures ix

List of algorithms xi

Nomenclature xii

Abbreviations xiii

Notation xiv

1 Introduction 1
1.1 Motivation / Application . 2
1.2 Aim of study . 2
1.3 Research questions . 3
1.4 Contributions . 4
1.5 Structure of the thesis . 5

2 Theoretical background 7
2.1 Machine learning . 7

2.1.1 Methods of learning . 7
2.1.2 Artificial neural networks . 8
2.1.3 Activation functions . 8
2.1.4 Back propagation . 9
2.1.5 CNN - Convolutional Neural Network 9

iii

2.1.6 Performance metrics . 10
2.2 One-shot learning . 12
2.3 Few-shot learning . 12
2.4 Open-world learning . 13

2.4.1 Definition . 13
2.4.2 Open set recognition . 14
2.4.3 Open space risk . 14

2.5 Outlier detection . 16
2.6 Distance metrics . 17

3 Literature review 19
3.1 Siamese Neural Networks for one-shot learning 19
3.2 Matching Networks for One Shot Learning 21
3.3 Prototypical Networks for Few-Shot Learning 23
3.4 Towards open world recognition . 24
3.5 Towards Open Set Deep Networks . 25
3.6 DOC: Deep Open Classification of Text Documents 27
3.7 XGBOD: Extreme Gradient Boosting Outlier Detector 28

4 Proposed framework 31
4.1 Outlier detection architecture . 32
4.2 Open set recognition architecture . 33
4.3 Summary . 33

5 Implementation 35
5.1 PyOD - Outlier detection algorithms . 35
5.2 Nearest non outlier . 36
5.3 OpenMax activation function . 37
5.4 Deep open classification . 40

5.4.1 Summary . 41

6 Experimental setup 43
6.1 Selection criteria . 43
6.2 Experiments . 44
6.3 Siamese network baseline . 45
6.4 Setup - Few-shot learner . 46
6.5 Preliminary results . 47
6.6 Datasets . 48

6.6.1 WHOI-Plankton . 48
6.6.2 Kaggle . 49

6.7 Hardware . 50

iv

7 Results 51
7.1 Siamese network baseline results . 51

7.1.1 Embedding model swap . 51
7.1.2 Siamese open set recognition . 52

7.2 Prototypical network baseline results . 53
7.3 Closed world results . 53
7.4 Open world results . 54

7.4.1 Pure rejection results . 54
7.4.2 Combined architecture results 56
7.4.3 Computational speed . 58

8 Discussion 61
8.1 General discussion . 61
8.2 Siamese network . 62
8.3 Few-shot baseline . 63
8.4 Framework decision . 63

9 Conclusion 67

10 Future work 69

Bibliography 71

Appendix 77

v

vi

List of Tables

2.1 Confusion matrix example. 11

4.1 List of outlier detection algorithms tested for the framework. 34
4.2 List of open set recognition algorithms tested for the framework. 34

6.1 Siamese embedding network variations 46
6.2 Preliminary classification results on the WHOI-plankton dataset, tradi-

tional method. 47
6.3 Preliminary classification results on the Kaggle-plankton dataset, tradi-

tional method. 47
6.4 Preliminary classification results on the WHOI-plankton dataset, few-shot

method. 48
6.5 Preliminary classification results on the Kaggle-plankton dataset, few-shot

method. 48

7.1 Performance of Siamese embedding module variations 52
7.2 Accuracy of the Siamese network on the pure rejection task on the Kaggle

plankton dataset. 52
7.3 Confusion matrix for the Siamese network on the pure rejection task on

the Kaggle plankton dataset. 53
7.4 Prototypical network closed world model results on the kaggle dataset . . 54
7.5 Classification results of the open set recognition architecture on training

classes with closed world assumption over the Kaggle dataset 54
7.6 Classification results of the open set recognition architecture on known

classes with closed world assumption over the Kaggle dataset 55
7.7 Accuracy of the outlier detection architecture on the pure rejection task on

the Kaggle plankton dataset. 55
7.8 Accuracy of the open set recognition architecture on the pure rejection task

on the Kaggle plankton dataset. 56
7.9 Combined outlier detection architecture accuracy (outlier detector acc +

few shot acc) . 57

vii

7.10 Combined open set recognition architecture accuracy (outlier detector acc
+ classification acc) . 57

7.11 Speed of the outlier detection architecture variations [img/s] 58
7.12 Speed of the open set recognition architecture variations [img/s] 59

10.1 F1-score of the outlier detection architecture on the pure rejection task on
the kaggle plankton dataset. 87

10.2 F1 of the open set recognition architecture on the pure rejection task on
the kaggle plankton dataset. 87

viii

List of Figures

1.1 Overview of an Open World Learner algorithm 2

2.1 Sliding kernel dot product in CNN . 10
2.2 5-way 5-shot example . 13
2.3 Multi-class decision boundaries . 15
2.4 Open space risk example . 15

3.1 Siamese network architecture . 19
3.2 Matching network architecture . 22
3.3 Prototypical network architecture . 23

4.1 Proposed open world learner generic architecture 32
4.2 Proposed open world learner architecture (few-shot + outlier detector) . . 33
4.3 Few-shot + open world recognition architecture 34

ix

x

List of Algorithms

1 Evaluation computation for Siamese network. 21
2 Training episode loss computation for Prototypical Networks. 24
3 Evaluation episode computation for Prototypical Networks. 25
4 NNO probability estimation. 26
5 OpenMax probability estimation with rejection of unknown or uncertain

inputs . 27
6 DOC probability estimation with rejection of unknown or uncertain inputs 28
7 Appropriated NNO probability estimation with rejection of unknown or

uncertain inputs . 36
8 Appropriated OpenMax probability estimation with rejection of unknown

or uncertain inputs . 39
9 Appropriated DOC probability estimation with rejection of unknown or

uncertain inputs . 41

xi

Glossary

Training data/classes = Data/classes used to train the classifier
Known data/classes = Data/classes the classifier has obtained previous infor-

mation about but not used during training
Unknown data/classes = Data/classes the classifier has no previous information

about.
Training set = The data a traditional classifier is trained over
Validation set = The data that a traditional classifier is validated over.

Contains the same classes as the training set, but differ-
ent samples

Background set = The classes used for the training of one/few-shot classi-
fiers

Evaluation set = The classes used for validation of one/few-shot classi-
fiers. All classes are different from the background set.

Closed world = All samples are from training/known data
Open world = Samples might be from training/known data or un-

known data
Open set classification = Classification with rejection of unknown data
Open world learning = Open set classification with iterative model updates
Open set recognition = Open set classification in the field of computer vision
Open world recognition = Open world learning in the field of computer vision

xii

Abbreviations

AI = Artificial Intelligence
ANN = Artificial Neural Network
CNN = Convolutional Neural Network
DOC = Deep Open Classification (algorithm)
MAV = Mean Activation Vector
NNO = Nearest Non Outlier (algorithm)
OSR = Open Set Recognition
OWR = Open World Recognition

xiii

Notation

x Input data
y Output data
ŷ Predicted output labels
D Training set
Dk Training data of class k
J Loss
K Number of classes in the training set
k Class enumeration
N Number of data samples in the training set
NC Number of classes per training episode (k-way)
NS Number of support examples per class (n-shot)
NQ Number of query examples per class
M Mean class vector
m Embedding dimensions
O Open space
R Rejected set of query data
r Radius vector
S Episode support set
Sk Episode support set of class k
U High dimensional image space

v(x) Activation vector from the penultimate layer of the network
ε Threshold variable
µ Class prototype (mean embedding for a class)

xiv

Chapter 1
Introduction

The field of computer vision has seen rapid advances over the past decade. Reaching near
human performance in a variety of tasks. One aspect where artificial intelligence still lags
behind however is in it’s lack of ability to quickly generalize based only on a small amount
of new data. Classical approaches requires a large amount of data, and for every new class
that is included in the classification the entire model needs to be retrained. This retraining
process also have a high chance of reducing the overall accuracy of the model.

As a response to this, One-shot and Few-shot learning algorithms were created, and
they are now well established techniques in the field of computer vision. They posses a
remarkable ability to adapt, only requiring a minimal amount of data in order to classify
new classes. They also comes with the added benefit of not having to retrain the entire
model if simply one class is added to the dataset, as is required by classical computer
vision algorithms.

The variation of these classifiers utilized in this work introduce another advantage,
they are not trained on class features, but on the similarity and differences between classes.
This means that they can identify how similar or different an object is compared to what
it knows from pre-existing classes, and use this similarity measure to classify the object,
either as the classes that are known or potentially entirely unknown classes.

Given both the ability to easily have the model adapt to new classes and the potential
use of their similarity based classification method to identify an image as unknown, gives
the one-shot and few-shot classifiers a promising starting point of being used in an open
world setting, where both classes that are known and unknown can be presented to the
classifier. As opposed to traditional closed world classification where only the classes
used during training can correctly be classified.

This thesis is an investigation into the viability of using one-shot/few-shot learners
in combination with outlier detection algorithms and/or open set algorithms to create an
open world learner that can identify new classes and learn to classify them correctly with
no additional training and based only on a minimal amount of labeled data.

1

Chapter 1. Introduction

Figure 1.1: Overview of an Open World Learner algorithm

1.1 Motivation / Application

One of the main problems in open world learning is the problem of learning to classify the
new object classes it is detecting. This problem is called incremental learning, to update
the model in order to recognize new classes incrementally after the initial training of the
model. Incremental learning is a challenge that usually requires a significant amount of
labeled data and often causes the overall accuracy of the model to decrease due to the
changes the model has to perform when adapting to new classes.

One-shot and few-shot classifiers are designed to adapt to novel object categories based
on very few data samples, making them highly competent at generalization. The classi-
fiers that are detailed in section 3.1, 3.2 and 3.3 has the added advantage of doing this
adaption without the need to retrain the network or change any parameters. This leads to
the problem of incremental learning being reduced to simply labeling a few samples from
the new class and adding them to a reference dataset. This means that the only remain-
ing problem to overcome in order to convert the one/few-shot learners into complete open
world learners is to make them capable of identifying unknown classes. To the best of our
knowledge, the idea of utilizing the natural generalizational ability of the one-shot and/or
few-shot learners and adapt them as open world learners is a novel idea.

This work is performed for the AILARON project for use in a AUV (Autonomous Un-
derwater Vehicle) that is performing real time monitoring and classification of underwater
microbial biology, mostly in the form of the plankton species.

1.2 Aim of study

Plankton comes in a plethora of shapes and sizes and cataloguing new species of plankton
is an ongoing process. Training a traditional neural network to classify all planktonic
species that it might encounter in an open real world environment is an infeasible task due

2

1.3 Research questions

to the model complexity required and the limited availability of labeled data.
The aim of the study is to classify planktonic species in-situ in an attempt to discover

and catalogue unseen species for future classification. This is known as the open world
learning problem. As illustrated in figure 1.1 the open world problem entails the classifi-
cation of open world data, and incrementally updating the classification algorithm to adapt
to new classes that it might encounter.

We also want to reduce the labeling effort as much as possible since this is a time
consuming process. In this pursuit, we look into one-shot and few-shot algorithms for use
as a base of our solution since these are methods that require a minimal amount of labeled
data in order to adapt to new classes.

1.3 Research questions
This thesis studies the viability of using one/few -shot image classification algorithms
in combination with outlier detectors/open set algorithms to create an open world learner.
First, an overview of existing research is presented. Then, we carry out a thorough compar-
ison between relevant models, and finally propose a complete open world learner frame-
work utilizing the top scoring algorithms. The work answers the following research ques-
tions:

How well does one/few-shot algorithms classify the classes used during the training
process? State-of-the-art image classifiers already achieve good results on many closed
world classification task. We examine one/few -shot algorithms and determine the perfor-
mance of these models on the traditional closed world classification task.

How well does one/few -shot algorithms classify classes stored in it’s reference database,
but is not used during training? One/few -shot classifiers are good at generalizing and
are designed to be well suited for the task of transfer learning, even without the need of
retraining the network each time a class is added to the classification task. This thesis
explore the framework’s ability to perform this well on the transfer learning task native to
the one/few-shot learners.

How well does our proposed framework of one/few -shot learners combined with out-
lier detection/open set algorithms reject unknown/novel classes? Traditional closed
world classifiers always make a erroneous classification if presented with an unknown
class. Our proposed open world recognition algorithm needs to be able to perform this
rejection reliably with a high accuracy. This thesis explores the proposed framework’s
ability to perform this rejection by identify these novel classes and marking them as un-
known.

What is the most suitable algorithm in regard to the AILARON project? For use in an
autonomous underwater science platform, there are several requirements that has to be met
in order for a computer vision algorithm to be appropriate. It has to be able to distinguish
known and unknown classes to an appropriate level of certainty and in a reliable manner.
It has to be able to do this in real-time, therefore the notion of speed and computational

3

Chapter 1. Introduction

complexity is also an important factor to take into consideration, given that there is limited
computational resources available on the AUV. The algorithm’s implementation has to
contribute more advantages than disadvantages, compared to traditional classifiers. Which
means that several of the research questions above have to be performed with a satisfying
degree of accuracy.

1.4 Contributions

In this work, we propose a framework for a complete open world learner based on the few-
shot classification algorithm Prototypical network in combination with outlier detectors
and/or open set recognition algorithms.

We highlight two versions of this framework: Prototypical network in combination
with the outlier detector XGBOD (Extreme Gradient Boosting Outlier Detector) for the
best performance in most configurations, and Prototypical network in combination with
the open set recognition algorithm NNO (Nearest Non Outlier) for use-cases where speed
is important and/or there is very limited available data.

To build this framework we performed extensive exploration and experimentation in
order to find the best possible combination of algorithms. These algorithms include two
few-shot classification algorithms and 19 outlier detector and open set recognition algo-
rithms. Every variation of the framework was benchmarked and measured on several tests
and criteria, including speed, different closed world scenarios, new class rejection capa-
bility and a final open world classification test. All tests were conducted several times
for each framework variation in order to gauge the performance given differing amount of
reference data. This was to get a broad view of the capabilities of the framework variations
and make an informed decision for the algorithm selection for the proposed framework. In
order to combine these algorithms into open world learning algorithms, there was a sub-
stantial effort put into the design adjustment and merging process to reach compatibility
between each of the algorithms.

In addition to this, we looked into improving the performance of the one-shot learner
Siamese network by swapping out the simple base embedding network for a more ad-
vanced network. In this process we modified several well known classification networks
and adapted them to the embedding task before measuring their performance up against
each other as well as the Siamese base embedding network. The Siamese network itself
was also adapted into a few-shot classification algorithm in order to compare it’s perfor-
mance against the other few-shot classifiers for the proposed framework.

Part of the early work of this thesis mainly regarding the exploration of the Siamese
network was also accepted in the student competition track of the OCEANS 2020 Gulf
Coast Conference, and is set to be published in IEEE. This paper is included in the ap-
pendix along with the conference poster. The finalized work is to be submitted to the
ICMV 2020 conference.

4

1.5 Structure of the thesis

1.5 Structure of the thesis
The framework proposed in this thesis is a combination of two or more preexisting algo-
rithms, these algorithms and their relevant background information are found in the theo-
retical background 2 and the literature review 3 chapters. As a lot of different algorithms
are used in this thesis, not all of them are covered in detail, these are listed with a short
explanation in section 2.5, the rest are found in the literature review. The framework itself
is presented in chapter 4, and the implementation details to reach compatibility between
the algorithms for the different variations of the framework are explained in chapter 5.
The experimental setup and the selection criteria used for the evaluation of the framework
variations are discussed in chapter 6. In chapter 7 the results are presented and discussed,
while chapter 8 primarily focuses on highlighting and reasoning about different variations
of the framework for different use-cases and answering the research questions posed in
1.3. The thesis is then concluded in chapter 9.

5

Chapter 1. Introduction

6

Chapter 2
Theoretical background

This chapter covers the conceptual fundamentals pertaining to the proposed framework.
It starts by introducing some base machine learning concepts vital to modern computer
vision (section 2.1) before explaining the concept of one-shot (section 2.2) and few-shot
(section 2.3) learning. Then it presents the definition of open world learning (section 2.4)
and the problem of open space risk needed to be overcome in order to realize the frame-
work. Finally it covers the concept of outlier detection algorithms (section 2.5) which is
one of the methods used for identifying new species, and some distance metrics 2.6 used
in several of the relevant algorithms.

2.1 Machine learning
Machine learning is a sub-field field of artificial intelligence(AI). It deals with extracting
patterns from raw data and using the data to create advanced statistical prediction models.
In the recent years, machine learning has borrowed a lot of inspiration from biological
systems, an example of this is the neural networks which have been modeled on a simple
interpretation of connections in the human brain. These reinterpretations of biological in-
telligence has been a leading factor in the tremendous progress seen in the field of machine
learning over the past few years.

2.1.1 Methods of learning
The field of machine learning is further split up into sub-fields based the types of prob-
lem they are intended to solve and the type of input data that they are designed to work
with. Three of these sub-fields are supervised learning, unsupervised learning and transfer
learning.

Supervised learning:
Supervised learning methods [1] require training data that is presented with labels or

targets {(xt,yt)}. The training is then performed by establishing a prediction model that

7

Chapter 2. Theoretical background

performs label predictions {ŷv} based on some data xv. Then with the help of a cost
function, it compares the true labels yv to the predicted labels and uses this information to
update the prediction model. Supervised methods typically require large amounts of data
to produce useful models.

Unsupervised learning:
Unsupervised learning methods [1] only require the raw data {x}. Rather than opti-

mizing over a cost function based on labeled feedback, the unsupervised method attempts
to find natural patterns and structures like clusters in the data, and use these patterns to
produce the models.

Transfer learning:
Transfer learning [2] is a method of reusing knowledge from a problem with abundant

data on a related problem where little or no data is available to ease the learning process
of the new task. For example, the knowledge attained from identifying a set of plankton
classes with a lot of data could be used to more easily learn to identify a new and rare
species of plankton.

2.1.2 Artificial neural networks
Artificial neural networks (ANN) are the reason behind most of the recent success of AI,
especially in the fields of computer vision, reinforcement learning and natural language
processing. It even reaches superhuman performance in many tasks.

ANNs are function approximators. Given data {(x,y)}, the networks approximates a
function f , so that y ≈ ŷ = f(x). The power of the ANNs comes from the modularity of
the models. Both in terms of size and complexity as well as the property that the input {x}
can be a large variety of different representations and of differing intricacies. Examples of
the latter includes parameterized sounds and image pixel values. ANNs are conceptually
not difficult to understand, but can produce mind boggling pattern approximations. They
consists of an alternating sequence of parameterized linear transformations and non-linear
static transformations. Often in the form of the linear perceptrons with an non-linear
activation function.

In the traditional approach for ANNs, the goal is to train the network by learning
specified features and connection to match the input x to a known class y. This is done by
splitting all the training data into two categories; the training set and the test set. Both sets
contain the same classes y, but with different data x.

2.1.3 Activation functions
Activation functions are the non-linear transformation performed after every linear trans-
formation. These are static and only dependent on the input of the function. They decide
the activation value of the layer based on the input, weights and biases. The reason for the
activation function is to make every layer more complex, and as a result, it is capable of
performing more complex approximations.

ReLU:

8

2.1 Machine learning

The ReLinear Unit (ReLU) is one of the most popular activation functions for use in
neural networks.

The ReLU is defined as:

f(x) = max(0, x) (2.1)

It is commonly used in both regression and classification networks.

Sigmoid:
The Sigmoid activation function is defined as:

S(x) =
ex

ex + 1
(2.2)

This activation function is popularly used as the activation function of the final layer
in binary classification networks. This is because it can produce values from 0 to 1, which
can be interpreted as a probability score.

Softmax:
The softmax activation function is defined as:

P̂ (y = j|x) =
ex̂

∑N
i=0 e

x
(2.3)

This activation function is a popular choice for multi-class classification networks.
This is attributed to the fact that it produces a value similar to a probability score for all
classes, which sums up to 1.

∑N
i=0 P̂ (y = i|x) = 1

The softmax activation function can also be used for minimization functions by multi-
plying all input with −1.

2.1.4 Back propagation
Back propagation is the method in which the ANN optimizes the parameters of the linear
transformations. This is done by comparing the predicted labels ŷ with the actual labels y
with the help of a cost function. Then an optimization algorithm can be used on the cost
function to minimize it by changing the weights and biases of the ANN. It does this by
considering the values produced by the cost function and calculates the desired values of
the final layer of the network in order to minimize this function. Then the desired values
of the second to last layer is calculated based on the desired values for the last layer.
This process is propagated backwards for all the layers in the network until the network
produces the optimized value for the cost function.

2.1.5 CNN - Convolutional Neural Network
For machine learning problems related to computer vision, like the problem we are looking
to solve, the Convolutional Neural Network (CNN) class of ANNs have gotten tremen-
dously popular due to their impressive performance and computational efficiency. This

9

Chapter 2. Theoretical background

Figure 2.1: Sliding kernel dot product in CNN

efficiency is attributed to their shared weight system that drastically reduce the number
weights needed per layer, which is important due to the large number of input values
needed to represent a complete image.

A layer of a CNN network function by sliding parametric matrix kernels over an im-
age, and performing the dot products between the kernels and the image pixel values at
every iteration of this process. This produces mi new feature maps which are lower level
representations of the image. The sliding kernel dot product process is depicted in figure
2.1. The grey outline in figure 2.1 is the padding to insure no information on the edges of
the input is lost during the matrix calculations.

This process is usually followed by an activation function and a pooling layer. The
pooling layer performs an operation where it slides a 2d kernel over a feature map and
produces a single value based on the values inside the kernel. This is done to gradually
decrease the complexity of the data. A popular example of a pooling layer is a max pooling
layer, which passes only the larges value of the feature map kernel.

By performing these series of actions several times in a trained CNN, the image fea-
tures can be abstracted while at the same time reducing the complexity enough to perform
image classification and/or other tasks.

2.1.6 Performance metrics
To correctly determine the performance of a model there are several different methods
available. Each one has it’s strengths and weaknesses, and all of them are situationally
dependent in their usefulness. The ones mentioned in this thesis are all based off of the
confusion matrix.

Confusion matrix:
The confusion matrix is a binary overview of the results of predictions done by a clas-

sifier, and it is the foundation for several different performance metrics. It gives insights
into the errors, and what types or errors are being made by the classifier. The confusion
matrix is depicted in table 2.1.

• Positive(P): Observation is predicted to be positive. Ex: Observation is predicted to
be an inlier.

• Negative(N): Observation in predicted to be negative, Ex: Observation is predicted
to be an outlier.

10

2.1 Machine learning

Predicted
Positive Negative

Actual True TP TN
False FP FN

Table 2.1: Confusion matrix example.

• True(T): Predicted assumption is true. Ex. predicted inlier is in fact an inlier.

• False(F): Predicted assumption is false. Ex. Predicted inlier is in fact an outlier.

• True Positive(TP): Observation is predicted to be positive and prediction is true.

• True Negative(TN): Observation is predicted to be negative and prediction is true.

• False Positive (FP): Observation is predicted to be positive, but prediction is false.

• False Negative (FN): Observation is predicted to be negative, but prediction is false.

Metrics:
The 4 different values of the confusion matrix in table 2.1 can be used to calculate

different aspects of the performance of a machine learning model. The 4 most common
are as follows:

Accuracy:
Accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.4)

This accuracy is easy to understand but only viable if there doesn’t exist a significant
class imbalance.

Precision:
Precision is defined by:

Precision =
TP

TP + FP
(2.5)

If the prediction is positive, how often is that prediction true.

Recall:
Recall is defined as:

Recall =
TP

TP + FN
(2.6)

Given that that the actuality is true, how often is it predicted correctly.

F1-score:

11

Chapter 2. Theoretical background

F1-score is defined as:

F1 = 2
precision ∗ recall
precision+ recall

(2.7)

The F1-score is a weighted average of precision and recall. It is often favoured over
accuracy when dealing with imbalanced datasets.

2.2 One-shot learning
In traditional supervised image classification techniques [3][4][5][6][7], the goal is for
the model is to identify class specific features in order to make a class prediction. These
features are highly trained and specialized for every class in a dataset. Requiring a lot of
examples and computational power in order to recognize generalized features and produce
accurate predictions. These techniques are therefore ill suited for cases where only a small
amount of data is available.

The goal of one-shot learning is to successfully recognize classes previously unseen
in the training process with the aid of just a single example of that class. Drastically
decreasing the amount of labeled data required to recognize new classes. In order to do
this, a one-shot algorithm has to be able to employ some sort of knowledge transference
scheme. Using general information previously learned from the training classes to quickly
and efficiently adapt to new data.

The one-shot setting is an extremely challenging problem given the huge information
variance that can occur even within a single class of any dataset. Because of this, one-
shot learning is often used in narrower domains where the variance is smaller and/or more
controllable, like facial recognition [8][9], or character recognition [10]. This field of
research is still in its infancy but have already seen some promising developments which
are discussed in the literature review.

When training and testing a one-shot classifier 2 datasets are used, a background set
and an evaluation set. The background set contains the classes used for training, while
the evaluation set contains the classes used for validation. Note that no classes appear in
both datasets.

2.3 Few-shot learning
The few-shot learning problem is only a short extension of the one-shot learning problem.
The goal of few-shot learning is to successfully recognize classes previously unseen in
the training process with the aid of just a few examples of that class. The difference
between the two problems being the amount of reference samples given in order to classify
a previously unseen class. Consequently few-shot learning algorithms needs more labeled
data from new classes than is required for one-shot algorithms.

The additional data given to a few-shot algorithm compared to a one-shot algorithm
also increases the models potential to generalize from the previously unseen data. In gen-
eral, few-shot learners score significantly better at classification tasks in comparison to

12

2.4 Open-world learning

Figure 2.2: 5-way 5-shot example

one-shot learners [11] [12] [13] at the cost of requiring more labeled data and more com-
putational power. Some methods of solving the few-shot problem relevant to this thesis
are explained in detail in the literature review, section 3.2 and 3.3.

Few-shot notation:
For few-shot classification tasks only a small support set S consisting of NN labeled

examples S = (x1, y1), ..., (xNN , yNN) is given to the classifier prior to the classification
task. In S each example x is represented in a d-dimensional space xi ∈ Rd, and yi ∈
1, ...,K is the corresponding label. Sk is the set of examples belonging to class K and N
denotes the length of Sk, aka. number of samples per class.

In a few-shot setting, a task is characterized by the numbers K and N , and is referred
to as a K-way, N-shot task. A typical example is to present a classifier with 5 classes
(5-way) each with 5 data samples (5-shot), and then predict the class of the query sample
out of the 5 classes. Figure 2.2 visualizes this.

2.4 Open-world learning

2.4.1 Definition
Open world learning is defined by [14] as follows:

1. At a particular time point, the learner has built a multi-class classification model FK
based on all past N classes of data DP = D1, D2, ..., DK with their corresponding
class labels Y K = l1, l2, ..., lK . FK is able to classify each test instance to either
one of the known classes li ∈ Y K or reject it and put it in a rejected set R, which
may include instances from one or more new or unseen classes in the test set.

2. The system or a human user identifies the hidden classes C ∈ R, and collects training
data for the unseen classes.

3. Assume that there are k new classes inC that have enough training data. The learner
incrementally learns the k classes based on their training data. The existing model
FK is updated to produce the new model FK+1

13

Chapter 2. Theoretical background

This means that the algorithm can perform open set classification, which is equivalent
to classification with rejection of unknown classes (further explained in section 2.4.2 under
the title of open set rejection, as this is the computer vision term for open set classification).
Given sufficient data in the rejection category, the data can be sorted into classes, either
by the algorithm itself or a human, and these classes can be used to iteratively update the
classifier to gain the ability to classify the new classes.

Nomenclature:
Below is a few definitions that is important to know to fully understand the following

sections. They are used actively throughout the thesis. A full nomenclature list is pre-
sented at the beginning of the thesis.

Open set recognition - Open set classification in the field of computer vision.
Open world recognition - Open world learning in the field of computer vision.
Training data/classes - Data/classes used to train the classifier
Known data/classes - Data/classes the classifier has obtained previous information about,
but not used during training, like the support set in few-shot learning.
Unknown data/classes - Data/classes the classifier has no previous information about.
Closed world - All samples are from training/known data
Open world - Samples might be from training/known data or unknown data

2.4.2 Open set recognition
Open set recognition (OSR) is image classification with rejection of unknown classes.
The rejection feature of OSR does however introduces a few problems. First is that it im-
plies that not all classes are known, rendering Bayes’ law and the law of total probability
not directly applicable to the problem. This is due to the normalization of the probabil-
ity performed by these equations, which seizes to be a constant if new classes, and their
respective probabilities are added iteratively, limiting the interpretation of the total proba-
bility. Another problem is the open space risk, this is a more comprehensive problem and
is discussed separately in section 2.4.3.

2.4.3 Open space risk
The decision boundary is a fundamental tool of classification, they are optimized to be
the differentiator between different classes, a typical closed world example of decision
boundaries in a multi-class setup is shown in figure 2.3.

If we were to introduce open world data to this scenario it might however look quite
different. An examples is shown in figure 2.4. There is a new sample introduced. In a
closed world setting, a classifier would mark this new data as the ”blue” class, despite
being a significant distance away from the cluster of blue objects. An open set recognition
algorithms would probably (correctly) reject it as it is a novel class. This is the open space
risk. The risk of labeling too much space with no positive samples of a class as that class.

Open space risk was first formalized by Scheirer et al. in their 2013 paper [15]. Let
SO be a ball of radius rO that contains the positively labeled open space O and all known
positive training examples. And let f be the estimated classification function, and fy(x) =

14

2.4 Open-world learning

Figure 2.3: Multi-class decision boundaries

Figure 2.4: Open space risk example

15

Chapter 2. Theoretical background

1 where class y is estimated positive and fy(x) = 0 where class y is estimated negative.
Then probabilistic open space risk RO(f) of function f for a class y can be defined as:

RO(f) =

∫
O fy(x)dx∫
SO
fy(x)dx

(2.8)

This indicates that the more space that is labeled as open, the greater the open space risk.
This definition was iterated on by Fei et al. in their 2015 paper [16], by specifying

the positively labeled open space O. They defined it as the positively labeled area that
is sufficiently far from the center of the positive training examples. And explained it by
letting Bry (ceny) be a ball of radius ry with the same center as a positive class y(ceny),
and ideally encompasses all positive samples from class y. They further specified SO
to be a larger ball BrO (ceny) sharing the same center ceny and with a radius of rO.
Then the classification function fy(x) = 1 when x ∈ BrO (ceny) and fy(x) = 0 when
x /∈ BrO (ceny). Then they defined open space as:

O = SO −Bry (ceny) (2.9)

And radius rO is estimated from the training data and used as the decision boundary
of f .

2.5 Outlier detection
An outlier is an object that is outside of the norm, and for some reason should not be
included in set of objects. The goal of outlier detection is to identify these types of objects.
The definition of ”outside the norm” can vary, but in statistical analysis it is usually based
on a distance metric from a cluster of objects.

As with machine learning, there are 2 main branches of outlier detection: supervised
and unsupervised, and they follow the same definition as in section 2.1. There are many
different methods developed to perform outlier detection as they are useful in a plethora of
fields and applications. In this thesis they are utilized for reducing the open space risk by
rejecting queries that are outside of known class clusters.

16 different outlier detectors are tested during the research of this thesis, because of
their varying level of importance to the work, most of them are only briefly explained in
the list below, the more complex and significant outlier detectors are explained in grater
detail in the literature review.

• Angle Based Outlier Detection (ABOD) [17]: Outliers are determined by the vari-
ance of it’s cosine distance scores to all it’s neighbours.

• Average K Nearest Neighbours (AvgKNN) [18]: Outliers are determined based
on the average of the distances to the k nearest neighbours.

• Connectivity-Based Outlier Factor (COF) [19]: Outliers are determined by the
average chaining distance compared to the average chaining distance of it’s neigh-
bours.

16

2.6 Distance metrics

• Deviation-based Outlier Detection (LMDD) [20]: Outliers are determined by the
smoothing factor: Amount of dissimilarity that can be reduced by removing a subset
of samples.

• Extreme Gradient Boosting Outlier Detector (XGBOD) [21]: Explained in sec-
tion 3.7.

• Feature Bagging [22]: Outliers are determined by training several estimators over
subsets of the data.

• Isolation Forest (IForest) [23]: Outliers are determined by randomly selection fea-
tures and selecting an arbitrary value between the maximum value and the minimum
value of the selected feature to try to isolate the sample.

• K Nearest Neighbours (KNN) [18]: Outliers are determined based on the distance
to the k-th nearest neighbour.

• Lightweight On-Line Detector of Anomalies (LODA) [24]: Outliers are deter-
mined by using an ensemble of weak outlier detectors.

• Local Outlier Factor (LOF) [25]: Outliers are determined by estimating the local
density of a sample with respect to it’s neighbourhood.

• Local Correlation Integral (LOCI) [26]: Similar to LOF, but also handles clusters
of outliers.

• Median K Nearest Neighbours (MedKNN) [18]: Outliers are determined based
on the median of the distances to the k nearest neighbours.

• One-Class Support Vector Machines (OCSVM) [27]: Outliers are determined by
creating a high dimensional decision boundary around the normal data.

• Principal Component Analysis (PCA) [28]: Outliers are determined by projecting
the data into a low dimensional hyperplane based on the eigenvectors of the data.

• Subspace Outlier Detection (SOD) [29]: Outliers are determined by creating sub-
spaces spanned by it’s neighbours.

• Stochastic Outlier Selection (SOS) [30]: Outliers are determined based on a con-
cept proportional to similarity, and if all other objects have are sufficiently different
from it.

2.6 Distance metrics
In order to determine if a sample is an inlier or an outlier, most outlier detectors use a
distance measure of some kind, either directly like the KNN or indirectly like calculating
the distances between all objects to recognize clusters. This distance can also be measured
in several different ways, the three relevant distance metrics for this thesis are explained
below.

17

Chapter 2. Theoretical background

Euclidean distance:
The euclidean distance is the length of the straight line from point A to point B and is

defined by the formula:

d(A,B) =

√√√√
m∑

i=1

(Ai −Bi)2 (2.10)

Where m is the total number of dimensions of the vector space points A and B are
located in, and Ai is the i-th dimensional value of A.

Squared Euclidean distance:
The squared Euclidean distance is the formula of the Euclidean distance metric with

the exception that it does not take the square root. This allows for increased computational
speed. It is defined by the formula:

d(A,B) =

m∑

i=1

(Ai −Bi)2 (2.11)

Where m is the total number of dimensions of the vector space points A and B are
located in. And Ai is the i-th dimensional value of A.

Cosine distance:
The cosine distance, also known as cosine similarity is the angle between two points

from the perspective of the origin. This means that it does not take into regard either
weight or magnitude. Cosine distance is defined by the formula:

d(A,B) = cos(θ) =
A ·B
‖A‖‖B‖ =

∑m
i=1AiBi√∑m

i=1A
2
i

√∑m
i=1B

2
i

(2.12)

Where m is the total number of dimensions and Ai is the i-th dimensional value of A.

18

Chapter 3
Literature review

This chapter covers the literature review relevant for the exploration and development of
the proposed framework. Every section focuses on one theoretical concept. It begins by
introducing the one-shot algorithm Siamese-network (section 3.1) which heavily inspired
this research. Then the Matching network (section 3.2) and the Prototypical network (sec-
tion 3.3) which both iterates on the performance of the Siamese network are discussed.
Sections 3.4, 3.5, 3.6 and 3.7 then summarize various outlier detectors and open world
recognition algorithms used to combine with the few-shot learners to create the proposed
framework.

3.1 Siamese Neural Networks for one-shot learning
This research was heavily inspired by the Siamese network as it is a one-shot learner that
can reject unseen classes. However, as shown in section 6.5 the performance is incompe-
tent for the task of open world learning.

Figure 3.1: Siamese network architecture

19

Chapter 3. Literature review

Siamese network was first introduced in [8][31] for use in the domain of facial recog-
nition and was in 2015 was adapted as an approach for the one-shot learning problem by
Koch et al. [10].

In short, the Siamese network for one-shot learning looks at two images and tries to
evaluate the similarity between them. It does this by first passing one image through
a CNN based neural network that outputs an M-dimensional embedding of the inputted
image in an M-dimensional similarity space fφ : RU → Rm where RU is the high di-
mensional image space and φ are the trainable parameters of the model. A second image
is passed through the same network and produces a different M-dimensional vector. By
using the distance/difference between these image embeddings in the learned similarity
space, the model can identify whether they belong to the same or different classes. The
siamese network does this by performing a vector subtraction on the embeddings before
passing them through a fully connected layer followed by a softmax activation function
which finally produces the binary ’match’ or ’not a match’ classification. The Siamese
network is depicted in figure 3.1.

The siamese network utilizes Triplet loss. A training scheme developed by [9], also
for use in facial recognition. This method is based on using 3 images per training episode:
[A], [P] and [N]. Image [A] is the anchor image. Image [P] is the positive image which is
of the same class as [A], and [N] is the negative image which is of a different class than
[A]. We denote the embedding function of the Siamese network as f(*).

Given this, a well suited embedding function produces outputs that reduces the distance
between f(A) and f(P) while increasing the distance between f(A) and f(N), resulting in
the function:

∥∥f(A)− f(P)
∥∥−

∥∥f(A)− f(N)
∥∥+ α 6 0 (3.1)

Where α is a defined margin to avoid the trivial answers of:

f(∗) = 0 ∪
∥∥f(A)− f(P)

∥∥ =
∥∥f(A)− f(N)

∥∥ (3.2)

In addition to adapting to new classes with just one example image another big advan-
tage the siamese model holds over traditional classifiers is its ability to classify previously
unknown classes. In the case of the traditional classifiers, adding a class to the dataset
does not only require a large amount of data from the new class, but also incurs the need
of retraining the entire model from scratch, possibly incurring a performance loss due to
the newly introduced class. A one-shot learner model is per definition quick to adapt to
new classes, requiring only one sample of the class. The siamese network only needs to
be presented with a single reference image, with the model already trained to extract fea-
tures from the image, rendering the need for any further training of the network obsolete.
Hence, it does not suffer any performance loss of other classes as a consequence of the
introduction of the new class.

A bonus of using the Triplet loss training scheme, is that training data is generated by
matching two different images at a time, either from the same class or different classes.
This matching of images for a training episode results in an augmentation of the dataset to
N ! samples, where N is the number of images originally in the dataset.

In theory, a one-shot model such as the siamese network does not learn general fea-
tures, but rather how to extrapolate them from the images it is presented. This is probably

20

3.2 Matching Networks for One Shot Learning

not true, given the known practical limitations of the model. It works well in narrow do-
mains such as character recognition with the omniglot dataset[32], and facial recognition
with datsets like Labeled Faces in the Wild[33], but is not well suited for more diverse
datasets like imageNet[34] as was shown in [11].

A notable weakness with this approach is that the accuracy of the classification is not
only dependent on the quality of the query image like in a traditional classifier, but also on
the quality of the reference image. Resulting in one additional point of failure compared
to the traditional classifiers.

Algorithm 1 shows the evaluation computation for the siamese net, with one reference
image and one query image. In the algorithm RANDOMSAMPLE(S,N) denotes a set of N
elements chosen uniformly at random from set S, without replacement. Qx and Sx are the
data of the query and support example while Qy and Sy are the classes belonging to those
examples.

Algorithm 1 Evaluation computation for Siamese network.

Require: Trained network fφ(.) where φ denotes the trainable parameters.
Require: Trained last network layer Lφ′
Require: Background set D = (x1, y1), ..., (xN , yN), where each yi ∈ 1, ...,K.

1: S ← RANDOMSAMPLE(D, 1) {Select reference example}
2: Q← RANDOMSAMPLE(D, 1) {Select query example}
3: P (Sy = Qy|Qx) = L(d(fφ(Qx), fφ(Sx)))
4: if P (Sy = Qy|Qx) > 0.5 then
5: Assign Qy = Sy
6: else
7: Reject input
8: end if

3.2 Matching Networks for One Shot Learning

The matching network, conceptualized by Vinyals et al. in their paper Matching Net-
works for One Shot Learning[11] is conceptually similar to the Siamese network, but it
significantly improves the performance. The Matching network uses images as input and
produces multi-dimensional similarity based embeddings for those images with a trained
convolutional network. However there are two important distinctions; firstly, while the
Siamese network is optimized for a true/false classification, the Matching network can
perform multi-class classification. The other distinction is that while chasing performance
improvements, the Matching network sacrifices the ability to reject unseen classes. The
Matching network is shown in figure 3.2.

The matching network does this by allowing for n different images from k different
classes to be used as input for the network, producing (k ∗ n) different embeddings in
the similarity space, and using formula 3.3 to calculate the probability for the query class
belonging to either of the k different classes.

21

Chapter 3. Literature review

Figure 3.2: Matching network architecture

ŷ =

k∑

i=1

a(x̂, xi)yi (3.3)

Where xiand yi are the samples and labels of the support set S and x̂ and ŷ is the
query image and the corresponding predicted class. The function a(∗) is referred to as the
attention kernel. a(∗) is defined as:

a(x̂, xi) =
ec(f(x̂),g(xi))

∑k
j=1 e

c(f(x̂),g(xj))
(3.4)

Where f(*) is the embedding function for the query image, while g(*) is the embedding
function for the support set. The authors Vinyals et al. also specified the option of letting
f(∗) = g(∗) to simplify the model. Function 3.4 calculates the cosine distance between the
query embedding and the different embeddings of the support set and uses these distance-
values to calculate the softmax score for each class.

These two functions (3.3 and 3.4) produce the equivalent of a kernel density estimator.
Not too dissimilar from an advanced nearest neighbours estimator. Hence, the matching
net assigns the query image to one of the k classes in the support set by comparing the
query embedding with the point distribution belonging to different classes from the support
set.

Vinuals et al. also highlights a problem with this approach on its own; depending
on the variance of the classes, the Matching network have differing performance due to
the risk of overlapping classes in the embedding space when classifying closely related
classes. For instance, if the model is trained on imageNet[34], the model is expected to
tell the difference between a dog and a bird, as well as different species of birds. The latter
being a more nuanced problem, possibly exhibiting the previously mentioned overlapping
classes problem. To mitigate this Vinyals et al. also proposed a solution they called Full
context embeddings: Before applying the embedding function g(∗) to the support set, the
support set images are run through an LSTM network with determines the context/nuance
of the set. This LSTM then changes the encoding strategy of g(∗) resulting in a function

22

3.3 Prototypical Networks for Few-Shot Learning

Figure 3.3: Prototypical network architecture

g(xi, S) where S is the support set, allowing for encoding of images in the context of the
entire support set.

3.3 Prototypical Networks for Few-Shot Learning
Matching networks greatly improved on the accuracy of the Siamese net and improved
on its general functionality by allowing for testing of a query image against all known
classes simultaneously. Despite this, it still suffers from the drawback of the unnecessarily
complicated Full context embedding network to compensate for closely related classes
overlapping in the embedding space.

Snell et al. iterated on this by introducing the Prototypical network [12], proposing a
simplification by getting rid of the Full context embedding network and replacing it with
class prototypes; instead of using the class cluster densities in the classification process,
Snell et all. simply proposed to compute the mean position of all the known class support
embeddings, and classify a query embedding as the same class belonging to the closest
prototype. This would nullify ambiguity of class overlap as well as making the decision
boundaries more easily interpretable. The Prototypical network is depicted in figure 3.3.

Through empiric experimentation, they also discovered that using Bregman diver-
gences [35] as a distance measure was favourable to other measures such as cosine distance
proposed for the matching network. They settled on the simplest Bregman divergence, the
Euclidean square distance. This distance is calculated from a query embedding to the
class prototypes to produce the class predictions. This prediction is done by the softmax
function over the negative distances.

pφ(y = k|x) =
exp(−d(fφ(x), µk))∑
k′ exp(−d(fφ(x), µk′))

(3.5)

Where µk is the prototype for class k, and fφ(x) is the embedding of query x given
trainable parameters φ, and d(a, b) is the distance between a and b.

23

Chapter 3. Literature review

During learning the optimization is performed on the negative log-probability J(φ) =
−log pφ(y = k|x) of the true class k.

Algorithm as written in the original article can be seen in algorithm 2. The only
change is some variables to adhere to the naming convention used in this thesis. Note
that this algorithm trains with NQ number of query images per class per training episode,
RANDOMSAMPLE(S,N) denotes a set of N elements chosen uniformly at random from set
S, without replacement and Qx is the input data of query Q

Algorithm 3 is an algorithm explaining an evaluation episode of the prototypical net-
work after the initial training.

Algorithm 2 Training episode loss computation for Prototypical Networks.

Require: Training set D = (x1, y1), ..., (xN , yN), where each yi ∈ 1, ...,K.
Dk denotes the subset of D containing all elements (xi, yi) such that yi = k

1: V ← RANDOMSAMPLE(1, ...K,Nc) {Select class indices for episode}
2: for k in 1, ..., NC do
3: Sk ← RANDOMSAMPLE(DVk , NS) {Select support examples}
4: Qk ← RANDOMSAMPLE(DVk/Sk, NQ) {Select query examples}
5: µk ← 1

NC

∑
(xi,yi)∈Sk fφ(xi) {Compute prototype from support examples}

6: end for
7: J ← 0 {Initialize loss}
8: for k in {1, ..., NC} do
9: for (x, y) in Qk do

10:

J ← J +
1

NCNQ

d(fφ(x), µk) + log

∑

k′

exp(−d(fφ(x), µk′))

 (3.6)

{Update loss}
11: end for
12: end for

3.4 Towards open world recognition

In the paper [36], Bendale et al. proposes the Nearest non outlier (NNO) open world
recognition algorithm. The Nearest non outlier utilizes model vector M = [µ1, ..., µK] of
class mean embedding vectors and a radius vector r = [τ1, ..., τK] to represent the decision
boundary for all classes. The multi-class open set recognition function is then defined by:

ϕ = [f1(x), ..., fK(x)] (3.7)

Where fk(x) represents the likelihoods of query x being in class k. The predicted class
ŷ is calculated by:

24

3.5 Towards Open Set Deep Networks

Algorithm 3 Evaluation episode computation for Prototypical Networks.

Require: Trained network fφ(.) where φ denotes the trainable parameters.
Require: Training set D = (x1, y1), ..., (xN , yN), where each yi ∈ 1, ...,K.

Dk denotes the subset of D containing all elements (xi, yi) such that yi = k
1: V ← RANDOMSAMPLE(1, ...K,Nc) {Select class indices for episode}
2: for k in 1, ..., NC do
3: Sk ← RANDOMSAMPLE(DVk , NS) {Select support examples}
4: µk ← 1

NC

∑
(xi,yi)∈Sk fφ(xi) {Compute prototype from support examples}

5: end for
6: Q← RANDOMSAMPLE(V, 1)

7: pφ(y = k|x) =
exp(−d(fφ(Qx),µk))∑
k′ exp(−d(fφ(Qx),µk′))

{Calculate class probability}
8: ŷ = argmaxkP (y = k|x) {Assign class ŷ to query Q}

ŷ = argmax
y∈K,fy(x)∈ϕ(x)

fy(x) (3.8)

F (x) =

{
0 if fŷ(x) 6 0

ŷ otherwise
(3.9)

Where F (X) = 0 is the rejection case, and the estimate of fk(x) is defined as:

f̂k(x) =
Γ(m2 + 1)

π
m
2 τm

(1− 1

τ

∥∥∥WTx−WTµi

∥∥∥) (3.10)

Where f̂k(x) is the estimated probability of x belonging to class k. The first fraction is
the inverted definition of an m-dimensional sphere with radius τ . Resulting in a tent-like
probability function with the center around the mean embedding vector µK . τ is optimized
over the f̂k(x) values for all training data.

A big advantage of this model as opposed to a 1-vs-all support vector machine is that
this modelling is done for all classes separately so adding a class is as simple as adding
one entry to both M and r, rather than retraining the entire model.

Algorithm 4 shows a probability estimation with rejection of unknown or uncertain
inputs with the NNO model.

3.5 Towards Open Set Deep Networks
In the paper [37], Bendale et al. introduces the open set classification algorithm Openmax.
With it’s main purpose of combating fooling data1 used on deep networks, Bendale et al.
details an algorithm to serve as an open set alternative to the softmax activation function.
Bendale et al. calls this the openMax activation function.

It works by utilizing a support vector machine similar to a cluster density algorithm to
produce a probability score of the query being inliers and outliers of the different classes.

1Data specifically designed to act as the red circle in figure 2.4 in order to fool classifiers

25

Chapter 3. Literature review

Algorithm 4 NNO probability estimation.

Require: Class mean embedding vector: = [µ1, ..., µK]
Require: Trained class radius vector: r = [τ1, ..., τK]

1: f̂k(x) =
Γ(m2 +1)

π
m
2 τmk

(1− 1
τk

∥∥WTx−WTµi
∥∥)

2: if maxkf̂k(x) 6 0 then
3: Reject input
4: else
5: ŷ = argmaxkf̂k(x)
6: end if

It uses the inlier probability to modify the class scores produced by the network, and it uses
the outlier probability to create a rejection class. Then it takes all modified class scores
and the rejection class and passes them all through a normal softmax activation function,
resulting in an open set classification algorithm. It does not take part of the base training
of the network itself, so a traditional softmax activation function is used during training of
the network parameters. Just after training is the softmax function switched out with the
openMax, which then has to be trained by itself.

Instead of looking at the output of the neural network, the proposed activation function
utilizes values produced in the penultimate layer of the neural network. The penultimate
layer is the last layer of the neural network before the final softmax activation function
in the original network architecture. The activation in the penultimate layer due to input
passed through the network is called an activation vector vi(x).

The training of the openMax activation function is performed by first computing the
mean activation function (MAV) for every class k. This is defined as the class mean of
all the activation vectors that lead to a correct classification in the native softmax version
of the network. Then K individual weibul distribution fittings [38] are fitted based on
the distance between the class MAV and all the individual correctly classified activation
vectors of that class. This produces the fitting model ρj = (τi, λi, κi). K is the total
number of training classes.

The classification is performed by using the weibul fitting model to get information
if a query falls inside or outside the current known distribution of class samples. Instead
of using the weibul fitting directly, Bendale et al. used the inverted weibul fitting and
subtracted 1, as seen in algorithm 5. (This weibul fitting was also used more directly to
create an outlier detection svm [39] known as w-svm in [40].) This fitting is interpreted
as the probability of a query being an outlier/inlier of the known classes, and this score is
used to update the activation vector, while the reminding probability of being an outlier is
used in the creation of a custom activation vector for the query belonging to a novel class
as seen in line 6 of the openMax algorithm. To reduce the impact of classes with lesser
probability of being the correct class, Bendale et al. introduced a weighing term on the
weibul fitting α−i

α , in order for only the top α classes to contribute towards the probability
of the query belonging to a novel class. Finally the revized activation vectors alongside the
novel class activation vector is used as input for the classic softmax activation function.

Algorithm as written in the original article:

26

3.6 DOC: Deep Open Classification of Text Documents

Algorithm 5 OpenMax probability estimation with rejection of unknown or uncertain
inputs

Require: Activation vector for v(x) = v1(x), ..., vN (x)
Require: means µj and libMR models ρj = (τi, λi, κi)
Require: α, the number of ”top” classes to revise

1: Let s(i) = argsort(vj(x)); Let ωj = 1
2: for i = 1, ..., α do
3:

ωs(i)(x) = 1− α− i
α

e
−
(
x−τs(i)
λs(i)

)κs(i)
(3.11)

{Perform inverted weibull fitting and subtract 1}
4: end for
5: Revise activation vector v̂(x) = v(x) ◦ ω(x)
6: Define v̂0(x) =

∑
i vi(x)(1− ωi(x)) {v̂0(x) =: novel class activation vector}

7:

P̂ (y = k|x) =
exp(v̂k(x))
∑K
i exp(v̂i)

(3.12)

8: Let ŷ = argmaxkP (y = k|x)
9: Reject input if ŷ == 0 or P (y = ŷ|x) < ε

3.6 DOC: Deep Open Classification of Text Documents

Deep Open classification (DOC) [41] by Shu et al. is a newer and simpler alternative for
open set classification. It proposes to switch out the closed set softmax activation function
with K number of Sigmoid functions, each representing the individual probability for a
class. Where K is the the number of training classes. The classification is then done
by selecting the class with the highest individual probability value given by the Sigmoid
functions, or rejecting the query as a new class if all classes fall bellow their thresholds.

ŷ =

reject, if Sigmoid(Vi(x)) < τi, ∀li ∈ YK

argmax
li∈K

Sigmoid(Vi(x)), otherwise (3.13)

The entire network is trained by the loss function:

Loss =

K∑

i=1

N∑

j=1

−I(yj = li) log p(yj = li)− I(yj 6= li) log(1− p(yj = li) (3.14)

Which is simply the summed loss over all theK sigmoid functions over all the training
data N .

Normally the threshold set on sigmoid activation functions is 0.5, but Shu et al. noticed
that for most classifications, there was a high degree of certainty, usually above the 90
percentile mark. So they introduced the idea of applying a Gaussian fitting for the certainty

27

Chapter 3. Literature review

of all the correctly predicted training data. This Gaussian fitting could then propose a
threshold value for each class individually, further decreasing the open space risk.

This method can be used on many different types of networks like CNN, RNN and
LSTM. Shu et al. decided to test with CNN to make a valid comparison the openMax
algorithm.

Algorithm 6 shows a probability estimation with rejection of unknown or uncertain
inputs with the DOC model.

Algorithm 6 DOC probability estimation with rejection of unknown or uncertain inputs

Require: Activation vector for v(x) = v1(x), ..., vK(x)
Require: σ = σ1, ..., σK Variance from the Gaussian fittings.
Require: Vectorized input data x

1: P (y = k|x) = Sigmoid(v(x))
2: Let s(i) = argsort(P (y = k|x))
3: for i = 1, ...,K do
4: if P (y = s(i)|x) > 1− σs(i) then
5: ŷ = s(i)
6: Break
7: end if
8: end for
9: if P (ŷ|x) == None then

10: Reject input
11: end if

3.7 XGBOD: Extreme Gradient Boosting Outlier Detec-
tor

The XGBOD algorithm [21] is an ensemble outlier detection algorithm. Meaning that it
combines several other outlier detection algorithms into one. This is often a helpful way
to reduce the bias of any one algorithm, while at the same time getting lower variance on
the prediction, usually resulting in improved accuracy.

The XGBOD algorithm consists of 3 main parts:

1. Base model prediction: First the XGBOD algorithm utilizes c number of unsuper-
vised outlier detection algorithms to create c different scores of ”outlyingness” for
each training sample.

2. Classifier selection: Then p number of models out of the c are chosen (p ⊆ c)
based on the overall accuracy and the degree of classifier correlation. The goal is to
incrementally choose the group of classifiers that has the highest accuracy, and have
low correlation in order to increase variance of the prediction over the training data.
This is done by checking the classifiers with the function:

Ψ(Φi) =
ACCi∑S

j=1 |ρ(Φi,Φj)|
(3.15)

28

3.7 XGBOD: Extreme Gradient Boosting Outlier Detector

Where Φi is the results of the outlier detection algorithm nr. i, S is the list of already
accepted classifiers and ρ is the Pearson correlation coefficient [42]. Then a refined
feature space is created by combining the the original outlier detection space X and
S to get [X,S].

3. Prediction with XGBoost: Finally the supervised XGBoost [43] classifier is ap-
plied to the refined feature space to classify outliers vs inliers. This classifier is
chosen because it is designed for high dimensional datasets as well as being robust
against class imbalanced datasets, which is significant because supervised outlier
detection is inherently a class invariant problem.

29

Chapter 3. Literature review

30

Chapter 4
Proposed framework

In order to solve the open world problem with minimal labeling effort as introduced in
section 1.2, we propose the novel open world learner framework based on the few-shot
classifiers detailed in sections 3.2 and 3.3. This framework is able to classify known
classes, reject unknown classes and quickly adapt to new classes without any additional
training required. The proposed framework is shown in figure 4.1.

This framework consists of 4 main modules: The support dataset, the embedding mod-
ule, the classification module and the outlier detection module. The support dataset is
the reference database, containing only a few samples from each known class and is con-
sidered the memory of the model. The embedding module is a neural network trained
to cluster similar objects and separate dissimilar objects in a high dimensional similar-
ity space. The module is trained as the embedding module of a few-shot learner and its
output are the embeddings from the support set and open world data. These embeddings
are passed on to both the classifier and the outlier detector. The classification module
performs closed world classification on the open world data based on it’s similarity with
the inferred embedding clusters of the different reference classes from the support dataset.
The outlier detection module utilizes these same inferred embedding clusters from the
support dataset to determine if the open world data belongs to the known classes or if it
is a novel class. By combining the classifier with the outlier prediction, we produce a
classification with rejection, aka. an open world prediction.

By utilizing the few-shot classifier’s ability to generalize to new classes that it hasn’t
seen during training, simply by including a few labeled samples of that class in the support
dataset, our framework can iteratively add new classes from the rejected data without
any additional training. This iterative learning process is normally a big problem that
can quickly lead to a loss of accuracy, but our framework bypasses this problem by not
reacquiring further training.

To best answer the research questions from section 1.3 we want to identify the best
combinations of algorithms that produce the most proficient version of this framework.
This includes investigating the performance of different few-shot learners and reviewing
their performance in combination with different algorithms that can adapt it to the open

31

Chapter 4. Proposed framework

Figure 4.1: Proposed open world learner generic architecture

world problem. There are 2 different algorithm types that are able to do this adaptation:
outlier detectors and open set recognition algorithms. We look into the different model
architectures these 2 types of algorithm combinations create, as well as testing out several
different outlier detectors and OSR algorithms in framework to find the best possible fit.

The few-shot learners tested are the matching network and prototypical network, ex-
plained in section 3.2 and 3.3. The different outlier detectors and open set recognition
algorithms are listed in sections 4.1 and 4.2 respectively.

The framework presented in this thesis is targeted towards the plankton domain for use
in autonomous underwater vehicles, so all experiments and results are based on planktonic
datasets, but no dataset dependent specialization is performed on the framework, so the
models presented are also generalizable to other datasets and domains.

4.1 Outlier detection architecture

The first possible architecture for realizing the proposed framework is built up around the
few-shot learner who contributes both the pre trained embedding model and the similar-
ity based classification module. The outlier detection module is just an outlier detection
algorithm that utilizes all the embeddings produced in the few-shot learner to produce an
outlier prediction of the open world data in comparison with the support dataset embed-
dings. This architecture is shown in figure 4.2.

As we want to identify the algorithm that produces the best performance in combi-
nation with the few-shot classifiers, several well known outlier detection algorithms are
tested. List 4.1 comprises all the tested outlier detection algorithms.

These outlier detectors were all implemented with the PyOD library, and the algorithm
choice came down to the algorithms in that library that could be easily implemented with a
limited amount of data. The information detailing the implementation of the concatenation
of these algorithms and the few-shot classifier is listed in section 5.1.

32

4.2 Open set recognition architecture

Figure 4.2: Proposed open world learner architecture (few-shot + outlier detector)

4.2 Open set recognition architecture
The second possible architecture for realizing the proposed framework only utilizes the
embedding module from the few-shot learner while the open set recognition algorithm
functions as both the classification module and the outlier detection module. This archi-
tecture is shown in figure 4.3.

The open set recognition algorithms tested with the few-shot classifiers is given in list
4.2.

The information detailing the implementation of the concatenation of these algorithms
and the few-shot classifier is listed in sections 5.2, 5.3 and 5.4.

4.3 Summary
There are many potential combinations of algorithms that allow for the realization of the
proposed framework, all with different strengths and weaknesses, making them applica-
ble in different situations. As is be shown in the results section (7) and argued for in the
discussion section (8), we highlight and advocate for two different variations of the frame-
work: The Prototypical network in combination with the XGBOD outlier detector proved
to be the most accurate variation of the framework given a certain number of samples per
class are available. It is a complex model so some samples are required to properly build
the model. For tasks where speed is important and/or only a very few samples are avail-
able from each class, the combination of the Prototypical network and the simple NNO
algorithm proved to be one of the most suited variations. Both these framework variations
also exhibit a synergy between the outlier detection module and the classification module
that results in a very high classification confidence given that the outlier detection module
correctly classifies an object as an inlier. The details regarding this and the extra potential
use-case in a closed world scenario are discussed in greater details in section 8.4.

33

Chapter 4. Proposed framework

Algorithm Learning method Type

Angle Based Outlier Detection (ABOD) Unsupervised Probabilistic
Average K Nearest Neighbours (AvgKNN) Unsupervised Proximity-Based
Connectivity-Based Outlier Factor (COF) Unsupervised Proximity-Based

Deviation-based Outlier Detection (LMDD) Unsupervised Linear Model
Extreme Boosting Based Outlier Detector (XGBOD) Supervised Outlier Ensemble

Feature Bagging Unsupervised Outlier Ensembles
Isolation Forest (IForest) Unsupervised Outlier Ensembles

K Nearest Neighbours (KNN) Unsupervised Proximity-Based
Lightweight On-Line Detector of Anomalies (LODA) Unsupervised Outlier Ensembles

Local Outlier Factor (LOF) Unsupervised Proximity-Based
Local Correlation Integral (LOCI) Unsupervised Proximity-Based

Median K Nearest Neighbours (MedKNN) Unsupervised Proximity-Based
One-Class Support Vector Machines (OCSVM) Unsupervised Linear Model

Principal Component Analysis (PCA) Unsupervised Linear Model
Subspace Outlier Detection (SOD) Unsupervised Proximity-Based
Stochastic Outlier Selection (SOS) Unsupervised Probabilistic

Table 4.1: List of outlier detection algorithms tested for the framework.

Algorithm

Nearest Non-outlier (NNO)
OpenMax

Deep open classification (DOC)

Table 4.2: List of open set recognition algorithms tested for the framework.

Figure 4.3: Few-shot + open world recognition architecture

34

Chapter 5
Implementation

This chapter describes how each algorithm combination for the proposed framework was
implemented for testing. From the preliminary results covered in section 6.5 it was found
that the Prototypical network is the most ideal few-shot algorithm for the framework so
this is the base model used for implementation.

This chapter covers the inputs used and the problems encountered, as well as the solu-
tions put in places to reach compatibility between the prototypical network and the open
set recognition/outlier detection algorithms. Also mentioned is any other significantly
relevant information about the implementation. Section 5.1, 5.2, 5.3 and 5.4 describes
the implementation details of the outlier detectors from the pyod library, the nearest non
outlier algorithm, the openMax algorithm and the deep open classification algorithm re-
spectively in conjunction with the Prototypical network. Every section begins by listing
up the original input and the problems encountered during implementation before listing
the adjusted input and solutions to the problems encountered to reach compatibility.

5.1 PyOD - Outlier detection algorithms

The outlier detectors from list 4.1 was all implemented with the PyOD library [44]. This
library uses a list of vector embeddings as input and is therefor easily compatible with the
embeddings from the prototypical network. Since they all share a common interface they
were easily implemented with the prototypical network and tested in parallel.

The unsupervised outlier detectors: TrainingNC number of classifiers every episode.
Every class k uses only Sk to train the classifier.

The supervised outlier detectors: Training NC number of classifiers every episode.
Where every class k uses Sk as inlier examples and the remaining data in S as outlier
examples for training the classifier.

No further modification or adaptations were required to run either the supervised or
unsupervised outlier detectors from the PyOD library.

35

Chapter 5. Implementation

5.2 Nearest non outlier
The Nearest non outlier algorithm utilized the exact same type of embedding produced
by the prototypical network embedding module, so only minor modification needed to be
done with the algorithm to reach compatibility.

Original input:

• NS vector embeddings for all NC classes.

Problems encountered during implementation:

1. The original implementation details of the estimation of τ were poorly written in
the paper and simply directed to supplementary material that does not longer exist.

2. The embeddings produced by the prototypical network is a 1600 dimensional vector,
so when combined with equation 3.10, the fraction produces near 0 values due to
the exponential terms. This slows the optimization process due to shallow gradients.

Adjusted input:

• NS support set embeddings for all NC classes.

Solutions to the problems encountered during implementation:

1. Problem 1 from the list above was solved by utilizing the log loss over the func-
tion fk(x) from equation 3.10, and using the Nelder-Mead optimization technique
through scipy’s optimization library.

2. Problem 2 from the list above was handled by flipping the fraction. This results in
extremely large values, but it is easier to deal with for an optimizer than extremely
low values due to the steeper gradients.

The original code from the Nearest non outlier algorithm was no longer supported, so
the entire algorithm had to be coded from scratch.

Algorithm 7 shows the appropriated version of the nearest non outlier algorithm.

Algorithm 7 Appropriated NNO probability estimation with rejection of unknown or un-
certain inputs

Require: Class mean embedding vector: = [µ1, ..., µK]
Require: Trained class radius vector: T = [τ1, ..., τK]
Require: Prototypical network query embedding x

1: f̂k(x) =
π
m
2 τmk

Γ(m2 +1) (1− 1
τk

∥∥WTx−WTµi
∥∥)

2: if maxkf̂k(x) 6 0 then
3: Reject input
4: else
5: ŷ = argmaxkf̂k(x)
6: end if

36

5.3 OpenMax activation function

5.3 OpenMax activation function
As the openMax function is designed for being appended to the end of a traditional CNN,
quite a substantial amount of modifications were needed to reach compatibility with the
distance based classification of the prototypical network.

Original input:

• Activation vector: The output values v(x) of the penultimate layer of convolutional
network given the input X. v(x) is aK dimensional vector with one value for every
class.

• Mean activation vectors: Based on the activation vectors from training examples
that were correctly classified on the original network with the softmax activation
function. Performed on each class individually.

• Weibul fitting training data: Based on distance from the activation vector to the
class mean activation vector for training examples that were correctly classified with
the original network and the softmax activation function. Performed on each class
individually.

Problems encountered during implementation

1. The openMax function natively uses the distance metric from the activation vector
to the mean activation vector to produce the weibul score and uses the result of
the weibul score to adjust the values in the activation function. This works since
the activation function inherently is an estimation that a classification can be based
off of. In the prototypical network a query embedding is not inherently such an
estimation, so using the embedding alone as the activation vector does not work.

2. The openMax function is designed for maximisation problems only. The openmax
algorithm can not be converted to a minimization problem simply by multiplying
the input values with (−1) as is possible with the softmax function. The proposed
definition of the rejection class v̂0(x) =

∑
i vi(x)(1− wi(x)) would result in a de-

creased probability of a classifying an object as a new class, rather than an increased
probability, when summing over i with negative values, and applying the equation:

P̂ (y = j|x) =
ev̂j(x)

∑N
i=0 e

v̂i(x)

3. The hyper-parameters used to balance the output probabilities of the openmax are
specifically tuned to the dataset and network used in the paper, respectively ima-
geNet and alexNet. So when applied on a different architecture and with a different
dataset, the predicted probability of the novel classes P̂ (y = 0|x) produces hugely
different values compared to the original algorithm, changing dramatically based on
small changes in some hyper-parameters. Scaling the possible values in order to
fit the algorithm to the equation: y∗ = argmaxjP (y = j|x) for a new task is a
unnecessarily complicated process.

37

Chapter 5. Implementation

4. The α values used in algorithm (5) also poses a problem. The values of the penul-
timate layer in the alexNet classifier and from the weibul fitting produced by the
imageNet dataset are very different from the values of the euclidean squared dis-
tance in the prototypical network and weibul fittings produced in a few shot setting.
So when α−i

α from line 3 in algorithm (5) is multiplied with the weibul fitting from
the proposed framework, it tends to result in the reversal of the probability ranking
of the ”top α” classes rather than a simple adjustment in the probabilities. This α
value is originally used as a relevance weighting of the weibul fitting, since classes
that have a low probability of being the correct class should not contribute a lot to
the probability of the query being a novel class, but due to the drastic change in
use-cases, their purpose is defeated.

Adjusted input:

• Activation vector: The distance from the query embedding fφ(xi) to the prototypes
µk′ . This is a NC dimensional vector.

• Mean activation vectors: Created from the class support sets, this is equivalent to
the prototype of that class. Performed on each class individually.

• Weibul fitting training data: Based on the support set that would be correctly cor-
rectly classified if every support sample were tested against the prototypes. This is
done for each class individually.

Solutions to the problems encountered during implementation:

1. Problem 1. from the list above was handled by using the distance from the query
to the prototype as a substitute for the activation vector of the native openmax algo-
rithm.

2. Problem 2. from the list above was handled by dividing the distance from the query
embedding to the prototype by the mean value of the distance from support vectors
to their prototypes. Then flipping the problem from a minimization problem to a
maximization problem by multiplying all values with a Gaussian function centered
around 0 before passing the result of this as the input to the openMax function.

3. Problem 3. from the list above was handled by using a threshold variable on the
novel class ”probability” P̂ (y = 0|x) to determine if the sample belongs to a new
class, instead of a direct value comparison with the other class probabilities. This
threshold is attained by noting the values of the novel class probability when per-
forming tests on novel cases and comparing it to tests on non-novel classes. This
can be optimized with an optimization function, but is omitted as the focus is a proof
of concept at this stage.

4. Problem 4. from the list above was handled by simply omitting the use of the α value
from the algorithm. Given the low amount of classes (k − way) usually considered
in few-shot episodes, this is likely to have less impact, compared to the amount of
classes in the imageNet dataset.

38

5.3 OpenMax activation function

Algorithm 8 Appropriated OpenMax probability estimation with rejection of unknown or
uncertain inputs

Require: Distance from the query to the prototypes output of the prototypical network:
d(x) = d1(x), ..., dK(x)

Require: Threshold τ for unknown class, and threshold ε for known classes
1: Use a Gaussian filter to invert the activation vector values

d(x) = a ∗ exp(− (x− b)2

2c2
) ∗ d(x) (5.1)

2: Calculate means µk and libMR models ρk = (τk, λk, κk)
3:

ωk(x) = 1− e−
(
x−τk
λk

)κk
(5.2)

{Perform inverted weibull fitting and subtract 1}
4: Revise activation vector d̂(x) = d(x) ◦ ω(x)

5: Define d̂0(x) =
∑
k dk(x)(1− ωk(x)) {d̂0(x) =: novel class activation vector}

6:

P̂ (y = k|x) =
exp(d̂k(x))
∑K
k exp(d̂k)

(5.3)

7: Let y∗ = argmax
k,k 6=0

P (y = k|x)

8: Reject input if P (y = 0|x) > τ or P (y = y∗|x) < ε

39

Chapter 5. Implementation

The resulting algorithm is shown in algorithm (8).
The original code posted by Bendale et al.1 was used in this project by copying the

necessary code and adjusting it to fit the prototypical network as described in the lists
above.

5.4 Deep open classification
Similarly to the openMax algorithm, the DOC algorithm is designed to be used instead
of a softmax function at the output layer of a standard convolutional network. Given the
non-standard output of the embedding module in the framework, some customization had
to be performed to reach compatibility.

Original input:

• The output values v(x) of the penultimate layer of the network given input x. v(x)
is a K dimensional vector with one value for every class.

Problems encountered during implementation:

1. The distances between a query embedding and the prototypes in the prototypical
network is poorly compatible with the sigmoid activation function as the sigmoid
produces most nuanced output values for input values between -1 and 1 while the
distance between an embedding and the prototype can be in the range of [0, inf].

2. As with the softmax function in the prototypical network, the sigmoid activation
function needs to be applied to the negative distance between the query embedding
and the prototypes since greater input value leads to greater output value, and greater
probability. But due to the distances being solely in the range of [0, inf], only the
left half plane of the sigmoid function is usable − inf < −d < 0.

Adjusted input:

• The distance from the query embedding fφ(xi) to the prototypes µk′ . This is a NC
dimensional vector.

Solutions to the problems encountered during implementation:

1. Problem 1 from the list above was handled by retraining the prototypical network
with the sigmoid functions and the DOC algorithm loss from equation 3.14, nat-
urally training it to produce values in a logical range for the sigmoid activation
function.

2. Problem 2 from the list above was handled by interpreting 0.5 as the max probability
produced by the sigmoid function, and performing the Gaussian fitting of the class
probabilities around 0.5 instead of 1.

1OpenMax source code available online at https://github.com/abhijitbendale/OSDN

40

5.4 Deep open classification

The original code posted by Shu et al.2 was used in this project by copying the neces-
sary code and adjusting it to fit the prototypical network as described in the lists above.

The algorithm 9 is the updated evaluation episode algorithm, given the changes re-
quired above.

Algorithm 9 Appropriated DOC probability estimation with rejection of unknown or un-
certain inputs

Require: Distance from the query to the prototypes output of the prototypical network:
d(x) = d1(x), ..., dNC (x)

Require: σ = σ1, ..., σNC Variance from the Gaussian fittings.
1: P (y = k|x) = Sigmoid(d(x))
2: Let s(i) = argsort(P (y = k|x))
3: for i = 1, ..., NC do
4: if P (y = s(i)|x) > 0.5− σs(i) then
5: ŷ = s(i)
6: Break
7: end if
8: end for
9: if P (ŷ|x) == None then

10: Reject input
11: end if

5.4.1 Summary
When adjusting the algorithms to be compatible with the design of the prototypical net-
work some of the adaptations required more modification than others. The outlier detec-
tors and the NNO are combined with the Prototypical network without much effort, the
OpenMax and the DOC on the other hand are designed to be placed as the final layer
in traditional CNN network, and some significant modifications were needed. Especially
for the OpenMax which had to be drastically modified in order to be compatible with the
Prototypical network, and as a result end up with rather terrible results as seen in sections
7.4.1 and 7.4.2. The DOC seemed also to be affected somewhat negatively by the changes
done, given it’s notoriety as state-of-the-art in open set recognition, but still produced good
results.

2DOC: source code available online at https://github.com/leishu02/EMNLP2017 DOC

41

Chapter 5. Implementation

42

Chapter 6
Experimental setup

This chapter describes the experiments conducted, the selection and evaluation criteria that
are focused on during model evaluation, as well as the datasets used in this research. The
selection criteria is listed and described in section 6.1, the experiments are described in
section 6.2. The Siamese network, which is used as a baseline is explained in section 6.3,
and the details about the implementation of the few-shot base is covered in section 6.4. As
some of the preliminary results had an influence on the desicion making in regards to the
framework, these preliminary results are covered in section 6.5. Finally the datasets and
hardware used to run the experiments are covered in sections 6.6 and 6.7.

6.1 Selection criteria
The following selection criteria are chosen in order to answer the research question given
in section 1.3:

1. Ability to classify training classes

2. Ability to classify known classes

3. Ability to reject unknown classes

4. Combined open world performance

5. Speed (online computational requirements)

The following is an explanation of these criteria in the context of this thesis.

Ability to classify training classes: The standard classifier performance metric used
in classic image recognition models. A measure of how well the classifier performs in a
closed environment, and a good baseline to compare against other state of the art classi-
fiers.

43

Chapter 6. Experimental setup

Ability to classify known classes: The ability to generalize to classes not used during
training, by just using a few known references of those classes. This is the few-shot recog-
nition problem, which is essential when testing a few-shot classifier. This test is conducted
in a closed world setting.

Ability to reject unknown and novel classes: The proficiency of the outlier detection
module to reject unknown classes in the similarity space not included in the support set.
This means that the outlier detector has to perform well with the similarity embeddings
produced by the embedding module.

Combined open world performance: The combined performance of both the outlier
detection module and the classification module. This criteria measures how many samples
are correctly identified as inliers, and how many of these are given the correct class label
by the classifier module.

All the selection criteria above is measured by the accuracy metric detailed in section
2.1.6.

Speed: As speed is a vital metric for several different applications, the question of
computation efficiency is also a relevant for a thorough analysis of the different possible
framework variations. In addition to this, few-shot algorithms can increase their accuracy
by increasing it’s reference database and comparing against more instances of every class.
Allowing for the possibility of increasing the accuracy at the cost of computational effi-
ciency. This is measured based on the time it takes for one episode to run. The definition
of an episode is shown in section 6.4.

6.2 Experiments
In order to investigate all the selection criteria from the list in section 6.1, three types of
experiments are performed:

1. Classify training classes with the closed world assumption.

2. Classify known classes with the closed world assumption.

3. Classify known classes and identify unknown classes with the open world assump-
tion.

Classify training classes with the closed world assumption: This test involves train-
ing the base few-shot classifiers in the classical method of machine learning (explained in
section 2.1.2), with a training set and a testing set containing different samples from the
same classes. The test is evaluated on the accuracy of the prediction over the training set
in a closed world setting, without the outlier detection module.

Classify known classes with the closed world assumption: This test involves train-
ing the base few-shot classifiers in the one/few-shot method(explained in section 2.2), with
a background set and evaluation set containing different classes. The test is evaluated on
the accuracy of the prediction over the evaluation set, without the outlier detection module.

44

6.3 Siamese network baseline

Classify known classes and identify unknown classes with the open world assump-
tion: This tests involves testing all the possible framework variations with open world data.
So the query image for each test can either belong to one of the classes in the support set,
or it can be a class not existing in the support set.

There are three results that are of interesting in this experiment:

• Pure outlier detection module performance: The accuracy results of the outlier vs
inlier classification for each outlier detection module based on the similarity space
embeddings of the prototypical network.

• Combined architecture performance: The combined accuracy results of both the
outlier detection module and the classification accuracy of the classification module.
So for a correct prediction in this test, the image either has to be correctly labeled as
an outlier or it has to be correctly classified as an inlier and classified as the correct
class by the classification module.

• Speed: The computational requirements for every possible framework variations.
For reference, all results are performed on the NVIDIA RTX 2080 Ti.

The split of known and unknown classes for the open world test test is set to 50/50.
Although under the closed world assumption, few-shot classifiers are usually tested

with n-shot values of 1 and 5, in order to give the outlier detection module more ideal
conditions the tests are conducted with n-shot values of 5, 20 and 50 for this test.

6.3 Siamese network baseline
The siamese network is often used as the baseline in few-shot papers [11] [12], as it is
easily extendable into a few-shot classifier by performing the ”match”/”no match” classi-
fication over n-samples from k-classes of the support set and then assigning the prediction
to the highest average probability class.

ŷ = argmaxkP (y = k|x) (6.1)

However, most of papers that use the Siamese network as a baseline operate under the
closed world assumption and do not include the rejection property of the Siamese network.
As this thesis does not adhere to this assumption we also want to utilize this rejection
property in a multi-class classification scheme to employ it as an open set recognition
algorithm. This rejection can be included by rejecting the query image if the average
probability of all k classes are below the trained rejection threshold of the siamese net.

The Siamese net is still always trained in the original one-shot manner, even when
tested on open world recognition tasks and a k-way, n-shot setting.

During early research of this thesis, the Siamese network was the main experimental
focus, looking into the possibility of further developing a framework based on this core
classifier. Even with the disappointing results in section 6.5, there was a valiant effort
made to increase the performance of the Siamese network by utilizing more advanced
and/or task specific embedding networks in the Siamese model. It further led into the
exploration of few-shot learners and the framework presented in section 4. The siamese

45

Chapter 6. Experimental setup

net research was kept as a baseline for the performance of the proposed framework, as is
often done in few-shot papers, as well as to log all research done for this thesis.

The tests to find more advanced and/or tasks specific embedding networks for the
Siamese model was set up like a normal one-shot classification test, and several different
networks were pitted up against the base embedding model of the Siamese net. As these
networks usually are traditional classifiers themselves, the last fully connected layer of the
different network where switched out with the last embedded layer of the native Siamese
network embedding module to produce an embedding instead of a classification and to
attain compatibility with the Siamese network.

The networks tested as alternative embedding networks are the VGG net [45] and
ResNet [46] with their various permutations, the full list is listed in table 6.1. The specific
networks were chosen as they had proved to produce good classification results on plank-
ton classification. The results for this test are presented in section 7.1 along with the results
of using the Siamese network in a few-shot open world setting (as explained above).

Networks
VGG11
VGG16
VGG19

ResNet18
ResNet34
ResNet50

ResNet101
ResNet152

Table 6.1: Siamese embedding network variations

6.4 Setup - Few-shot learner
For both the Matching network and the Prototypical network, the same setup as in the orig-
inal papers were used. Both of these models use the same embedding network structure
consisting of a simple four block setup. Each block is made up of:

• Convolutional layer

• Bath normalization layer

• Relu activation layer

• MaxPool activation layer

This architecture produces embeddings in a 1600-dimensional output space. These are
the similarity space embeddings used for the classification.

Both models were trained over 80 epochs consisting of 1000 training episodes. Where
one training episode is defined as testing NQ query images for all NC classes over a
support set consisting of (NC ∗NS) images.

46

6.5 Preliminary results

5-way Acc. 10-way Acc.
Model Dist 1-shot 5-shot 1-shot 5-shot

Siamese Network - 55.8% 64.8% 44.2% 45.6%
Matching Network Cosine 72.4% 80.8% 55.6% 59.6%

Prototypical Network Euclidean squared 68.4% 95.0% 54.5% 87.7%

Table 6.2: Preliminary classification results on the WHOI-plankton dataset, traditional method.

5-way Acc. 10-way Acc.
Model Dist 1-shot 5-shot 1-shot 5-shot

Siamese Network - 47.0% 51.6% 29.8% 37.0%
Matching Network Cosine 71.8% 78.6% 55.9% 64.8%

Prototypical Network Euclidean squared 70.2% 91.8% 53.6% 82.6%

Table 6.3: Preliminary classification results on the Kaggle-plankton dataset, traditional method.

For the training process, a k-shot, n-way configuration has to be chosen for the classi-
fiers to optimize the training for. This doesn’t limit the different configurations available
during testing, but it slightly affects the performance of other configurations than the one
the classifier was trained for. The authors of [12] points out that training the same n-shot
and a higher k-way than is used during testing produce better results. The reason for this
being that training with a higher k-way seems to cluster the embeddings better.

6.5 Preliminary results

As experiments 1 and 2 from section 6.2 are performed with the few-shot algorithms alone,
the following results were available early in the testing. Tables 6.2 and 6.3 lists the perfor-
mance for different k-way, n-shot test configurations of the base versions of the Siamese
network, the Matching network and the Prototypical network when applied to the WHOI-
plankton and Kaggle plankton datasets.

All of these results are achieved with the training parameters: k-way = 10 and n-shot
= 5. The training configuration was fixed as to increase the comparability of the models
and eliminate the need for fine-tuning each model to optimize each individual score.

For each entry in the result tables 6.5 and 6.4, a separate model was trained with early
cutoff based on the best results of the evaluation set. And all models were evaluated
based with the k-way, n-shot values as shown in the tables. For instance, for the 5-way,
5-shot result, the prototypical network was evaluated after every epoch in a 5-way, 5-shot
scenario, and the model and score from the epoch that produced the best evaluation score
was stored.

As can be seen from these results, the accuracy of the Siamese network was less than
satisfactory for the proposed framework. This was what originally implored the search for
other types of embedding networks in the siamese net model, and the eventual transition
into the more proficient few-shot classifiers.

The results also show that the Prototypical network perform markedly better than the

47

Chapter 6. Experimental setup

5-way Acc. 10-way Acc.
Model Dist 1-shot 5-shot 1-shot 5-shot

Siamese Network - 55.4% 62.0% 34.8% 44.0%
Matching Network Cosine 61.4% 65.0% 43.9% 47.2%

Prototypical Network Euclidean squared 58.8% 83.6% 43.5% 69.7%

Table 6.4: Preliminary classification results on the WHOI-plankton dataset, few-shot method.

5-way Acc. 10-way Acc.
Model Dist 1-shot 5-shot 1-shot 5-shot

Siamese Network - 43.0% 50.2% 29.2% 35.8%
Matching Network Cosine 67.6% 73.6% 50.5% 56.5%

Prototypical Network Euclidean squared 70.0% 88.4% 54.5% 76.4%

Table 6.5: Preliminary classification results on the Kaggle-plankton dataset, few-shot method.

Matching network, which correspond well with the results noted in [12]. The combination
of this discovery in addition to the Prototypical network being a much simpler model led
to the conclusion that further investigation into the Matching network be halted and the
Prototypical network was decided as the backbone of our framework. As a result, all tests
of open world experiment (3. experiment) is performed with the Prototypical network as
the base model.

It is worth noting, as can be seen in these results, that increasing the k-way value
increases the complexity of the tasks, and therefore decreases the accuracy, for instance,
the Prototypical network scores 88.4% in the 5-shot 5-way setting, while it scores 76.4%
in the 5-shot 10-way setting. On the other hand, increasing the n-shot value increases
the number of reference images per class and consequently increases the accuracy. For
instance, the Prototypical network scores 70.0% in the 1-shot 5-way settings, while it
scores 88.4% in the 5-shot 5-way settings

6.6 Datasets
All tests were performed over two well-known planktonic datasets: WHOI-Plankton [47]
and the plankton dataset from the Kaggle National science bowl [48]. Both datasets are
reputable in-situ planktonic datasets that feature images of singular plankton. They are
excellent for research tasks based on pure classification of various planktonic sub-species.

There is no data pre-processing performed on any of the datasets.

6.6.1 WHOI-Plankton
The WHOI-Plankton dataset [47] is authored by Sosik et al. and provided by WHOAS:
Woods Hole Open Access Server. It consists of 329 936 black and white images of plank-
tonic subspecies divided up into 103 categories. These categories are of a non-uniform
size and the smallest category contains one image while the biggest class contains 266 156
images. The images themselves are also of non uniform size.

48

6.6 Datasets

All classifiers are tested on both the traditional classification problem as well as the
few-shot problem, this means that the datasets are split both into a training set and a test
set, as well as being split into a background set and an evaluation set. These splits were
performed as explained in sections 2.1.2 and 2.2. The initial splits were:

Initial traditional classification problem data-split:

• Training set: 80% of all 103 classes

• Test set: 20% of all 103 classes

Initial few-shot classification problem data-split:

• Background set: 83 classes

• Evaluation set: 20 classes

As the classifiers are trained with up to a 20-shot configuration and tested with up to
a 50-shot configuration, all classes in the training and background set with less then 20
samples were removed from the sets. Equally all classes in the test and evaluation set with
less than 50 samples were removed.

The whoas dataset also has a class called ’mix’ and ’mix elongated’, which contains a
mix of species not labeled as any specific class. These mix classes would not work well
in comparison to the similarity based classification due to the disparity of the data in these
classes, therefore these classes are omitted from the dataset.

After all this shedding of classes, the remaining data splits is as follows:

Final traditional classification problem data-split:

• Training set: 80% of 49 classes, 47 873 images

• Test set: 20% of 19 classes, 11 449 images

Final few-shot classification problem data-split:

• Background set: 41 classes, 56 093 images

• Evaluation set: 10 classes, 7 310 images

In order to have a stronger foundation for comparison, all tests are performed on this
reduced dataset, no matter how many samples of each category the test actually require.

6.6.2 Kaggle
The Kaggle Plankton dataset [48] is assembled by Oregon State University’s Hatfield Ma-
rine Science Center, and provided by Kaggle. It consists of 30 459 black and white im-
ages of planktonic subspecies divided up into 121 categories. These categories are non-
uniformly represented with 9 images in the smallest category and 1 979 images in the
biggest class. The pixel-size dimensions of the images also vary.

49

Chapter 6. Experimental setup

As with the WHOI-Plankton dataset, the classes falling bellow the minimum required
n-shot for for all four different data splits also needed to removed for the Kaggle Plankton
dataset. The remaining data splits is as follow:

Final traditional classification problem data-split:

• Training set: 80% of 107 classes, 24 259 images

• Test set: 20% of 36 classes, 4 641 images

Final few-shot classification problem data-split:

• Background set: 72 classes, 22 143 images

• Evaluation set: 30 classes, 7 921 images

6.7 Hardware
All experiments were performed through SSH on a powerful computer appropriated by the
AILARON project. The components of this computer are as follows:

• OS: Ubuntu 18.04.2 LTS

• CPU: Intel LGA1151 i9 - 9900K

• GPU: 2x ASUS RTX2080Ti Turbo

• RAM: 64 GB

• SSD: Crucial MX500 2TB

• HDD: Seagate Skyhawk 6TB

50

Chapter 7
Results

This chapter presents all the results of the research with exception to the results given in
section 6.5. These results were covered earlier as they were attained at an early stage in
the research and had an influential effect on the decision making for the development of
the framework. Section 6.5 covers the results of experiments 1 and 2 (from section 6.2 for
the outlier detection architecture as the classification module is unchanged from the base
classification module of the Prototypical network. As the open set recognition algorithms
provide both the outlier detection module and the classification module of the framework,
the results from experiment 1, 2 and 3 (from section 6.2) for the open set recognition
framework are all be presented in this chapter.

This chapter starts by reviewing the results from the Siamese network. This algorithm
was the main focus of this study early on in the research, but given the discovery that
few-shot models are better candidates for the proposed framework, the results are rather
kept as a baseline and to log all the research done for this thesis. Section 7.2 presents
the few-shot close world results of the Prototypical network model that is used as the
backbone in all the final variations of the framework. Then section 7.3 covers the results
of the first two experiments (from section 6.2) for the open set recognition architecture.
And section 7.4.2 finally covers the results of the third experiment; the performance of the
different architectures in the open world setting. Both the pure rejection results as well as
the combined framework accuracies.

7.1 Siamese network baseline results

7.1.1 Embedding model swap
In the test to find a better performing embedding model of the Siamese net, we tested
out several more advanced networks in addition to the base model by [10]. This test was
conducted purely on the ”match”/”not match” based one-shot task described in 2.2. Ta-
ble 7.1 shows the results of ‘best’ accuracy produced by the respective Siamese network
variations. After performing several repetitions of this test, we observed that there was

51

Chapter 7. Results

Sub Performance Metrics
Networks Accuracy ’%’ Speed ’img/sec’

Default 74.1% 2200
VGG11 64.5% 1183
VGG16 66.1% 707
VGG19 63.5% 591

ResNet18 75.9% 2653
ResNet34 72.7% 1791
ResNet50 68.3% 930

ResNet101 72.9% 590
ResNet152 73.4% 435

Table 7.1: Performance of Siamese embedding module variations

a considerable variance in the results for the sub-networks, even when trained with the
’exact’ same setup. Variances from the experiment were found in the range of 10% for
some sub-networks. This number drastically reduces the performance and validity of em-
bedding alternative networks in the architecture. The default baseline Siamese network
proved to be the most stable, having a range of variance, for different training rounds, of
around 2% while still producing decent accuracy scores. Table 7.1 shows that the default
baseline Siamese network achieves an accuracy of 74.1% and a relatively high speed of
2200 images per second. All other Siamese network base tests are therefore performed
with the base Siamese model without any architectural modifications. It is worth noting
that this test is performed on the WHOI-dataset detailed in section 6.6.1.

7.1.2 Siamese open set recognition

The Siamese network open set recognition test was conducted to produce a few-shot, open
world baseline for the proposed framework. It is performed by performing one-shot clas-
sification over n-samples from k-classes. For a class to be rejected, the average value from
all classes had to be deemed ’no match’. This test is conducted with the same setup as
explained in experiment 3. in section 6.2, with 50% of the query images belonging to a
known class, and 50% of the query images belong to unknown classes. Table 7.2 presents
the accuracies of the Siamese network for the pure task of rejection versus inclusion with
regards to the classes in the support set. Here, a 50% score is equivalent to the trivial
solution of guessing only positive or only negative given our 50/50 divide of the test data.

5-way Acc. 10-way Acc.
1-shot 5-shot 1-shot 5-shot
53.9% 53.7% 52.2% 51.3%

Table 7.2: Accuracy of the Siamese network on the pure rejection task on the Kaggle plankton
dataset.

52

7.2 Prototypical network baseline results

Table 7.3 shows the confusion matrix resulting from the 5-way, 5-shot task, where true
positive indicates an image class correctly classified as known, while the true negative is a
new class that is promoted as a class never seen before. Only 57 images representing 5%
of the whole dataset were correctly predicted as new classes out of the 500 examples of
new classes that were used during testing. Based on these results, we can observe that the
network tends to allocate 90% of the images to the known classes.

Predicted
Positive Negative

Actual True 480 57
False 443 20

Table 7.3: Confusion matrix for the Siamese network on the pure rejection task on the Kaggle
plankton dataset.

7.2 Prototypical network baseline results
To generate a comparable baseline for the open world results, a single Prototypical network
model was trained as the backbone for all open-world tests. This model was trained with a
10-way 5-shot training configuration, saving the model that performed the best on a 5-way
5-shot evaluation task during that training. Table 7.4 shows the the closed world, few-shot
results of this model.

As expected, the results show a positive increase in the performance given more train-
ing data per class, but seem to saturate at around the 30-shot configuration in a closed
world setting, as the accuracy produced by the 50-shot configuration is approximately
equal. The reason for not performing a 10-way, 50-shot test is due to hardware limitations,
as the graphical memory required for this test surpasses the available GPU memory on the
computer used to run these experiments.

7.3 Closed world results
The closed world results comprises the results from experiment 1 and 2, detailed in section
6.2. Here the performance of all tested variations of the proposed framework are tested
with the rejection capability turned off. When testing the outlier detection architecture,
the classification module remains unchanged, so the results presented in 6.5 are valid as
complete results to experiments 1 and 2 for the outlier detectors. Tables 7.5 and 7.6 shows
the results of these two experiments for the open set recognition architecture.

We see that the closed world results of the NNO algorithm are very similar to the
ones produced as a baseline for the Prototypical network in table 7.4. This is because
both classification schemes are based on the distance from the class center (the prototype).
This means that the classification module is practically unchanged for the NNO variation,
making it act more like an outlier detection algorithm even though it is defined as an open
set recognition algorithm.

53

Chapter 7. Results

5-way Acc. 10-way Acc.
Algorithm 5-shot 20-shot 30-shot 50-shot 5-shot 20-shot 30-shot

Prototypical network 84.7% 88.6% 90.7% 90.2% 74.9% 81.4% 81.8%

Table 7.4: Prototypical network closed world model results on the kaggle dataset

5-way Acc. 10-way Acc.
Algorithm 5-shot 20-shot 30-shot 50-shot 5-shot 20-shot 30-shot

NNO 87.9% 91.2% 92.4% 93.3% 78.0% 85.4% 84.1%
OpenMax 54.9% 84.8% 89.1% 88.6% 42.0% 75.8% 80.2%

DOC 82.3% 85.8% 85.3% 85.8% 71.5% 75.5% 75.6%

Table 7.5: Classification results of the open set recognition architecture on training classes with
closed world assumption over the Kaggle dataset

In the closed world setting, the openMax algorithm still uses the weibul fitting to mod-
ify the predictions based on how well they fit with the model created, this seems to incur a
small performance loss compared to the base Prototypical classification module. From the
results, we also observe that the openMax classification is sensitive to the various n-shot
values, performing poorly for lower values, this is again due to the weibul fitting, which
requires a certain amount of data to be properly trained.

Due to the unique loss function utilized by the DOC algorithm, it is the only tested
variation of the framework that requires it’s own custom embedding model. Despite the
differing training scheme of the DOC algorithm, the framework variation still performs
well with only a small drop in performance compared to the prototypical baseline of sec-
tion 7.2.

7.4 Open world results
The open world results details the outcome of experiment 3 from section 6.2. This tests
is performed with the rejection capabilities of the tested variations of the proposed frame-
work turned on.

7.4.1 Pure rejection results
The results of the pure rejection task for the tested variations of the framework is presented
in tables 7.7 and 7.8. The highlighted numbers are the top performers of each configura-
tion.

In table 7.7, LOCI, OCSVM and XGBOD all mark themselves out to be the stronger
contenders for higher n-shot values. Which is indicative to their computationally com-
plex design, which makes them more likely to require a larger amount of data to perform
well. OCSMV falls off slightly in the 50-shot configuration, the reason for this could
be attributed to the algorithm overfitting the class data. Regardless of the reason, it does
however signal that it is more sensitive to varying n-values compared to the other two

54

7.4 Open world results

5-way Acc. 10-way Acc.
Algorithm 5-shot 20-shot 30-shot 50-shot 5-shot 20-shot 30-shot

NNO 84.7% 85.8% 87.8% 91.2% 72.7% 80.2% 84.2%
OpenMax 53.4% 80.5% 85.7% 87.2% 41.4% 74.3% 77.0%

DOC 81.5% 83.4% 85.4% 85.0% 69.2% 72.1% 73.8%

Table 7.6: Classification results of the open set recognition architecture on known classes with
closed world assumption over the Kaggle dataset

5-way Acc. 10-way Acc.
Algorithm 5-shot 20-shot 30-shot 50-shot 5-shot 20-shot 30-shot

ABOD 68.8% 64.5% 61.2% 60.2% 68.2% 63.8% 61.4%
AvgKNN 71.1% 72.3% 69.3% 68.2% 73.8% 71.3% 69.5%

COF 73.7% 65.8% 61.4% 60.4% 71.8% 65.6% 62.0%
LMDD 53.0% 52.5% 52.3% 51.8% 52.0% 53.2% 52.3%

XGBOD 62.0% 77.4% 77.8% 80.4% 56.7% 69.4% 71.0%
Feature Bagging 75.5% 75.0% 69.6% 68.8% 73.0% 74.0% 70.2%

IForest 58.5% 57.5% 57.4% 57.0% 56.6% 57.4% 57.7%
KNN 75.3% 72.2% 69.6% 68.6% 74.5% 71.5% 70.2%

LODA 45.6% 49.4% 52.0% 52.2% 45.9% 50.4% 51.4%
LOF 75.3% 72.7% 69.5% 68.3% 72.9% 71.1% 70.2%
LOCI 50.0% 76.3% 76.7% 78.0% 50.0% 74.8% 77.0%

MedKNN 71.1% 72.0% 69.3% 68.0% 73.8% 70.8% 69.5%
OCSVM 51.8% 79.0% 76.5% 73.0% 52.2% 76.8% 76.6%

PCA 50.0% 67.8% 69.2% 71.0% 50.1% 67.9% 69.0%
SOD 72.2% 68.7% 66.2% 64.7% 71.8% 67.8% 65.6%
SOS 71.3% 71.2% 67.5% 67.8% 69.2% 70.7% 68.3%

Table 7.7: Accuracy of the outlier detection architecture on the pure rejection task on the Kaggle
plankton dataset.

approaches.
The very simple KNN based algorithms (KNN, AvgKNN, MedKNN) are also all

around strong performers producing especially good values at low shot setting, but they
do fall off a bit at the higher n-shot values, this can be related to the fine tuning of the clas-
sifiers, as these models needs to be tuned in regards to the amount of neighbours included
in the prediction. For these result attained in this experiment, the number of neighbours
included is 1/3 of the current n-value.

In table 7.8 the results of the open set recognition architecture variations are listed,
these algorithms produced some interesting results. The best scoring model among all
the open set recognition variations for this task is also the simplest, the NNO algorithm
which is comparable in performance with some of the better performing outlier detection
architecture variations. What is most impressive about this model, is it’s robustness to
change in n-shot value, producing nearly uniform results for all values of n.

55

Chapter 7. Results

5-way Acc. 10-way Acc.
Algorithm 5-shot 20-shot 30-shot 50-shot 5-shot 20-shot 30-shot

NNO 72.6% 71.6% 71.2% 75.6% 66.2% 66.9% 65.2%
OpenMax 50.3% 52.7% 53.6% 54.9% 49.9% 51.7% 50.2%

DOC 60.5% 72.6% 71.6% 70.1% 59.9% 66.0% 67.3%

Table 7.8: Accuracy of the open set recognition architecture on the pure rejection task on the Kaggle
plankton dataset.

The DOC also produces decent results for higher n-shot values, but also showing it’s
dependency of a minimum requirement of data to estimate good Gaussian fittings that
are used for the rejection. However, for every other test than the 5-shot configurations, it
performs on par with the NNO algorithm.

Probably the most disappointing results on the pure rejection task is those of the Open-
Max algorithm which barely outperforms a random guess for each sample. The reason for
this is twofold: First is that it appears to be highly dependent on several hyperparameters,
making it difficult to tune for every test configuration. The other reason is the amount of
customization performed to reach compatibility with the prototypical network (detailed in
section 5.3 is very significant, to the degree that it is almost a new algorithm, probably
weakening it’s performance compared to the original paper.

Note that when using accuracy as the performance metric, given that there is a 50/50
split in outliers and inliers as used on the test of pure rejection experiment, an accuracy of
50% is considered the trivial score as guessing that all input is either only outliers or only
inliers produces this accuracy.

Only the Kaggle dataset is used for this test as the modified WHOI-Plankton dataset
does not hold enough classes in the evaluation set to account for a 10-way classification in
addition to the open world classes.

7.4.2 Combined architecture results
The combined performance of all the different variations of the two different architectures
in tandem the Prototypical network classification is shown in table 7.9 and 7.10. These
results show the ultimate performance scores for all the tested variations of the proposed
framework.

As shown in 7.9, the top scoring outlier detector architecture, in most of the tested
configurations, proved to be the XGBOD algorithm in combination with the Prototypical
network. Achieving 79.4% score on the 5-way, 50-shot configuration which is only a 10%
loss compared to the closed world setting for the Prototypical network baseline.

Something noteworthy about these results is that there is less than a 1% performance
loss on the combined results compared to the pure rejection results for the XGBOD frame-
work variation. If we compare this to the LOCI variation that was the strongest competitor
to the XGBOD variation in the pure rejection task, we see a bigger performance loss on
combined framework, resulting in the LOCI algorithm loosing out to XGBOD in terms
of accuracy. A similar relative performance loss can be seen in almost all of the tested
variations of the outlier detection architecture.

56

7.4 Open world results

5-way Acc. 10-way Acc.
Algorithm 5-shot 20-shot 30-shot 50-shot 5-shot 20-shot 30-shot

ABOD 47.3% 60.4% 57.1% 55.1% 59.0% 56.6% 53.1%
AvgKNN 71.1% 68.0% 65.3% 63.1% 65.5% 64.4% 61.1%

COF 68.6% 61.5% 57.2% 55.1% 63.4% 58.7% 54.0%
LMDD 47.3% 48.0% 48.0% 46.5% 43.6% 45.9% 43.7%

XGBOD 62.0% 77.0% 77.2% 79.4% 56.4% 68.8% 70.4%
Feature Bagging 70.2% 71.0% 65.6% 63.6% 64.3% 67.3% 61.7%

IForest 52.1% 53.1% 53.0% 51.7% 46.8% 63.7% 49.1%
KNN 70.4% 68.2% 65.6% 63.6% 66.1% 64.6% 61.8%

LODA 38.8% 44.9% 47.7% 46.9% 35.6% 42.9% 42.7%
LOF 70.4% 68.4% 65.4% 63.1% 64.6% 64.3% 61.7%
LOCI 42.6% 72.6% 73.2% 73.4% 38.6% 68.6% 69.7%

MedKNN 71.1% 67.8% 65.4% 63.0% 65.5% 64.0% 61.2%
OCSVM 51.8% 76.0% 73.0% 68.1% 52.0% 71.4% 69.2%

PCA 50.0% 66.3% 67.1% 68.1% 50.0% 64.9% 64.6%
SOD 66.5% 64.1% 59.5% 59.8% 61.7% 60.2% 58.4%
SOS 69.5% 67.0% 63.4% 62.6% 65.7% 63.7% 59.8%

Table 7.9: Combined outlier detection architecture accuracy (outlier detector acc + few shot acc)

5-way Acc. 10-way Acc.
Algorithm 5-shot 20-shot 30-shot 50-shot 5-shot 20-shot 30-shot

NNO 71.0% 70.8% 69.6% 74.8% 64.3% 65.4% 64.5%
OpenMax 36.1% 51.5% 51.8% 52.9% 49.9% 50.5% 49.2%

DOC 58.5% 70.2% 67.7% 67.9% 55.8% 59.8% 61.2%

Table 7.10: Combined open set recognition architecture accuracy (outlier detector acc + classifica-
tion acc)

For the combined performance with the open set recognition architecture shown in
table 7.10, we see that the NNO algorithm actually is one of the top performers across
the board for the 5-shot configurations. It also continues to produces good results that are
independent of the n-shot values. Similar to the XGBOD results, the NNO performance
loss from the pure rejection task to the combined results were < 1%, this is more easily
explainable for the NNO algorithm as it effectively learns a radial cutoff point out from the
prototype, and then classifies the query as the closest prototype in the same manner as the
base Prototypical network does, and by doing this removes most of the samples that would
be difficult for the classifier to label. The NNO clearly shows it’s advantage by being a
simple model that is easily optimized and therefore performs very well on low amounts of
data, unfortunately it looses out to the XGBOD on performance for higher n-shot values.

57

Chapter 7. Results

5-way 10-way
Algorithm 5-shot 30-shot 5-shot 30-shot

ABOD 9.9 6.5 15.2 6.4
AvgKNN 185.1 24.7 87.7 13.3

COF 267.2 17.7 145.7 9.4
LMDD 5.3 0.4 3.3 0.2

XGBOD 0.3 0.1 0.2 0.1
Feature Bagging 22.9 13.0 12.6 6.8

IForest 2.7 2.2 1.6 1.3
KNN 200.3 24.2 88.6 13.9

LODA 27.0 25.0 22.3 12.3
LOF 250.9 42.9 125.8 22.8
LOCI 4.2 1.0 5.7 0.6

MedKNN 134.8 19.8 65.1 10.4
OCSVM 435.3 81.5 227.1 42.3

PCA 355.3 81.5 215.6 42.4
SOD 2.0 1.6 3.2 1.9
SOS 4.6 8.3 4.3 5.9

Table 7.11: Speed of the outlier detection architecture variations [img/s]

7.4.3 Computational speed
Table 7.11 and 7.12 shows the computational speed of all the possible variations of the
framework. This score is given in episodes per second where k number of models based
on n number of samples are trained, and five support images are classified per episode.
The speeds are measured over the outlier detection modules for all algorithms as this is the
most time consuming part of all the classifications, and the rejection strategy is what most
significantly sets the different algorithms apart.

From table 7.11 it is clear that the accuracy of the top performing algorithms comes
at a cost, and algorithms such as XGBOD and LOCI are some of the slowest of the ones
tested, with the XGBOD needing 10 seconds to compute one 10-way 30-shot episode.
Worth noting is also models like the KNN algorithms and the OCSVM that despite their
accuracy still has good computational efficiency.

The DOC algorithm in table 7.12 proves to be the fastest of all algorithms tested for
most testing configurations. This is most likely due to the relatively simple outlier detec-
tion module of the DOC framework variation, only requiring to fit a simple Gaussian fitting
for each of the class probabilities. An extra point to note is that the possible computational
speed of the NNO algorithm is most likely much higher than what is given here since the
entire algorithm was coded from scratch without concern for computational efficiency.

58

7.4 Open world results

5-way. 10-way.
Algorithm 5-shot 30-shot 5-shot 30-shot

NNO 111.0 4.2 32.8 1.1
OpenMax 240.8 35.0 30.3 22.8

DOC 631.6 163.8 115.9 91.3

Table 7.12: Speed of the open set recognition architecture variations [img/s]

59

Chapter 7. Results

60

Chapter 8
Discussion

This chapter discusses the proposed framework based on the results presented in chapter
7 and the preliminary results of section 6.5. The discussion is mainly targeted towards
the reasoning behind the choice of algorithms that make up the proposed framework, and
to answer the research questions posed in section 1.3. Also considered are some gen-
eral thoughts about the experimentation as well as the results of the one-shot learner the
Siamese network and why it failed for our use-case.

8.1 General discussion
Accuracy vs F1-score as performance metric for open set recognition problems:
In this paper, we use accuracy as the prevalent performance metric, but this can be seen
as a controversial choice as several papers [36][37] argue that for open set recognition
problems, the F1-score should be used instead of accuracy since it is independent of true
negative samples. They argue that the model should not be affected by scenarios where
there are a lot of outliers as the model can achieve a good accuracy by just rejecting every-
thing. Aka. increasing the accuracy by inflating the true negative. But by ignoring the true
negative predictions when measuring performance, risk averse models are rejected, rather
favoring models that are too inclusive in their classification. This problem can however
quite simply be solved by ensuring balance between the known samples and the unknown
samples in the training data, as we have done in this thesis; splitting it up into 50% known
samples and 50% unknown samples. We have still included the F1-score results in the
appendix as a reference in comparison to earlier papers.

In fact all the confusion matrix results for all the open world classifications are avail-
able online at https://github.com/AndreasLTeigen/few_shot_open_world/
tree/master/Results.

Problem with comparison to traditional classifiers:
Establishing a reference by comparing performance between few-shot learners and tradi-
tional classification algorithms would be ideal, however such a direct comparison is not

61

https://github.com/AndreasLTeigen/few_shot_open_world/tree/master/Results
https://github.com/AndreasLTeigen/few_shot_open_world/tree/master/Results

Chapter 8. Discussion

feasible. They are different tools for different jobs. While the traditional classifiers ex-
cel at classification on large datasets with a lot of classes and a lot of samples per class.
few-shot learners excel at classification tasks over small datasets with a limited amount of
samples as well as a limited amount of classes and even to generalize this to classes that
wasn’t used during training. Making a comparison would therefore be more indicative of
the test on which they were compared rather than a comparison between the algorithms.

Parameter tuning:
In this work, there as not been a focus on parameter tuning. There is reason to believe
that several of the tested models could produce better results given meticulous tuning of
all parameters. The problem that arises with this is that the models would need a different
tuning for each of the tested k-way, n-shot configurations, which is not desirable as the
few-shot algorithms are designed to be flexible in this regard and we want maintain this
flexible in a framework that is not highly dependent on tuning.

8.2 Siamese network

The results from section 7.1 show that the test to improve the performance of the Siamese
network for the plankton dataset by swapping out the embedding networks proved to be
fruitless. Even though the advanced networks could achieve results that outperformed
the default embedding module of the Siamese net, there proved to be a huge variance
in these results, even as much as 10% for some of the networks. The reasoning for this
large variance is thought to be due to variational degrees of overfitting, resulting in a
performance degradation that depends on the images presented in the training process.It is
worth noting that the base model is the best overall performer in the Siamese net given the
relatively high accuracy as well as the reliable performance score it delivers in the one-shot
setting.

When testing the Siamese network in a few-shot classification setting it the results in
tables 6.2, 6.3, 6.5 and 6.4, it shows a clear drawback of adapting the Siamese network
to such a scenario. Resulting in a significant accuracy degradation. One of the reasons
for this is that the Siamese network is designed for ’match’/’not match’ classification,
which is inherently different from a few-shot setting with is a multi-class problem, so the
Siamese network has a natural disadvantage compared to the few-shot algorithms that were
designed for that task. Also the pure rejection task results in table 7.2 and 7.3 show that it
rarely rejects objects as outliers and consequently produces accuracy scores that are barely
better than the trivial solution. As mention in section 7.1, the trivial solution is equal to
50% since there is a 50/50 split between inliers and outliers.

Accordingly we came to the conclusion that the Siamese network was not a good base
to build our desired framework around, which was the reason it was discarded and replaced
with the few-shot detectors.

62

8.3 Few-shot baseline

8.3 Few-shot baseline
The few-shot algorithms’ ability to perform this generalization can easily be seen in the
small difference in accuracy between tables 6.2, 6.3 and 6.4, 6.5. Among the few-shot
learners tested, especially the Prototypical network shines in this regard, loosing only a
few percentage points when classifying classes only ever seen in the support set (known
classes) compared to when classifying classes used during training.

The selection of the few-shot learner used as a base in proposed framework mostly
came down to the accuracy and the models ability to generalize to new classes. This is of
vital importance since the goal is to design an open world learning algorithm. It was on
this ground that the Prototypical network was chosen as the base algorithm. The simpler
design of the Prototypical network compared to the Matching network came as a bonus.

Even though the Matching network was discarded on the basis of accuracy on the
closed world data. It should be mentioned that there might still be a chance that it could
have worked better in tandem with the outlier detectors and the open set prediction algo-
rithms, despite the base performance is worse than the Prototypical network.

8.4 Framework decision
Given that the base few-shot model was chosen as the Prototypical network in the prelim-
inary results section 6.5 and argued for in section 8.3, what remains is to discover what
outlier detector or open set recognition algorithm that produces the best open world learn-
ing algorithm.

After the experimentation of all the different framework variations, the XGBOD out-
lier detection algorithm presents itself as an excellent match with the Prototypical network
for adapting it to open world data. The results shows that this combination yielded the
best performance out of all the tested framework variations, reaching the highest accuracy
on the combined problem of rejection and classification for most k-way, n-shot configura-
tions.

So how well does our proposed framework answer the research questions posed in
section 1.3? We answer these questions from the vantage point of the XGBOD variation
since this is the model that produces the best accuracy scores.

How well does one/few-shot algorithms classify the classes used during the training
process? The tables 6.2, 6.3, 7.5 show that given enough class images in the support set, it
achieves a good accuracy on the traditional classification problem over the Kaggle dataset
for the tested k-way configurations. Although it was mentioned in section 8.3 that a direct
comparison between the framework and traditional classifiers doesn’t tell us much, what
it can do is give a pointer to the general level of difficulty of the dataset. The top scor-
ing classifier in the Kaggle competition featuring the Kaggle-plankton dataset produced
an accuracy of 81.52%, proving that it is a rather demanding dataset as the models pre-
sented at Kaggle competitions tends to be highly specialized for the problem, utilizing a
lot of data pre-processing and optimization. This is also a good example of the compari-
son difficulty between traditional classifiers and few-shot based framework. When testing

63

Chapter 8. Discussion

with the 5-way 5-shot configuration, the achieved accuracy of 91.8% in 6.3 far superseded
the top scoring results of the Kaggle competition. However if we were to test for all 121
classes, there would be a heavy degradation of the performance of the few-shot learners,
even when testing for only 10 classes the performance is only on par with the top scoring
algorithm that tested for all 121 classes.

How well does one/few -shot algorithms classify classes stored in it’s reference database,
but is not used during training? The few-shot algorithms ability to generalize to unseen
data is best shown in this test. Tables 6.4, 6.5 and 7.6 shows that the accuracy retention
compared to tables 6.2, 6.3, 7.5 is very impressive. Especially in the case of the Prototypi-
cal network based implementations, usually resulting in only a couple of percentage point
accuracy loss. This means that the proposed open world learning framework proposed in
this thesis, can in fact bypass the incremental learning problem mentioned in sections 1.1
and 4, and instead of retraining the model to adapt to new classes, they can simply be in-
cluded in the framework support set, utilizing the generalizational ability of the framework.

How well does our proposed framework of one/few -shot learners combined with
outlier detection/open set algorithms reject unknown/novel classes? Tables 7.7 and 7.8
show that many variations of the framework achieve a good accuracy on the pure rejection
task. What is really interesting is what can be seen by looking at the tables listed above
in conjunction with tables 7.4, 7.9 and 7.10. Firstly we see that compared to the closed
world baseline in 7.4, there is a noticeable performance hit incurred by the rejection task
performed by the outlier rejection modules when used in an open world setting, about
10% or so for the XGBOD outlier detection algorithm. However, when we compare the
rejection score to the combined accuracy scores, we see that for some models like the
XGBOD and the NNO, the loss in accuracy between these two tests are less than 1% for
most configurations and no greater than 2% loss for any configuration. This means that
these outlier detection modules can preemptively reject samples that lead to low confidence
classifications!

Unfortunately, a small amount of the errors made by the outlier detectors in the open
word setting are false positives, and when passed on is confidently incorrectly labeled by
the classification module. It can however be leveraged in a closed world setting since
there are no false positives to reject all samples that are difficult to predict and increase the
confidence of classifications. A few sample tests were performed to explore this use-case,
and they confirmed the validity of the claim. For instance the 5-way, 50-shot configuration
resulted in 72.6% accuracy on the pure rejection task and 71.1% combined framework
accuracy. Showing that after the outlier detector, the framework performs classifications
with a confidence of 98%.

What is the most suitable algorithm in regard to the AILARON project? As
mentioned, the AILARON project employs an AUV that takes images and analyses them
in real time, putting requirements on both speed and accuracy. From tables 7.11 and 7.12.
We see that the top scoring XGBOD variation of the framework is on the slower side,
requiring a few seconds for each episode calculated. There are two different alternatives
to improve the suitability for real time image processing. The first one is to rather use the
NNO variation of the framework, this variation sacrifices some accuracy at the trad-off

64

8.4 Framework decision

of being a much faster algorithm, and still retains the low accuracy loss between the pure
rejection task and the combined framework accuracy. This configuration also excels at
situations with very limited amount of support samples per class as shown in 7.10. The
other option is to pre-process all prototypes and outlier models for all classes with all
available samples in advance. This both increases the accuracy and reduces the on-line
computational time.

65

Chapter 8. Discussion

66

Chapter 9
Conclusion

The goal of this research has been to explore the viability of giving one-shot and few-shot
learners a rejection ability in order to adapt them to the open world setting, utilizing the
generalizability of these algorithms to bypass the problem of incremental learning. Several
different one-shot and few-shot algorithms have been tested in combination with outlier
detectors and open set recognition algorithms to discover the combination that produced
the best performance. Although few-shot learners have received considerable attention
in the last few years, nobody has previously explored the use of them in an open-world
setting, to the best of our knowledge.

This work presents a novel framework for an open world learner algorithm that in
addition to performing normal classification, can also identify unknown classes and learn
new classes by only a few samples of labeled data. From the extensive tests performed, the
top scoring algorithm combination of the proposed framework is shown to be the few-shot
learner; Prototypical network and the outlier detector XGBOD (Extreme Gradient Boosted
Outlier Detector). Out of all the tested variations, this was the combination that produced
the highest total accuracy for the majority of configurations, reaching an accuracy of 79.4%
for the Kaggle-plankton dataset in an open world setting when tested on data that was
not part of the training set. We also discovered a second use case for this framework;
because of the low performance loss between the rejection accuracy and the classification
accuracy, the rejection capability can be utilized to preemptively reject samples that lead
to classifications of low confidence, resulting in an accuracy classification confidence of
98% in a closed world setting.

We also highlight a variation of our framework consisting of the Prototypical network
and NNO (Nearest Non Outlier) for time sensitive tasks where there is very limited data
per class. This framework variation also maintains the closed world, high confidence
classification feature of the proposed framework.

There was an investigation into the Siamese network to see if the performance of the
model could be improved by changing the embedding module of the network to more
advanced and specialized neural network. This investigation led to the discovery that
these more advanced models caused a huge variance in the results on different runs. The

67

Chapter 9. Conclusion

native embedding network of the Siamese network proved to produce the most reliable in
this regard while still achieving one of the highest accuracy scores.

68

Chapter 10
Future work

During the work on this thesis there were several related directions of research that pre-
sented themselves. This chapter covers some of these improvements and extensions that
were not included in the scope of this thesis:

Fully autonomize the proposed open world learner framework. In the proposed
framework, new classes can be added to the classifier by a human sorting the rejected data
into classes and including them in the support set. This process can be automated by us-
ing a clustering algorithm to predict new classes by identifying embedding clusters in the
similarity space out of the rejected data. This would drastically reduce the need for human
labeling effort, and almost fully autonomize the system.

Inter-class variations. As the classification strategy of both the one-shot and the few-
shot algorithms covered in this thesis are based on similarities, it should be possible to
identify degrees of inter-class variations depending on the class prototype and the variance
of the support set. This can be useful in domains such as plankton classification, where
there are often only small variations between species, as well as plenty of inter-species
variations.

In-situ configuration testing. As mentioned in section 8.4, both the computational
speed and accuracy can be increased by pre-processing all models for all available classes
using all available data samples. By doing this, new outlier detection models wouldn’t
need to be computed every episode, and the computational time of the on-line calculations
would be drastically reduced for all models. Since all samples could be utilized without
any penalty, the accuracy of the framework would also improve, although most likely only
marginally as the performance starts to saturate already for the tested configurations in
section 7. Using all available samples does however diverge far away from the concept of
few-shot and is therefor not included in this thesis.

69

Chapter 10. Future work

70

Bibliography

71

Chapter 10. Future work

72

Bibliography

[1] P Norvig and S Rassell. Artificial intelligence: A modern approach, edition: 3rd,
2010.

[2] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2009.

[3] Quoc V Le, Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, and An-
drew Y Ng. On optimization methods for deep learning. In Intnl. Conference on
Machine Learning, pages 265–272, 2011.

[4] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[6] Robert S Scalero and Nazif Tepedelenlioglu. A fast new algorithm for training feed-
forward neural networks. IEEE Transactions on Signal Processing, 40(1):202–210,
1992.

[7] Yves Chauvin and David E Rumelhart. Backpropagation: theory, architectures, and
applications. Psychology press, 1995.

[8] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Clos-
ing the gap to human-level performance in face verification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

[9] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified em-
bedding for face recognition and clustering. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 815–823, 2015.

[10] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks
for one-shot image recognition. 2015.

73

BIBLIOGRAPHY

[11] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Match-
ing networks for one shot learning. In Advances in neural information processing
systems, pages 3630–3638, 2016.

[12] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot
learning. In Advances in neural information processing systems, pages 4077–4087,
2017.

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[14] Z. Chen, B. Liu, R. Brachman, P. Stone, and F. Rossi. Lifelong Machine Learning:
Second Edition. 2018.

[15] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult. Toward open
set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(7):1757–1772, 2013.

[16] Geli Fei and Bing Liu. Breaking the closed world assumption in text classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pages 506–514,
2016.

[17] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. Angle-based outlier de-
tection in high-dimensional data. In Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 444–452, 2008.

[18] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for
mining outliers from large data sets. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pages 427–438, 2000.

[19] Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. Enhancing ef-
fectiveness of outlier detections for low density patterns. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 535–548. Springer, 2002.

[20] Andreas Arning, Rakesh Agrawal, and Prabhakar Raghavan. A linear method for
deviation detection in large databases. In KDD, volume 1141, pages 972–981, 1996.

[21] Yue Zhao and Maciej K Hryniewicki. Xgbod: improving supervised outlier detection
with unsupervised representation learning. In 2018 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

[22] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier detection. In
Proceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 157–166, 2005.

[23] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth
IEEE International Conference on Data Mining, pages 413–422. IEEE, 2008.

[24] Tomáš Pevnỳ. Loda: Lightweight on-line detector of anomalies. Machine Learning,
102(2):275–304, 2016.

74

BIBLIOGRAPHY

[25] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof:
identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pages 93–104, 2000.

[26] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B Gibbons, and Christos Faloutsos.
Loci: Fast outlier detection using the local correlation integral. In Proceedings 19th
international conference on data engineering (Cat. No. 03CH37405), pages 315–
326. IEEE, 2003.

[27] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. Estimating the support of a high-dimensional distribution. Neural com-
putation, 13(7):1443–1471, 2001.

[28] Charu C Aggarwal. Outlier analysis. In Data mining, pages 237–263. Springer,
2015.

[29] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier detec-
tion in axis-parallel subspaces of high dimensional data. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 831–838. Springer, 2009.

[30] JHM Janssens, Ferenc Huszár, EO Postma, and HJ van den Herik. Stochastic outlier
selection. tech. rep., 2012.

[31] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrim-
inatively, with application to face verification. In 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages
539–546. IEEE, 2005.

[32] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):1332–
1338, 2015.

[33] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled
faces in the wild: A database for studying face recognition in unconstrained envi-
ronments. Technical Report 07-49, University of Massachusetts, Amherst, October
2007.

[34] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009.

[35] Lev M Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
computational mathematics and mathematical physics, 7(3):200–217, 1967.

[36] Abhijit Bendale and Terrance Boult. Towards open world recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 1893–
1902, 2015.

75

BIBLIOGRAPHY

[37] Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
1563–1572, 2016.

[38] Walter J Scheirer, Anderson Rocha, Ross J Micheals, and Terrance E Boult. Meta-
recognition: The theory and practice of recognition score analysis. IEEE transactions
on pattern analysis and machine intelligence, 33(8):1689–1695, 2011.

[39] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the fifth annual workshop on Com-
putational learning theory, pages 144–152, 1992.

[40] Walter J Scheirer, Lalit P Jain, and Terrance E Boult. Probability models for open
set recognition. IEEE transactions on pattern analysis and machine intelligence,
36(11):2317–2324, 2014.

[41] Lei Shu, Hu Xu, and Bing Liu. Doc: Deep open classification of text documents.
arXiv preprint arXiv:1709.08716, 2017.

[42] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation
coefficient. In Noise reduction in speech processing, pages 1–4. Springer, 2009.

[43] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, and Yuan Tang. Xg-
boost: extreme gradient boosting. R package version 0.4-2, pages 1–4, 2015.

[44] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier
detection. Journal of Machine Learning Research, 20(96):1–7, 2019.

[45] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[47] Eric C Orenstein, Oscar Beijbom, Emily E Peacock, and Heidi M Sosik. Whoi-
plankton-a large scale fine grained visual recognition benchmark dataset for plankton
classification. arXiv preprint arXiv:1510.00745, 2015.

[48] Kaggle, 2015. https://www.kaggle.com/c/datasciencebowl/data,
[Accessed 30-March-2020].

76

https://www.kaggle.com/c/datasciencebowl/data

Appendix

77

Leveraging Similarity Metrics to In-Situ Discover
Planktonic Interspecies Variations or Mutations

Andreas Langeland Teigen
Dept. of Engineering Cybernetics

NTNU
Trondheim, Norway

andrealt@stud.ntnu.no

Aya Saad
Dept. of Engineering Cybernetics

NTNU
Trondheim, Norway

aya.saad@ntnu.no

Annette Stahl
Dept. of Engineering Cybernetics

NTNU
Trondheim, Norway
annette.stahl@ntnu.no

Abstract—Planktons are vital to our planet’s ecosystems. Map-
ping and monitoring planktonic-distribution in the ocean is of
great importance in understanding these ecosystems as well as
gaining insights on the general health of our planet. The task of
identifying different planktonic species and their concentrations
is a critical yet challenging part of this endeavor. In this
paper, we explore the utilization of one-shot classifiers on in-situ
captured planktonic images. The similarity-based classification
method used by the one-shot classification algorithms gives rise to
various research opportunities outside of the typical classification
paradigm. Exploring the development of a proficient plankton
image classification framework that can determine how different
or how similar two plankton specimens are, can inform us if
they belong to the same species, if they are different variations
of the same species or if we have encountered a completely unseen
species of plankton. This similarity is valuable information that
assists in further mapping the diversity of the planktonic species.
We further extend the Siamese one-shot classifier with few-
shot classifier to improve the model performance. Empirical
evaluations of the new extension yield promising results.

Index Terms—one-shot, few-shot, Siamese Network, plankton-
taxa classification, in-situ planktonic image analysis

I. INTRODUCTION

The planktonic biomass makes up much of the fundamental
marine trophic groups, as well as producing an estimated 50%
of the world’s oxygen supply. Mapping and monitoring the
state and distribution of planktonic organisms with respect to
both location and intensity is an essential step in understanding
both the oceanic and terrestrial ecological structure due to the
microbial plankton’s vast influence over bionomical factors
and global climate. Traditional approaches in this study utilize
ships for point data collections [1] [2], data that later have to
be meticulously categorized and classified. The deployment of
autonomous underwater vehicles (AUV), rigged with advanced
real-time sensory systems and powerful processors, allows for
the utilization of in-situ identification and classification of
microbial biology imaging samples [3] [4] [5] [6].

Since the success of AlexNet [7] [8] in 2012, the study of
deep convolutional neural networks (DNN) has skyrocketed,
Deep Learning (DL) image classification technologies even
surpassed human ability in many image recognition tasks.
Today’s state-of-the-art DL classification networks [9] [10]

This research is funded by RCN FRINATEK IKTPLUSS program (project
number 262701) and supported by NTNU AMOS.

[11] [12] [13] achieve a high accuracy on the task of plankton
identification and classification on labeled datasets [14] [15]
[16]. An emerging problem with these traditionally structured
convolutional neural networks (CNN) is their shortcomings
with regards to the vast plethora of planktonic species and
the countless interspecies variations and mutations, making
in-situ identification and classification a strenuous task for
conventional models.

To mitigate this issue, we propose a framework for a novel
implementation of the Siamese network [17] in the domain
of plankton classification, as seen in Figure. 1. The design
and the implementation of this framework lead to a list of
contributions stated as follows:

1) Customizing the Siamese network for planktonic domain
adaptation

2) Tailoring the Siamese network for multi-class planktonic
classification

3) Adapting the framework to few-shot setting
4) Identifying unseen classes in-situ

The Siamese network is a one-shot learning algorithm that
employs a triplet loss function [18] to estimate and rank
similarities naturally between an unlabeled object class and
labeled reference images based on a DNN optimized embed-
ding, where the embeddings’ Euclidean distance corresponds
to a degree of similarity. This method excels in generalizing
based on limited available data, for new data as well as
for new classes from unknown distributions. In the proposed
framework, we leverage this similarity metric to determine
species of plankton, significant inter-species variation or mu-
tation, while simultaneously cataloging novel species unseen
by the system before. An additional advantage introduced by
the Siamese network is the convenience of adding classes to
the classifier without the need for retraining the model. The
newly explored classes of planktonic species can be added
to the framework in-situ and in real-time. The Siamese class
of network architectures is proposed initially with a simple
CNN of four convolutional layers used as the sub-network for
the encoding generation. This modular architecture enables
the network to feature a flexible design. Hence, we were
motivated to additionally propose alternative sub-networks
which are more suited for the task of classifying planktonic

organisms, and further perform a thorough comparative study
on these substitute networks, with a focus both on accuracy
and computational speed.

As an extension to our work, we explore few-shot class of
models introduced in [19] and [20] designed for ImageNet
[21] and miniImageNet [19] classification. This extension,
based on empirical evaluations, achieves higher accuracy while
maintaining the beneficial purpose of our proposed framework.
The resulting architecture further enhances real-time image
analysis feedback, which in turn will enable the process of
continually update probability density maps and eventually
provide insights on planktonic abundances and their inter-
species variations and mutations.

II. BACKGROUND

This section details the basic concepts of the one-shot and
few-shot learners, which represent the theoretical foundation
of the classifier frameworks sought in this paper.

A. One-shot learning

In traditional supervised image classification techniques [7]
[8], the goal for the model is to identify class-specific features
in order to make a class prediction. These features are highly
trained and specialized for every class in a dataset, requiring a
lot of training examples and computational power for training
to generalize learned features for accurate classification. These
techniques are, therefore, ill-suited for cases where only a
small amount of data is available.

The goal of one-shot learning is to successfully recognize
classes previously unseen in the training process with the
aid of just a single example of that class hence reducing
the amount of labeled data needed for the recognition. In
order to do this, a one-shot algorithm employs a so-called
knowledge transference scheme. This scheme typically uses
general information from previously learned training classes
to quickly and efficiently adapt to new data.

The one-shot setting is an extremely challenging problem
given the considerable information variance that can occur
even within a single class of any dataset. Because of this,
one-shot learning is often used in narrower domains where
the variance in the data is smaller, hence more controllable,
like in facial recognition and user identification systems [18]
[22]. For such systems, to react in real-time and in a speedy
manner, it is undesirable to include thousands of pictures in
the process of individual recognition, a typical requirement
for a traditional image recognition model. Another common
task used in benchmarking the one-shot learners is character
recognition [17], that recognizes handwritten characters of
different alphabets.

B. Few-shot learning

The few-shot learning problem is only an extension of
the one-shot learning problem. The goal of few-shot learn-
ing is to successfully recognize classes previously unseen
in the training process with the aid of a few examples of
that class. The difference between the two problems is the

amount of reference samples given that help classifying unseen
classes. Few-shot learning algorithms, compared to one-shot
algorithms, hence need more labeled data from the classes to
be predicted.

The additional data provided to few-shot-based algorithms
compared to one-shot-based algorithms increases the models
potential to generalize from the previously unseen data. In gen-
eral, few-shot learners score significantly better at classification
tasks in comparison to one-shot learners [19] [20] [23] at the
cost of requiring more labeled data and more computational
power.

Notation: In a few-shot setting, problems are usually re-
ferred to as k-way n-shot, where k denotes the number of
classes used in the classification task, and n is the number of
samples provided for each class. The term support set refers to
all the samples n for all the classes k utilized by the algorithm.

III. RELATED WORK

This section explores some of the existing algorithmic solu-
tions in the literature for the one-shot and few-shot problems
that we studied to recognize species from images in the
planktonic domain.

A. Siamese Network

Koch et al. introduced the Siamese network as an approach
for the one-shot learning problem [17]. A Siamese network is
a model that was first developed by [22] [24] in the domain
of face recognition. The algorithm works by passing an image
through a Convolutional Neural Network (CNN) that outputs
an M-dimensional representation of the inputted image in
an M-dimensional space fφ : RD → RM where φ are the
trainable parameters of the model. In this step, the used CNN
aims at reducing the high-dimensional representation of the
image to a lower-dimension so-called embedding. A second
image is passed through the same network and produces a
different embedding with an identical dimension M. The image
embeddings output from the model are then compared using
a distance measurement which infers the assignment of the
images to the same or different classes. This measurement
is calculated through performing a vector subtraction of the
inferred embeddings. The siamese network passes the distance
measurements through a fully connected layer 1 followed by
a sigmoid activation function 2. The activation function con-
sequently produces a binary classification that infers whether
the images under consideration ’match’; hence they belong to
the same class or ’do not match’, and they belong to different
classes. The Siamese net architecture is depicted in figure 1.

The training process of the siamese network for one-shot
learning, targeting to learn image recognition and classifica-
tion, differs from that of traditional neural networks. The one-
shot learning process utilizes the so-called Triplet loss for the
training. It is a training scheme developed by [18], also for use

1A fully connected layer is a layer in a neural network where every output
of the previous layer is connected to every neuron in the layer [25].

2A sigmoid function is an ’S’ shaped function, in machine learning the
definition S(x) = ex

ex+1
[26] is often used.

in facial recognition. This method utilizes one anchor image
[A], one image from the same class as the anchor called a
positive image [P] and one image from a different class called
the negative image [N]. We denote the embedding function as
f(*). The triplet loss is visualized in figure 2. Given this, a well
suited embedding model produces an output that reduces the
distance between f(A) and f(P) while increasing the distance
between f(A) and f(N), resulting in the loss function:

|f(A)− f(P)| − |f(A)− f(N)|+ α 6 0 (1)

Where α is the margin to avoid the trivial answers of:

f(∗) = 0 ∪ |f(A)− f(P)| = |f(A)− f(N)| (2)

In this training scheme, the model looks at pairs of images
and attempts to evaluate the similarity between them; training
data is generated by matching two different images at a time,
either from the same class or different classes. Creating a
sample by matching two images is a decent approach that
augments the dataset by N ! samples where N is the number
of images original in the dataset.

A significant advantage the siamese model holds over
traditional classifiers is its ability to classify unknown classes;
in other words, classes the model has never seen before. In the
case of conventional classifiers, adding a class to the dataset
does not only require a large amount of data from the new
class but also incurs the need of retraining the entire model
from scratch, possibly suffering a performance loss due to
the newly introduced class. A one-shot learner model is per
definition quick to adapt to new classes, requiring no extra
training of the model, only one sample of the class in order to
start recognizing objects of the new class. Hence, it does not
suffer any performance loss on other classes as a consequence
of the introduction of the new class, given that it is from the
same domain.

A slight weakness with this approach is that the accuracy of
the classification is not only dependent on the quality of the
query image like in a traditional classifier, but also the quality
of the reference image, resulting in one additional point of
failure compared to the traditional classifiers.

Fig. 1. Siamese net architecture.

Fig. 2. Triplet loss function – Insert reference.

B. Matching Network

The matching network, conceptualized by Vinyals et al. in
their paper Matching Networks for One Shot Learning [19]
is conceptually similar to the Siamese network: The model
uses an image as an input and produces a multi-dimensional
embedding for that image by passing it through a trained
convolutional network. The siamese net is, however, optimized
for a true/false classification, rather than a categorical classi-
fication.

The matching network mitigates this problem by allowing
n different images from k different classes to be used as input
to the network, producing k∗n points in the embedding space,
and using equation (3) to calculate the probability of the query
class belonging to the k different classes

ŷ =
k∑

i=1

a(x̂, xi)yi, (3)

where xiand yi are the samples and labels of the support
set S and x̂ and ŷ is the query image and its corresponding
predicted class respectively. The function a(*) is referred to as
the attention kernel. a(*) is defined as:

a(x̂, xi) =
ec(f(x̂),g(xi))

∑k
j=1 e

c(f(x̂),g(xj))
(4)

Where f(*) is the embedding function of the query image,
and g(*) is the embedding function of the support set. Vinyals
et al. also specified the option of making f(∗) = g(∗)
to simplify the model. Function 4 is the softmax function
[27] it calculates the cosine distance [28] between the query
embedding and the different embeddings of the support set.

The two functions 3 and 4 produce the equivalent of a kernel
density estimator3. Not too dissimilar from an advanced k-
nearest neighbour estimator4. Hence, the Matching network
assigns the query image to one of the k classes in the support
set by comparing the query embedding to the point distribution
belonging to different classes from the support set.

Vinyals et al. also highlight a problem with this approach
on its own; depending on the variance of the classes, the
matching network has differing performance due to the risk of
overlapping classes in the embedding space when classifying
closely related classes. For instance, if the model is trained

3Kernel density estimation is an estimation of the probability density
function of a point cluster.

4Nearest neighbour estimator is a method estimating the label of a data-
point by assigning it the same label as the majority of its k-th nearest
neighbours.

on imageNet, a specific dataset [21], the model is expected
to tell the difference between a dog and a bird, as well
as different species of birds. The latter being a more nu-
anced problem, possibly exhibiting the previously mentioned
overlapping classes problem. To mitigate this Vinyals et al.
also proposed a solution they called full context embeddings:
Before applying the embedding function g(∗) to the support
set, the support set images are run through an LSTM network
[29], encoding the images in the context of the entire support
set. Including this LSTM also in the function g(∗) results in
g(xi, S) where S is the support set. Altering the focus distance
of the problem based on the level of nuance.

C. Prototypical Network

Matching networks significantly improved the accuracy of
the Siamese network and improved its general functionality
by performing better classifications tasks as they can test a
query image against all known classes simultaneously. Despite
this fact, it still suffers from the drawback of an unnecessarily
complicated full context embedding network to compensate for
closely related classes that overlap in the embedding space.

Snell et al. [20] extended the matching network architecture
by introducing the Prototypical Network. They proposed a
simplification by dropping the LSTM module and attention
kernels from the network architecture and replacing them with
class prototypes. Instead of using the class cluster densities in
the classification process, Snell et al. used the mean position
of all the known classes of support embeddings; then, they
classified a query embedding as the same class belonging
to the closest prototype. This fact nullified the ambiguity in
the class overlap as well as made the decision boundaries
that identify the differences between the classes more easily
interpreted.

Through empirical experimentation, they discovered that
using Bregman divergences [30] as a distance measure was
favorable to other measures such as cosine distance proposed
for the matching network. They used the simplest Bregman
divergence, the euclidean square distance, as the measuring
distance from a query embedding to the class prototypes to
produce the class predictions. The prediction itself is per-
formed by the softmax function over the negative distances
from the query embedding to all prototypes

pφ(y = k|x) = exp(−d(fφ(x), µk))∑
k′ exp(−d(fφ(x), µk′))

, (5)

where µk′ is the prototype for class k′, and fφ(x) is the
embedding of query x given trainable parameters φ, and
d(a, b) is the distance between a and b.

During learning the stochastic gradient descent5 is per-
formed on the negative log-probability J(φ) = −log pφ(y =
k|x) of the true class k.

5Stochastic gradient descent is a type of iterative algorithm for optimizing
an objective function.

IV. METHOD

Adopting the Siamese net for in-situ classification of plank-
ton is a promising research direction. As detailed in II,
Siamese network can distinguish the variations between inter-
species as well as identify new classes. To implement the
Siamese network classification, we look at their performance
on planktonic datasets and investigate possible alterations on
their architectures to maximize their accuracy.

In light of this, we discuss the use of altering the sub-
network that produces the embeddings in the similarity space
to produce better performance, the difference between a one-
shot classification and a multi-class classification and the
possibility of exchanging sub-schemes. We also detail the
possibility of extending one-shot to few-shot for potential
performance benefits. Finally, we showcase how the siamese
network can be adopted to identify unknown plankton species.

A. Siamese net customization for domain adaptation

As the one-shot sub-network is a simple generic CNN,
we explore the possibilities of improving the performance of
the model with more advanced, domain-specific sub-networks.
Swapping out the original sub-network with other alternative
network architectures, keeping the vector subtraction, and
the final embedding layer that performs the discriminative
classification of the Siamese network unchanged. Table I lists
the different networks tested for this process.

TABLE I
TESTED SUB-NETWORKS: VGG [9] AND RESNET [12] AND THEIR

VARIATIONS

Networks
VGG11
VGG16
VGG19

ResNet18
ResNet34
ResNet50
ResNet101
ResNet152

B. Tailoring the Siamese network for multi-class classification

As the one-shot learning problem score is based on a
’match’ or ’not a match’ classification, it is fundamentally
different from a multi-class classification problem. The con-
version to a multi-class classification problem can be done for
the Siamese net by checking the one-shot prediction value for
several classes k and choosing the class with the highest value
as described in equation (6)

ŷ = argmaxkP (y = k|x). (6)

We are interested in both the pure one-shot score, to
compare it to previous results achieved with the model, as well
as the score of the multi-class classification provided by the
Siamese network. The latter is the actual in-situ performance
of the model.

C. Adapting the framework to the few-shot setting

We extended the Siamese net with a few-shot classifier
by running the training process over k classes, each with n
reference images to further boost the network performance.
The k-way n-shot scenario is used to compare the similarity
metric over all the reference images of all the given classes
with regard to the query image to determine the most similar
reference image.

Given more reference images and classes to compare
against, it is logical to assume that the framework will reach
a higher accuracy score than the one-shot’s natively 1-way,
1-shot method of classification since there is more data to
compare. In addition to this, it is a more straightforward task
to determine the most similar reference image, as opposed to
defining if it is ’enough’ similar where the term ’enough’ first
has to be defined. It is worth noting that adding more reference
images removes many of the false positives that would result
from the typical Siamese net framework. This algorithm was
presented in [19] to properly compare the Siamese network to
the Matching network. Adapting a 5-way, 5-shot framework
in the Siamese Network, in the task of character recognition
with the omniglot dataset [31], achieved a 98.4% accuracy.
This extension improves the performance accuracy by 7.2%
compared to 91.2% achieved by the native 1-way, 1-shot native
network in [17].

This train of thought opens up the possibility of extending
our work using dedicated few-shot classifiers, such as in [19]
[20], which share the same type of similarity metric as the
Siamese network, and are known to produce better accuracies.
They are trained to perform multi-class classification natively.
Because of this, we further look into the viability of few-
shot learners on the task of identifying planktonic species
by applying the models on the task without introducing any
further modification to the architectures.

D. Novel class identification

The Siamese network’s ’match’ or ’not a match’ classifica-
tion method in a multi-class classification setup can leverage a
rejection feature to identify new classes that do not exist in the
support set. The rejection capability is tested, in both multi-
class and few-shot settings to check the applicability of this
feature in the Siamese network for the in-situ classification.
The network rejects an object in a k-way n-shot setting when
no similarity is detected between this query objection in
comparison with all classes sample images.

The few shot classifiers [19] [20], however, don’t utilize a
rejection-based training strategy. The rejection score can only
be recorded by the Siamese network when the query object
’do no match’ the set of sample images.

V. DATASETS

All tests were performed over two well-known planktonic
datasets: WHOI-Plankton [15] and the plankton dataset from
the Kaggle National science bowl [16]. Both datasets are
reputable in-situ planktonic datasets that feature images of

singular plankton. They are excellent for research tasks based
on pure classification of the various sub-species.
• WHOI-Plankton: The WHOI-Plankton dataset is pro-

vided by WHOAS: Woods Hole Open Access Server
[15]. It consists of 329 936 black and white images of
planktonic subspecies divided into 103 categories. The
provided categories are non-uniformly represented; the
smallest category contains 1 image, while the biggest
class contains 266 156 images with varying pixel-size
dimensions (height and width).

• Kaggle-Plankton: The Kaggle plankton dataset is as-
sembled by Oregon State University’s Hatfield Marine
Science Center, and provided by Kaggle. It consists of
30 459 black and white images of planktonic subspecies
divided up into 121 categories. Similar to the WHOI-
plankton dataset, these categories are non-uniformly rep-
resented with 9 images in the smallest category and 1 979
images in the biggest class. The pixel-size dimensions of
the images also vary.

Both datasets are split into a background set and an evalu-
ation set. The background set is used for training the network
and the evaluation set is used for validating the learning
process. Both sets contain images from different categories
so that no class is represented in both datasets as per the
one/few-shot problem. The experimentation is performed with
two different configurations of n-shot values: n = 1 and n = 5,
placing a minimum requirement of 6 images per species (5
for the support set and 1 for the query image); all classes that
contain less than 6 samples are removed from the datasets.

VI. EXPERIMENTS

We conduct three types of experiments6 7: one-shot classi-
fication with varying sub-networks of the Siamese network
to explore the possibility of optimizing the accuracy for
planktonic datasets, a multi-class classification experiment to
get a more realistic in-situ accuracy score, performed with
both one-shot and few-shot algorithms, and a novel class
identification experiment to investigate the performance of the
rejection property of the Siamese network.

A. Sub-networks alteration experiment

In the first experimental scenario, we embed various sub-
networks, including the default proposed architecture by [17],
within the Siamese network architecture used in one-shot
setup. Table II shows the results of ‘best’ accuracy pro-
duced by the respective Siamese network variations. After
performing several repetitions of this experiment, we observed
that there was a considerable variance in the results for
the sub-networks, even when trained on the ’exact’ same
hyperparameters8. Variances from the experiment were found
in the range of 10% for some sub-networks. This number

6Code available online at: https://github.com/AILARON/One-few-shot-
classifier.

7The original Siamese network code available online at:
https://github.com/ac-alpha/One-Shot-Learning-using-Siamese-Networks

8Hyperparameters are parameters that direct the learning process

TABLE II
SUB-NETWORK PERFORMANCE

Sub Performance Metrics
Networks Accuracy ’%’ Speed ’img/sec’

Default 74.1% 2200
VGG11 64.5% 1183
VGG16 66.1% 707
VGG19 63.5% 591

ResNet18 75.9% 2653
ResNet34 72.7% 1791
ResNet50 68.3% 930

ResNet101 72.9% 590
ResNet152 73.4% 435
aSpeed metric is noted by image comparisons per
second, performed on an RTX 2080 ti.

drastically reduces the performance and validity of embedding
alternative networks in the architecture. The default baseline
Siamese network proved to be the most stable, having a range
of variance, for different training rounds, of around 2% while
still producing decent accuracy scores. Table II shows that
the default baseline Siamese network achieves an accuracy
of 74.1% and a relatively high speed of 46403 images per
second. It is worth noting that this test is performed on the
WHOI-dataset detailed in section V.

B. Multi-class classification experiment

The second tested scenario is the multi-class classification
score in a k-way, n-shot setting. Here we have included the
performance of the Siamese network as well as the matching
network and the prototypical network, described in section
III. The results of this test over the Kaggle plankton dataset is
presented in table III and the results over the WHOI-Plankton
dataset is presented in table IV, where the 5-shot setting
provides better accuracy scores for all the networks, and the
prototypical networks outperform the rest of the architectures.
It is worth noting that increasing the k-way value increases the
complexity of the task, and therefore decreases the accuracy,
for instance, the Siamese network scores 62.0% in the 5-shot
5-way settings, while it scores 44.0% in the 5-shot 10-way
setting for the WHOI dataset.

On the other hand, increasing the n-shot value increases
the number of reference images per class and consequently
increases the accuracy. For instance, the Siamese network
scores 55.4% in the 1-shot 5-way settings, while it scores
62.0% in the 5-shot 5-way settings.

TABLE III
PRELIMINARY CLASSIFIER RESULTS ON THE KAGGLE-PLANKTON

DATASET.

5-way Acc. 10-way Acc.
Model 1-shot 5-shot 1-shot 5-shot

Siamese Network 43.0% 50.2% 29.2% 35.8%
Matching Network 67.6% 73.6% 50.5% 56.5%

Prototypical Network 70.0% 88.4% 54.5% 76.4%

All the tests are performed without any data augmentation.
Koch et al. conclude in their Siamese network paper that this

TABLE IV
PRELIMINARY CLASSIFIER RESULTS ON THE WHOI-PLANKTON DATASET.

5-way Acc. 10-way Acc.
Model 1-shot 5-shot 1-shot 5-shot

Siamese Network 55.4% 62.0% 34.8% 44.0%
Matching Network 61.4% 65.0% 43.9% 47.2%

Prototypical Network 58.8% 83.6% 43.5% 69.7%

will only result in a small positive performance increase for the
model. In [19] and [20], results are achieved with the training
parameters: k-way = 10 and n-shot = 5. These parameters
were chosen because Snell et al. state in their paper [20]
that the few-shot classifiers work best when trained with a
higher k-way value and equal n-shot value compared to the
test scenario. Hyperparameters in [17] are not available for the
algorithm; thus the network, in this experiment, is trained in
the standard one-shot manner.

C. Novel class identification experiment

The third tested scenario is the Siamese network’s ability
to predict novel classes, aka. classes that do not exist in
the support set. The experiment is also conducted with the
same k-way, n-shot configurations as the previous test, as
this is a significant scenario for in-situ classification tasks.
For a class to be marked as a novel class, the average value
from all classes had to be deemed ’no match’. This test is
conducted with 50% of the query images belonging to a
plankton class present in the support set, and 50% of the query
images are ’new classes’ which do not belong to any of the
known plankton classes. Table V presents the accuracies of the
Siamese network for the pure task of rejection versus inclusion
with regards to the classes in the support set. Here, a 50% score
is equivalent to the trivial solution of guessing only positive
or only negative given our 50/50 divide of the test data.

TABLE V
NOVEL CLASS IDENTIFICATION RESULT OF THE SIAMESE NETWORK ON

THE WHOI-PLANKTON DATASET.

5-way Acc. 10-way Acc.
1-shot 5-shot 1-shot 5-shot
53.9% 53.7% 52.2% 51.3%

Table VI shows the confusion matrix resulting from the 5-
way, 5-shot task, where true positive indicates an image class
correctly classified as known, while the true negative is a new
class that is promoted as a class never seen before. Only 57
images representing 5% of the whole dataset were correctly
predicted as new classes out of the 500 examples of new
classes that were used during testing. Based on these results,
we can observe that the network tends to allocate 90% of the
images to the known classes.

VII. DISCUSSION

Results from the standard one-shot experiment show that
the ‘best’ sub-network produces decent max accuracy scores.
However, advanced sub-networks such as the VGG and

TABLE VI
CONFUSION MATRIX FOR NOVEL SPECIES IDENTIFICATION

Predicted
Positive Negative

Actual True 480 57
False 443 20

ResNet, which proved to be top performers, especially in the
traditional classification problem, produce significant anomaly
variance. We argue that the reason behind this large variance
is due to the variational degree of overfitting 9, resulting in
a performance degradation that depends on the type of data
presented in the training process. It is worth noting that the
base model is the best overall performer in the Siamese net
given the relatively high accuracy as well as the reliable
performance score it delivers.

The few-shot multi-class classification experiment shows
clear the drawback of adopting the Siamese network in a few-
shot setting. Results show an accuracy degradation for the
multi-class classification problem in the planktonic domain,
as opposed to a significant increase in the measurements as
described in [19]. Accordingly, we discourage the use of the
Siamese network as a multi-class classification solution for
the in-situ plankton classification. We argue that the model,
in this case, prioritizes some planktonic species over others
during the classification due to the fact that those species
appear more frequently in the few-shot test. Favoring species
amplifies the error rate of the one-shot implementation. The
few-shot learners, designed to use the entire set of clusters that
are created by the support set to draw conclusions based on
the data presented as a whole, even if it is limited, are more
suited for the problem of multi-class classification.

In the experiment of new class detection in a multi-class
setting, we observe from the confusion matrix that the Siamese
net tends to allocate the query object to one of the classes
presented in the support set.

VIII. CONCLUSION AND FUTURE WORK

In this paper we explore different essential tasks for the
in-situ classification of planktonic species, such as multi-
class classification and novel class identification. We test the
adaptation of the one-shot algorithm Siamese network to these
tasks and explore possibilities to optimize the framework
to produce the best possible results. We also look into the
viability of using few-shot classifiers which are known to
produce better results than one-shot algorithms at the expense
of requiring more data and more computational time.

Conducted experiments show that Siamese network pro-
duces low accuracy scores in the multi-class classification
setting. Hence they are not suitable in the scenario of inter-
species variations as this is a more nuanced and difficult task
than the standard classification. The few-shot classifiers, and
especially the Prototypical networks, perform markedly better

9Overfitting is an estimation that is too exact for a set of data, possibly
leading to poor estimation of future observations [32]

at the plankton multi-class classification problem, making
them far more suitable for in-situ plankton classification.
They are, however, no direct substitution for the Siamese
network, as they lack the ability to identify unknown and novel
plankton species. This shortcoming marks the outline of our
future work, to mitigate it and investigate the possibility of
including this feature in the few-shot architecture to improve
the proposed framework aiming at enhancing the in-situ image
analysis processes by providing insights on planktonic inter-
species distributions.

REFERENCES

[1] P. F. Lermusiaux, “Uncertainty estimation and prediction for interdisci-
plinary ocean dynamics,” Journal of Computational Physics, vol. 217,
pp. 176–199, 2006.

[2] P. C. Reid, J. M. Colebrook, and J. B. L. Matthews, “The continuous
plankton recorder: Concepts and history, from plankton indicator to
undulating recorders,” Prog. Oceanogr, vol. 58, p. 117–173, 2003.

[3] E. J. Davies and R. Nepstad, “In situ characterisation of complex sus-
pended particulates surrounding an active submarine tailings placement
site in a norwegian fjord,” Regional Studies in Marine Science, vol. 16,
pp. 198–207, 2017.

[4] E. J. Davies, P. J. Brandvik, F. Leirvik, and R. Nepstad, “The use
of wide-band transmittance imaging to size and classify suspended
particulate matter in seawater,” Marine pollution bulletin, vol. 115, no.
1-2, pp. 105–114, 2017.

[5] M. D. Ohman, R. E. Davis, J. T. Sherman, K. R. Grindley, B. M.
Whitmore, C. F. Nickels, and J. S. Ellen, “Zooglider: An autonomous
vehicle for optical and acoustic sensing of zooplankton,” Limnology and
Oceanography: Methods, vol. 17, no. 1, pp. 69–86, 2019.

[6] A. Saad, E. Davies, and A. Stahl, “Recent advances in visual sensing
and machine learning techniques for in-situ plankton-taxa classification,”
presented at Ocean Sciences Meeting 2020, San Diego, CA, 16-21 Feb.,
2020, 636384.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[8] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[10] J. Dai, R. Wang, H. Zheng, G. Ji, and X. Qiao, “Zooplanktonet: Deep
convolutional network for zooplankton classification,” in OCEANS 2016-
Shanghai. IEEE, 2016, pp. 1–6.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[13] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017.

[14] H. M. Sosik and R. J. Olson, “New technologies to acquire time
series of phytoplankton community structure: Submersible image-in-
flow cytometry and automated taxonomic classification,” Proceedings
of Ocean Optics XVIII, vol. 22, no. 1, pp. 1–13, 2008.

[15] E. C. Orenstein, O. Beijbom, E. E. Peacock, and H. M. Sosik, “Whoi-
plankton-a large scale fine grained visual recognition benchmark dataset
for plankton classification,” arXiv preprint arXiv:1510.00745, 2015.

[16] Kaggle, 2015, [Accessed 30-March-2020]. [Online]. Available:
https://www.kaggle.com/c/datasciencebowl/data

[17] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML deep learning workshop, vol. 2.
Lille, 2015.

[18] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015.

[19] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016,
pp. 3630–3638. [Online]. Available: http://papers.nips.cc/paper/6385-
matching-networks-for-one-shot-learning.pdf

[20] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for
few-shot learning,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 4077–4087. [Online]. Available: http://papers.nips.cc/paper/6996-
prototypical-networks-for-few-shot-learning.pdf

[21] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[22] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014.

[23] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” CoRR, vol. abs/1703.03400, 2017.
[Online]. Available: http://arxiv.org/abs/1703.03400

[24] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), vol. 1. IEEE, 2005, pp. 539–546.

[25] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[26] M. N. Gibbs and D. J. MacKay, “Variational gaussian process classi-
fiers,” IEEE Transactions on Neural Networks, vol. 11, no. 6, pp. 1458–
1464, 2000.

[27] K. Duan, S. S. Keerthi, W. Chu, S. K. Shevade, and A. N. Poo, “Multi-
category classification by soft-max combination of binary classifiers,”
in International Workshop on Multiple Classifier Systems. Springer,
2003, pp. 125–134.

[28] A. Singhal et al., “Modern information retrieval: A brief overview,”
IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35–43, 2001.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] L. M. Bregman, “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex
programming,” USSR computational mathematics and mathematical
physics, vol. 7, no. 3, pp. 200–217, 1967.

[31] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science, vol.
350, no. 6266, pp. 1332–1338, 2015.

[32] D. M. Hawkins, “The problem of overfitting,” Journal of chemical
information and computer sciences, vol. 44, no. 1, pp. 1–12, 2004.

Leveraging Similarity Metrics to In-Situ Discover
Planktonic Interspecis Variations or Mutations

Andreas L. Teigen
Dept. of Engineering Cybernetics

NTNU Trondheim, Norway
andrealt@stud.ntnu.no

Introduction
• Plankton are vital to both land and sea. Mapping and monitoring planktonic-
distribution in the ocean is of great importance in understanding these
ecosystems as well as gaining insights on the general health of our planet.
• We explore the utilization of one-shot classifiers on in-situ captured
planktonic images.
• The similarity-based classification method used by the one-shot classification
algorithms gives rise to various research opportunities outside of the typical
classification paradigm.
• Exploring the development of a proficient plankton image classification
framework that can determine how different or how similar two plankton
specimens are, can inform us if they belong to the same species, if they are
different variations of the same species or if we have encountered an unseen
class of plankton. This similarity is valuable information that assists in further
mapping the diversity of the planktonic species.
• We further extend the Siamese one-shot classifier with few-shot classifier to
improve the model performance.

Contribution
• Customizing the Siamese network for planktonic domain adaptation
• Tailoring the Siamese network for multi-class planktonic classification
• Adapting the framework to a few-shot setting
• Identifying unseen classes in-situ

Dataset
Experiments were conducted with 2 well-known in-situ planktonic datasets:
• WHOI-Plankton[1] – 320 000 plankton images, 103 classes
• Kaggle Plankton (National science bowl)[2] - 30 000 plankton images,

121 classes.

Co-authors:
Aya Saad - aya.saad@ntnu.no

Annette Stahl - Annette.Stahl@ntnu.no
Dept. of Engineering Cybernetics

NTNU Trondheim, Norway

Theory
We were interested in looking into two different types of algorithms for
adaptability on in-situ plankton classification:
• One-shot algorithm: Artificial intelligence algorithms that are designed to

learn new classes from a single example image.
• Siamese net[3]

• Few-shot algorithm: Algorithms that are designed to learn new classes from
only a few sample images, but has greater potential for generalizability
compared to one-shot learners.
• Matching network[4]
• Prototypical network[5]

These algorithms learns class similarities based on the Triplet loss[6] learning
scheme:

Method
Three experiments are conducted:
• Sub-network optimization: Finding better suited neural networks for

identification of planktonic datasets
• Multi-class classification: Adapting the Siamese network for multi-shot

classification and comparing results with few-shot classifiers
• Novel class identification: Measuring capability of the Siamese network to

identify novel classes.

Results and discussion
Results from the three experiments are listed in table 1,2,3: Conclusion:

• Conducted experiments show that Siamese net produces low accuracy scores
in the multi-class classification setting. Hence, they are not suitable in the
scenario of inter-species variations.
• The few-shot classifiers, and especially the Prototypical network perform
markedly better at the plankton multi-class classification problem.
• Few-shot classifiers are however no direct substitution for the Siamese net as
they lack the ability to identify unknown and novel plankton species.
• This shortcoming marks the outline of our future work, to mitigate it and
investigate the possibility of inclusion of this feature in the few-shot architecture
to further improve the proposed framework.

References:
[1] E. C. Orenstein, O. Beijbom, E. E. Peacock, and H. M. Sosik, “Whoiplankton-a large scale fine
grained visual recognition benchmark dataset for plankton classification,” arXiv preprint
arXiv:1510.00745, 2015.
[2] Kaggle, 2015, [Accessed 30-March-2020]. [Online]. Available:
https://www.kaggle.com/c/datasciencebowl/data
[3] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image
recognition,” in ICML deep learning workshop, vol. 2. Lille, 2015.
[4] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra,“Matching networks for
one shot learning,” in Advances in Neural Information Processing Systems 29, D. D. Lee, M.
Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 3630–
3638.
[5] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.
Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 4077–4087.
[6] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition
and clustering,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015.

Triplet loss: Learning scheme for the similarity-based classifiers
Few-shot learner architecture

Siamese network architecture

Examples images of 3 different classes from the WHOI-Plankton dataset

Table 1 – Siamese network: one-shot classification
results on the Kaggle dataset

Table 2 – All classifier results on the multi-class few-
shot task with the WHOI-Plankton dataset

Table 3 – Siamese network result on the novel class
identifcation experiment (50% novel classes, 50%
known classes)

Acknowledgments:
Thanks to ONR and NOAA for their grants to help present
this work

This research is part of the AILARON project funded by RCN Frinatek IKTPLUSS program
(project number 262701) and supported by NTNU AMOS

https://www.ntnu.edu/web/ailaron

BIBLIOGRAPHY

5-way 10-way
Algorithm 5-shot 20-shot 30-shot 50-shot 5-shot 20-shot 30-shot

ABOD 73.9% 72.9% 71.3% 71.0% 73.8% 72.6% 71.5%
AvgKNN 78.0% 77.6% 75.8% 75.4% 76.3% 76.9% 76.1%

COF 76.2% 73.6% 71.6% 71.3% 74.9% 73.5% 71.8%
LMDD 62.3% 66.6% 66.7% 67.1% 60.9% 67.0% 66.9%

XGBOD 50.4% 74.4% 74.7% 78.6% 26.0% 57.4% 60.7%
Feature Bagging 78.3% 79.0% 76.0% 75.9% 76.4% 78.5% 76.6%

IForest 68.3% 69.6% 69.8% 69.8% 67.1% 69.7% 70.0%
KNN 77.3% 77.4% 76.0% 75.8% 77.0% 76.9% 76.5%

LODA 61.8% 65.8% 67.0% 67.4% 62.2% 66.4% 66.9%
LOF 77.4% 77.8% 76.1% 75.6% 75.8% 76.7% 76.6%
LOCI 66.6% 79.1% 79.6% 80.9% 66.6% 78.1% 80.0%

MedKNN 78.0% 77.4% 75.8% 75.4% 76.3% 76.6% 76.1%
OCSVM 7.5% 79.6% 79.6% 78.1% 9.4% 78.3% 79.7%

PCA 0.2% 59.0% 67.4% 70.0% 0.5% 60.8% 66.8%
SOD 74.7% 75.3% 74.2% 73.6% 74.3% 74.7% 73.5%
SOS 63.6% 76.8% 74.8% 75.3% 61.5% 76.7% 75.4%

Table 10.1: F1-score of the outlier detection architecture on the pure rejection task on the kaggle
plankton dataset.

5-way. 10-way
Algorithm 5-shot 20-shot 30-shot 50-shot 5-shot 20-shot 30-shot

NNO 65.1% 64.9% 65.2% 70.2% 51.9% 52.2% 49.3%
OpenMax 6.9% 26.0% 36.0% 45.2% 0% 17.1% 12.6%

DOC 43.1% 68.3% 68.0% 67.4% 46.6% 63.7% 65.8%

Table 10.2: F1 of the open set recognition architecture on the pure rejection task on the kaggle
plankton dataset.

87

Andreas L. Teigen
Few

-shot open w
orld learning

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Andreas L. Teigen

Few-shot open world learning

Master’s thesis in Cybernetics and Robotics

Supervisor: Annette Stahl

September 2020

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of algorithms
	Nomenclature
	Abbreviations
	Notation
	Introduction
	Motivation / Application
	Aim of study
	Research questions
	Contributions
	Structure of the thesis

	Theoretical background
	Machine learning
	Methods of learning
	Artificial neural networks
	Activation functions
	Back propagation
	CNN - Convolutional Neural Network
	Performance metrics

	One-shot learning
	Few-shot learning
	Open-world learning
	Definition
	Open set recognition
	Open space risk

	Outlier detection
	Distance metrics

	Literature review
	Siamese Neural Networks for one-shot learning
	Matching Networks for One Shot Learning
	Prototypical Networks for Few-Shot Learning
	Towards open world recognition
	Towards Open Set Deep Networks
	DOC: Deep Open Classification of Text Documents
	XGBOD: Extreme Gradient Boosting Outlier Detector

	Proposed framework
	Outlier detection architecture
	Open set recognition architecture
	Summary

	Implementation
	PyOD - Outlier detection algorithms
	Nearest non outlier
	OpenMax activation function
	Deep open classification
	Summary

	Experimental setup
	Selection criteria
	Experiments
	Siamese network baseline
	Setup - Few-shot learner
	Preliminary results
	Datasets
	WHOI-Plankton
	Kaggle

	Hardware

	Results
	Siamese network baseline results
	Embedding model swap
	Siamese open set recognition

	Prototypical network baseline results
	Closed world results
	Open world results
	Pure rejection results
	Combined architecture results
	Computational speed

	Discussion
	General discussion
	Siamese network
	Few-shot baseline
	Framework decision

	Conclusion
	Future work
	Bibliography
	Appendix

