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Abstract

An essential task of collision avoidance systems for autonomous ships is to, based on high-
resolution sensor measurements and other navigational information, detect other objects in the
surroundings, and to track their movement (i.e., their position, velocity and heading), as well as
to estimate their extent (i.e., size and shape). This situational awareness problem is addressed
by multiple extended object tracking (MEOT).

This master thesis presents a self-contained derivation of the Poisson multi-Bernoulli mix-
ture (PMBM) filter for MEOT, which is one of the state-of-the-art methods for MEOT. Fur-
thermore, a state-space model that uses Gaussian processes to model a wide variety of object
extends and the lidar measurements that these objects generate, is integrated in the PMBM filter.

The PMBM filter and the state-space model are tested together under different simulations,
where the objects resemble the hull of ships in the horizontal plane.

Samandrag

Ein hovuddel av system for kollisjonsforhindring for autonome skip er å oppdaga andre ob-
jekt i omgivnadene, og å følgja rørsla deira (dvs. posisjon, fart og kurs), i tillegg til å estimera
omfanga deira (dvs. storleik og form), basert på sensormålingar med høg oppløysing og annan
navigasjonsinformasjon. Utvidet følging av fleire objekt (”Multiple extended object tracking
(MEOT)” på engelsk) løyser dette situasjonsmedvitsproblemet.

Denne masteroppgåva presenterer ei sjølvstendig avleiing av Poisson multi-Bernoulli-blanding
filteret (”Poisson multi-Bernoulli mixture (PMBM) filter” på engelsk) for MEOT, som er ein av
dei mest moderne metodane for MEOT. Vidare blir det presentert ein tilstandsrommodell som
bruker Gaussiske prosessar for å modellera eit breitt utval av omfang, og lidarmålingane som
desse objekta genererer.

PMBM-filteret og tilstandsrommodellen er testa saman under ulike simuleringer, der objekta
liknar på skrog til skip i det horisontale planet.
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Chapter 1
Introduction

1.1 Background and motivation

Autonomous surface vehicles (ASVs) that work with support from a remote control center
(RCC) or in a controlled environment, are already a part of the present and their use in the
industry is expected to increase in the future. In Norway alone, there are several ASV projects,
such as the container ship Yara Birkeland from Kongsberg and Yara, the container ship ReVolt
from DNV-GL [4] and several small ASVs produced by Maritime Robotics.

There are diverse reasons for this development. The evident economical motivation is to
reduce personnel costs and the logistical costs related to having a crew on board. Furthermore,
the total or partial elimination of a crew will reduce accidents at sea. In the case of container
ships, the freed space by the absent crew could be used to transport more goods. Moreover,
autonomous container ships are expected to take a considerably share of the freight-transport
performed exclusively on land. This will reduce CO2-emissions and alleviate traffic.

Although ASVs with partial autonomy are a reality, fully ASV are still a research topic.
There are many technological and juridical challenges that need to be addressed before fully
ASV can operate as usual vessels do (see for example the articles [10] and [33]). One of these
technological challenges is to develop a collision avoidance system that ensures a safe operation
of the vessel with the same performance of a well-trained human crew, or better.

Figure 1.1 illustrates the structure of collision avoidance systems for autonomous ships. In
the ”sensor fusion module”, the information provided by charts, global navigation satellite sys-
tems (GNSSs) and inertial measurement units (IMUs) are used to determine the navigational
situation of the ship, i.e., its position, velocity and heading. By fusing this information together
with measurements provided by imaging sensors, such as camera, radar or lidar, the objects in
the surroundings of the ship can be detected, and their movement, .i.e., their position, velocity
and heading, can be tracked. The objects of interest are mostly other ships, but identifying traffic
signs and landmarks such as light houses, could also improve the overall situational awareness.
Automatic identification system (AIS) signals can also be used to improve the situational aware-
ness of the ASV. However, not all maritime vessels have an AIS installed, and if they do, the
broadcasted information can be very inaccurate.
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Figure 1.1: Structure of collision avoidance systems for autonomous ships. Image courtesy of [8].

The situational awareness provided by the ”sensor fusion module” is passed down to the
”collision avoidance module”, which determines whether additional maneuvers have to be un-
dertaken to avoid a possible collision. In such case, the chosen maneuvers are transformed by
the vehicle guidance controllers into control signals for the ship actuators.

The research and development of collision avoidance systems for autonomous ships are
challenging endeavours. Here at NTNU, there are several related research projects on this
topic: The Autoferry project [1], which develops an autonomous electric ferry for pedestrian
and cyclist transport across a canal in Trondheim, the Autosea project [2], which conducts
research into sensor fusion and collision avoidance methods for autonomous ships, and the Au-
tosit project [3], which aims to improve the situational awareness and to estimate the intentions
of other vessels using imaging sensors and other available information, such as AIS or charts.
In particular, this master thesis is connected to the Autosea project [2], and its topic is inscribed
in the submodule ”target tracking” in Figure 1.1.

Target tracking or object tracking (OT) is the problem of detecting objects and tracking their
movement, i.e., estimating their kinematic properties, such as position, velocity and orientation,
based on measurements. A measurement may of course be caused by a particular object, but it
may also be a false alarm, which is also known as clutter. The terms single object tracking and
multiple object tracking (MOT) are also used to emphasize whether one or multiple objects are
considered. Furthermore, if the resolution of the sensors on-board is high enough, as is the case
of modern imaging sensors, several measurements of any tracked object could be available at
any given time. In this case, it is possible to also estimate the geometry of the object, also know
as the object’s extent. The resulting problem is then referred to as extended object tracking
(EOT) or, if multiple objects are considered, as multiple extended object tracking (MEOT).

Knowledge about the object’s extent could drastically improve the situational awareness
of the collision avoidance system. For example, a large object could hide smaller undetected
objects behind it. Moreover, the size of an object can tell us something about their possible
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movements since larger objects are not as agile as smaller ones.

Traditionally, the extent of objects has been approximated by ellipses or by ellipsoids de-
pending whether the problem is stated in two or three spatial dimensions. This approximation
is known as the random matrix approach. Although the random matrix approach may work
for airplanes and cars, it may perform poorly for maritime vessels. The main reason for this
poor performance is that large parts of the hull and superstructure of a maritime vessel can have
curvatures that correspond to ellipses or ellipsoids with quite different centers and semiaxes.
Figure 1.2 illustrates this scenario. Here, the hull of the ship M/S Nidarholm is estimated in the
horizontal plane using lidar measurements and the random matrix approach. At the initial time
steps, the elliptical estimates are relatively accurate because the lidar sensor mostly illuminates
a side of the hull, which has a representative curvature for the rest of the hull. However, as the
estimation process progresses, the flat stern of the hull is the part that is mainly illuminated by
the sensor. This causes the hull estimate to shrink to almost a circle with the same diameter as
the stern width, which is an overall bad estimate of the hull.

A proposed solution to the extent estimation of maritime vessels, is to model the contour or
boundary of the extent as an unknown function, whose function values are distributed according
to a multivariate normal distribution. This is known as a Gaussian Process (GP), which is a very
versatile tool for regression and estimation. In contrast to many other approximation methods,
such as the random matrix approach, GPes provide a non-parametric model in the sense that no
assumptions are made on the underlying structure of the unknown function. Furthermore, this
model is stochastic, and can therefore be smoothly merged with probabilistic filters, which are
well represented in EOT. This enables integration of prior and uncertainty information.

EOT problems can be very diverse: As mentioned above, they can consider only a single
object or multiple objects, in two or three spatial dimensions. Moreover, the existence of the
objects can be known in advance, or the detection of existing objects based on measurements is
a part of the EOT problem. The measurements can come from a variety of sensor types, and can
present clutter. In addition, the measurements can have high levels of clutter or noise, and they
can correspond to erratically moving objects, which makes the estimation problem even more
challenging.

In this master thesis, we consider multiple objects whose extents resemble ship hulls in the
horizontal plane. These extents are modeled using GPes. The movement and extent of the
objects is estimated using a state-of-the-art MEOT filter: the Poisson multi-Bernoulli mixture
(PMBM) filter. This filter is capable of detecting multiple objects, track their movement and
deal with clutter.

The theory behind the PMBM filter for MEOT is mathematically sophisticated, and requires
the concept of random finite sets (RFS), which are finite sets whose cardinality and elements are
randomly distributed. Because of all the theoretical prerequisites, papers that present this filter
do not give a detailed presentation or they refer to other sources. Therefore, in this thesis, we
present a self-contained derivation of the PMBM filter that is accessible from an undergraduate
level in mathematics and statistics.
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(a) M/S Nidarholm.

(b) Lidar measurements of M/S Nidarholm at different time points k (small dots of different colors) and the
corresponding elliptical approximations of its hulls (red ellipses), as well as estimated trajectory (red line).

Figure 1.2: Estimation of the hull of M/S Nidarholm using lidar measurements and assuming the extent
to be an ellipsis. Images courtesy of [31].
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1.2 Objectives
The objectives of this master thesis are the following:

1. Study the literature about the topics of Gaussian processes (GPes) and extended object
tracking (EOT) with specially emphasis in EOT methods that use GPes and in the Poisson
multi-Bernoulli mixture (PMBM) filter.

2. Present a self-contained derivation of the PMBM filter for MEOT that is accessible from
an undergraduate level in mathematics and statistics.

3. Present an object model that uses GPes to describe two-dimensional extents, and that
models lidar measurements.

4. Integrate the PMBM filter for MEOT with the object model that combines GPes and lidar
measurements, and test the resulting MEOT method under different simulations, where
the objects represent small ships moving at sea.

1.3 Report outline
The literature review about Gaussian processes (GPes) and their use in extended object

tracking (EOT), as well as the Poisson multi-Bernoulli mixture filter and related topics, is pre-
sented in Chapter 2.

Chapter 3 treats Finite Set Statistics (FISST), and introduces the necessary concepts and
results to derive the Poisson multi-Bernoulli mixture (PMBM) filter for EOT, which is done in
Chapter 4. The presentation of FISST and the PMBM filter is self-contained in the sense that it
is accessible from an undergraduate level in mathematics and statistics, and that all statements
are mathematically proven. Moreover, Chapter 4 shows the computational intractability of the
PMBM filter per se in Section 4.5, and presents solutions that make the PMBM filter computa-
tionally feasible.

Chapter 5 introduces the fundamentals of GPes and their regression technique. GPes are
used in Chapter 6 to give a versatile extent model in two spatial dimensions, as well as a model
for lidar measurements. Moreover, the gamma Gaussian inverse Wishart (GGIW) model is
briefly introduced because it is the model implemented in the PMBM code by Yuxuan Xia (see
[41]). The PMBM implementation in [41] is modified to work with the GP and lidar model
developed in Chapter 6. The PMBM filter for MEOT is tested under several simulations for
both models in Chapter 6, and the obtained results are shown and discussed in Chapter 7.

Finally, in light of the discussed theory and results, the conclusions of this master thesis, as
well as ideas for further work, are presented in Chapter 8.

In addition, some results about multivariate normal distributions that may not be part of an
undergraduate course in probability and statistics is present in Appendix A. This appendix is
followed by remarks on the notation used, and lists of abbreviations and the most important
symbols, as well as the bibliography.
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Chapter 2
Literature review

Gaussian Processes
A Gaussian Processes (GP) is a stochastic model for an unknown function that assumes

that any finite subset of the unknown function values follows a multivariate normal distribution
according to a common mean and covariance functions. In particular, GPes can be seen as gen-
eralizations of multivariate normal distributions.

The theoretical background for GPes and their regression technique were developed by
Wiener [38] and Kolmogorov [22] in the 40’s. However, the alleged first major application
of GP regression can be traced back to the work of Krige [23] in 1951, who, motived by the
insatisfactory results of current methods, developed an interpolating technique of geostatistical
data for mining surveys. Therefore, GP regression is also known as ”Wiener-Kolmogorov pre-
diction” or ”Kriging”.

GPes are appeling for modeling since they are non-parametric function models, in the sense
that they do not make assumptions on the underlying structure of the functions they model. In
addition, GPes are stochastical models, and can therefore be smoothly integrated with other
stochastical models and probabilistic filters. The traditional drawback of GPes is the high com-
putational cost of GP regression, which usually involves the inversion of a large matrix. How-
ever, due to the continuous growth in processing power in the last decades, this drawback is no
longer a major restriction, an GPes can even be used in real-time systems. As a consequence,
the applications of GPes have moved from spatial statistics to many other fields, where opti-
mization and prediction is crucial. One of these fields is Machine Learning, where the objective
is to find the unknown relation between the input and output of a system. Therefore, GP pro-
vides an ideal framework to solve this problem. In this regard, the book ”Gaussian Processes
for Machine Learning” [30] by Rasmussen and Williams is the go-to reference in the topic, and
this book served as the foundation of Chapter 5 of this report.
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Object tracking

The historical origins of object tracking (OT) can be traced back to the Second World War
when Allied radar stations began to be used as warning systems against enemy aircraft attacks.
At these stations, radar signals where used to estimate the position and direction of the enemy
objects. Since radar technology was at its infancy at that time, each object extent was approxi-
mated by a point.

The first contribution to the literature about EOT that is stated in a way that resembles the
modern EOT formalism, can be traced back to 1988 in the work of Drummond et al. in [11].
Many other contributions to the field have been added since then. In the tutorial paper [19],
Granström et al. formulate the EOT problem in a multiple target setting, and give an overview
of the current state-of-the-art research in the field up to the article’s publication in 2017. Here,
the two most used EOT approaches are discussed: The random matrix approach and the ex-
tended Kalman filter (EKF) approach for star-convex shapes. Both approaches are Bayesian,
and divide the object’s state vector into kinematic states that describe the movement and orien-
tation of the object, such as position, velocity and heading, and into extent states, which, as the
name suggests, describe the extent of the object.

In the random matrix approach, the extent is assumed to be an ellipsis or an ellipsoid de-
pending on whether the spatial aspect of the problem is two or three dimensional. In this model,
the chosen extent states represent the symmetric and positive definite matrix that models the
implicit cartesian equations of the elliptical or ellipsoidal extent.

The random matrix approach was first proposed by Koch in [21], where a Bayesian approach
was used to estimate the elliptical extent. In this work, there was a restrictive coupling between
the kinematic and extent states. In addition, sensor noise was not part of the model. These issues
were later addressed by Feldmann et al. in [12]. In [16], Granström and Orguner improved the
random matrix approximation by modeling the rotations of the elliptical extent. Furthermore,
in [34], Schuster and Reuter used their general probabilistic data association (GPDA) filter (see
[35]) to handle clutter measurements, and they performed experiments with both radar and lidar
measurements. In [15], Granström et al. used the probability hypothesis density (PHD) filter
to develop an EOT method that estimates the contour of multiple rectangular and elliptical ob-
jects using lidar measurements. Inspired by this, Ruud combined the sensor model from [15]
with the GPDA approach from [35] in his MSc thesis [31] and related conference paper [32].
The developed method was tested on real lidar data measurements of the ship M/S Nidarholm,
whose hull shape can be fairly approximated by an ellipse. Despite this apparent reasonable ap-
proximation, as mentioned in Section 1.1, the random matrix approach gave elliptical estimates
that varied broadly in both shape and size, and that in many cases did not guard a resemblance
with the actual extent. This serves as a motivation to explore the use of GPes for modeling the
extent of maritime vessels.

On the other side, in the EKF approaches for star-convex shapes, the methods assume the
extent to be star-convex, which is consider a mild assumption, if not a technicality, since most
vehicles have star-convex shapes. The star-convex assumption ensures that the extent is univo-
cally determined by its boundary. Furthermore, the polar parametrization of the boundary with
respect to a point inside the extent and a reference frame attached to the body is well-defined
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due to this assumption. Hence, the extent is univocally determined by a radius function that
parameterizes the extent’s boundary.

Under this framework, there are two model classes for representing the star-convex extent:
The random hypersurface models and the GP models. In the random hypersurface models, the
extent states correspond to the Fourier coefficients of the radius function that parameterizes the
extent’s boundary. The more Fourier coefficients are added to the object’s state, the more de-
tailed the estimate of the extent can be. In [7], Baum and Hanebeck present an EOT method
that uses random hypersurfaces for radar measurements. On the other hand, in the GP models,
the extent states correspond to a discretization of the radius function, and this unknown radius
function is assumed to be distributed as a GP. Again, the finer the discretization of the radius
function is, the more detailed the estimated extent can be. In [37], Wahlström and Özkan used
this approach to develop an EOT method for lidar measurements. The resulting measurement
model is highly non-linear, and the accurate association of measurements to points in the ex-
tent’s boundary depends strongly on good position and heading estimates. In [27], Michaelis et
al. propose an arguably more robust method to associate measurements to the extent’s boundary
using random hypersurfaces.

Finite Set Statistics and its applications to object tracking
Finite Set Statistics (FISST) is a theory that studies the stochastic properties of random fi-

nite sets (RFSs), which are finite sets whose cardinality and elements are randomly distributed.
The book [26] by Mahler provides a comprehensive discussion of the topic. FISST provides
a convenient model for multiple object tracking (MOT). For example, by modeling objects as
RFSs, one can elegantly address the fact that there is uncertainty in the number of objects, i.e.,
there is uncertainty in their existence.

There are two main classes of MOT methods based on RFSs: Those that use labeled RFSs,
and those that use unlabeled RFSs. In methods based on labeled RFSs, the tracked objects re-
main unchanged from one time-step to the next. This gives track continuity. However, since
there is no order for the elements of a set, labels are introduced in order to identify each in-
dividual tracked object. A relevant example of an MEOT method based on labeled RFSs is
the generalized labeled multi-Bernoulli (GLMB) presented by Hirscher et al. in [20], which
uses the GP extent model and lidar measurement model introduced in [37]. On the other side,
MOT methods based on unlabeled RFS do not specifically model track continuity, and the cor-
respondence between the tracked objects at one time point and the next is not immediate to
determine. However, this is a minor issue because there is always track continuity in practice
due to the continuity of the underlying object model. Moreover, unlabeled RFS can be stated in
a more elegant and effective frame-work than labeled RFS since they do not require the extra
bookkeeping that comes with the use of labels. The Poisson multi-Bernoulli mixture (PMBM)
derived by Williams in [39] is an example of an MOT method that uses unlabeled RFSs. In
[14], Granström et al. expands this filter to MEOT and uses it together with a random matrix
extent model and a radar measurement model.

In this master thesis, we will explore the combination of the PMBM filter for MEOT from
[14] with the GP extent and lidar measurement model from [37].
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Chapter 3
Finite Set Statistics

A random finite set (RFS) is the mathematical abstraction of a finite set whose cardinality
and elements are randomly distributed. Finite Set Statistics (FISST) is the theory that studies
the statistical properties of these random sets, and provides mathematical tools for statistical
inference on them.

In MOT, the number of objects, as well as their particular characteristics, are unknown and
can vary with time. Therefore, RFSs provide a convenient model for the groups of undetected
and detected objects. Moreover, by utilizing RFS statistical inference, the number of objects
and the values of their parameters can be estimated.

In this chapter, we introduced the basic concepts of RFS and the necessary results for de-
riving the Poisson multi-Bernoulli mixture (see chapter 4). The presented results are proven
using results from standard -,i.e., undergraduate level- calculus and probability theory. Further-
more, it is worth noticing that most of these results resemble analogous results from standard
probability theory. This may improve the intuition, and compensate for the added abstractional
difficulty of studying the stochastics of sets.

For a comprehensive exposition of FISST, we refer to [26].

3.1 Random Finite Sets

Definition 3.1.1 (Random Finite Set). A random finite set (RFS) X on a base space S is a
random variable whose values are finite subsets of S. In other words, X is a function that maps
an outcome space Ω into the set of all finite subsets of S, PF (S), i.e., X : Ω→ PF (S).

For most applications, including the ones of this thesis, the base space S of a RFS is chosen
to be a vector space Rd, and this will be assumed from now onwards. Therefore, any realization
X of a RFS X is a finite subset of Rd, i.e., X = ∅ or X = {x1, . . . ,x|X|} for some different
vectors x1, . . . ,x|X| ∈ Rd. By comparison, a random variable in standard probability and
statistics is real vector valued, i.e., it always returns one vector.
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3.2 Set density functions
In standard probability theory, the concepts of probability density function and probability

mass functions are a convenient tool for calculating probabilities and for studying the stochastic
properties of their corresponding distributions.

The RFS version of these probability functions is the set density function, also known as
the multi-object density or Janossy density, which describes the statistical properties of both the
cardinality and the elements of a RFS.

Definition 3.2.1 (Set density function). Let X be a RFS with base space Rd. A non-negative set
function fX : PF (Rd) → [0,∞) is a set density function for X if the following conditions are
verified:

C.1 For every n ∈ N, the vector function fn : Rd× n. . . ×Rd → [0,∞) defined by

fn(x1, . . . ,xn) =

{
fX ({x1, . . . ,xn}) , if xi 6= xj for i 6= j
0 , otherwise , (3.1)

is either identically zero if Pr (|X | = n) = 0, or if it is proportional to the joint prob-
ability density function gn(x1, . . . ,xn) that is associated to the cardinality-conditioned
distribution

X = {x1, . . . ,xn}||X | = n (3.2)

if Pr (|X | = n) > 0.

C.2 The probability that the cardinality of the RFSX is equal to n ∈ N is given by the integral

Pr (|X | = n) =
1

n!

∫
Rd
fn(x1, . . . ,xn) dx1 . . . dxn , (3.3)

and the probability that the cardinality of X is 0, i.e., that the X is the empty set, is equal
to f(∅). In symbols, Pr (|X | = 0) = Pr (|X | = ∅) = f(∅).

Before dwelling into the statistical meaning of conditions C.1 and C.2, note that a set density
function takes values on finite subsets of Rd, and not on terns of vectors as standard probability
functions do. In particular, a set density function is necessarily invariant under permutations of
the set elements, i.e.,

fX ({x1, . . . ,xn}) = fX ({xσ(1), . . . ,xσ(n)}) (3.4)

for all permutations σ ∈ Sn 1. This is because the sets {x1, . . . ,xn} and {xσ(1), . . . ,xσ(n)} are
equal. In contrast, a standard density functions does not necessarily take the same value on the
terns of vectors (x1, . . . ,xn) and (xσ(1), . . . ,xσ(n)).

Furthermore, it is important to observe that the set X = {x1, . . . ,xn} has cardinality less or
equal to n, and it is only equal to n if all the vectors are different. Therefore, the case definition

1Sn is the set of all permutations on {1, . . . , n}, i.e., the set of all bijections σ : {1, . . . , n} → {1, . . . , n}.
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in (3.1) ensures that the function fn is well-defined. However, this case definition is just a
formality, since the set of all vector terns with at least two equal components:

{(x1, . . . ,xn) ∈ Rd× n. . . ×Rd : xi = xj for some i, j ∈ {1, . . . , n} with i 6= j} , (3.5)

has zero probability, and is therefore neglegible from a probabilistic point of view. The rea-
son for the probability being zero is that this set is one dimension less than the dimension of
Rd× n. . . ×Rd, and that the distribution of X = {x1, . . . ,xn} given |X | = n is continuous since
it is given by a probability density function according to condition C.1.

Condition C.1 provides the marginal distribution of the elements of X for a given cardinal-
ity, while condition C.2 gives the distribution of the cardinality of the RFS X , |X |, which is by
definition discrete because it takes values in N ∪ {0}.

The integral on the right-hand side of (3.3) in condition C.2 accumulates the contribution
of each possible permutation of set elements in the argument of fn. As sets are invariant under
permutations of their elements, all these contributions are equal. Therefore, since there are n!
possible permutations of n elements, this integral is multiplied by the factor 1

n!
in order to com-

pensate for the n! identical contributions.

The following result proves that the proportionality constant mentioned in condition C.1 is
equal to n!Pr (|X | = n), and gives an explicit expression for the set density function.

Proposition 3.2.1. (Explicit expression for set density function) The proportionally constant in
condition C.1 of Definition 3.1.1 is equal to n!Pr (|X | = n) for n ∈ N with Pr (|X | = n) 6= 0.

In particular, the set density function fX can be rewritten as

fX (X) =

{
Pr (X = ∅) , if X = ∅
n!Pr (|X | = n) fX ,n(x1, . . . ,xn) , if |X| = n and X = {x1, . . . ,xn} ,

(3.6)

where fX ,n is identically zero if Pr (|X | = n) = 0, or it is the joint probability density function
of the cardinality-conditioned distribution X = {x1, . . . ,xn}||X | = n if Pr (|X | = n) > 0.

Proof. Let n ∈ N with Pr (|X | = n) 6= 0, and let cn denote the corresponding proportional-
ity constant. Hence, by condition C.1, fn = cngn, where fn is defined as fn(x1, . . . ,xn) =
fX ({x1, . . . ,xn}) and gn is the joint probability density function of the cardinality-conditioned
distribution X = {x1, . . . ,xn}||X | = n.

Since probability density functions integrate to 1, it follows from (3.3) in condition C.2 that

Pr (|X | = n) =
1

n!

∫
Rd
fn(x1, . . . ,xn) dx1 . . . dxn (3.7a)

=
1

n!

∫
Rd
cngn(x1, . . . ,xn) dx1 . . . dxn =

1

n!
cn (3.7b)

⇒ cn = n!Pr (|X | = n) , (3.7c)

as we sought to prove.
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In particular, for any finite set X = {x1, . . . ,xn} with n elements, it follows that

fX (X) = fX ({x1, . . . ,xn}) (3.8a)
= fn(x1, . . . ,xn) (3.8b)
= n!Pr (|X | = n) gn(x1, . . . ,xn) (3.8c)
= n!Pr (|X | = n) fX ,n(x1, . . . ,xn) (3.8d)

by the definitions of fn, gn and fX ,n.

Moreover, this equality is trivially valid for n ∈ N ∪ {0} with Pr (|X | = n) = 0 because
fX (X) is identically zero for sets with n elements if n is such that Pr (|X | = n) = 0, as stated
in condition C.1.

Hence, the set density function fX can be rewritten as

fX (X) =

{
Pr (X = ∅) , if X = ∅
n!Pr (|X | = n) fX ,n(x1, . . . ,xn) , if |X| = n and X = {x1, . . . ,xn}.

(3.9)

3.3 Independence of random finite sets
Definition 3.3.1 (RFS independence). Two RFSs X and Y are said to be independent if

Pr (X ⊂ X and Y ⊂ Y ) = Pr (X ⊂ X) Pr (Y ⊂ Y ) , (3.10)

or more formally,

Pr ({ω ∈ Ω : X (ω) ⊂ X and Y(ω) ⊂ Y }) (3.11)
= Pr ({ω ∈ Ω : X (ω) ⊂ X}) Pr ({ω ∈ Ω : Y(ω) ⊂ Y })

for all subsets X and Y of the base spaces of X and Y , respectively.

Moreover, a finite number of RFSs are said to be independent if any two of them are inde-
pendent of each other.

The definition of independence for RFSs is very similar to the one for random variables in
standard probability theory. Moreover, the well-known convolution expression for the prob-
ability density or mass function of a random variable that is the sum of independent random
variables, has its RFS version using set density functions.

Theorem 3.3.1. (Union of independent RFS) Let X1, . . . ,Xn be a finite number of independent
RFSs with the same base space Rd. Then the RFS X defined as X =

⋃n
i=1Xi is given by set

density function

fX (X) =
∑

⊎n
i=1Xi=X

n∏
i=1

fXi(Xi) , (3.12)

where the notation
⊎n
i=1Xi = X denotes thatX1, . . . , Xn is a partition ofX , i.e.,

⊎n
i=1Xi = X

and Xi ∩Xj = ∅ for i 6= j. Hence, the summation in (3.12) goes through all the ways one can
split the set X into the sets X1, . . . , Xn, and it adds the product of the corresponding set density
function values.
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Proof. We proof the expression for fX (X) by using the identity proven in Proposition 3.2.1.

If X = ∅ and
⊎n
i=1Xi = X , then Xi = ∅ for all i is the only possible partition of X . Hence,

it follows from Proposition 3.2.1, the independence of the RFSs Xi and the definition of X that

fX (X) = fX (∅) (3.13a)
= Pr (X = ∅) (3.13b)

=
n∏
i=1

Pr (Xi = ∅) (3.13c)

=
∑

⊎n
i=1Xi=X

n∏
i=1

fXi(Xi). (3.13d)

Assume now that X = {x1, . . . ,xm} with |X| = m. Since X =
⋃n
i=1Xi, by using com-

binatorics and the independence of the RFSs Xi, the probability density function for the condi-
tional distribution

X = {x1, . . . ,xm}||X | = m (3.14)

can be expressed in terms of the conditional probability functions fX ,m as

fX ,m(x1, . . . ,xm) =
∑

⊎n
i=1Xi=X

1

m!Pr (|X | = m)

n∏
i=1

|Xi|!Pr (|Xi| = |X|i) fXi,|Xi|(xi1, . . .xi|Xi|) ,

(3.15)

where xi1, . . .x
i
|Xi| are the elements of Xi, and fXi,0 is taken as identically 1. Note that the

factors m! and |Xi|! come from all the possible permutations of the elements in X and Xi,
respectively. Moreover, the marginal probability density functions fXi,|Xi| require to be scaled
with Pr (|Xi| = |X|i).

Hence, it follows from Proposition 3.2.1 that

fX (X) = m!Pr (|X | = m) fX ,m(x1, . . . ,xm) (3.16a)

= m!Pr (|X | = m)
∑

⊎n
i=1Xi=X

1

m!Pr (|X | = m)

n∏
i=1

|Xi|!Pr (|Xi| = |X|i) fXi,|Xi|(xi1, . . .xi|Xi|)

(3.16b)

=
∑

⊎n
i=1Xi=X

n∏
i=1

|Xi|!Pr (|Xi| = |X|i) fXi,|Xi|(xi1, . . .xi|Xi|) (3.16c)

=
∑

⊎n
i=1Xi=X

n∏
i=1

fXi(Xi). (3.16d)
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3.4 Some important random finite set classes

The relevant classes of RFSs for the PMBM filter (see chapter 4) are all given by set density
functions, and are introduced here. These presentations serve also as examples for the RFS
concepts that have been developed so far.

3.4.1 Poisson Point Processes

A Poisson point process (PPP) is a RFS whose cardinality is Poisson distributed and whose
set elements are independent and identically distributed according to a probability density func-
tion.

Hence, if X is a PPP, then its cardinality distribution is given by

Pr (|X | = n) =
e−λλn

n!
(3.17)

while the joint probability density function fX ,n(x1, . . . ,xn) for the cardinality-conditioned set
distribution {x1, . . . ,xn}||X = n is

fX ,n(x1, . . . ,xn) =
n∏
i=1

f(xi) , (3.18)

where λ > 0 is the Poisson rate and f : Rd → [0,∞) is the probability density function for any
set element, also known as the spatial distribution.

In particular, it follows from (3.6) in Proposition 3.2.1 that the set density function for the
PPP X is

fX (X) =

{
e−λ , if X = ∅
n! e

−λλn

n!

∏n
i=1 f(xi) , if |X| = n and X = {x1, . . . ,xn}.

(3.19a)

= e−λλ|X|
∏
x∈X

f(x) , (3.19b)

where the convention
∏

x∈∅ f(x) = 1 is used.

A PPP is then completely determined by its Poisson rate and spatial distribution. Moveover,
the number of parameters needed to represent a PPP, can be further reduced to one by using the
intensity function, which is defined asD(x) = λf(x). Indeed, one can recover λ and f(x) from
D(x) by using the fact that f(x) integrates up to 1. Hence, λ =

∫
Rd D(x) dx and f(x) = D(x)

λ
.

Another important property of the intensity function is that its integral over a set S ⊂ Rd,∫
S
D(x) dx, is the expected number of elements in X ∩ S. This is because λ is the expected

number of elements in the set X , and
∫
S
f(x) dx is the probability that an element is in S.
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Moreover, by using the intensity function, the PPP’s set density function can be elegantly
rewritten as

fX (X) = e−λλ|X|
∏
x∈X

f(x) (3.20)

= e−λ
∏
x∈X

λf(x) = e−<D,1>
∏
x∈X

D(x) , (3.21)

where < f, g >=
∫
Rd f(x)g(x) dx denotes the scalar product of the functions f and g.

In the PMBM filter, PPPs are used to model clutter measurements, object-generated mea-
surements, undetected objects and the birth of new objects.

3.4.2 Bernoulli Processes
A Bernoulli process is a RFS whose cardinality follows a Bernoulli distribution and whose

set elements are distributed according to a probability density function.

Hence, according to (3.6) in Proposition 3.2.1, the set density function of a Bernoulli process
X has the form

fX (X) =


1− r , if X = ∅
rf(x) , if X = {x}
0 , if |X| ≥ 2 ,

(3.22)

where r is the probability that the cardinality of X is 1, and f(x) is the probability density
function of the only set element in that case.

Bernoulli processes give an elegant representation of single objects in MOT because they
model both the uncertainty in the object’s existence by means of the parameter r, and the un-
certainty in the object’s state x by means of the probability density function f(x). Because of
this the parameter r is also referred to as the existence probability.

3.4.3 Multi-Bernoulli Processes
A multi-Bernoulli (MB) process X is the union of a finite number of independent Bernoulli

processes {Xi}i∈I. Hence,

X =
⊎
i∈I

Xi , (3.23)

and it follows from (3.12) in Theorem 3.3.1 that the set density function of X is

fX (X) =
∑

⊎
i∈IXi=X

∏
i∈I

fXi(Xi) , (3.24)

where

fXi(Xi) =


1− ri , if Xi = ∅
rif i(xi) , if Xi = {xi}
0 , if |Xi| ≥ 2

(3.25)
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and ri and f i are the existence probability and the probability density function of the i-th
Bernoulli component, respectively. In particular, the set of parameters

{(ri, f i)}i∈I (3.26)

completely defines the multi-Bernoulli process X .

Since MB processes are the union of independent Bernoulli processes, they naturally repre-
sent a group of objects in MOT. Therefore, MB processes are used in the PMBM filter to model
the group of objects that have been detected and are being tracked.

3.4.4 Multi-Bernoulli Mixtures
A multi-Bernoulli mixture (MBM) is a RFS whose set density function is the weighted

average of a finite number of MB set density functions. Hence, if X is an MBM, then its set
density function is given by

fX (X) =
∑
j∈J

wjfXj(X) , (3.27)

where J is a finite index set, wj are weights such that wj ≥ 0 and
∑

j∈Jw
j = 1 and fXj is the

set density function of an MB with parameters

{(rj,i, f j,i)}i∈Ij . (3.28)

In particular, an MBM is completely determined by the set of parameters

{(wj, {(rj,i, f j,i)}i∈Ij}j∈J. (3.29)

In the PMBM filter, each weight wj is the probability for a particular data association hy-
pothesis (see section 4.2), and its corresponding MB Xj represents the group of tracked objects
for that hypothesis.

3.5 The set integral
The set integral is the generalization of the standard Riemann integral to set functions, and

it is defined as follows:

Definition 3.5.1 (Set integral). Let S be a subset of Rd and let f : PF (S)→ R be a set function
such that for all n ∈ N, the function from S× n. . . ×S to R defined as

(x1, . . . ,xn)→ f({x1, . . . ,xn}) (3.30)

is Riemann integrable over S× n. . . ×S.

Then the set integral of f on S is defined as∫
S

f(X) δX = f(∅) +
∞∑
n=1

1

n!

∫
S×n...×S

f({x1, . . . ,xn}) dx1 . . . dxn. (3.31)

Moreover, if S = Rd, we only write
∫
f(X) δX for the integral over the whole space Rd.
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Note that similarly to (3.3), the integrals on the right-hand side of (3.31) are multiplied by
the factor 1

n!
in order to compensate that the function f({x1, . . . ,xn}) is invariant under permu-

tations of the set elements x1, . . . ,xn, which gives n! identical contributions to its integral.

In standard probability theory, the integral of a probability density function over a set is
equal to the probability that the realizations of its random variable lie in that set. The analogous
result for set density functions is summarized in the following theorem:

Theorem 3.5.1. (Probability from set integral) Let X be a RFS with base space Rd and set
density function fX .

Then the probability that the realizations of X are contained in a set S ⊂ Rd is equal to the
set integral of its set density function on that set S, i.e.,

Pr (X ⊂ S) =

∫
S

fX (X) δX. (3.32)

Proof. By inserting the case-based expressions of fX according to (3.6) into (3.31) and using
that the integral of a probability density functions gives the probability, we obtain that∫

S

fX (X) δX = f(∅) +
∞∑
n=1

1

n!

∫
S×n...×S

fX ({x1, . . . ,xn}) dx1 . . . dxn (3.33a)

= Pr (|X | = 0) +
∞∑
n=1

1

n!

∫
S×n...×S

n!Pr (|X | = n) fX ,n(x1, . . . ,xn) dx1 . . . dxn (3.33b)

= Pr (|X | = 0) +
∞∑
n=1

Pr (|X | = n)

∫
S×n...×S

fX ,n(x1, . . . ,xn) dx1 . . . dxn (3.33c)

= Pr (|X | = 0) +
∞∑
n=1

Pr (|X | = n) Pr (x1, . . . ,xn ∈ S||X | = n with X = {x1, . . . ,xn}) .

(3.33d)

Finally, the total probability formula yields∫
S

fX (X) δX = Pr (|X | = 0) +
∞∑
n=1

Pr (|X | = n) Pr (X ⊂ S||X | = n) (3.34a)

= Pr (X = ∅) + Pr (X 6= ∅ and X ⊂ S) = Pr (X ⊂ S) . (3.34b)

3.6 Probability Generating Functionals
Probability generating functionals (PFGLs) are the RFS version of probability generating

functions from standard probability theory, and have similar properties to them.

Before introducing the PGFL concept, let us stress the fact that PGFLs are functionals, i.e.,
they are functions that take in scalar valued functions of a vector variable as arguments and
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return scalar values. This is in much contrast to moment generating functions, which are usual
scalar valued functions of a scalar variable.

The concept of functional is an abstraction that has powerful applications not only to FISST,
but also to other fields like Fourier Analysis, Partial Differential Equations, among others (see
for example [25]). However, this abstraction might be difficult to grasp at the beginning since it
revolves on the idea of a ”function defined on a set of functions”.

In order to illustrate the concept of a functional, let us consider one of the most important
classes of functionals in Functional Analysis:

Definition 3.6.1. (Scalar product functional) Let g : Rd → R be a fixed function. Then the
scalar product functional Tg is defined as

Tg(h) =< g, h >=

∫
Rd
g(x)h(x) dx , (3.35)

where h : Rd → R.

Tg is indeed a functional because it takes in functions h : Rd → R as arguments, which
are called test functions, and returns scalars. However, note that Tg(h) is not necessarily well-
defined for any pair of functions g, h : Rd → R. This is because the product gh may not be
integrable on Rd. The solution to this is to restrict the selection of functions g and h to sets
of functions with ”suitable properties”, which ensure that the functional Tg(h) is always well-
defined.

The discussion of what is meant by ”suitable properties” requires the study of measurable
functions and Lebesgue spaces, among other concepts, and is therefore outside of the scope of
this thesis. Moreover, such a measure theoretic discussion is unnecessary for the objectives of
this thesis. The reason for this is that the derivation of the PMBM filter only requires to study
the structure of the involved PGFLs (see section 4.4). In particular, the evaluation of these func-
tionals on test functions is secondary.

For the applications of this thesis and for the sake of simplicity, we will only consider test
functions that are continuous on Rd, except on a discrete set of points, and that tend to zero
when the argument x ∈ Rd tends to infinity, i.e., lim|x|→∞ h(x) = 0. Moreover, the set of all
test functions with these properties is denoted by C(Rd,R).

The set C(Rd,R) is sufficiently ”rich” with functions. In particular, it contains all continu-
ous probability density functions and all Dirac deltas.

For an introduction to measure theory, we refer to [9].

Definition 3.6.2 (Probability Generating Functional). Let X be RFS on Rd with set density
function fX . Then its associated probability generating functional (PGFL) is defined as

FX (h) =

∫
hXfX (X) δX , (3.36)
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where h ∈ C(Rd,R) is a test function, and the notation hX denotes the finite product
∏

x∈X h(x)
with the convention that h∅ = 1.

Similarly to probability generating functions in standard probability theory, the PGFL of
the union of a finite number of independent RFSs is the product of the corresponding PGFL, as
shown in the following result:

Theorem 3.6.1. (PGFLs and independence) Let X1, . . . ,Xn be a finite number of independent
RFSs with the same base space Rd.

Then the PGFL of the RFS X defined as X = ∪mi=1Xi is

FX =
n∏
i=1

FXi . (3.37)

Proof. Let h be a test function. Then by the definition of the PGFL and the set integral (Defini-
tion 3.6.2 and Definition 3.5.1), we have that

n∏
i=1

FXi(h) (3.38a)

=
n∏
i=1

(
fX〉(∅) +

∞∑
m=1

1

m!

∫ ( m∏
j=1

h(xj)

)
fX〉({x1, . . . ,xm)}) δ{x1, . . . ,xm)}

)
. (3.38b)

The application of Proposition 3.2.1 on this expression yields

n∏
i=1

FXi(h) (3.39a)

=
n∏
i=1

(
fX〉(∅) +

∞∑
m=1

Pr (|Xi| = m)

∫ ( m∏
j=1

h(xj)

)
fX〉,m(x1, . . . ,xm)) dx1 . . . dxm

)
.

(3.39b)

By multiplying out all factors in (3.39b), and by grouping the terms whose sum of integral
dimensions is the same, we have that

n∏
i=1

FXi(h) =
n∏
i=1

fX〉(∅) + . . . (3.40a)

· · ·
∞∑
m=1

∑
0≤1≤mi∑
mi=m

m!∏n
i=1mi!

n∏
i=1

(
Pr (|Xi| = mi)

∫ ( mi∏
l=1

h(xl)

)
fX〉,mi(x1, . . . ,xmi)) dx1 . . . dxmi

)
,

(3.40b)

where the term m!∏n
i=1mi!

is the number of different ways one can split a set of m elements into n
subsets X1, . . . , Xn, where the number of elements in Xi is mi.
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By grouping all the integrands of each term in (3.40b) under the same integral, and by using
that the marginal probability density functions fX〉,mi correspond to independent distribution,
we conclude that

n∏
i=1

FXi(h) =
n∏
i=1

fX〉(∅) + . . . (3.41a)

· · ·
∞∑
m=1

 ∑
0≤1≤mi∑
mi=m

m!∏n
i=1mi!

n∏
i=1

(Pr (|Xi| = mi))

∫
(

n∏
i=1

h(xi)

)
fX ,m(x1, . . . ,xm)) dx1 . . . dxm.

(3.41b)

Now, we observe that

∑
0≤1≤mi∑
mi=m

m!∏n
i=1mi!

n∏
i=1

(Pr (|Xi| = mi)) = Pr (|X | = m) (3.42)

since the left-hand side of this expression is the sum over all ways one can split a set of m
elements into n subsets X1, . . . , Xn, where the number of elements in Xi is mi multiplied by
the probabilities that these sets have mi elements.

Hence, by inserting of (3.42) into (3.41b), it follows that

n∏
i=1

FXi(h) =
n∏
i=1

fX〉(∅) + . . . (3.43a)

· · ·
∞∑
m=1

Pr (|X | = m)

∫ ( n∏
i=1

h(xi)

)
fX ,m(x1, . . . ,xm)) dx1 . . . dxm (3.43b)

=
n∏
i=1

Pr (Xi = ∅) +
∞∑
m=1

Pr (|X | = m)

∫ ( n∏
i=1

h(xi)

)
fX ,m(x1, . . . ,xm)) dx1 . . . dxm

(3.43c)

= Pr (X = ∅) +
∞∑
m=1

1

m!

∫ ( m∏
j=1

h(xj)

)
fX ({x1, . . . ,xm)}) δ{x1, . . . ,xm)} (3.43d)

= FX (h). (3.43e)

By using Definition 3.6.2 together with Theorem 3.6.1, the PGFL of a wide variaty of RFSs
can be found based on the PGFL expressions for RFS with simpler set density functions. In
particular, the PFGLs of the important classes of RFSs presented in Section 3.4 are given by:

Proposition 3.6.1. (The PGFL of a PPP) Let X be a PPP with intensity function D(x). Then
its PGFL is given by

FX (h) = e−<D,h−1> (3.44)
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Proof. By inserting (3.20) into the definition of the PGFL (3.36), and using the definition of the
set integral (3.31), it follows that:

FX (h) =

∫
hXfX (X) δX =

∫ ∏
x∈X

h(x)e−<D,1>
∏
x∈X

D(x) δX (3.45a)

= e−<D,1>

(
1 +

∞∑
n=1

1

n!

∫ n∏
i=1

(h(xi)D(xi)) dx1 . . . dxn

)
. (3.45b)

The final expression for the PGFL of a PPP X is then obtained by exchanging the order of
the product and the integration. This yields:

FX (h) = e−<D,1>

(
1 +

∞∑
n=1

1

n!

n∏
i=1

(∫
h(xi)D(xi) dxi

))
(3.46a)

= e−<D,1>

(
1 +

∞∑
n=1

1

n!

n∏
i=1

< h,D >

)
(3.46b)

= e−<D,1>

(
1 +

∞∑
n=1

1

n!
< h,D >n

)
(3.46c)

= e−<D,1>e<h,D> = e<D,h−1>. (3.46d)

Proposition 3.6.2. (The PGFL of a Bernoulli process) Let X be a Bernoulli process with exis-
tence probability r and distribution f . Then its PGFL is given by

FX (h) = 1− r + r < f, h > . (3.47)

Proof. This result follows directly from the expression for the set density of a Bernoulli process
(3.22) and the definitions of the PGFL (3.36) and the set integral (3.31):

FX (h) =

∫
hXfX (X) δX (3.48a)

= fX (∅) +

∫
h(x)rf(x) dx+ 0 + 0 + . . . (3.48b)

= 1− r + r < f, h > . (3.48c)

Proposition 3.6.3. (The PGFL of a MB) LetX be a MB processes with parameters {(ri, f i)}i∈I.
Then its PGFL is given by

FX (h) =
∏
i∈I

(
1− ri + ri < f i, h >

)
. (3.49)

Proof. By definition (see Section 3.4.3), the MB process X is the union of a finite number of
independent Bernoulli processes Xi, where each Xi has existence probability ri and distribution
f i. Hence, the result we want to prove, follows directly from Theorem 3.6.1 and the previous
proposition (Proposition 3.6.2).
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Proposition 3.6.4. (The PGFL of a MBM) Let X be a MBM with parameters

{wj, {(rj,i, f j,i)}i∈Ij}j∈J. (3.50)

Then its PGFL is given by

FX (h) =
∑
j∈J

wj
∏
i∈Ij

(
1− rj,i + rj,i < f j,i, h >

)
. (3.51)

Proof. By definition (see Section 3.4.4), the set density function of the MBM process X is

fX (X) =
∑
j∈J

wjfXj(X) , (3.52)

where fXj(X) is the set density function of a MB process with parameters {(rj,i, f j,i)}i∈Ij .

Hence, by setting the expression for fX (3.52) into the PGFL definition (3.36), and using
the linearity of the set integral (3.31) together with the previous proposition (Equation (3.51)),
the result follows:

FX (h) =

∫
hXfX (X) δX (3.53a)

=

∫
hX
∑
j∈J

wjfXj(X) δX (3.53b)

=
∑
j∈J

wj
∫
hXfXj(X) δX (3.53c)

=
∑
j∈J

wjFXi(h) =
∑
j∈J

wj
∏
i∈Ij

(
1− rj,i + rj,i < f j,i, h >

)
. (3.53d)

From propositions 3.6.1-3.51, we observe that the function scalar product < ·, · > is a cen-
tral building block for the PGFLs of PPPs, Bernouli processes, MBs and MBMs.

Another important result on PGFLs, it that a PGFL contains all the statistical information
of its corresponding RFS because the set density function can be retrieved from this PGFL by
derivation. Before presenting this result, let us define how functionals are derivated:

Definition 3.6.3. (Functional derivative) Let FX be the PGFL of the RFS X . The functional
derivative of FX with respect to a finite and non-empty set X = {x1, . . . ,xn} is given by the
iterated derivative

δFX
δX

=
δnFX

δx1 . . . δxn
, (3.54)

where the individual derivatives are the limit values

δFX
δxi

(h) = lim
ε→0+

δFX [h+ εδxi ]− δFX (h)

ε
(3.55)
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and δxi(x) = δ(x− xi) is the Dirac delta at the point xi ∈ Rd.

Furthermore, functional derivative of FX with respect to the empty set is itself, i.e.,

δFX
δ∅

= FX . (3.56)

Theorem 3.6.2. (Retrieving set density from PGFL) Let FX be the PGFL of a RFSX . Then the
set density function fX can be recovered from the PGFL according to the formula

fX (X) =
δFX
δX

[0]. (3.57)

Proof. First, if X = ∅, then the functional derivative with respect to X leaves the functional.
Hence, it follows from the definition of the PGFL (Definition 3.6.2) that

δFX
δX

[0] = FX (h)|h=0 =

∫
hXfX (X) δX

∣∣∣∣
h=0

(3.58a)

= fX (∅) +
∞∑
m=1

1

m!

∫ ( m∏
j=n+1

h(xj)

)
fX ({x1, . . . ,xm)}) δ{x1, . . . ,xm)}

∣∣∣∣∣
h=0

(3.58b)

= fX (∅) = fX (X). (3.58c)

Let us now prove the identity for a non-empty set X = {x1, . . . ,xn} with |X| = n. In
order to do so, consider m different vectors x1, . . . , xm. Then, by multiplying out the terms in∏m

i=n+1

(
h(xi) + εδxn+1(xi)

)
, we have that

lim
ε→0+

∫ (∏m
i=n+1

(
h(xi) + εδxn+1(xi)

)
−
∏m

i=n+1 h(xi)

ε

)
fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+1 . . . dxm

(3.59a)

= lim
ε→0+

∫ ε
(∑m

j=n+1 δxn+1(xj)
∏m

i=n+1
i 6=j

h(xi)

)
+ ε2(. . . )

ε

 fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+1 . . . dxm ,

(3.59b)

where the terms that have a second or higher powers of ε are factorized as ε2(. . . ). These terms
do not contribute to the limit since ε→ 0+, and can be eliminated. Hence, by dividing by ε and
taking the limit, we have that

lim
ε→0+

∫ (∏m
i=n+1

(
h(xi) + εδxn+1(xi)

)
−
∏m

i=n+1 h(xi)

ε

)
fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+1 . . . dxm

(3.60a)

=

∫  m∑
j=n+1

δxn+1(xj)
m∏

i=n+1
i 6=j

h(xi)

 fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+1 . . . dxm , (3.60b)
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By the linearity of the integral, and the fact that x1, . . . ,xn are not integration variables, it
follows that

lim
ε→0+

∫ (∏m
i=n+1

(
h(xi) + εδxn+1(xi)

)
−
∏m

i=n+1 h(xi)

ε

)
fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+1 . . . dxm

(3.61a)

=
m∑

j=n+1

 m∏
i=n+1
i 6=j

h(xi)

∫ δxn+1(xj)fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+1 . . . dxm , (3.61b)

Since the function fX ,m is invariant under permutations of its variables, we can always
interchange xj with xn+1 in the integrals. By doing so, the integral of the product between
δxn+1(xj) and fX ,m with respect to xj , will fix the variable at the position n+ 1 to xn+1 in fX ,m
Therefore, the limit becomes

lim
ε→0+

∫ (∏m
i=n+1

(
h(xi) + εδxn+1(xi)

)
−
∏m

i=n+1 h(xi)

ε

)
fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+1 . . . dxm

(3.62a)

= (m− n)

 m∏
i=n+1
i 6=j

h(xi)

∫ fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+2 . . . dxm , (3.62b)

if n+ 1 < m, or

lim
ε→0+

∫ (∏m
i=n+1

(
h(xi) + εδxn+1(xi)

)
−
∏m

i=n+1 h(xi)

ε

)
fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+1 . . . dxm

(3.63a)

= (m− n)

 m∏
i=n+1
i 6=j

h(xi)

 fX ,m(x1, . . . ,xn,xn+1, . . .xm) , (3.63b)

if n+ 1 = m.

Now, since the PGFL FX is defined as

FX (h) = fX (∅) +
∞∑
m=1

1

m!

∫ ( m∏
j=n+1

h(xj)

)
fX ({x1, . . . ,xm)}) δ{x1, . . . ,xm)} , (3.64)

we can use the expressions in (3.63b) and (3.63b) to prove by induction over the number of
iterated functional derivatives with respect to vectors x1, . . . ,xn that

δnFX
δx1 . . . δxn

(h) = fX ,n(x1, . . . ,xn) + . . . (3.65a)

· · ·
∞∑

m=n+1

1

(m− n)!

(
m∏

i=n+1

h(xi)

)∫ ( m∏
i=n+1

h(xi)

)
fX ,m(x1, . . . ,xn,xn+1, . . .xm) dxn+1 . . . dxm.

(3.65b)
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In particular, evaluation of this expression at h = 0 gives the final result:

δnFX
δx1 . . . δxn

(h) = fX ,n(x1, . . . ,xn) (3.66a)

= fX ({(x1, . . . ,xn)}). (3.66b)

Note that the functional derivative of a PGFL (3.54)-(3.55) is another functional. Moreover,
it is immediate to verify that the functional derivative is a linear operator in the sense that

δ(αFX + βFY)

δx
(h) = α

δFX
δx

(h) + β
δFY
δx

(h) (3.67)

for any scalars α, β ∈ R and any PFGLs X and Y with the same base space Rd.

There are many other ”turn-the-crank” derivation rules for functional derivatives similar to
the ones in classical Calculus. However, for the derivation of the PMBM filter (see Section 4.4)
only one additional rule is necessary: The expression for the functional derivative of the union
of a finite number of independent RFSs.

Theorem 3.6.3. (Product rule for functionals) Let F1, . . . , Fn be a finite number of functionals
for test functions defined on Rd.

Then the functional derivative of their product is given by

δ
∏n

i=1 Fi
δX

=
∑

⊎n
i=1Xi=X

n∏
i=1

δFi
δXi

. (3.68)

Proof. First, if X = ∅, then the functional derivative with respect to X leaves the functional
unchanged. In addition, the only partition of X = ∅ into sets Xi is Xi = ∅ for all i. Hence,

δ
∏n

i=1 Fi
δX

=
n∏
i=1

Fi =
∑

⊎n
i=1Xi=X

n∏
i=1

δFi =
∑

⊎n
i=1Xi=X

n∏
i=1

δFi
δXi

. (3.69)

Consider now a non-empty set X = {x1, . . . ,xn} with |X| = n. Then, we prove the prod-
uct rule identity by induction over the cardinality of X:

Let n = 1, i.e.,X = {x}. For only a vector x, it follows from the definition of the functional
derivative with respect to a vector (Definition 3.6.3) and the standard product rule from calculus
that

δ
∏n

i=1 Fi
δX

=
δ
∏n

i=1 Fi
δx

=
n∑
j=1

δFj
δx

n∏
i=1
i 6=j

Fi (3.70a)

=
n∑
j=1

δFj
δx

n∏
i=1
i 6=j

δFj
δ∅

(3.70b)

=
∑

⊎n
i=1Xi=X

n∏
i=1

δFi
δXi

, (3.70c)
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where the last equality follows from the fact that the only way to partition the set X = {x} is if
one and only one set Xi is equal to X and the rest are empty sets.

Assume now that identity is true for sets with n elements, and consider a set with n + 1
elements X . Hence, X = Y ∪ {x}, where Y is a set with n elements. By using the definition
of the functional derivative with respect to a vector (Definition 3.6.3), the inductions hypothesis
and the identity (3.70b), we have that

δ
∏n

i=1 Fi
δX

=
δ

δx

δ
∏n

i=1 Fi
δY

(3.71a)

=
δ

δx

 ∑
⊎n
i=1 Yi=Y

n∏
i=1

δFi
δYi

 (3.71b)

=
∑

⊎n
i=1 Yi=Y

δ

δx

n∏
i=1

δFi
δYi

(3.71c)

=
∑

⊎n
i=1 Yi=Y

n∑
j=1

δ

δx

δFj
δYj

n∏
i=1
i 6=j

δ

δ∅
δFi
δYi

(3.71d)

=
∑

⊎n
i=1 Yi=Y

n∑
j=1

δFj
δ{x} ∪ Yj

n∏
i=1
i 6=j

δFi
δYi

(3.71e)

=
∑

⊎n
i=1Xi=X

n∏
i=1

δFi
δXi

, (3.71f)

where the last equality follows from the fact that any partition of X into X1, . . . , Xn is given
by a partition of Y into Y1, . . . , Yn, where Xi = Yi for all i, except for one index j that verifies
Xj = Yj ∪ {x}.
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Chapter 4
Poisson multi-Bernoulli mixture filter for
multiple extended object tracking

The Poisson multi-Bernoulli mixture (PMBM) filter for MEOT is one of the most sophisti-
cated and state-of-the-art MEOT methods. The theory behind this filter is based on the concepts
and results about RFSs that have been presented in Chapter 3. Because of the considerable the-
oretical prerequisites needed for this filter, papers that present this filter do not give a detailed
presentation of it, and they usually refer to other sources for some details.

In this chapter, we present a self-contained derivation of the PMBM filter that is accessible
from an undergraduate level in mathematics and statistics.

4.1 The dynamic and measurement models of the object
The information about the object’s movement and extent is encapsulated in its correspond-

ing state vector x. The objective of the PMBM filter for MEOT is then to discover all existing
objects and provide estimates of their respective state vectors over time. This is achieved by
using the measurements z that are available, as well as stochastic models for both the object’s
dynamics and the measurements.

These stochastic models are discrete in time. In particular, the state vector values can only
vary at discrete time points. In addition, at each discrete time point, new objects can be gener-
ated and existing objects can cease to exist. Furthermore, the measurements available at a time
point can be generated by the existing objects, but can also be due to ”false alarms”, which are
also known as ”clutter”.

The detailed formal description of these models is presented below.
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4.1.1 Description of the dynamic model:
A.1 The total number of objects at each time point is finite.

A.2 New objects generate at each time point according to a PPP with birth intensity Db(x).

A.3 An existing object survives to the next time point with probability ps(x). This survival
process is independent and identically distributed for each existing object.

A.4 If the existing object survived, its state vector at a time point, xk−1, becomes xk at the
next time point according to the transition probability density function fk|k−1(xk|xk−1).
This transition process is independent and identically distributed for each existing object.

A.5 The birth of new targets and the joint process of survival and state-transition for each
target are independent processes.

4.1.2 Description of the measurement model:
B.1 The number of measurements at each time point is finite.

B.2 Clutter or false alarms are generated according to a PPP with intensity Dc(x), which is
independent of the objects and object-generated measurements.

B.3 An existing object can be detected with detection probability pd(x).

B.4 If an existing object is detected, it generates measurements according to a PPP with in-
tensity λm(x)l(z|x), where λm(x) is the Poisson rate and l(z|x) is the spatial distribution
of the PPP.

B.5 A measurement is either a false alarm or it is generated by one and only one object.

B.6 A measurement generated by an object is independent of all other objects and their object-
generated measurements. Note that measurements generated by the same object can be
dependent.

Note that although an object is ”detected” according to (B.3), it can still generate zero
measurements since the cardinality of the measurement set is Poisson distributed according
to (B.4). Therefore, the effective probability of detection is

pd(x)
(
1− e−λm(x)

)
, (4.1)

where 1 − e−λm(x) is the Poisson probability of generating at least one measurement. Hence,
the effective probability of missed detection is

qd(x) = 1− pd(x)
(
1− e−λm(x)

)
= 1− pd(x) + pd(x)e−λ

m(x). (4.2)

Furthermore, the probability density function l(z|x) is the likelihood of the measurement z
given the state vector x. Therefore, the likelihood of a non-empty set of measurements Z given
a state vector x is given by the product of the probability of detection and the PPP density for
the set Z, i.e.,

lZ(x) = pd(x)
∏
z∈Z

λm(x)l(z|x) , (4.3)
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while the likelihood of an empty set of measurements given a state vector x is

l∅(x) = qd(x) (4.4)

4.2 The data association problem
According to B.5, any measurement is either clutter or generated by one and only one ob-

ject. However, measurements do not provide a priori information about their origin. In addition,
among the object-generated measurements, it is unknown which measurements originated from
objects that have been previously detected (”tracked”), and which come from undetected (”un-
known”) objects. Since the measurement origin is unknown, it is necessary to discuss data
association, which is the problem of generating and bookkeeping hypotheses that associate
measurements to particular tracked objects or to the ”background”, which is the common term
for both clutter and unknown objects.

Let the set of all measurements for a given time step Z be indexed by the set M, i.e.,

Z = {zm}m∈M , (4.5)

and let I be the index set of the tracked objects with M ∩ I = ∅.

If both M and I are empty, then there are no measurements and no tracked objects. In par-
ticular, there is no data association problem for this time point.

Therefore, let us assume that M or I are non-empty. Then, a data association hypothesis A
is any partition of M ∪ I into non-empty sets C1, . . . , CNA , known as cells, that contain at most
one element from I. In other words, the cells C1, . . . , CNA are characterized by the conditions

NA⊎
n=1

Cn = M ∪ I (4.6a)

Cn 6= ∅ (4.6b)
|Cn ∩ I| ≤ 1. (4.6c)

Moreover, we write A = {C1, C1, . . . , CNA}.

Furthermore, let ZC denote the set of measurements that corresponds to a cell C, i.e.,

ZC =
⋃

m∈C∩M

{zm} , (4.7)

and let lC(x) be the likelihood of the cell measurements ZC given the state vector x, i.e.,

lC(x) = lZC (x). (4.8)
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The interpretation of a cell Cn of the data association hypothesis A can be summarized in
three possibilities:

1. If Cn ∩ I 6= ∅, then necessarily Cn ∩ I = {i} for some index i ∈ I. In such case, the
measurements with indices in Cn ∩M are associated to the tracked target with index i.

2. If Cn ∩ I = ∅, then the measurements with indices in Cn ∩ M are associated to the
background, i.e., they are clutter or they are generated by unknown targets.

3. If Cn∩I = {i} and Cn∩M = ∅, then the tracked target with index i has not been detected
because it does not have associated measurements.

Data association example

In order to illustrate the concept of data association hypothesis and recognize the complexity
of the data association problem, let us consider the simple example given in fig. 4.1. Here,
two objects are been tracked, and their respective state vector estimates x̂1 and x̂2 are assumed
to be normally distributed. The ellipses in the figure represent the respective mean values and
covariance matrices of these estimates. Moreover, the measurement model in this example gives
direct measurements of the state vector, i.e., z = x+w, where w is white Gaussian noise. There
are three available measurements: z1, z2 and z3.

x̂1

x̂2

z3

z1

z2

Figure 4.1: Data association example. Two tracked objects with normally distributed state vector es-
timates x̂1 and x̂2, respectively. The ellipses represent their respective mean values and covariance
matrices. The measurement model is z = x + w, where w is white Gaussian noise. The available
measurements are z1, z2 and z3.

Let M = {m1,m2,m3} and I = {i1, i2} be index sets for the measurements and the tracked
objects, respectively, such that zmn = zn and xin = xn. Then, one possible data association
hypothesis is

C1 = {m1,m3, i1}, C2 = {m2}, C3 = {i2} , (4.9)

which means that the measurements z1 and z3 are associated to the tracked object with state x1,
the measurement z2 is clutter or is generated by an unknown object, and that the other tracked
object has not been detected. Moreover, it follows that

ZC1 = {z1, z3}, ZC2 = {z2}, ZC3 = ∅. (4.10)
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It is easy to verify that there are many other possible data association hypotheses. Moreover,
some of these data association hypotheses are more likely than others. Nevertheless, one can
not know a priori which of the data association hypotheses is the correct one.

4.3 The Poisson and multi-Bernoulli mixture model

The strategy followed by the PMBM filter to deal with several data association hypotheses
is to consider all possible hypotheses at each time step, and update the objects’ state for each
one of them. Hence, there will be a set of tracked objects with their corresponding state vector
estimates for each possible sequence of data association hypotheses from the initial time step
up to the current time step. Such a particular history of data association hypotheses is known
as a global data association hypothesis. The advantages of this strategy is that all possibilities
are considered, and as time progresses, the probabilities of the correct global data association
hypothesis is expected to dominate, giving a good state estimate of the tracked objects.

In the case of the PMBM filter, the tracked objects X t are modeled as a MBM with param-
eters

{(wj, {(rj,i, f j,i)}i∈Ij)}i∈J , (4.11)

where J is the index set for all possible global data association hypotheses, and for a given
j ∈ J, the corresponding MB component describes the probability distribution of the tracked
targets for the global data association hypothesis, which are indexed by the set Ij .

Moreover, the unknown objects X u are modeled as a PPP with intensity λu(x), which is
independent of the RFS for the tracked objects X t. Therefore, the combined distribution of all
objects X , i.e., X = X u ] X t, is said to be distributed as a ”Poisson multi-Bernoulli mixture”.

In particular, it follows from Proposition 3.6.1, Proposition 3.6.4 and Theorem 3.6.1 that the
PGFL for the PMBM X is equal to

FX (h) = e−<D
u,h−1>

∑
j∈J

wj
∏
i∈Ij

(
1− rj,i + rj,i < f j,i, h >

)
. (4.12)

Moreover, the PMBM density is univocally determined by the parameters

Du, {(wj, {(rj,i, f j,i)}i∈Ij)}i∈J. (4.13)

4.4 PMBM prediction and update steps

Bayesian OT methods for a single object are based on two important equations: The Chapman-
Kolmogorov equation, which is given by

f(xk|z1:k−1) =

∫
fk|k−1(xk|xk−1)f(xk−1|z1:k−1) dxk−1 , (4.14)
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and Bayes’ rule, which is given by

f(xk|z1:k) =
f(zk|xk)f(xk|z1:k−1)∫
f(zk|xk)f(xk|z1:k−1) dxk

(4.15a)

∝ f(zk|xk)f(xk|z1:k−1) , (4.15b)

The Chapman-Kolmogorov equation propagates the distribution of x at time step k−1 con-
ditioned to the measurements up to time step k − 1, f(xk−1|z1:k−1), to the next time step using
the state-transition density function fk|k−1(xk|xk−1). This provides the distribution of x at time
step k conditioned to the measurements up to time step k − 1. Therefore, this equation gives
the so-called ”prediction” step of the target tracking method. After this step, the uncertainties
in the estimate usually increase due to the addition of model uncertainties.

On the other hand, Bayes’ rule provides the posterior distribution of x at time step k condi-
tioned to the measurements up to that time step, f(xk−1|z1:k), by using the likelihood function
f(zk|xk) and the predicted distribution fk|k−1(xk|xk−1). The step of the target tracking method
based on Bayes’ rule is known as the ”update” step because it usually improves the state esti-
mate since it uses the measurement model and the information of the additional measurement
at time k.

In the case of the PMBM filter, the generalizations of the Chapman-Kolmogorov equation
and Bayes’ rule to RFSs are used

f(Xk|Z1:k−1) =

∫
fk|k−1(Xk|Xk−1)f(Xk−1|Z1:k−1) δXk−1 (4.16a)

f(Xk|Z1:k) ∝ f(Zk|Xk)f(Xk|Z1:k−1). , (4.16b)

where the concepts of set density function (Definition 3.2.1) and set integral (Definition 3.5.1)
are central.

We will now prove in the following two theorems that the structure of the PMBM PGFL
(4.12) is preserved by the application of the Chapman-Kolmogorov equation (4.16a and the
Bayes’ rule 4.16b) for RFS. In particular, by examining the parameter expressions of the ob-
tained PGFLs, prediction and update laws are derived for the PMBM parameters (4.13).

Theorem 4.4.1. (PMBM prediction step) Let the posterior distribution Xk be a PMBM with
parameters

Du
k , {w

j
k, {(r

j,i
k , f

j,i
k )}i∈Ijk}j∈Jk . (4.17)

Then it follows from the dynamic model (A.1)-(A.5) and the Chapman-Kolmogorov equation for
RFSs (4.16a) that the predicted distribution Xk|k−1 is also a PMBM with parameters

Du
k|k−1, {w

j
k|k−1, {(r

j,i
k|k−1, f

j,i
k|k−1)}i∈Ijk}j∈Jk , (4.18)
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where

Du
k|k−1(x) = Db(x)+ < Dk, p

sfk(x|·) > (4.19a)

wjk|k−1 = wjk (4.19b)

rj,ik|k−1 = rj,i < f j,ik , p
s > (4.19c)

f j,ik|k−1(x) =
< f j,ik , p

sfk(x|·) >
< f j,ik , p

s >
(4.19d)

and fk(x|·) is the function fk(x|x′), where x is fixed and x′ is variable.

In particular, the number of components in the MBM, as well as the number of Bernoulli
components in each MB, remain unchanged by the PMBM prediction step.

Proof. The proof consists of the following steps:

1. Find the PGFL of the conditioned RFS X|X ′, which corresponds to the transition from a
RFS X ′ to the RFS X at the next time step.

2. Express the PGFL of the predicted distribution Xk|k−1 as a function of the PGFL of the
updated distribution Xk using the PGFL of X|X ′ found in the previous step.

3. Insert the PMBM expression for the PGFL of the updated distribution Xk into the formula
found in the previous step. Then, verify that the resulting expression corresponds to the
PGFL of a PMBM. By doing so, the prediction laws for the parameters (4.19) are also
derived.

Indeed,

1. The transition RFS X|X ′ consists of two independent processes: The birth of new objects
and the survival and state-transition of existing objects (A.1)-(A.5).

According to (A.2), the birth of new objects is a PPP with birth intensity Db(x). Hence,
it follows from Proposition 3.6.1, that its PGFL is given by

F b
X|X ′(h|X ′) = e<D

b,h−1>. (4.20)

where X ′ is a realization of X ′. The need to specify the dependence of F b
X|X ′ on X ′ is

necessary since it is part of the PGFL of a conditioned RFS. However, in this case, its
actual expression is independent of any realization.

On the hand, due to (A.3) and (A.4), the survival of an existing object and the state-
transition of this object in the case that it survives, constitutes a Bernoulli process with
existence probability ps(x′) and spatial distribution fk|k−1(·|x′), where x′ is its state vector
before the transition and fk(·|x′) is the function fk(x|x′), where x is variable and x′ is
fixed.

Furthermore, (A.3) and (A.4) ensure that these Bernoulli processes are independent.
Therefore, the survival and transition for all existing objects constitutes a MB process.
Hence, it follows from Proposition 3.6.3, that its corresponding PGFL is given by

F s,t
X|X ′(h|X

′) =
∏

x′∈X′
(1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >) , (4.21)
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where X ′ is a realization of X ′.
Finally, since the birth of new targets and the process of survival and state-transition are
independent processes according to (A.5), Theorem 3.6.1 yields the PGFL of

FX|X ′(h|X ′) = F b
X|X ′(h|X ′)F

s,t
X|X ′(h|X

′) (4.22a)

= e<D
b,h−1>

∏
x′∈X′

(1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >). (4.22b)

2. The PGFL of the predicted distribution Xk|k−1 is by definition

Fk|k−1(h) =

∫
hXfk|k−1(X) δX , (4.23)

where fk|k−1 is its corresponding set density function.

By inserting Chapman-Kolmogorovs equation for RFSs (4.16a) into (4.23) and rearrang-
ing the integrand and the order of integration, we obtain that

Fk|k−1(h) =

∫
hXfk|k−1(X) δX (4.24a)

=

∫
hX
∫
fX|X ′(X|X ′)fk(X ′) δX ′ δX (4.24b)

=

∫ ∫
hXfX|X ′(X|X ′) δX fk(X

′) δX ′ (4.24c)

=

∫
FX|X ′(h|X ′)fk(X ′) δX ′. (4.24d)

Finally, by replacing the expression for FX|X ′ (4.22) into (4.24), and using that

x′ → 1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >) (4.25)

is a test function, the expression that relates the PGFLs Fk|k−1 and Fk follows from the
definition of a PGFL:

Fk|k−1(h) =

∫
FX|X ′(h|X ′)fk(X ′) δX ′ (4.26a)

=

∫
e<D

b,h−1>
∏

x′∈X′
(1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >)fk(X

′) δX ′

(4.26b)

= e<D
b,h−1>

∫ ∏
x′∈X′

(1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >)fk(X
′) δX ′

(4.26c)

= e<D
b,h−1>

∫
(1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >)X

′
fk(X

′) δX ′

(4.26d)

= e<D
b,h−1>Fk(1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >). (4.26e)
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3. By hypothesis the updated distribution Xk is a PMBM with parameters

Du
k , {w

j
k, {(r

j,i
k , f

j,i
k )}i∈Ijk}j∈Jk . (4.27)

Hence, by Proposition 3.6.1, Proposition 3.6.4 and Theorem 3.6.1, the PGFL of Xk is
given by

FXk = F PPP
Xk F

MBM
Xk (4.28)

where

F PPP
Xk (h) = e<Dk,h−1> (4.29a)

FMBM
Xk (h) =

∑
j∈Jk

wjk
∏
i∈Ijk

(
1− rj,ik + rj,ik < f j,ik , h >

)
. (4.29b)

By inserting (4.28) into (4.26), we obtain that

Fk|k−1(h) = e<D
b,h−1>F PPP

Xk (1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >) . . .

· · · × FMBM
Xk (1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >). (4.30a)

We will now show that the product on the right-hand side of (4.30a) corresponds to the
PGFL of a PMBM. More precisely, the product of the two first terms is the PGFL of a
PPP, while the remaining term is the PGFL of a MBM. Moreover, while showing this,
expressions for the PMBM parameters will be derived.

The product of the two first terms on the right-hand side of (4.30a) is

e<D
b,h−1>F PPP

Xk (1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >) . . . (4.31a)

= e<D
b,h−1>e<D

u
k ,1−p

s(x′)+ps(x′)<fk|k−1(·|x′),h>−1>. (4.31b)

By using that the integral of fk|k−1(x|x′) with respect to x and rearranging the integrand
and the order of integration, the exponent of the second factor in (4.31b) can be rewritten
as

< Du
k , p

s(x′) + ps(x′) < fk|k−1(·|x′), h >> (4.32a)

=

∫
Du
k(x′)

(
−ps(x′) + ps(x′)

∫
fk|k−1(x|x′)h(x) dx

)
dx′ (4.32b)

=

∫
Du
k(x′)

(
−ps(x′)

∫
fk|k−1(x|x′) dx + ps(x′)

∫
fk|k−1(x|x′)h(x) dx

)
dx′

(4.32c)

=

∫ ∫
Du
k(x′)ps(x′)fk|k−1(x|x′) (h(x)− 1) dx dx′ (4.32d)

=

∫ (∫
Du
k(x′)ps(x′)fk|k−1(x|x′)

)
dx′ (h(x)− 1) dx (4.32e)

=<< Du
k , p

sfk|k−1(x|·) >, h− 1 > . (4.32f)
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By inserting (4.32f) into (eq. (4.31)), the product of the two first terms on the right-hand
side of (4.30a) becomes

e<D
b,h−1>F PPP

Xk (1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >) . . . (4.33a)

= e<D
b,h−1>e<<D

u
k ,p

sfk|k−1(x|·)>,h−1> (4.33b)

= e<D
b+<Duk ,p

sfk|k−1(x|·)>,h−1> , (4.33c)

and it is immediate to verify that (4.33c) is the PGFL of a PPP (3.44) with intensity

Du
k|k−1(x) = Db(x)+ < Dk, p

sfk(x|·) > . (4.34)

Consider now the third factor on the right-hand side of (4.30a). By (4.29b), it is equal to

FMBM
Xk (1− ps(x′) + ps(x′) < fk|k−1(·|x′), h >) (4.35a)

=
∑
j∈Jk

wjk
∏
i∈Ijk

(
1− rj,ik + rj,ik < f j,ik , 1− p

s(x′) + ps(x′) < fk|k−1(·|x′), h >>
)
.

(4.35b)

By using that the integral of fk|k−1(x|x′) with respect to x and rearranging the integrand
and the order of integration, the factors in (4.35b) can be rewritten as

1− rj,ik + rj,ik < f j,ik , 1− p
s(x′) + ps(x′) < fk|k−1(·|x′), h >> (4.36a)

= 1− rj,ik + rj,ik

∫
f j,ik (x′)

(
1− ps(x′) + ps(x′)

∫
fk|k−1(x|x′)h(x) dx

)
dx′ (4.36b)

= 1− rj,ik + rj,ik

∫
f j,ik (x′) dx′ −

∫
f j,ik (x′)ps(x′) dx′ . . .

· · ·+
∫
f j,ik (x′)ps(x′)

∫
fk|k−1(x|x′)h(x) dx dx′ (4.36c)

= 1− rj,ik + rj,ik − < f j,ik , p
s > +

∫ (∫
f j,ik (x′)ps(x′)fk|k−1(x|x′) dx′

)
h(x)dx

(4.36d)

= 1− < f j,ik , p
s > + << f j,ik , p

sfk|k−1(x|·) >, h > (4.36e)

= 1− < f j,ik , p
s > + < f j,ik , p

s >

〈
< f j,ik , p

sfk|k−1(x|·) >
< f j,ik , p

s >
, h

〉
. (4.36f)

Hence, the expression in (4.35b) for the third factor on the right-hand side of (4.30a)
(4.35b) it is equal to

FMBM
Xk (1− ps(x′) + ps(x′) < fk|k−1(x|·), h >) (4.37a)

=
∑
j∈Jk

wjk
∏
i∈Ijk

(
1− < f j,ik , p

s > + < f j,ik , p
s >

〈
< f j,ik , p

sfk|k−1(x|·) >
< f j,ik , p

s >
, h

〉)
,

(4.37b)

38



and it is immediate to verify that (4.37b) is the PGFL of a MBM (3.51) with

Jk|k−1 = Jk (4.38a)

Ijk|k−1 = Ijk (4.38b)

wjk|k−1 = wjk (4.38c)

rj,ik|k−1 = rj,ik < f j,ik , p
s > (4.38d)

f j,ik|k−1(x) =
< f j,ik , p

sfk(x|·) >
< f j,ik , p

s >
. (4.38e)

Theorem 4.4.2. (PMBM update step) Let the predicted distribution Xk|k−1 be a PMBM with
parameters

Du
k|k−1, {w

j
k|k−1, {(r

j,i
k|k−1, f

j,i
k|k−1)}i∈Ij

k|k−1
}j∈Jk|k−1

, (4.39)

and let Zk be the set of measurements obtained at the time step k. Then it follows from the
dynamic model (A.1)-(A.5), the measurement model (B.1)-(B.6) and the Bayes rule for RFSs
(4.16b) that the posterior distribution Xk|k−1|Zk is a PMBM with parameters

Du
k , {w

j,A
k , {(rj,Ck , f j,Ck )}C∈A}j∈Jk|k−1,A∈Aj , (4.40)

where Aj is the set of all possible data associations for the global hypothesis with index j, the
updated intensity of the PPP for the unknown objects is

Du
k(x) = qd(x)Du

k|k−1(x) , (4.41)

the weights of the MBM for the tracked objects are

wj,Ak =
wjk|k−1

∏
C∈A L

j,C∑
j∈Jk|k−1

∑
A∈Aj w

j
k|k−1

∏
C∈A L

j,C
, (4.42a)

Lj,C =


Dc(zc)+ < Du

k|k−1, lC > , if C ∩ Ij = ∅, ZC = {zc} 6= ∅
< Du

k|k−1, lC > , if C ∩ Ij = ∅, |ZC | > 1

1− rj,iCk|k−1 + rj,iCk|k−1 < f j,iCk|k−1, q
d > , if C ∩ Ij = {iC}, ZC = ∅

rj,iCk|k−1 < f j,iCk|k−1, q
d > , if C ∩ Ij = {iC}, ZC 6= ∅ ,

(4.42b)

and the parameters of the Bernoulli components are

rj,Ck =



<Du
k|k−1

,lC>

Dc(zc)+<Duk|k−1
,lC>

, if C ∩ Ij = ∅, ZC = {zc} 6= ∅
1 , if C ∩ Ij = ∅, |ZC | > 1

r
j,iC
k|k−1

<f
j,iC
k|k−1

,qd>

1−rj,iC
k|k−1

+r
j,iC
k|k−1

<f
j,iC
k|k−1

,qd>
, if C ∩ Ij = {iC}, ZC = ∅

1 , if C ∩ Ij = {iC}, ZC 6= ∅ ,

(4.43a)

f j,Ck (x) =



lC(x)D
u
k|k−1

(x)

<lC ,D
u
k|k−1

>
, if C ∩ Ij = ∅

qd(x)f
j,iC
k|k−1

(x)

<qd,f
j,iC
k|k−1

>
, if C ∩ Ij = {iC}, ZC = ∅

lC(x)f
j,iC
k|k−1

(x)

<lC ,f
j,iC
k|k−1

>
, if C ∩ Ij = {iC}, ZC 6= ∅.

(4.43b)
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In particular, the number of components in the updated MBM increases with one MB process
for each MB process in the predicted MBM (j ∈ J) and for each possible data association given
the measurements Zk (A ∈ Aj). Moreover, each MB component consists of as many Bernoulli
processes as cells there are cells in its corresponding data association.

The prove of this theorem is complex. Therefore, we prove some useful lemmas first.

Lemma 4.4.1. Let F(g,h) be the functional defined as

F (g, h) =< Dc, g − 1 > + < Du
k|k−1, h

(
1− pd + pde<λ

m(x)l(·|x),g−1>)− 1 > , (4.44)

where g(z) and h(x) are test functions of variable z and x, respectively.

Then the functional derivative of F with respect to the vector z is

δF (g, h)

δz
=
(
Dc(z) +

〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>〉) . (4.45)

Furthermore, the functional derivative of (4.45) respect to a non-empty set Z that does not
contain z is

δ
(
Dc(z) +

〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>
〉)

δZ
=
〈
Du
k|k−1, hl{z}∪Ze

<λm(x)l(·|x),g>〉 . (4.46)

Proof. By using the linearity of the functional derivative and the bilinearity of the scalar product
of functions, the functional F can be written as

F (g, h) =< Dc, g − 1 > + < Du
k|k−1, h

(
1− pd + pde<λ

m(x)l(·|x),g−1>)− 1 > (4.47a)

=< Dc, g > + < Du
k|k−1, hp

de<λ
m(x)l(·|x),g−1> > . . . (4.47b)

· · · − < Dc, 1 > + < Du
k|k−1, h

(
1− pd+

)
− 1 > , (4.47c)

where the terms in (4.47c) do not depend on the test function g(z). Therefore, the functional
derivative of these terms is zero, and the functional derivative of F simplifies to

δF (g, h)

δz
=

(
δ < Dc, g >

δz
+
δ < Du

k|k−1, hp
de<λ

m(x)l(·|x),g> >

δz

)
. (4.48)

The functional derivative of the first term in the parenthesis of (4.48) follows from the defi-
nition of functional derivative (3.6.3) and the linearity of the scalar product of functions, which
gives

δ < Dc, g >

δz
= lim

ε→0+

< Dc, g + εδz > − < Dc, g >

ε
(4.49a)

= lim
ε→0+

< Dc, εδz >

ε
(4.49b)

=< Dc, δz >= Dc(z). (4.49c)

The functional derivative of the second term in the parenthesis of (4.48) is more involved,
and it requires also the use of continuity of the scalar product of functions and the continuity of

40



the exponential function. By using these properties, we obtain that

δ < Du
k|k−1, hp

de<λ
m(x)l(·|x),g> >

δz
(4.50a)

= lim
ε→0+

< Du
k|k−1, hp

de<λ
m(x)l(·|x),g+εδz> > − < Du

k|k−1, hp
de<λ

m(x)l(·|x),g> >

ε
(4.50b)

=

〈
Du
k|k−1, hp

d lim
ε→0+

e<λ
m(x)l(·|x),g+εδz> − e<λm(x)l(·|x),g>

ε

〉
(4.50c)

=

〈
Du
k|k−1, hp

de<λ
m(x)l(·|x),g> lim

ε→0+

< λm(x)l(·|x), g + εδz > − < λm(x)l(·|x), g >

ε

〉
(4.50d)

=

〈
Du
k|k−1, hp

de<λ
m(x)l(·|x),g> lim

ε→0+

< λm(x)l(·|x), εδz >

ε

〉
(4.50e)

=
〈
Du
k|k−1, hp

de<λ
m(x)l(·|x),g> < λm(x)l(·|x), δz >

〉
(4.50f)

=
〈
Du
k|k−1, hp

de<λ
m(x)l(·|x),g>λm(x)l(z|x)

〉
(4.50g)

=
〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>〉 , (4.50h)

where the last equality follows from the definition of lZ (4.3).

We proceed now to prove the second part of the lemma.

Let z′ be a vector measurement different from z. The linearity of the functional derivative
and the fact that Dc(z) does not depend on g yields that

δ
(
Dc(z) +

〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>
〉)

δz′
=
δ
〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>
〉

δz′
. (4.51)

Now, we observe that the calculation of the functional derivative in (4.51) is analogous to
the calculations performed in (4.50) due to the similar structure of the functionals. By following
the steps in (4.50), we conclude that

δ
(
Dc(z) +

〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>
〉)

δz′
=
δ
〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>
〉

δz′
(4.52a)

=
〈
Du
k|k−1, hl{z}λ

m(x)l(z′|x)e<λ
m(x)l(·|x),g>〉 (4.52b)

=
〈
Du
k|k−1, hl{z,z′}e

<λm(x)l(·|x),g>〉 (4.52c)

In particular, we observe that consecutive functional derivations of (eq. (4.52)) with respect
to other vector measurements, only increments the number of elements in the likelihood term.
In other words,

δ2
(
Dc(z) +

〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>
〉)

δz′′δz′
=
〈
Du
k|k−1, hl{z,z′,z′′}e

<λm(x)l(·|x),g>〉 (4.53a)

δ3
(
Dc(z) +

〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>
〉)

δz′′′δz′′δz′
=
〈
Du
k|k−1, hl{z,z′,z′′,z′′′}e

<λm(x)l(·|x),g>〉
(4.53b)
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and so on. Therefore, we conclude by induction that

δ
(
Dc(z) +

〈
Du
k|k−1, hl{z}e

<λm(x)l(·|x),g>
〉)

δZ
=
〈
Du
k|k−1, hl{z}∪Ze

<λm(x)l(·|x),g>〉 (4.54)

for any non-empty set Z that does not contain the original measurement vector z.

Lemma 4.4.2. Let F j,i(g, h) be the functional defined as

F j,i(g, h) = 1− rj,ik|k−1 + rj,ik|k−1 < f j,ik|k−1, h
(
1− pd + pde<λ

m(x)l(·|x),g−1>) > , (4.55)

where g(z) and h(x) are test functions of variable z and x, respectively.

Then the functional derivative of F j,i(g, h) with respect to a non-empty set Z is

δF j,i

δZ
(g, h) = rj,ik|k−1

〈
h, f j,ilZe

<λm(x)l(·|x),g>〉 . (4.56)

Proof. The only term of F j,i (4.55)that depends on g:

rj,ik|k−1 < f j,ik|k−1, h
(
1− pd + pde<λ

m(x)l(·|x),g−1>) > , (4.57)

has similar structure to the functional that is derived in the second part of Lemma 4.4.1. There-
fore, the proof of this lemma is analogous to the one for Lemma 4.4.1, and is omited to avoid
repetition.

Lemma 4.4.3. Any functional of the form F (h) = a+ < b, h >, where a ≥ 0 is a non-negative
scalar and b(x) ≥ 0 is a non-negative integrable function with < b, 1 >=

∫
b(x) dx > 0, can

be written as

F (h) = a+ < b, h >= L (1− r + r < f, h >) , (4.58)

where

L = a+ < b, 1 > (4.59a)

r =
< b, 1 >

a+ < b, 1 >
(4.59b)

f(x) =
b(x)

< b, 1 >
. (4.59c)

In particular, the function F corresponds to an unnormalized Bernoulli distribution.

Proof. Since a ≥ 0 and < b, 1 > 0, the scalar r and the function f(x) are well-defined.

The result follows by inserting the expressions in (4.59) into (4.58):

L (1− r + r < f, h >) (4.60a)

= (a+ < b, 1 >)

(
1− < b, 1 >

a+ < b, 1 >
+

< b, 1 >

a+ < b, 1 >

〈
b

< b, 1 >
, h

〉)
(4.60b)

= a+ < b, 1 > − < b, 1 > + < b, h >= a+ < b, h >= F (h). (4.60c)
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Proof of Theorem 4.4.2. The proof consists of the following steps:

1. Express the PGFL of the updated distribution Xk|Zk as the functional derivative of the
PGFL of the joint distribution (Zk,Xk).

2. Find the PGFL of the likelihood Zk|Xk.

3. Use the expression found in the previous step, to write the PGFL of the joint distribution
(Zk,Xk) as a function of the PGFL of the predicted distribution Xk|k−1.

4. Insert the PMBM expression for the PGFL of the predicted distribution Xk|k−1 into the
formula found in the previous step, and divide the resulting expression into terms.

5. Use the linearity and product rule for PGFLs (3.6.3) to find the functional derivative of
the terms defined in the previous step.

6. Find the PFGL of the updated distributionXk|Zk by using the functional derivatives found
in the previous step, and identify the resulting expression as a PMBM with the stated
parameter values.

Indeed,

1. The PGFL of the updated distribution Xk|Zk is by definition

FXk|Zk(h|Zk) =

∫
hXfXk|Zk(X) δX , (4.61)

where fXk|Zk is its corresponding set density function.

By applying Bayes’ rule for RFSs (4.16b), we obtain that the PGFl for Xk is proportional
to

FXk(h|Zk) =

∫
hXfXk|Zk(X|Zk) δX (4.62a)

∝
∫
hXfZk|Xk(Zk|X)fk|k−1(X) δX , (4.62b)

where fZk|Xk is the set density function of the likelihood Zk|Xk.

Moreover, by Bayes’ rule for RFSs (4.16b), the set functionZk → fZk|Xk(Zk|X)fk|k−1(X)
is proportional to the set density function fZk|Xk . Hence, it follows from Theorem 3.6.2
that

fZk|Xk(Zk|X)fk|k−1(X) =
δ

δZk

∫
gZfZk|Xk(Z|X)fk|k−1(X) δz

∣∣∣∣
g=0

, (4.63)

where g is a test function.

By inserting (4.63) into (4.62b) and rearranging the order of integration and derivation,
the PGFL of the updated distribution can be rewritten as

FXk(h|Zk) ∝
∫
hXfZk|Xk(Zk|X)fk|k−1(X) δX (4.64a)

=

∫
hX

δ

δzk

∫
gZfZk|Xk(Z|X)fk|k−1(X) δz

∣∣∣∣
g=0

δX (4.64b)

=
δ

δZk

∫ ∫
gZhXfZk|Xk(Z|X)fk|k−1(X) δX δz

∣∣∣∣
g=0

. , (4.64c)
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where the integral in (4.64c) is defined as the PGFL for the joint distribution (Zk,Xk),
F(Zk,Xk). Hence,

FXk(h|Zk) ∝
δ

δZk
F(Zk,Xk)(g, h)

∣∣∣∣
g=0

. (4.65)

with

F(Zk,Xk)(g, h) =

∫ ∫
gZhXfZk|Xk(Z|X)fk|k−1(X) δX δz. (4.66)

2. The likelihood RFS Zk|Xk depends on two independent processes: The generation of
clutter and the generation of measurements from objects (B.1)-(B.6).

According to (B.2), clutter is generated according to a PPP with birth intensity Dc(x).
Hence, it follows from Proposition 3.6.1, that its PGFL is given by

F c
Zk|Xk(g|X) = e<D

c,g−1>. (4.67)

On the hand, due to (B.3) and (B.4), the detection of an existing object with state vector x
and the generation of measurements in the case that the object is detected, can be seen as
a Bernoulli process with existence probability pd(x) and with a spatial distribution giving
by a PPP with intensity λm(x)l(z|x). Therefore, as argumented in [14], the PGFL for this
pseudo Bernoulli process is given by

g → 1− pd(x) + pd(x)e<λ
m(x)l(·|x),g−1> , (4.68)

which combines elements of the PGFL of a Bernoulli process (3.47) and of the PGFL of
a PPP (3.44).

Since (B.2) ensures that these pseudo Bernoulli processes are independent, we obtain the
PGFL for the the detection and measurement generating process for all existing objects
by applying Theorem 3.6.1. This yields

F d,g
Zk|Xk(g|X) =

∏
x∈X

(
1− pd(x) + pd(x)e<λ

m(x)l(·|x),g−1>) . (4.69)

Finally, since the clutter generation and measurement generation are independent pro-
cesses according to (B.2), by applying again Theorem 3.6.1, we obtain the PGFL for the
likelihood:

FZk|Xk(g|X) = F c
Zk|Xk(g|X)F d,g

Zk|Xk(g|X) (4.70a)

= e<D
c,g−1>

∏
x∈X

(
1− pd(x) + pd(x)e<λ

m(x)l(·|x),g−1>) . (4.70b)

3. By using the definition of the PGFL of the likelihood FZk|Xk and replacing its expression
(4.70) into the expression for PGFL of the joint distribution (Zk,Xk) (4.66), we obtain

44



that

F(Zk,Xk)(g, h) =

∫ ∫
gZhXfZk|Xk(Z|X)fk|k−1(X) δX δz (4.71a)

=

∫
gZ
∫
hXfZk|Xk(Z|X) δXfk|k−1(X) δz (4.71b)

=

∫
hX
∫
gZfZk|Xk(Z|X) δz fk|k−1(X) δX (4.71c)

=

∫
hXFZk|Xk(g|X)fk|k−1(X) δX (4.71d)

=

∫
hXe<D

c,g−1>
∏
x∈X

(
1− pd(x) + pd(x)e<λ

m(x)l(·|x),g−1>) fk|k−1(X) δX

(4.71e)

= e<D
c,g−1>

∫
hX
∏
x∈X

(
1− pd(x) + pd(x)e<λ

m(x)l(·|x),g−1>) fk|k−1(X) δX.

(4.71f)

Since

x→ 1− pd(x) + pd(x)e<λ
m(x)l(·|x),g−1> (4.72)

is a test function, we use the definition of a PGFL to obtain the expression that relates the
joint PGFL F(Zk,Xk) and the PGFL for the predicted distribution Xk:

F(Zk,Xk)(g, h) = e<D
c,g−1>

∫
hX
∏
x∈X

(
1− pd(x) + pd(x)e<λ

m(x)l(·|x),g−1>) fk|k−1(X) δX

(4.73a)

= e<D
c,g−1>

∫ (
h
(
1− pd + pde<λ

m(x)l(·|x),g−1>))X fk|k−1(X) δX

(4.73b)

= e<D
c,g−1>Fk|k−1

(
h
(
1− pd + pde<λ

m(x)l(·|x),g−1>)) . (4.73c)

4. By hypothesis the predicted distribution Xk|k−1 is a PMBM with parameters

Du
k|k−1, {w

j
k|k−1, {(r

j,i
k|k−1, f

j,i
k|k−1)}i∈Ij

k|k−1
}j∈Jk|k−1

. (4.74)

Hence, by Proposition 3.6.1, Proposition 3.6.4 and Theorem 3.6.1, the PGFL of Xk|k−1 is
given by

FXk|k−1
= F PPP

Xk|k−1
FMBM
Xk|k−1

(4.75)

where

F PPP
Xk|k−1

(h) = e<D
u
k|k−1

,h−1> (4.76a)

FMBM
Xk|k−1

(h) =
∑

j∈Jk|k−1

wjk|k−1

∏
i∈Ij

k|k−1

F j,i
Xk|k−1

(h) (4.76b)

F j,i
Xk|k−1

(h) = 1− rj,ik|k−1 + rj,ik|k−1 < f j,ik|k−1, h > . (4.76c)
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By inserting the expressions in (4.75) and (4.76) into (4.73c), we can rewrite the joint
PGFL F(Zk,Xk) as

F(Zk,Xk)(g, h) = e<D
c,g−1>Fk|k−1

(
h
(
1− pd + pde<λ

m(x)l(·|x),g−1>)) (4.77a)

=
∑

j∈Jk|k−1

wjk|k−1G
j(g, h) , (4.77b)

where

Gj(g, h) = Gu(g, h)
∏

i∈Ij
k|k−1

Gj,i(h) (4.78a)

Gu(g, h) = e<D
c,g−1>F PPP

Xk|k−1

(
h
(
1− pd + pde<λ

m(x)l(·|x),g−1>)) (4.78b)

= e<D
c,g−1>+<Du

k|k−1
,h(1−pd+pde<λ

m(x)l(·|x),g−1>)−1> (4.78c)

Gj,i(g, h) = F j,i
Xk|k−1

(
h
(
1− pd + pde<λ

m(x)l(·|x),g−1>)) (4.78d)

= 1− rj,ik|k−1 + rj,ik|k−1 < f j,ik|k−1, h
(
1− pd + pde<λ

m(x)l(·|x),g−1>) > . (4.78e)

The introduced functionals Gu and Gj,i are used to find the functional derivative of
F(Zk,Xk) in a structured manner by calculating their functional derivative and then using
the results for PGFLs from Section 3.6.

5. We find the functional derivative ofGj(g, h) with respect to a set of measurements Z, and
evaluate it for g(z = 0.

Since Gj is defined as the product of Gu and Gj,i for i ∈ Ijk|k−1 (4.78a), it follows from
the product rule for PGFls (3.6.3) that the functional derivative of Gj is given by

δGj

δZ
=

∑
Z0]

⊎
i∈Ij

k|k−1

Zi=Z

δGu

δZ0

∏
i∈Ij

k|k−1

δGj,i

δZi
. (4.79a)

The functional Gu(g, h) is an exponential function with exponent

ln(Gu(g, h)) =< Dc, g − 1 > + < Du
k|k−1, h

(
1− pd + pde<λ

m(x)l(·|x),g−1>)− 1 > .

(4.80)

Therefore, equation (4.79) can be rewritten as

δGj

δZ
=

∑
Z0]

⊎
i∈Ij

k|k−1

Zi=Z

δGu

δZ0

∏
i∈Ij

k|k−1

δGj,i

δZi
(4.81a)

= Gu
∑

Z0]
⊎
i∈Ij

k|k−1

Zi=Z

δ ln(Gu)

δZ0

∏
i∈Ij

k|k−1

δGj,i

δZi
. (4.81b)

Let us observe that the partitions of the measurement set Z used to index the summation
in (4.81b), can be identified with all possible data association hypotheses.
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Indeed: Given a partition of Z in Z0 and Zi with i ∈ Ijk|k−1, the subset of measurements
Z0 is associated to the background, while the sets Zi with i ∈ Ijk|k−1 are associated to
the object with index i. Conversely, let A ∈ Aj be a data association hypothesis for the
measurement set Z, and let C ∈ A be a cell of the data association hypothesis. If the
cell C is associated to the background, i.e., C ∩ Ijk|k−1 = ∅, then we take Z0 = ZC . On
the other side, if the cell C is associated to a track, i.e., C ∩ Ijk|k−1 = {i}, then we take
Zi = ZC .

With this identification in mind, we apply Lemma 4.4.1 and Lemma 4.4.2, which give the
functional derivatives of ln(Gu) and Gj,i, respectively. Note that for the application of
Lemma 4.4.1 is it important to distinguish whether Z0 has one or more elements, while
for the application of Lemma 4.4.2 Zi has to be non-empty. However, if Zi is the empty
set, the functional derivative with respect to Zi, leaves Gj,i unchanged. The application
of Lemma 4.4.1 and Lemma 4.4.2 to (4.81) yields

δGj

δZ
= Gu

∑
Z0]

⊎
i∈Ij

k|k−1

Zi=Z

δ ln(Gu)

δZ0

∏
i∈Ij

k|k−1

δGj,i

δZi
(4.82a)

= Gu
∑
A∈Aj

∏
C∈A

Gj,C , (4.82b)

where

Gj,C(g, h) =


Dc(zc) +

〈
h,Du

k|k−1l{z}e
<λm(x)l(·|x),g>

〉
, if C ∩ Ij = ∅, ZC = {zc} 6= ∅〈

Du
k|k−1, hlCe

<λm(x)l(·|x),g>
〉

, if C ∩ Ij = ∅, |ZC | > 1

Gj,iC (g, h) , if C ∩ Ij = {iC}, ZC = ∅
rj,iCk|k−1

〈
h, f j,iC lCe

<λm(x)l(·|x),g>〉 , if C ∩ Ij = {iC}, ZC 6= ∅.
(4.83)

6. Finally, we find the PFGL of the updated distribution Xk|Zk, and prove that this is a
PMBM with the stated parameter values.

By (4.65), (4.77b) and the linearity of the functional derivative, the PFGL of the updated
distribution Xk|Zk is proportional to

FXk(h|Zk) ∝
δ

δZk
F(Zk,Xk)(g, h)

∣∣∣∣
g=0

(4.84a)

=
δ
∑

j∈Jk|k−1
wjk|k−1G

j(g, h)

δZk

∣∣∣∣∣
g=0

(4.84b)

=
∑

j∈Jk|k−1

wjk|k−1
δGj(g, h)

δZk

∣∣∣∣
g=0

. (4.84c)
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By inserting (4.82) into (4.84) and evaluating the expression at g = 0, we obtain that

FXk(h|Zk) ∝
δ

δZk
F(Zk,Xk)(g, h)

∣∣∣∣
g=0

(4.85a)

=
∑

j∈Jk|k−1

wjk|k−1
δGj(g, h)

δZk

∣∣∣∣
g=0

(4.85b)

=
∑

j∈Jk|k−1

wjk|k−1G
u(0, h)

∑
A∈Aj

∏
C∈A

Gj,C(0, h) (4.85c)

= Gu(0, h)
∑

j∈Jk|k−1

wjk|k−1

∑
A∈Aj

∏
C∈A

Gj,C(0, h) (4.85d)

We use (4.78c), (4.78e) and (4.82) to evaluate Gu, Gj,i and Gj,C at g = 0. This yields

Gu(0, h) = e<D
c,0−1>+<Du

k|k−1
,h(1−pd+pde<λ

m(x)l(·|x),0−1>)−1> (4.86a)

= e−λ
c+<Du

k|k−1
,h(1−pd+pde−λ

m(x))−1> (4.86b)

= e−λ
c+<Du

k|k−1
,hqd−1> (4.86c)

= e−λ
c−λu

k|k−1
+<Du

k|k−1
qd,h> (4.86d)

= e−λ
c−λu

k|k−1
+<Du

k|k−1
qd,1>+<Du

k|k−1
qd,h−1> , (4.86e)

Gj,i(0, h) = 1− rj,ik|k−1 + rj,ik|k−1 < f j,ik|k−1, h
(
1− pd + pde<λ

m(x)l(·|x),0−1>) > (4.87a)

= 1− rj,ik|k−1 + rj,ik|k−1 < f j,ik|k−1, hq
d > (4.87b)

= 1− rj,ik|k−1 + rj,ik|k−1 < h, f j,ik|k−1q
d > , (4.87c)

Gj,C(0, h) =


Dc(zc) +

〈
h,Du

k|k−1l{z}e
<λm(x)l(·|x),0>

〉
, if C ∩ Ij = ∅, ZC = {zc} 6= ∅〈

Du
k|k−1, hlCe

<λm(x)l(·|x),0>
〉

, if C ∩ Ij = ∅, |ZC | > 1

Gj,iC (0, h) , if C ∩ Ij = {iC}, ZC = ∅
rj,iCk|k−1

〈
h, f j,iC lCe

<λm(x)l(·|x),0>〉 , if C ∩ Ij = {iC}, ZC 6= ∅
(4.88a)

=


Dc(zc) +

〈
h,Du

k|k−1l{z}

〉
, if C ∩ Ij = ∅, ZC = {zc} 6= ∅〈

h,Du
k|k−1lC

〉
, if C ∩ Ij = ∅, |ZC | > 1

1− rj,iCk|k−1 + rj,iCk|k−1 < h, f j,iCk|k−1q
d > , if C ∩ Ij = {iC}, ZC = ∅

rj,iCk|k−1 〈h, f j,iC lC〉 , if C ∩ Ij = {iC}, ZC 6= ∅ ,
(4.88b)

where we have used that qd(x) = 1− pd + pdeλ
m(x) (4.2).

By inserting (4.86) into (4.85), and using that −λc − λuk|k−1+ < Du
k|k−1q

d, 1 > is a
constant, we obtain that
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FXk(h|Zk) ∝ Gu(0, h)
∑

j∈Jk|k−1

wjk|k−1

∑
A∈Aj

∏
C∈A

Gj,C(0, h) (4.89a)

= e−λ
c−λu

k|k−1
+<Du

k|k−1
qd,1>e<D

u
k|k−1

qd,h−1>
∑

j∈Jk|k−1

wjk|k−1

∑
A∈Aj

∏
C∈A

Gj,C(0, h)

(4.89b)

∝ e<D
u
k|k−1

qd,h−1>
∑

j∈Jk|k−1

wjk|k−1

∑
A∈Aj

∏
C∈A

Gj,C(0, h). (4.89c)

We now apply Lemma 4.4.3 to each term Gj,C(0, h) in (4.89), which allow us to rewrite
(4.89) as

FXk(h|Zk) ∝ e<D
u
k|k−1

qd,h−1>
∑

j∈Jk|k−1

wjk|k−1

∑
A∈Aj

∏
C∈A

Gj,C(0, h) (4.90a)

= e<D
u
k|k−1

qd,h−1>
∑

j∈Jk|k−1

wjk|k−1

∑
A∈Aj

∏
C∈A

Lj,C
(

1− rj,Ck + rj,Ck < h, f j,Ck >
)
,

(4.90b)

where

Lj,C =


Dc(zc)+ < Du

k|k−1, lC > , if C ∩ Ij = ∅, ZC = {zc} 6= ∅
< Du

k|k−1, lC > , if C ∩ Ij = ∅, |ZC | > 1

1− rj,iCk|k−1 + rj,iCk|k−1 < f j,iCk|k−1, q
d > , if C ∩ Ij = {iC}, ZC = ∅

rj,iCk|k−1 < f j,iCk|k−1, q
d > , if C ∩ Ij = {iC}, ZC 6= ∅ ,

(4.91a)

rj,Ck =



<Du
k|k−1

,lC>

Dc(zc)+<Duk|k−1
,lC>

, if C ∩ Ij = ∅, ZC = {zc} 6= ∅
1 , if C ∩ Ij = ∅, |ZC | > 1

r
j,iC
k|k−1

<f
j,iC
k|k−1

,qd>

1−rj,iC
k|k−1

+r
j,iC
k|k−1

<f
j,iC
k|k−1

,qd>
, if C ∩ Ij = {iC}, ZC = ∅

1 , if C ∩ Ij = {iC}, ZC 6= ∅ ,

(4.91b)

f j,Ck (x) =



lC(x)D
u
k|k−1

(x)

<lC ,D
u
k|k−1

>
, if C ∩ Ij = ∅

qd(x)f
j,iC
k|k−1

(x)

<qd,f
j,iC
k|k−1

>
, if C ∩ Ij = {iC}, ZC = ∅

lC(x)f
j,iC
k|k−1

(x)

<lC ,f
j,iC
k|k−1

>
, if C ∩ Ij = {iC}, ZC 6= ∅.

(4.91c)

The functional in (4.90b) has the structure of the PGFL of a PMBM (4.12) with the required
parameter expressions, except for its weights, which are not necessarily normalized. Since this
functional is proportional to the PGFL of the posterior distribution Xk, we conclude this PGFL
is the functional in (4.90b), but with normalized weights. The expression for the normalized
weights is

wj,Ak =
wjk|k−1

∏
C∈A L

j,C∑
j∈Jk|k−1

∑
A∈Aj w

j
k|k−1

∏
C∈A L

j,C
, (4.92)

as we wanted to prove.
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4.4.1 Special case of prediction and update steps
Theorem 4.4.1 and Theorem 4.4.2 give general formulas for the parameters of the PMBM

distribution (4.13). However, in the general case, it is not possible to derive closed-form ex-
pressions for these parameters, and one would have to resort to numerical methods, such as
numerical integration, in order to get estimates of the PMBM parameters after the prediction
and update steps.

In the following two theorems, we show that by adding extra hypotheses to Theorem 4.4.1
and Theorem 4.4.2 closed-form expressions can be derived for the PMBM parameters.

Theorem 4.4.3. (PMBM prediction step for normal case) In addition to the hypotheses of The-
orem 4.4.1, assume that the survival probability ps is constant, that the intensity of the PPP for
the unknown objects Du

k is a linear combination of normal probability density functions, i.e.,

Du
k(x) =

Nu∑
n=1

dunN (x,xun,P
u
n) , (4.93)

that the spatial distribution of the Bernoulli components is normally distributed as

f j,ik (x) = N
(
x,xj,i,Pj,i

)
, (4.94)

and that the state-transition is also normally distributed as

fk(x|x′) = N (x,Fx′,Q) . (4.95)

Then, the parameters of the updated PMBM distribution are equal to

Du
k|k−1(x) = Db(x) + ps

Nu∑
n=1

dunN
(
x,Fxun,FPu

nF
T + Q

)
(4.96a)

wjk|k−1 = wjk (4.96b)

rj,ik|k−1 = rj,ips (4.96c)

f j,ik|k−1(x) = N
(
x,Fxj,i,FPi,jFT + Q

)
. (4.96d)

In particular, if the intensity of the PPP for the generation of new objects Db(x) is also a
linear combination of normal probability density functions, then the intensity of the updated
PPP for the unknown objects has also the same structure.

Proof. From Theorem 4.4.1, we know that

Du
k|k−1(x) = Db(x)+ < Dk, p

sfk(x|·) > (4.97a)

wjk|k−1 = wjk (4.97b)

rj,ik|k−1 = rj,i < f j,ik , p
s > (4.97c)

f j,ik|k−1(x) =
< f j,ik , p

sfk(x|·) >
< f j,ik , p

s >
(4.97d)

In particular, we already have that wjk|k−1 = wjk.
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Furthermore, ps is constant and f j,i integrates up to 1 because is a probability density func-
tion. Therefore,

rj,ik|k−1 = rj,i < f j,ik , p
s > (4.98a)

= rj,ips < f j,ik , 1 >= rj,ips. (4.98b)

By the same argument, we have that

f j,ik|k−1(x) =
< f j,ik , p

sfk(x|·) >
< f j,ik , p

s >
(4.99a)

=
ps < f j,ik , fk(x|·) >
ps < f j,ik , 1 >

(4.99b)

=< f j,ik , fk(x|·) > . (4.99c)

Now, by Theorem A.2 from Appendix A, the product of the probability density functions
f j,ik (x′) and fk(x|x′) is equal to

N
([

x′

x

]
,

[
xj,i

Fxj,i

]
,

[
Pj,i Pj,iF

FPj,i FPj,iFT + Q

])
. (4.100)

Hence, the integral < f j,ik , fk(x|·) > gives the marginal distribution of x. Therefore

f j,ik|k−1(x) =< f j,ik , fk(x|·) >= N
(
x,Fxj,i,FPi,jFT + Q

)
. (4.101)

By applying Theorem A.2 from Appendix A and using an analogous argument, we find the
expression for the birth intensity:

Du
k|k−1(x) = Db(x)+ < Dk, p

sfk(x|·) > (4.102a)

= Db(x) + ps <
Nu∑
n=1

dunN (·,xun,Pu
n) , fk(x|·) > (4.102b)

= Db(x) + ps
Nu∑
n=1

dun < N (·,xun,Pu
n) , fk(x|·) > (4.102c)

Db(x) + ps
Nu∑
n=1

dunN
(
x,Fxun,FPu

nF
T + Q

)
, (4.102d)

which completes the proof.

Theorem 4.4.4. (PMBM update step for normal case) In addition to the hypotheses of The-
orem 4.4.2, assume that the detection probability pd is constant, that the Poisson rate of the
measurements λm is constant, that the intensity of the PPP for the unknown objects Du

k|k−1 is a
linear combination of normal probability density functions, i.e.,

Du
k|k−1(x) =

Nu∑
n=1

dunN (x,xun,P
u
n) , (4.103)
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that the spatial distribution of the Bernoulli components is normally distributed as

f j,ik|k−1(x) = N
(
x,xj,i,Pj,i

)
, (4.104)

and that the likelihood is also normally distributed as

l(z|x) = N (z,Hx,R) . (4.105)

Then the updated intensity of the PPP for the unknown objects is

Du
k(x) = qdDu

k|k−1(x) = qd
Nu∑
n=1

dunN (x,xun,P
u
n) , (4.106)

the weights of the MBM for the tracked objects are

wj,Ak =
wjk|k−1

∏
C∈A L

j,C∑
j∈Jk|k−1

∑
A∈Aj w

j
k|k−1

∏
C∈A L

j,C
, (4.107a)

Lj,C =


Dc(zc)+ < Du

k|k−1, lC > , if C ∩ Ij = ∅, ZC = {zc} 6= ∅
< Du

k|k−1, lC > , if C ∩ Ij = ∅, |ZC | > 1

1− rj,iCk|k−1 + rj,iCk|k−1q
d , if C ∩ Ij = {iC}, ZC = ∅

rj,iCk|k−1q
d , if C ∩ Ij = {iC}, ZC 6= ∅ ,

(4.107b)

and the parameters of the Bernoulli components are

rj,Ck =



<Du
k|k−1

,lC>

Dc(zc)+<Duk|k−1
,lC>

, if C ∩ Ij = ∅, ZC = {zc} 6= ∅
1 , if C ∩ Ij = ∅, |ZC | > 1

r
j,iC
k|k−1

qd

1−rj,iC
k|k−1

+r
j,iC
k|k−1

qd
, if C ∩ Ij = {iC}, ZC = ∅

1 , if C ∩ Ij = {iC}, ZC 6= ∅ ,

(4.108a)

f j,Ck (x) =


lC(x)D

u
k|k−1

(x)

<lC ,D
u
k|k−1

>
, if C ∩ Ij = ∅

f j,iCk|k−1(x) , if C ∩ Ij = {iC}, ZC = ∅
lC(x)f

j,iC
k|k−1

(x)

<lC ,f
j,iC
k|k−1

>
, if C ∩ Ij = {iC}, ZC 6= ∅ ,

(4.108b)
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where

qd = 1− pd + pde−λ
m

(4.109a)

Du
k|k−1(x)lC(x) = pde−λ

m

λm|ZC |
Nu∑
n=1

dun × . . .

. . .N




x
z1
...

zm

 ,


xun
Hxun

...
Hxun

 ,


Pu
n Pu

nH
T Pu

nH
T . . . . . . Pu

nH
T

HPu
n HPu

nH
T + R 0 . . . . . . 0

HPu
n 0 HPu

nH
T + R 0

. . . 0
...

... . . . . . . . . . ...
...

... . . . . . . . . . 0
HPu

n 0 . . . . . . 0 HPu
nH

T + R




(4.109b)

< Du
k|k−1, lC >= pde−λ

m

λm|ZC |
Nu∑
n=1

dun
∏

z∈ZC

N
(
z,Hxun,HPu

nH
T + R

)
(4.109c)

f j,iCk|k−1(x)lC(x) = e−λ
m

λm|ZC | × . . .

. . .N




x
z1
...

zm

 ,


xj,i

Hxj,i

...
Hxj,i

 ,


Pj,i Pj,iHT Pj,iHT . . . . . . Pj,iHT

HPj,i HPj,iHT + R 0 . . . . . . 0

HPj,i 0 HPj,iHT + R 0
. . . 0

...
... . . . . . . . . . ...

...
... . . . . . . . . . 0

HPj,i 0 . . . . . . 0 HPj,iHT + R




(4.109d)

< f j,iCk|k−1, lC >= e−λ
m

λm|ZC |
∏

z∈ZC

N
(
z,Hxj,i,HPj,iHT + R

)
. (4.109e)

Proof. Since the Poisson rate of the measurements λm is constant, the miss-detection probabil-
ity qd is also constant and equal to

qd = 1− pd + pde−λ
m

. (4.110)

Most of the identities of these theorem follow from the identities of Theorem 4.4.2 and the
facts that qd is constant and that probability density functions integrate up to 1.

The identities for the products Du
k|k−1lC and lCf

j,iC
k|k−1 require more work. We prove only the

identities for Du
k|k−1lC since the ones for lCf

j,iC
k|k−1 are analogous.

By the definition of lC (4.8) and the hypothesis about Du, we have that

Du
k|k−1(x)lC(x) =

(
Nu∑
n=1

dunN (x,xun,P
u
n)

)
pde−λ

m
∏

z∈ZC

λmN (z,Hx,R) (4.111a)

= pde−λ
m

λm|ZC |
Nu∑
n=1

dunN (x,xun,P
u
n)
∏

z∈ZC

N (z,Hx,R) . (4.111b)
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By Theorem A.2 in Appendix A, the product of the probability density functions in (4.111b)
can be rewritten as

Du
k|k−1(x)lC(x) = pde−λ

m

λm|ZC |
Nu∑
n=1

dun × . . .

. . .N




x
z1
...

zm

 ,


xun
Hxun

...
Hxun

 ,


Pu
n Pu

nH
T Pu

nH
T . . . . . . Pu

nH
T

HPu
n HPu

nH
T + R 0 . . . . . . 0

HPu
n 0 HPu

nH
T + R 0

. . . 0
...

... . . . . . . . . . ...
...

... . . . . . . . . . 0
HPu

n 0 . . . . . . 0 HPu
nH

T + R




,

(4.112)

where ZC = {z1, . . . , zm}.

In particular, the integral < Du
k|k−1, lC > corresponds to the marginalization of each distri-

bution in (4.112) with respect to the measurements, which gives

< Du
k|k−1, lC > = pde−λ

m

λm|ZC |
Nu∑
n=1

dun × . . .

. . .N


z1

...
zm

 ,
Hxun

...
Hxun

 ,


HPu
nH

T + R 0 . . . . . . 0

0 HPu
nH

T + R 0
. . . 0

... . . . . . . . . . ...

... . . . . . . . . . 0
0 . . . . . . 0 HPu

nH
T + R




(4.113)

= pde−λ
m

λm|ZC |
Nu∑
n=1

dun
∏

z∈ZC

N
(
z,Hxun,HPu

nH
T + R

)
, (4.114)

which concludes the proof.

We observe in Theorem 4.4.4 that the spatial distribution of the Bernoulli components, f j,ik ,
is not necessarily normally distributed, but this probability density function is in general a linear
combination of normally distributed probability density functions, i.e., f j,ik is a Gaussian mix-
ture. Therefore, we assume that f j,ik can be approximated by a normally distributed probability
function with the same mean value and covariance matrix as the original f j,ik . This is a special
case of moment matching, and it is a well-used approximation in OT. The equations for this
approximation can be found in Theorem A.3 in Appendix A.

By using this approximation and under the hypotheses of Theorem 4.4.3 and Theorem 4.4.4,
we can conclude that as long as the intensity of the birth PPP, Db(x), is given by a linear com-
bination of normally distributed probability density function, and as long as the initial predicted
spatial distribution of the Bernoulli components, f j,i1|0, are normally distributed, then the PMBM
prediction and update step will always give an intensity of the undetected targets that is a linear

54



combination of normally distributed probability density functions, and Bernoulli components
whose spatial distribution is normally distributed.

This invariant structure together with the closed-form expressions in Theorem 4.4.3, The-
orem 4.4.4 and Theorem A.3, allow us to construct data structures for the PMBM parameters
when implementing this filter.

Finally, we observe that if the state-transition probability density function fk|k−1(xk|xk−1)
or the likelihood l(z|x) are not linear, i.e., fk|k−1(xk|xk−1) ∼ N (f(xk−1), Q) or l(z|x) ∼
N (h(x), R), then the matrices F and H are obtained by linearizing f and h at the corresponding
predicted state vectors, similarly to how it is done in an EKF.

4.5 Implementation

As shown in Section 4.4, the prediction step of the PMBM filter (Theorem 4.4.1) keeps the
number of components of the MBM constant, as well as the number of Bernoulli components
in each MB. However, the update step (Theorem 4.4.2) creates a MB component for each pair
of predicted MB and possible association given the measurements. In other words, all possible
global hypotheses that could explain how the tracked objects are distributed given the measure-
ments, are been considered at each time step. Therefore, it should come as no surprise, that a
direct implementation of the prediction and update steps for most target tracking problems is
not feasible in practice due to storage limitations, as well as computational time, specially in a
real-time setting.

In fact, as shown in [17], the complexity of the update step is between O
(

2|Z|+|I
j |
)

and

O ((|Z|+ |Ij|)!), where Z is the set of measurements available in the update step and Ij is the
index set of the global hypotheses, i.e., the index set of the MB components.

There are diverse strategies that reduce the complexity of the update step in order to make
the implementation of the PMBM filter for MEOT feasible. In the following subsections, we
briefly explain the methods used in the PMBM implementation for this thesis.

4.5.1 Gating

Gating is the process of only considering data association hypotheses, whose cells have
likelihoods with respect to the predicted distribution that are above a threshold. In other words,
data association hypotheses that have cells whose measurements are highly unlikely given the
predicted distributed, are discarded.

Gating is a well-used method for reducing the complexity of OT update steps. Although
there is the theoretical possibility that a correct data association hypothesis may be discarded,
the complexity reduction achieved with gating outweighs this highly unlikely possibility.

95% to 99% confidence regions for gating are usual selections.
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4.5.2 M best assignments
After gating, Murty’s method [29], also know as the auction algorithm, is used to find the

M best data association hypotheses in the sense that the sum of the likelihood of their cells are
maximized.

Values of M of the order 100 to 1000 are usual selections.

4.5.3 Pruning
Pruning is the process of eliminating Bernoulli components whose existence probabilities,

rj,i, are below a threshold, as well as the process of eliminating whole global data association
hypotheses whose probabilities, wj , are below a threshold.

Pruning is performed after finding the M best assignments, which can also be seen as a type
of pruning.

Usual values for the pruning thresholds are in the order of 0.01.
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Chapter 5
Gaussian Process fundamentals

A Gaussian process (GP) models the stochastic properties of an unknown function whose
values are normally distributed with respect to each other. There are two main reasons that
make GPes appealing for EOT. First, GPes are stochsatic models, and can therefore be smoothly
merged with probabilistic filters, which are extensively used in EOT, such as the PMBM filter
used in this thesis (see Chapter 4). Second, GPes are non-parametric function models, i.e., they
do not impose any underlying structure on the unknown modeled functions. Therefore, the same
GP can model a wide variety of functions. However, it is worth noticing that GPes depend on
a set of parameters, called hyperparameters, which determine how function values are assumed
to be distributed and correlated to each other.

ŷ

x̂
c

θ

r(θ)

Figure 5.1: Polar parametrization of the boundary of an extend with respect to an internal point c and a
local attached reference frame (x̂, ŷ). The radius function r(θ) characterizes the extent.

In the context of this thesis, GPes are used to model the unknown extents of the tracked
objects. More precisely, each of these processes models an unknown radius function, which
corresponds to the polar parametrization of the boundary of their respective extent with respect
to a point inside the extent, as illustrated in Figure 5.1. Because of the nature of this unknown
radius function, we are particularly interested in GPes that can easily model non-negative and
2π-periodic functions. Furthermore, since the extents of interest represent the hulls of maritime
vessels in the horizontal plane, which are usually symmetric with respect to their longitudinal
axis, we are also interested in GPes that can in addition model even radius functions.
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This chapter presents the GP concepts and results that are necessary for modeling the state-
transition of the extent states, which is done in Section 6.2.1. For a comprehensive presentation
and discussion of GPes, we highly recommend the book [30].

5.1 Definitions and examples
Definition 5.1.1 (Gaussian Process). Let I be an non-empty index set. A real process 1 f : I→
R is said to be a Gaussian process (GP) with mean functionm : I→ R and covariance function
k : I× I→ R if any finite subset of different stochastic variables {f(i1), f(i2) · · · , f(iN)} with
i1, i2, . . . , iN has a joint multivariate Gaussian distribution given by

f(i1)
f(i2)

...
f(iN)

 ∼ N


m(i1)
m(i2)

...
m(iN)

 ,

k(i1, i1) k(i1, i2) · · · k(i1, iN)
k(i2, i2) k(i2, i2) · · · k(i2, iN)

...
... . . . ...

k(iN , i1) k(iN , i2) · · · k(iN , iN)


 . (5.1)

In such cases, we write f ∼ GP(m, k).

Furthermore, we introduce the following convenient GP notation:

Definition 5.1.2 (Mean vector and covariance matrix). Let GP(m, k) be a GP, and let i =
[i1, i2, · · · , iN ]T ∈ IN and j = [j1, j2, · · · , iM ]T ∈ IM be two vectors of indices.

We define the associated mean vector to i, M(i), and the associated covariance matrix to i
and j, K(i, j), as

M(i) =


m(i1)
m(i2)

...
m(iN)

 (5.2a)

K(i, j) =


k(i1, j1) k(i1, j2) · · · k(i1, jM)
k(i2, j2) k(i2, j2) · · · k(i2, jM)

...
... . . . ...

k(iN , j1) k(iN , j2) · · · k(iN , jM)

 . (5.2b)

As mentioned in the introduction to this chapter, the unknown functions modeled by the
GPes correspond to the radius function of a polar parametrization. Therefore, instead of f(x) ∼
GP(m(x), k(x, x′)) with x, x′ ∈ I, we will rather write r(θ) ∼ GP(m(θ), k(θ, θ′)) with θ, θ′ ∈
[0, 2π] in order to reflect the nature of the unknown function.

1A real process is a real valued family of random variables. In this case, the family is {f(i)}i∈I.
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5.1.1 Gaussian processes with squared exponential covariance functions

The squared exponential covariance function with bias and noise term is defined as

ke(θ, θ
′) = σ2

fe
− (θ−θ′)2

2l2 + σ2
b + σ2

nδ(θ, θ
′) , (5.3)

where the hyperparameters σf ≥ 0, σb ≥ 0 and σn ≥ 0 are called the variance of the signal
amplitude, the variance of the bias and the variance of the noise, respectively, while the hyper-
parameter l > 0 is called the length-scale.

GPes with identically zero mean functions and a squared exponential covariance func-
tion with bias and noise term as their covariance functions, i.e., GPes of the form r(θ) ∼
GP(0, ke(θ, θ

′)), with θ, θ′ ∈ [0, 2π], constitute one of the most well-used GP classes, and they
are the basis for the other GP classes presented in this chapter.

Before we introduce these other GP classes, let us study how the hyperparameters σf , σb, σb
and l influence the type of functions that can be modeled by GP(0, ke):

Figure 5.2 illustrates what type of functions can be modeled by the GP class GP(0, ke).
In this example, the interval [0, 2π) was regularly discretized using 100 angles θn, i.e., θn =
2π
N

(n − 1) with N = 100 and n = 1, . . . , N . Then, five functions were drawn from the result-
ing multivariate Gaussian distribution N (0,Ke(θ,θ)), where θ = [θn]Nn=1. This was done for
different hyperparameter sets.

As it can be deduced from the expression in (5.3), the hyperparameter σf determines to-
gether with σb and σn how large the variance and covariance of different function values are,
while the length-scale l models how far points have to be so that their function values are un-
correlated. Therefore, the larger the variance of the signal amplitude σf is, the more individual
function values can vary, while the larger the length-scale l is, the more the covariance between
points increases, and the function values are more likely to be slowly varying. These facts can
be observed in Figures 5.2a to 5.2c.

Furthermore, we observe in Figures 5.2a to 5.2c that the mean of the drawn functions is very
close to zero. Such a feature is undesirable for a radius function, which only takes non-negative
values, and this can be mended with a positive σb hyperparameter value. The reason behind this
is that a positive σb will add to each drawn function a random bias term r0, which is distributed
as r0 ∈ N (0, σ2

b ). This fact is shown in Figures 5.2d to 5.2e. Here, we can observe that the
drawn functions have a wide variety of mean values, and that the larger the variance of the bias
σb is, the more likely larger mean values become.
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Figure 5.2: Five functions drawn from GP(0, ke) for different hyperparameter values. The interval
[0, 2π) was regularly discretized using 100 angles. The shadowed region corresponds to a 99% confi-
dence interval for each function value.
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Figures 5.2a to 5.2e show only smooth functions. This is because the covariance ke is a
positive and smooth function as long as σn = 0, which implies that the values of the drawn
functions at different points are always correlated in a continuous way. A smooth radius func-
tion at every point, may be undesirable in some applications. For example, if the contour of an
object has sharp edges, as the extent of many maritime vessels do, then so will its radius func-
tion. Therefore, in order to model sharp edges and abnormalities at particular function values,
the variance of the noise σn can be set to a positive value. By doing so, white random noise
w(θ) is added to the drawn functions according to w(θ) ∼ GP(0, σ2

nδ(θ, θ
′)). The resulting

effect can be observed by comparing Figure 5.2f to the other subfigures in Figure 5.2.

The hyperparameter σn plays also another important role from a numerical point of view.
If σn = 0, then the covariance matrix associated to an index set I, Ke(I, I), may be singular or
ill-conditioned because its columns are too similar to each other. This is a major problem for
GP regression, which requires the inverse of Ke(I, I), as we will see Section 5.2. By setting the
variance of the noise σn to a positive value, the matrix Ke(I, I) is regularized by adding to it the
matrix σ2

nI.

Singular or ill-conditioned covariance matrices are a recurrent issue in GP models, and
addition of a positive multiple of the identity matrix, also known as a ”nugget”, is a well-used
regularization technique ([28]).

5.1.2 Gaussian processes for closed curves
As shown in the examples in Section 5.1.1, the covariance function ke (5.3) allows us to

model a wide variety of different radius functions r. However, the cartesian curves associated
to these functions may or may not be closed, depending whether r(0) = r(2π) or not.

As mentioned in the introduction to this chapter, we are mainly interested in using GPes
to model radius functions that define closed curves, i.e., that are 2π-periodic. In addition, it
is desirable that these GPes have the same inherent versatility as the GPes that use the covari-
ance function ke (see Section 5.1.1). Both objectives can be achieved by replacing the pure
exponential term in ke:

k̃e(θ, θ
′) = σ2

fe
− (θ−θ′)2

2l2 , (5.4)

by the term

k̃2π(θ, θ′) = σ2
fe
− 2
l2

sin2
(
θ−θ′

2

)
. (5.5)

This yields the covariance function

k2π(θ, θ′) = σ2
fe
− 2
l2

sin2
(
θ−θ′

2

)
+ σ2

b + σ2
nδ(θ, θ

′). (5.6)

The same observations done in Section 5.1.1 about the effects that the hyperparameters σf ,
σb, σn and l have on the functions modeled by GP(0, ke), also apply for the GPes of the form
GP(0, k2π). This is a consequence of the limit

lim
θ′→θ

ln(k̃2π(θ, θ′))

ln(k̃e(θ, θ′))
= lim

θ′→θ

− 2
l2

sin2
(
θ−θ′
2

)
− (θ−θ′)2

2l2

= lim
θ′→θ

(
sin
(
θ−θ′
2

)
θ−θ′
2

)2

= 1 , (5.7)
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which implies that k2π(θ, θ′) → ke(θ, θ
′) exponentially when θ′ → θ. Therefore, the radius

functions modeled by GPes that use the covariance function k2π are locally similar to radius
functions modeled by GPes that use the covariance function ke for the same set of hyperparam-
eter values.

Finally, we prove that k2π indeed models 2π-periodic functions: As a consequence of the
definition of k2π (5.6), we obtain that the correlation of the function values at the angles θ and
θ + 2π is

ρ2π(θ, θ + 2π) =
k2π(θ, θ + 2π)√

k2π(θ, θ)
√
k2π(θ + 2π, θ + 2π)

=
σ2
f + σ2

b

σ2
f + σ2

b + σ2
n

. (5.8)

Therefore, if there is no white random noise term, i.e. σn = 0, this correlation is equal to 1,
which implies that the function values at θ and θ + 2π have to be the same. In other words, if
no white random noise is added, GP(0, k2π) models radius functions that are 2π-periodic.

On the other hand, if there is a non-zero white random noise term in k2π, i.e. σn > 0, then
these correlations are less than 1, and the modeled radius functions do not necessarily satisfy
the above-mentioned properties, which is as expected due to the nature of white random noise.
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Figure 5.3: Five radius functions drawn from GP(0, k2π) with (σf , σb, σn, l) = (2m, 2m, 0m, π4 ), and
their respective closed cartesian curves. The interval [0, 2π) was regularly discretized using 100 angles.
The shadowed region corresponds to a 99% confidence interval for each function value.

Figure 5.3 illustrates the radius functions modeled by the GPes of the form GP(0, k2π) for
σn = 0, as well as their associated cartesian curves. As done in the examples shown in Fig-
ure 5.2, the interval [0, 2π) was regularly discretized using 100 angles, and five radius functions
were drawn from the resulting multivariate Gaussian distribution. The hyperparameters used
were (σf , σb, σn, l) =

(
2 m, 2 m, 0 m, π

4

)
. As shown in Figure 5.3b, the associated cartesian

curves are indeed closed, as well as smooth since σn = 0. In addition, they have a wide range
of shapes.
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5.1.3 Gaussian processes for closed and axis-symmetric curves
As shown in Section 5.1.2, GPes of the form GP(0, k2π) can model a wide variety of radius

functions, which define closed cartesian curves due to their inherent 2π-periodicity.

As discussed in the introduction to this chapter, the extents of interest in this thesis resemble
hulls of maritime vessels in the horizontal plane. Most ship hulls are symmetric about their lon-
gitudinal axes, or they can be reasonably assumed so. Figure 5.4 shows examples of boat hulls
and they respective radius functions about their center. As we can observe, the axis symmetry
of the cartesian curves (Figure 5.4a) is equivalent to the radius functions being even functions,
in addition to 2π-periodic (Figure 5.4b).
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(a) Cartesian curves of boat hulls.
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(b) Radius functions of boat hulls.

Figure 5.4: Boat hull examples.

If the axial symmetry of the extents is modeled into the used GPes, this may drastically
improve the estimation of the extent, because measurements related directly to some function
values can be used to estimate other function values due to symmetry. Therefore, it is desirable
to further modify the covariance function k2π in order to model 2π-periodic and even radius
functions.

This is achieved by replacing the pure exponential term k̃2π in k2π (5.5) by the term

k̃2π,a(θ, θ
′) = σ2

fe
− 1

2l2
(| ssa(θ)|−| ssa(θ′)|)2 , (5.9)

where ssa(·) is the smallest signed angle function, which is defined as

ssa(θ) = π − [(π − θ) (mod 2π)] , (5.10)

i.e. ssa(θ) is the only angle in (−π, π] such that ssa(θ) ≡ θ (mod 2π).

The absolute value of the smallest signed angle function, | ssa(·)| is illustrated in Figure 5.5.
As we can observe in this figure, this function is constructed in such way that

| ssa(θ)| = | ssa(−θ)| (5.11a)
| ssa(θ)| = | ssa(π − θ)|. (5.11b)

63



By replacing k̃2π by k̃2π,a in k2π (5.6), we obtain the covariance function

k2π,a(θ, θ
′) = σ2

fe
− 1

2l2
(| ssa(θ)|−| ssa(θ′)|)2 + σ2

b + σ2
nδ(θ, θ

′). (5.12)

As is the case with GP(0, k2π), the hyperparameters σf , σb, σn and l have the same effects
on the functions modeled by GP(0, k2π,a), as they do in the GPes of the form GP(0, ke). This
is because k2π,a(θ, θ′)→ ke(θ, θ

′) exponentially when θ′ → θ, as shown by the following limit

lim
θ′→θ

ln(k̃2π,a(θ, θ
′))

ln(k̃e(θ, θ′))
= lim

θ′→θ

− 2
l2

(| ssa(θ)| − | ssa(θ′)|)2

− (θ−θ′)2
2l2

(5.13a)

= lim
θ′→θ

(
| ssa(θ)| − | ssa(θ′)|

θ − θ′

)2

= 1 , (5.13b)

where the last limit follows from | ssa(·)| being a saw-tooth function as shown in Figure 5.5.
In particular, we have that the radius functions modeled by GPes that use the covariance function
k2π,a are locally similar to radius functions modeled by GPes that use the covariance function
ke for the same set of hyperparameter values.

-4 -3 -2 - 0 2 3 4
0|s

sa
(

)|

Figure 5.5: | ssa(θ)| for θ ∈ [−4π, 4π].

Finally, we prove that k2π,a indeed models 2π-periodic function and even functions: As a
consequence of the definition of k2π,a (5.12) and the properties in (5.11), we obtain the following
correlations between the function values as θ, θ + 2π and −θ:

ρ2π,a(θ, θ + 2π) =
k2π,a(θ, θ + 2π)√

k2π,a(θ, θ)
√
k2π,a(θ + 2π, θ + 2π)

=
σ2
f + σ2

b

σ2
f + σ2

b + σ2
n

(5.14a)

ρ2π,a(θ,−θ) =
k2π,a(θ,−θ)√

k2π,a(θ, θ)
√
k2π,a(−θ,−θ)

=
σ2
f + σ2

b

σ2
f + σ2

b + σ2
n

. (5.14b)

Therefore, if there is no white random noise term, i.e. σn = 0, all these correlations are
equal to 1, and GP(0, k2π,a) models radius functions that are 2π-periodic and even, as desired.
On the other hand, if there is a non-zero white random noise term in k2π,a, then the modeled
radius functions do not necessarily satisfy the above-mentioned properties, since the GP allows
for uncorrelated function value variations at each point.

Figure 5.6 illustrates the radius functions modeled by the GP class GP(0, k2π,a) for σn = 0,
as well as their associated cartesian curves. The discretization of the interval [0, 2π) and the
chosen hyperparameter values are the same as in the example of Figure 5.3. As we can observe,
the associated cartesian curves are indeed closed and symmetric about their longitudinal axis.
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Figure 5.6: Five radius functions drawn from GP(0, k2π,a) with (σf , σb, σn, l) =
(
2m, 2m, 0m, π4

)
,

and their respective closed and axis-symmetric cartesian curves. The interval [0, 2π) was regularly dis-
cretized using 100 test angles. The shadowed region corresponds to a 99% confidence interval for each
function value.

The covariance functions ke and k2π can be found in the literature (see for example [30]
and [37]). However, the covariance function k2π,a is not present in the literature to the best of
the author’s knowledge, and this covariance function was explicitly developed for this study in
order to model axial symmetry. In [20], a covariance function for modelling axial symmetry
is present. However, the maximum covariance values of this function are in some cases not
achieved at identical angles, but at angles that are slightly shifted. Therefore, this covariance
function has not been chosen.

5.2 Gaussian process regression
GP regression is a method for estimating the values of an unknown function that is modeled

as a GP based on noisy measurements of some of its function values. In this section, we present
the theoretical background and important equations for this regression method, as well as an
example that involves the covariance functions defined in Section 5.1.

Let f(x) ∼ GP(m(x), k(x, x′)) be a GP, where x, x′ ∈ I and I ⊂ R is an interval, and
let xt = [xt,1, xt,2, · · · , xt,Nt ]T = [xt]

Nt
t=1 ∈ INt be a vector of different points in I, which are

called test points. The test points are points at which the function values are of special interest.
Usually, the test points correspond to a discretization of the interval I.

The measurements y = [y1, y2, · · · , yNi ] = [yn]Nin=1 ∈ RNi of the function values at the
points xi = [xi,1, xi,2, · · · , xi,Ni ] = [xi,n]Nin=1 ∈ INi are modeled as

yn = f(xi,n) + wn , (5.15)

where wn ∼ N (0, σ2
w) is the measurement noise and σw > 0 is the measurement noise strength.
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Furthermore, the noise at each measurement is assumed independent of each other, as well
as independent of the function values.

The points at which the function values are measured, xi = [xi,n]Nin=1 are called input points.
The denominations ”test” and ”input” points have their origin in the Machine Learning field
(see [30]).

The GP model definition (Definition 5.1.1) and the independence assumption on the mea-
surement noise yields that[

y
f t

]
∼ N

([
M(xi)
M(xt)

]
,

[
K(xi,xi) + σ2

wINi K(xi,xt)
K(xt,xi) K(xt,xt)

])
, (5.16)

where f i = [f(xi,1), f(xi,2), · · · f(xi,Ni)]
T ∈ RNi and f t = [f(xt,1), f(xt,2), · · · f(xt,Nt)]

T ∈
RNt are the function values at the input and test points, respectively.

By using Theorem A.1 from Appendix A, we conclude that the conditional distribution of
f t|y is normally distributed with mean vector and covariance matrix given by

E[f t|y] = M(xt) + K(xt,xi)[K(xi,xi) + σ2
wINi ]

−1 (y −M(xi)) (5.17a)
Cov[f t|y] = K(xt,xt)−K(xt,xi)[K(xi,xi) + σ2

wINi ]
−1K[xi,xt] (5.17b)

Equations (5.17a) to (5.17b) summarize GP regression: The prior distribution of the func-
tion values at the test points is f t ∼ N (M(xt),K(xt,xt)) due to the GP model assumption,
and given the measurements y, the posterior distribution of these function values, f t|y, is nor-
mally distributed with mean vector and covariance matrix given by Equation (5.17a) and Equa-
tion (5.17b), respectively.

Figure 5.7 shows an GP regression example. As done in previous examples (see Sec-
tion 5.1), the test points correspond to a regular discretization of the interval [0, 2π) of 100
points. The true function to be estimated is drawn from GP(0, k2π,a) with hyperparameters
(σf , σb, σn, l) =

(
2 m, 2 m, 0, π

4

)
, and 5 measurements are taken with σw = 0.5 m at 5 different

input points on the interval [0, 2π). GP regression is performed using GP(0, ke), GP(0, k2π)
and GP(0, k2π,a).

Figure 5.7a shows the prior distribution of f t: The mean vector (red) and a 99% confidence
interval for each function value (shadowed region) is the same for each considered GP. Fig-
ures 5.7b to 5.7d show the GP regression results using GP(0, ke), GP(0, k2π) and GP(0, k2π,a),
respectively. In each case, the mean vector of the posterior distribution f t|y is close to the true
function values, specially for points that lie near the input points. Moreover, the true function
lies inside the 99% confidence region for the estimated function values, which is considerably
narrower than the one for the prior distribution. The results using the covariance function k2π
are better than the ones obtained using ke since GP(0, k2π) correctly assumes that the true func-
tion is 2π-periodic, and uses the measurements to estimate the function values at test points that
are 2π units away of the input points. This explains why the estimate at test points close to 0
and 2π are considerably better than the estimates obtained using ke, and the confidence region
is narrower. By a similar argument, we can explain why the estimates using k2π,a are even bet-
ter than the ones obtained using k2π. This is because a measurement at an input point θi is in
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Figure 5.7: GP regression: True function (yellow), measurements (purple), mean of f t (red) and a 99%
confidence region for f t (shadowed region). Hyperparameter values (σf , σb, σn, l) =

(
2m, 2m, 0, π4

)
.

practice also a measurement at the point π − θ since the GP model correctly assumes that the
unknown function is 2π-periodic and even.

In particular, this example shows that the incorporation of a priori information about the
unknown function into the GP model may give superior estimation results.
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Chapter 6
State-space models

In Chapter 4, the PMBM filter for MEOT was derived for general stochastic models for both
the dynamics of the object’s state (see A.4) and the object-generated measurements (see B.4).
In this chapter, we present the particular models that are used in the simulations (see Chapter 7).

Two different state-space models are presented. The first one models the object extent us-
ing GPes, and its measurement model simulates lidar measurements, while the second model
approximates the object extent by an ellipsis and simulates radar measurements.

The GP and lidar state-space model is the central state-space model of this thesis and is the
one used in [37] and [20], while the second model, which is called the gamma Gaussian inverse
Wishart (GGIW) is of secondary importance, and is briefly presented. The GGIW model is
by default implemented in the PMBM code by Yuxuan Xia in [41]. This code was modified
to work with the GP and lidar model. Therefore, the GGIW model is used in Chapter 7 as a
reference for what can be achieved with the PMBM filter for MEOT.

In both the GP lidar model and the GGIW model, the state vector x of any object consist
of a set of kinematic states xc that describe the movement of the object, and of a set of extent
states xe that describe the geometry of the object’s extent. In symbols, x = [xTc xTe ]T .

6.1 State-transition model for kinematic states

6.1.1 Reference frames and kinematic states
The position and velocity of all objects is expressed with respect to a fixed North-East-

Down (NED) reference frame (see [13]), which is referred to as the world frame. NED frames
are strictly speaking local and non-inertial reference frames. However, since the objects move
during a relatively short time-span, and they do not move relatively far away, nor fast in a plan-
etary scale, the world frame can be assumed to be inertial for our purposes.

For each object, there is a fixed point called the center of movement, whose position and
velocity in the world frame is representative for the whole object. Since objects are assumed to
be rigid bodies, this convention is well-defined.
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Furthermore, since the MEOT problem is restricted to the horizontal plane, only the North
and East coordinates are relevant. Therefore, the position of the object is rc = [Nc , Ec]

T , where
Nc and Ec are the North and East coordinates of the center of movement, respectively. Analo-
gously, the velocity of the object is vc = [vNc , vEc ]

T , where vNc and vEc are the velocities of
the object in the North and East directions, respectively.

Since the world frame is inertial, we have the relation vc = ṙc, i.e.,

vNc = Ṅc (6.1a)

vEc = Ėc. (6.1b)

N̂

x̂

ŷ

c

ψc

vc

rc

N̂

Êo

Figure 6.1: A maritime vessel with position rc = [Nc, Ec]
T , velocity vc = [vNc , vEc ]

T and heading
ψc. The world frame has origin o and axes N̂ (North) and Ê (East), while the body frame has origin c
and axes x̂ and ŷ.

Due to possible sideslip of the maritime vessel, the velocity vector vc does not necessarily
give the orientation of the object’s extent. Therefore, the heading angle ψc, which gives the
orientation of the extent with respect to the world frame, is also a kinematic quantity of interest.
Formally, the heading angle is defined as the rotation angle between the world frame and a local
reference frame that is attached to the extent, which is known as the body frame. This moving
frame has the center of movement as its origin, and its axes usually correspond to important
directions, such as symmetry axes. Since the extent represents a maritime vessel in our case,
the first body axis is chosen to give the stern to bow direction, while the second axis gives the
port to starboard direction. The relation between the world and body frames, as well as the
introduced kinematic states Nc, Ec, vNc , vEc and ψc, is illustrated in Figure 6.1.

Finally, we have the turn rate rc, which is the derivative of the heading angle rc, i.e., rc = ψ̇c.
This kinematic state describes the angular velocity of the extent.

Hence, the possible kinematic states in the models are Nc, Ec, vNc , vEc , ψc and rc.
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6.1.2 The constant velocity model
The constant velocity (CV) model is a well-used kinematic model that models the accelera-

tion of an object as white Gaussian random noise. Therefore, the velocity of the object is more
or less constant with variations that depend on the noise strength.

In the one-dimensional case, the state vector is x(t) = [x(t), v(t)]T , where x(t) and v(t) are
the position and velocity of the object, respectively. Hence, the continuous state-space model is
given by

ẋ(t) = Ax(t) + Gw(t) , (6.2)

where

A =

[
0 1
0 0

]
(6.3a)

G =

[
0
1

]
(6.3b)

and w(t) is white Gaussian random noise of strength σw, i.e.

w(t) ∼ N
(
0, σ2

wδ(t− τ)
)
, (6.4)

where δ(τ) is the Dirac-delta.

The solution of the differential equation in (6.2) is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Gw(τ) dτ. (6.5)

If the solution is discretized with a constant time-step T , i.e. the solution is sampled at time
points tk given by tk = t0 + Tk, k ∈ N ∪ {0}, then the exact values at these time points are
given by

x(tk) = eATx(tk−1) +

∫ tk

tk−1

eA(tk−τ)Gw(τ) dτ. (6.6)

By denoting xk = x(tk) and

wk =

∫ tk

tk−1

eA(tk−τ)Gw(τ) dτ , (6.7)

we can rewrite the exact discretization as

xk = eATxk−1 + wk. (6.8)

Since An = 0 for n ≥ 2, it follows that

eAT = I + AT +
∞∑
n=2

AnT n

n!
= I + AT =

[
1 T
0 1

]
. (6.9)
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Moreover, wk is a stochastic variables that is normally distributed with

E[wk] =

∫ tk

tk−1

eA(tk−τ)GE[w(τ)] dτ = 0 (6.10a)

V[wk] =

∫ tk

tk−1

eA(tk−τ)GE[w(τ)w(τ)T ]GT eA(tk−τ)T dτ (6.10b)

=

∫ tk

tk−1

[
1 tk − τ
0 1

] [
0
1

]
σ2
w

[
0 1

] [ 1 0
tk − τ 1

]
dτ (6.10c)

= σ2
w

∫ tk

tk−1

[
(tk − τ)2 tk − τ
tk − τ 1

]
dτ = σ2

w

[
T 3

3
T 2

2
T 2

2
T

]
(6.10d)

Therefore, the discrete one-dimensional constant velocity model can be stated as

xk =

[
1 T
0 1

]
xk−1 + wk , wk ∼ N

(
0, σ2

w

[
T 3

3
T 2

2
T 2

2
T

])
, (6.11)

where the initial state x0 = x(t0) is assumed to be distributed as N (x̄0,P0) for some initial
state estimate x̄0 and a covariance matrix P0.

Note that the units of σw in

N
(

0, σ2
w

[
T 3

3
T 2

2
T 2

2
T

])
(6.12)

have to be m s3/2, which is an unit that is hard to grasp. Therefore, we rescale the covariance
matrix to be

wk ∼ N
(

0, σ2
w

[
T 2

3
T
2

T
2

1

])
, (6.13)

where the units of σw are the ones of velocity.

Initial state distribution using finite differences

Let us assume that as part of the detection process, measurements of the object position are
available for the time points t−1 and t0. Let us denote these estimates by x̄0 and x̄−1, respec-
tively, and assume that the position measurement noise has zero mean and variance σ2

x, and that
measurements at different time points are uncorrelated.

An estimate of the velocity at t0, v̄0, can be obtained by using the finite difference

v̄0 =
x̄0 − x̄−1

T
(6.14)

If the time step T is small enough such that the finite difference is a good approximation
of the velocity at t0, it follows from this assumption and the assumptions on the measurement
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noise that

E[x0] = x̄0 (6.15a)

E[v0] =
x̄0 − x̄−1

T
= v̄0 (6.15b)

E[(x0 − x̄0)2] = σ2
x (6.15c)

E[(x0 − x̄0)(v0 − v̄0)] =
1

T
E[(x0 − x̄0)2]−

1

T
E[(x0 − x̄0)(x−1)− x̄−1)] =

σ2
x

T
(6.15d)

E[(v0 − v̄0)2] =
1

T 2
E[(x0 − x̄0)2] +

1

T 2
E[(x−1 − x̄−1)2] =

2σ2
x

T 2
. (6.15e)

The expected values, covariances and variances of (6.15) motivate the following model for
the initial state distribution

x0 ∼ N
([
x̄0
v̄0

]
, σ2

x

[
1 1

T
1
T

2
T 2

])
. (6.16)

6.1.3 CV2 model without sideslip
The state-transition model for the kinematic states is modeled as 2 decoupled constant ve-

locity (CV) models (see Section 6.1.2) for the position in the North and East directions. Hence,
the kinematic state vector is

xc = [Nc Ec vNc vEc ]
T , (6.17)

and the kinematic state-transition model is

xc,k = Fcxc,k−1 + wc,k , wc,k ∼ N (0,Qc) , (6.18)

where

Fc =

[
1 T
0 1

]
⊗ I2 (6.19a)

Qc =

[
T 2

3
T
2

T
2

1

]
⊗
[
σ2
N 0
0 σ2

E

]
, (6.19b)

where σN and σE are the respective random noise strength for each coordinate direction.

Furthermore, we use (6.16) to model the distribution of the initial kinematic-state vector

xc,0 ∼ N
(

x̄c,0,

[
1 1

T
1
T

2
T 2

]
⊗
[
σ2
N0

0
0 σ2

E0

])
, (6.20)

where σN0 and σE0 are the respective standard deviations of the initial position estimate in each
coordinate direction, x̄c,0 is an initial state estimate.

Regarding the heading angle ψc, we assume that the sideslip experienced by the maritime
vessel is neglectable. Hence, the heading angle ψc corresponds to the direction of linear velocity
vector [vNc , vEc ]

T , i.e.,

ψc = atan2(vNc , vEc) (mod 2π) , (6.21)

73



where atan2(·, ·) is the four quadrant arctangent.

To neglect any sideslip is a reasonable assumption as long as no strong currents or winds are
present, and as long as the turn rate of the maritime vessel is low compared to its velocity. If this
is not the case, it is recommended to have a decoupled CV model for the heading in addition to
the 2 decoupled CV models for the position.

6.2 Gaussian process and lidar model

6.2.1 Gaussian process extent model
The objective of the extent model is to give a general as possible parametrization of the ob-

ject’s extent. Since the extent resembles the hull of a maritime vessel in the horizontal plane, it is
reasonable to assume that the object’s extent is a star convex set about the center of movement.1

Under this assumption, the object’s extent is univocally determined by a polar parametrization
in the body frame of the extent’s boundary, as illustrated in Figure 6.2.

N̂

x̂

ŷ

c

ψc

rc = [Nc, Ec]
T

N̂

Êo

θ

r(θ)

Figure 6.2: Polar parametrization in the body frame of the extent’s boundary. The radius function r(θ)
univocally determines the extent.

Let r : [0, 2π] → R be the unknown radius function of the polar parametrization of the
extent’s boundary in the body frame. Then, the problem of determining the object’s extent is
equivalent to finding the radius function r. For this purpose, r is modeled as a GP of the form
G(0, k2π,a) (see Section 5.1.3).

In practice, it is unnecessary -if not impossible- to obtain an analytical expression for r(θ)
since a discretization of this function is sufficient to describe the extent. Therefore, let θt =
[θt,n]Ntn=1 be a fine enough fixed discretization of the interval [0, 2π), i.e.,

0 = θt,1 < θt,2 < · · · < θt,Nt < 2π.

1A set S ⊂ Rn is star convex about a point p ∈ S if and only if the segment [p,q] =
{λp+ (1− λ)q : λ ∈ [0, 1]} is contained in S for all q ∈ S.
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Then the extent is described by the values of the radius function r at these angles, and the
extent states are defined as

xe =
[
r(θt,1) r(θt,2) · · · r(θt,Nt)

]T
. (6.22)

In particular, since we use a CV2 model with no sideslip to model the kinematics of the
object (see Section 6.1.3), the whole object’s state vector is

x =

[
xc
xe

]
=
[
Nc Ec vNc vEc r(θt,1) r(θt,2) · · · r(θt,Nt)

]T
. (6.23)

The angles in θt = [θt,n]Ntn=1 correspond to a discretization of the unknown radius function
r. Therefore, motivated by the vocabulary introduced in Section 5.2 about GP regression, these
angles are called test angles.

Since the extent state xe only consists of the radius function values at the test angles θt,
and since these angle values are fixed, the actual state values in xe should be constant for each
object. These considerations would give the straightforward extent state-transition model

xe,k = xe,k−1. (6.24)

However, this model does not take into account the uncertainty in the GP model as

xe = [r(θt,1), . . . , r(θt,Nt)]
T ∼ N (0,K(θt,θt)). (6.25)

In addition, it does not have process noise.

Therefore, the model (6.24) is modified by introducing a forgetting factor as done in [37]
and [20]. This yields

xe,k = Fexe,k−1 + we,k , we,k ∼ N (0,Qe) , (6.26)

where

Fe = e−τT INt , (6.27a)

Qe = (1− e−2τT )K(θt,θt) , (6.27b)

τ > 0 is the forgetting factor and T is the constant time step.

Therefore, the transition model for the whole state vector x is the combination of the extend
GP model with forgetting factor (6.26) and the CV2 model with no sideslip(6.18), i.e.,

xk =

[
Fc 0
0 Fe

]
xk−1 + wk , wk ∼ N

(
0,

[
Qc 0
0 Qe

])
, (6.28)

where the matrices Fc and Qc are defined in (6.19). In particular, we observe that this state-
transition model is linear, and it can be directly used in the prediction step formulas of Theo-
rem 4.4.3.
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6.2.2 Lidar measurement model
Lidar sensor model

A lidar (”light detection and ranging”) sensor is a high-resolution sensor that measures the
distance to the nearest objects in its surroundings as a function of direction. This is achieved by
sending pulsed laser light in several directions covering a region of space. These laser beams
propagate through the atmosphere until they hit an object within the sensor’s range. The re-
flected beams are received back at the sensor, and are used to estimate the distance between the
sensor and the hit object, which is known as range.

In general, the lidar range measurement are given as a function of direction, which is pa-
rameterized using azimuth and elevation angles. This results in a three dimensional point cloud
of measurements. Therefore, the elevation angle is irrelevant, and the range measurements are
only a function of the azimuth angle, which is the angle between the laser light beam and the
North direction.

Let ri denote the range measurement for a azimuth angle ϕi. It is assumed that the azimuth
angles are known exactly, and that the range measurements can be modelled as

ri = ri,true + wr (6.29a)
wr ∼ N (0, σ2

r) , (6.29b)

where rm,true is the true range value, wr is the range measurement noise and σr > 0 is the range
measurement noise strength. In other words, the range measurements are affected by unbiased
normally distributed noise, whose strength is the same for all azimuth angles.

0 20 40 60

E [m]

0

10

20

30

40

50

N
 [

m
]

(a) Overview.

54 56 58 60 62 64

E [m]

46

47

48

49

50

51

52

53

N
 [

m
]

(b) Close-up.

Figure 6.3: Example of lidar measurements: laser beams (red), object boundary (black) and points that
correspond to lidar range measurements (blue).

Furthermore, we assume that the lidar sensor is placed at the origin of the world reference.
Figure 6.3 shows an example of simulated lidar measurements using σr = 0.1 m.
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Lidar measurement model using Gaussian processes

Let z be the coordinates in the world frame of a lidar measurement. Under the assumption
that there is no measurement noise, these coordinates correspond to a radius function value
ri = r(θi) for an input angle θi as given by

z = rc + ri

[
cos(θi + ψc)
sin(θi + ψc)

]
, (6.30)

where rc = [Nc, Ec]
T are the coordinates of the center of movement in the world frame and ψc

is the heading angle (see section 6.1.1). This relation is illustrated in Figure 6.4. It follows from
Equation (6.30) that

|z− rc| = ri = r(θi) (6.31a)
∠ (z− rc) = θi + ψc , (6.31b)

which implies that

z− rc = e(θi + ψc)r(θi) , (6.32a)
θi = ∠ (z− rc)− ψc , (6.32b)

where e(ϕ) = [cos(ϕ), sin(ϕ)]T , ϕ ∈ R, is the unit vector function.

N̂

x̂

ŷ

c
ψc

rcN̂

Êo

rm
ϕm

ri

θi

z

Figure 6.4: Relation between lidar measurements (range rm for azimuth angle ϕm) and radius function
measurements (ri = r(θi)).

Since the unknown radius function is modeled as GP of the form r ∼ GP(0, k) with k =
k2π,a (see Section 5.1.3), and since xe = [r(θt,1, . . . , θt,Nt)]

T , it follows from the GP definition
(Definition 5.1.1) that [

r(θi)
xe

]
∼ N

([
0
0

]
,

[
k(θi, θi) K(θi,θt)
K(θt, θi) K(θt,θt)

])
. (6.33a)
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Hence, by using Theorem A.1 from Appendix A, it follows that

r(θi)|xe ∼ N (H(θi,θt)xe,R(θi,θt)) , (6.34)

where

H(θi,θt) = K(θi,θt)[K(θt,θt)]
−1 (6.35a)

R(θi,θt) = k(θi, θi)−K(θi,θt)[K(θt,θt)]
−1K(θt, θi) , (6.35b)

Equivalently,

r(θi) = H(θi,θt)xe + w , w ∼ N (0,R(θi,θt)). (6.36)

By inserting (6.36) into (6.32a) and adding uncorrelated measurement noise to each coordi-
nate of the measurement z, we obtain the measurement model equations

z = rc + e(z− rc) [H(θi,θt)xe + w] + w′ , (6.37)

where

w ∼ N (0,R(θi,θt)) , (6.38a)
w′ ∼ N (0, σ2

rI2) , (6.38b)

σr is measurement noise strength and θi = ∠ (z− rc)− ψc according to (6.32b).

The measurement model (6.37) is highly non-linear. Therefore, it has to be linearized around
the predicted state estimates in order to be used in the update step formulas of Theorem 4.4.4.
The linearization formulas of (6.37) can be found in [37], and they are used the ones used in
this thesis.

However, it is worth noticing that the linearization formulas in [37] assume that the input
angle θi = ∠ (z− rc) − ψc does not depend on the measurement z. In other words, these
formulas are derived by ignoring the fact that (6.37) is actually an implicit equation for the
measurement z. Nevertheless, this approximation is reasonable if the position r̄c and heading
ψ̄c predicted estimates are good.

78



6.3 Gamma Gaussian inverse Wishart
The gamma Gaussian inverse Wishart (GGIW) is a state-space model that uses a random

matrix model for the object’s extent, and a linear measurement model that simulates radar mea-
surements.

In the simulations performed in Chapter 7, the GGIW model is combined with a CV2 model
with no sideslip for the kinematic states.

6.3.1 Random Matrix extend model
The Random matrix approach in two spatial dimensions models the object’s extent as an

ellipsis with center rc = [Nc, Ec]
T . Therefore, the extent can be characterized by the 2-by-2

positive definite matrix X that gives the implicit equations for the ellipsis in the world frame,
i.e., [

N −Nc

E − Ec

]T
X−1

[
N −Nc

E − Ec

]
= 1. (6.39)

The matrix X is called the random matrix, and the concatenation of its columns gives the
extend state xe.

The random matrix X can also be represented as

X =

[
cos(ψc) − sin(ψc)
sin(ψc) cos(ψc)

] [
a2 0
0 b2

] [
cos(ψc) − sin(ψc)
sin(ψc) cos(ψc)

]T
, (6.40)

where a and b are the semi-axes of the ellipsis, which lie on the x̂ and ŷ axes of the body frame
(see Section 6.1.1), respectively.

There are several state-transition models for the random matrix X in the literature, each
with its own characteristics and applications (see for example [21], [12], [24] or [16]). Here,
Granström’s model introduced in [16] and used in [14] is chosen. This model is

Xk = R(∆ψc,k)Xk−1R(∆ψc,k)
T + Wk , (6.41)

where

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
, (6.42)

∆ψc,k is an approximation of the heading angle variation between the time points Tk−1 and
Tk based on the kinematic state vector, and Wt is the process noise, which is distributed as a
Wishart distribution.

The matrix R(∆ψc,k)XkR(∆ψc,k)
T in (6.41) represents the ellipsis given by Xk rotated by

an angle ∆ψc,k, while the term Wt accounts for approximation errors and uncertainties in the
state-transition.
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See [16] for the details about this extend state-transition model. In any case, it is impor-
tant to note that the model (6.41) cannot be used in conjunction with Theorem 4.4.3 since the
Wishart distribution is not a multivariate normal distribution. Nevertheless, PMBM prediction
and update laws for the GGIW model can be found in [14], and they have been implemented in
the code by Yuxuan Xia in [41].

6.3.2 Radar measurement model
The world frame coordinates of a radar measurement z are distributed as

l(z|x) = N
([
Nc

Ec

]
, X + σrI2

)
, (6.43)

where σr is the measurement noise strength.

Equivalently,

z =

[
Nc

Ec

]
+ vt , vt ∼ N (0, X + σrI2) (6.44)

In other words, the single object-generated measurement z is normally distributed with the
center of the elliptical extent [Nc, Ec]

T as its mean value and with X + σrI2 as its covariance
matrix.
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Chapter 7
Simulations and results

The PMBM filter for EOT derived in Chapter 4 is integrated with the state-space models
presented in Section 6.2 and Section 6.3, and the resulting methods are tested under different
simulations.

The implementation of the filter was done in Matlab, and it is based on the code by Yux-
uan Xia, which can be found on Github (see [41]). This PMBM code implements the theory
developed in [42] and [18]. In particular, the GGIW model (Section 6.3) is integrated with the
PMBM filter by default. Therefore, this code was modified to integrate the GP and lidar model
presented in Section 6.2, among other minor modifications.

The PMBM-filter parameters that are used for all simulations are a constant survival prob-
ability of ps = 0.99 and a constant detection probability of pd = 1. Furthermore, in order to
make the filter computationally tracktable, the gating threshold is set to 0.99, the thresholds for
the existence probability of the Bernoulli components and for the weights in both the PPP and
the MBM is set to 10−2, while the maximum number of MBM components is set to 100 (see
Section 4.5).

7.1 Random walk simulation
In the random walk simulations, the kinematic states of the objects are simulated accord-

ing to the CV2 model with no sideslip (see Section 6.1.3) with a process noise strength of
σw = 0.05 m s−1. According to [40], this level of process noise corresponds to a slowly varying
maritime vessel movement.

The time step for all random walk simulations is constant and equal to 1 s, and the simula-
tions last for one minute. Moreover, these simulations take place in a region whose coordinates
extend from 0 to 200 m in the North direction and from -150 to 150 m in the East direction.
In this region, objects are generated at two specific birth points located at [100,−125]m and
[100, 125]m. At the initial time point there are two objects, each located at either birth point,
and from the next time point onwards, new objects are generated according to a Poisson distri-
bution with rate λb = 0.01 s−1.
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The objects generated at the west birth point represent small boats (e.g. kayaks) that move
to the East with a velocity of approximately 1 m s−1, while the object generated at the east birth
point represent medium sized boats (e.g. skiffs) that move to the West with a velocity of ap-
proximately 3 m s−1, which is almost 6 knots.

More precisely, the initial kinematic state vector is given according to (6.16). Hence,

xc,0 = x̄c,0 + w1 (7.1a)

w1 ∼ N
(

0, σ2
c

[
1 1

T
1
T

2
T 2

])
, (7.1b)

where x̄c,0 is the corresponding initial predicted state vector, which is x̄c,0 = [100, −125, 0, 1]T

if the object originated at the west birth point or x̄c,0 = [100, 125, 0, −3]T if it originated at
the east birth point. Moreover, σc is the strength of the initial prediction error, which is set to
0.5 m.

The extend characteristics of the objects vary depending on the used state-transition and
measurement models.

7.1.1 Results using the GGIW model and discussion
As presented in Section 6.3.1, the random matrix approach assumes the extents to be el-

lipses. In the simulations, all objects originated at the west birth point have semiaxes of 3 m
and 0.5 m, while all objects originated at the west birth point have semiaxes of 6 m and 2.5 m.
However, in any case, the initial predicted extend is taken as a circle of radius 5 m.

Regarding the simulated radar measurements (see Section 6.3.2), the strength of the ad-
ditional measurement noise is set to σr = 0.1 m, and the number of object-generated mea-
surements and clutter are sampled according to Poisson distributions with rates λm = 15 and
λc = 30, respectively. Moreover, the spatial coordinates of the clutter measurements are sam-
pled according to an uniform distribution on the simulation region.

Figure 7.1 illustrates the scenario of a random walk simulation. Figure 7.1a shows the tra-
jectories of all the spawned objects. Note that in this particular simulation two extra objects
were generated in addition to the two initial ones, and that the trajectories resemble vessels
moving mostly forward. Moreover, the simulated object-generated measurements and clutter
seem realistic as shown in Figure 7.1b.

The same parameter values used to simulate the state trajectories and the measurements are
employed by the PMBM filter to track the objects. In other words, no additional parameter
tuning was performed.

Several simulations were undertaken, and the results are quite similar. In general, objects are
detected at the same time point they are generated, and the obtained state estimates are accurate.

As a representative example, the results for the two first generated objects in the simulation
illustrated in Figure 7.1 are shown in Figures 7.2 to 7.5. Figure 7.2 and Figure 7.4 show the true
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and estimated kinematic state values for the objects generated at the west and east birth point,
respectively, while Figure 7.3 and Figure 7.5 show the corresponding time-lapses for their ex-
tend trajectories and estimates.

As one can observe in Figure 7.2 and Figure 7.4, the position estimates are very accurate,
while the velocity and heading estimates are not that good. Nevertheless, a good estimate of the
extend trajectories is achieved as shown in Figure 7.3 and Figure 7.5.
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(a) Simulated trajectories for the different objects with a time-lapse of their extent positions.
The black dots mark the points where objects are generated.
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(b) Simulation at time t = 0 s: The two initial objects (blue and red) and measurements.

Figure 7.1: Random walk simulation and simulated radar measurements.
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(d) Velocity in East direction vEc
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(e) Heading ψc.

Figure 7.2: Results for the kinematic states using the PMBM filter for MEOT and the GGIW model:
Actual state values (blue) and corresponding state estimates (red dashed) of the first object generated at
the West.
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(i) t = 60 s.

Figure 7.3: Time-lapse for the first object generated at the West using the PMBM filter for MEOT and
the GGIW model: Actual extend (blue ellipsis), estimated extend (red dashed ellipsis), actual velocity
vector (blue arrow), estimated velocity vector (red arrow) and radar measurements (black dots).
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Figure 7.4: Results for the kinematic states using the PMBM filter for MEOT and the GGIW model:
Actual state values (blue) and corresponding state estimates (red dashed) of the first object generated at
the East.
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(i) t = 60 s.

Figure 7.5: Time-lapse for the first object generated at the East using the PMBM filter for MEOT and
the GGIW model: Actual extend (blue ellipsis), estimated extend (red dashed ellipsis), actual velocity
vector (blue arrow), estimated velocity vector (red arrow) and radar measurements (black dots).
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7.1.2 Results using the GP and lidar model and discussion
As GPes allow to model a wide variety of extends (see Section 5.1), the extends of the

objects generated at the east birth point are modeled to resemble the hull of a medium sized
boat as illustrated in Figure 7.6. Each of these hulls is symmetric about its longitudinal axis,
and it has an overall length of L = 10 m and a beam of B = 5 m. The width of the beam is
achieved at a distance D = 6 m from the bow. Furthermore, the hull ends in a flat stern of
width S = 3 m. With these parameter values, the dimensions of these extends are roughly the
same as the elliptical extends generated at the east birth point in the simulations of Section 7.1.1.

S = 3 m B = 5 m

D = 6 m

L = 10 m

Figure 7.6: Extent of the objects that are generated at the east birth point.

On the other side, the extends generated at the west birth point are ellipses with semiaxes of
3 m and 0.5 m as in Section 7.1.1. Furthermore, the initial predicted extends are also taken as a
circle of radius 5 m.

The lidar sensor is located at the origin of the world coordinate system, and it has a bearing
angle resolution of 0.2° and a range measurement noise strength of σr = 0.1 m. These param-
eter values are inspired by the technical specifications of the Velodyne’s Puck (VLP-16) lidar
sensor (see [5]). In addition to the object-generated measurements simulated using these lidar
parameters, clutter is simulated according to a Poisson distribution with rate λc = 30 for the
number of clutter measurements, and a uniform distribution on the simulation region for their
spatial coordinates, as done in Section 7.1.1.

In the simulations, the same parameter values used to simulate the kinematic state trajec-
tories and the measurements are employed by the PMBM filter to track the objects. In other
words, no additional tuning of the parameters of the CV2 model and the lidar measurement
model was performed. However, the GP hyperparameters σf , σb, σn, l and the forgetting factor
τ were tuned.
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Model selection is the problem of choosing a GP model for a particular application, i.e.
choosing a mean and covariance function, as well as determining hyperparameter values. In
general, model selection is far from a trivial task. The main reason for this is that GPes are
non-parametric models. Therefore it may not be obvious which GP model family or parameter
values should be chosen. In addition, some covariance functions may depend on many hyper-
parameters [30, p.105-106]. However, depending on the particular application, the GP model
family or the value of some hyperparameters may be easy to specify.

Several simulations were undertaken during the GP tuning process. Although existing ob-
jects are detected as they are generated by the filter, their extend estimates could diverge from
the actual extend over time if their position or heading estimates are not accurate enough. The
reason behind this is that an inaccurate position or heading estimate will associate the gated
measurements to the wrong input angles in the GP model, which could lead to an incorrect ex-
tend estimate. If in addition the uncertainties in the extent estimate are thought to be much less
than they actually are due to the chosen GP parameters, the extend estimate will never recover
and it will probably diverge as the simulation progresses.

In order to avoid this undesirable possibility, the process noise for the GP extend model
is increased by selecting relatively large values for the forgetting factor τ and the variance of
the noise component of the GP covariance function σn. A large forgetting factor τ gives more
weight to present measurements than to present estimates, which are a result of previous mea-
surements. Moreover, by increasing the variance of the noise component σn, the uncertainty in
the radius function estimates is increased. The combination of these two effects allow to recover
from poor extent estimates given that the state estimates improve over time.

The final selected GP parameters are the round numbers:

σf = 1 m (7.2a)
σb = 5 m (7.2b)
σn = 0.5 m (7.2c)

l =
π

4
(7.2d)

τ = 10−2s−1. (7.2e)

The variance of the bias component σb is equal to the radius of the initial extend estimate,
which is a rough estimate of the extent dimensions. The length-scale value states that radius
function values for test angles that are more than π

4
apart are basically uncorrelated. The rest of

parameter values in (7.2) are selected by tuning. Note that the variance of the noise component
σn has a large value compared to the size of the extends.

For the GP parameter values in (7.2), satisfactory simulation results are obtained. Figure 7.7
illustrates the scenario of one such simulation. Note that no extra object was generated in ad-
dition to the two initial objects. Furthermore, Figure 7.8 and Figure 7.10 show the true and
estimated kinematic state values for the objects generated at the west and east birth point, re-
spectively, while Figure 7.9 and Figure 7.11 show the corresponding time-lapses for their extend
trajectories and estimates.
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As one can observe in Figure 7.8 and Figure 7.10, the position estimates are very accurate,
while the velocity and heading estimates are not that good, specially at the beginning of the
simulation. This is reflected in the poor initial extent estimates as shown in Figure 7.9 and Fig-
ure 7.11. However, as also shown in these figures, the extend estimates become more accurate
as the heading estimate improves and more measurements come in.

Note that the extend estimates are always inside their 99% confidence region, even when the
estimates are poor. Although these confidence regions are relatively large due to the large value
of the variance of the noise component σn, they are sufficient for a collision avoidance system
since such a system would avoid even a large area around the tracked objects.
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(a) Simulated trajectories for the different objects with a time-lapse of their extent positions.
The black dots mark the points where objects are generated.
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(b) Simulation at time t = 0 s: The two initial objects (blue and red) and measurements.

Figure 7.7: Random walk simulation and simulated lidar measurements.
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Figure 7.8: Results for the kinematic states using the PMBM filter for MEOT and the GP and lidar
model: Actual state values (blue) and corresponding state estimates (red dashed) of the first object gen-
erated at the West.
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Figure 7.9: Time-lapse for the first object generated at the West using the PMBM filter for MEOT
and the GP and lidar model: Actual extend (blue closed curve), predicted extend estimate (red dashed
closed curve), updated extend estimate (red closed curve), 99% confidence region for the updated extend
estimate (shadowed region), actual velocity vector (blue arrow), estimated velocity vector (red arrow)
and lidar measurements (black dots).

93



10 20 30 40 50 60

Time [s]

110

120

130

140

150

160

170

N
c
 [

m
]

(a) North coordinate Nc.

10 20 30 40 50 60

Time [s]

40

60

80

100

120

E
c
 [

m
]

(b) East coordinate Ec.

10 20 30 40 50 60

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
N

c

 [
m

/s
]

(c) Velocity in North direction vNc .

10 20 30 40 50 60

Time [s]

-3

-2.5

-2

-1.5

V
E

c

 [
m

/s
]

(d) Velocity in East direction vEc
.

10 20 30 40 50 60

Time [s]

270

275

280

285

290

295

300

305

310

c
 [

d
eg

]

(e) Heading ψc.

Figure 7.10: Results for the kinematic states using the PMBM filter for MEOT and the GP and lidar
model: Actual state values (blue) and corresponding state estimates (red dashed) of the first object gen-
erated at the East.
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Figure 7.11: Time-lapse for the first object generated at the East using the PMBM filter for MEOT
and the GP and lidar model: Actual extend (blue closed curve), predicted extend estimate (red dashed
closed curve), updated extend estimate (red closed curve), 99% confidence region for the updated extend
estimate (shadowed region), actual velocity vector (blue arrow), estimated velocity vector (red arrow)
and lidar measurements (black dots).
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7.2 Coordinated turn simulation
The coordinated turn simulations are very similar to the random walk simulations (Sec-

tion 7.1). The major difference is that the trajectories of the kinematic states are no longer
sampled according to the CV2 model without sideslip (see Section 6.1.3). Instead, the objects
follow predetermined lines and circle arcs with a constant velocity.

In addition, the simulation region is smaller than the one in (Section 7.1), extending from 0
to 150 m in the North direction and from -100 to 100 m in the East direction, and the simulations
last for 90 s.

There are also two birth points for objects, which are located at [100,−75]m and [20, 75]m,
respectively. The objects generated at the west birth point take a turn to starboard describing a
circle of radius 200 m with a velocity of 1 m s−1. On the other hand, the objects generated at
the east birth point sail first to the West for 100 m, then turn to port and describe a semicircle
of radius 50 m, and finally continue back to the East. These trajectories are described with a
velocity of 3 m s−1. In addition, the kinematic state trajectory of each object is perturbed with a
small amount of random white noise wk, which is distributed according to (6.13) as

wk ∼ N
(

0, σ2
w

[
T 2

3
T
2

T
2

1

])
, (7.3)

where σw = 0.05 m s−1.

With the exception of the above-mentioned differences, the rest of simulation parameters
are the same as in Section 7.1.

Note that the coordinated turn trajectories do not correspond to a CV2 model without
sideslip (see Section 6.1.3). However, similar trajectories can perfectly be described by mar-
itime vessels. Therefore, the objective of these simulations is to test the robustness of the
implemented filter when using a CV models for the kinematic states.

7.2.1 Results using the GGIW model and discussion
The parameter values for the extends and the measurement model are the same as in Sec-

tion 7.1.1, with the exception of the process noise strength σw used in the filter, whose value has
to be considerably larger than the one in Section 7.1.1 due to the kinematic model discrepancies.

In order to do not lose track of the objects, the process noise strength σw was increased
to the round number 1 m s−1. Such a process noise strength is relatively large in the context of
maritime vessels according to [40], where a value of around 0.5 m s−1 is considered to represent
a vessel with a highly-varying movement.

Figure 7.12 illustrates the scenario for one simulation. Figure 7.13 and Figure 7.15 show
the true and estimated kinematic state values for the objects generated at the west and east birth
point, respectively, while Figure 7.14 and Figure 7.16 show the corresponding time-lapses for
their extend trajectories and estimates.
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As one can observe in Figure 7.13 and Figure 7.15, the kinematic state estimates are poor,
specially the velocity and heading estimates. The reason for this poor performance is the kine-
matic model used for estimation, which despite its large process noise still tries to fit a CV
model. This causes the estimated kinematic state values to oscillate around their corresponding
true values. Although the dimensions of the estimated extents are for the most part acceptable
(see Figure 7.14 and Figure 7.16), the poor position and velocity estimates causes the extend
to be placed far away from its actual position. This offset may cause the filter to lose track of
the object, as happens with the object generated at the west birth point towards the end of the
simulation as shown in Figure 7.14.

Further tuning of the process noise strength could lead to a better performance for these
particular simulations. However, considerably sharper turns that the ones simulated here are
possible for vessels of this size, and just increasing the process noise strength is not a sustainable
strategy since this would lead to large uncertainties in the estimates.
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Figure 7.12: Coordinated turn simulation: Simulated trajectories for the different objects with a time-
lapse of their extent positions. The black dots mark the points where objects are generated.
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Figure 7.13: Results for the kinematic states using the PMBM filter for MEOT and the GGIW model:
Actual state values (blue) and corresponding state estimates (red dashed) of the first object generated at
the West.
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Figure 7.14: Time-lapse for the first object generated at the West using the PMBM filter for MEOT and
the GGIW model: Actual extend (blue ellipsis), estimated extend (red dashed ellipsis), actual velocity
vector (blue arrow), estimated velocity vector (red arrow) and radar measurements (black dots).
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Figure 7.15: Results for the kinematic states using the PMBM filter for MEOT and the GGIW model:
Actual state values (blue) and corresponding state estimates (red dashed) of the first object generated at
the East.
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Figure 7.16: Time-lapse for the first object generated at the East using the PMBM filter for MEOT and
the GGIW model: Actual extend (blue ellipsis), estimated extend (red dashed ellipsis), actual velocity
vector (blue arrow), estimated velocity vector (red arrow) and radar measurements (black dots).
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7.2.2 Results using the GP and lidar model and discussion
The parameter values for the extends and the measurement model are the same as in Sec-

tion 7.1.2, with the exception of the process noise strength σw used in the filter, whose value has
to be considerably larger than the one in Section 7.1.2 due to the kinematic model discrepancies.

As done in Section 7.2.1, the process noise strength σw was increased to the round number
1 m s−1 in order to do not lose track of the objects.

Figure 7.17 illustrates the scenario for one simulation. Figure 7.18 and Figure 7.20 show
the true and estimated kinematic state values for the objects generated at the west and east birth
point, respectively, while Figure 7.19 and Figure 7.21 show the corresponding time-lapses for
their extend trajectories and estimates.

Similarly to the results in Section 7.2.1, the kinematic state estimates are poor, specially the
velocity and heading estimates, as shown in Figure 7.18 and Figure 7.20. Furthermore, we ob-
serve in Figure 7.19 and Figure 7.21 that the true extents lie considerably outside the estimated
99% confidence region. This is also a consequence of the discrepancy between the kinematic
models used to simulate and to estimate.

As occurred in Section 7.2.1, the filter loses track of the object generated at the west birth
point towards the end of the simulation as shown in Figure 7.19, while it manages to keep track
of the other object. The reason the filter manages to keep track of the latter object is that this
vessel moves in an almost straight line in the beginning of the simulation in accordance to the
CV2 model without sideslip. This allows the filter to produce a good enough estimate of the
object, which is robust enough to endure the half turn. However, in the case of the object gen-
erated at the west birth point, it turns from the start of the simulation, and the filter does not
manage to handle both the initial estimation error and the kinematic model mismatch.

As occurred in Section 7.2.1, further tuning of the process noise strength could lead to a
better performance for these particular simulations. However, this is not a sustainable strategy.
The source of the poor estimates is endemic due to the kinematic model used in the filter.
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Figure 7.17: Coordinated turn simulation: Simulated trajectories for the different objects with a time-
lapse of their extent positions. The black dots mark the points where objects are generated.
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Figure 7.18: Results for the kinematic states using the PMBM filter for MEOT and the GP and lidar
model: Actual state values (blue) and corresponding state estimates (red dashed) of the first object gen-
erated at the West.
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Figure 7.19: Time-lapse for the first object generated at the West using the PMBM filter for MEOT
and the GP and lidar model: Actual extend (blue closed curve), predicted extend estimate (red dashed
closed curve), updated extend estimate (red closed curve), 99% confidence region for the updated extend
estimate (shadowed region), actual velocity vector (blue arrow), estimated velocity vector (red arrow)
and lidar measurements (black dots).
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Figure 7.20: Results for the kinematic states using the PMBM filter for MEOT and the GP and lidar
model: Actual state values (blue) and corresponding state estimates (red dashed) of the first object gen-
erated at the East.
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Figure 7.21: Time-lapse for the first object generated at the East using the PMBM filter for MEOT
and the GP and lidar model: Actual extend (blue closed curve), predicted extend estimate (red dashed
closed curve), updated extend estimate (red closed curve), 99% confidence region for the updated extend
estimate (shadowed region), actual velocity vector (blue arrow), estimated velocity vector (red arrow)
and lidar measurements (black dots).
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Chapter 8
Conclusions and further work

Gaussian Processes (GPes) provide a very versatile stochastic model for representing the
extent of maritime vessels as shown in the examples of Section 5.1.3 and in the simulation re-
sults presented in Section 7.1.2 and Section 7.2.2.

Furthermore, the state-space model based on GPes (see Section 6.2) can be integrated
with the Poisson multi-Bernoulli mixture (PMBM) filter for multiple extended object track-
ing (MEOT) derived in Chapter 4. The resulting MEOT method has potential as shown in
Section 7.1.2. However, there is still room for improvement as noted in Section 7.2.2.

The fact that the process noise had to be increased in the coordinated turn simulations (see
Section 7.2.2), so that the MEOT method would not lose track of the objects, may indicate that
the non-linearities in the lidar measurement equation (6.37) have not been dealt with properly.
A solution to this could be to use the extent model presented in [27], which is arguably more
robust when associating measurements to the extent’s boundary.

On the other side, the main difference between the results in Section 7.1.2 and Section 7.2.2
lie on how the kinematic states of the objects were simulated. In Section 7.1.2, they where sim-
ulated using constant velocity models, while in Section 7.2.2, the maritime vessels described a
coordinated turn. Therefore, further work could revolve around implementing a PMBM filter
with a hybrid state-transition model based on the master thesis of Tokle ([36]). In addition to the
use of a CV2 model without sideslip (see Section 6.1.3), this hybrid kinematic state-transition
model could also consist of a kinematic model suited for turns, such as a constant turn model1,
as well as a CV3 model for both velocity and turn rate, which could come in handy when the
object has a very low velocity or when it describes sharp turns.

Another interesting route for further work and improvement is to fuse the lidar measure-
ment model with radar or camera measurement models. By doing so, one could exploit the
advantages of each individual sensor and cancel outs their deficiencies.

1A constant turn model is a kinematic model, where the object rotates with an almost constant angular velocity
perturbed by white noise. This is similar to a CV model, where the object moves with an almost constant velocity
perturbed by white noise.
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Appendix A
Results on multivariate Gaussian distributions

Theorem A.1. (The conditional multivariate normal distribution) Let x and y be two stochastic
variables that have a joint multivariate normal distribution, i.e.,[

x
y

]
∼ N

([
µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
, (A.1)

where Σyx = ΣT
xy. Then the conditional distribution of y given x is

y|x ∼ N
(
µy|x,Σy|x

)
, (A.2)

where

µy|x = µy + ΣyxΣ−1xx [x− µx] (A.3a)

Σy|x = Σyy −ΣyxΣ−1xxΣxy. (A.3b)

Proof. The bilinear form in the exponent of the joint probability density function p(x,y) can
be decomposed as[

xT − µT
x yT − µT

y

] [Σxx Σxy

Σyx Σyy ,

]−1 [
x− µx

y − µy

]
(A.4a)

=
[
y − µy|x

]T
Σ−1y|x

[
y − µy|x

]
+ [x− µx]T Σ−1xx [x− µx] . (A.4b)

Hence, for a fixed vector x, the conditional probability density function p(y|x) is

p(y|x) =
p(x,y)∫
p(x,y) dy

(A.5a)

=
e

(
− 1

2 [y−µy|x]
T

Σ−1
y|x[y−µy|x]

)
e(−

1
2
[x−µx]

TΣ−1
xx [x−µx])∫

e

(
− 1

2 [y−µy|x]
T

Σ−1
y|x[y−µy|x]

)
e(−

1
2
[x−µx]

TΣ−1
xx [x−µx]) dy

(A.5b)

=
e

(
− 1

2 [y−µy|x]
T

Σ−1
y|x[y−µy|x]

)
e(−

1
2
[x−µx]

TΣ−1
xx [x−µx])

(2π)
n
2

∣∣Σy|x
∣∣ 12 e(− 1

2
[x−µx]

TΣ−1
xx [x−µx])

(A.5c)

=
e

(
− 1

2 [y−µy|x]
T

Σ−1
y|x[y−µy|x]

)
(2π)

n
2

∣∣Σy|x
∣∣ 12 ∼ N

(
µy|x,Σy|x

)
. (A.5d)
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Theorem A.2. Let x and z1, . . . , zn be stochastic variables distributed as

x ∼ N (µx,P) (A.6a)
zi|x ∼ N (Aix,Qi) . (A.6b)

Then the product of the probability density functions of the distributions in (A.6a) is

N (x,µx,P)
n∏
i=1

N (z,Aix,Qi) = N




x
z1
...

zn

 ,µ,Σ
 , (A.7)

where

µ =


µx

A1µx
...

Anµx

 (A.8a)

Σ =



P PAT
1 PAT

2 . . . . . . PAT
n

A1P A1PAT
1 + Q1 0 . . . . . . 0

A2P 0 A2PAT
2 + Q2 0

. . . 0
...

... . . . . . . . . . ...
...

... . . . . . . . . . 0
AnP 0 . . . . . . 0 AnPAT

n + Qn


. (A.8b)

Proof. We prove first that the bilinear forms in the exponents for both sides in (A.7) are equal.

The bilinear form for the left-hand side of (A.7) is

(x− µx)TP−1(x− µx) + (z1 −A1x)TR−11 (z1 −A1x)T + · · ·+ (zn −Anx)TR−1n (zn −Anx)T

(A.9a)

=


x− µx

z1 −A1x
...

zn −Anx


T


P−1 0 . . . . . . 0
0 Q−11 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . 0
0 . . . . . . 0 Q−1n




x− µx

z1 −A1x
...

zn −Anx

 . (A.9b)

By inserting the identity


x− µx

z1 −A1x
...

zn −Anx

 =


I 0 . . . . . . 0
−A1 I 0 . . . 0

... . . . . . . . . . ...

... . . . . . . . . . 0
−An 0 . . . 0 I




x− µx

z1 −A1µx
...

zn −Anµx

 (A.10)
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into (A.9b), we conclude that
x− µx

z1 −A1x
...

zn −Anx


T


P−1 0 . . . . . . 0
0 Q−11 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . 0
0 . . . . . . 0 Q−1n




x− µx

z1 −A1x
...

zn −Anx

 (A.11a)

=


x− µx

z1 −A1µx
...

zn −Anµx


T


I −AT
1 . . . . . . −AT

n

0 I 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . 0
0 . . . . . . 0 I




P−1 0 . . . . . . 0
0 Q−11 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . 0
0 . . . . . . 0 Q−1n

× . . .
(A.11b)

. . .


I 0 . . . . . . 0
−A1 I 0 . . . 0

... . . . . . . . . . ...

... . . . . . . . . . 0
−An 0 . . . 0 I




x− µx

z1 −A1µx
...

zn −Anµx

 (A.11c)

=


x− µx

z1 −A1µx
...

zn −Anµx


T



I 0 . . . . . . 0

A1 I 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . 0

An 0 . . . 0 I




P 0 . . . . . . 0
0 Q1 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . 0
0 . . . . . . 0 Qn

× . . . (A.11d)

. . .


I AT

1 . . . . . . AT
n

0 I 0 . . . 0
... . . . . . . . . . ...
... . . . . . . . . . 0
0 . . . . . . 0 I





−1 
x− µx

z1 −A1µx
...

zn −Anµx

 (A.11e)

=


x− µx

z1 −A1µx
...

zn −Anµx


T



P PAT
1 PAT

2 . . . . . . PAT
n

A1P A1PAT
1 + Q1 0 . . . . . . 0

A2P 0 A2PAT
2 + Q2 0

. . . 0
...

... . . . . . . . . . ...
...

... . . . . . . . . . 0
AnP 0 . . . . . . 0 AnPAT

n + Qn.



−1 
x− µx

z1 −A1µx
...

zn −Anµx


(A.11f)

=




x
z1
...

zn

− µ


T

Σ−1




x
z1
...

zn

− µ

 . (A.11g)

Hence, the bilinear forms in the exponents for both sides in (A.7) are equal. This implies
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that

N (x,µx,P)
n∏
i=1

N (z,Aix,Qi) = κN




x
z1
...

zn

 ,µ,Σ
 (A.12)

for some constant κ. However, since probability density functions integrate up to 1, integration
of (A.7) with respect to x and all zi gives that κ = 1, and the final result follows.

Theorem A.3. (Gaussian mixture) Let X be a random variable whose probability density func-
tion is the weighted average of a finite number of multivariate Gaussian distributions, i.e.,

fX(x) =
n∑
i=1

wnN (x,xi,Pi) , (A.13)

where the weights wi ≥ 0 are normalized, i.e.,
∑n

i=1wi = 1, and the multivariate normal dis-
tributions N (xi,Pi) are independent of each other.

Then the mean value and covariance matrix of X are respectively

E[X] =
n∑
i=1

wixi (A.14a)

Cov[X] =
n∑
i=1

wiPi +
n∑
i=1

wixix
T
i − E[X]E[X]T . (A.14b)

Proof. The proof is an exercise in mean and covariance calculations, and is left to the reader.
For a proof see page 56 in [6].
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Notation, abbreviations and symbols

Lower case letters (e.g. a, ψ, f ) denote scalars, lower case bold letters (e.g. x, z) denote
vectors and upper case bold letters (e.g. F, H, X) denote matrices. Furthermore, random finite
sets (RFSs) are denoted by calligraphic letters (e.g. A, X , Z) and index sets are denoted by
blackboard letters (e.g. I, M).

Abbreviations

AIS Automatic identification system.

ASV Autonomous surface vehicles

CV Constant velocity.

EKF Extended Kalman filter.

EOT Extended Object Tracking.

FISST Finite Set Statistics.

GGIW Gamma Gaussian inverse Wishart.

GNSS Global navigation satellite system.

GP Gaussian Process.

IMU Inertial measurement unit.

KF Kalman filter.

LIDAR Light detection and ranging.

MB Multi-Bernoulli.

MBM Multi-Bernoulli mixture.

MEOT Multiple Extended Object Tracking.

MOT Multiple Object Tracking.

NTNU Norwegian University of Science and Technology.
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OT Object Tracking.

PGFL Probability generating functional.

PMBM Poisson multi-Bernoulli mixture.

PPP Point Poisson Process.

RCC Remote control center.

RFS Random Finite Set.

Gaussian Processes

r(θ) Radius function that parameterizes the extent boundary.

f ∼ GP(m, k) f is a Gaussian process with mean function m and covariance function k.

m(·) Mean function of a Gaussian process.

k(·, ·) Covariance function of a Gaussian process.

k̃2π(θ, θ′) Pure exponential part of k2π.

k̃2π,a(θ, θ
′) Pure exponential part of k2π,a.

σf Variance of the signal amplitude. A hyperparameter.

σb Variance of the bias. A hyperparameter.

σn Variance of the noise. A hyperparameter.

M(i) Associated mean vector to index vector i.

K(i, j) Associated covariance matrix to index vectors i and j.

l Length-scale. A hyperparameter

δ(θ, θ′) Dirac delta.

ke(θ, θ
′) Squared exponential covariance function.

ssa(θ) Smallest signed angle of θ.

k2π(θ, θ′) Covariance function for 2π-periodic functions.

k2π,a(θ, θ
′) Covariance function for 2π-periodic and even functions.

k̃e(θ, θ
′) Pure exponential part of ke.

General

E[·] Expected value or mean value operator.

Cov[·] Covariance matrix operator.
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N (µ,Σ) Multivariate normal distribution with mean µ and covariance matrix Σ.

N (x,µ,Σ) Probability density function of N (µ,Σ) with variable x.

In n-by-n identity matrix.

⊗ Kronecker product of matrices.

(mod ·) Modulo congruence relation.

atan2(·, ·) Four quadrant arctangent.

∠x Angle that gives the direction of the vector x.

State-space models

x State vector of object.

xc Kinematic state vector.

xe Extent state vector.

c Center of movement.

rc Position of center of movement, i.e., of object.

Nc North coordinate of the center of movement.

Ec East coordinates of the center of movement.

vNc Velocity of the object in the North direction.

vEc Velocity of the object in the East direction.

ψc Heading angle.

rc Turn rate.

(N̂ , Ê) World reference axes.

(x̂, ŷ) Axes of local reference frame attached to extent, i.e., body frame.

ri Lidar range measurement.

ϕi Lidar azimuth angle.

σr Measurement noise strength for lidar or radar measurements.

σw Process noise strength for CV model.

T Constant time step.

e(·) Unit vector function.

X Random matrix.
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Poisson multi-Bernoulli mixture filter

Db(x) Birth intensity.

ps(x) Survival probability.

Dc(x) Clutter (or false alarm) intensity.

pd(x) Detection probability.

λm(x) Poisson rate of object-generated measurements.

qd(x) The effective probability of missed detection.

lZ(x) The likelihood of a measurement set Z given a state vector x

A Data association hypothesis.

C Cell in a data association hypothesis.

lC(x) The likelihood of a measurement set ZC given a state vector x

wj Probability of a data association hypothesis A.

Du The PPP intensity of undetected targets.

X u RFS for the undetected objects.

X t RFS for the tracked objects.

X RFS for the existing objects.

Xk Updated RFS for X .

Aj Set of all possible data associations for a global hypothesis with index j.

Random Finite Sets

X Random finite set (RFS).

X Realization of a RFS.

PF (S) Set of all finite subsets of S.

S Base space of a RFS. Usually S = Rd

fX (X) Set density function.

Pr (A) Probability of event A.

σ Permutation.

Sn Set of all permutations on {1, . . . , n}.⊎
Union, where the sets being united are disjoint 2-by-2.
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h(·) Test function.

< f, g > Scalar product of two functions, i.e., integral of their product.

FX Probability generating functional (PGFL) of the RFS X .

hX Product of h(x) for all elements x ∈ X . If X is empty, then it is equal to 1.∫
f(X)δX Set integral of set function f ..

δF
δx

Functional derivative of functional F with respect to the vector x.

δF
δX

Functional derivative of functional F with respect to the set X .

δx(·) Delta function concentrated on point x.

119



120



Bibliography

[1] Autoferry - NTNU. https://www.ntnu.edu/autoferry. Last accessed:
09.08.20.

[2] Autosea - NTNU. https://www.ntnu.edu/autosea. Last accessed: 09.08.20.

[3] Autosit - NTNU. https://www.ntnu.edu/autosit. Last accessed: 09.08.20.

[4] The ReVolt DNV-GL. https://www.dnvgl.com/technology-innovation/
revolt/index.html. Last accessed: 09.08.20.

[5] Velodyne Lidar Puck™. https://velodynelidar.com/vlp-16.html. Last
accessed: 09.08.20.

[6] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation with appli-
cations to tracking and navigation: theory algorithms and software. John Wiley & Sons,
2004.

[7] Marcus Baum and Uwe D Hanebeck. Extended object tracking with random hypersurface
models. IEEE Transactions on Aerospace and Electronic systems, 50(1):149–159, 2014.

[8] Edmund Brekke. Sensor fusion and collision avoidance for autonomous surface vehi-
cles. https://haugesundkonferansen.no/content/uploads/2018/09/
Edmund-Forland-Brekke.pdf. Last accessed: 09.08.20.

[9] Donald L Cohn. Measure theory. Springer, 2013.

[10] Emil Aall Dahle. Selvkjørende AI-skip – en dårlig ide? https://www.tu.no/
artikler/selvkjorende-ai-skip-en-darlig-ide/491460, April 2020.
Last accessed: 09.08.20.

[11] OE Drummond, SS Blackman, and KC Hell. Multiple sensor tracking of clusters and
extended objects. In Technical Proceedings, 1988.

[12] Michael Feldmann, Dietrich Franken, and Wolfgang Koch. Tracking of extended ob-
jects and group targets using random matrices. IEEE Transactions on Signal Processing,
59(4):1409–1420, 2010.

[13] Thor I Fossen. Marine control system-guidance, navigation and control of ships, rigs and
underwater vehicles. Marine Cybemetics, 2002.

121

https://www.ntnu.edu/autoferry
https://www.ntnu.edu/autosea
https://www.ntnu.edu/autosit
https://www.dnvgl.com/technology-innovation/revolt/index.html
https://www.dnvgl.com/technology-innovation/revolt/index.html
https://velodynelidar.com/vlp-16.html
https://haugesundkonferansen.no/content/uploads/2018/09/Edmund-Forland-Brekke.pdf
https://haugesundkonferansen.no/content/uploads/2018/09/Edmund-Forland-Brekke.pdf
https://www.tu.no/artikler/selvkjorende-ai-skip-en-darlig-ide/491460
https://www.tu.no/artikler/selvkjorende-ai-skip-en-darlig-ide/491460


[14] Karl Granström, Maryam Fatemi, and Lennart Svensson. Poisson multi-bernoulli mixture
conjugate prior for multiple extended target filtering. IEEE Transactions on Aerospace
and Electronic Systems, 56(1):208–225, 2019.

[15] Karl Granström, Christian Lundquist, and Umut Orguner. Tracking rectangular and el-
liptical extended targets using laser measurements. In 14th International Conference on
Information Fusion, pages 1–8. IEEE, 2011.

[16] Karl Granström and Umut Orguner. New prediction for extended targets with random
matrices. IEEE Transactions on Aerospace and Electronic Systems, 50(2):1577–1589,
2014.

[17] Karl Granström, Lennart Svensson, Stephan Reuter, Yuxuan Xia, and Maryam Fatemi.
Likelihood-based data association for extended object tracking using sampling methods.
IEEE Transactions on intelligent vehicles, 3(1):30–45, 2017.

[18] Karl Granström, Lennart Svensson, Yuxuan Xia, Jason Williams, and Ángel F Garcı́a-
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