
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Sondre Bø Hernes

Practical NMPC of Electrical
Submersible Pumps based on Echo
State Networks

Master’s thesis in Cybernetics and Robotics

Supervisor: Lars Struen Imsland and Eduardo Camponogara

Co-Supervisor: Eric Antonelo

July 2020

Sondre Bø Hernes

Practical NMPC of Electrical
Submersible Pumps based on Echo
State Networks

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland and Eduardo Camponogara
Co-Supervisor: Eric Antonelo
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Summary
This dissertation aims to control an Electric Submersible Pump (ESP) using the
Practical Nonlinear Model Predictive (PNMPC) based on an Echo State Network
(ESN). The control of a nonlinear dynamic process can be a challenging task
since the dynamic process might not be fully known. Another aspect is that
such complex systems may suffer from modeling errors when applying nonlinear
model predictive control. This dissertation uses an efficient data driven scheme
that overcomes some of the drawbacks of the baseline PNMPC. In the PNMPC
approach the system is divided in two responses, a free response that is kept
nonlinear and a forced response that is partially linearized. This dissertation
will use an echo state network, which is a recurrent neural network used for
system identification. There are several advantages for using this approach: one
is fast system identification, the other is the analytical computation of derivatives
from the data driven model (ESN) for the forced response. This will make the
computational complexity for calculating the derivatives unquestionably low. Also
a correction filter is implemented to improve the robustness of the controller. The
resulting ESN-PNMPC approach will be implemented to control an ESP, which
is one of the most widely used methods for artificial lifting in the oil industry.

In this dissertation, an ESP pump model was developed using CasADi, an echo
state network that predicts the pump’s dynamics with good accuracy, and an
ESN-PNMPC controller to follow a reference on the state pbh while maximizing
the flow (q). The result concluded with a controller demonstrating good results
in being able to follow a reference with a smooth trajectory while optimizing the
flow, without any errors like oscillations or overshooting.

i

ii

Sammendrag
Dette prosjektet går ut på å kontrollere en ESP (electric submersible pump) ved
bruk av ESN-PNMPC (Echo state network- practical nonlinear model predictive
control) . Å kontrollere en ikke lineær dynamisk prosess kan være utfordrende siden
den dynamiske prosessen ikke nødvendigvis er kjent. Et annet aspekt er at det
kan oppstå modelleringsfeil i slike komplekse systemer, ved bruken av en kontroller
som blir kalt NMPC (nonlinear model predictive control). I denne oppgaven
benyttes en effektiv datadreven løsning som fjerner noen av problemene som
kommer med PNMPC (Practical nonlinear model predicive control). I PNMPC
løsningen er systemet delt inn i to responser, en fri respons som holdes ikke lineært
og en tvungen respons som er delvis linearisert. Denne oppgaven bruker et ESN
(Echo State Network), som er et tilbakevendende nevralt nettverk som brukes til
systemidentifikasjon. Det er flere fordeler for å bruke denne tilnærmingen. Det gir
en rask systemidentifisering, og gjør analytiske beregninger av derivater fra den
datadrevene-modellen (ESN). Dette brukes til å beregne den tvungne responsen
og vil gjøre beregningskompleksiteten for å beregne derivatene utvilsomt lavere.
Et korreksjonsfilter er også implementert for å øke kontrollerens robusthet. Denne
ESN-PNMPC-tilnærmingen vil bli implementert på en ESP, som er en av de mest
benyttede metodene for olje pumping i oljeindustrien.

I denne oppgaven er det utviklet en modell for pumpen ESP med bruk av CasADi,
et echo state network som predikerer pumpens dynamikk med god nøyaktighet,
og en kontroller (ESN-PNMPC) for å følge en refereanse på den dynamiske
tilstanden pbh, samtidig som den maksiemere flyten (q). Resultatet endte med en
kontroller som viste gode resultater med å kunne følge en referanse samtidig som
den maksimerte flyten, uten noen feil som svingninger og overskriding.

iii

Preface
This dissertation was a collaboration between my university NTNU and UFSC
(Federal University of Santa Catarina). Therefore I had the luxury to live in
Brazil the first few months of 2020. Unfortunately I had to leave Brazil because
of the corona epidemic.

I would like to thank my supervisors Prof. Eduardo Camponogara, Eric Antonelo
and Lars Imsland for giving me this opportunity. Your contribution, and quick
responses to all my questions has been priceless.

I would also like to thank Jean Panaioti Jordanou for helping me with the code
for developing the ESN-PNMPC, and sharing his previously work and allowing
me to use his libraries.

Also a great thanks to Iver Osnes who was my collaborator for this dissertation
and traveling partner in Brazil.

Finally a big thanks to all the friends I made in Brazil, I genuinely had a fantastic
time in this beautiful country, and I have gotten some incredible memories I will
adore for the rest of my life.

iv

Contents

Summary i

Sammendrag iii

Preface iv

List of figures vii

List of tables ix

Acronyms ix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Contributions . 2
1.3 Objectives . 2
1.4 Outline . 3

2 Problem statement 5
2.1 Oil wells and artificial lifting . 6
2.2 ESPs . 7

2.2.1 Lifespan . 8
2.3 DAE modeling of wells with ESPs 8

2.3.1 Model equations and parameters 10
2.4 ESN of the pump . 12
2.5 PNMPC of the pump . 13

3 Theory 15
3.1 System identification . 15
3.2 DAE modeling and solution . 16
3.3 Optimization . 16
3.4 Linear regression . 17
3.5 Introduction to Neural Networks 17
3.6 Echo State Network (ESN) . 20

3.6.1 Structure . 20
3.6.2 Workflow . 21
3.6.3 Equations . 21
3.6.4 Parameters . 22

3.7 Model Predictive Control (MPC) 24
3.8 Practical Nonlinear Model Predictive Control (PNMPC) 25
3.9 ESN-PNMPC . 27
3.10 Error metrics . 30

4 Implementation 31
4.1 ESP CasADi . 31
4.2 Echo State Network . 32
4.3 ESN-PNMPC . 41
4.4 Summary . 42

5 Results 43
5.1 ESP with CasADi . 43

5.1.1 Valve opening and frequency as constants 43
5.1.2 Step response on valve opening 44
5.1.3 Increasing frequency . 45
5.1.4 Discussion . 46

5.2 ESN . 47
5.2.1 Comparison between Oger and the self-made ESN 47
5.2.2 Different training sets . 48
5.2.3 Steady-state using previously trained networks 52
5.2.4 Noise added . 55
5.2.5 Summary . 55

5.3 ESN-PNMPC . 56
5.3.1 Step response . 56
5.3.2 Stair response . 57
5.3.3 Steps down and up . 57
5.3.4 Conclusion of ESN-PNMPC 58

6 Conclusion and Future Work 59
6.1 Conclusion . 59
6.2 Further work . 60

Appendices 67
A Model parameters . 69

vi

List of Figures

2.1 Research model . 6
2.2 ESP lifted well . 9
2.3 Illustration of the pumps behaviour 12

3.1 Illustration of the model with a mathematical representation of the
relationship between input and output of a dynamic system. 15

3.2 Figure showing information flow for a neuron 18
3.3 Diagram of a deep neural network 18
3.4 Structure of an echo state network 20
3.5 Different activation functions . 22
3.6 Scheme of how the MPC works . 24
3.7 Block diagram of how the ESN with the PNMPC works 27

4.1 Sampling rate 12(blue) vs 6(red) 32
4.2 Search for the best leak-rate. 33
4.3 Search for the best leak-rate in more detail, within a small region

of interest . 34
4.4 RFRAS with fast change . 35
4.5 RFRAS with slow change . 36
4.6 RFRAS combining the two sets above 37
4.7 Training set with noise . 38
4.8 Running time with different reservoir sizes from the self made network 39

5.1 System response to a valve opening at 100% and an ESP frequency
at 53 Hz. 44

5.2 System response to a step response on the valve, starting at 50%
and increasing to 100%. 45

5.3 System response with an increasing frequency 46
5.4 Results for ESN made from scratch 47
5.5 Results for ESN made from Oger 48
5.6 Results for ESN trained on a training set with a frequent change

of input . 49
5.7 Results for ESN trained on a training set with a slow input change 50
5.8 Results for ESN trained on a training set with a combination of

slow and fast input change . 51
5.9 Steady state test with a fast changing input as the training set . . 52
5.10 Steady-state test with slow input change as the training set 53
5.11 Steady state test with slow and fast changing inputs 54

vii

5.12 Predictions of a network trained with a data set with noise added . 55
5.13 ESN-PNMPC performance with respect to a step response 56
5.14 ESN-PNMPC performance with references going down 57
5.15 ESN-PNMPC performance with references going down and up . . 58

viii

Acronyms
ANN Artificial neural networks.

CasADi Computer algebra system for automatic differentiation.

ESN Echo state network.

ESN-PNMPC Echo state network Practical nonlinear model predictive control.

ESP Electric submersible pump.

ML Machine learning.

MPC Model predictive control.

NLP Non-linear programming.

NMPC Nonlinear model predictive control.

NN Neural Network.

Oger OrGanic Environment for Reservoir computing.

PNMPC Practical nonlinear model predictive control.

QP Qudratic programming.

SI System identifaction.

ix

x

Chapter 1

Introduction

1.1 Background and Motivation

The control of complex industrial processes where the models are initially unknown,
can be a very difficult task. Such problems are widespread in the world and the
control of these processes demands efficient data driven models. The data driven
model of a unknown process is obtained by a system identification method.

There are many different ways to control an unknown process [1]. One control
method that has been standard for multi-variable control, and which has been
used in the oil and gas industry with good success [2] is Model Predictive Control
(MPC). The MPC principle is to employ a prediction model, then solving a
optimization problem over a time horizon at each sample time to find a control
input.

The implementation of an MPC is challenging when the process is highly nonlinear,
because the optimization that needs to be solved at each iteration is a nonlinear
problem (NLP). To avoid the complexity involved with solving a nonlinear problem
at each iteration, an approach called Practical Nonlinear Model Predictive Control
(PNMPC) can be applied. PNMPC is based on the principle of spliting the process
into two responses, a free response and a forced response. The free response
contains all the nonlinearities and the forced response is linearized by a first order
Taylor expansion. The PNMPC has achieved good results in control of diverse
systems, particularly in gas and oil processes[3]. One drawback of using the
PNMPC approach is that the gradients are very expensive to obtain, which are
required to calculate the derivative terms involved in the method. This imposes a
high computational cost.

This dissertation proposes to employ a data driven model NMPC approach for
controlling an unknown nonlinear process, using the PNMPC method splitting
the two responses with a trained Echo State Network (ESN) as the dynamic
process based on [4]. ESN is a recurrent neural network which has proven to be
effective for system identification and which relies on the principle of supervised
learning. This approach has a big benefit when it comes to computational cost,
since computational complexity of the derivative computation is reduced when
using an Echo State Network as the predictive part of the PNMPC, making an
ESN-PNMPC [4].

In this dissertation the control approach ESN-PNMPC will be implemented to
operate an Electric Submersible Pump (ESP). ESP is one of the most widely used

1

Chapter 1. Introduction 2

methods for artificial lift in the oil industry [5].

1.2 Contributions

The main contributions of this dissertation are:

• A model of an ESP using CasADi.

• An ESN that predicts the behavior of the ESP with good accuracy.

• An application of ESN-PNMPC that controls the bottom-hole pressure pbh
to follow a reference while maximizing the flow (q).

1.3 Objectives

A short summary of the objectives follows below:

• Create a model for the ESP, and find the right parameters for the pump.

• Design an Echo State Network that models the ESP pump with high
accuracy.

• Control the ESP using an ESN-PNMPC approach.

3 1.4. Outline

1.4 Outline

This document consist of six chapters, a short description of each chapter is
described below.

Chapter 1 gives a short background and motivation for the project.

Chapter 2 provides information about the pump.

Chapter 3 presents relevant theory used kin the development of the dissertation.

Chapter 4 will describe the implementation for the experiments.

Chapter 5 shows the results.

Chapter 6 provides a conclusion and directions for future work.

Chapter 1. Introduction 4

Chapter 2

Problem statement
Controlling nonlinear processes can be a difficult task, mainly because such
processes are hard to model correctly and the application of nonlinear predictive
control (NMPC) imposes high computational costs. An alternative is to apply a
controller called Practical Nonlinear Model Predictive Control (PNMPC) that
overcomes some of the issues that arise when using the traditional NMPC. The
PNMPC consists of two responses: a free response and a forced response, where
the free response is the nonlinear system and the forced response is linearized. To
lower the computational complexity of the derivative computation for the forced
response, an echo state network is proposed as the predictive part of the PNMPC,
giving rise to the ESN-PNMPC. In this dissertation the ESN-NMPC is put to the
test in an Electric Submersible Pump (ESP). To create the ESN-NMPC three
elements need to be fulfilled:

• Model of the ESP, that will act as the actual system.

• Create the ESN, with good results for predicting the ESPs behavior.

• Controlling the pump with the ESN-PNMPC, by finding the correct hyper
parameters.

The problem statement for this dissertation is:

“How will an ESP perform when an ESN-PNMPC approach drives the
pump to its desired references?”

A research model for this dissertation is shown in Figure 2.1, where the ESN-
PNMPC finds the optimal input for reaching the reference for the bottom-hole
pressure pbh while maximizing the produced flow (q).

5

Chapter 2. Problem statement 6

Figure 2.1: Research model

This chapter gives a description of the Electric Submersible Pump (ESP), address
the issues regarding the synthesis of the echo state network and the ESN-PNMPC.
It should be mentioned that section 2.1, Section 2.2.1, Section 2.3, Section 2.3.1
were written in a collaboration with Iver Osnes.

2.1 Oil wells and artificial lifting

In order to bring oil from a reservoir to the surface, enough pressure is essential.
If a well has enough natural pressure to push fluid to the surface, we call it a
flowing well. Flowing wells have a natural lift, which means that the pressure at
the bottom of the well is strong enough to overcome the pressure loss through the
pipeline on its way to the surface. However, most oil wells do not have enough
pressure in their reservoir to rely on natural lift alone. Some wells might have a

7 2.2. ESPs

natural lift in their early years of production, but the pressure will decrease over
the lifetime. A well with insufficient pressure will leave valuable hydrocarbons
deposited in the reservoir.

To overcome the problem of non-flowing wells, it is common practice to resort
to artificial lifting. Artificial lifting is a method used to increase the pressure
inside the well to boost oil production and to increase the lifetime of the well.
There are mainly two different methods of artificial lifting: gas lift and pumping
systems. The choice of method depends on multiple variables such as the volume
of the well, depth, location (onshore or offshore) and the condition of the well [6].
A commonly used method for artificial lifting is the Electric Submersible Pump
(ESP), which will be presented in the next section.

2.2 ESPs

An Electric Submersible Pump (ESP) is a multistage centrifugal pump installed
several hundred meters under the sea surface in an oil well [7]. ESP will contribute
to a boost in production and increase the recovery for a well. The pump inside
the ESP works on a dynamic principle. Firstly, the kinetic energy of the liquid is
increased, then, it is partly converted into pressure energy which will move the
fluid through the pump [6].

ESP is primarily used in oil wells with high flow rates because of its high cost.
They are therefore limited to high volume applications either offshore or onshore
where the high cost can be justified.

ESP’s have greater lifting power than most of other artificial lifting methods.
According to [6], a set of advantages and disadvantages for the ESP areas follows.

Advantages:

• Suited for lifting high liquid volumes from medium depths.

• Efficient as long as the production is higher than 1000 bpd.

• Works well in deviated wells.

• Potentially low maintenance if properly designed and operated.

• Suited for offshore installations because of its low space requirements.

Disadvantages:

• Demand high electric power with high voltage.

• Low flexibility if it is run on a constant electrical frequency.

Chapter 2. Problem statement 8

• Free gas at suction can harm the efficiency of the pump and even stop liquid
production.

• Abrasive material as e.g. sand will increase the equipment wear.

• Expensive to purchase, repair and operate.

• High velocity will increase power usage and reduce productivity.

2.2.1 Lifespan

The lifespan of ESP’s depends on multiple factors. The length of operation is an
important factor, but would not cause a failure alone. ESPs do not normally wear
out, it is often a sudden catastrophic event that causes the failure. Temperature,
flow rate, vibration and power consumption can all affect the lifespan of an ESP.
It is therefore normal to set constraints on these variables to increase the lifespan.
A replacement of an ESP will cause a huge economic impact due to the cost of
the replacement pump and the loss of production [8].

According with available statistics, 23% of all ESP failures are due to operator
mistakes. When ESPs were first introduced, this number were as high as 80% [9].
A set of constraints has been introduced in later years to decrease the number of
failures.

2.3 DAE modeling of wells with ESPs

The mathematical model of the system is based on a model developed by Statoil in
[7], and additional equations from [10] are added to include viscosity. The system
model consists of an ESP and a production choke valve. Perfect system knowledge
is assumed for the model. The simulator is implemented in Python with CasADi
as a tool for solving DAEs. This dynamic model works as a foundation for the
development of further control and optimization strategies. A schematic picture of
the model can be seen in Figure 2.2 and a description of the associated variables
in Section 2.3.

The principles in this system is fairly simple. A mixture of liquid (oil, water and
possibly gas) are flowing into the well from the reservoir (qr). It will reach the
ESP pump which will generate additional pressure and then raise the fluids to
the production choke at the top of the well. An operator can control the ESP
speed and production choke opening to reach a desired production or optimization
target. The model assumes constant fluid properties to avoid an overly complex
controller. Additional constraints are added to increase the lifespan of the ESP
[7].

9 2.3. DAE modeling of wells with ESPs

Figure 2.2: ESP lifted well, recreated from [10].

Chapter 2. Problem statement 10

Control inputs
F ESP frequency
z Choke valve opening

ESP data
pm Production manifold pressure
pwh Wellhead pressure
pbh Bottomhole pressure
pp,in ESP intakepressure
pp,dis ESP discharge pressure
pr Reservoir pressure

Parameters from fluid analysis and well tests
q Average liquid flow rate
qr Flow rate from reservoir into the well
qc Flow rate through production choke

Table 2.1: Model variables

2.3.1 Model equations and parameters

The model of the ESP is divided into reservoir inflow, production pipe volumes,
ESP and production choke. Despite excluding complexity such as effects due to
gas and change of viscosity, the model will still represent the well dynamics quite
accurately [7]. The system has three states: bottomhole pressure pbh, wellhead
pressure pwh and average flow rate q. Their differential equations are as follows:

ṗbh =
V1

β1
(qr − q) (2.1a)

ṗwh =
V2

β2
(q − qc) (2.1b)

q̇ =
1

M
(pbh − pwh − ρghw −∆pf + ∆Pp) (2.1c)

where ∆pf are the pressure loss due to friction and ∆Pp are pressure loss due
to the ESP dynamics. The differential equations come with a set of constraints,
which can be described as the following algebraic equations:

11 2.3. DAE modeling of wells with ESPs

Flow:

qr = PI(pr − pbh) (2.2a)
qc = Cc

√
pwh − pm z (2.2b)

Friction:

∆pf = F1 + F2 (2.3a)

Fi = 0.158
ρLiq

2

DiA2
i

(
µ

ρDiq

) 1
4

(2.3b)

ESP:

∆pp = ρgH (2.4a)

H = CH(µ)

(
c0 + c1

(
q

CQ(µ)

f0

f

)
− c2

(
q

CQ(µ)

f0

f

)2(
f

f0

)2
)

(2.4b)

c0 = 9.5970 · 102 (2.4c)

c1 = 7.4959 · 103 (2.4d)

c2 = 1.2454 · 106 (2.4e)

The parameters used in this model are based on the parameters from [10]. These
parameters can be found in Table A.1 in Appendix A, which includes the fixed
parameters such as well dimensions and ESP parameters, and parameters found
from analysis of fluid such as bulk modulus βi and density ρ [10]. Parameters
such as the well productivity index PI, viscosity µ and manifold pressure pm are
assumed constant in this dissertation. An illustration of how the different states
behaves with a constant input given in the ESP can be seen in Figure 2.3.

Chapter 2. Problem statement 12

Figure 2.3: Illustration of the pumps behaviour

2.4 ESN of the pump

For this dissertation two networks were created, one using the Oger toolbox and
one created from scratch. This is because it is possible to validate the second
network using the results from the same data set and parameters, also because
the Oger toolbox has a grid search program, making it easier to find the right
parameters for the network.

To train the echo state network a data set is needed from the pump. It is important
to find the correct sampling rate for the data set. The sampling rate has to be
fast enough so that the system exhibits rich nonlinear dynamics, while having a
sampling rate that is plausible for the sensors inside an ESP. Another important
aspect is to create a random input to the ESP model that is adequate. Having
multiple frequencies, it is instrumental that the data set is randomly generated in
order to optimise the training of the ESN. To make the data set more realistic
noise should be added to the data set.

When using an Echo State Network it is crucial to choose the right parameters
to have a well functioning network. This can often be a difficult task or at least
time consuming.

13 2.5. PNMPC of the pump

2.5 PNMPC of the pump

The purpose of this dissertation is to control the ESP using ESN-PNMPC. It is
desired to control the state pbh by adding a chosen reference point for this state,
while maximizing the flow for the pump. The goal is to optimize the controller
so that it reaches the desired reference with a smooth trajectory. The problems
presented in this is the implementation, finding realistic constraints, finding right
parameters to regulate the system and choosing reference points that are desired
for the pump.

Chapter 2. Problem statement 14

Chapter 3

Theory
This chapter presents relevant theory and some previously published work, starting
with some basic system identification and general optimization problems. Later
the framework of neural networks and Echo State Networks will be presented,
then the controllers MPC, PNMPC and ESN-PNMPC. Section 3.1, Section 3.3,
Section 3.5 are adapted from a previous project (TTK4551) written in the Spring
Semester 2019 at NTNU.

3.1 System identification

System identification is an approach for creating a mathematical model of a
dynamic system. This is done by finding a function that describes the input and
output relationship. Finding this function makes it possible to predict future
states with different inputs, which becomes useful for controlling the system later.
Figure 3.1 below is an illustration of a relationship between the input and output
in a dynamic model.

Figure 3.1: Illustration of the model with a mathematical representation of the
relationship between input and output of a dynamic system.

There are different algorithms and tool boxes to use when creating the function
for the system identification. To choose which method to use depends on how
much information is available about the system. To classify the system there are
three ways:

1. Black Box models only depend on the input and output data, since the
dynamics of the system is not available. Artificial neural networks is a black
box approach [11].

2. Grey Box models are also referred to as hybrid models. This is a model
when some knowledge of the system is available and can be used in a

15

Chapter 3. Theory 16

combination with black models. This means that the model is created with
available data and theory about the system [11].

3. White Box models are based on the theory of the system. It is modeled
based on physics equations, and are fully comprehensible [11].

3.2 DAE modeling and solution

Dynamic system simulation is used to examine system behavior over time. Most
dynamic systems are described by differential equations or differential algebraic
equations. The purpose of modeling and simulation is to imitate how a system
will behave in the real world. Having the opportunity to simulate the system gives
a big advantage since experiments on a real process might be both expensive and
dangerous [12]. These simulations can be used to analyze the system behavior
over time, and to predict system behavior with different input values.

In this dissertation differential algebraic equations (DAEs) will be used, which is
a kind of equation with derivatives and an unknown function. The DAE can be
seen as an ODE with additional algebraic constraints on the dynamic variable.
The DAE standard form is given in (3.1) that follows below [13].

ẋ = f(x, y, t) (3.1a)
0 = g(x, y, t) (3.1b)

3.3 Optimization

Optimization means to find a set of feasible values that either maximize or
minimize a cost function. Optimization is used in many fields from finance to
engineering systems [14]. The standard formulation of an optimization problem is
shown in (3.2) below [15].

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(3.2)

In (3.2) f is the objective function, the one that should be minimized, g holds
the inequality constraints, and h holds the equality constraints.

An important aspect of optimization problems is convexity. If the problem is
convex, it means that any local minimizer is also the global minimizer. The
definition of convexity is stated below in (3.3) [16].

f [λy + (1− λ)z] ≤ λf(y) + (1− λ)f(z) (3.3a)

17 3.4. Linear regression

for all y, z ∈ dom f and λ ∈ [0, 1]. There are many different kinds of optimization
problems, the most common are linear programming, quadratic programming and
non linear programming, a short description is stated below.

1. Linear programming consists of the problems with the objective function
and the constraints being linear. These problems are convex and are usually
easy to solve with e.g. the simplex algorithm [15].

2. Quadratic programming is when the objective function is quadratic,
but all the constraints are linear. This may or may not be easy to solve,
depending if the objective is convex or not. Typical algorithms to solve
quadratic programs are active set methods [15].

3. Nonlinear programming is where either the constraints or the objec-
tive function is nonlinear. Typical algorithms to solve these problems are
sequential quadratic programming (SQP) algorithms [15].

3.4 Linear regression

Linear regression will find find the linear relationship between the input and
a continuous output. Linear regression methods has been around since 1795,
the method is called Ordinary least squares (OLS) and was developed by Carl
Friedrich Gauss. Linear regression will find the optimal weights as long as some
assumptions are given [17]. The equation for linear regression is given below in
(3.4).

y = β1x1 + β2x2 + · · ·+ βnxn (3.4)

Where βi are the coefficients and x is the independent variable.

For all regression methods, a common factor is that these methods become a
optimization problem that minimizes the error between the true value and the
estimated value through the regression model.

3.5 Introduction to Neural Networks

Artificial neural networks are a type of machine learning technique inspired by
how the human brain works. This method is used when its difficult or impossible
to express the issue in an algorithmic way. Fields that artificial neural networks
are used include the recognition of handwritten digits, object identification, self-
driving cars, banking and scores of others [18]. As this approach relies on a set
of training data that is fed through the network, then the network can learn to
recognize patterns.

Chapter 3. Theory 18

The structure of a neural network is made with a set of neurons that are constructed
layer by layer. A neuron is a mathematically function that sums up values from the
previous layer and adds a bias. The information flow of each neuron is described
in Figure 3.2.

Figure 3.2: Figure showing information flow for a neuron

Each neuron sums up the input data multiplied with its unique weight plus some
bias. The equation for this is shown in (3.5).

n∑
i=1

xiwi + b (3.5)

where n is the number of inputs to the neuron, x = (x1, . . . , xn) is the vector with
the input values, w is the vector with weights, and b is the bias.

Before the neuron sends its output value to the next neuron, the value goes
through an activation function. There are many different activation functions to
use and the most common ones are Sigmoid, tanh and ReLU. The purpose of the
activation function is to make the output of each neuron nonlinear and to scale
the output. A schematic figure of deep neural networks is shown in Figure 3.3.

Figure 3.3: Diagram of a deep neural network [19]

The training process learns by the mistakes and uses a method called backprop-

19 3.5. Introduction to Neural Networks

agation to change the weights and biases in the network. Backpropagation is
an algorithmic way of computation of derivatives back to the input layer. This
method is based on what happens to the objective function if some of the weights
and biases are changed. The objective of the artificial neural network is to mini-
mize the error between the predicted output and the actual output. The objective
function is shown in (3.6), when using mean square error.

min
w,b

1

n

n∑
i=1

(pi − p̂i(w, b))2 (3.6)

where pi is the correct value and p̂i(w, b) is the predicted value produced by the
neural network, for each example i, as a function of the network parameters (w, b).
To minimize this function the problem becomes a nonlinear optimization problem.
It is not possible to calculate all the weights and biases optimally, the problem is
simply too large and complex for practical applications.

There are many classes that build on the artificial neural network method. One
of these classes are recurrent neural networks (RNNs). This is a class of artificial
neural networks that have a memory. Recurrent neural networks contains a loop,
which makes the network to have a sequential memory, meaning that it uses past
information to effect the future information.

Chapter 3. Theory 20

3.6 Echo State Network (ESN)

Echo state network (ESN) is a type of recurrent neural network based on the
principle of supervised learning, which has been used in fields like system identifi-
cation [20]. ESNs have a memory as they are RNNs. This approach is used to
create a model of a dynamic system dependent on its past behavior. ESNs can
learn the dynamics of a system to a relatively low computational cost. In this
project ESN is used as a black box approach to model the dynamic system.

3.6.1 Structure

The echo state network consists of an input layer, a hidden layer, and an output
layer. The input layer is expressed by inputs of the data sets the network is learning
on; the input layer is connected to the hidden layer with weights. The hidden
layer is also known as the reservoir; this layer can be very sparsely connected. The
number of nodes in the hidden layer is much larger that the number of network
inputs. This layer can contain as many nodes as needed to replicate the desired
system behavior, but at the expense of computation time. The output layer
consists of the estimated value for the given input. Figure 3.4 shows a schematic
of how the ESN looks like [21].

Figure 3.4: Structure of an echo state network

The output weights Wout are the ones that are trainable, which are changed so
that the network can imitate specific patterns.

The notation used for the ESN in Figure 3.4 is described below:

• Win are the weights between the input and the reservoir.

• X is the internal states given by a vector x.

• W is the weights between the internal states.

21 3.6. Echo State Network (ESN)

• Wout are the weights connected to the output nodes.

3.6.2 Workflow

In this section the workflow of the ESN will be described [21].

• Initialize all weights at random, exceptWout and choose appropriate network
parameters. These parameters are explained in Section 3.6.4.

• Run the network using the training input data u(n) and gather the corre-
sponding reservoir activation states.

• Calculate the linear output weights (Wout) using linear regression, then
linear regression solves the minimization between the actual output and the
target output.

3.6.3 Equations

The equations that describe how the Figure 3.4 works are shown in (3.7a). These
equations shows how the network updates the internal states X and the output
[21].

x[k] = (1− α)x[k − 1] + αf(Win[k] + Wx[k − 1] + Wb + Wfby[k − 1]) (3.7a)
y[k] = Woutx[k] (3.7b)

where α is the leak rate described in Section 3.6.4, x[k] is the reservoir state at
time k, Win is the matrix with weights from the input nodes to the reservoir, W
is the matrix with weights between reservoir units, Wb is the bias, and Wfb is
the weight matrix that introduces feedback from the output y, the feedback is
not implemented in this dissertation. The function f is the activation function
for the neuron. There are many different activation functions to use, and the
most common ones are sigmoid, tanh and arctan. Figure 3.5 shows the activation
functions which are commonly used. The activation functions forces the output
value to lie between −1 and 1.

Chapter 3. Theory 22

Figure 3.5: Different activation functions

The training of the Echo State Network becomes an optimization problem. The
concept is about minimizing the error between the predicted output and the actual
output. The weight matrices Win, W and Wfb are set arbitrarily according with
an uniform distribution. The weights that are trained in an echo state network
appear in the matrix Wout. Echo state networks follow the principle of supervised
learning, meaning that training data is needed. A training set consist of inputs
(U) and with their respectively outputs (Y). With the training set, the network
then iterates through (3.7a). Given the inputs, the estimated states (X) and
outputs Ŷ are collected. Then the learning task reduces to minimize the error
between the true value for the output and the predicted output [21]. The training
is done by using linear regression.

3.6.4 Parameters

For creating an echo state network it is crucial to choose the right value for each
parameter. Below is a description of the most important parameters and how
they influence the network.

Size of the reservoir

The number of neurons in the reservoir plays an important role on how the
network is performing. Usually the more neurons in the reservoir, the better the
performance of the network will be. However, despite the computations of an
ESN being relatively cheap, it is not uncommon to see big reservoir [22]. When
the reservoir is large it becomes easier to find a linear combination to minimize

23 3.6. Echo State Network (ESN)

the error between the predicted value and the real value.

Leak rate

To choose the right leak rate depends on the dynamics of the system. The leak
rate value regulates the speed of the dynamics in the internal states X. This
means that a low leak rate value will slow down the dynamics and increase the
memory of the network. In (3.7a) the leak rate α is defined as a number between
(0, 1).

Spectral Radius

Spectral radius is the scaling factor, the maximum absolute eigenvalue of W for
the reservoir weights, which effects the dynamical behavior. The spectral radius
is between 0 and 1. The value should be higher when the memory of the network
needs to be longer and the task is more nonlinear.

Input scaling

Input scaling regulates the influence of the input weights to the network. Meaning
that the input scaling regulates how nonlinear the hidden layer is. Choosing the
input scaling value depends on how linear the task is, for a linear system the
input scaling should be low.

Warm-up

The initial states of the echo state network is usually zero. Therefore it is desired
to neglect the first iterations, since in the first iterations contain no history to the
system. It is therefore desired to ignore the first iterations until the system has
acquired enough history and washed out the initial conditions.

Chapter 3. Theory 24

3.7 Model Predictive Control (MPC)

This section gives an introduction to the model predictive control, followed by a
section describing the practical nonlinear model predictive control that is used in
this dissertation.

A model predictive controller is an advanced method for controlling a process.
This controller predicts the future outputs based on the change of the dependent
variables caused by the manipulated variables, and chooses the optimal control
input for each time-step, while satisfying a set of constraints. These kinds of
controllers have been applied in oil refineries since the 1980s [23]. It is important to
have a controller with the property of satisfying constraints, since many processes
have limited inputs and if states go over their limitations it can be harmful for
the system. Figure 3.6 illustrates the scheme of how an MPC controller works.

Figure 3.6: Scheme of how the MPC works

Figure 3.6 explains the workflow of the MPC. The y-axis shows where the current
state of the process is at, to the left of the y-axis are the previous states and
inputs, and to the right of the y-axis are the predicted values. At the present
time a cost minimizing control strategy is calculated over a finite horizon, which
is shown right of the y-axis. Then the current control input is implemented, and
a new control strategy is computed at the next time step.

25 3.8. Practical Nonlinear Model Predictive Control (PNMPC)

At each time step of the MPC an optimization problem is solved, which is usually
a QP problem. The formulation is described in (3.8a), in which (3.8a) is the
objective function, and (3.8b) and (3.8c) are the constraints.

minimize
x

f(x) =
1

2
xTGx+ xT c (3.8a)

subject to : aTi x = bi, i ∈ E (3.8b)

aTi x ≥ bi, i ∈ I (3.8c)

In (3.8a), G is a symmetric positive-definite matrix, E and I represents sets of
indices for constraints, and c and x are vectors.

3.8 Practical Nonlinear Model Predictive Control
(PNMPC)

This controller works on the same principle as the MPC, only now the controller
is based on separating the nonlinear dynamic model into two responses, a free
response and a forced response. This is done by a first order Taylor expansion. A
Taylor series is used to estimate how a function looks like in the current time-step.
In (3.9) below the definition of the Taylor series is given [24]:

f(x) = f(a) +
f

′
(a)

1!
(x− a) +

f
′′
(a)

2!
(x− a)2 +

f
′′
(a)

3!
(x− a)3 + · · · (3.9)

for a function f : < → < about a point a.

The advantage of separating the model into two responses is the computational
advantage, since the problem now per iteration is a quadratic program (QP), as
explained in Section 3.3. Below follows a compilation of the equations used in the
PNMPC, first assuming the system on the form:

x[k + i] = f(x[k + 1− 1],u[k + i− 1]) (3.10a)
y[k + i] = g(x[k + i]) (3.10b)

u[k + i− 1] = u[k − 1] +

i−1∑
j=0

∆u[k + j] (3.10c)

Below is the equations for the PNMPC and a explanation of each parameter [25].

Ŷ = G ·∆U + F (3.11)

where Ŷ is a vector with the predictions of the output, F is the free response,
and G ·∆U is the forced response over the prediction horizon (Ny).

Chapter 3. Theory 26

Notice that the Jacobian of the state equation for the free response is given by

G =

δy[k+1]
δu[k] 0 . . . 0
δy[k+2]
δu[k]

δy[k+2]
δu[k+1] . . . 0

...
...

. . .
...

δy[k+Ny]
δu[k]

δy[k+Ny]
δu[k+1] . . .

δy[k+Ny]
δu[k+Nu−1]

 (3.12)

where all the derivatives being calculated inside the G matrix are carried out with
respect to ∆u[k+ 1] = 0 and u is the manipulated variable. Thus each line in the
G matrix is the linearization with first order Taylor series at a certain time. Ny
is the prediction horizon and Nu is the control horizon.

The control increment ∆U is given by

∆U =

∆u[k]

∆u[k + 1]
...

∆u[k +Nu − 1]

 (3.13)

which contains each control increment used in the calculation of the predictions.
The free response F is given by

F =

g(f(x[k], u[k − 1]))

g(f(x[k + 1], u[k − 1]))
...

g(f(x[k +Ny − 1], u[k − 1]))

 (3.14)

(3.12) is derived from the first-order Taylor series, as mentioned at the start of
this chapter. The difference between the free response and the forced response is
that the free response contains all the non linearities and the forced response is
linerarized, making the control increment calculated through a quadratic program.

When multiple variables are implemented the model suffers from a high computa-
tional cost. Because of this, it could be advantageous to implement the ESN into
the PNMPC. This enables faster computation of linearized models. This method
is explained in Section 3.9.

27 3.9. ESN-PNMPC

3.9 ESN-PNMPC

The echo state network will reduce the computation time because the analytical
calculation of derivatives, since the solution becomes a QP problem. Figure 3.7
shows a block diagram of how the ESN integrates with the PNMPC.

Figure 3.7: Block diagram of how the ESN with the PNMPC works [26]

The block scheme gives a representation of the ESN-PNMPC. In this scheme the
ESN block is a trained network used to imitate the dynamic system. Then the
ESN is used to linearize the system and to compute the forced response (G), and
making the free response prediction block. Then, from the free response block, the
error correction block is an integrated filter that computes the correction factor.
Then all the models are sent to the quadratic programming block that solves the
resulting optimization problem.

Below is an explanation of each block of Figure 3.7. Starting with the linearizer,
the error correction and finally the QP problem.

Linearizer

The calculations of the derivatives of the output of the system with respect to the
input is done by the chain rule, as follows:

δy[k + i]

δ∆u[k + j]
=

δg

δx[k + i]

δx[k + i]

δ∆u[k + j]
(3.15a)

δx[k + i]

δ∆u[k + j]
=

δf

δ∆u[k + j]
+

δf

δx[k + i− 1]

δx[k + i− 1]

δ∆u[k + j]
(3.15b)

Chapter 3. Theory 28

The difficulties with this is that the G matrix is built recursively by forward
propagation. The dynamic matrix is evaluated at ∆U = 0, which makes all the
derivatives possible to be evaluated with respect to the control input u[k − 1],
meaning that:

δf(x[k + i])

δ∆u

]
∆u=0

=
δf(x[k + i])

δu

]
u=u[k−1]

(3.16)

When i is bigger than j the control increment ∆U has the same influence on
the output as ∆U(k + i), this is because the input signal was the input in a

previous instant. This leads to the notation of J(i) =
δf(x[k + i]

δx[k + i]
and to simplify

S(i) =
δf(x[k + i])

δx[k + i]
. With this it is possible to compute the derivatives in a

recursive form:
Gij =

δg

δx[k + i]

δx[k + i]

δ∆u[k + j]
(3.17)

where:

δx[k + i]

δ∆u[k + j]
=

J(i− 1) + S(i− 1)

δx[k + i− 1]

δ∆u[k + j]
i > j

J(i− 1) i = j
0 i < j

(3.18)

The echo state network works as the prediction model for the PNMPC and is
trained offline. The model derivatives are defined from [27, 28] and shown in
(3.19a).

δg

δx
= W o

r (3.19a)

J(i) =
δf

δzi
W r
i (3.19b)

S(i) = (1− α)I + α
δf

δzi
(W r

r +W r
o +W o

r) (3.19c)

zi = W r
r a[k + i] + wri u[k − 1] +W r

oW
o
r a[k + 1] +W r

b (3.19d)

where a is the network state, and x is the model state. A short simplified summary
is that the ESN is used to calculate the free response predictions, and the Taylor
approximation.

Error correction

To deal with disturbances and errors from the model, a low pass filter is imple-
mented on the error between the output and the prediction [29]. The purpose of
the filter is to slow down the error from the controller, which makes the system

29 3.9. ESN-PNMPC

more robust but looses response speed [30]. With the introduction of a low pass
filter the equation of the free response, as given in (3.20a), becomes:

F =

g(f(x[k], u[k − 1]))

g(f(x[k + 1], u[k − 1]))
...

g(f(x[k +Ny − 1], u[k − 1]))

+ n[k] (3.20a)

(3.20b)
∆n[k] = (1− w)(ŷ[k|k − 1]− ym[k]) + w∆n[k − 1] (3.20c)
n[k] = n[k − 1] +K∆n[k] (3.20d)

ŷ[k|k − 1] = g(f(x[k − 1], u[k − 1])) + n[k − 1] (3.20e)

To tune the filter parameters, we use the characteristic polynomial which is of the
form:

K =
a2 − 2a+ 1

1− a2
(3.21)

With this polynomial it is possible to choose the desired pole for the error correction
dynamics. As seen in (3.21) the filter vanishes when a = 0.

Quadratic Programming (QP)

In this block the optimization of the QP problem will be solved. When the error
is used in the cost function, the equation becomes:

J = (Yref − Ŷ)TQ(Yref − Ŷ) + ∆UTR∆U (3.22)

where Yref is the reference, Q and R are the weighting matrices which are
diagonal. These weighting matrices assert the variables importance when solving
(3.22). This is a normal cost function for the NMPC. The structure of the free
response is on a vectorized form of the prediction, which is related to approaches
like DMC and GPC [30]. Making the cost function:

J = ∆UT H ∆U + cT ∆U (3.23a)

H = GT Q G + R (3.23b)

c = GT QT (Yref − F) (3.23c)

with the constraints:

Umin ≤ U ≤ Umax (3.24a)
Ymin ≤ Y ≤ Ymax (3.24b)

∆Umin ≤ ∆U ≤ ∆Umax (3.24c)

where Umax and Umin are the maximum and minimum input values, Ymax and
Ymin are the maximum and minimum output values, and ∆Umax and ∆Umin

define the maximum and minimum input change.

Chapter 3. Theory 30

3.10 Error metrics

To measure how the well the echo state network and the practical nonlinear
model predictive control are performing, different validations were performed.
The validation was achieved by measuring the error between the true value and
the predicted value. This was always performed on the test set. This section will
describe different error metrics [26].

1. Mean square error (MSE) is the error between the ESN and the true
value from the process. It is the sum of the error between each measure
point in the test set squared. Where Ytrue is the correct value from the
model and Ypred is the predicted value. Mathematically, MSE is defined as

MSE =

itestset∑
i=0

(Ytrue[i]− Ypred[i])2 (3.25)

2. Root mean square error (RMSE) is the same as MSE only now the
total error is rooted. Mathematically, RMSE is defined as

RMSE =

√√√√itestset∑
i=0

(Ytrue[i]− Ypred[i])2 (3.26)

3. Relative prior error is the error with the ESN given in percentage. The
relative error is given in mathematical form as follows

error% = 100 (
Ytrue − Ypred

Ytrue
) (3.27)

4. Integral of absolute error (IAE) for the prediction on the ESN. This
metric is given by

IAE =

itestset∑
i=0

(Ytrue[i]− Ypred[i]) (3.28)

5. IAE performed on the tracking on the controller, comparing the deviation
on the plant and the referrence. Mathematically, IAE is defined as follows

IAE =

itestset∑
i=0

(Ytrue[i]− Yref [i]) (3.29)

Chapter 4

Implementation
In this chapter, the implementation will be explained along with the parameters
used to get the results. The chapter starts by explaining how the ESP model was
built, then how the Echo State Network was created, and finally the ESN-PNMPC
implementation.

4.1 ESP CasADi

In this project, CasADi (Computer algebra system for Automatic Differentiation)
was used to solve DAEs and simulate the system model of the ESP. CasADi is
an open-source library used in Matlab, Python, or C++. CasADi is used for
nonlinear optimization, algorithmic differentiation, and used to solve differential-
algebraic equations employing explicit or implicit Runge-Kutta methods. To
solve ordinary differential equations CasADi uses the solver CVODED, and for
differential-algebraic equations, CasADi uses the IDAS solver. The motivation for
using CasADi in this project is because of its fast computations and its simplicity
[31]. In CasADI the class DaeBuilder was used. This is a class that intends
to help the modeling of complex dynamical systems and used later for optimal
control problems. In this dissertation Python version (3.7) was used along with
the CasADi version 3.5.1.

When creating the model with CasADi, there are three parameters to be defined;
the initial value for the states in the differential equations, input values to the
system, and the time grid, which reflects on how far and how many steps the
solver is going to integrate.

The initial value to the differential equations are shown below and are chosen in
this manner because it is not far from a steady-state when the system runs on
the maximum input values.

• Pbh0 = 70 bar;

• Pwh0 = 30 bar;

• q0 = 36 m3/h.

In this case, the time grid reflects the number of data points the system will be
sampled per minute. The correct sampling rate is key to capture the system

31

Chapter 4. Implementation 32

dynamics while having a sampling rate that is plausible for the sensors inside an
ESP. Figure 4.1 gives a plot comparing the sampling rate between 12 samples
per minute (indicated with the color blue) and 6 samples minute (indicated with
the color red). The data sets collected for the training set were 12 samples per
minute. Since then the system is significantly nonlinear and the dynamics for the
system are better represented.

Figure 4.1: Sampling rate 12(blue) vs 6(red)

After some experiments the most optimal sampling rate for this dissertation was
12 samples per minute.

4.2 Echo State Network

To create the Echo State Network the Python programming language was used.
One network was created using the Oger toolbox in Python version 2. Oger is
a abbreviation for OrGanic Environment for Reservoir computing and is mainly
used for reservoir computing networks [32]. The second one was made from scratch
using Numpy in python version 3. Numpy is a library for adding and calculating
multidimensional arrays and matrices [33].

The reason for using the Oger toolbox is twofold. One reason is to validate the
network that was built from scratch, using the same parameters and compare the
results. The second reason is that the toolbox has a grid search program, making
it less complicated to find the suitable parameters to design an optimal network.

33 4.2. Echo State Network

As explained above in Section 3.6.4 the choice of hyper-parameters for the ESN is
important to design an optimal network. A good way of finding these parameters
is by doing a grid search for the different parameters. The grid search runs the
network with different values for the hyper-parameters and compares the results,
in order to find the best hyper-parameters that gives the lowest generalization
error. Figure 4.2 shows the results of a search performed on the leak rate.

Figure 4.2: Search for the best leak-rate.

As seen in the plot above it is clear that the lowest error is around a leak rate of
0.3. Another search is then performed in more detail around the area with the
lowest error. This is shown in Figure 4.3.

Chapter 4. Implementation 34

Figure 4.3: Search for the best leak-rate in more detail, within a small region of
interest

Different training sets

Data sets were collected from the ESP model to train the Echo State Network.
When controlling the system, one of the goals is to reach a reference value and
stay on this value. Often a problem that occurs is a deviation from the values
predicted by the ESN and the plant itself when reaching a steady-state. This
happens when the training set has a too frequent input change. In order for
the ESN to learn both fast and slow dynamics, data sets are created considering
different dynamics for the input signal. This makes it feasible for the ESN to
reach a steady-state with a low error with respect to the plant, as well as it can
track rapid changes. For each data set, a larger training set and a smaller test set
were created. The data sets that were created to validate and train the ESN are
described below:

1. The inputs were constant and the system arrived at a steady-state.

2. Two data sets with random inputs. The Random Frequency Random
Amplitude Signal (RFRAS) was used to create the random inputs. This
is done with a NumPy random function that gives a uniform distribution.
The equation for the random signal is given in (4.1).

val = min+ (max−min) · random value (4.1)

(4.1) is put inside a for loop, making it easy to change how often the value

35 4.2. Echo State Network

is going to change. The parameters chosen for (4.1) are shown in the table
below and are suggested in [10]:

Valve Frequency
Min 0.1 35
Max 1 65

Where min reflects the minimum value the inputs, and max is the maximum
value for the inputs. One data set is created with a slower frequency of input
change and another with faster input change. Figures 4.4 and 4.5 show two
plots with the two training sets produced with the RFRAS equation.

Figure 4.4: RFRAS with fast change

Figure 4.4 is a plot showing 1000 of the data points of the training set. In
this plot the input value is changing fast, meaning that the value changes
every 10 data samples.

Chapter 4. Implementation 36

Figure 4.5: RFRAS with slow change

Figure 4.5 is a plot showing 1000 of the data points of the training set.
In this plot, the update for the input is slow, and the system reaches a
steady-state for each input, the input is the same for 40-time steps before
changing.

3. One data set that combines the slow and the fast frequency of input change
as shown above. The data set contains 50 % with fast change and the
remaining 50 % with slower change, making the system reach a steady-state
for each input and also react fast to quickly-changing inputs. A plot of this
training set is shown in Figure 4.6.

37 4.2. Echo State Network

Figure 4.6: RFRAS combining the two sets above

As seen above, Figure 4.6 shows the plot combining fast input change and
slow input change. The plot is only showing 1000 data points of the training
set.

4. Noise is added to the training part of the set, while the test set is free of
noise. The noise is added to the output, since it is more realistic that some
noise is on the state sensors. This is done by adding a random signal of ±
10 % of the maximum value on each data sample in the training set. The
training set is shown in Figure 4.7.

Chapter 4. Implementation 38

Figure 4.7: Training set with noise

Each set that was created containing 12300 data points, where the training set
contains 12000 data points and the test set has 300 points.

Number of neurons

The choice of the number of neurons for the network consists in finding the smallest
number, since it influences computational time, while minimizing the errors from
the network predictions. Figure 4.8 shows a bar plot with computation time to
run the ESN as a function of the number of neurons.

39 4.2. Echo State Network

Figure 4.8: Running time with different reservoir sizes from the self made network

Figure 4.8 shows the result of the ESN with different sizes of the reservoir. The
values are the mean of five runs of the ESN program for each reservoir size.
Table 4.1 presents the average error with the different reservoir sizes.

Neurons NRMSE
50 0.129
100 0.116
150 0.112
200 0.109
250 0.107
300 0.106
350 0.107
400 0.106

Table 4.1: NRMSE with different reservoir sizes on the test set

After testing the different sizes on the reservoir and comparing their error, the
reservoir size was set to 300 neurons.

Chapter 4. Implementation 40

After running the grid search and experimenting with different hyper-parameters
the optimal parameters were chosen. The parameters used in the Echo State
Network are reported in Table 4.2.

Parameters used in ESN
Leak rate 0.14

Sparsity factor 0
Size of the reservoir 300

Spectral radius 0.99
Input scaling 0.1
Bias scale 0.1
Warmup 200

Table 4.2: Hyperparameters used in the ESN

These values are as expected since the dynamic system is nonlinear and has
relatively slow dynamics.

41 4.3. ESN-PNMPC

4.3 ESN-PNMPC

The controller ESN-PNMPC was crated in Python 3. The controller was adapted
from an already existing library develped by Jean Panaioti Jordanou [34]. The
same parameters mentioned in Section 4.1 are used for the ESP model, and the
parameters for the Echo State Network defined in Table 4.2 were used to create
the controller.

First, a low-pass filter for the predictions was implemented to treat disturbances
and modeling errors. The pole for the filter given in (3.21) is placed at 0.5 for
each variable.

A rule of thumb in choosing the control and prediction horizon is that the
prediction horizon should be as long as the system needs to reach a steady-state.
A longer prediction horizon will increase the computational time drastically, and
unnecessarily. With some experiments, the system needs little more than two
minutes to reach a steady-state. As the system has 12 data samples per minute,
the prediction horizon is thus set to 30 samples in order for the prediction horizon
to capture the steady-state. The control horizon was chosen by some trial and
error approach which, after some experiments, was set to 10 samples. The control
horizon decides how many decision variables the solver (QP) must optimize,
meaning that a smaller control horizon will reduce the computational complexity.

Now that the predictor is created, the next task is the control instance. The main
goal is to control the pbh state while maximizing the flow (q). This is done by
adding a reference point on the pbh state, which is chosen by an operator, and
a reference point on the flow. Since the goal is to maximize the flow, the flow
reference is set to 55m3/h which is the maximum value that the flow can achieve
with the constraints implemented. The first reference on pbh is 82 bar, therefore
the initials values for the inputs are 75 % for the valve opening and 50 Hz for the
frequency.

As mentioned in Section 3.9 the are two weighting matrices that help prioritize
what the controller is going to do. Since the main goal is to reach the reference
on the pbh state, the bottom-hole pressure receives higher values in the weighting
matrix than the flow (q). The choice of values in the weighting matrices was
found with a trial and error approach. After finding values that make the system
reach the reference without any oscillations and with a smooth trajectory, the
weighing matrices Q and R were set to:

Q =

[
0.07 0

0 0.001

]
(4.2)

R =

[
3 0
0 5

]
(4.3)

In Section 2.2.1 it was mentioned that the lifetime of an ESP can be expanded
with the implementation of suitable constraints. The constraints are implemented

Chapter 4. Implementation 42

on the inputs and the outputs. The authors of [10] suggest some values for
the constraints, which are defined based on physical considerations and system
knowledge. The constraints are shown below in (4.4).

0 ≤ z (valve) ≤ 1 [%] (4.4a)
35 ≤ f (frequency) ≤ 65 [Hz] (4.4b)

0 ≤ q (flow) [m3/s] (4.4c)
∆U ≤ 0.1 (4.4d)

1 ≤ pwh ≤ 60 [bar] (4.4e)
1 ≤ pbh ≤ pr [bar] (4.4f)

4.4 Summary

In this chapter the implementation was presented. Along with all the hyper-
parameters and libraries used for creating the ESP model, ESN and ESN-PNMPC.
A short summary for each hyper-parameter is shown below:

ESP - CasADi:
pbh0 70 bar
pwh0 30 bar
q0 36m3/h

Samples per minute 12

ESN:
Leak rate 0.14

Sparsity factor 0
Size of the reservoir 300

Spectral radius 0.99
Input scaling 0.1
Bias scale 0.1
Warmup 200

ESN-PNMPC:
Control Horizon 10

Prediction Horizon 30
Filter pole 0.5

Q
[
0.07 0

0 0.001

]
R

[
3 0
0 5

]
Table 4.3: Summary of the hyperparameters used

Chapter 5

Results
In this chapter, the results are presented. As mentioned in Chapter 2, this
dissertation addresses three main problems. This chapter is structured in the
same way, below is a short summary of the main problems:

1. Synthesis of the ESP;

2. ESN model for the ESP;

3. ESN-PNMPC for the control of the ESP.

5.1 ESP with CasADi

This section will simulate the system obtained from Section 2.3.1 to verify the
model. Different input values are tested to see how the system is responding. All
simulations use the same initial values:

• Pbh0 = 70 bar.

• Pwh0 = 30 bar.

• q0 = 36 m3/h

5.1.1 Valve opening and frequency as constants

In the following simulation, the valve opening and the pump frequency are
constants, with the values:

• Valve opening at 100% (z = 1).

• Frequency at 53 Hz (f = 53 Hz).

43

Chapter 5. Results 44

Figure 5.1: System response to a valve opening at 100% and an ESP frequency at
53 Hz.

A desirable behavior for this simulation is that each state reaches its steady-state.
This simulation was also used to find suitable initial values. From Figure 5.1 one
can see that all states reach their steady-state and are stable. This simulation
provided the basis for further simulation.

5.1.2 Step response on valve opening

In Figure 5.2 a step response is used on the valve opening while keeping the
frequency constant. The values are given as:

• Valve opening starting at 50% then increasing to 100% after five minutes
(z0 = 0.5, z = 1).

• Frequency is constant at 53 Hz (f = 53 Hz).

45 5.1. ESP with CasADi

Figure 5.2: System response to a step response on the valve, starting at 50% and
increasing to 100%.

The simulation in this section is to look at how the system is responding to a step
response in the valve opening after 5 minutes. When the valve opening increases
from 50% to 100% it is expected that both the bottomhole pressure pbh and the
wellhead pressure pwh will drop, while the liquid flow q will increase. An open
choke valve will lead to more flow and less pressure, a behavior that can be seen
in Figure 5.2.

5.1.3 Increasing frequency

The last experiment done on the simulation was to increase the frequency while
keeping the valve opening as a constant. The values for the inputs are:

• Valve opening constant at 100% (z = 1).

• Frequency starting at 40 Hz (f = 40 Hz), and increasing with 2 Hz every
minute for 10 minutes.

Chapter 5. Results 46

Figure 5.3: System response with an increasing frequency

This simulation is done to check how the system would respond to a change of
frequency in the ESP. An expected outcome would be an increase of pressure in
the wellhead pwh and a decrease in the bottomhole pbh as well as an increase of
the liquid flow. Simulations showed that the system responded well to the change
of frequency and performed as expected.

5.1.4 Discussion

The goal of this section was to verify the system model based on simulations.
Different scenarios were used to see how the system model responded. It is
essential to perform different simulations to a DAE model since small errors could
cause huge deviations and the fact that the system is too complex to understand
from equations alone. The model responded as expected on all simulations, and
will be used for further control and optimization in this dissertation.

47 5.2. ESN

5.2 ESN

In this section, the results from the data-driven ESN model will be presented.
This section presents plots to analyze the ESN performance in different scenarios
and with different training sets. Starting with a validation of the ESN made from
scratch, then how different training sets influence the result, and finally how the
ESN performs when noise is added to the training set. All the plots are from a
test set that the network has not been trained on.

5.2.1 Comparison between Oger and the self-made ESN

In this section, the result from using an ESN made from scratch and an ESN
made with the Oger toolbox will be compared. The plots below show the test
with 1000 data points, which is equal to 83 minutes of pump operation.

Figure 5.4: Results for ESN made from scratch

Chapter 5. Results 48

Figure 5.5: Results for ESN made from Oger

When comparing the two plots, it is easy to see that they are identical. Concluding
that the ESN made from scratch is correct and can be used further in this
dissertation.

5.2.2 Different training sets

This subsection shows the result of the ESN with different training sets. To
validate the network, a test set was created with two different frequencies of input
change, one containing slow input change and another with fast input change.
This is because it is desired to see the network’s performance in every scenario.
With this test and the steady-state test, the next section will determine which
training set will be used later when controlling the ESP.

Frequent change of input

This training set for the ESN only contains input signals that are changing
frequently (quickly), as shown in Figure 4.4. Figure 5.6 shows the predictions of
the trained ESN on a test set composed of both fast and slow frequency of input
change.

49 5.2. ESN

Figure 5.6: Results for ESN trained on a training set with a frequent change of
input

Figure 5.6 shows the result of running the network with the test set. The first
three subplots are generated with a slow frequency of input change, while the
remaining three are produced with a fast frequency of input change. The network
performs well with regards to the state prediction on fast and slow input change.
Some deviations when predicting the slow input change were noticed, which is
expected since the network has only trained on fast frequency.

Slow changing input

The training set used in this network is shown in Figure 4.5, which consists of
training data obtained with slow changing input. Accordingly, the output results
from the network are shown in Figure 5.7.

Chapter 5. Results 50

Figure 5.7: Results for ESN trained on a training set with a slow input change

As seen in Figure 5.7 the network performs better on the slow input change and
worse on the fast input change. This behavior is expected because the network
was trained only with slow changing input data.

Combining fast and slow input change

Here the training set is the one shown in Figure 4.6. The results appears in
Figure 5.8 when the network is tested on a data set with slow and fast changing
inputs.

51 5.2. ESN

Figure 5.8: Results for ESN trained on a training set with a combination of slow
and fast input change

As seen in Figure 5.8 the network performs better on the fast changing input, with
some small deviations on the slow changing input, but overall the performance is
good.

Conclusion

When comparing the different results in this subsection, the best results were
obtained when using the training set with fast changing inputs and the combination
of fast and slow changing inputs. In Table 5.1 the error is measured using the error
metric MSE shown in (3.25). The next experiment is to test the both networks
on a steady-state test. Using a test set where the inputs are constant, in order to
determine which training set is best suited for this dissertation.

MSE ERROR pbh pwh q
Slow input change 1.23363852e9 4.74439494e9 2.94843411e−7

Frequent input change 1.63031166e9 2.73441057e9 1.98888881e−7

Combination of both 1.90994956e9 1.76191664e9 1.91219397e−7

Table 5.1: MSE error of the experiments above

Chapter 5. Results 52

5.2.3 Steady-state using previously trained networks

This subsection demonstrates the performance with the trained networks from
Section 5.2.2, with a view to reach a steady-state. It is important that the network
predicts the correct steady-state because when the controller is implemented, the
goal is to reach a reference and settle. If the predicted value has a deviation from
the plant itself the controller will perform poorly. The results from this and the
last subsection will determine which training set is best suited for training the
ESP controller.

Frequent change of input

Figure 5.9 shows the steady-state test performed on the network trained with a
frequent changing input signal.

Figure 5.9: Steady state test with a fast changing input as the training set

As seen in Figure 5.9 the network performs well with respect to reaching a steady-
state. Only a small deviation on the predicted value from the true value on the
states pbh and q is observed.

Slow changing input

This subsection will show the performance of the network trained with a slow
changing input.

53 5.2. ESN

Figure 5.10: Steady-state test with slow input change as the training set

As seen in Figure 5.10 the network performs almost perfectly when testing the
steady state.

Combining fast and slow changing inputs

This subsection shows when using the combination of both fast and slow changing
inputs on the training set.

Chapter 5. Results 54

Figure 5.11: Steady state test with slow and fast changing inputs

As seen in Figure 5.11, the network predicts the same steady-state values, which
is the goal for this experiment.

Conclusion of which training set to use

As seen in the experiments above, the performance of the networks is quite good
when tested with constant input and the system goes to steady-state. There is a
little deviation on the pbh state when using the fast input change as a training
set. The slow input change network has some deviations when it predicts fast
input change. As a conclusion of this section, the training set that performs best
in all experiments is when combining both slow and fast input change, and this
training set will be used later when controlling the pump. Below in Table 5.2 is
the MSE error of the steady state experiments above.

MSE ERROR pbh pwh q
Slow input change 1.47251573e8 8.14165536e8 4.44466134e−8

Frequent input change 2.22688637e8 9.33468400e8 5.58092668e−8

Combination of both 1.39484844e8 8.08089634e8 4.37245426e−8

Table 5.2: MSE error of the steady-state experiments above

55 5.2. ESN

5.2.4 Noise added

This section will test how the network performs when noise is added to the training
set. The last section concluded that the best training set was when combining
fast and slow input change and therefore it is used further. The training set with
noise added is shown in Figure 4.7. Figure 5.12 shows the result of the test set
which is free of noise, the test set is free of noise because it is desired to see how
the network performs when it is trained with a noisy training set and compare
the result with a test set without noise.

Figure 5.12: Predictions of a network trained with a data set with noise added

As seen in Figure 5.12, even though the network was trained with a noisy training
set, the result is relatively good. When comparing it to the result without noise
(Figure 5.8) it misses a little bit more in some places which are expected when
using a training set with 10 % noise added to each data point.

5.2.5 Summary

The goal of this chapter was to create a well functioning Echo State Network,
that imitates the behavior of the pump. Many experiments were performed with
different parameters and sizes of the data sets to find the best combinations. All
tests had good results and all the parameters had an expected value since the
system has slow dynamics and is nonlinear. If the results had big deviations
from the actual model, then it would result in poor control performance when
the controller uses the ESN as the predictor part of the PNMPC. In conclusion,
the parameters and training set used for the ESN are adequate and optimal for

Chapter 5. Results 56

predicting the behavior of the pump. The network achieved good performance
and will be used later to control the pump.

5.3 ESN-PNMPC

This section will present the results of using the ESN-PNMPC controller. The goal
is to set a reference on the state pbh while maximizing the flow (q). The reference
on pbh is usually set by an operator and is commonly not changed frequently. In
these experiments, the reference is changed often so the controller can be tested
to the fullest. It is desired to have a controller that controls the pump to the
reference slowly and without any overshoot and oscillations, because it may be
harmful to the pump.

5.3.1 Step response

In this experiment, an easy step response is performed. The reference starts at
82 bar on pbh and then after 15 minutes the reference is reduced to 70 bar. The
simulation is done over 30 minutes.

Figure 5.13: ESN-PNMPC performance with respect to a step response

As seen in Figure 5.13, the controller reaches the reference without any overshoot
which is desired for the operation of the ESP. Using the error metrics called IAE
explained in Section 3.10 shows that the gathered error is 412.45.

57 5.3. ESN-PNMPC

5.3.2 Stair response

In this experiment, the reference was arranged in a ladder set up, starting at 82
bar then reduced stepwise down to 72 bar.

Figure 5.14: ESN-PNMPC performance with references going down

This was a more demanding experiment, designed to assess how the controller
performs in a different scenario. As seen in Figure 5.14, the controller works
fine when a more difficult experiment is performed. It reaches all the different
references with a smooth trajectory. The same error metric is used for evaluating
this experiments as for the last. The gathered error is 303.71.

5.3.3 Steps down and up

This is the final experiment tested with the controller. In this experiment, the
reference goes stepwise down, then up again back to the start point.

Chapter 5. Results 58

Figure 5.15: ESN-PNMPC performance with references going down and up

This was the most demanding experiment performed and the controller still
reaches all the different references, without any overshoot and with a smooth
trajectory. The IAE gathered from the experiment is 586.23

5.3.4 Conclusion of ESN-PNMPC

The goal of the controller is to control the state pbh to a reference with a smooth
trajectory, without oscillations and overshoot. By selecting suitable hyperpa-
rameters, a desired behavior is achieved for the controller. The results from the
different experiments show that the controller can operate the pump effectively
and the chosen parameters are suitable.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, an ESN-PNMPC approach is used to control an ESP. The
dissertation consists of three main subjects that needed to be fulfilled: the ESP
model, ESN of the model, and the ESN-PNMPC. The conclusion of each of these
subjects is described below.

The ESP model was created in CasADi, this toolbox offers fast computations for
nonlinear optimization and algorithmic differentials. For this problem, CasADi
worked great for modeling the ESP. The only downside for using CasADi is the
feedback for the error messages, which is confusing. There are two hyperparameters
to choose when using this model, and it is the time step and the initial value for
the differential equations. Different experiments were performed for both of these
parameters. The initial value does not change the performance of the model, but
should be chosen somewhere close to the first reference so that the pump does not
have to change too much and abruptly before reaching the reference. The other
hyperparameter is the time step which influences how many samples per minute
the pump is giving. This value should be high enough to catch the dynamics
from the pump, and after some testing, the sample rate should be 12 or more
samples per minute. To verify the model, the plots from the different scenarios
were compared to other ESP articles [7] and [10].

The next subject is the Echo State Network, that brings fast and efficient system
identification. When creating the ESN, multiple hyperparameters need to be set
correctly. Finding these parameters can be very time consuming, and therefore
the toolbox Oger was used. With the gridsearch function from Oger, the best
combination for the hyperparameters that gives the lowest error is found. For
creating the ESN from scratch, the library NumPy was used, which is easy to
use and worked well for this project. Finding the right training set was crucial
for making the ESN is optimal. Therefore several different experiments were
performed to find the best training set that gave the best results. The experiments
were comprehensive and after comparing the results a combination of a slow input
change and fast input change were chosen. It has been shown that the ESN
successfully learns the dynamics of an ESP and predicts the behavior of the pump
with very little deviations.

The last subject is the ESN-PNMPC, with comprehensive experiments performed.
The goal was to control the ESP to the desired reference on the state pbh while
maximizing the flow. It was very time consuming tuning the controller for the

59

Chapter 6. Conclusion and Future Work 60

desired trajectory and many different values for the prediction horizon, control
horizon, and the weighting matrices was tested to find the most optimal values.
The difficulties were finding a reference that was suitable for testing the controller
to the fullest and was realistic for a real-time scenario. The controller showed good
performance controlling the ESP to the desired reference without any overshoot,
oscillations, and with a smooth trajectory. If the tuning of the weighting matrices
was too high often a big overshoot could occur which can be harmful to the ESP.

The conclusion of the problem statement “How will an ESP perform when
an ESN-PNMPC approach drives the pump to its desired references?”
is that the controller is showing good performance with excellent results. It can
follow the desired reference without any faults.

All in all, the scenarios that were created were validated with comprehensive
experiments and showed good results in all cases.

6.2 Further work

The further work for this dissertation should be geared towards implementing
different cost functions. One aspect that should be considered is the economic part
of using the pump. The pump uses a lot of power in the form of electricity, which
has an economic impact on the usage of the pump. Therefore, a cost function
that reaches the desired reference while minimizing the power usage is desirable.

Another aspect of further work is to make a more realistic ESP model. In this
dissertation, some assumptions were made on the ESP to make it easier to model.
Further, the viscosity and the well productivity index (PI) should be implemented
as variables.

Also, some improvements in the implementation with the CasADi model should
be pursed to make it more robust. Currently, if a particular combination of
inputs capable of pushing the model’s states out of its boundaries, the model will
fail to produce meaningful results, which can lead to a system crash. Therefore,
additional constraints should be implemented in the RFRAS function for creating
the random inputs, making it more robust.

61 6.2. Further work

Chapter 6. Conclusion and Future Work 62

References
[1] S. Hou and Z. Wang. “From model-based control to data-driven control:

Survey, classification and perspective.” In: (2013).

[2] J. P. Jordanou et al. ““Nonlinear model predictive control of an oil well with
echo state networks.” In: (2018).

[3] A. Plucenio. “Development of non linear control techniques for the lifting of
multiphase fluids.” In: (2013).

[4] Jean Panaioti Jordanou et al. “Nonlinear model predictive control of an oil
well with echo state networks.” In: IFAC-PapersOnLine 51 (2018), pp. 13–
18.

[5] G Takacs. “Electrical Submersible Pumps Manual: Design, Operations, and
Maintenanc.” In: (2009).

[6] Gabor Takacs. Electrical Submersible Pumps Manual: Design, Operations,
and Maintenance. San Diego: Elsevier Science, 2017.

[7] Modelling and model predictive control of oil wells with Electric Submersible
Pumps. IEEE, 2014, pp. 586–592.

[8] Embedded Model Predictive Control for an Electric Submersible Pump on a
Programmable Logic Controller. IEEE, 2014, pp. 579–585.

[9] Centrilift Europe and Africa ESP Failures 1999-2008. Centrilift, 2008.

[10] Estimation of Flow Rate and Viscosity in a Well with an Electric Submersible
Pump using Moving Horizon Estimation. IFAC-PapersOnLine, 2015, pp. 140–
146.

[11] Lev V. Kalmykov and Vyacheslav L. Kalmykov. “A white-box model of
S-shaped anddouble S-shaped single-speciespopulation growth.” In: (2015).

[12] Ion Matei and Conrad Bock. “Modeling Methodologies and Simulation for
Dynamical Systems.” In: (2012).

[13] Peter Kunkel and Volker Mehrmann. European Mathematical Society, 2006.

[14] Ding-Zhu DuPanos and M. PardalosWeili Wu. “History of Optimization.”
In: (2008).

[15] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer
Science and Business Media, 2006.

63

References 64

[16] Stephen J. Wright. Optimization. url: https://www.britannica.com/
science/optimization (visited on 12/12/2019).

[17] Ordinary Least Squares Linear Regression: Flaws, Problems and Pitfalls. url:
https://lcn.people.uic.edu/classes/che205s17/docs/che205s17_
reading_06c.pdf (visited on 06/12/2020).

[18] Michael Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[19] url: https://medium.com/udacity-pytorch-challengers/hyperparam
eters-for-neural-networks-c50ab565ee3d (visited on 12/12/2019).

[20] Herbert Jaeger et al. “Optimization and applications of echo state networks
with leaky- integrator neurons.” In: Neural Networks 20.3 (2007). Echo
State Networks and Liquid State Machines, pp. 335–352. url: http://www.
sciencedirect.com/science/article/pii/S089360800700041X.

[21] Mantas Lukoševičius. “A Practical Guide to Applying Echo State Networks.”
In: Neural Networks: Tricks of the Trade: Second Edition. Ed. by Grégoire
Montavon, Geneviève B. Orr, and Klaus-Robert Müller. Springer Berlin
Heidelberg, 2012. url: https://doi.org/10.1007/978-3-642-35289-
8_36.

[22] Danil Koryakin and Martin V. Butz. Reservoir Sizes and Feedback Weights
Interact Non-linearly in Echo State Networks. 2012.

[23] Y.J. Reddy B.R. Mehta. “Model Predictive Control.” In: (2017).

[24] “Taylor expansions and applications.” In: Mathematical Analysis I. 2008.

[25] A. Plucenio et al. “A practical approach to predictive control for nonlinear
processes.” In: 40 (2007).

[26] Jean Panaioti Jordanou, Eric Aislan Antonelo, and Eduardo Camponogara.
“Echo State Networks for Practical Nonlinear Model Predictive Control of
Unknown Dynamic Systems.” In: (2018).

[27] Y. Pan and J. Wang. “Model predictive control of unknown nonlinear
dynamical systems based on recurrent neural networks.” In: (2012).

[28] K. Xiang et al. “Regularized Taylor echo state networks for predictive control
of partially observed systems.” In: (2016).

[29] Eduardo F. Camacho and Carlos Bordons.Model Predictive Control. Springer,
2007.

https://www.britannica.com/science/optimization
https://www.britannica.com/science/optimization
https://lcn.people.uic.edu/classes/che205s17/docs/che205s17_reading_06c.pdf
https://lcn.people.uic.edu/classes/che205s17/docs/che205s17_reading_06c.pdf
https://medium.com/udacity-pytorch-challengers/hyperparameters-for-neural-networks-c50ab565ee3d
https://medium.com/udacity-pytorch-challengers/hyperparameters-for-neural-networks-c50ab565ee3d
http://www.sciencedirect.com/science/article/pii/S089360800700041X
http://www.sciencedirect.com/science/article/pii/S089360800700041X
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36

65 References

[30] E. Camacho and C. Bordons. “Model Predictive Control.” In: (1999).

[31] Joel A E Andersson et al. “CasADi – A software framework for nonlinear
optimization and optimal control.” In: Mathematical Programming Compu-
tation (2018).

[32] David Verstraeten et al. “Oger: Modular Learning Architectures For Large-
Scale Sequential Processing.” In: The Journal of Machine Learning Research
13 (October 2012), pp. 2995–2998.

[33] Stephen J. Wright. NumPy Introduction. url: https://www.w3schools.
com/python/numpy_intro.asp (visited on 06/18/2020).

[34] Jean Jordanou, Eric Antonelo, and Eduardo Camponogara. “Online learning
control with Echo State Networks of an oil production platform.” In: Engi-
neering Applications of Artificial Intelligence 85 (October 2019), pp. 214–
228.

https://www.w3schools.com/python/numpy_intro.asp
https://www.w3schools.com/python/numpy_intro.asp

References 66

Appendices

67

69 A. Model parameters

A Model parameters

Well dimensions and other known constants
g Gravitational acceleration constant 9.81 m/s2

Cc Choke valve constant 2 · 10−5 *
A1 Cross-section area of pipe below ESP 0.008107 m2

A2 Cross-section area of pipe above ESP 0.008107 m2

D1 Pipe diameter below ESP 0.1016 m
D2 Pipe diameter above ESP 0.1016 m
h1 Height from reservoir to ESP 200 m
hw Total vertical distance in well 1000 m
L1 Length from reservoir to ESP 500 m
L2 Length from ESP to choke 1200 m
V1 Pipe volume below ESP 4.054 m3

V2 Pipe volume above ESP 9.729 m3

ESP data
f0 ESP characteristics reference freq. 60 Hz
Inp ESP motor nameplate current 65 A
Pnp ESP motor nameplate power 1.625 · 105 W

Parameters from fluid analysis and well tests
β1 Bulk modulus below ESP 1.5 · 109 Pa
β2 Bulk modulus below ESP 1.5 · 109 Pa
M Fluid inertia parameter 1.992 · 108 kg/m4

ρ Density of produced fluid 950 kg/m3

Pr Reservoir pressure 1.26 · 107 Pa

Parameters assumed to be constant
PI Well productivity index 2.32 · 10−9 m3/s/Pa
µ Viscosity of produced fluid 0.025 Pa · s
Pm Manifold pressure 20 Pa

Table A.1: Model parameters

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Sondre Bø Hernes

Practical NMPC of Electrical
Submersible Pumps based on Echo
State Networks

Master’s thesis in Cybernetics and Robotics

Supervisor: Lars Struen Imsland and Eduardo Camponogara

Co-Supervisor: Eric Antonelo

July 2020

	Summary
	Sammendrag
	Preface
	List of figures
	List of tables
	Acronyms
	Introduction
	Background and Motivation
	Contributions
	Objectives
	Outline

	Problem statement
	Oil wells and artificial lifting
	ESPs
	Lifespan

	DAE modeling of wells with ESPs
	Model equations and parameters

	ESN of the pump
	PNMPC of the pump

	Theory
	System identification
	DAE modeling and solution
	Optimization
	Linear regression
	Introduction to Neural Networks
	Echo State Network (ESN)
	Structure
	Workflow
	Equations
	Parameters

	Model Predictive Control (MPC)
	Practical Nonlinear Model Predictive Control (PNMPC)
	ESN-PNMPC
	Error metrics

	Implementation
	ESP CasADi
	Echo State Network
	ESN-PNMPC
	Summary

	Results
	ESP with CasADi
	Valve opening and frequency as constants
	Step response on valve opening
	Increasing frequency
	Discussion

	ESN
	Comparison between Oger and the self-made ESN
	Different training sets
	Steady-state using previously trained networks
	Noise added
	Summary

	ESN-PNMPC
	Step response
	Stair response
	Steps down and up
	Conclusion of ESN-PNMPC

	Conclusion and Future Work
	Conclusion
	Further work

	Appendices
	Model parameters

