
Ignacio Pons Alcalá

Modelling, motion planning and control for
performing feasible rolling motion of a
passive disc on a frame of the Butterfly
Robot

Master’s thesis in Master Thesis
Supervisor: Anton Shiriaev
August 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

MASTER’S FINAL THESIS IN INDUSTRIAL ENGINEERING

Modelling, motion planning and control for performing feasible rolling motion

of a passive disc on a frame of the Butterfly Robot

AUTHOR: Ignacio Pons Alcalá

NTNU SUPERVISOR : Anton Shiriaev

DEPARTMENT OF ENGINEERING CYBERNETICS

UPV SUPERVISOR: Raúl Simarro Fernández

DEPARTMENT OF ENGINEERING SISTEMS AND AUTOMATIC

ACADEMIC COURSE: 2019-20

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

1

CONTRIBUTION:

The Butterfly Robot is a highly complex and complete example in a field yet very unknown, even in

sciences, that are the non-prehensile underactuated systems. A system that because of its physical

simplicity allows to understand the entire concept and yet requires a thorough study of alternative

approaches for the different difficulties appearing. In previous thesis have been developed mainly the

dynamics of the system, how it works, which simplifications have been made and how to develop

trajectories. The next step and the main contribution of this thesis was to study and perform the control

for the system because of the real behaviour of the system and possible external perturbations . An

ambitious problem that shaped the main idea of this thesis.

At the beginning it is been necessary to understand the ideas and concepts exposed by other students

and how they arrived to those conclusions including their algorithms to calculate the dynamics and

the motion planning for the Butterfly Robot in MATLAB. Using those same algorithms and doing

some changes, was possible to define different and more complex trajectories for the system. After

that, a thorough research using some studies ,papers and reports was necessary to understand the

concept of orbital stability, how could be simplified the control for the system and how to implement

it in an algorithm developed in MATLAB. This is what is really challenging, and differences this

thesis. The part of the MATLAB code of control has been completely developed by own contribution.

This project would have been completely impossible without the invaluable assistance of my

supervisor Anton Shiriaev, an expert in this field who, in this difficult year have guided me and helped

to overcome the difficulties not only of the project but also of communication. This thesis has

permitted me to expand my thinking with alternative ways to approach a problem and to coordinate

different aspects and fields of science. Something very difficult to evaluate.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

2

ABSTRACT:

The master thesis presented below has as objective the analysis of the modelling and control of an

underactuated non-prehensile system known as the Butterfly Robot.

The Butterfly Robot consists of a frame/disc with a particular edge shape similar to a butterfly, that

is commanded directly just with a rotational movement, and a ball controlled indirectly by the effect

of gravity, rolling in the top edge of the frame/disc. A clear example of an underactuated non-

prehensile control.

A thorough study of the modelling of the system is done, then followed by developing different

motions of feasible rolling, assuming some requirements.

Once the different motions have been settled, the control of the system for each motion is conducted,

a step by step method, so that the possible discrepancies between the theorical system and the physical

system can be settled.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

3

ACKNOWLEDGEMENTS

“To the professors that transmitted me the pleasure of knowledge,

To my supervisor Anton for his dedication to me”

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

4

CONTENTS INDEX

1 INTRODUCTION .. 9

1.1 PROJECT AIM ... 9

1.2 BASIS FOR THE THESIS ... 9

2 THEORETICAL FRAMEWORK ... 10

2.1 NON-PREHESILE MANIPULATION ROBOTS ... 10

2.2 THE BUTTERFLY ROBOT .. 11

3 DYNAMICS OF THE BUTTERFLY ROBOT ... 12

3.1 METODOLOGY APPLIED ... 12

3.2 DERIVE SYSTEM DYNAMICS ... 13

3.2.1 MODEL ASSUMPTIONS ... 13

3.2.2 COORDINATES AND DEGREES OF FREEDOM ... 13

3.3 KINEMATICS FRAME AND BALL .. 16

3.4 ENERGY ... 21

3.4.1 KINETIC ENERGY ... 21

3.4.2 POTENTIAL ENERGY ... 22

2.5 EQUATIONS OF MOTION ... 22

4 MOTION PLANNING .. 25

4.1 INTRODUCTION ... 25

4.2 VIRTUAL HOLOMONIC CONSTRAINT .. 25

4.3 REDUCED DYNAMICS .. 26

4.4 CHECKING FEASIBILITY ... 27

4.5 DYNAMIC BEHAVIOUR ... 28

4.5.1 CASE 1 ... 28

4.5.2 CASE 2: ... 30

4.5.4 CASE 4: ... 33

5 CONTROL AND IMPLEMENTATION ... 36

5.1 INTRODUCTION TO CONTROL AND IMPLEMENTATION .. 36

5.2 ORBITAL STABILIZATION .. 36

5.3 MOVING PONCAIRÉ SECTION .. 36

5.4 CHANGING GENERALIZED COORDINATES TO TRANSVERSAL COORDINATES . 37

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

5

5.5 VIRTUAL CONTROL INPUT AND TRANSVERSE LINEARIATION 39

5.6 SOLUTION OF PERIODIC RICATTI DIFFERENTIAL EQUATION 41

5.7 FINDING THE ALGORITH .. 43

5.8 VERIFYING THE ALGORITHM .. 46

6 CONCLUSSION AND RECOMMENDATIONS ... 49

6. 1CONCLUSSION ... 49

6.2 RECOMMENDATIONS .. 49

BIBLIOGRAPHY AND REFERENCES .. 51

APPENDIX .. 52

MATLAB CODE .. 52

get_motion123 .. 54

get_motion4 .. 52

get_prop ... 52

get_spline .. 52

get_dynamics ... 52

get_par .. 60

get_u_Fn_Fs ... 62

Check_Algorithm .. 63

CheckC ... 66

CheckR ... 67

Control ... 69

get_c .. 71

get_R ... 72

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

6

LIST OF SYMBOLS

Units

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

𝑁

𝑁

-

𝑚 𝑠−2

-

-

-

-

-

-

𝑘𝑔 𝑚2

𝑘𝑔 𝑚2

-

-

𝐽

𝐽

𝐽

-

-

𝐽

𝑘𝑔

𝑘𝑔

-

Symbol

𝑎

𝐴(𝑡)

𝐴𝑐

𝑏

𝐵(𝑞)

𝐵(𝑡) = 𝑏(𝑡)

𝐵⊥(𝑞)

𝐵𝑐

𝑐

𝑐 = [𝑐𝑖]

𝐶(𝑞, 𝑞̇)

𝑑

𝑒𝑖⃗⃗ ⃗
𝐹 = [𝐹𝑖]
𝐹𝑛

𝐹𝑠

𝑔(𝜙)

𝑔

𝑔𝑦

𝑔𝑦̇

𝑔𝑤
𝐺(𝑞)

ℎ

𝐼𝑛 = 𝐼
𝐽𝑏

𝐽𝑓

𝑘̂

𝐾(𝑡)

𝒦

𝒦𝑏

𝒦𝑓

𝐿

𝐿(𝜑)

ℒ

𝑚𝑏

𝑚𝑓

𝑀

Description

Constant to describe the shape of the butterfly frame

Variable matrix in the PRDE problem

Parameter matrix in the ARE problem

Constant to describe the shape of the butterfly frame

Coupling matrix for the input u

Variable matrix in the PRDE problem

Annihilator matrix for the input u

Parameter matrix in the ARE problem

Constant from the VHC

Maximal solution vector coefficients for SEDUMI

Coriolis and centrifugal matrix

Parameter for the LMI constraints

Reference frame

LMI constraints matrix coefficients for SEDUMI

Normal force

Friction force

Coupler between 𝜙 and 𝜑

Gravity constant vector

Variable of the transverse dynamics

Variable of the transverse dynamics

Variable of the transverse dynamics

Gravitational matrix

Variable to introduce differentiation of 𝑠

Identity matrix size 𝑛𝑥𝑛

Mass moment of inertia of the ball

Mass moment of inertia of the frame

Unit vector in 𝑧-direction

Matrix gain in the feedback control law

Kinetic energy of the system

Kinetic energy of the ball

Kinetic energy of the frame

Division of the discrete system

Parameter matrix to compute the actuator input

Lagrangian symbol

Mass of the ball

Mass of the frame

Grade of the trigonometric polynomial approximation

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

7

Symbol

𝑀(𝑞)

𝑛⃗

𝑛⃗ 𝑓

𝑁(𝜑, 𝜑̇)

𝑝

𝑃(𝑡)
𝒫

𝒫𝑏

𝒫𝑓

𝑞

𝑞∗(𝑡)

𝑄(𝑡)

𝑄𝑐

𝑟𝑏⃗⃗ ⃗

𝑟𝑓

𝑟𝑓⃗⃗⃗

𝑅

𝑅(𝑡) = 𝑅+(𝑡)

𝑅𝑐
+

𝑅𝑀,𝐿
+ (𝑡)

𝑅̅(𝑡)

𝑅0

𝑅𝑏

𝑅𝑎,𝑘

𝑅𝑏,𝑘

ℜ

ℜ𝑐

𝑠 = 𝑠(𝜑)

𝑠𝑓 = 𝑠𝑓(𝜙)

𝑆(𝑅, 𝑡) = [𝑆𝑗]

𝑆(∙)

𝑡

𝑡𝑗

𝑇

𝑢

𝑣𝑏⃗⃗⃗⃗

𝑣𝑓⃗⃗⃗⃗

𝑤

Units

-

-

-

-

-

-

𝐽

𝐽

𝐽

-

-

-

-

𝑚

𝑚

𝑚

𝑚

-

-

-

-

-

𝑚 s -

-

-

-

-

𝑚 -

𝑚

-

-

𝑠

𝑠

𝑠

𝑁 𝑚

𝑚 𝑠−1

𝑚 𝑠−1

-

Description

Inertia matrix

Unit normal vector for ball

Unit normal vector for frame

Parameter matrix to compute the actuator input

Total number of coefficients in the SDP problem

T-periodic transform matrix function

Potential energy of the system

Potential energy of the ball

Potential energy of the frame

Vector of generalized coordinates

Vector of Generalized coordinates on solution trajectory

Variable matrix in the PRDE problem

Parameter matrix in the ARE problem

Vector of the position of the ball

Half of the distance between both frame plates

Vector of the position of the frame

Effective radius of the ball

Solution of the PRDE

Solution of the ARE

Solution of the SDP problem

Trigonometric polynomial approximation of 𝑅(𝑡)

Matrix of the trigonometric polynomial approximation

Real radius of the ball

Matrix of the trigonometric polynomial approximation

Matrix of the trigonometric polynomial approximation

Periodic Riccati Differential Equation (PRDE)

Algorithmic Riccati Equation (ARE)

Arclength described by the centre of the ball

Arclength described by the contact between ball and frame

Linear matrix inequalities (LMI) of the SDP problem

Moving Poincaré Section

Time

Discretional time

Period

Actuator input or torque

Velocity vector of the ball

Velocity vector of the frame

Virtual control input

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

8

Symbol

n
𝑤⃗⃗ 𝑏

𝑤⃗⃗ 𝑏𝑐𝑒𝑛𝑡𝑒𝑟

𝑤𝑓⃗⃗ ⃗⃗

𝑥′

𝑥𝑏 = 𝑥

𝑥𝑓

𝑥⊥(𝑡)

𝑦 = [𝑦𝑖]

𝑦′

𝑦𝑏 = 𝑦

𝑦𝑓

𝑧

𝛼(𝜙)

𝛼(𝜑)
𝛽(𝜑)

𝛾(𝜑)

𝛤(𝑡)

𝛤𝑐

𝛿 = 𝛿 (𝜙)

𝜃𝑏

𝜃𝑓 = 𝜃

𝜃∗ = 𝛳(𝜑∗)
𝛳(𝜑)

𝜅

𝜅

𝜅𝑓

𝜅 𝑓

 Π(𝜃)

𝜌 = 𝜌 (𝜑)

𝜏

𝜏 𝑓

𝜙

ɸ(𝜑)

ℐ

𝜑

𝜑∗

𝜓

𝜓(𝑡)

𝜔

Units

s

rad 𝑠−1

rad 𝑠−1

rad 𝑠−1

𝑚

𝑚

𝑚

-

-

𝑚

𝑚

𝑚

-

𝑟𝑎𝑑

-

-

-

-

-

𝑚

𝑟𝑎𝑑

𝑟𝑎𝑑

𝑟𝑎𝑑

-

-

-

-

-

-

𝑚

-

-

𝑟𝑎𝑑

-

-

𝑟𝑎𝑑

𝑟𝑎𝑑

𝑟𝑎𝑑 𝑠−1

-

𝑟𝑎𝑑 𝑠−1

Description

d

Angular velocity of the ball about its own rotation

Angular velocity of the ball about its own rotation on ideal curve

Angular velocity of the frame

𝑥-coordinate of the frame relative to its own reference frame

𝑥-coordinate of the ball relative to the reference frame

𝑥-coordinate of the frame relative to the reference frame

Transverse coordiantes

Coefficient solution by SEDUMI of the SDP problem

𝑦-coordinate of the frame relative to its own reference frame

𝑦-coordinate of the ball relative to the reference frame

𝑦-coordinate of the frame relative to the reference frame

Third transversal coordinate

Angle between the tangent of the frame and the 𝑥′-axis

Parameter of the 𝛼𝛽𝛾 equation

Parameter of the 𝛼𝛽𝛾 equation

Parameter of the 𝛼𝛽𝛾 equation

Variable matrix in the PRDE problem

Parameter matrix in the ARE problem

Position of the contact point between frame and ball

Angle of the ball in the reference frame

Angle of the frame in the reference frame

Generalized coordinate in the solution trajectory

VHC- Virtual holonomic constraint

Curvature of the trajectory of the centre of the ball

Curvature vector of the centre of the ball

Curvature of the frame

Curvature vector of the frame

Three dimensional rotation matrix

Position of the ball

Unit tangent vector of the trajectory of the centre of the ball

Unit tangent vector of the frame

Angle between the 𝑦′-axis and the contact point of the ball

Variable to describe the reduced dynamics

Angle between the 𝑦′-axis and the centre of the ball

Rotation of the ball from the body reference frame

Angular velocity of the ball

Maximal function in the SDP problem

Scalar variable to describe the position along the trajectory

Frequency

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

9

1 INTRODUCTION

1.1 PROJECT AIM

Analise how the Butterfly Robot works by the study of its modelling to create new rolling motion

planning and develop the required controls so that there is not discrepancies between the real and the

theorical behaviour of this motions. For that purpose it is been studied and perfected previous work

of the modelling of the system

1.2 BASIS FOR THE THESIS

The final master thesis pretends to evaluate the acquired competences in the studies conducted in the

Master in Technological Industrial Engineering with the specialisation in Robotics and Automatic,

that are reflected in a developed way in this project, and that are essential to its conclusion.

The thesis has permitted to study the behaviour of the Butterfly Robot case study and to propose new

interesting rolling motions not seen until now, with the further development of the control to achieve

the same theorical and real behaviour.

Figure 1.1 The butterfly robot in its equilibrium point – source: [1]

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

10

2 THEORETICAL FRAMEWORK

2.1 NON-PREHESILE MANIPULATION ROBOTS

Human interaction with objects is continuous and its manipulation can take place by prehensile or

non-prehensile manipulation. Grasp an object is a task humans perform ordinary, a clear example of

prehensile-manipulation, but, instead of that could make any other actions such as rolling, pushing,

toppling or pulling, all of them examples of non-prehensile manipulations that we perform every day.

In the well-known as forth industrial revolution, robots are acquiring a growing role in the industries

and somehow are replacing jobs performed by humans in the past. Robots are becoming more and

more close to imitate perfectly physical human motion, however there are still considerable

differences, especially when it comes to non-prehensile manipulation. That’s what restricts

substantially the applicability of the robots in the real world. In order for robots to approach or

overtake human manipulation skill, is important to improve non-prehensile manipulation. For that

reason, the studies in this field have increased in the last years and have become in very challenging

problems.

Non-prehensile manipulation implies there are more degrees of freedom than actuators that can be

controlled directly, what is called un underactuated system. The reason why non-prehensile

manipulation problem is so complex is because it cannot be simplified o linearized at any point, it has

to be solved in the non-linear fashion.

Figure 2.1 Examples prehensile – source: [10]

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

11

Figure 2.2 Examples prehensile and non-prehensile - source: [10]

2.2 THE BUTTERFLY ROBOT

This robot was originally conceived by Kevin Lynch at Northwestern University and is a perfect

example of non-prehensile manipulation and an underactuated system. Further work and

experiments developed by Maksim Surov, Anton Shiriaev and their team [1] it is been an

illustrative example of progress in this field and provides the basis for this thesis including its

methodology as it is been before by Lund [2] and Vogels [3]. The mechanism of the Butterfly

Robot is very simple, but is the algorithm that is driving it what is really revolutionary.

The mechanism consists of two parallel identical frame with a particular edge shape similar to a

butterfly, that is commanded directly just with a rotational movement (driven by an electrical

motor), and a ball controlled indirectly by the effect of gravity, rolling freely in the top edge of the

frame.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

12

3 DYNAMICS OF THE BUTTERFLY ROBOT

3.1 METODOLOGY APPLIED

For the realisation of this thesis it is been followed a methodology, described in the diagram of the

Figure 3.1, to organizing in a simple way its study and development. It involves the steps to follow

with the most important sections.

Figure 3.1 Methodology diagram – source: own elaboration.

CHARACTERIZATION OF THE

BUTTERFLY ROBOT

STUDY OF DYNAMICS

KINEMATICS

-Ball
-Frame

CONCLUSIONS AND

RECOMMENDATIONS

ENERGY

-Kinetic energy

-Potential energy

EQUATIONS OF MOTION

-Lagrangian

-MCG matrices

MOTION PLANNING

VIRTUAL HOLOMONIC

CONSTRAINTS (VHC)

DYNAMIC BEHAVIOUR AND

FEASIBILITY

-CASE 1

-CASE 2

-CASE 3

-CASE 4

REDUCED DYNAMICS

CONTROL AND

IMPLEMENTATION

ORBITAL STABILIZATION

-Moving Poincaré section

-Transvers coordinates

-Virtual control input

-Transverse linearization

-Periodic Riccati differential equation

-Algorithm and verification

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

13

3.2 DERIVE SYSTEM DYNAMICS

In order to develop a model based control strategy of the robot, is necessary to obtain an accurate

model that represents the real physical behaviour of the Butterfly Robot. For this propose, it is been

derived the system dynamics. This chapter follows the example of previous projects [2] and [3],

including appropriate assumptions and simplifications.

First are exposed which are the model assumptions and the chosen coordinates as well as the reduction

of degrees of freedom to represent the model. This first approach is followed by the relations of

kinetic and potential energy within the elements that allow to determinate the dynamics of the system.

Finally this equations of motion that represent the system are derived.

3.2.1 MODEL ASSUMPTIONS

The following assumptions take place to simplified the modelling and before any advance.

 The ball and the frame are both smooth, solid and rigid bodies with no imperfections. That

means they don’t deform and thereby there is just point contacts between them.

 The ball and the frame also have a uniform distribution of mass being the same the centre

of mass and the geometric centre.

 The construction of the frame is such, that ensures the ball rolling motion in a 2-D surface.

Consisting in two parallel identical frame with a particular edge shape similar to a butterfly.

 There is no slipping conditions between the ball and the frame. So the ball rolls through the

surface of the frame without slipping.

 The ball doesn’t depart from the frame so the contact between the ball and the frame is just

one point every time. Even though in the study other possibilities will be consider.

 The position of the bodies of the system at the initial conditions is in one of the equilibrium

points. Being the frame and the ball in the position that the Figure 1.1 describes.

3.2.2 COORDINATES AND DEGREES OF FREEDOM

To follow correctly the thesis are stablished the origin of coordinates and necessary coordinates that

will guide the rest of the project. It is been assumed that the rolling motion is produced in a 2D surface,

therefor the Butterfly Robot will be treated as a 2D system, like the one given in the Figure 3.2. In

this figure are described the different frame reference and the degrees of freedom.

To simplify, the inertial reference frame 𝑒0⃗⃗⃗⃗ , is in the centre of the frame as the no-inertial body

reference frame of the frame 𝑒1⃗⃗⃗⃗ . The no-inertial body reference frame of the ball 𝑒2⃗⃗⃗⃗ is in its centre

of the ball.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

14

The geometric centre of the ball and the frame determinates their position and each one have three

degrees of freedom, known as (𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓 , 𝑥𝑏 , 𝑦𝑏 , 𝜃𝑏) . However, since the reference frame is in the

centre of the frame, the coordinates 𝑥𝑓 = 𝑦𝑓 = 0, and the degrees of freedom can be reduced to

(𝑥, 𝑦, 𝜃𝑓 , 𝜃𝑏).

Figure 3.2 2D system, degrees of freedom – source: own elaboration.

From now on 𝑥 and 𝑦 are the coordinates for the position of the ball in the reference frame 𝑒0⃗⃗⃗⃗ , and

𝑥′ and 𝑦′ the coordinates for the position of the ball in the body reference frame 𝑒1⃗⃗⃗⃗ .

Due to the fact of the orbital motion that characterises the system, it is been considered more

appropriate the polar coordinate system, whose equation in the Cartesian coordinate system would be

much more intricate.

The distance between the ball and the ideal curve is considered to be 0. The real possibilities of

interaction between the frame and the ball are two. Whether the ball is in contact with the frame or

not. However, following the last of the assumptions, from now on the distance of the ball to the ideal

curve is 0. Under this circumstances the ball rolls along the curve of the frame with an offset of the

ball centre that is been called 𝑅 see Figure 3.4.

In the figure 3.3 it can be seen the new variables to introduce the polar coordinates. The arclength of

the position of the centre of the ball from the initial position along the ideal curve is described by

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

15

variable 𝑠, the arclength of the position of the contact point of the ball and frame is described by

variable 𝑠𝑓, whilst 𝜌 is the vector from the origin of the reference frame of the frame till the centre

of the ball on the ideal curve. Exists the possibility of introducing the variable 𝜌 as a function of 𝑠

given the geometrical characteristics, so that 𝜌 = 𝜌 (𝑠).

Following the previous projects [2] and [3] and from [4] is introduced the Frenet Frame that describe

the kinematic properties of a particle moving along a continuous, differential curve. The Frenet

formulas are used in this case to describe the position of the ball along the curve. For this matter is

introduced the orthonormal base along the curve described for the ball, formed by the unit normal

vector 𝑛⃗ and the tangent vector 𝜏 . The curvature vector 𝜅 is the third variable to define the Frenet

frame. These new variables are defined as follow:

𝜏 ≔
𝑑𝜌⃗⃗

𝑑𝑠
 , 𝜅 ≔

𝑑𝜏⃗

𝑑𝑠
=

𝑑2𝜌⃗⃗

𝑑𝑠2 , 𝑛⃗ ≔ 𝑘̂ × 𝜏 (3.1)

The rotation occurs around the z-direction represented by the vector unit 𝑘̂ = [0 0 1]𝑇 .

Another way to represent the position of the ball is through the angle 𝜑 that the ball makes with

respect 𝑒2
1⃗⃗⃗⃗ . That allows to write 𝑠 = 𝑠(𝜑), and so, 𝜌 = 𝜌 (𝜑). To represent the angle of the ball,

instead of 𝜃𝑏 is introduced the variable 𝜓, being the rotation of the ball around its own body fixed

frame. But, since the non-slip condition is been stablished, the angle 𝜓 can be linked with the

arclength 𝑠, or what is the same, with 𝜑. See Figure 3.3.

Figure 3.3 degrees of freedom in polar coordinates – source: own elaboration.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

16

From all this new variables is presented a new set of coordinates from (𝑥, 𝑦, 𝜃𝑓 , 𝜃𝑏) to (𝜃, 𝜑) with

𝜃𝑓 = 𝜃. The set of coordinates is being reduced to just two. This simplifies a lot the general vision of

the hole process by just fixing two coordinates. These are presented as the general coordinates:

𝑞 = [𝜃 𝜑]𝑇.

The variable 𝑅, seen in the Figure 3.4, is just the projected distance between the centre of the ball

and the contact of the ball with the frame, and must not be mistaken with the radius of the ball 𝑅𝑏.

This variable 𝑅 can be calculated as 𝑅 = √𝑅𝑏
2 − 𝑟𝑓

2.

Figure 3.4 Real and effective radius – source: own elaboration.

3.3 KINEMATICS FRAME AND BALL

To represent the motion of the different bodies a kinematic study of the system is done. To obtain the

equations of motion, are necessary the expressions that relate energy and kinematics.

In this section is studied the kinematics of the system considering that its trajectory is expressed in

polar coordinates. The geometry of the system is been already described, as well as the position of

the bodies at the initial conditions settled in the model assumptions.

From now on the variable 𝑟 represents position, 𝑣 represents velocity and 𝑤⃗⃗ represents the angular

velocity.

In the case of the frame considering that its centre of mass is in the origin of the reference frame of

the frame 𝑒1⃗⃗⃗⃗ and the reference frame 𝑒0⃗⃗⃗⃗ it can be determined that:

𝑟𝑓⃗⃗⃗ = 𝑣𝑓⃗⃗⃗⃗ = [0 0 0]𝑇 (3.2)

 𝑤𝑓⃗⃗ ⃗⃗ = 𝜃̇𝑘̂ (3.3)

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

17

The case of the ball is not as simple as in the frame and is used the vector 𝜌 to first determinate the

position of the ball with respect the reference frame of the frame 𝑒1⃗⃗⃗⃗ and then is used the cosine matrix

Π to determinate the position with respect the reference frame 𝑒0⃗⃗⃗⃗ .

𝑟𝑏⃗⃗ ⃗ = Π(𝜃)𝜌 (𝜑) (3.4)

With:

 Π(𝜃) = [
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

] (3.5)

In order to obtain the velocity of the ball, its position is derived with respect time. As follows:

𝑣𝑏⃗⃗⃗⃗ =
𝑑𝑟𝑏⃗⃗ ⃗⃗

𝑑𝑡
= Π̇𝜌 + Π𝜌 ̇ = 𝑤𝑓⃗⃗ ⃗⃗ × (Π𝜌) + Π

𝑑𝜌⃗⃗

𝑑𝑠

𝑑𝑠

𝑑𝜑

𝑑𝜑

𝑑𝑡
= 𝜃̇𝑘̂ × (Π𝜌) + Π𝜏 𝑠′𝜑̇ (3.6)

With: 𝑠 = ∫ ‖
𝑑𝜌⃗⃗

𝑑𝜑
‖

𝜑

0
𝑑𝜑 and 𝑠′ =

𝑑𝑠(𝜑)

𝑑𝜑
 fully explained in equations (3.23) and (3.24).

The angular velocity of the ball is composed by 2 variables, the angular velocity of the ball around

its own centre of rotation 𝑤⃗⃗ 𝑏𝑐𝑒𝑛𝑡𝑒𝑟
, that is exposed below, and the angular velocity of the frame 𝑤𝑓⃗⃗ ⃗⃗ ,

calculated before . Attached to the no slipping condition, the angular velocity of the ball is

proportional to the trajectory of the ball along the frame 𝑠𝑓, and the condition can be expressed as:

 𝑅𝜓 = 𝑠𝑓 (3.7)

𝑅𝜓̇ = 𝑠̇𝑓 (3.8)

The angular velocity of the ball around its own centre of rotation is:

𝑤⃗⃗ 𝑏𝑐𝑒𝑛𝑡𝑒𝑟
= −𝜓̇𝑘̂ = −

1

𝑅
𝑠̇𝑓𝑘̂ (3.9)

The relation that links 𝑠𝑓 and 𝑠 is obtained through a new Frenet frame, this time at the curve of the

butterfly robot frame as can be seen in Figure 3.5, denoted by:

𝜏 𝑓 ≔
𝑑𝛿⃗⃗

𝑑𝑠𝑓
, 𝜅 𝑓 ≔

𝑑𝜏⃗ 𝑓

𝑑𝑠𝑓
=

𝑑2𝛿⃗⃗

𝑑𝑠2
𝑓
, 𝑛⃗ 𝑓 ≔ 𝑘̂ × 𝜏 𝑓 (3.10)

Considering 𝜏 = 𝜏 𝑓, 𝑛⃗ = 𝑛⃗ 𝑓 and 𝜅 ≠ 𝜅 𝑓.

At this point, 𝛿 is not been introduced yet. Basically it represents the position of the contact point of

the ball and the frame with respect to the origin with 𝛿 = 𝑎 − 𝑏 cos(2𝜙) describing this position.

The parameter 𝛿 , depends on the angle between the 𝑦′ axis of the reference frame of the frame 𝑒1⃗⃗⃗⃗ ,

and 𝛿 . This new angle is expressed as 𝜙, to express parameters, as can be seen in Figure 3.6, which

results in:

𝛿 (𝜙) = 𝛿(𝜙) [
sin(𝜙)
cos(𝜙)

0

] (3.11)

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

18

Figure 3.5 Both Frenet frame and arclength – source: own elaboration.

The unit tangential velocity along the curve, is the vector 𝜏 , and can be expressed now as:

𝜏 (𝜙) =
𝛿′⃗⃗⃗⃗ (𝜙)

‖𝛿′⃗⃗⃗⃗ (𝜙)‖
, 𝜏𝑥 =

𝛿′⃗⃗⃗⃗
𝑥 (𝜙)

‖𝛿′⃗⃗⃗⃗ (𝜙)‖
, 𝜏𝑦 =

𝛿′⃗⃗⃗⃗
𝑦 (𝜙)

‖𝛿′⃗⃗⃗⃗ (𝜙)‖
 (3.12)

Figure 3.6 Position and angle of the contact point - source: own elaboration.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

19

The new parameter 𝛼(𝜙) is introduced, that represents the angle between the axis 𝑥′ of the

reference frame of the frame 𝑒1⃗⃗⃗⃗ , and the tangent of the frame, as can be seen in Figure 3.7 and Figure

3.8. Can be described as:

𝛼(𝜙) = arctan (
−𝜏𝑦(𝜙)

𝜏𝑥(𝜙)
) = arctan(

−𝛿′⃗⃗ ⃗
𝑦 (𝜙)

𝛿′⃗⃗ ⃗
𝑥 (𝜙)

) = arctan (
𝛿(𝜙) sin(𝜙)−𝛿′(𝜙) cos(𝜙)

𝛿(𝜙) cos(𝜙)−𝛿′(𝜙) sin(𝜙)
) (3.13)

From this, as can be checked in the Figure 3.7, an expression for 𝑛⃗ can be developed, dividing it into

𝑛𝑥 and 𝑛𝑦:

𝑛𝑥 = |𝑛⃗ | cos (
𝜋

2
− 𝛼) = sin(𝛼)

𝑛𝑦 = |𝑛⃗ | sin (
𝜋

2
− 𝛼) = cos(𝛼) (3.14)

𝑛⃗ = [
sin(𝛼)
cos(𝛼)

0

] (3.15)

Figure 3.7 Graphical description of 𝜶 – source: own elaboration.

From this vectors, can be described:

𝜌 (𝜙) = 𝛿 (𝜙) + 𝑅𝑛⃗ (𝜙),
𝑑𝜌⃗⃗

𝑑𝑠𝑓
=

𝑑𝛿⃗⃗

𝑑𝑠𝑓
+ 𝑅

𝑑𝑛⃗

𝑑𝑠𝑓
= 𝜏 𝑓 − 𝑅𝜅𝑓𝜏 𝑓 = 𝜏 𝑓(1 − 𝑅𝜅𝑓) (3.16)

Considering
𝑑𝑛⃗

𝑑𝑠𝑓
= −𝜅𝑓𝜏 𝑓 from [3].

Using the equations (3.16) and (3.10), and the derivation with respect time, leads to:

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

20

𝑑𝜌 = 𝜏 𝑓(1 − 𝑅𝜅𝑓)𝑑𝑠𝑓 = 𝜏 𝑓𝑑𝑠 (3.17)

𝑑𝑠 = (1 − 𝑅𝜅𝑓)𝑑𝑠𝑓 (3.18)

𝑠 = (1 − 𝑅𝜅𝑓)𝑠𝑓 (3.19)

𝑠̇ = (1 − 𝑅𝜅𝑓)𝑠̇𝑓 (3.20)

Following the example in [3] is possible to express the relation between 𝜅 and 𝜅 𝑓 as:

𝜅 =
𝑑𝜏⃗

𝑑𝑠
=

𝑑𝜏⃗ 𝑓

𝑑𝑠
=

𝑑𝑠𝑓

𝑑𝑠

𝑑𝜏⃗ 𝑓

𝑑𝑠𝑓
=

 𝜅𝑓𝑛⃗ 𝑓

1−𝑅𝜅𝑓
= 𝜅𝑛⃗ (3.21)

Considering that this relations are true whenever 𝑑𝑠 and 𝑑𝑠𝑓 , are small enough. And finally is

obtained the second variable, described like:

𝑤⃗⃗ 𝑏𝑐𝑒𝑛𝑡𝑒𝑟
= −

1

𝑅
𝑠̇𝑓𝑘̂ = −

1

𝑅(1−𝑅𝜅𝑓)
𝑠̇𝑘̂ =

1

𝑅(𝑅𝜅𝑓−1)
𝑠′𝜑̇𝑘̂ = 𝑝𝑠′𝜑̇𝑘̂ (3.22)

With: 𝑝 =
1

𝑅(𝑅𝜅𝑓−1)
.

At this point is convenient to express :

 𝑠 = ∫ ‖
𝑑𝜌⃗⃗

𝑑𝜑
‖

𝜑

0
𝑑𝜑 (3.23)

𝑠′ =
𝑑𝑠(𝜑)

𝑑𝜑
= ‖

𝑑𝜌⃗⃗

𝑑𝜑
‖ = ‖

𝑑𝜌⃗⃗

𝑑𝜙

𝑑𝜙

𝑑𝜑
‖ = ‖

𝑑𝜌⃗⃗

𝑑𝜙
‖

𝑑𝜙

𝑑𝜑
= ‖

𝑑𝛿⃗⃗

𝑑𝜙
+ 𝑅

𝑑𝑛⃗

𝑑𝜙
‖

𝑑𝜙

𝑑𝜑
= ‖𝛿 ′ + 𝑅𝑛⃗ ′‖

1

𝑔′
 (3.24)

𝑠′′ =
𝑑𝑠′

𝑑𝜑
=

𝑑𝑠′

𝑑𝜙

𝑑𝜑

𝑑𝜙
 (3.25)

Where 𝑔 is the relation 𝜑 = 𝑔(𝜙). Following [2], the position of the centre of the ball 𝜌 can be

expressed with its coordinates:

𝑥′ = |𝛿 𝑥| + 𝑅|𝑛⃗ 𝑥| = 𝛿 sin(𝜙)+𝑅sin(𝛼)

𝑦′ = |𝛿 𝑦| + 𝑅|𝑛⃗ 𝑦| = 𝛿 cos(𝜙)+𝑅cos(𝛼) (3.26)

𝑥′ = |𝜌 𝑥| = |𝜌 |sin(𝜑)

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

21

𝑦′ = |𝜌 𝑦| = |𝜌 |cos(𝜑) (3.27)

And as a result:

𝜑 = arctan (
𝑥′

𝑦′
) = (

𝛿 sin(𝜙)+𝑅sin(𝛼)

𝛿 cos(𝜙)+𝑅cos(𝛼)
) = 𝑔(𝜙) (3.28)

This formula can be rewritten following [4] and by introducing the variable ℎ = 𝛿 ′ + 𝑅𝑛⃗ ′ and its

derivative ℎ′ = 𝛿 ′′ + 𝑅𝑛⃗ ′′, like this:

𝑑𝑠′

𝑑𝜙
=

𝑑‖ℎ‖

𝑑𝜙

1

𝑔′
−

‖ℎ‖𝑔′′

𝑔′2
=

ℎ∙ℎ′

‖ℎ‖𝑔′
−

‖ℎ‖𝑔′′

𝑔′2
 (3.29)

𝑠′′ = (
ℎ∙ℎ′

‖ℎ‖𝑔′
−

‖ℎ‖𝑔′′

𝑔′2
)

1

𝑔′
=

(𝛿⃗⃗ ′+𝑅𝑛⃗ ′)∙(𝛿⃗⃗ ′′+𝑅𝑛⃗ ′′)

‖𝛿⃗⃗ ′+𝑅𝑛⃗ ′‖𝑔′2
−

‖𝛿⃗⃗ ′+𝑅𝑛⃗ ′‖𝑔′′

𝑔′3
 (3.30)

The total angular velocity of the ball is expressed as:

𝑤⃗⃗ 𝑏 = 𝑤⃗⃗ 𝑓 + 𝑤⃗⃗ 𝑏𝑐𝑒𝑛𝑡𝑒𝑟
= 𝜃̇𝑘̂ + 𝑝𝑠′𝜑̇𝑘̂ = (𝜃̇ + 𝑝𝑠′𝜑̇)𝑘̂ (3.31)

3.4 ENERGY

In this section are analysed the formulas for potential and kinetic energy of both frame and ball,

necessary to develop the equations of motion. It is been followed the same assumptions than in [2]

and [3].

3.4.1 KINETIC ENERGY

For the kinetic energy, from its main formula are calculated the expressions for the ball and the frame,

considering that its formed by the translational and rotational motion as follows:

𝒦 =
1

2
𝑚𝑣 ∙ 𝑣 +

1

2
𝐽𝑤⃗⃗ ∙ 𝑤⃗⃗ (3.32)

In the following equations, 𝑚 represents the mass and 𝐽 the moment of inertia. From this point, can

be extrapolated to the frame and the ball considering the kinematics formulas in the previous section,

as follows:

𝒦𝑓 =
1

2
𝑚𝑓𝑣 𝑓 ∙ 𝑣 𝑓 +

1

2
𝐽𝑓𝑤⃗⃗ 𝑓 ∙ 𝑤⃗⃗ 𝑓 =

1

2
𝐽𝑓𝜃̇

2 (3.33)

𝒦𝑏 =
1

2
𝑚𝑏𝑣 𝑏 ∙ 𝑣 𝑏 +

1

2
𝐽𝑏𝑤⃗⃗ 𝑏 ∙ 𝑤⃗⃗ 𝑏

 =
1

2
𝑚𝑏 ((𝜃̇𝑘̂ × (Π𝜌) + Π𝜏 𝑠′𝜑̇) ∙ (𝜃̇𝑘̂ × (Π𝜌) + Π𝜏 𝑠′𝜑̇)) +

1

2
𝐽𝑏((𝜃̇ + 𝑝𝑠′𝜑̇)𝑘̂ ∙ (𝜃̇ + 𝑝𝑠′𝜑̇)𝑘̂)

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

22

 =
1

2
𝑚𝑏(𝜃̇

2(𝑘̂ × (Π𝜌)) ∙ (𝑘̂ × (Π𝜌) + 2𝑠′𝜃̇𝜑̇(Π𝜏) ∙ (𝑘̂ × (Π𝜌)) + 𝑠′2𝜑̇2𝜏 𝑇Π𝑇Π𝜏)

 +
1

2
𝐽𝑏(𝜃̇

2 + 2𝑝𝑠′𝜃̇𝜑̇ + 𝑝2𝑠′2𝜑̇2) (3.34)

This equation can be simplified with:

(𝑘̂ × (Π𝜌) ∙ (𝑘̂ × (Π𝜌) = ‖𝜌 ‖2

(Π𝜏) ∙ (𝑘̂ × (Π𝜌)) = 𝑘̂ ∙ (𝜌 × 𝜏)

𝜏 𝑇Π𝑇Π𝜏 = 1 (3.35)

As a result:

𝒦𝑏 =
1

2
𝑚𝑏(𝜃̇

2‖𝜌 ‖2 + 2𝑠′𝜃̇𝜑̇(𝑘̂ ∙ (𝜌 × 𝜏)) + 𝑠′2𝜑̇2) +
1

2
𝐽𝑏(𝜃̇

2 + 2𝑝𝑠′𝜃̇𝜑̇ + 𝑝2𝑠′2𝜑̇2) (3.36)

Being the total kinetic energy:

𝒦 = 𝒦𝑓 + 𝒦𝑏 =
1

2
(𝑚𝑏‖𝜌 ‖2 + 𝐽𝑓 + 𝐽𝑏)𝜃̇

2 + (𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′𝜃̇𝜑̇ +
1

2
(𝑚𝑏 + 𝐽𝑏𝑝

2)𝑠′2𝜑̇2

(3.37)

3.4.2 POTENTIAL ENERGY

For the potential energy, from its main formula are calculated the expressions for the ball and the

frame as well, considering 𝑔 = (0 𝑔 0)𝑇 the gravitational acceleration and 𝑟 the position of the

body as:

𝒫 = 𝑚𝑔 ∙ 𝑟 (3.38)

For the frame 𝒫𝑓 = 0, because the gravitational force doesn’t have an effect on it. For the ball:

𝒫𝑏 = 𝑚𝑏𝑔 ∙ 𝑟 𝑏 = 𝑚𝑏𝑔 ∙ (Π𝜌) (3.39)

Finally the total potential energy can be obtained as:

𝒫 = 𝒫𝑓 + 𝒫𝑏 = 𝑚𝑏𝑔 ∙ (Π𝜌) (3.40)

2.5 EQUATIONS OF MOTION

In the first steps, is been exposed which are the reduced degrees of freedom to represent the model

and the relations of kinetic and potential energy that determinates the dynamics of the system. In this

section this equations of motion that represent the system are derived to find the equations of motion.

For this purpose, is used the Lagrangian:

ℒ = 𝒦 − 𝒫 =

=
1

2
(𝑚𝑏‖𝜌 ‖2 + 𝐽𝑓 + 𝐽𝑏)𝜃̇

2 + (𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′𝜃̇𝜑̇ +
1

2
(𝑚𝑏 + 𝐽𝑏𝑝

2)𝑠′2𝜑̇2 −

𝑚𝑏𝑔 ∙ (Π𝜌) (3.41)

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

23

The Euler-Langrange equations derive the equations of motion with the Lagrangian as follows:

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕𝜃̇
) −

𝜕ℒ

𝜕𝜃
= 𝑢

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕𝜑̇
) −

𝜕ℒ

𝜕𝜑
= 0 (3.42)

The equation of motion can be represented using a transformation of the previous equations as

follows:

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝐵(𝑞)𝑢 (3.43)

In this expression is particularly important the character u that is the actuator driving the frame.

𝐵(𝑞) = [1 0]𝑇 is the coupling matrix to stablish where the actuator drives the system, 𝑀(𝑞) is the

mass matrix, 𝐶(𝑞, 𝑞̇) is the Coriolis and centrifugal matrix and 𝐺(𝑞) is the gravity matrix. The steps

to obtain these matrix, are the same taken in previous work [2] and [3]. Each matrix has its own

algorithm where:

 ,𝑚𝑖𝑗 ≔
𝜕

𝜕𝜃̇
(

𝜕𝒦

𝜕𝑞̇𝑗
)

𝑐𝑗𝑘 ≔ ∑ 𝑐𝑖𝑗𝑘(𝑞)𝑞̇𝑖
2
𝑖=1

𝑔𝑖 ≔
𝜕𝒫

𝜕𝑞𝑖
 (3.44)

Where 𝑐𝑖𝑗𝑘 ≔
1

2
(
𝜕𝑚𝑘𝑗

𝜕𝑞𝑖
+

𝜕𝑚𝑘𝑖

𝜕𝑞𝑗
−

𝜕𝑚𝑖𝑗

𝜕𝑞𝑘
)

Mass Matrix 𝑀(𝑞)

 𝑚11 ≔
𝜕

𝜕𝜃̇
(
𝜕𝒦

𝜕𝜃̇
) = 𝑚𝑏‖𝜌 ‖2 + 𝐽𝑓 + 𝐽𝑏

 𝑚12 ≔
𝜕

𝜕𝜃̇
(
𝜕𝒦

𝜕𝜑̇
) = (𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′

 𝑚21 ≔
𝜕

𝜕𝜑̇
(
𝜕𝒦

𝜕𝜃̇
) = 𝑚12

 𝑚22 ≔
𝜕

𝜕𝜑̇
(
𝜕𝒦

𝜑̇
) = (𝑚𝑏 + 𝐽𝑏𝑝

2)𝑠′2 (3.45)

As a result:

𝑀(𝑞) = [
𝑚𝑏‖𝜌 ‖2 + 𝐽𝑓 + 𝐽𝑏 (𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′

(𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′ (𝑚𝑏 + 𝐽𝑏𝑝
2)𝑠′2

] (3.46)

Centrifugal and Coriolis matrix 𝐶(𝑞, 𝑞̇)

 𝑐111 ≔
1

2

𝜕𝑚11

𝜕𝜃
= 0

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

24

 𝑐112 ≔
1

2
(2

𝜕𝑚21

𝜕𝜃
−

𝜕𝑚11

𝜕𝜑
) = −𝑚𝑏𝑠

′𝜌 ∙ 𝜏

 𝑐121 ≔
1

2

𝜕𝑚11

𝜕𝜑
= 𝑚𝑏𝑠

′𝜌 ∙ 𝜏

 𝑐122 ≔
1

2

𝜕𝑚22

𝜕𝜃
= 0

 𝑐211 ≔
1

2

𝜕𝑚11

𝜕𝜑
= 𝑚𝑏𝑠

′𝜌 ∙ 𝜏

 𝑐212 ≔
1

2

𝜕𝑚22

𝜕𝜃
= 0

 𝑐221 ≔
1

2
(2

𝜕𝑚12

𝜕𝜑
−

𝜕𝑚22

𝜕𝜃
) = (𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′′ + 𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜅)𝑠′2

𝑐222 ≔
1

2

𝜕𝑚22

𝜕𝜑
= (𝑚𝑏 + 𝐽𝑏𝑝

2)𝑠′𝑠′′ (3.47)

Now using the formulas above:

 𝑐11 = 𝑐111𝜃̇ + 𝑐211𝜑̇ = 𝑚𝑏𝑠
′𝜌 ∙ 𝜏 𝜑̇

 𝑐12 = 𝑐121𝜃̇ + 𝑐221𝜑̇ = 𝑚𝑏𝑠
′𝜌 ∙ 𝜏 𝜃̇ + ((𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′′ + 𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜅)𝑠′2) 𝜑̇

 𝑐21 = 𝑐112𝜃̇ + 𝑐212𝜑̇ = −𝑚𝑏𝑠
′𝜌 ∙ 𝜏 𝜃̇

𝑐22 = 𝑐122𝜃̇ + 𝑐222𝜑̇ = (𝑚𝑏 + 𝐽𝑏𝑝
2)𝑠′𝑠′′𝜑̇ , (3.48)

As a result:

𝐶(𝑞, 𝑞̇) = [
𝑚𝑏𝑠

′𝜌 ∙ 𝜏 𝜑̇ 𝑚𝑏𝑠
′𝜌 ∙ 𝜏 𝜃̇ + ((𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′′ + 𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜅)𝑠′2) 𝜑̇

−𝑚𝑏𝑠
′𝜌 ∙ 𝜏 𝜃̇ (𝑚𝑏 + 𝐽𝑏𝑝

2)𝑠′𝑠′′𝜑̇
] (3.49)

Gravity matrix 𝐺(𝑞)

𝑔1 =
𝜕𝒫

𝜕𝜃
= 𝑚𝑏𝑔 ∙ (Π′𝜌)

𝑔2 =
𝜕𝒫

𝜕𝜑
= 𝑚𝑏𝑔 ∙ (Π𝜏 𝑠′) (3.50)

As a result:

𝐺(𝑞) = [
𝑚𝑏𝑔 ∙ (Π′𝜌)

𝑚𝑏𝑔 ∙ (Π𝜏 𝑠′)
] (3.51)

With Π′ =
𝑑Π

𝑑𝜃
.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

25

4 MOTION PLANNING

4.1 INTRODUCTION

In the last chapters first have been studied the physical characteristics with some assumptions. Then

the relations between kinematics and the study of the energy in the system have permitted to express

the dynamics of the Butterfly robot and all the relations between parameters. The next natural step is

a study of the motion planning to find feasible trajectories for the system. In this chapter, is studied

the motion planning performed in [2] and [3] and new feasible trajectories are accomplished.

4.2 VIRTUAL HOLOMONIC CONSTRAINT

In the study of the system done, one of the things that characterizes and makes it challenging is the

fact that is an underactuated system with to degreed of freedom 𝑞 = [𝜃 𝜑]𝑇 and just one input or

actuator in the system 𝑢 to control them.

To overcome this problem is used what is known as a virtual holonomic constraint (VHC). A VHC

is a constraint that does not exists in reality and that links two variables, in this case, the two degrees

of freedom 𝜃 and 𝜑, so that controlling one of them, the other is controlled as well. The ball forms

part of the system but a VHC is necessary in order to control it. The same procedure is conducted in

[2] and [3].

In the case that this thesis fronts, the VHC is applied from 𝜑 to 𝜃 . That means that 𝜃 can be

described as a function of 𝜑 and the structure that describes is as follows:

 𝜃∗ = 𝛳(𝜑∗)

 𝜃̇∗ = 𝛳′(𝜑∗)𝜑∗̇

𝜃∗̈ = 𝛳′′(𝜑∗)𝜑∗̇
2 + 𝛳′(𝜑∗)𝜑∗̈ (4.1)

Where 𝛳′(𝜑∗) =
𝑑𝛳(𝜑∗)

𝑑𝜑∗
 and 𝛳′′(𝜑) =

𝑑2𝛳(𝜑∗)

𝑑𝜑∗
2 . Using the VHC, is possible to define the

generalized coordinates as:

 𝑞∗(𝑡) = [
𝜃∗

𝜑∗
] = [

𝛳(𝜑∗)
𝜑∗

] = ɸ(𝜑∗)

 𝑞̇∗(𝑡) = [
𝜃̇∗

𝜑̇∗
] = [

𝛳′(𝜑∗)
1

]𝜑∗̇ = ɸ′(𝜑∗)𝜑∗̇

𝑞̈∗(𝑡) = [
𝜃∗̈

𝜑∗̈
] = [

𝛳′′(𝜑∗)
0

]𝜑∗̇
2 + [

𝛳′(𝜑∗)
1

]𝜑∗̈ = ɸ′′(𝜑∗)𝜑∗̇
2 + ɸ′(𝜑∗)𝜑∗̈ (4.2)

From now on, using the symbol ‘∗’ means that it is using the VHC, so 𝜃 is linked virtually with 𝜑

and all the variables depend on 𝜑 = 𝜑∗.

The assumptions of the system taken in the previous chapter forces the need to find motions with

certain characteristics, which can only be achieved by applying a correct VHC and initial conditions.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

26

Therefore there are many factors to consider when designing a VHC, represented as requirements and

restrictions.

This conditions have been studied before and thoroughly in [2] and [3]. Is not object of this thesis to

insist in this matter. Therefore, from this document are gathered the requirements that the VHC has

to fulfil according with how the system behaves and that can be summarized in:

 𝛳(𝜑∗) must be twice differentiable

 If the desired motion is one-directional, then 𝛳(𝜑∗) must be continuously increasing.

 𝛳′(𝜑∗) and 𝛳′′(𝜑∗) must be 𝜋-periodic.

 The resulting reduced dynamics should be bounded.

The VHC is an important part of the motion planning to search for feasible trajectories. And the desire

for a specific behaviour restricts the possibilities of finding one. For that reason in this thesis it is been

chosen a simple VHC considered before in [2] and can be defined as:

𝛳(𝜑∗) = 𝜑∗ − 𝑐 sin(2𝜑∗)

 𝛳′(𝜑∗) = 1 − 2𝑐 cos(2𝜑∗)

 𝛳′′(𝜑∗) = 4𝑐 sin(2𝜑∗) (4.3)

The value of parameter 𝑐 that completes the definition of the VHC, is specified in the section 4.5 and

it is vitally important to develop the different desired trajectories.

4.3 REDUCED DYNAMICS

Following [3], the VHC developed is used to rewrite the equation of motion 4.4 , but just as a function

of the only degree of freedom left 𝜑∗.

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝐵(𝑞)𝑢 (4.4)

For this propose, is used the called annihilator matrix 𝐵⊥(𝑞) to cancel the effect of 𝑢 as follow:

𝐵⊥(𝑞)𝑀(𝑞)𝑞̈ + 𝐵⊥(𝑞)𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐵⊥(𝑞)𝐺(𝑞) = 𝐵⊥(𝑞)𝐵(𝑞)𝑢 = 0 (4.5)

Where 𝐵⊥(𝑞) = [0 1]𝑇.

The rest of the equation is adapted from the effect of 𝐵⊥(𝑞) and from the ordinary generalized

coordinates 𝑞 = [𝜃 𝜑]𝑇 to the new generalized coordinates from the equations (4.2) as follows:

[𝑚21 𝑚22](ɸ′𝜑∗̈ + ɸ′′𝜑∗̇
2) + [𝑐21 𝑐22]ɸ′𝜑∗̇ + 𝑔2 = 0

(𝑚21𝛳
′ + 𝑚22)𝜑∗̈ + 𝑚21𝛳

′′𝜑∗̇
2 + (𝑐21𝛳

′ + 𝑐22)𝜑∗̇ + 𝑔2 =

= (𝑚21𝛳
′ + 𝑚22)𝜑∗̈ + (𝑚21𝛳

′′ +
𝑐21𝛳′

𝜑∗̇
+

𝑐22

𝜑∗̇
)𝜑∗̇

2 + 𝑔2 = 0 (4.6)

What can be finally reduced to what is called the 𝛼𝛽𝛾 equation, depending just on 𝜑∗ and its

derivatives. The equation is described as:

𝛼(𝜑∗)𝜑̈∗ + 𝛽(𝜑∗)𝜑∗̇
2 + 𝛾(𝜑∗) = 0 (4.7)

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

27

Where:

 𝛼(𝜑∗) = (𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′𝛳′ + (𝑚𝑏 + 𝐽𝑏𝑝
2)𝑠′2

𝛽(𝜑∗) = (𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝)𝑠′𝛳′′ − 𝑚𝑏𝑠
′𝜌 ∙ 𝜏 𝛳′2 + (𝑚𝑏 + 𝐽𝑏𝑝

2)𝑠′𝑠′′

𝛾(𝜑∗) = 𝑚𝑏𝑔 ∙ (Π𝜏 𝑠′) (4.8)

And the equation for the input 𝑢 can be simplified:

 𝑢 = [𝑚11 𝑚12] [
𝜃∗̈

𝜑̈∗
] + [𝑐11 𝑐12] [

𝜃̇∗

𝜑̇∗
] + 𝑔1 =

= [𝑚11 𝑚12] [
𝛳′𝜑̈∗ + 𝛳′′𝜑∗̇

2

𝜑̈∗
] + [𝑐11 𝑐12] [

𝛳′𝜑̇∗

𝜑̇∗
] + 𝑔1 (4.9)

4.4 CHECKING FEASIBILITY

To check the feasibility of the motion planning related with the election of the VHC and the initial

conditions, is necessary to set some relation between parameters and verify the fact that there are no

slip conditions and that the ball does not depart any moment in its trajectory from the frame as has

been established in the model assumptions.

From the equation (4.7), is possible to obtain the next relation:

 𝜑̈∗ = −
𝛽

𝛼
𝜑∗̇

2 −
𝛾

𝛼
 (4.10)

From this equation is necessary to prevent the that 𝜑̈∗ tends to infinity. If 𝜑̈∗ → ∞ is because 𝛼 →

0. For this propose, in the thesis are chosen different VHC changing the value of 𝑐 from (4.3) with a

condition. What can be traduced from the equation (4.7) into the next condition:

𝛳′(𝜑∗) ≠ −
(𝑚𝑏+𝐽𝑏𝑝2)𝑠′

(𝑚𝑏𝑘̂∙(𝜌⃗⃗ ×𝜏⃗)+𝐽𝑏𝑝)
 (4.11)

This way, the resulting reduced dynamics are bounded.

The next question to solve is related with the assumptions made at the beginning of the thesis,

specifically with the no slip and no departure conditions. The problem with this conditions is that

there is no relation between parameters that can assure its compliance. However, it can be checked

by obtaining the values of 3 new variables, the normal force 𝐹𝑛, the friction force 𝐹𝑠 and the friction

coefficient 𝜇 between the ball and the frame. The no departure condition complies if 𝐹𝑛 is positive

and the no slip condition complies if there is an agreement between 𝐹𝑛, 𝐹𝑠 and the coefficient 𝜇.

What can be traduced into:

𝐹𝑛 > 0

−𝜇𝐹𝑛 < 𝐹𝑠 < 𝜇𝐹𝑛 (4.12)

Is possible to find the expressions for the forces 𝐹𝑛 and 𝐹𝑠 by using the degrees of freedom and using

constraints. A way to get these expressions can be found following the example and complete

derivation of dynamics in [3] as follows:

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

28

𝐹𝑛 = 𝑚𝑏 (𝑘̂ ∙ (𝜌 × 𝑛⃗)𝜃∗̈ +
1

2
(𝜌 ∙ 𝑛⃗)𝜃̇∗

2
+ 2𝑠′𝜃̇∗𝜑̇∗ + 𝑔 ∙ (Π𝑛⃗))

𝐹𝑠 = −
𝐽𝑏

𝑅
(𝑝𝑠′′𝜑∗̇

2 + 𝑝𝑠′𝜑̈∗ + 𝜃∗̈) (4.13)

Finally, the last of the requirements can be checked for the VHC selected in the different trajectories.

In the next section different values for 𝑐 to complete the VHC are used and for each trajectory

solution its feasibility is verified.

4.5 DYNAMIC BEHAVIOUR

The choice of the initial conditions 𝜑0∗ and 𝜑̇0∗ are also essential when shaping the desired

trajectory. The system’s motion can be substantially changed depending on the initial conditions. To

get a valid solution is needed an agreement between them and the VHC.

As it is been explained, there is an entire process to find new motion planning so that we can get

different behaviours. The idea in this section is to find different new motions based on the change of

parameters. That is why are presented 4 different feasible trajectories for the system. The first of them

has been replicated from [2] and [3]. The parameters to change are and the initial conditions 𝜑0 and

𝜑̇0 and the value of 𝑐, from the VHC:

𝛳(𝜑∗) = 𝜑∗ − 𝑐 sin(2𝜑∗)

𝛳′(𝜑∗) = 1 − 2𝑐 cos(2𝜑∗)

𝛳′′(𝜑∗) = 4𝑐 sin (2𝜑∗) (4.14)

All the algorithms developed in MATLAB of this part of the thesis can be found in APPENDIX. First

are given the values of the parameters to define the VHC and the initial conditions during the

trajectory. Then is shown the phase portrait for the trajectory, followed by the required input, the

evolution with time of the different variables and the demonstration of its feasibility. Ultimately are

given some values of reference for each trajectory as the period 𝑇 of the trajectory and the minimum

value for 𝜇.

4.5.1 CASE 1

In the first case, the trajectory described is a continuous rotation of the frame in a clockwise direction.

For this propose is used:

𝑐 = 0.49 during all the trajectory.

Initial conditions: 𝜑0∗ = 0 𝑟𝑎𝑑 and 𝜑̇0∗ = 4.3 𝑟𝑎𝑑/𝑠

For this initial conditions and VHC, the results can be seen in Figure 4.1, 4.2, and 4.3. As can be seen

in the Figure 4.3 the variable 𝜑∗ is continuously increasing with time and that results in a periodical

response of 𝜑̇∗ and 𝑢.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

29

Figure 4.1 Case 1 trajectory – source: own elaboration.

Figure 4.2 Case 1 input – source: own elaboration.

Figure 4.3 Case 1 evolution time – source: own elaboration.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

30

Figure 4.4 Case 1 Normal and friction force – source: own elaboration

As can be seen in Figure 4.4 the normal force 𝐹𝑛 is positive and meets the requirements. And for this

trajectory the value of 𝜇 that guarantees the no slip conditions is 𝜇 > 0.1252. The period in this

trajectory is 𝑇 = 3.19𝑠𝑒𝑐𝑜𝑛𝑑𝑠.

4.5.2 CASE 2:

In the second case, the trajectory described is a continuous rotation of the frame in a clockwise

direction as the case 1. The difference is that now the laps are slower. For this propose is used:

𝑐 = 0.49 during all the trajectory.

Initial conditions: 𝜑0∗ = 0 𝑟𝑎𝑑 and 𝜑̇0∗ = 4.1 𝑟𝑎𝑑/𝑠

For this initial conditions and VHC, the results can be seen in Figures 4.5, 4.6, and 4.7. As can be

seen in the Figure 4.7 the variable 𝜑∗ is continuously increasing with time and that results in a

periodical response of 𝜑̇∗ and 𝑢.

Figure 4.5 Case 2 trajectory – source: own elaboration.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

31

Figure 4.6 Case 2 input – source: own elaboration.

Figure 4.7 Case 2 evolution time – source: own elaboration.

Figure 4.8 Case 2 Normal and friction force – source: own elaboration

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

32

As can be seen in Figure 4.8 the normal force 𝐹𝑛 in this case 2 is positive and meets the requirements.

And for this trajectory the value of 𝜇 that guarantees the no slip conditions is 𝜇 > 0.1263. The

period in this trajectory is 𝑇 = 4.8192 𝑠𝑒𝑐𝑜𝑛𝑑𝑠.

As can be seen in Figure 4.8 the normal force 𝐹𝑛 in this case 2 is positive and meets the requirements.

4.5.3 CASE 3:

In the third case, the trajectory described is a continuous rotation of the frame in a counter clockwise

direction. For this propose is used:

𝑐 = 0.49 during all the trajectory.

Initial conditions: 𝜑0∗ = 0 𝑟𝑎𝑑 and 𝜑̇0∗ = −4.3 𝑟𝑎𝑑/𝑠

For this initial conditions and VHC, the results can be seen in Figures 4.9, 4.10, and 4.11. As can be

seen in the Figure 4.11 the variable 𝜑∗ is continuously decreasing with time and that results in a

periodical response of 𝜑̇∗ and 𝑢. This trajectory can be noticed that the input is right the opposite of

the first case.

Figure 4.9 Case 3 trajectory – source: own elaboration.

Figure 4.10 Case 3 input – source: own elaboration.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

33

Figure 4.11 Case 3 evolution time – source: own elaboration.

Figure 4.12 Case 3 Normal and friction force – source: own elaboration

As can be seen in Figure 4.12 the normal force 𝐹𝑛 again is positive and meets the requirements. And

for this trajectory the value of 𝜇 that guarantees the no slip conditions is 𝜇 > 0.1252. The period in

this trajectory is 𝑇 = 3.19.

4.5.4 CASE 4:

In the last case, the trajectory describes an alternating rotation between clockwise direction and

counter clockwise direction with a transition trajectory from one direction to the other. For this

propose is used:

𝑐 = 0.48 during the laps, and 𝑐 = 0.45 during the transition from one direction to the other.

Initial conditions: 𝜑0∗ = 0 𝑟𝑎𝑑 and 𝜑̇0∗ = 4.45 𝑟𝑎𝑑/𝑠

For this initial conditions and VHC, the results can be seen in Figure 4.13, 4.14 and 4.15. As can be

seen in the Figure 4.15 the variable 𝜑∗ is continuously increasing and decreasing with time and that

results in a periodical response of 𝜑̇∗ and 𝑢.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

34

Figure 4.13 Case 4 trajectory – source: own elaboration.

Figure 4.14 Case 4 input – source: own elaboration.

Figure 4.15 Case 4 evolution time – source: own elaboration.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

35

Figure 4.16 Case 4 Normal and friction force – source: own elaboration

As can be seen in Figure 4.16 the normal force 𝐹𝑛 in the 4th case is positive and meets the

requirements. And for this trajectory the value of 𝜇 that guarantees the no slip conditions is 𝜇 >

0.1397. The period in this trajectory is 𝑇 = 8.97 𝑠𝑒𝑐𝑜𝑛𝑑𝑠.

The friction coefficient 𝜇 for plastic materials, as is the case in the butterfly robot, is approximately

0.25-0.5. What means that during the simulations, there are no slip conditions in all the trajectories

studied.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

36

5 CONTROL AND IMPLEMENTATION

5.1 INTRODUCTION TO CONTROL AND IMPLEMENTATION

The thesis presented, has as objective the analysis of the modelling and control of the Butterfly Robot,

an underactuated non-prehensile system.

At this point, a thorough study of the modelling of the system it is been done, then followed by

developing different motions of feasible rolling, assuming some requirements.

Hence, the next logical step in this thesis is the development of the control of the system, a step by

step method, so that the possible discrepancies between the theorical system and the physical system

can be settled.

For this propose, a study and appliance of a stabilizing feedback controller is conducted. The

justification of this section is based in the fact that the theorical behaviour and the real behaviour have

some deviations that have to be solved. The motion planning in the previous section are unstable and

the nature of this deviations are multiple, for example the assumptions at the beginning of the thesis,

some simplifications of the theorical system and physical behaviour or imperfections in the shape

of the two bodies that conform the motion.

Underactuated system are becoming more and more common in fields like robotics. The case of study

is an underactuated system where the actuator can’t be feedback linearized. This makes the control

far more complex and requires an alternative way to perform it.

The orbital stabilization problem is commonly used to control complex problems where the number

of actuators are less than the number of degrees of freedom as in the Butterfly robot. The problem

becomes more complex when the system is more underactuated. In this particular case, the number

of actuators is one, and is referred to the torque conducted in the centre of the frame. While the number

of degrees of freedom has been reduced to two in the previous sections.

So in this section is presented a control based on orbital stability and transverse coordinates to solve

this problem.

5.2 ORBITAL STABILIZATION

In this thesis the method used follows [1] and [5], known as the orbital stabilization based in

transverse linearization. The traditional way of solving this problem is not possible and that’s why is

used the orbital stability that can be reduced into stability of transverse coordinates associated with

the motion. For this propose is computed a transverse linearization, for a given motion.

5.3 MOVING PONCAIRÉ SECTION

To study the orbital stability is introduced the Moving Poincaré sections 𝑆(∙). As described in [6] a

Moving Poincaré section is a family of surfaces 𝑆(∙) associated with a solution of the system 𝑞∗(𝑡).

The orbit of the followed motion is sampled periodically as it intersects with the Poincaré sections as

can be seen in the Figure 5.1.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

37

Figure 5.1 Moving Poincaré sections – source: own elaboration.

The surfaces 𝑆(∙) locally intersects the orbit and its transversal to it. The local behaviour is studied

in a proximity of the solution and therefore new variables have to be found so that the transversal

linearization can be conducted.

At this point is introduced the scalar variables 𝜓(𝑡), describing the position along the trajectory of

the motion planning, and the transversal coordinates 𝑥⊥, that define the location on the surfaces 𝑆(∙)

of the dynamics transversal to the ideal trajectory solution 𝑞∗(𝑡).

5.4 CHANGING GENERALIZED COORDINATES TO TRANSVERSAL COORDINATES

From the Euler-Lagrange equations modelling the system was obtained its transformation to:

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝐵(𝑞)𝑢 (5.1)

The generalized coordinates of the system and their derivative are:

𝑞 = [𝜃 𝜑]𝑇

𝑞̇ = [𝜃̇ 𝜑̇]𝑇

𝑞̈ = [𝜃̈ 𝜑̈]𝑇 ,(5.2)

Both degrees of freedom are linked by a VHC:

 𝜃∗ = 𝛳(𝜑∗)

 𝜃̇∗ = 𝛳′(𝜑∗)𝜑∗̇

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

38

𝜃∗̈ = 𝛳′′(𝜑∗)𝜑∗̇
2 + 𝛳′(𝜑∗)𝜑∗̈ (5.3)

It is been seen that this permits to rewrite the dynamics as:

𝛼(𝜑∗)𝜑̈∗ + 𝛽(𝜑∗)𝜑∗̇
2 + 𝛾(𝜑∗) = 0 (5.4)

As a result, in this format have been developed different motion planning as a solution of the system

that can be described as:

 𝑞∗(𝑡) = [
𝜃∗

𝜑∗
] = [

𝛳(𝜑∗)
𝜑∗

] = ɸ(𝜑∗)

 𝑞̇∗(𝑡) = [
𝜃̇∗

𝜑̇∗
] = [

𝛳′(𝜑∗)
1

]𝜑∗̇ = ɸ′(𝜑∗)𝜑∗̇

𝑞̈∗(𝑡) = [
𝜃∗̈

𝜑∗̈
] = [

𝛳′′(𝜑∗)
0

]𝜑∗̇
2 + [

𝛳′(𝜑∗)
1

]𝜑∗̈ = ɸ′′(𝜑∗)𝜑∗̇
2 + ɸ′(𝜑∗)𝜑∗̈ (5.5)

The system (5.1) can be reformulated the next way as in [1], when a motion planning is defined by

the control input variable:

𝑢∗(𝜑, 𝜑̇) =
[𝐿−1(𝑁+𝑀−1𝐶𝐿(

0
𝜑̇

))+𝑀−1𝐺]
1

[𝐿−1𝑀−1]1,1
 (5.6)

Where:

 𝑀 = 𝑀(𝛳(𝜑), 𝜑)

 𝐶 = 𝐶(𝛳(𝜑), 𝜑, 𝛳′(𝜑)𝜑̇, 𝜑̇)

 𝐺 = 𝐺(𝛳(𝜑), 𝜑)

 𝐿 = 𝐿(𝜑) = (
1 𝛳′(𝜑)
0 1

)

𝑁 = 𝑁(𝜑) = (𝛳
′′(𝜑)𝜑̇2

0
) (5.7)

Once the orbital solution it is been described, with it can be associated a moving Poincaré section

𝑆(𝑡). As was pointed in the previous section, a scalar variable is necessary to describe the position

along the curve, it is presented as:

𝜓(𝑡) = 𝜑(𝑡) = 𝜑∗(𝑡) (5.8)

The same way, to stablish the location on 𝑆(𝑡), and an alternative set of transversal coordinates linear

independent are proposed:

𝑥⊥(𝑞, 𝑞̇) = [
𝑦
𝑦̇
𝑧
] = [

𝜃 − 𝛳(𝜑∗)

𝜃̇ − 𝛳′(𝜑∗)𝜑∗̇

𝜑̇ − 𝜑∗̇(𝜑∗)

] (5.9)

Note that if the real process follows exactly the motion planning, 𝑥⊥(𝑞, 𝑞̇) = 𝑥⊥(𝑞∗, 𝑞̇∗) then:

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

39

𝑥⊥(𝑞∗, 𝑞̇∗) = [
𝑦
𝑦̇
𝑧
] = [

𝛳(𝜑∗) − 𝛳(𝜑∗)

𝛳′(𝜑∗)𝜑∗̇ − 𝛳′(𝜑∗)𝜑∗̇

𝜑∗̇(𝜑∗) − 𝜑∗̇(𝜑∗)
] = [

0
0
0
] (5.10)

It has sense since (𝑞∗, 𝑞̇∗) is the origin of the transversal coordinates of the system.

5.5 VIRTUAL CONTROL INPUT AND TRANSVERSE LINEARIATION

In this section is computed the transverse linearization, that is defined as the linearization of the

dynamics of the transverse coordinates.

Figure 5.2 Transverse linearization – source: own elaboration.

Using the transverse coordinates 𝑥⊥, can be computed a transvers linearization of the transverse

dynamics above the system solution 𝑞∗. The dynamics of the mechanical system (5.1) is transformed

into the transverse dynamics through the transverse coordinates. For this propose are derived the new

set of transverse coordinates 𝑥⊥ to obtain the transverse dynamics 𝑥̇⊥:

𝑥̇⊥(𝑞, 𝑞̇) = [
𝑦̇
𝑦̈
𝑧̇
] =

𝑑𝑥⊥

𝑑𝑡
=

𝑑𝑥⊥

𝑑𝑞

𝑑𝑞

𝑑𝑡
+

𝑑𝑥⊥

𝑑𝑞̇

𝑑𝑞̇

𝑑𝑡
 (5.11)

At this point, is important to define the partial derivations:

𝑑𝑥⊥

𝑑𝑞
=

[

𝑑𝑦

𝑑𝑞

𝑑𝑦̇

𝑑𝑞

𝑑𝑧

𝑑𝑞]

=

[

𝑑𝑦

𝑑𝜃

𝑑𝑦

𝑑𝜑

𝑑𝑦̇

𝑑𝜃

𝑑𝑦̇

𝑑𝜑

𝑑𝑧

𝑑𝜃

𝑑𝑧

𝑑𝜑

]

= [

1 −𝛳′
0 −𝛳′′𝜑̇

0 −
𝑑𝜑∗̇

𝑑𝜑

] = [

1 −𝛳′
0 −𝛳′′(𝑧 + 𝜑∗̇(𝜑∗))

0 −
𝑑𝜑∗̇

𝑑𝜑

] , (5.12)

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

40

𝑑𝑥⊥

𝑑𝑞̇
=

[

𝑑𝑦

𝑑𝑞̇

𝑑𝑦̇

𝑑𝑞̇

𝑑𝑧

𝑑𝑞̇]

=

[

𝑑𝑦

𝑑𝜃̇
𝑑𝑦̇

𝑑𝜃̇
𝑑𝑧

𝑑𝜃̇

𝑑𝑦

𝑑𝜑̇

𝑑𝑦̇

𝑑𝜑̇

𝑑𝑧

𝑑𝜑̇]

= [
0 0
1 −𝛳′
0 1

] (5.13)

Also are defined:

𝑑𝑞(𝑥⊥,𝜓,𝑢)

𝑑𝑡
= 𝑞̇(𝑥⊥, 𝜓, 𝑢) = [

𝜃̇(𝑥⊥, 𝜓, 𝑢)

𝜑̇(𝑥⊥, 𝜓, 𝑢)
] = [

𝑦̇ + 𝛳′(𝑧 + 𝜑∗̇(𝜑∗))

𝑧 + 𝜑∗̇(𝜑∗)
] (5.14)

𝑑𝑞̇(𝑥⊥,𝜓,𝑢)

𝑑𝑡
= 𝑞̈(𝑥⊥, 𝜓, 𝑢) = [

𝜃̈(𝑥⊥, 𝜓, 𝑢)

𝜑̈(𝑥⊥, 𝜓, 𝑢)
] = 𝑀−1 (−𝐶𝑞̇(𝑥⊥, 𝜓, 𝑢) − 𝐺 + (

𝑢
0
)) (5.15)

Now, the complete calculation of the transversal dynamics can be computed as:

 𝑥̇⊥(𝑞, 𝑞̇) = [
𝑦̇
𝑦̈
𝑧̇

] = [

1 −𝛳′

0 −𝛳′′𝜑̇

0 −
𝑑𝜑∗̇

𝑑𝜑

] [
𝜃̇
𝜑̇
] + [

0 0
1 −𝛳′

0 1
] [

𝜃̈
𝜑̈
] = [

𝜃̇ − 𝛳′𝜑̇

−𝛳′′𝜑̇2 + 𝜃̈ − 𝛳′𝜑̈

−
𝑑𝜑∗̇

𝑑𝜑
𝜑̇ + 𝜑̈

] =

 = [

𝑦̇

−𝛳′′(𝑧 + 𝜑∗̇)
2 + 𝜃̈ − 𝛳′𝜑̈

−
𝑑𝜑∗̇

𝑑𝜑
(𝑧 + 𝜑∗̇) + 𝜑̈

] (5.16)

Is introduced the virtual control input 𝑤, that is used as a feedback control law in the system to

stabilize it, as proposed in [1]. Introducing this input, the system (5.6) would be rearranged to:

𝑤 = [𝐿−1𝑀−1]1,1𝑢 − [𝐿−1 (𝑁 + 𝑀−1𝐶𝐿 (
0
𝜑̇
)) + 𝑀−1𝐺]

1

 (5.17)

Introducing this new virtual control input 𝑤 , into the dynamics 𝑥̇⊥ , we obtain the following

transformed system:

𝑦̈ = 𝑤 (5.18)

𝑧̇ =
1

𝛼
(

𝛾

𝜑∗̇
𝑧 − 𝛽𝜑∗̇𝑧 − 𝛽𝑧2 + 𝑔𝑦𝑦 + 𝑔𝑦̇𝑦̇) +

𝑔𝑤

𝛼
𝑤 (5.19)

Where:

𝑔𝑦 = −𝑠′𝑚𝑏𝑔 (cos (
𝛾

2
+ 𝛳) ,− sin (

𝛾

2
+ 𝛳)) 𝜏 sinc

𝛾

2

 , 𝑔𝑦̇ = 𝑚𝑏𝑠
′𝜏𝑇𝜌(𝑦̇ + 2𝛳′𝜑̇)

𝑔𝑤 = −𝑠′(𝑚𝑏𝑘̂ ∙ (𝜌 × 𝜏) + 𝐽𝑏𝑝) (5.20)

Then, the linearization around the solution 𝑞∗ of the dynamics from above of the transverse

coordinates 𝑥⊥, can be described as:

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

41

𝑥̇⊥ = 𝐴(𝑡) 𝑥⊥ + 𝑏(𝑡)𝑤 (5.21)

Where: 𝐴(𝑡) = 𝐴(𝜑∗) = [

0 1 0
0 0 0
𝑔𝑦

𝛼

𝑔𝑦̇

𝛼

𝛾−𝛽𝜑̇∗
2

𝛼𝜑∗̇

] and 𝑏(𝑡) = 𝑏(𝜑∗) = [

0
1
𝑔𝑤

𝛼

]

The solution of the system (5.21) is the key to solve the problem of orbital stability for the motion

planning 𝑞∗(𝜑∗). Following the same procedure of [6], is possible to find a matrix gain 𝐾(𝑡), T

periodic, that makes the feedback control 𝑤 to stabilize the linear control system. This concept it is

been developed from the minimization of a cost function. For more information about the procedure

of how to arrive to this simplification, see [6]. The result would be the following:

𝑤(𝑡, 𝑥⊥) = 𝐾(𝑡)𝑥⊥(𝑡) = −
1

𝛤
𝑏(𝑡)𝑇𝑅(𝑡)𝑥⊥ (5.22)

Where the new variable 𝑅(𝑡), is a symmetric positive-semidefinite matrix 3x3 function, solution of

the periodic Riccati differential equation (PRDE). The Riccati differential equation ℜ can be

expressed as:

ℜ(𝑅, 𝑡) = 𝑅̇(𝑡) + 𝐴(𝑡)𝑇𝑅(𝑡) + 𝑅(𝑡)𝐴(𝑡) + 𝑄(𝑡) − 𝑅(𝑡)𝐵(𝑡)𝛤(𝑡)−1𝐵(𝑡)𝑇𝑅(𝑡) = 0 (5.23)

With: 𝛤 > 0 and 𝑄 > 0, both symmetric positive-definite matrices (SPD).

Once this equation is solved, the next step then would be to use the feedback virtual control input 𝑤,

to compute the control input of the system 𝑢(𝑡) as follows:

𝑢(𝑡) =
𝑤+[𝐿−1(𝑁+𝑀−1𝐶𝐿(

𝑦̇
𝜑̇

))+𝑀−1𝐺]
1

[𝐿−1𝑀−1]1,1
 (5.24)

With this equation, the orbital stabilisation arrives to its conclusion. In the next sections is explained

how is solved the periodic Riccati differential equation and then how the control of the system is

finally developed.

5.6 SOLUTION OF PERIODIC RICATTI DIFFERENTIAL EQUATION

A way to solve this equation has been studied in this section. The complication of this equation resides

in the fact that there is not a reliable algorithm to solve it. For this reason, what it is been done is a

simplification of the problem so that a feasible solution can be achieved. It is been followed the

method and simplification of [6], [7] and [8].

The solution of this matrix is unique and can be computed in different ways. In this thesis, the PRDE

problem is transformed in a semi-definite programming (SDP) problem, where a function is

minimized and is subject to some linear matrix inequalities (LMI) constraints. This is possible

because of the nature of the equation, where different periodic solutions 𝑅(𝑡) can be found for the

inequality ℜ(𝑅, 𝑡) > 0, but only the maximation solution, 𝑅+(𝑡) is the periodic stabilizing solution.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

42

This way, the problem can be transformed into the next SDP problem:

Minimize the function: −ℐ(𝑅(𝑡))

Subject to 𝑆(𝑅, 𝑡) ≥ 0 (5.25)

Where:

ℐ(𝑅(𝑡)) = 𝑡𝑟(𝑅(𝑡)) (5.26)

𝑆(𝑅, 𝑡) = [
𝑅̇(𝑡) + 𝐴(𝑡)𝑇𝑅(𝑡) + 𝑅(𝑡)𝐴(𝑡) + 𝑄(𝑡) 𝑅(𝑡)𝐵(𝑡)

𝐵(𝑡)𝑇𝑅(𝑡) 𝛤(𝑡)
] ≥ 0 (5.27)

The function 𝑡𝑟 means trace (sum of the diagonal coefficients of a matrix). By using the Schur

complement, the problem ℜ(𝑅, 𝑡) > 0, its been transformed into the LMI 𝑆(𝑅, 𝑡) > 0.

Still, remains the complication that this new definition of the problem, is an infinite problem and is

necessary to transform it in a finite problem so that an analytical solution with existing numerical

methods can be performed. For that propose, the SDP infinite problem can be reformulated as a SDP

discrete finite problem as:

Minimize the function: −ℐ(𝑅̅(𝑡)),

Subject to 𝑆𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = 1,… , 𝐿. (5.28)

Where the function 𝑅̅(𝑡), is a symmetric, 𝑇 periodic trigonometric polynomial approximation of

𝑅(𝑡) with the period 𝑇 of the system in each case. For the case of study, it is been decided to use as

a , 𝑇 periodic trigonometric polynomial the next:

𝑅̅(𝑡) = 𝑅0 + ∑ (cos(𝑘𝜔𝑡)𝑅𝑎,𝑘 + sin(𝑘𝜔𝑡)𝑅𝑏,𝑘)𝑀
𝑘=1 (5.29)

With 𝜔 =
2𝜋

𝑇
 and a total of 2𝑀 + 1 symmetric matrices. In this new formulation, 𝐿 determinates

the evenly spaced time samples that discretizes the problem. Now the problem can be defined as:

ℐ(𝑅̅(𝑡)) = ∑ 𝑡𝑟(𝑅0 + ∑ (cos(𝑘𝜔𝑡𝑗) 𝑅𝑎,𝑘 + sin(𝑘𝜔𝑡𝑗)𝑅𝑏,𝑘)𝑀
𝑘=1)𝐿

𝑗=1 (5.30)

𝑆𝑗(𝑅̅(𝑡𝑗), 𝑡𝑗) = [
𝑅̇̅(𝑡𝑗) + 𝐴(𝑡𝑗)

𝑇
𝑅̅(𝑡𝑗) + 𝑅̅(𝑡𝑗)𝐴(𝑡𝑗) + 𝑄(𝑡𝑗) 𝑅̅(𝑡𝑗)𝐵(𝑡𝑗)

𝐵(𝑡𝑗)
𝑇
𝑅̅(𝑡𝑗) 𝛤(𝑡𝑗)

] ≥ 0 (5.31)

Where 𝑡𝑗 = (𝑗 − 1)
𝑇

𝐿
 and 𝑗 = 1,… , 𝐿.

To complete the definition of the problem, is necessary to add a set of LMI constraints that assures

the boundedness on the polynomial 𝑅̅. This new constraints are:

−𝑑𝐼𝑛 ≤ 𝑅̅(𝑡𝑗) ≤ 𝑑𝐼𝑛 (5.32)

With d, a constant value of choice. An infinite problem, it is been transformed in a finite problem

with a finite number of matrices that can be computed. So the problem is reduced to get all the

coefficients from 𝑅0, 𝑅𝑎,𝑘 and 𝑅𝑏,𝑘.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

43

5.7 FINDING THE ALGORITH

In this section, is explained how the problem is restructured to be solved through the SEDUMI tool

for MATLAB. An algorithm is proposed in this thesis using the structures of SEDUMI to compute

the problem of interest. After this, the feasibility and validity of this algorithm is checked to assure

that the problem is solved correctly.

The SEDUMI tool for MATLAB have different ways to be used depending of the problem of interest.

In this case, the structure from [9] that is going to be used and that this thesis uses to transform the

problem, is the standard dual SDP problem:

Minimize 𝑐𝑇𝑦 ,

Subject to: 𝐹0 + 𝑦1𝐹1 + ⋯+ 𝑦𝑝𝐹𝑝 ≥ 0 (5.33)

With vector 𝑦 = [𝑦1 𝑦2 … 𝑦𝑝]𝑇, and 𝐹𝑖 are symmetric matrices.

It is been necessary then to adapt the SDP problem of interest to this structure. Considering that all

the 2𝑀 + 1 incognito matrices are symmetric, the incognito coefficients are the diagonal and the

superior triangle of each matrix, as can be seen in the figure (5.34).

𝑅0 = [

𝑦1 𝑦2 𝑦3

𝑦2 𝑦4 𝑦5

𝑦3 𝑦5 𝑦6

], 𝑅𝑎,1 = [

𝑦7 𝑦8 𝑦9

𝑦8 𝑦10 𝑦11

𝑦9 𝑦11 𝑦12

], …, 𝑅𝑏,𝑀 = [

𝑦𝑝−5 𝑦𝑝−4 𝑦𝑝−3

𝑦𝑝−4 𝑦𝑝−2 𝑦𝑝−1

𝑦𝑝−3 𝑦𝑝−1 𝑦𝑝

] (5.34)

Where the total number of incognito coefficients is 𝑝 = 𝑛
𝑛+1

2
(2𝑀 + 1), and where 𝑛 = 3 is the

size of the matrix 𝑅 𝑛𝑥𝑛. Then each 𝑦𝑖 is an incognito coefficient multiplied by the vector 𝑐𝑇,

necessary to represent the function −ℐ(𝑅̅(𝑡)) to minimize, as follows:

−ℐ(𝑅̅(𝑡)) = 𝑐𝑇𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 + ⋯+ 𝑐𝑝𝑦𝑝 (5.35)

From (5.30) is possible to compute:

 𝑐 = [𝑐1, 𝑐2, 𝑐3, 𝑐4 … , 𝑐7, 𝑐8, 𝑐9, 𝑐10 … , 𝑐13, 𝑐14, 𝑐15, 𝑐16, … , 𝑐𝑝−3, 𝑐𝑝−2, 𝑐𝑝−1, 𝑐𝑝] =

 = [𝐿, 0,0, 𝐿, … , ∑ cos(𝜔𝑡𝑗)
𝐿
𝑗=1 , 0,0, ∑ cos(𝜔𝑡𝑗)

𝐿
𝑗=1 , … , ∑ sin(𝜔𝑡𝑗)

𝐿
𝑗=1 , 0,0, ∑ sin(𝜔𝑡𝑗)

𝐿
𝑗=1 , … ,

∑ sin(𝑀𝜔𝑡𝑗)
𝐿
𝑗=1 , 0,0, ∑ sin(𝑀𝜔𝑡𝑗)

𝐿
𝑗=1] (5.36)

The case of the 𝐹𝑖 matrices is more elaborated because the huge amount of LMI constraints that

complete the SDP problem. At this point, the constraints of boundedness are divided in:

−𝑑𝐼𝑛 ≤ 𝑅̅(𝑡𝑗) ≤ 𝑑𝐼𝑛 =

= {
𝑆𝐿+𝑗 = 𝑑𝐼𝑛 + 𝑅̅(𝑡𝑗) ≥ 0

𝑆2𝐿+𝑗 = 𝑑𝐼𝑛 − 𝑅̅(𝑡𝑗) ≥ 0
 (5.37)

For 𝑗 = 1,… , 𝐿.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

44

With this division, each constraint 𝑆1, 𝑆2, … , 𝑆𝐿, 𝑆𝐿+1, … , 𝑆3𝐿 can be transformed into:

𝑆𝑗 = 𝑆𝑗,0 + ∑ 𝑆𝑗,𝑖𝑦𝑖
𝑝
𝑖 = 𝑆𝑗,0 + 𝑆𝑗,1𝑦1 + 𝑆𝑗,2𝑦2 + ⋯+ 𝑆𝑗,𝑝𝑦𝑝 ≥ 0 (5.38)

For 𝑗 = 1,… , 3𝐿 and 𝑖 = 1,… , 𝑝. Where [𝑆1, 𝑆2, … , 𝑆𝐿] are matrices 4x4 as can be seen in (5.31)

and [𝑆𝐿+1, 𝑆𝐿+2, … , 𝑆3𝐿] are 3x3 as can be seen in (5.37) for this control.

To develop the constraints, in necessary to define for [𝑆1, 𝑆2, … , 𝑆3𝐿] that can be divided

into [𝑆1, 𝑆2, … , 𝑆𝐿] , [𝑆𝐿+1, 𝑆𝐿+2, … , 𝑆2𝐿] and [𝑆2𝐿+1, 𝑆2𝐿+2, … , 𝑆3𝐿] . This way their 𝑆𝑗,𝑖 , can be

computed as:

For [𝑆1, 𝑆2, … , 𝑆𝐿] with 𝑗 = 1,2, … , 𝐿:

𝑆𝑗,𝑖 = [
𝑅̇̅𝑖(𝑡𝑗) + 𝐴(𝑡𝑗)

𝑇
𝑅̅𝑖(𝑡𝑗) + 𝑅̅𝑖(𝑡𝑗)𝐴(𝑡𝑗) 𝑅̅𝑖(𝑡𝑗)𝐵(𝑡𝑗)

𝐵(𝑡𝑗)
𝑇
𝑅̅𝑖(𝑡𝑗) 0

] (5.39)

𝑆𝑗,0 = [
𝑄(𝑡𝑗) 0

0 𝛤(𝑡𝑗)
] (5.40)

For [𝑆𝐿+1, 𝑆𝐿+2, … , 𝑆2𝐿] and 𝑗 = 𝐿 + 1, 𝐿 + 2,… ,2𝐿:

𝑆𝑗,𝑖 = 𝑅̅𝑖(𝑡𝑗) (5.41)

𝑆𝑗,0 = 𝑆𝑗,0𝐿 = 𝑑[𝐼𝑛] = 𝑑[𝐼3] (5.42)

For [𝑆2𝐿+1, 𝑆2𝐿+2, … , 𝑆3𝐿] and 𝑗 = 2𝐿 + 1,2𝐿 + 2,… ,3𝐿

𝑆𝑗,𝑖 = −𝑅̅𝑖(𝑡𝑗) (5.43)

𝑆𝑗,0 = 𝑆𝑗,0𝐿 = 𝑑[𝐼𝑛] = 𝑑[𝐼3] (5.44)

Considering that:

 𝑅̅(𝑡𝑗) = ∑ 𝑅̅𝑖(𝑡𝑗)𝑦𝑖
𝑝
𝑖=1 = 𝑅̅1(𝑡𝑗)𝑦1 + 𝑅̅2(𝑡𝑗)𝑦2 + 𝑅̅3(𝑡𝑗)𝑦3 + ⋯+ 𝑅̅7(𝑡𝑗)𝑦7 + ⋯+ 𝑅̅𝑝(𝑡𝑗)𝑦𝑝 =

 = [
1 0 0
0 0 0
0 0 0

]𝑦1 + [
0 1 0
1 0 0
0 0 0

]𝑦2 + [
0 0 1
0 0 0
1 0 0

]𝑦3 + ⋯+ [
cos(𝜔𝑡𝑗) 0 0

0 0 0
0 0 0

] 𝑦7 + ⋯+

 [

0 0 0
0 0 0
0 0 sin(𝑀𝜔𝑡𝑗)

] 𝑦𝑝 (5.45)

This transformation, allows to described from the standard dual SDP problem structure:

𝐹𝑖,𝑗 = [

𝑆𝑗,𝑖 0 0

0 𝑆𝐿+𝑗,𝑖 0

0 0 𝑆2𝐿+𝑗,𝑖

] (5.46)

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

45

𝐹 𝑖

=

[

𝐹𝑖,1 0 ⋯ 0

0 𝐹𝑖,2 ⋯ 0

⋮ ⋮ ⋱ 0
0 0 0 𝐹𝑖,𝐿]

=

=

[

[

𝑆𝑗,1 0 0

0 𝑆𝐿+𝑗,1 0

0 0 𝑆2𝐿+𝑗,1

] [
0 0 0
0 0 0
0 0 0

] ⋯ [
0 0 0
0 0 0
0 0 0

]

[
0 0 0
0 0 0
0 0 0

] [

𝑆𝑗,2 0 0

0 𝑆𝐿+𝑗,2 0

0 0 𝑆2𝐿+𝑗,2

] ⋯ [
0 0 0
0 0 0
0 0 0

]

⋮ ⋮ ⋱ [
0 0 0
0 0 0
0 0 0

]

[
0 0 0
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 0

] [

𝑆𝑗,𝑝 0 0

0 𝑆𝐿+𝑗,𝑝 0

0 0 𝑆2𝐿+𝑗,𝑝

]

]

(5.47)

For 𝑗 = 1,… , 𝐿 and 𝑖 = 1,… , 𝑝.

As can be seen, the problem of the algorithm is reduced into produce all this matrices formed by all

the 𝑆𝑗,𝑖.

The last element to define is 𝐹0. This matrix, has the same size as the others and would be formed by

the rest of the elements in the constraints that are not multiplied by any of the factors 𝑦𝑖.

𝐹 0

=

[

𝐹0,1 0 ⋯ 0

0 𝐹0,2 ⋯ 0

⋮ ⋮ ⋱ 0
0 0 0 𝐹0,𝐿]

 (5.48)

With: 𝐹0,𝑗 = [

𝑆𝑗,0 0 0

0 𝑆𝑗,0𝐿 0

0 0 𝑆𝑗,0𝐿

] using (5.40)-(5.44).

This definition of all 𝐹𝑖, is correct since all the matrices of the diagonal have to be higher than 0, and

thereby all the constraints meet the requirements if: 𝐹0 + 𝑦1𝐹1 + ⋯+ 𝑦𝑝𝐹𝑝 ≥ 0. Finally, the equation

for the constraints, can be rewritten as:

𝐹0 + 𝑦1𝐹1 + ⋯+ 𝑦𝑝𝐹𝑝 =

=

[

𝐹0,1 0 ⋯ 0

0 𝐹0,2 ⋯ 0

⋮ ⋮ ⋱ 0
0 0 0 𝐹0,𝐿]

+

[

𝐹1,1 0 ⋯ 0

0 𝐹1,2 ⋯ 0

⋮ ⋮ ⋱ 0
0 0 0 𝐹1,𝐿]

𝑦1 + ⋯+

[

𝐹𝑝,1 0 ⋯ 0

0 𝐹𝑝,2 ⋯ 0

⋮ ⋮ ⋱ 0
0 0 0 𝐹𝑝,𝐿]

𝑦𝑝 =

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

46

=

[

𝑆1 0 0 ⋯ 0 0 0
0 𝑆𝐿+1 0 ⋯ 0 0 0
0 0 𝑆2𝐿+1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ 0 0 0
0 0 0 0 𝑆𝐿 0 0
0 0 0 0 0 𝑆𝐿+𝐿 0
0 0 0 0 0 0 𝑆2𝐿+𝐿]

≥ 0 ,(5.49)

The algorithm it is been developed using all the elements defined and using the correct values for 𝑑,

𝑀 and 𝐿. The next step in the process would be to verify if the algorithm is acceptable to be used in

the study control. All the MATLAB code performed for this algorithm, can be found at the final

chapter MATLAB code.

5.8 VERIFYING THE ALGORITHM

In this section it is been tried to verify the validity of the algorithm performed, by using it in an

example where the periodic stabilizing solution or maximation solution, 𝑅+(𝑡), of a PRDE is known.

That means, that the algorithm performed gets a theoretical stabilizing solution 𝑅𝑀,𝐿
+ (𝑡), and it is

compared later with the real stabilising solution 𝑅+(𝑡), to verify its validity as a problem solver for

the study control. This process of verification it is been developed following [8] and using the same

example to verify.

The idea is that from an algebraic Riccati equation (ARE) ℜ𝑐, and its stabilizing solution 𝑅𝑐
+, using

a 𝑇-periodic transform matrix function 𝑃(𝑡), is possible to compute the stabilizing solution 𝑅+(𝑡),

of the PRDE associated with 𝑃(𝑡) for later to compare with 𝑅𝑀,𝐿
+ (𝑡). The algebraic Riccati equation

(ARE) ℜ𝑐, can be solved directly with a function of MATLAB called ‘are’ and is defined as:

ℜ𝑐 = 𝐴𝑐
𝑇𝑅𝑐 + 𝑅𝑐𝐴𝑐 + 𝑄𝑐 − 𝑅𝑐𝐵𝑐𝛤𝑐

−1𝐵𝑐
𝑇𝑅𝑐 = 0 (5.50)

Once the stabilizing solution 𝑅𝑐
+ of the ARE its been calculated, the next PRDE problem can be

defined using 𝑃(𝑡):

ℜ(𝑅, 𝑡) = 𝑅̇(𝑡) + 𝐴(𝑡)𝑇𝑅(𝑡) + 𝑅(𝑡)𝐴(𝑡) + 𝑄(𝑡) − 𝑅(𝑡)𝐵(𝑡)𝛤(𝑡)−1𝐵(𝑡)𝑇𝑅(𝑡) = 0 (5.51)

Where:

 𝐴(𝑡) = 𝑃(𝑡)−1𝐴𝑐𝑃(𝑡) − 𝑃(𝑡)−1𝑃̇(𝑡)

 𝐵(𝑡) = 𝑃(𝑡)−1𝐵𝑐

 𝑄(𝑡) = 𝑃(𝑡)𝑇𝑄𝑐𝑃(𝑡)

𝛤(𝑡) = 𝛤𝑐 (5.52)

And the stabilizing solution of this PRDE is defined as:

𝑅+(𝑡) = 𝑃(𝑡)𝑇𝑅𝑐
+𝑃(𝑡) (5.53)

In this thesis, following the example in [8], the matrices that have been used to compute the ARE

problem are:

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

47

 𝐴𝑐 = [
4 3

−4.5 −3.5
]

 𝐵𝑐 = [
1

−1
]

 𝑄𝑐 = [
10 6
6 4

]

𝛤𝑐 = 1 (5.54)

And the 𝑇-periodic transform matrix function 𝑃(𝑡) is:

𝑃(𝑡) =
1

1.5+cos(2𝜋𝑡)
[

cos(2𝜋𝑡) sin(2𝜋𝑡)
− sin(2𝜋𝑡) cos(2𝜋𝑡)

] (5.55)

As a result, the stabilizing solution for the ARE problem is:

𝑅𝑐
+ = [

22.4094 15.1092
15.1092 10.5412

] (5.56)

And thereby, computing the stabilizing solution of the PRDE as (2.53), the evolution with time of its

coefficients are:

Figure 5.3 Stabilizing solution 𝑹+(𝒕) of the PRDE – source: own elaboration.

Where:

𝑅+(𝑡) = [
𝑅1,1

+ (𝑡) 𝑅1,2
+ (𝑡)

𝑅2,1
+ (𝑡) 𝑅2,2

+ (𝑡)
] (5.57)

The algorithm described in this section and developed in MATLAB under the name

Check_Algorithm is used with 𝑑 = 200000, 𝑀 = 30 and 𝐿 = 100. The result for this chosen

values is:

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

48

Figure 5.4 Algorithm result for the theoretical stabilizing solution 𝑹𝑴,𝑳

+ (𝒕) – source: own elaboration.

Where:

𝑅𝑀,𝐿
+ (𝑡) = [

𝑅𝑀,𝐿,1,1
+ (𝑡) 𝑅𝑀,𝐿,1,2

+ (𝑡)

𝑅𝑀,𝐿,2,1
+ (𝑡) 𝑅𝑀,𝐿,2,2

+ (𝑡)
] (5.58)

As can be seen, the results are not as good as expected, because the difference are quite considerable.

So a change in the algorithm or a better approach would be necessary to develop successfully the

control.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

49

6 CONCLUSSION AND RECOMMENDATIONS

6. 1CONCLUSSION

The master thesis presented below has as objective the analysis of the modelling and control of an

underactuated non-prehensile system known as the Butterfly robot. A robot that is commanded

directly just with a rotational movement, and a ball controlled indirectly by the effect of gravity. A

clear example of an underactuated non-prehensile control.

A thorough study of the modelling of the system it is been performed using previous studies, then

followed by developing 4 different motions of feasible trajectories. Once the different motions have

been settled, the control of the system for each motion it is been conducted, a step by step method, so

that the possible differences between the theorical system and the real system could be settled. The

motion planning in the previous section are unstable and the nature of this deviations are multiple.

The case of study is an underactuated system where the actuator can’t be feedback linearized. This

makes the control far more complex and requires an alternative way to perform it. For that propose it

is been presented a control based on orbital stability and transverse coordinates to solve this problem.

As a result a study and appliance of a stabilizing feedback controller it is been conducted.

The orbital stabilization problem is used to control the system of the Butterfly robot where the number

of actuators is one, and is referred to the torque conducted in the centre of the frame, whilst the number

of degrees of freedom has been reduced to two. To conduct the control it is been necessary to solve

the PRDE, an equation where there is not a reliable algorithm to solve it. The problem it is been

transformed into a simple semi-definite programming (SDP) problem, where a function is minimized

and is subject to some linear matrix inequalities (LMI) constraints. .

The next step has been the explanation of how the problem is restructured to be solved through the

SEDUMI tool for MATLAB. An algorithm is proposed in this thesis using the structures of SEDUMI

to compute the problem of interest. After this, the feasibility and validity of this algorithm it is been

checked with an example of solution known to assure that the problem is solved correctly.

The final result of the algorithm is not been as good as expected and so, it would require an even more

deep study or a better approach of what it is been studied and performed would be necessary to

develop successfully the control.

The part of control and the algorithm in the MATLAB code it is been elaborated by following a step

by step explained process on how to transform the complex problem into something more simple.

6.2 RECOMMENDATIONS

This thesis it is been developed using the basis of other reports and going forward. For further work

it would be recommended to follow this report, understand the explained concept, way of work and

finally try to develop a better approach so that the control can be performed satisfactorily. The

MATLAB code can be conducted in multiple ways and maybe a different form of thinking would be

better to improve it.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

50

Apart from that it would be interesting to go even forward and develop the control not just

theoretically but also implementing it in the real system. In the report have been studied different

cases for feasible trajectories but it is possible to create even more strangers and creative motions.

Also different virtual holonomic constraints could be considered as long as it meets the requirements.

Not just for the trajectories but also a different control based in orbital stability could be done. For

example by a change of transverse coordinates.

From what it is been studied until this point, another assumptions could be taken so that the system

is immersed in a total different environment as could be the effect of external perturbations, different

shape of the objects or different friction coefficients, for example.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

51

BIBLIOGRAPHY AND REFERENCES

[1] M. Surov, A. Shiriaev, L. Freidovich, S. Gusev, L. Paramonov. ‘Case study in non-prehensile

manipulation: planning and orbital stabilization of one-directional rollings for the ”Butterfly”

robot’, IEEE International Conference on Robotics and Automation, 1484-1489, 2015.

[2] O.R. Lund. ‘Case study research: the Butterfly Robot’, 2018.

[3] A.A.A. Vogels. ‘The Butterfly Robot: Motion Planning’, 2018.

[4] R.A. Adams, C. Essex. ’Calculus, a complete course’, Seventh Edition, Chapter 11.4: 642-652,

Pearson, 2010.

[5] A. Shiriaev, L. Freidovich, S. Gusev. ‘Transverse linearization for controlled mechanical

systems with several passive degrees of freedom’, IEEE TRANSACTIONS ON AUTOMATIC

CONTROL, VOL55, NO. 4, 893-906, 2010.

[6] C.F. Sӕtre, ‘Stable Gaits for an Underactuated Compass Biped Robot with a Torso, Trajectory

Planning and Control Design using the Virtual Holonomic Constraints Approach’, 2016.

[7] S. Gusev, S. Johansson, B. Kågström, A. Shiriaev, A. Varga, ‘A numerical evaluation of solvers

for the periodic Riccati differential equation’, 302-329 2010.

[8] S. Gusev, S., A. Shiriaev, L. Freidovich, ‘SDP-based approximation of stabilising solutions for

periodic matrix Riccati differential equations’, International Journal of Control, 1396-1405, 2016.

[9] Wu-Sheng Lu, ‘Use SeDuMi to Solve LP, SDP and SCOP Problems: Remarks and Examples*’,

2009.

[10] https://www.kamilgrzybek.com/design/grasp-explained/

https://www.kamilgrzybek.com/design/grasp-explained/

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

52

APPENDIX

MATLAB CODE

The MATLAB code of the thesis is divided in three different parts.

The first part is dedicated to get the different motion planning with feasible trajectories and the inputs

necessary for that propose. Is important to remark that the most part of this code it is been replicated

from [3] with some modifications adapted to the propose of this section. This part of the code is

formed by the next scripts:

get_motion123

This script is used to obtain the phase portrait for the different cases 1,2 and 3. The key resides in the

different initial conditions that can adopt the script depending on the case.

get_motion4

This script is used to obtain the phase portrait for the different case 4.

get_prop

In this script are contained all the constant properties necessary to run the rest of the scripts.

get_spline

This scripts allows to write 𝜙 = 𝑓(𝜑).

get_dynamics

This script is used to compute the differential equations that permit to get 𝜑 and 𝜑̇.

get_par

This script is used to get all the parameters used as a function of 𝜑.

get_u_Fn_Fs

This last script is used to get the actuator input and the normal and friction force.

[Modelling, motion planning and control for performing feasible rolling motion of a passive disc on

a frame of the Butterfly Robot] Pons Alcalá, Ignacio

53

The second part of the MATLAB code is dedicated to verify the validity of the algorithm used to

control the system. It consists into try to solve the example problem, whose solution is known, with

the designed algorithm and later compare both solutions graphically.

Check_Algorithm

This script is used to compare both real solution 𝑅+(𝑡) and the solution obtained by the algorithm

𝑅𝑀,𝐿
+ (𝑡).

CheckC

This script is used to compute the vector 𝑐 necessary to solve the problem with SEDUMI.

CheckR

This script is used to compute the matrix 𝐹 necessary to solve the problem. It also obtains the vector

𝑦 as the solution of the optimization problem that contains all its coefficients.

The third part of the MATLAB code is dedicated to implement the algorithm above to the problem

that concerns in this thesis of the butterfly robot.

Control

This script receives the inputs from the real process and the algorithm solves the control problem

and stablish the actuator 𝑢. This part of the script is supposed to be used once the control is

implemented in the real process. It is been developed just theoretically since it is not been possible

to access to the real system.

get_c

This script is similar to the script CheckC but adapted to the butterfly system.

get_R

This script is used as CheckR adapted to the butterfly system and computes all the possible

solutions for the PRDE depending on 𝜑.

28/08/20 21:06 C:\Users\igpon\Desk...\get_motion123.m 1 of 1

%% Initialize
motion_case=1;
if motion_case==1
 T=3.19;
 x0 = [0;4.3];
elseif motion_case==2
 T=4.8192;
 x0 = [0;4.1];
elseif motion_case==3
 T=3.19;
 x0 = [0;-4.3];
end
get_prop;
get_spline;
options = odeset('RelTol',1e-5,'AbsTol',1e-6);
t0 = 0; tend = T; Nsim = 100;
tspan = linspace(t0,tend ,Nsim);

%% Simulation of dynamics
[t,x] = ode23(@(t,y)get_dynamics(t,y,prop),tspan ,x0,options);

varphi_nom = x(1:Nsim ,1); d_varphi_nom = x(1:Nsim ,2);
u_nom=zeros(1,Nsim); Fn_nom=zeros(1,Nsim); Fs_nom=zeros(1,Nsim);
for i=1:Nsim
 [u_nom(i),Fn_nom(i), Fs_nom(i)] = get_u_forces([varphi_nom(i); d_varphi_nom
(i)],prop);
end
mu = 1/min(abs(Fn_nom./Fs_nom));

subplot (2,2,1), plot(x(1:100,1),x(1:100,2))
xlabel('varphi')
ylabel('d_varphi'),
subplot (2,2,2), plot(t,x)
xlabel('t [s]')
legend({'varphi[rad]','d_varphi [rad/s]'},'orientation','horizontal'),
subplot(2,2,3),plot(t(1:Nsim),u_nom)
xlabel('t [s]')
ylabel('Input u [Nm]');
subplot(2,2,4),plot(t(1:Nsim),Fn_nom)
hold on
plot(t(1:Nsim),Fs_nom)
hold off
xlabel('t [s]')
legend({'Fn[N]','Fs[N]'},'orientation','horizontal');

28/08/20 21:06 C:\Users\igpon\Deskto...\get_motion4.m 1 of 2

get_prop;
get_spline;

options = odeset('RelTol',1e-5,'AbsTol',1e-6);
t0 = 0; tend = 5; Nsim = 100;
tspan = linspace(t0,tend ,Nsim);
x0 = [0;4.45];
T=8.97;

prop.c=0.48;
[t,x] = ode23(@(t,y)get_dynamics(t,y,prop),tspan ,x0,options);
Nres1 =find(x(:,1) >2*pi,1);
varphi_nom1 = x(1:Nres1 ,1); d_varphi_nom1 = x(1:Nres1 ,2);
t1=t(1:Nres1);

prop.c=0.45;
x0=[x(Nres1+1,1),x(Nres1+1,2)];
tspan=linspace(t(Nres1+1),t(Nres1+1)+5,Nsim);
[t,x] = ode23(@(t,y)get_dynamics(t,y,prop),tspan ,x0,options);
Nres2 =find(x(:,1) <2*pi ,1);
varphi_nom2 = x(1:Nres2 ,1); d_varphi_nom2 = x(1:Nres2 ,2);
t2=t(1:Nres2);

prop.c=0.48;
x0=[x(Nres2+1,1),x(Nres2+1,2)];
tspan=linspace(t(Nres2+1),t(Nres2+1)+5,Nsim); %%%%%%t2 por t(Nres2+1)
[t,x] = ode23(@(t,y)get_dynamics(t,y,prop),tspan ,x0,options);
Nres3 =find(x(:,1) <0 ,1);
varphi_nom3 = x(1:Nres3 ,1); d_varphi_nom3 = x(1:Nres3 ,2);
t3=t(1:Nres3);

prop.c=0.45;
x0=[x(Nres3+1,1),x(Nres3+1,2)];
tspan=linspace(t(Nres3+1),t(Nres3+1)+5,Nsim);
[t,x] = ode23(@(t,y)sim_dynamics(t,y,prop),tspan ,x0,options);
Nres4 =find(x(:,1) >0 ,1);
varphi_nom4 = x(1:Nres4 ,1); d_varphi_nom4 = x(1:Nres4 ,2);
t4=t(1:Nres4);

prop.c=0.48;
x0=[x(Nres4+1,1),x(Nres4+1,2)];
tspan=linspace(t(Nres4+1),t(Nres4+1)+5,Nsim);
[t,x] = ode23(@(t,y)get_dynamics(t,y,prop),tspan ,x0,options);
Nres5 =find(x(:,1) >2*pi ,1);
varphi_nom5 = x(1:Nres5 ,1); d_varphi_nom5 = x(1:Nres5 ,2);
t5=t(1:Nres5);

varphi_nom=[varphi_nom1; varphi_nom2; varphi_nom3; varphi_nom4; varphi_nom5];
d_varphi_nom=[d_varphi_nom1; d_varphi_nom2; d_varphi_nom3; d_varphi_nom4;
d_varphi_nom5];
Nres=Nres1+Nres2+Nres3+Nres5;
t=[t1; t2; t3; t4; t5];

28/08/20 21:06 C:\Users\igpon\Deskto...\get_motion4.m 2 of 2

u_nom=zeros(1,Nres); Fn_nom=zeros(1,Nres); Fs_nom=zeros(1,Nres);
for i=1:Nres
 if i<=Nres1 || (i>Nres2 && i<=Nres3)|| (i>Nres4)
 prop.c=0.48;
 elseif (i>Nres1 && i<=Nres2) || (i>=Nres3&& i<=Nres4)
 prop.c=0.45;

 end
 [u_nom(i),Fn_nom(i), Fs_nom(i)] = get_u_forces([varphi_nom(i); d_varphi_nom
(i)],prop);

end

mu = 1/min(abs(Fn_nom./Fs_nom));

subplot (2,2,1), plot(varphi_nom,d_varphi_nom)
xlabel('varphi')
ylabel('d_varphi'),
subplot (2,2,2), plot(t,varphi_nom);
hold on
plot(t,d_varphi_nom);
xlabel('t [s]')
legend({'varphi [rad]','d_varphi [rad/s]'},'orientation','horizontal'),
subplot(2,2,3),plot(t(1:Nres),u_nom)
xlabel('t [s]')
ylabel('Input u [Nm]');
subplot(2,2,4),plot(t(1:Nres),Fn_nom)
hold on
plot(t(1:Nres),Fs_nom)
hold off
xlabel('t [s]')
legend({'Fn[N]','Fs[N]'},'orientation','horizontal')

28/08/20 21:06 C:\Users\igpon\Desktop\T...\get_prop.m 1 of 1

%% Get all defined properties
prop.m_b = 3e-3; %mass of ball [kg]
prop.R_b = 16.55e-3; %ball radius [m]
prop.r_f = 12.5e-3; %distance between plates [m]
prop.R = sqrt(prop.R_b^2 - prop.r_f^2); %effective rolling radius [m]
prop.J_b = 5.48e-7; %moment of inertia of ball [kg*m^2]
prop.J_f = 1.581e-3; %moment of inertia of the frame [kg*m^2]
prop.grav = [0; 9.81; 0]; %gravitational acceleration [m*s^2]
prop.a = 0.1095; %bf frame
prop.b = 0.0405; %bf frame
prop.c = 0.49; %VHC parameter 0.49 ORIGINALLY
prop.k_hat = [0; 0; 1]; %z-axis (rotation)
prop.B = [1;0]; %Coupling matrix
prop.B_an = [0 1]; %Annihalitor matrix
prop.I = eye(3); %3x3 identity matrix
prop.Q = [0 1 0; -1 0 0; 0 0 0]; %Matrix used for differentiation

28/08/20 21:07 C:\Users\igpon\Desktop...\get_spline.m 1 of 1

%% Define Spline function for phi = f(varphi)
N = 100; a_phi = linspace(0,2*pi,N);
g=zeros(1,N);
for i = 1:N
phi = a_phi(i);
delta = prop.a-prop.b*cos(2*phi);
d_delta = 2*prop.b*sin(2*phi);
alpha = atan((delta*sin(phi)-d_delta*cos(phi))/(delta*cos(phi)+d_delta*sin(phi)));
if phi > 0.5*pi && phi < 1.5*pi
 alpha = alpha+pi;
elseif phi >= 1.5*pi
 alpha = alpha+2*pi;
end
g(i) = atan2(delta*sin(phi)+prop.R*sin(alpha),delta*cos(phi)+prop.R*cos(alpha));
end
g = mod(g,2*pi);
g = unwrap(g*2)/2;
prop.phi_app = spline(g,a_phi);

28/08/20 21:07 C:\Users\igpon\Deskto...\get_dynamics.m 1 of 1

function dx = sim_dynamics(t,x,prop)
varphi = x(1);
varphi= mod(varphi,2*pi);
d_varphi = x(2);
get_par

theta = Theta;
d_theta = d_Theta*d_varphi;

Pi = [cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0; 0 0 1];
d_Pi = [-sin(theta) -cos(theta) 0; cos(theta) -sin(theta) 0; 0 0 0];

 m11 = prop.m_b*norm(rho)^2 + prop.J_f + prop.J_b;
 m12 = (dot(prop.m_b*prop.k_hat ,cross(rho,tau)) + prop.J_b*p)*d_s;
 m21 = m12;
 m22 = (prop.m_b + prop.J_b*p^2)*d_s^2;
 M = [m11 m12; m21 m22];

 c11 = dot(prop.m_b*d_s*rho,tau*d_varphi);
 c12 = dot(prop.m_b*d_s*rho,tau*d_theta)+d_varphi*((dot(prop.m_b*prop.k_hat ,cross
(rho,tau))+prop.J_b*p)*dd_s + dot(prop.m_b*prop.k_hat ,cross(rho,kappa))*d_s^2);
 c21 = -dot(prop.m_b*d_s*rho,tau*d_theta);
 c22 = (prop.m_b+prop.J_b*p^2)*d_s*dd_s*d_varphi;
 C = [c11 c12; c21 c22];

 g1 = dot(prop.m_b*prop.grav ,d_Pi*rho);
 g2 = dot(prop.m_b*prop.grav ,Pi*tau*d_s);
 G = [g1;g2];
%% Get Alpha , Beta , Gamma
Alpha = m21*d_Theta + m22;
Beta1 = m21*dd_Theta;
Beta2 = c21*d_Theta + c22;
Gamma = g2;

dd_varphi = -(Beta1*d_varphi^2 + Beta2*d_varphi + Gamma)/Alpha;
dx = [d_varphi;dd_varphi];
end

28/08/20 21:07 C:\Users\igpon\Desktop\TF...\get_par.m 1 of 2

%% Get all parameters
phi = ppval(prop.phi_app ,varphi);

delta = prop.a-prop.b*cos(2*phi);
d_delta = 2*prop.b*sin(2*phi);
dd_delta = 4*prop.b*cos(2*phi);
ddd_delta = -8*prop.b*sin(2*phi);

xi = [sin(phi); cos(phi);0];

delta_vec = delta*xi;
d_delta_vec = (d_delta*prop.I + delta*prop.Q)*xi;
dd_delta_vec = (dd_delta*prop.I + 2*d_delta*prop.Q - delta*prop.I)*xi;

alpha = atan((delta*sin(phi) - d_delta*cos(phi)) / (delta*cos(phi) + d_delta*sin
(phi)));
if phi > 0.5*pi && phi < 1.5*pi
 alpha = alpha+pi;
elseif phi >= 1.5*pi
 alpha = alpha+2*pi;
end

d_alpha = (2*d_delta^2 + delta^2 - dd_delta*delta)/(d_delta^2 + delta^2);
dd_alpha = (2*delta*d_delta -delta*ddd_delta+3*d_delta*dd_delta)/
(delta^2+d_delta^2) -(2*d_delta*(delta+dd_delta)*(delta^2-
delta*dd_delta+2*d_delta^2))/((delta^2+d_delta^2)^2);

v1 = prop.R^2*dd_alpha+delta*(prop.R*sin(phi-alpha)+prop.R*sin(phi-alpha)
*d_alpha^2+prop.R*cos(phi-alpha)*dd_alpha - 2*prop.R*sin(phi-alpha)*d_alpha)+prop.
R*sin(phi-alpha)*dd_delta;
v2 = delta^2 + prop.R^2+2*prop.R*cos(phi-alpha)*delta;
v3 = (2*delta*d_delta+2*prop.R*cos(phi-alpha)*d_delta+2*prop.R*sin(phi-alpha)
delta(d_alpha -1))*(prop.R^2*d_alpha -prop.R^2+prop.R*sin(phi-alpha)
*d_delta+prop.R*cos(phi-alpha)*delta*(d_alpha -1));
v4 = v2^2;

g = atan2(delta*sin(phi)+prop.R*sin(alpha),delta*cos(phi)+prop.R*cos(alpha));
d_g = (delta^2+prop.R^2*d_alpha+prop.R*delta*cos(phi-alpha)+prop.R*d_delta*sin(phi-
alpha)+prop.R*d_alpha*delta*cos(phi-alpha))/v2;
dd_g = v1/v2 - v3/v4;

n = [sin(alpha); cos(alpha);0];
d_n = [cos(alpha); -sin(alpha);0]*d_alpha;
dd_n = [-sin(alpha)*d_alpha^2+cos(alpha)*dd_alpha; -cos(alpha)*d_alpha^2-sin(alpha)
*dd_alpha;0];

rho = delta_vec + prop.R*n;
h = d_delta_vec + prop.R*d_n;
d_h = dd_delta_vec + prop.R*dd_n;

tau = d_delta_vec/norm(d_delta_vec);

kappa_f = norm(cross(d_delta_vec ,dd_delta_vec))/(norm(d_delta_vec)^3);

28/08/20 21:07 C:\Users\igpon\Desktop\TF...\get_par.m 2 of 2

kappa_c = kappa_f/(1-prop.R*kappa_f);
kappa = kappa_c*n;

p = 1/(prop.R*(prop.R*kappa_f -1));

d_s = norm(h)/d_g;
dd_s = dot(h,d_h)/(norm(h)*d_g^2) - norm(h)*dd_g/(d_g^3);

Theta = varphi -prop.c*sin(2*varphi); %%%%% VHC %%%%%
d_Theta = 1-2*prop.c*cos(2*varphi);
dd_Theta = 4*prop.c*sin(2*varphi);

28/08/20 21:07 C:\Users\igpon\Deskto...\get_u_Fn_Fs.m 1 of 1

function [u, Fn, Fs] = get_u_Fn_Fs(x,prop)
varphi = x(1);
varphi= mod(varphi,2*pi);
d_varphi = x(2);

get_par

theta = Theta;
d_theta = d_Theta*d_varphi;

Pi = [cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0; 0 0 1];
d_Pi = [-sin(theta) -cos(theta) 0; cos(theta) -sin(theta) 0; 0 0 1];

%% Get MCG
m11 = prop.m_b*norm(rho)^2 + prop.J_f + prop.J_b;
m12 = (dot(prop.m_b*prop.k_hat ,cross(rho,tau)) + prop.J_b*p)*d_s;
m21 = m12;
m22 = (prop.m_b + prop.J_b*p^2)*d_s^2;
M = [m11 m12; m21 m22];

c11 = dot(prop.m_b*d_s*rho,tau*d_varphi);
c12 = dot(prop.m_b*d_s*rho,tau*d_theta)+d_varphi*((dot(prop.m_b*prop.k_hat ,cross
(rho,tau))+prop.J_b*p)*dd_s + dot(prop.m_b*prop.k_hat ,cross(rho,kappa))*d_s^2);
c21 = -dot(prop.m_b*d_s*rho,tau*d_theta);
c22 = (prop.m_b+prop.J_b*p^2)*d_s*dd_s*d_varphi;
C = [c11 c12; c21 c22];

g1 = dot(prop.m_b*prop.grav ,d_Pi*rho);
g2 = dot(prop.m_b*prop.grav ,Pi*tau*d_s);
G = [g1;g2];

%% Get Alpha , Beta , Gamma
Alpha = m21*d_Theta + m22;
Beta1 = m21*dd_Theta;
Beta2 = c21*d_Theta + c22;
Gamma = g2;

dd_varphi = -(Beta1*d_varphi^2 + Beta2*d_varphi + Gamma)/Alpha;
dd_theta = dd_Theta*d_varphi^2 + d_Theta*dd_varphi;

%% get u and Fn and Fs
u = [m11 m12]*[dd_theta; dd_varphi] + [c11 c12]*[d_theta;d_varphi] + g1;
Fn = dot(prop.m_b*prop.k_hat ,cross(rho,n))*dd_theta + 0.5*dot(prop.m_b*rho,n)
*d_theta^2 + 2*prop.m_b*d_s*d_theta*d_varphi+dot(prop.m_b*prop.grav ,Pi*n);
Fs = -(prop.J_b/prop.R)*(p*dd_s*d_varphi^2 + p*d_s*dd_varphi+dd_theta);
end

28/08/20 21:07 C:\Users\igpon\De...\Check_Algorithm.m 1 of 3

L=100;
M=30;
d=200000;
CheckC;
CheckR;

Ac=[4 3;-4.5 -3.5];
Bc=[1;-1];
Ghec=1;
Qc=[10 6;6 4];
%% Solving ARE problem
Ae=Ac;
Be=Bc*Ghec^(-1)*Bc.';
Ce=Qc;
Xe = are(Ae,Be,Ce);

T=1;
w=2*pi/T;
L1=L;
t_div=T/L1;
n=2;

X_11=zeros(1,L1);
X_12=zeros(1,L1);
X_22=zeros(1,L1);

t_f=zeros(1,L);
t_vec=zeros(1,L1);
for z=1:L1
 t=(z-1)*T/L1;
 t_vec(1,z)=t;
P=1/(1.5+cos(2*pi*t))*[cos(2*pi*t) sin(2*pi*t); -sin(2*pi*t) cos(2*pi*t)];
D_P=1/(1.5+cos(2*pi*t))^(2)*[(1.5+cos(2*pi*t))*(-2*pi*sin(2*pi*t))-(cos(2*pi*t))*
(-2*pi*sin(2*pi*t)), (1.5+cos(2*pi*t))*(2*pi*cos(2*pi*t))-(-2*pi*sin(2*pi*t))*(sin
(2*pi*t));-((1.5+cos(2*pi*t))*(2*pi*cos(2*pi*t))-(-2*pi*sin(2*pi*t))*(sin
(2*pi*t))),(1.5+cos(2*pi*t))*(-2*pi*sin(2*pi*t))-(cos(2*pi*t))*(-2*pi*sin
(2*pi*t))];

A=P^(-1)*Ac*P-P^(-1)*D_P;
B=P^(-1)*Bc;
Q=P.'*Qc*P;
R=Ghec;
X_sol=P.'*Xe*P;
X_11(1,z)=X_sol(1,1);
X_12(1,z)=X_sol(1,2);
X_22(1,z)=X_sol(2,2);
end

dat=y;
F_11=zeros(1,L);
F_12=zeros(1,L);
F_22=zeros(1,L);

28/08/20 21:07 C:\Users\igpon\De...\Check_Algorithm.m 2 of 3

F_Y2=zeros(2,2);
F_Y_aux3=zeros(2,2);
F_Y_aux4=zeros(2,2);

for j=1:L

 tj=(j-1)*T/L;
 t_f(1,j)=tj;
 for i=1:3
 if i==1
 Y_Y=[1 0 ;0 0];
 elseif i==2
 Y_Y=[0 1 ;1 0];
 elseif i==3
 Y_Y=[0 0;0 1];
 end
 dat_aux=dat(i,1);
 F_Y_aux4=dat_aux*Y_Y;
 F_Y2=F_Y2+F_Y_aux4;
 F_Y_aux4=0;
 end

 for k=0:(M-1)

 for i=4:9

 if i==4
 Y_Y=[cos((k+1)*w*(tj)) 0 ;0 0];
 elseif i==5
 Y_Y=[0 cos((k+1)*w*(tj));cos((k+1)*w*(tj)) 0];
 elseif i==6
 Y_Y=[0 0 ; 0 cos((k+1)*w*(tj))];
 elseif i==7
 Y_Y=[sin((k+1)*w*(tj)) 0; 0 0];
 elseif i==8
 Y_Y=[0 sin((k+1)*w*(tj));sin((k+1)*w*(tj)) 0];
 elseif i==9
 Y_Y=[0 0 ; 0 sin((k+1)*w*(tj))];
 end

 dat_aux=dat((n+1)*n*k+i,1);
 F_Y_aux3=dat_aux*Y_Y;
 F_Y2=F_Y2+F_Y_aux3;
 F_Y_aux3=0;

 end

 end

 F_11(1,j)=F_Y2(1,1);
 F_12(1,j)=F_Y2(2,1);
 F_22(1,j)=F_Y2(2,2);
 F_Y2=0;

28/08/20 21:07 C:\Users\igpon\De...\Check_Algorithm.m 3 of 3

end

subplot (2,2,1),
plot(t_vec(1,1:L1),X_11(1,1:L1))
hold on
plot(t_vec(1,1:L1),X_12(1,1:L1))
plot(t_vec(1,1:L1),X_22(1,1:L1))
legend({'[X11]',' [X12]','[X22]'},'orientation','horizontal'),
hold off

subplot (2,2,2),
plot(t_f(1,1:L),F_11(1,1:L))
hold on
plot(t_f(1,1:L),F_12(1,1:L))
plot(t_f(1,1:L),F_22(1,1:L))
legend({'[X11]',' [X12]','[X22]'},'orientation','horizontal'),
hold off

28/08/20 21:08 C:\Users\igpon\Desktop\TFM\...\CheckC.m 1 of 1

%% Creating C
n=2;
T=1;
w=2*pi/T;
coeficients=n*((n+1)/2)*(2*M+1);
c=zeros(coeficients,1);

for j=1:L
 tj=(j-1)*T/L;
 c(1)=c(1)+1;
 c(2)=0;
 c(3)=c(3)+1;
 for s=0:(M-1)
 c(3+s*6+1)=c(3+s*6+1)+cos((s+1)*w*(tj));
 c(3+s*6+2)=0;
 c(3+s*6+3)=c(3+s*6+3)+cos((s+1)*w*(tj));
 c(3+s*6+4)=c(3+s*6+4)+sin((s+1)*w*(tj));
 c(3+s*6+5)=0;
 c(3+s*6+6)=c(3+s*6+6)+sin((s+1)*w*(tj));
 end
end
c=-c;

28/08/20 21:08 C:\Users\igpon\Desktop\TFM\...\CheckR.m 1 of 2

%% OBTAIN F with aditional constrains.
n=2;
T=1;
w=2*pi/T;
coeficients=n*((n+1)/2)*(2*M+1);
At=zeros((3*n+1)*L*(3*n+1)*L,coeficients);

F=zeros((3*n+1)*L,(3*n+1)*L*coeficients);
F_0=zeros((3*n+1)*L,(3*n+1)*L);

Ac=[4 3;-4.5 -3.5];
Bc=[1;-1];
Ghec=1;
Qc=[10 6;6 4];

t_div=T/L;
t=0;

for j=0:(L-1)
t=(j)*T/L;
P=1/(1.5+cos(2*pi*t))*[cos(2*pi*t) sin(2*pi*t); -sin(2*pi*t) cos(2*pi*t)];
D_P=1/((1.5+cos(2*pi*t))^(2))*[(1.5+cos(2*pi*t))*(-2*pi*sin(2*pi*t))-(cos(2*pi*t))*
(-2*pi*sin(2*pi*t)), (1.5+cos(2*pi*t))*(2*pi*cos(2*pi*t))-(-2*pi*sin(2*pi*t))*(sin
(2*pi*t));-((1.5+cos(2*pi*t))*(2*pi*cos(2*pi*t))-(-2*pi*sin(2*pi*t))*(sin
(2*pi*t))),(1.5+cos(2*pi*t))*(-2*pi*sin(2*pi*t))-(cos(2*pi*t))*(-2*pi*sin
(2*pi*t))];

A=P^(-1)*Ac*P-P^(-1)*D_P;
A_T=A.';
B=P^(-1)*Bc;
B_T=B.';
Q=P.'*Qc*P;
Ghe=Ghec;

F_01=zeros(n,1);
F_02=zeros(1,n);
F_03=[Q F_01;F_02 Ghe];
F_04=[d*ones(n) zeros(n,n); zeros(n,n) d*ones(n)];
F_05=[F_03 zeros(n+1,2*n);zeros(2*n,n+1) F_04];
F_0((3*n+1)*j+1:(3*n+1)*j+(3*n+1),(3*n+1)*j+1:(3*n+1)*j+(3*n+1))=F_05;

 F_Y_aux1=zeros((n+1),(n+1));
 F_Y_aux2=zeros((2*n),(2*n));
 F_Y_aux=zeros((3*n+1),(3*n+1));
 F_Y=zeros((3*n+1)*L,(3*n+1)*L);
 tj=(j)*T/L;
 for i=1:3
 if i==1
 Y_Y=[1 0 ;0 0];
 elseif i==2
 Y_Y=[0 1 ;1 0];
 elseif i==3
 Y_Y=[0 0;0 1];

28/08/20 21:08 C:\Users\igpon\Desktop\TFM\...\CheckR.m 2 of 2

 end
 F_Y_aux1=[A_T*Y_Y+Y_Y*A Y_Y*B; B_T*Y_Y 0];
 F_Y_aux2=[Y_Y zeros(n,n); zeros(n,n) -Y_Y];
 F_Y_aux=[F_Y_aux1 zeros(n+1,2*n);zeros(2*n,n+1) F_Y_aux2];
 F_Y((3*n+1)*j+1:(3*n+1)*j+(3*n+1),(3*n+1)*j+1:(3*n+1)*j+(3*n+1))= F_Y_aux;
 F(1:(3*n+1)*L,(3*n+1)*L*(i-1)+1:(3*n+1)*L*(i-1)+(3*n+1)*L)=F(1:(3*n+1)*L,
(3*n+1)*L*(i-1)+1:(3*n+1)*L*(i-1)+(3*n+1)*L)+F_Y;
 F_Y=zeros((3*n+1)*L,(3*n+1)*L);
 end
 for k=0:(M-1)
 F_Y=zeros((3*n+1)*L,(3*n+1)*L);
 for i=4:9
 if i==4
 Y_Y=[cos((k+1)*w*(tj)) 0 ;0 0];
 D_Y=[-(k+1)*w*sin((k+1)*w*(tj)) 0;0 0];
 elseif i==5
 Y_Y=[0 cos((k+1)*w*(tj));cos((k+1)*w*(tj)) 0];
 D_Y=[0 -(k+1)*w*sin((k+1)*w*(tj));-(k+1)*w*sin((k+1)*w*(tj)) 0];
 elseif i==6
 Y_Y=[0 0 ; 0 cos((k+1)*w*(tj))];
 D_Y=[0 0 ; 0 -(k+1)*w*sin((k+1)*w*(tj))];
 elseif i==7
 Y_Y=[sin((k+1)*w*(tj)) 0; 0 0];
 D_Y=[(k+1)*w*cos((k+1)*w*(tj)) 0; 0 0];
 elseif i==8
 Y_Y=[0 sin((k+1)*w*(tj));sin((k+1)*w*(tj)) 0];
 D_Y=[0 (k+1)*w*cos((k+1)*w*(tj));(k+1)*w*cos((k+1)*w*(tj)) 0];
 elseif i==9
 Y_Y=[0 0 ; 0 sin((k+1)*w*(tj))];
 D_Y=[0 0 ; 0 (k+1)*w*cos((k+1)*w*(tj))];
 end
 F_Y_aux1=[D_Y+A_T*Y_Y+Y_Y*A Y_Y*B; B_T*Y_Y 0];
 F_Y_aux2=[Y_Y zeros(n,n); zeros(n,n) -Y_Y];
 F_Y_aux=[F_Y_aux1 zeros(n+1,2*n);zeros(2*n,n+1) F_Y_aux2];
 F_Y((3*n+1)*j+1:(3*n+1)*j+(3*n+1),(3*n+1)*j+1:(3*n+1)*j+(3*n+1))=F_Y_aux;
 F(1:(3*n+1)*L,(3*n+1)*L*(i-1)+6*(3*n+1)*L*k+1:(3*n+1)*L*(i-1)+6*(3*n+1)
*L*k+(3*n+1)*L)=F(1:(3*n+1)*L,(3*n+1)*L*(i-1)+6*(3*n+1)*L*k+1:(3*n+1)*L*(i-1)+6*
(3*n+1)*L*k+(3*n+1)*L)+F_Y;
 F_Y=zeros((3*n+1)*L,(3*n+1)*L);
 end
 end
end

p=length(c);
bt=-c;
ct=vec(F_0);
for o=1:p
 At(:,o)=-vec(F(1:(3*n+1)*L,(3*n+1)*L*(o-1)+1:(3*n+1)*L*(o-1)+(3*n+1)*L));
end
K.s=size(F_0,1);
[x,y,info]=sedumi(At,bt,ct,K);
info;

28/08/20 21:08 C:\Users\igpon\Desktop\TF...\Control.m 1 of 2

%% Choose Case:1, 2, 3 or 4.
motion_case=1;
if motion_case==1 || motion_case==2 || motion_case==3
get_motion123;
elseif motion_case==4
get_motion4;
end
L_sim=100;
M_mat=40;
d=10000;
get_c;
get_R;

%% Wait for lecture of the real process:
%% varphi_meas
%% d_varphi_meas
%% theta_meas
%% d_theta_meas

Nval=find(varphi_nom >varphi_meas, 1);
p_sol=d_varphi_nom(Nval);
varphi=varphi_meas;
get_par;
Pi = [cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0; 0 0 1];
d_Pi = [-sin(theta) -cos(theta) 0; cos(theta) -sin(theta) 0; 0 0 0];

m11 = prop.m_b*norm(rho)^2 + prop.J_f + prop.J_b;
m12 = (dot(prop.m_b*prop.k_hat ,cross(rho,tau)) + prop.J_b*p)*d_s;
m21 = m12;
m22 = (prop.m_b + prop.J_b*p^2)*d_s^2;
M = [m11 m12; m21 m22];

c11 = dot(prop.m_b*d_s*rho,tau*d_varphi);
c12 = dot(prop.m_b*d_s*rho,tau*d_theta)+d_varphi*((dot(prop.m_b*prop.k_hat ,cross
(rho,tau))+prop.J_b*p)*dd_s + dot(prop.m_b*prop.k_hat ,cross(rho,kappa))*d_s^2);
c21 = -dot(prop.m_b*d_s*rho,tau*d_theta);
c22 = (prop.m_b+prop.J_b*p^2)*d_s*dd_s*d_varphi;
C = [c11 c12; c21 c22];

g1 = dot(prop.m_b*prop.grav ,d_Pi*rho);
g2 = dot(prop.m_b*prop.grav ,Pi*tau*d_s);
G = [g1;g2];

%% New Matrices L and N
L_sim=[1, d_Theta; 0, 1];
N_sim=[dd_Theta*p_sol^2; 0];

%% New Transverse coordinates
y=theta_meas-Theta;
d_y=d_theta_meas-d_Theta*p_sol;
z=d_varphi_meas-p_sol;

Zeta=[y; d_y; z];

28/08/20 21:08 C:\Users\igpon\Desktop\TF...\Control.m 2 of 2

B=b_w(1:3,Nval);
B_T=B.';
Q=eye(n);
Ghe=1;

R_solPRDE=[F_11(1,Nval) F_12(1,Nval) F_13(1,Nval);F_12(1,Nval) F_22(1,Nval) F_23(1,
Nval); F_13(1,Nval) F_23(1,Nval) F_33(1,Nval)];
virtual_w=-(1/Ghe)*B_T*R_solPRDE*Zeta;

Linv=inv(L_sim);
Minv=inv(M);

%% New Matrices

U1=Linv*(N_sim+Minv*C*L_sim*[d_y varphi]+Minv*G);
U2=Linv*Minv;

u=(virtual_w+U1(1,1))/U2(1,1);

28/08/20 21:08 C:\Users\igpon\Desktop\TFM\s...\get_c.m 1 of 1

L_sim=60;
M_mat=10;
d=10000;
T=3.19;
n=3;
w=2*pi/T;
coeficients=n*((n+1)/2)*(2*M_mat+1);
c=zeros(coeficients,1);

for j=1:L_sim
 tj=(j-1)*T/L_sim;
 c(1)=c(1)+1;
 c(2)=0;
 c(3)=0;
 c(4)=c(4)+1;
 c(5)=0;
 c(6)=c(6)+1;
 for s=0:(M_mat-1)
 c(6+s*12+1)=c(6+s*12+1)+cos((s+1)*w*(tj));
 c(6+s*12+2)=0;
 c(6+s*12+3)=0;
 c(6+s*12+4)=c(6+s*12+4)+cos((s+1)*w*(tj));
 c(6+s*12+5)=0;
 c(6+s*12+6)=c(6+s*12+6)+cos((s+1)*w*(tj));
 c(6+s*12+7)=c(6+s*12+7)+sin((s+1)*w*(tj));
 c(6+s*12+8)=0;
 c(6+s*12+9)=0;
 c(6+s*12+10)=c(6+s*12+10)+sin((s+1)*w*(tj));
 c(6+s*12+11)=0;
 c(6+s*12+12)=c(6+s*12+12)+sin((s+1)*w*(tj));
 end
end
c=-c;

28/08/20 21:09 C:\Users\igpon\Desktop\TFM\s...\get_R.m 1 of 5

%% OBTAIN R from F with aditional constraints.
get_c;
get_prop;
get_spline;

n=3;
w=2*pi/T;
coeficients=n*((n+1)/2)*(2*M_mat+1);

At=zeros((3*n+1)*L*(3*n+1)*L,coeficients);
F=zeros((3*n+1)*L,(3*n+1)*L*coeficients);
F_0=zeros((3*n+1)*L,(3*n+1)*L);
b_w=zeros(3,L);
for j=0:(L-1)

tj=(j)*T/L;

varphi=varphi_nom(j+1);
d_varphi=d_varphi_nom(j+1);
p_sol=d_varphi_nom(j+1);
get_par;
theta = Theta;
d_theta = d_Theta*d_varphi;
Pi = [cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0; 0 0 1];
d_Pi = [-sin(theta) -cos(theta) 0; cos(theta) -sin(theta) 0; 0 0 0];

 m11 = prop.m_b*norm(rho)^2 + prop.J_f + prop.J_b;
 m12 = (dot(prop.m_b*prop.k_hat ,cross(rho,tau)) + prop.J_b*p)*d_s;
 m21 = m12;
 m22 = (prop.m_b + prop.J_b*p^2)*d_s^2;
 M = [m11 m12; m21 m22];

 c11 = dot(prop.m_b*d_s*rho,tau*d_varphi);
 c12 = dot(prop.m_b*d_s*rho,tau*d_theta)+d_varphi*((dot(prop.m_b*prop.k_hat ,cross
(rho,tau))+prop.J_b*p)*dd_s + dot(prop.m_b*prop.k_hat ,cross(rho,kappa))*d_s^2);
 c21 = -dot(prop.m_b*d_s*rho,tau*d_theta);
 c22 = (prop.m_b+prop.J_b*p^2)*d_s*dd_s*d_varphi;
 C = [c11 c12; c21 c22];

 g1 = dot(prop.m_b*prop.grav ,d_Pi*rho);
 g2 = dot(prop.m_b*prop.grav ,Pi*tau*d_s);
 G = [g1;g2];

Alpha = m21*d_Theta + m22;
Beta1 = m21*dd_Theta;
Beta2 = c21*d_Theta + c22;
Gamma = g2;
%% New Matrices
L=[1, d_Theta; 0, 1];
N=[dd_Theta*p_sol^2; 0];

%% Calculation of gy gd_y and gw
gw = -m12;

28/08/20 21:09 C:\Users\igpon\Desktop\TFM\s...\get_R.m 2 of 5

gdy = dot(prop.m_b*d_s*rho,(tau.')*(d_y+2*d_Theta*p_sol));
gy= dot(-d_s*prop.m_b*9.81*[cos(y/2+Theta), sin(y/2+Theta),0],tau*(sin(y/2)/
(y/2)));

%% Calculation of A and b.
Beta = m21*dd_Theta-dot(prop.m_b*d_s*rho,tau)*d_Theta^2+(prop.m_b+prop.J_b*p^2)
*d_s*dd_s;
A=[0, 1, 0; 0, 0, 0; gy/Alpha, gdy/Alpha, (Gamma-Beta*p_sol^2)/(Alpha*p_sol)];
b=[0; 1; gw/Alpha];
b_w(1:3,j)=b;
%% Calculate solution to Ricatti diferential equation.
A_T=A.';
B=b;
B_T=b.';
Q=eye(n);
Ghe=1;

%% Construction of F0
F_01=zeros(n,1);
F_02=zeros(1,n);
F_03=[Q F_01;F_02 Ghe];
F_04=[d*ones(n) zeros(n,n); zeros(n,n) d*ones(n)];
F_05=[F_03 zeros(n+1,2*n);zeros(2*n,n+1) F_04];
F_0((3*n+1)*j+1:(3*n+1)*j+(3*n+1),(3*n+1)*j+1:(3*n+1)*j+(3*n+1))=F_05;

%% Construction of F
 F_Y_aux1=zeros((n+1),(n+1));
 F_Y_aux2=zeros((2*n),(2*n));
 F_Y_aux=zeros((3*n+1),(3*n+1));
 F_Y=zeros((3*n+1)*L,(3*n+1)*L);

 for i=1:6
 if i==1
 Y_Y=[1 0 0;0 0 0;0 0 0];
 elseif i==2
 Y_Y=[0 1 0;1 0 0;0 0 0];
 elseif i==3
 Y_Y=[0 0 1;0 0 0;1 0 0];
 elseif i==4
 Y_Y=[0 0 0;0 1 0;0 0 0];
 elseif i==5
 Y_Y=[0 0 0;0 0 1;0 1 0];
 elseif i==6
 Y_Y=[0 0 0;0 0 0;0 0 1];
 end
 F_Y_aux1=[A_T*Y_Y+Y_Y*A Y_Y*B; B_T*Y_Y 0];
 F_Y_aux2=[Y_Y zeros(n,n); zeros(n,n) -Y_Y];
 F_Y_aux=[F_Y_aux1 zeros(n+1,2*n);zeros(2*n,n+1) F_Y_aux2];
 F_Y((3*n+1)*j+1:(3*n+1)*j+(3*n+1),(3*n+1)*j+1:(3*n+1)*j+(3*n+1))= F_Y_aux;
 F(1:(3*n+1)*L,(3*n+1)*L*(i-1)+1:(3*n+1)*L*(i-1)+(3*n+1)*L)=F(1:(3*n+1)*L,
(3*n+1)*L*(i-1)+1:(3*n+1)*L*(i-1)+(3*n+1)*L)+F_Y;
 F_Y=zeros((3*n+1)*L,(3*n+1)*L);
 end

28/08/20 21:09 C:\Users\igpon\Desktop\TFM\s...\get_R.m 3 of 5

 for k=0:(M_mat-1)
 F_Y=zeros((3*n+1)*L,(3*n+1)*L);
 for i=7:18
 if i==7
 Y_Y=[cos((k+1)*w*(tj)) 0 0;0 0 0; 0 0 0];
 D_Y=[-(k+1)*w*sin((k+1)*w*(tj)) 0 0;0 0 0; 0 0 0];
 elseif i==8
 Y_Y=[0 cos((k+1)*w*(tj)) 0;cos((k+1)*w*(tj)) 0 0; 0 0 0];
 D_Y=[0 -(k+1)*w*sin((k+1)*w*(tj)) 0;-(k+1)*w*sin((k+1)*w*(tj)) 0 0; 0 0 0];
 elseif i==9
 Y_Y=[0 0 cos((k+1)*w*(tj));0 0 0; cos((k+1)*w*(tj)) 0 0];
 D_Y=[0 0 -(k+1)*w*sin((k+1)*w*(tj));0 0 0; -(k+1)*w*sin((k+1)*w*(tj)) 0 0];
 elseif i==10
 Y_Y=[0 0 0;0 cos((k+1)*w*(tj)) 0; 0 0 0];
 D_Y=[0 0 0;0 -(k+1)*w*sin((k+1)*w*(tj)) 0; 0 0 0];
 elseif i==11
 Y_Y=[0 0 0;0 0 cos((k+1)*w*(tj)); 0 cos((k+1)*w*(tj)) 0];
 D_Y=[0 0 0;0 0 -(k+1)*w*sin((k+1)*w*(tj)); 0 -(k+1)*w*sin((k+1)*w*(tj)) 0];
 elseif i==12
 Y_Y=[0 0 0;0 0 0; 0 0 cos((k+1)*w*(tj))];
 D_Y=[0 0 0;0 0 0; 0 0 -(k+1)*w*sin((k+1)*w*(tj))];
 elseif i==13
 Y_Y=[sin((k+1)*w*(tj)) 0 0;0 0 0; 0 0 0];
 D_Y=[(k+1)*w*cos((k+1)*w*(tj)) 0 0;0 0 0; 0 0 0];
 elseif i==14
 Y_Y=[0 sin((k+1)*w*(tj)) 0;sin((k+1)*w*(tj)) 0 0; 0 0 0];
 D_Y=[0 (k+1)*w*cos((k+1)*w*(tj)) 0;(k+1)*w*cos((k+1)*w*(tj)) 0 0; 0 0 0];
 elseif i==15
 Y_Y=[0 0 sin((k+1)*w*(tj));0 0 0; sin((k+1)*w*(tj)) 0 0];
 D_Y=[0 0 (k+1)*w*cos((k+1)*w*(tj));0 0 0; (k+1)*w*cos((k+1)*w*(tj)) 0 0];
 elseif i==16
 Y_Y=[0 0 0;0 sin((k+1)*w*(tj)) 0; 0 0 0];
 D_Y=[0 0 0;0 (k+1)*w*cos((k+1)*w*(tj)) 0; 0 0 0];
 elseif i==17
 Y_Y=[0 0 0;0 0 sin((k+1)*w*(tj)); 0 sin((k+1)*w*(tj)) 0];
 D_Y=[0 0 0;0 0 (k+1)*w*cos((k+1)*w*(tj)); 0 (k+1)*w*cos((k+1)*w*(tj)) 0];
 elseif i==18
 Y_Y=[0 0 0;0 0 0; 0 0 sin((k+1)*w*(tj))];
 D_Y=[0 0 0;0 0 0; 0 0 (k+1)*w*cos((k+1)*w*(tj))];

 end

 F_Y_aux1=[D_Y+A_T*Y_Y+Y_Y*A Y_Y*B; B_T*Y_Y 0];
 F_Y_aux2=[Y_Y zeros(n,n); zeros(n,n) -Y_Y];
 F_Y_aux=[F_Y_aux1 zeros(n+1,2*n);zeros(2*n,n+1) F_Y_aux2];
 F_Y((3*n+1)*j+1:(3*n+1)*j+(3*n+1),(3*n+1)*j+1:(3*n+1)*j+(3*n+1))=F_Y_aux;
 F(1:(3*n+1)*L,(3*n+1)*L*(i-1)+12*(3*n+1)*L*k+1:(3*n+1)*L*(i-1)+12*(3*n+1)
*L*k+(3*n+1)*L)=F(1:(3*n+1)*L,(3*n+1)*L*(i-1)+12*(3*n+1)*L*k+1:(3*n+1)*L*(i-1)+12*
(3*n+1)*L*k+(3*n+1)*L)+F_Y;
 F_Y=zeros((3*n+1)*L,(3*n+1)*L);
 end

 end

28/08/20 21:09 C:\Users\igpon\Desktop\TFM\s...\get_R.m 4 of 5

end

p=length(c);
bt=-c;
ct=vec(F_0);
for o=1:p
 At(:,o)=-vec(F(1:(3*n+1)*L,(3*n+1)*L*(o-1)+1:(3*n+1)*L*(o-1)+(3*n+1)*L));
end

K.s=size(F_0,1);
[x,y,info]=sedumi(At,bt,ct,K);
info;

%% Construction of R_sol of PRDE
dat=y;
F_11=zeros(1,L);
F_12=zeros(1,L);
F_13=zeros(1,L);
F_22=zeros(1,L);
F_23=zeros(1,L);
F_33=zeros(1,L);

F_Y=zeros(3,3);
F_Y_aux1=zeros(3,3);
F_Y_aux=zeros(3,3);

for j=1:L

 tj=(j-1)*T/L;
 for i=1:6
 if i==1
 Y_Y=[1 0 0;0 0 0;0 0 0];
 elseif i==2
 Y_Y=[0 1 0;1 0 0;0 0 0];
 elseif i==3
 Y_Y=[0 0 1;0 0 0;1 0 0];
 elseif i==4
 Y_Y=[0 0 0;0 1 0;0 0 0];
 elseif i==5
 Y_Y=[0 0 0;0 0 1;0 1 0];
 elseif i==6
 Y_Y=[0 0 0;0 0 0;0 0 1];
 end
 dat_aux=dat(i,1);

 F_Y_aux=dat_aux*Y_Y;
 F_Y=F_Y+F_Y_aux;

 end
 for k=0:(M_mat-1)
 F_Y_aux=0;
 for i=7:18

28/08/20 21:09 C:\Users\igpon\Desktop\TFM\s...\get_R.m 5 of 5

 if i==7
 Y_Y=[cos((k+1)*w*(tj)) 0 0;0 0 0; 0 0 0];
 elseif i==8
 Y_Y=[0 cos((k+1)*w*(tj)) 0;cos((k+1)*w*(tj)) 0 0; 0 0 0];
 elseif i==9
 Y_Y=[0 0 cos((k+1)*w*(tj));0 0 0; cos((k+1)*w*(tj)) 0 0];
 elseif i==10
 Y_Y=[0 0 0;0 cos((k+1)*w*(tj)) 0; 0 0 0];
 elseif i==11
 Y_Y=[0 0 0;0 0 cos((k+1)*w*(tj)); 0 cos((k+1)*w*(tj)) 0];
 elseif i==12
 Y_Y=[0 0 0;0 0 0; 0 0 cos((k+1)*w*(tj))];
 elseif i==13
 Y_Y=[sin((k+1)*w*(tj)) 0 0;0 0 0; 0 0 0];
 elseif i==14
 Y_Y=[0 sin((k+1)*w*(tj)) 0;sin((k+1)*w*(tj)) 0 0; 0 0 0];
 elseif i==15
 Y_Y=[0 0 sin((k+1)*w*(tj));0 0 0; sin((k+1)*w*(tj)) 0 0];
 elseif i==16
 Y_Y=[0 0 0;0 sin((k+1)*w*(tj)) 0; 0 0 0];
 elseif i==17
 Y_Y=[0 0 0;0 0 sin((k+1)*w*(tj)); 0 sin((k+1)*w*(tj)) 0];
 elseif i==18
 Y_Y=[0 0 0;0 0 0; 0 0 sin((k+1)*w*(tj))];
 end
 dat_aux=dat((n+1)*n*k+i,1);

 F_Y_aux1=dat_aux*Y_Y;
 F_Y_aux=F_Y_aux+F_Y_aux1;
 F_Y_aux1=0;

 end

 F_Y=F_Y+F_Y_aux;

 end
 F_11(1,j)=F_Y(1,1);
 F_12(1,j)=F_Y(1,2);
 F_13(1,j)=F_Y(1,3);
 F_22(1,j)=F_Y(2,2);
 F_23(1,j)=F_Y(2,3);
 F_33(1,j)=F_Y(3,3);

 F_Y=0;
end

