
Norwegian university of science and technology

TTK4551: SPECIALIZATION PROJECT (7,5 CREDITS)

Model Predictive Control using data-driven

models obtained from Artificial Neural

Networks

Iver Osnes

supervised by

Prof. Lars Imsland, NTNU

December 21, 2019

Problem description

MPC using data-driven models

In many engineering systems, it is challenging to build mechanistic models due to e.g.
lack of understanding of physical mechanisms, and/or difficulty in obtaining parameters
in the models from data. Sometimes one has to resort to data-driven models.
The topic of this project is to implement (nonlinear) model predictive control on a case
study of a gravity separator. The model should be a data-driven model, obtained using
ANN.

Work description

1. Give a brief overview over Artificial Neural Networks (ANNs)

2. Give a brief overview of Model Predictive Control (MPC) for nonlinear (data-
driven) models, and numerical methods for optimization in MPC.

3. Implement a chosen nonlinear MPC approach using CasADi and IPOPT, for the
data-driven model obtained from ANN.

ii

Abstract
Real-world problems are frequently hard to model considering its physics. It is normal
to find these kinds of problems in oil and gas production, where both modeling and
measuring can be difficult. A possibility can be to resort to data-driven models. If one
can manage to obtain optimal control for a data-driven model, it is possible to transfer
its solution into a real-world problem if the data-driven model is accurate. Earlier studies
have shown that one can use neural networks to generate accurate data-driven models.
Such models would be preferable since it gives us the possibility of decision taking on
behalf of hard data rather than decisions based on observation alone. This project aims
to create a data-driven model on a case study of a gravity separator using Artificial
Neural Networks (ANNs). Further, Model Predictive Control (MPC) will be implemented
to yield optimal control of the obtained model. The MPC gives the ability to predict
the future based on previous states while satisfying a set of constraints. Results from
this case study has shown that model predictive control is promising to yield optimal
control for a three-phase gravity separator. In addition, it showed that neural networks
are well suited for model recognition based on large data sets.

iii

Preface
This specialization project is submitted as a part of the requirements for the master’s
degree at the Department of Engineering Cybernetics at the Norwegian University of
Science and Technology (NTNU). It is submitted for the specialization project TTK4551.
The work presented in this report has been carried out under the supervision of Prof.
Lars Imsland at the Department of Engineering Cybernetics, NTNU.

I would like to thank Prof. Lars Imsland for guidance and tips throughout the de-
velopment of this project.

Iver Osnes

Trondheim, December 2019

iv

Contents

Problem description ii

Abstract iii

Preface iv

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Contribution . 2
1.4 Structure . 2

2 Theory 5
2.1 Artificial Neural Networks . 5

2.1.1 Activation function . 6
2.2 Model Predictive Control . 7

2.2.1 Discrete time systems . 7
2.2.2 Optimization . 8
2.2.3 Building an MPC . 9
2.2.4 Solving MPC optimization problems 11

3 Implementation 13
3.1 Tank model . 13

3.1.1 Data set . 14
3.2 Creating a data-driven model . 14
3.3 Building the MPC . 17

3.3.1 Defining the OCP problem . 17
3.3.2 Implementation in Matlab . 17

4 Simulation and results 19
4.1 Data-driven model . 19
4.2 MPC . 20

5 Discussion 23

6 Conclusion 25
6.1 Future work . 25

6.1.1 Gravity separator . 25

v

6.1.2 Neural networks . 25

References 27

vi

List of Figures
2.1 A common architecture of an ANN with three inputs and two outputs. 6
2.2 Different types of activation functions. 7
2.3 Network Architecture and Notation, recreated from [9]. 7
2.4 Illustration of the MPC principle. [3] 10

3.1 Illustration of tank. 13
3.2 Flowchart of the network building process. 15
3.3 The neural network obtained from testing. 16
3.4 Trained network on testing data in Spyder. 16
3.5 Block diagram for MPC. 18

4.1 Data-driven model compared to real model. 19
4.2 Simulation of tank draining with N = 2. 21
4.3 Simulation of tank draining with N = 5. 21
4.4 Simulation of tank draining with N = 20. 22

vii

viii

Chapter 1

Introduction

1.1 Motivation

Model-based control (MBC) can be a powerful tool in multiple industries. Real-world
systems are often hard to both model and control using on-line data, and it is therefore
suitable to utilize MBC for controlling the plant. However, using MBC does not come
without drawbacks. The controller may not work well if the plants’ behavior deviates
from the assumed model. For this reason, it may not be a good idea to create an inac-
curate model since it could lead to either bad performance or an unstable closed-loop
system [6].

With the development in information science and technology, it has shown that practical
processes have undergone significant changes. Specific industries have custom-made
technologies and equipment, and the processes are more complex. Modeling based on
first principles and identification has become more demanding, and traditional MBC
theory has become impractical for these industries [6].

Data-driven control (DDC) is an appropriate alternative for controlling modern pro-
cesses. Modern processes generate and store huge amounts of data during its processing
time. These data can be used to design controllers when an accurate process model is
missing [6]. There are multiple definitions of data-driven control. They are, however,
based on the same fundament; a controller designed based on the input/output data,
and no physical information is used [8].

Data from several studies suggest that artificial intelligence and machine learning
is a good approach when it comes to providing data-driven models [6]. Neural networks
can be used without prior knowledge and can provide accurate models with a black-box
modeling approach. That is, searching for a model purely from input-output data.

Data-driven models are a major area of interest within the field of petroleum. There are
multiple complex processes, and each process is critical for maximizing profit. Sufficient
models are often hard to both derive and control. The three-phase gravity separator is

1

2 CHAPTER 1. INTRODUCTION

one of the processes that we define as a black box. A multiphase wellstream is injected
into a separation tank, where the states are hard to obtain. A data-driven model of the
gravity separator are hard to both obtain and control without priori knowledge.

Model Predictive Control (MPC) has shown to be useful in systems where parts of
it are data-driven, e.g. autonomous systems with forecasts as constraints [14]. It has also
shown its strength in delivering optimal control policy for a real system with a wrong
model [5]. MPC seems to be a good choice when it comes to controlling data-driven
models.

1.2 Objective

This project explores how MPC can be used to control nonlinear data-driven models.
The project consists of two main parts. The first part involves creating a data-driven
model of a nonlinear tank using an Artificial Neural Network (ANN). The second part is
to control the obtained model using MPC.

1.3 Contribution

This project has resulted in the following contributions:

• A nonlinear tank simulator in Matlab/Simulink, suitable for testing and comparing
different types of models.

• The development of a nonlinear data-driven model of a tank system. The data-
driven model is obtained with the use of ANN.

• The development of an MPC capable to yield optimal control for Optimal Control
Problems (OCPs). The MPC program is capable of converting OCPs into Nonlinear
Programming (NLP) problems. It is made easy to adjust the MPC to fit larger
systems.

1.4 Structure

This report consists of six chapters.

• Chapter 2 aims to give an introduction to the theory related to this project.

• Chapter 3 will introduce the tank model, which is the model that will be used
in this case study. This chapter will also describe how ANN is used to create a

1.4. STRUCTURE 3

data-driven model and how we can use MPC to control the obtained model.

• Chapter 4 provides the simulation and results of this case study.

• Chapter 5 will discuss the results and how this work can be scaled into larger
systems.

• Chapter 6 presents the conclusion of this work and present proposals to future
work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Theory
This chapter aims to give an introduction to theory related to the implementation in
Chapter 3. This includes theory related to the structure of Artificial Neural Networks
and Model Predictive Control.

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) can, in its simplest form, be viewed as an imitation
of the human brain [15]. The network consists of processing nodes, called neurons. The
neurons have an input and an output, as well as a function that determines the activation
of the neuron [15]. The connection between the neurons leads to the global behavior
of the network and is said to be emergent. This means that the global abilities of the
network supersede the abilities of its elements, making the network a powerful tool [6].
A common architecture of an ANN can be seen in Figure 2.1. It is worth noticing that a
neuron in a layer is connected with every neuron in the next layer.

The first layer, the input layer, receives the input values. The layer in the middle,
the hidden layer, is a set of neurons between the input layer and the output layer. There
can be multiple layers inside the hidden layer. The last layer, the output layer, produces
the output.

The connection between the neurons is referred to as weights. The input of a neu-
ron will depend on the weight value of this connection. Weightings can be positive,
negative or zero. If there is no connection between two neurons, the weight will be zero.
The weights are the tuning parameter that makes the network obtain a required output.
Algorithms are used to tune the weights of an ANN. The process of tuning wights is
called learning or training. [4]

The most frequently used training method for neural networks is the backpropagation
algorithm [15]. This method compares the obtained output with the targeted output,
and propagate the error back through the layers. The weights between the neurons
change as the flow move back. The cycle of going from input to output, and then from

5

6 CHAPTER 2. THEORY

Figure 2.1: A common architecture of an ANN with three inputs and two outputs.

output to input is called an epoch. The system starts with a training set, where the
input is known and is asked to obtain a known output. The network performs epochs
until the error is within a certain tolerance. When a chosen tolerance is reached, we
define our network as trained. The weights obtained from the training are later used
for calculating responses from the network when the data is unknown. [15]

2.1.1 Activation function

Activation functions give the network the ability to learn and make sense of nonlinear
complex mappings between input and output. Without an activation function, the
output would be a simple linear function. A linear function is easy to solve, but it
dismisses the possibilities of learning complex mappings from data. We can look at a
network without an activation function as a linear regression model, with limited power
[16]. Three common activation functions can be seen in Figure 2.2.

To understand the architecture, we can look at a simple example of a singe-input
neuron in Figure 2.3. p is a scalar input and a is a scalar output. The scalar input p is
multiplied with a weightingw before it enters a summation where a bias b is added. The
net input n will then proceed into an activation function. We can describe the system as
a function:

a = f (n) = f (wp + b) (2.1)

2.2. MODEL PREDICTIVE CONTROL 7

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
tanh

(a) Tanh function.

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
sigmoid

(b) Sigmoid function.

(c) ReLU function [10].

Figure 2.2: Different types of activation functions.

Figure 2.3: Network Architecture and Notation, recreated from [9].

2.2 Model Predictive Control

2.2.1 Discrete time systems

A general way to describe a system is as a relation between an input and an output, where
the input will generate a unique output. If a system is dependent on previous inputs as
well as the current input, we call it a dynamical system[2]. Since it is excessively hard
to compute a dynamic system that is dependent on all inputs from time −∞ to t , it is
sufficient to transform the system into a state-space representation or a set of high-order
differential equations. When it comes to selecting either state-space representation or
high-order differential equations, it can be compared based on simplicity [2]:

8 CHAPTER 2. THEORY

1. A system with one or two states will be equally hard to describe with the two
methods. However, if a system consists of three or more variables, it would be
simpler to develop a state-space equation. Furthermore, state-space equations are
more compact.

2. A state-space equation describes not only the relationship between the input and
output but also the internal variables, while a high-order differential equation is
an external description.

3. High-order differential equations are not suitable for computer computation,
because it is hard to discretize. State-space equations, on the other hand, only
consists of the first derivative in the discretization, and are more suitable for
computer computation.

4. State-space equations are easier to extend than high-order differential equations
to describe nonlinear and time-varying systems.

From this comparison, there seems to be no reason to go any further with high-order
differential equations. State-space representation of a dynamical system can be expressed
as:

Ûx(t) = f(x(t),u(t)) (2.2a)

y(t) = h(x(t),u(t)) (2.2b)

where (2.2a) is the state equation and (2.2b) is the output equation. When we sample a
continuous system into discrete points, we call it a discrete system. A discrete system
can be obtained using the forward Euler method. The discrete-time system can be
written as

xk+1 = xk + hf (xk ,uk) (2.3)

where h is the step size.

2.2.2 Optimization

An optimization problem is a problem of minimizing or maximizing an objective function
on a finite set of feasible solutions. A general notation can be expressed as [13]:

• x is the vector of variables, the unknown parameter,

• f is the objective function, the function that we want to maximize or minimize,

• ci are the constraint functions, which are functions of x that define equalities and
inequalities that the unknown vector x must satisfy.

2.2. MODEL PREDICTIVE CONTROL 9

By using this notation, we can rewrite the optimization problem as follow:

min f (x) subject to

cix = 0, i ∈ E

cix ≥ 0, i ∈ I
(2.4)

where E is the set of equality constraints and I is the set of inequality constraints.

How an optimization problem is solved depends on its objective function and con-
straints. The three most common problems with their respective solving algorithm
are:

• Linear programming (LP): All functions are linear in this problem. The simplex
algorithm is a suitable algorithm for LP problems. LP problems are convex.

• Quadratic programming (QP): Quadratic objective function and linear constraint
functions. An active set algorithm is suitable to solve QP problems. This problem
is convex.

• Nonlinear programming (NLP): The problem has nonlinear equality constraints.
Sequential quadratic programming (SQP) is a suitable algorithm for NLP problems.
This problem is not convex.

2.2.3 Building an MPC

Model Predictive Control (MPC) refers to a class of control algorithms that can be used
to predict and optimize future process behavior by utilizing an explicitly formulated
process model [12]. MPC controllers can take constraints in account both in manipulated
variables (input) and states/controlled variables. A general term for the MPC can be
described as a controller which [7]:

• predicts future behavior with the use of a multivariable process model,

• optimizing predicted future performance by using a class of control algorithms,

• can handle constraints on both inputs and states/controlled variables.

When it comes to optimization, minimizing the sum of the running cost is a normal
approach. The running cost is defined as the difference between the predicted state
and the reference state, and the difference between the control action and the control
reference. We define the cost function as the sum of the running costs along the whole

10 CHAPTER 2. THEORY

prediction horizon. The running cost can be written as:

ℓ(x,u) =

xu − xr ef

2
Q
+

u − ur ef

2
R

(2.5)

and the cost function can then be formulated as:

JN(x,u) =
N−1∑
k=0
ℓ(xu(k),u(k)) (2.6)

we can now formulate the optimal control problem (OCP) as:

min
u

JN(x0,u) =
N−1∑
k=0
ℓ(xu(k),u(k)) subject to:



xu (k + 1) = f(xu (k),u(k))

xu (0) = x0

x(k) ∈ U,∀k ∈ [0,N − 1]

x(k) ∈ X,∀k ∈ [0,N]

(2.7)

Future outputs for a horizon N , named the prediction horizon, are predicted at each
time instant t using the process model. The future control signals u are obtained by
solving an optimization problem l at each time step t . The control signal u(t |t) is sent to
the process, while the other control signals in N are rejected, since the sampling instant
y(t + 1) is now know, and would be used in the next time instant where all the new
values will be brought up to date [1]. An illustration on the MPC principle can be seen
in Figure 2.4. MPC is very attractive to staff that only has a limited understanding of

Figure 2.4: Illustration of the MPC principle. [3]

2.2. MODEL PREDICTIVE CONTROL 11

control since the concepts are very intuitive and it is quite easy to tune. It is useful when
the future references are known, and the resulting controller is an easy-to-implement
control law [1].

2.2.4 Solving MPC optimization problems

There exist multiple approaches for solving nonlinear MPC optimization problems.
Most of them are, however, based on Sequential Quadratic Programming (SQP) methods.
SQP methods are iterative which means that it makes a quadratic approximation to the
objective function and a linear approximation to the constraints, and solves a Quadratic
Program (QP) at each iteration to find the search direction. A line search is then used to
find the next iterate. [7]

There are different approaches to how the QP is specified. The three main approaches
are [7]:

• Single shooting: Also called sequential approach. The optimization variables con-
sists of discretized controls, while the states are removed. The states are eliminated
by a forward simulation. A reduced QP problem is then solved.

• Simultaneous approach: The model is implemented as explicit equality constraints.
Both controls and states are used as optimization variables. Will result in a large
number of optimization variables. This approach demand high computational
cost.

• Multiple shooting: A hybrid of the two other approaches. The control horizon
is divided into intervals. The model is, as in simultaneous approach, simulated
on each interval. The state at the end of each interval should match the first
state at the next interval. This is added as an equality constraint, similar to the
simultaneous approach. Multiple shooting will have fewer optimization variables
than the simultaneous approach, but will at the same time have more control than
the sequential approach over the simulation.

12 CHAPTER 2. THEORY

Chapter 3

Implementation
This chapter aims to give an overview of the implementation of the case study. The
chapter is divided into three parts. It will start with a brief introduction to a nonlinear
tank model that will be used in the case study. The next part describes how ANN could
obtain a data-driven model. At last, an MPC is implemented to control the data-driven
model.

3.1 Tank model

The model used in this case study is a nonlinear tank with known dynamics. Figure
3.1 illustrates the tank setup. The inflow rate Qin is set to a constant value for this
case study, but this is likely varying in a true system since it is dependent on forces
outside the system. The outflow rate Qout is dependent on the water height h and the
control variable u and can be formulated as Cu

√
ρдh. The parameters A, C , ρ and д are

all known constant values. The tank dynamics can be derived from Bernoulli’s equation
and results in a nonlinear system described by:

Ûh =
1
A
(Qin −Cu

√
ρдh) (3.1)

Figure 3.1: Illustration of tank.

13

14 CHAPTER 3. IMPLEMENTATION

Table 3.1: Parameters and variables.

Parameter Value Description
h var Height of the water level [m]
Ûh var Velocity of the water level [m/s]
u var Control variable
Qin 5 Water inflow [m3/s]
ρ 1000 Fluid density [kg/m3]
д 9.81 Acceleration of gravity [m/s2]
A 20 Area of tank [m2]
C 0.15 Valve constant

Matlab and Simulink were used to build the system. A PID-controller was implemented
on the valve to control the system during the development. The parameters A and C
were adjusted until the system reached a favorable steady-state value.

3.1.1 Data set

It requires a large amount of data to build a data-driven model. A simulation of the
system with a random control variable u was used to create the data set. The control
variable u was changed to a random value between 0 and 1 every 20s . A new sample
was made every 0.2s and the simulation lasted for 10 000s , which generated a total of
50 000 data points. Each data point consisted of the control variable u, the water level h
and the velocity of the water level Ûh. Since Ûh is dependent of u and h, we label u and h
as input, and Ûh as output.

3.2 Creating a data-driven model

The Artificial Neural Network was created in Spyder. Spyder is an open source integrated
development environment (IDE). The network was designed using the TensorFlow
library and Keras as a model-level library. TensorFlow is an open source platform
for machine learning. It was implemented using high-level APIs with Python as the
programming language. The data set created in 3.1.1 were split into two separate sets.
The first data set, the training data, was a set of 40 000 data points. The second data
set, the test data, was a set of 10 000 data points. The network was built with a ”try and
error” approach, and the flowchart for the process can be viewed in Figure 3.2.

3.2. CREATING A DATA-DRIVEN MODEL 15

Figure 3.2: Flowchart of the network building process.

It was desirable to keep the network as simple as possible since it was tended to recreate
a simple model. The chosen network structure can be seen in Figure 3.3. The input is u
and h, and the output is Ûh. Two hidden layers were added. 50 epochs were used in the
training process.

Since the system is nonlinear, a nonlinear activation function was selected. Tanh was
selected for both the hidden and output layer. This makes it easy for the model to adapt
with a variety of data. Tanh have an output range from -1 to 1, and are well suited for
feed-forward networks.

16 CHAPTER 3. IMPLEMENTATION

Figure 3.3: The neural network obtained from testing.

”Adam”was used as optimizing algorithmwithmean squared error (MSE) as loss function.
The testing plot from the trained network can be seen in Figure 3.4. The transition from

0 2000 4000 6000 8000 10000
Time

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

dh
/d
t

Predicted
True

Figure 3.4: Trained network on testing data in Spyder.

Spyder to Matlab did not go as intended. Matlab had issues with the file format of the
network, and it had to be calculated manually. WeightsW and biases b from the trained
network were as follows:

W1 =


1.3845 −0.1701

−0.5985 −0.1124

 , b1 =


1.0905

1.0039


W2 =

[
−0.8537 1.4550

]
, b2 = −0.1414

The data-driven model was obtained using eq. 3.2 recursively.

a = f (n) = tanh(wp + b) (3.2)

3.3. BUILDING THE MPC 17

3.3 Building the MPC

The last step of the implementation part was to implement an MPC to perform optimal
control on the data-driven model. This was done in Matlab with CasADi as a nonlinear
optimization tool. The MPC aims to control the liquid height h inside the tank.

3.3.1 Defining the OCP problem

The first step in the process was to define an Optimal Control Problem (OCP). In control
theory, this is equal to finding a control law for a dynamical system for optimal control.
A common approach is to look at the deviation in the state and control. The OCP was
therefore defined as:

min
n∑

k=0
(hk − hr)

2 + (uk − uss)
2 subject to


hk+1 = f (hk ,uk)

0 ≤ uk ≤ 1

h ≤ h ≤ h

(3.3)

where hk is the height at time step k and hr is the reference height. Further, uk is the
control input at time step k , while uss is the control input when the system is in steady
state. In other words, we are penalizing the system for height offset and high control
usage. Weighting matrices Q and R are set to identity.

In order to solve an OCP numerically, we need to transform it into a nonlinear pro-
gramming (NLP) problem [11]. The method of choice is single shooting since it is the
most intuitive method. NLP problems are solved using the CasADi optimizing tool. It is
important to remember that single shooting is unfavorable if the prediction horizon N

is large, since the integrator function tends to become highly nonlinear. [11]

3.3.2 Implementation in Matlab

The NLP problem was defined in Matlab with CasADi. CasADi is an open-source
software tool for numerical optimization and optimal control. Interior Point Optimizer
(IPOPT) was used as a solver for the NLP problems. IPOPT is a software package for
large-scale nonlinear optimization. The simulation time was set to 20s with a sampling
time of 0.2s , which gives a total of 100 iterations. Control variable u was constrained
between 0 and 1. The MPC was made inside a for loop where IPOPT was used to solve
a new NLP problem for each iteration. A block diagram of the MPC implementation
can be seen in Figure 3.5. The fundamentals of the program were based on a CasADi
workshop [11].

18 CHAPTER 3. IMPLEMENTATION

Figure 3.5: Block diagram for MPC.

The control variable u controls the drain of the tank since the valve is connected on the
output of the tank. If the tank are in a filling process, it will give a control variable u = 0.
This means that the optimal control is obtained when the water level is decreasing.

Chapter 4

Simulation and results

This chapter explains how the simulations were conducted and show the results. The
chapter is, as the other chapters, divided into two parts; one for the data-driven model
and one for the MPC.

4.1 Data-driven model

The first part of the simulation was to approve the data-driven model created in Section
3.2. It was expected that some information was lost in the conversion between Spyder
and Matlab. A Simulink program was made to compare the data-driven model with the
physics-based model. They received the same random control variable u and a start
height h0. The rate of the height Ûh were plotted against each other. We can see from
Figure 4.1 that there is way more deviation than the trained network in Section 3.2. The
model is still accurate enough to be used as process model for the MPC.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

d
h

/d
t

Real vs ANN

Real dh/dt

ANN dh/dt

Figure 4.1: Data-driven model compared to real model.

19

20 CHAPTER 4. SIMULATION AND RESULTS

4.2 MPC

A draining process was simulated on the tank from Section 3.1. The data-driven model
was not as precise as expected, but simulation showed that it worked well as a process
model for the MPC. A simulation with initial condition h0 = 10 and reference value
h = 5 was conducted. Different prediction horizons were used to see how the MPC
responded. An MPC with the physics-based system as reference was also plotted in
comparison. The draining process was simulated for 10s , with three different prediction
horizons, N = 2, N = 5 and N = 20.

In Figure 4.2 a prediction horizon N = 2 was used. We can see that the data-driven
model yields less aggressive control, with smaller steps ∆u on the control variable u.
The two models reache steady-state at the same time, after 7s .

In Figure 4.3 a prediction horizon N = 5 was utilized in the MPC. The control re-
sponses were similar to each other, and the systems reached steady-state after about
3.5s . If we look closely, we can see that there is a small steady-state error in the height
h for the data-driven model.

At last, a simulation with a prediction horizon of N = 20 was utilized, which can
be seen in Figure 4.4. Here, the deviation between the heights is larger than the previous
simulations. The two control variables u are much alike.

4.2. MPC 21

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

u

True

ANN

0 1 2 3 4 5 6 7 8 9 10

Time [s]

4

5

6

7

8

9

10

h

MPC - ANN model vs True model, N = 2

True

ANN

Figure 4.2: Simulation of tank draining with N = 2.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

u

True

ANN

0 1 2 3 4 5 6 7 8 9 10

Time [s]

4

5

6

7

8

9

10

h

MPC - ANN model vs True model, N = 5

True

ANN

Figure 4.3: Simulation of tank draining with N = 5.

22 CHAPTER 4. SIMULATION AND RESULTS

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

u

True

ANN

0 1 2 3 4 5 6 7 8 9 10

Time [s]

4

5

6

7

8

9

10

h

MPC - ANN model vs True model, N = 20

True

ANN

Figure 4.4: Simulation of tank draining with N = 20.

Chapter 5

Discussion
In this work, a nonlinear tank model was designed in Matlab. The nonlinear tank model
was a case study of a gravity separator. A simulator developed in Matlab made it possi-
ble to test and compare different models. The simulator was modular and easy to modify.

AANs were used to create a nonlinear data-driven model for the tank model. Sim-
ulations in Section 4.1 showed that there was a deviation from the physics-based model.
However, it was still interesting to see how the imperfect model performed as a process
model for the MPC. The deviation between data-driven and physics-based models can
occur in multiple forms. The transition from Spyder to Matlab could have led to infor-
mation loss. Using the same framework for the ANN and the MPC would have been
advantageous. Also, overfitting could have played a role for the deviation. Overfitting
happens when the neural network is closely fitted to the training set. It makes it difficult
to generalize and make predictions for new data.

The development of the model predictive control was done in Matlab with CasADi as
a tool for nonlinear optimization. It worked sufficiently with both the physics-based
and data-driven models. The single shooting method was used to transform the OCP
into NLP problems. Single shooting was intuitive for this study, but the method is not
recommended for systems with multiple control variables and large prediction horizons
because of its high computational cost.

A steady-state error on the height h occurred in the simulation when the prediction
horizon increased. This is most likely a result of the deviation in the data-driven model.
Since the error is growing as the prediction horizon is increasing, it can indicate that
there is a deviation in one of the variables in the cost function.

The nonlinear tank model in this case study was a little too simplistic for validation of
the quality of the obtained model. Adding more tanks dependent of each other could
have increased the complexity of the system leading to a more qualified result. This
study showed however that MPC is suitable for data-driven models and that neural
networks are capable of obtaining data-driven models without priori knowledge.

23

24 CHAPTER 5. DISCUSSION

Chapter 6

Conclusion
This project investigated how model predictive control could be used to yield optimal
control on data-driven models. The motivation was to control real-world systems like
the gravity separator, which are hard to both model and control by using data-driven
models instead of on-line data.

The tank simulator in Matlab worked sufficiently for this project, and are scalable
for future work. The artificial neural network managed to find a data-driven model,
but combining two different frameworks weakened the model. Matlab combined with
CasADi was suitable for nonlinear optimization. Deviation on the data-driven model
can lead to a steady-state error because the minimization of the cost function uses
deviated values. The results from this study has shown that MPC is promising to yield
optimal control for a data-driven model of a gravity separator.

6.1 Future work

This project has been based on assumptions and simplifications to narrow the scope
of the task. This section will present proposals on improvements and recommended
future work to increase the quality and achieve more realistic results.

6.1.1 Gravity separator

The systems’ complexity will increase when the three-phase gravity separator is imple-
mented. This will lead to more qualified results. It will also require more computational
cost. Using multiple shooting in the transformation between OCP to NLPs would be
convenient. When noise is introduced, it is important to take the noise-sensitive variable
Ûh in account. Discretizing a noise-sensitive variable without noise-filtering will give an
inoperable discrete-time system.

6.1.2 Neural networks

ANN fits the simplistic system well, but it will be necessary to focus on computational
cost when complexity is increasing and several state variables are introduced. Other
neural network structures with less computational cost should be considered.

25

26 CHAPTER 6. CONCLUSION

References
[1] E. F. Camacho and C. Bordons. Model Predictive Control. Springer, 2007.

[2] C. Chen. Linear System Theory and Design. Oxford University Press, 1999.

[3] B. Foss and T. A. N. Heirung. Merging optimization and control. 2016.

[4] C. Gershenson. Artificial neural networks for beginners. 09 2003.

[5] S. Gros and M. Zanon. Data-driven economic nmpc using reinforcement learning.
IEEE Transactions on Automatic Control, 2019.

[6] Z.-S. Hou and Z. Wang. From model-based control to data-driven control: Survey,
classification and perspective. Information Sciences, 235:3–35, 06 2013.

[7] L. Imsland. Introduction to model predictive control, 2007.

[8] J. P. Joranou. Echo state networks for online learning control and mpc of unknown
dynamic systems: Applications in the control of oil wells. 2019.

[9] S. Katz. Introduction to neural networks for senior design. University Lecture,
2004.

[10] K. Maladkar. Types of activation functions in neural networks and rationale behind
it. Analyticsindiamag, 2018.

[11] M. W. Mehrez. Optimization based solutions for control and state estimation in
dynamical systems, a workshop. 2019.

[12] K. R. Muske and J. B. Rawlings. Model predicitve control with linear models. 1993.

[13] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

[14] U. Rosolia, X. Zhang, and F. Borrelli. Data-driven predictive control for autonomous
systems. Annual Review of Control, Robotics, and Autonomous Systems, 1(1):259–
286, 2018.

[15] K. Shiruru. An introduction to artificial neural network. International Journal of
Advance Research and Innovative Ideas in Education, 1:27–30, 09 2016.

[16] A. S. Walia. Activation functions and it’s types-which is better?, 2017.

27

	Problem description
	Abstract
	Preface
	Introduction
	Motivation
	Objective
	Contribution
	Structure

	Theory
	Artificial Neural Networks
	Activation function

	Model Predictive Control
	Discrete time systems
	Optimization
	Building an MPC
	Solving MPC optimization problems

	Implementation
	Tank model
	Data set

	Creating a data-driven model
	Building the MPC
	Defining the OCP problem
	Implementation in Matlab

	Simulation and results
	Data-driven model
	MPC

	Discussion
	Conclusion
	Future work
	Gravity separator
	Neural networks

	References

