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Waste incineration: Optimal
control of process dominated
by delay and uncertainty

Combustion of municipal waste comes with the issues of great uncertainty when it
comes to the properties of the waste. Noxious gases are released if the combustion
is incomplete. As a result, there are strict regulations the maximum concentration of
CO , acidic gases, like NOx , HCl and HF and heavy metals, like Cd and Hд. Since the
properties of the waste are in-homogeneous, it becomes difficult to maintain constant
steam production
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Abstract

The process of burning MSW1 is a rather complex one, with multiple objectives, non-
minimum phase responses long time-constants in combination with very short ones,
large disturbances because of varying waste quality. During the last years, stricter
regulations have been put in with the regards to the release of hazardous materials. As
a result, SINTEF Energy Research has done further research on the subject of modelling
and controlling combustion processes. This project attempts to use the additional
information that is gained from having a sensor estimating the heating value of the
waste, as well as some of the additional information gained from using a more complex
model when controlling the plant.

1Municipal Solid Waste
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Sammendrag

Forbrenning av restavfall2 er en ganske kompleks prosess, som er preget av å ha både
lange og korte tidskonstanter, flere refferanser som skal følges samtidig, i tillegg til
ikke-minimum fase-responser og store forstyrrelser på grunn av avfallets varierende
sammensettning. I løpet av de siste årene har det kommet strengere reguleringer for
utslipp av skadelige stoffer ved avfallsforbrenning. På grunn av dette har SINTEF
Energi gjort videre forskning på modellering og regulering av denne prosessen. Dette
prosjektet forsøker å utnytte den ekstra energien av å ha en sensor som estimerer
varme-verdien til avfallet som forbrennes, sammen med den ekstra informasjonen som
kommer av å regulere et anlegg med en mer kompleks modell.

2Restavfall oversettes ofte til Municipal Solid Waste
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Chapter 1

Introduction

1.1 Motivation

Combustion of Municipal Solid Waste(MSW) is a process that has gained increased
attention in the last years. This is both as a result of a steady increase in produced
waste, as well as stricter regulations, which means that the plants have to follow
stricter standards with regards to both gas emission and management of the solid ash
left behind after the combustion. One way to ensure all conditions are met is to find
some operating point that is know for causing the system to behave in the desired
manner, and then using a controller to make sure the system stays near that state,
regardless of any disturbances that may affect the process. A solution using cascaded
PID-controllers has already been made by SINTEF. But that model will not be able to
take full advantage of how to combine different inputs in such a way disturbances are
suppressed, while not affecting other outputs too much.

1.1.1 Literature review

There has already been quite a bit on work on the subject of waste incineration, like in
Leskens (2013). Furthermore, there has been some interest in using additional sensors

1



2 CHAPTER 1. INTRODUCTION

to the ones that are normally used when controlling such a plant. In Øie Kolden
(2019), an estimate of the heating value was used to give a controller that could handle
changes in waste-quality more effectively. Leskens (2013) tested several different
implementations for how to control waste-combustion plants. Waste-incineration
suffers from the typical problem that when one tries to increase one of the measured
variables by increasing one of the inputs, there will usually be a rather large overshoot,
as well as some states decreasing before they start to increase again. This is what is
known as a non-minimum phase system and they are usually more difficult to control.
Furthermore, changing one input usually affects all outputs. This makes it so that
there are other controllers than PID-controllers that may be able to give better results.
This thesis will attempt to improve on the solution in Øie Kolden (2019) by estimating
a system with the method given in Juang and Suzuki (1988), and then combining the
acquired model with standard linear dynamical systems theory, like what is found in
Boyd (2008b) to make a better controller. Finally, the estimated model may also be
used for gaining a feeling for how sensitive the rest of the system is to disturbances,
measurement and modelling errors. The method will be repeated on a selection of
different model-based linear controllers with slightly different architecture to find the
one that has the best performance while also having some indicator of its robustness.

1.1.2 Assumptions

Since the main implementation is based on a linear model, the biggest assumption
about the plant is that it behaves sufficiently similar to a linear time-invariant system.
Furthermore, it is assumed that any time-delay in the control-loop remains within
certain borders. Additionally, it is assumed that all modelling errors are on the form
of pure time-delays or in the form of incorrect scaling for the input-matrix B, and
that these errors vary so slowly that they can be seen as piece-wise constant when
stabilising the plant and that these periods are so long that the controller gets the time
to stabilise the plant. The implementation that was used also assumes that the process
disturbances have a much larger effect on measured signals than the measurement-
noise as long as a low-pass filter with a cutoff-frequency of 1

[ rad
s

]
is used. However,
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this assumption can be changed later by using a new filter and re-tuning the weights
in the controller and the state estimator.

1.1.3 Contributions

The contributions from this project mainly come in the form of implementations of
the different controllers, as well as an implementation of the Eigensystem Realisation
Algorithm. All steps needed for the algorithm to work can be found in Juang and
Suzuki (1988). Two different estimated systems were implemented. One that only
considers how the controlled disturbances affect the outputs, and one that also uses
the measured disturbances from the simulation to give an optimistic estimate of the
increase in performance if they could be measured. It can also be used for getting a
better estimate of how the process-disturbances affect the output, which can be used
when designing the estimator.

Making a Linear Quadratic Estimator that is decoupled form the rest of the con-
troller also allows for properly utilising the sensor measurements for state-estimation,
since a Model Predictive Controller needs more computation time than a Kalman filter.

Finally, some different controller architectures were explored, which had the pur-
pose of making the controller follow the desired steady-state, since some combinations
of inputs can only be allowed to handle transient inputs, and should not be used to
make the controller reach its steady-state. Finally, some robustness analysis was also
done on the linear, estimated system to give some kind of guess to how robust the
controller might be.

1.1.4 Outline

The thesis is divided into N chapters.

• 2: Process overview

• 3: Features of the process

• 4: Parameter estimation
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• 5: Controllers

• 7: Experimental result

• 8: Conclusion and future work

Chapter 2 will explain what happens in the process, without going in-depth about
what mathematical model is required to simulate the given system. This is mostly due
to the complexity of a combustion process, which results in a proper explanation of
how the process works being outside the scope of this thesis.

Chapter 3 will cover the qualitative properties of the system’s step responses when
the system is excited around the operating point. This may give some information as
to what issues will be the most pressing when trying to control the plant.

The different controller architectures will be discussed in chapter 5, namely two
PID-controller architectures, as well a few methods for optimal control. Namely, the
Model Predictive Controller and the Linear Quadratic Regulator. Different architectures
can be tested, depending on if there is supposed to be some kind of cost on the system
for excessively increasing the primary air while reducing the secondary air.

Chapter 7 describes the process of tuning the controllers, as well as how the
resulting closed-loop system respond to disturbances and noise. Because of the system
being somewhat inaccurate when it comes to representing how the system will most
likely act in reality.

Finally, Chapter 8 covers suggestion for future work that could expand and improve
the results of the current project.



Chapter 2

Process overview

A detailed description of the dynamic model used in the present work can be found in
Dynamicmodeling of municipal solid waste incineration (2020). As a result, there will
only a quick summary of the process will be given in this thesis.

2.1 Process overview

As seen in Figure 2.1, the waste is normally delivered to the waste-bunker (1). There, a
set of cranes are used to mix it, to make it more homogeneous, decreasing how much
the waste-composition varies, and therefore the disturbances. Some of it is then fed
into the charging hopper (3) by the same cranes. A ram (4) pushes the waste onto the
waste-grates (5). While on the grate, the primary air-flow (17) dries the waste and
provides oxygen for the primary combustion. The conversion process taking place
on the grates can be seen as divided into three sections. The waste is dried in the
first section. On the second section of the grate, the primary combustion happens,
where most of the heat is produced. The third part of the grate, any post-combustion
happens to ensure that the amount of combustible material in the ash is below a

5



6 CHAPTER 2. PROCESS OVERVIEW

Figure 2.1: Overview of the plant



2.1. PROCESS OVERVIEW 7

certain threshold1. The non-combustible ash is then removed(17) from the system to
be cleaned and disposed of. The combustion also results in the production of various
gasses, which together with the air that did not react make up the flue-gas. Somewhere
above the second part of the grate, a secondary airflow is also applied to the volatile
gases resulting from the primary combustion. This is where secondary combustion
occurs, producing more heat through the further conversion of the gases produced by
conversion on the grate (e.g. CO , H2 andCH4). The primary and secondary airflow(10)
provide oxygen to the fire so that the combustion is complete. The two air-flows are
added at two different points to allow for better mixing between flue gases and oxygen.
Proper mixing is a requirement for having complete combustion and for reducing the
formation of NOx and other harmful gases. The heat-exchange between the burning
waste and the flue gas happens through contact, the mass-transfer of gases produced
during combustion and by radiation. The flue gas in the combustion chamber(9) has
a temperature of roughly 850OC . By law, the flue gas need to stay above 850OC for
at least 2 seconds. This is to ensure that no dangerous gases are produced. The flue
gas travels through multiple bends, called passes. The passes make up the first section
of the boiler (i.e. evaporator). The walls in the passes are made up of pipes where
saturated water flows. When the gas flows past the pipes, it gives off heat to the walls,
turning the saturated water into saturated steam. The second part of the boiler(13) (i.e.
superheater) , is where the gas is used to heat a flow of saturated steam that is extracted
from the boiler drum. The final heat exchange section is called the economizer. Here,
the cold water that is feed into the boiler drum is pre-heated to better take advantage
of all the heat in the flue gas. Finally, the flue gas exits out of the system that is to
be controlled in this thesis and into the part of the plant where it is cleaned before
being released into the atmosphere. The composition of the flue gas that is released
will depend on the amount of oxygen, how well oxygen and flue gas was mixed during
combustion, the temperature in the combustion chamber, as well as the composition
of the waste that is being burned.

1In addition to the environmental damage that may come from exceeding these limits for too long, the
limits are also enforced by law
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Chapter 3

Features of the combustion
process

3.1 Input step-responses

Before doing some actual system identification, it might be useful to do some experi-
ments to get an overview of how the system behaves, as it might give some intuition
as to how to control the plant. Figure 3.2 shows the result of an experiment where the
first 19000 seconds were used to allow the plant to reach a stationary point, while a
constant input-value was held, without any disturbances. At 20000 seconds, one of
the input-variables is increased. The point at which the step occurs is shown as a red
cross on the graph. Both the inputs and the outputs operate at completely different
operating points, and with at completely different orders of magnitude. To better
illustrate what is going on, figure 3.1 shows a scaled version of the step-response,
where the operating point has been subtracted and the output have been scaled to
correspond to what "would have been" if the step-amplitudes had been unity instead.

As can be seen from figure 3.1, the speed at which the plant reacts with is very
different, depending on the input and the output. The steam-production normally

9
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Figure 3.1: Step-response form the Manipulable inputs

reacts rather slowly to any changes in the amount of waste fed into the plant. This is
usually in the realm of thousands of seconds. On the other hand, changing the input of
primary or secondary air works almost instantaneously on the mass-flow of air, while
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Figure 3.2: Change in outputs, given step-changes in the inputs. Adjusted for the
operating point, and scaled for the step-amplitude

also having a fast effect on the steam-production.
The primary air is already pre-heated. Additionally, an increased flow of oxygen
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flowing through the waste also helps to make more oxygen available for the primary
combustion process, which speeds up the process. Dynamicmodeling of municipal solid
waste incineration (2020) explains that increasing oxygen concentration increases the
reaction rate. The effect rapidly decreases again, as the available waste/gases are "used
up".

Since more cold air is added to the new flue gas, the result will be that it gets more
diluted, and the temperature will drop somewhat as a result. The result will be that
the delivered power will go back to roughly the old amount.

It is worth noting that the plant is very sensitive to changes in vgrate. This is
because it is normally only made to operate at a couple millimetres per second. As
a result, it is desirable to only perform small changes to the grate speed. Changing
the grate speed still has some advantages. The biggest one is the fact that both the
steam-production and the oxygen concentration react a lot more quickly to changes
in the grate speed than in the amount of waste fed into the plant. Because of this,
one aspect where a model-based controller might be able to improve a bit is in its
use of the grate-speed. The air-flows are good for controlling steam-production on a
short time-horizon. Changing the waste-flow is good when controlling over a long
time-horizon. The grate speed may therefore be used to supplement both of these, by
helping to control the steam production over a medium time-horizon.

3.2 Disturbance step-responses

The first two columns in figure 3.3 show the effects of changes in the temperature of
the primary and secondary air flow. The three differentQgrate variables represent heat-
exchange in the different sections of the grate. In practice, there should also be other
variables as well, to represent sudden changes in the concentration of combustible
materials or moisture in the waste. But the disturbances that are there show a few very
interesting points. The first observation is the small effect that air-temperature has on
the steam-production. Figure 3.4 show that a change of one degree in the temperature
of the primary or secondary air will only change the steam-production by 4

[
kд
s

]
. On

the other had, the three values for Qgrate fluctuate more in the range of 104, so all
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Figure 3.3: Step-response to the different kinds of disturbances

changes in air temperature become completely dominated by the disturbances from
Qgrate. Because of this, the disturbances resulting from changes in air temperature will
not be taken into consideration when designing controllers.
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Finally, the biggest takeaway from plotting the disturbances can be seen when
looking at the effects both of them have on FO2. As a result, the disturbances almost
entirely affect the production of steam, while most changes to the mass-flow of air in
the flue gas are a result of the attempts to correct the disturbances. This means that a
feed-forward controller that tries to cancel the effects of Qgrate can only focus on the
steam-production, and then another feed forward controller can be used to negate the
changes in FO2 that result from trying to correct for the changes in Fst

3.3 Some observations

3.3.1 Justifying the use of an HHV-estimator

When looking at figures 3.2 and 3.3, it can be seen that Fst and ˆHHV are remarkably
similar, except for their amplitude. Since Fst is one of the controlled outputs, the
question becomes why ˆHHV is necessary.

Figure 3.5 shows the step-responses of Fst and ˆHHV , without the mean, and
represented as percentage of the infinite-horizon change. The two plots are very
similar, but Fst lags behind ˆHHV by about a minute. In the case of PID-controller,
this opens up for using a cascaded PID-controller, as was done in Øie Kolden (2019),
which allows for higher bandwidth, while also keeping the robustness of the previous
controller. A model-based controller will be able to use the extra measurement of ˆHHV

to detect any changes in plant-disturbances earlier, but also to as a means to mitigate
the effects of measurement-noise, as long as the two measurements are uncorrelated.

3.3.2 Usage of air when controlling steam production

The results that will be discussed in section 7.3 show that some controllers will attempt
to primarily use air to control the steam-production around the operating point. This
is normally bad, but the way it is done is somewhat interesting. Instead of using
FaI , like it has been done in the previous controllers, it instead uses FaI − FaI I to
increase the production of steam. There are two main reasons for doing this. Primarily,
because changing FaI - FaI I does not affect the total amount of oxygen added to the
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Figure 3.4: Change in outputs, given step-changes in the the disturbances. Adjusted
for the operating point, and scaled for the step-amplitude

flue gas, leading to fewer changes in FO2. The second reason can be seen in figure
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to make them comparable.

3.6. By keeping the total amount of oxygen injected into the system constant, the
step-response becomes more well-behaved, potentially leading to a controller that can
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be allowed to be more aggressive.
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A PID-controller with this premise was not implemented in this project, but it
could potentially be an avenue for further research.
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Chapter 4

Parameter estimation

Even if most physical constants are known, there are always some that are specific
for each plant. They have to be measured or estimated, since they can be dependant
on properties unique to each plant, like size, mass, etc. There are be methods for
estimating the dynamics of nonlinear plants, but linear approximations are often much
easier to perform, and has well-known methods that can be used without full state
measurement. As long as the plant is sufficiently well-behaved and the state remains
close enough to the operating point linear parameter estimation is preferred.

There are several robust methods for approximating the parameters of MISO
systems or MIMO-systems where the outputs are loosely coupled, as shown in Ioannou
and Sun (2012). But, in the case of the MSWC-plant, the fact that the amount of
oxygen consumed in the and the amount of heat produced makes it steam somewhat
unreasonable that these two output variables should be independent. As a result, a
MIMO-scheme for parameter estimation is needed instead. There are several different
methods of performing linear parameter estimation, like the state-space approach and
a transfer-function based approach, as presented in Stoica and Jansson (2000). However,
in this project, the Eigensystem Realisation Algorithm (ERA) was used instead. This is
mostly because it can estimate systems without full-state measurement. Additionally,
the fact that it is somewhat easier to understand and implement made it the preferred

19
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candidate for parameter estimation.

4.1 Eigensystem Realisation Algorithm

The ERA, as described in Juang and Suzuki (1988), is a method for estimating linear,
discrete systems when the impulse response is known for some measurements of
a system. It also allows for the creation of reduced-order models, that describe the
dominant dynamics of the impulse-response, even if the original system was of a
higher order than the estimated one.

The ERA assumes that the system is linear on the form:

®xk+1 = A®xk + B®uk (4.1)

®yk = C ®xk + D ®xu (4.2)

Where

x ∈ ℜn

u ∈ ℜm

y ∈ ℜp

y and u must be measured, but the states x can be unknown. Unless full-state
measurement is available, the states x in the estimated system will correspond to some
abstract values that do not need to correspond to any of the physical states of the real
plant. The ERA is based on the impulse-responses of the discrete system. It uses the
impulse-response from each separate input. If ®u0,i is a Kronecker delta at element i
and 0 everywhere else, then the impulse-response yi for that input can be written as:
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y0,i = D®u0,i (4.3)

yk ,i = CAk−1B®u0,i∀k = 1, 2, ... (4.4)

All possible impulse-responses at one time-step can be combined into one matrix
Yk .

Yk =
[
yk ,1 yk ,2 . . . yk ,m

]
(4.5)

The concatenation of all input-vectors uk ,i is the same as

I =
[
u0,1 u0,2 · · · u0,m

]
(4.6)

By combining equation 4.4 and 4.6, Yk can be written quite conveniently as a
matrix-product.

Yk = CAk−1B (4.7)

All the impulse responses can be written into a r × s block matrix, on the form of a
Hankel -matrix.

Hk =



®Yk+1 ®Yk+2 . . . ®Yk+s

®Yk+2 ®Yk+3 . . . ®Yk+s+1
...

...
. . .

...
®Yk+r ®Yk+r+1 . . . ®Yk+r+s


(4.8)

This also means that the Hankel-matrix can ideally also be expressed by using [A,B,C].
For instance The first matrix, H1 can be written as:
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H1 =



CB CAB . . . CAm−1B

CAB CA2B . . . CAmB
...

...
. . .

...

CAm−1B CAmB . . . CA2m−2B


(4.9)

H1 can equivalently be written as H1 = OC, which is the product of the adjoint
impulse response O and the direct impulse response matrix C. These are given by:

O =



C

CA

CA2

...

CAm−1


®u0 (4.10)

C =
[
B AB . . . Am−1B

]
(4.11)

The matrices O and C are also the same as the observability matrix and the control-
lability matrix. Any following matrix Hk can be described as Hk = OAkC. Since A,
B and C are unknown, the goal is to find some matrices Â, B̂ and Ĉ which is able to
produce the same (Or a similar) Hankel-matrix.

Yk+1 can be extracted quite easily from Hk . If the matrix ETp =
[
Ip, 0p, . . . , 0p

]
and

ETm = [Im, 0m, . . . , 0m], then

Yk+1 = EpHkEm = EpOA
kCEm (4.12)

This structure will be used to find good good matrices Â, B̂ and Ĉ .



4.1. EIGENSYSTEM REALISATION ALGORITHM 23

In Juang and Suzuki (1988) a matrix H # is found, which has the properties

OH #C = In (4.13)

The matrix H # satisfies being the pseudoinverse of H1, but we will not prove that in
this thesis.

Another important tool will be the Singular Value Decomposition (SVD) of H1

H1 = UΣV ∗ (4.14)

The SVD has the property that all the column vectors in the matricesU and V are
orthonormal to the other vectors from the same matrix. This is because the Hankel-
matrix is purely real. This means that VV ∗ = I andUTU = I . Σ is a diagonal matrix of
positive elements. Finally, we introduce the matricesUd andU #

d

Ud = UΣ (4.15)

U #
d = Σ−1UT (4.16)

Juang and Suzuki (1988) also shows that H # = VU #
d . By inserting equation 4.13 into

equation 4.12, a new expression can be found.

Yk+1 = EpOCH
#OAkCH #OCEm (4.17)

Next, OC can be contracted, and H # can be replaced by VU #
d .

Yk+1 = EpH1VU
#
dOA

kCVU #
dH1Em (4.18)

Next, a trick is needed to get rid of the expression containing Ak . To use this trick,
we will have to show that

[
U #
dH2V

]k =
[
U #
dOACV

]k is the same as U #
dOA

kCV . A
polynomial

[
U #
dOACV

]k can be written as (U #
dOACV )...(U #

dOACV ). By opening the
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parenthesis and replacing VU #
d with H #, and then replacing any CH #O with Ip , the

result is = U #
dO(AIp )kCV . As a result the two expressions are the same and equation

4.17 can be rewritten as:

Yk+1 = EpH1V
[
U #
dH2V

]k
U #
dH1Em (4.19)

Finally, sinceU #
d = Σ−1UT , the square root of Σ can be taken, and extracted from

the exponential term, giving

Yk+1 = EpUΣ
1
2
[
Σ− 1

2UTH2VΣ− 1
2
]k

Σ
1
2VT Em (4.20)

This final equation gives a formulation that makes it possible to extract estimates
ofA, B andC that will have the same impulse-response. We will denote these estimates
with a symbol hat.

Â = Σ− 1
2UTH2VΣ− 1

2 (4.21)

B̂ = Σ
1
2VT Em (4.22)

Ĉ = EpUΣ
1
2 (4.23)

(4.24)

Under idealised circumstances, the rank of the Hankel-matrix can be found when
performing the SVD, as all elements after a given index will be 0. As a result, it will
not matter if Σ,U and V are all truncated after that given index. The matrices can be
divided into two parts. The part that is used to estimate the system, and the part that
can be truncated.
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Σ =

Σ̃ 0

0 Σtr

 (4.25)

U =
[
Ũ Utr

]
(4.26)

V =
[
Ṽ Vtr

]
(4.27)

(4.28)

If all sub-matrices with subscript tr truly are equal to 0, then

UΣV ∗ = Ũ Σ̃Ṽ ∗ (4.29)

Consequently, the truncated matrices can be used to find a minimal representation
of

[
Â, B̂, Ĉ

]
. In reality, noise, non-linearities, and numerical errors are inevitable, so

the rank of the Hankel-matrix can not be given certainly. Furthermore, in the case of
this project, it will be highly desirable to have a model of reduced order, since it will
speed up an MPC-controller significantly.

So, in practice, some index is simply chosen for where to cut off Σ̃. A common way
to find a decent index is to choose some value ϵ , such that

sum(diag(Σ̃))
sum(diag(Σ)) ≥ (1 − ϵ) (4.30)

And then making Σ̃ to be as small as possible, while satisfying the condition. By
plotting the values of Σ̃, it also becomes a lot easier to see what is to be gained by
adding more states to the estimated model.

Finally, it is important to remark that unless all states are observed, the states that
result from the SVD will not necessarily represent physical values, but rather some
linear combination of underlying properties of the system. This can easily be proven.

For any non-singular matrix T, the triplet
[
TAT −1,TB,CT −1] will result in the



26 CHAPTER 4. PARAMETER ESTIMATION

same Hankel-matrix as [A,B,C]

CT −1 (
TAT −1)k TB = CAkB (4.31)

This means that any true system representing a physical process can be transformed
into infinitely many other systems that will have the same input-output response.

4.1.1 Handling Hysteresis

If the system suffers from a small amount of hysteresis, or nonlinearities at the at first
when responding to an impulse, then the impulse-response of the physical system
may not reflect the dynamics of the linearized system very well. The solution to
this is to use some kind of more permanent excitation, and then using that to find
some other kind of excitation and then using that to get an estimate of what the
impulse-response would have been without the transient nonlinearities. The normal
method is to use Observer Kalman Filter Identification (OKID) to find out what the
impulse-response "would have been" for a linear system, given some pseudorandom
input. The asymptotic memory-usage of OKID is O(n2), so if the number of samples is
too large, the required space needed for system identification will be several gigabytes.
In those cases, a simple trick with the step-response can be used instead. If a linear
model should be valid, then the principle of superposition should also be somewhat
true. This means that the response y from a sum of inputs and initial sates is the same
as the sum of the responses that would have resulted from each separate signal.

y(u1 + u2) = y(u1) + y(u2) (4.32)

αy(u) = y(αu) (4.33)

An impulse is just two step-inputs subtracted by each other if they have the same
amplitude, but different delay.

δ (Ti ) = u(Ti ) − u(Ti−1) (4.34)
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Therefore, the superposition-principle allows us to find the impulse-response by
subtracting a step-response by a delayed version of itself.

If the plant is asymptotically BIBO (Bounded Input, Bounded output)-stable, then
this allows us to avoid some of the issues related to hysteresis, or non-linearities at
the beginning of a response.
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Chapter 5

Controllers

There are several methods for controlling multivariable systems. While basic PID-
controllers or linear controllers may be employed, it may in some cases be more useful
to use a controller that allows the user to prioritise certain control variables, as well as
enforcing strict or semi-strict limits on both inputs and states. Since there are strict
limits that dictate a minimum oxygen concentration in the flue gas, a Model Predictive
Controller (MPC) will be tested in this project.

5.1 Model Predictive Control

The main idea of an MPC is that it contains some kind of model of the process that
it is supposed to control. If we let ®x be a vector denoting the state of a system, ®u its
input and ®d the disturbances, a model can be written as:

®xk+1 = fK
(
®xk , ®uk , ®ddisturbance ,k

)
∀k ∈ [T0, ...,Tn] (5.1)

Where k represents all time-steps from the current time-stepT0 to some prediction
horizon Tn that may be defined by the one who makes the MPC. Even though the

29
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system is discretized, it is not required that an MPC has a uniform length between
each time-step. As a result, each equation fk can be different, if there is a need for
higher resolution at a shorter time-horizon. In this thesis, all time-steps will have the
same length, so fi = fj∀i, j ∈ [T0, ...,Tn]]

On a similar form to f , the expected output from the system will be given by:

®yk = дK
(
®xk , ®uk , ®dnoise ,k

)
(5.2)

The MPC always works on minimising some kind of objective function, that may
take in a combination of inputs, outputs and states. as a result, it is necessary to make
vectors containing all states in a prediction.

®X =
[
®xTT0

®xTT1
. . . ®xTTn

]T
(5.3)

®U =
[
®uTT0

®uTT1
. . . ®uTTn

]T
(5.4)

®Y =
[
®yTT0

®yTT1
. . . ®yTTn

]T
(5.5)

Finally, an MPC may also be under a set of equality constraints h and inequality
constraints h

дi ( ®X , ®U ) ≤ 0 (5.6)

hi ( ®X , ®U ) = 0 (5.7)

The constraints are normally only constraining the states or inputs at one time-step,
but they can also be used to limit the rate of change of ®uk or to lump together inputs if
the MPC has a lower resolution closer to the prediction horizon.

If the function V is used to describe the cost the MPC tries to minimise. The
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resulting problem becomes:

min ®UV ( ®X , ®U , ®Y )

s .t

®xi+1 = f
(
®xk , ®uk , ®ddisturbance ,k

)
дi ( ®X , ®U ) ≤ 0∀i ∈

[
1, . . . ,Nieq

]
hi ( ®X , ®U ) = 0∀i ∈

[
1, . . . ,Neq

]
(5.8)

Equation 5.8 is quite generic and can represent a wide range of potential MPC-
problems. Depending on the type of restriction that is set for the problem, more efficient
algorithms may be used, which may speed up the speed of the MPC considerably.
Because of the estimated model being linear, only linear MPCs will be considered in
this thesis.

5.1.1 Linear MPC

The Eigen-system Realisation Algorithm that was described in section 4 makes it
possible to find a system representation from measured data. If such a model is
combined with a Kalman-filter, it becomes possible to make a relatively fast model
predictive controller.

The standard form for the problem that a linear MPC solves is on the form of a
quadratic problem. Let m be the number of inputs and N is the number of prediction
steps. H is a positive definite matrix H ∈ ℜmN×mN and F is some matrix F ∈ ℜmN ,
whileU are all inputs over all time-steps within some prediction horizon, such that
®U ∈ ℜmN , then the problem can be described as:
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min ®U
®UTH ®U + F (x0, ref)T ®U

s .t :

Aдe ®U ≥ bдe

Aeq ®U = beq

(5.9)

Unlike a lot of other model predictive controllers, the sequence of states X can be
implicitly expressed by a linear function of x0 and the sequence of inputs ®U . If the
model is discrete, then the exact solution can be found by matrix-multiplications with
a set of pre-prepared matrices.

®xTi+1 = A®xTi + BuTi (5.10)

Simply by adding all the inputs, and multiplying with A an appropriate amount of
times, a general expression can be found.

®xTi = Ai ®xT0 +
i−1∑
j=1

Ai−jBuTj (5.11)

So if one matrixM is constructed for the response due to the initial state x0, and
another one, C for the convolution between the input signal and A, then all states in ®X

can be represented by a few simple matrix operations

®X = Mx0 + C ®U (5.12)

If N is the number of time-steps that the MPC uses in its prediction, then the two
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matricesM and C are defined as:

M =



A

A2

...

AN


(5.13)

C =



B 0 . . . 0 0

AB B . . . 0 0

A2B AB . . . 0 0
...

...
. . .

...
...

AN−2B AN−3B . . . B 0

AN−1B AN−2B . . . AB B


(5.14)

Because of this, any cost that would normally be written as a function the inputs and
states can instead be expressed entirely by the inputs and the initial state.

®XT Q̂ ®X =
(
C ®U +Mx0

)T
Q̂

(
C ®U +Mx0

)
(5.15)

The same goes for constraints as well

Aeq ®X = Aeq

(
C ®U +Mx0

)
≥ beq (5.16)

⇒ AeqC ®U ≥ beq −AeqMx0 (5.17)

Linear MPCs have the advantage of being able to use more efficient algorithms for
solving the QP, than what would be possible for a generic non-linear problem. The
result is that a faster sampling-frequency or longer prediction-horizons can be used.
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5.1.2 Stabilising an MPC

A finite-horizon MPC is usually not guaranteed to stabilise a plant. Using a long
prediction-horizon may solve this, but the number of prediction steps is dependant on
the plant. Additionally, if the terminal state does not have a cost that reflects how the
MPC will behave later, some strange behaviour might occur.

Proof of instability: Let x [Ti+1] = 2 · x [Ti ] + u a scalar difference equation. If
the cost-function is J = x [Ti+1]

2 + 3u2, simple differentiation gives that the best u is
u = − 1

2x [Ti ], which is not enough to stabilise the plant.
As explained in appendix A, an LQR solves the same kind of problem an MPC does,

but over an infinite horizon, and without constraints. If all constraints remain inactive
after the end of the prediction-horizon, and the terminal state-cost of the MPC is the
same as the infinite-horizon state cost for the LQR, then the two controllers will have
the exact same sequence of inputs. Since the LQR is guaranteed to stabilise the plant,
the MPC will be guaranteed to do the same.

If only the state-feedback matrix Klqr is available, the infinite-horizon cost can be
found by solving a Lyapunov-equation instead.

Q∞ = (A − BKlqr)TQ∞(A − BKlqr) +Q∞ + KT
lqrRKlqr (5.18)

Luckily, MATLAB implementedmethods for solving both equation Lyapunov-equations
and Riccati equations

Klqr = lqr (A,B,Q,R) (5.19)

Q∞ = dlyap((A − B ∗ Klqr)T ,Q + K ′
lqr ∗ R ∗ Klqr); (5.20)

5.1.3 Reference-tracking MPC

MPC systems do not inherently track references. The way this is normally done is by
giving a cost for changing the inputs, instead of using a cost for allowing the inputs to
deviate from the reference point. This can the MPC to act differently from how the
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LQR that is used to make the infinite-horizon cost would have acted. One solution to
stationary feed-forward input vf f that would cause the closed-loop system with and
LQR.

If an LQR is to track a reference, it usually means that the linearisation point has
to be changed. One way to solve this easily is to find a matrix that would cause the
closed-loop LQR to converge asymptotically to the wanted output. If the closed loop
is asymptotically stable, then the stationary output measurements can be found by:

Y∞ = C (I + BK −A)−1 B (5.21)

It is possible to simply use the pseudo-inverse of
(
C (I + BK −A)−1 B

)
to find a matrix

that can transform the set of desired outputs into the corresponding set of required
inputs. A better solution can be found by solving a constrained QP 1 that causes the
reference to be tracked as cheaply as possible according to the original cost function.

minvf f
(
(I + BK −A)−1vf f

)T (
Q + KTRK

)
(I + BK −A)−1vf f +vTf f Rvf f

st :

C (I + BK −A)−1vf f = yr ef

(5.22)

Additional constraints may be added if the problem is constrained. No proof was found
in this thesis was would have allowed for tracking yr ef as cheaply as possible without
recalculating the QP each time the reference changes.

If the cost of the input-cost of an MPC is set to be given by u −vf f , instead of u
and the state-cost is set to be given by x − (I + BK −A)−1 Bvf f , then the cost of the
MPC will be zero when the system tracks the reference.

1Quadratic Problem
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5.2 PID-control

As has been seen in previous sections, it can be difficult to model the system. If it is
possible to find a method that may control the plant, without having to rely on overly
complex models or unreliable estimates, that would be desirable. Fortunately, normal
cascaded PID-controllers can very often do an excellent job without an exact model.
PID-controllers also often have the advantage of being robust against modelling errors.
Unfortunately, tuning the three parameters in a PID-controller is known for being a
difficult task, depending on the type of process. As a result, several different methods
have been developed for tuning PID-controllers. This section will explain how to tune
a PI or PID-controller by using Skogstad’s Internal Mode Control (SIMC).

5.2.1 Skogstad’s Internal Mode Control

SIMC is a set of rules for tuning PID-controllers that were originally used for teaching-
purposes, but who have proven to work very well in practice. The method is based,
quite simply on exciting the system form a stationary state with a step-response.
A step-response is often more well-behaved on most systems, and usually gives a
response that is more in line with that of an actual linear system. The SIMC are the
tuning rules for how to tune the constants of a PID-controller if a simple approximation
of the model is already known. As a result, there are two parts of SIMC-tuning. The
system approximation and the actual tuning. Because parts of the system are also
affected by a rather large non-minimum phase response, it will also be necessary to
expand upon the normal system approximation to handle the large transients.

5.2.2 Simplifying plant models

Skogstad’s method normally relies on some transfer function model of the system to
tune the system. If τ represents the lag in the system and eθ0s represents the delay
and k the plant gain, then Skogstad’s method is based on a SISO (Single Input Single
Output) system that can be described as:
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y = k ·

∏n
i=1

(
−T inv

i s + 1
)∏n

j=1
(
τj ,0s + 1

) e−θ0s (5.23)

Where τi ≥ τi+1 ≥ 0 and T inv
i ≥ T inv

i+1 ≥ 0 (Positive roots in the numerators are
explained in subsection 5.2.2.1). Since Skogstad’s method only revolves around a
PID-controller, only the most dominant terms are taken into consideration. Any factor
after the second one will instead be approximated by a the Taylor-approximation of a
time-delay and added to the already existing time-delay.

eτj s = 1 + τjs + . . . τ ij si + . . . ≈ 1 + τjs (5.24)

e−τj s = 1
eτj s

≈
1

τjs + 1 (5.25)

Depending on the properties of the plant, it is possible to perform different sim-
plifications. If the lag τ1 dominates the process (usually τ1 > 8θ ), then the estimation
k

τ1s+1 ≈ k ′
s can be used. This can also alow you to end the experiment early instead

of waiting for convergence. A discretely sampled with a sampling time h, can be
simplified into a continuous system with an additional time-delay h

2 if the time-delay
is not too dominant. Additionally, the largest neglected pole can be evenly distributed
between the smallest lag that is being used and the time-delay.

All these rules can be summarised into the much simpler rules, described in equa-
tions 5.26 and 5.27. The tuning rules are lifted directly from equations (10) and (11) in
Skogstad (2004).
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Second order approximation :

τ1 = τ1,0;τ2 = τ2,0 +
τ3,0
2 ;θ = θ0 +

τ3,0
2 +

∑
i≥4

τi ,0 +
∑
j
T inv
j0

h

2 (5.26)

First order approximation:

τ1 = τ1,0 +
τ2,0
2 ;θ = θ0 +

τ2,0
2

∑
i≥3

τi ,0 +
∑
j
T inv
j0

h

2 (5.27)

5.2.2.1 Positive time-constants in the numerator

In Skogstad (2004) positive roots in the numerator (T0s + 1) are handled by allowing
the term in the numerator to cancel one in the denominator (The closest, larger one).
The delay θ is the final delay after all cancellations have been made. Because of this,
the cancellations have to be made iteratively with the new delays.

T0s + 1
τ0s + 1 ≈



T0
τ0

if T0 ≥ τ0 ≥ θ

T0
θ if T0 ≥ θ ≥ τ0

1 if θ ≥ T0 ≥ τ0
T0
τ0

if τ0 ≥ T0 ≥ 5θ
(τ̃0/τ0)

(τ̃0−T0)s+1 if τ̃0 =∆ min (τ0, 5θ ) ≥ T0

(5.28)

If there is no larger time-constant in the denominator, the closest smaller one is used
instead.

5.2.3 PID-rules

SIMC uses the IMC tuning rules for generating the PID-parameters after a first or
second-order model has been found. A more complete derivation of the rules is found
in Skogstad (2004), but the short version is:

Usually, a desired response with time-constant τc is selected. τc is a tuning constant
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of the SIMC, that is the desired time-constant of the closed-loop system.(
y

ys

)
desir ed

= 1
τcs + 1e

θs (5.29)

Let д(s) be the transfer-function that describes the plant. An ideal controller c∗(s) is
chooses such that if

д(s) = k

(τ1s + 1) (τ2s + 1)e
θs (5.30)

Then, the idealised controller can be written as:

д(s)c∗(s)
1 + д(s)c∗(s) =

(
y

ys

)
desir ed

(5.31)

c∗(s) = (τ1s + 1) (τ2s + 1)
k

1
τcs + 1 − e−θs

(5.32)

The Taylor-approximation is used to get rid of the e−θs ≈ 1 − θs , such that the
approximated controller c(s) becomes

c(s) = (τ1s + 1) (τ2s + 1)
k

1
(τc + θ ) s

(5.33)

becomes ((τc + θ ) s). However, if the lag is the most dominant part of the process, this
kind of tuning will result in a very slow settling-time. This is solved by approximating
the system as a pure integrating process with no k

τ1s+1e
−θs ≈ k

τ1s
= k ′

s . Afterwards, c(s)
can be set as a PI-controller with gains that cause the closed loop to have a damping
factor ξ of 1

д(s)c(s)
1 + д(s)c(s) =

k ′
s Kc

(
1 + 1

τI s

)
1 + k ′

s Kc

(
1 + 1

τI s

) (5.34)
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Sorting out the terms gives

τI s + 1
τI

k ′Kc
s2 + τI s + 1

(5.35)

A system on standard second order form is written as τ 2
0 s

2 + 2τ0ξs + 1. If ξ = 1, any
system with denominator on that form is critically damped. So, in the case of equation
5.34

τ0 =
√

τI
k ′Kc

(5.36)

ξ = 1
2
√
k ′KcτI (5.37)

So if Kc is chosen as in equation 5.33 to be 1
k

τ1
τc+θ , then τI = 4 (τc + θ ). Both these

tuning rules can be combined into one very simple one.

Kc = 1
k

τ1
τc + θ

(5.38)

τI = min {τ1, 4 (τc + θ )} (5.39)

τD = τ2 (5.40)
If a PI-controller is needed, a simpler model is used instead, such that τ2 = 0.

Skogstad (2004) mentions that τc ∈ [θ,∞) can be chosen freely, but that it is a trade-off
between speed and robustness (as well as smaller variations in inputs). The paper
highlights that τc = θ is a good trade-off between speed and robustness.

5.2.4 PID-tuning by using bode-plots

Although Skogstad’s method can be very useful, it might sometimes struggle with
systems where the poles or zeros are complex, since those cases are not defined in the
original method. There are proposed methods for handling such cases, but it is also
possible to simply tune a stable system by observing the phase-response of a stable
system and choosing Kc and TI such that a sufficient phase and gain margin can be
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achieved. If the system is stable and the controller is a simple PI-controller, then it is
also possible to find a set of rules that can automate the tuning-process, so that it is
robust against time-delays and modelling errors.

5.2.4.1 A quick reintroduction to bode-plots (Nyquist’s criteria of stability)

Let the transfer-function of the plant behp (s), and the transfer-function of the controller
be hc (s). Let h0(s) = hp (s)hc (s) An instability in the system is caused if the transfer-
function of the closed loop

M(s) = h0(s)
1 + h0(s) (5.41)

has a pole in the left half-plane. 1 + h0(s) can be divided into a numerator and denomi-
nator, and the resulting closed-loop will have a set of poles and zeros

1 + h0(s) = 1 + n0(s)
d0(s) = d0(s) + n0(s)

d0(s) = (s − λ1) . . . (s − λn )
(s − ρ1) . . . (s − ρn ) (5.42)

If one performs integration of s along the imaginary axis, and then along a circle with
an infinitely large radius in the right half-plane, only poles and zeros in the right
half-plane will give a net contribution to the phase, as described in Jens G. Balchen
(2016). This can be seen in figure 5.1. All zeros λ will give a net negative contribution
to the angle, while all poles ρ will give a positive contribution.

∆̸ (1 + h0(s)) is the total angular change when integrating along the half-circle. Np

and Nn are the total number of poles in the right half-plane in the open and closed
system respectively. The resulting relation is

∆̸ (1 + h0(s)) = −2π
(
Nn − Np

)
(5.43)

So, Nyquist’s stability criteria uses the total phase-contribution of 1 + h0(s), and the
number of unstable poles in the open-loop system to determine the number of unstable
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Figure 5.1: Poles ρ and zeros λ of a transfer-function. The existence of ρ3 makes it
unstable

poles in the closed-loop

Nn = Np −
∆̸ (1 + h0(s))

2π (5.44)

To analyse if an open loop systemwill be stable when the loop is closed, a bode-plot,
like in figure 5.2 is normally used. A bode-plot consists of one plot of the amplitude
of the open-loop, and the phase of the open-loop system. Both of them are plotted
against an angular velocity, ω.
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Figure 5.2: A generic bode-plot of s−0.3
s2+s+1

.

A bode-plot makes it very clear a stable system will be stable in a closed-loop as
well. If the amplitude of h0(s) is greater than 1 (0 dB) when the phase is modulo 360 is
-180 degrees, then the system is unstable.

5.2.5 Gain and phase margins of stable systems

The plant that is being controlled is known to be stable, so the only condition that has
to be satisfied is that the amplitude of the system is less than 0dB whenever the phase
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of the system crosses −180o . It is never possible to know exactly how one might model
the system incorrectly, but bode plots allow saying something about the robustness
against time-delays and against unknown gains affecting the system. If a system has
robustness in both of these regards, then it should also have some robustness to in
regards to the modelling errors with regards to the system dynamics as well.

Since time-delays are written as eθ jω , they only contribute with an addition to the
phase in the bode-plot. This means that a good phase-margin will give robustness
against time-delays. Usually, it is said that a phase margin of 60o and a gain margin of
20dB is a good balance between performance and robustness.

5.2.5.1 Choosing a good controller

One way to say something about a controller is by using the control ratio N (s) = 1
1+h0(s )

and the following ratio M(s) = h0(s )
1+h0(s ) . M tells how the system will track changing

references of a given frequency, as a result, it will also say how much the system
reacts to measurement noise. Meanwhile, N says how well noise or disturbance will
be suppressed. When working with a system that is subject to both noise and process
disturbances, both N (s) andM(s) are necessary. Ideally, N (s) has such a shape that all
disturbances become 0 while ignoring any noise. This is impossible, but it gives a hint
as to how the controller and filters would be chosen. If it is known that some noise
has a very specific frequency, then band-stop filters or notch-filters can be added to
the controller as well.

In figure 5.3, a plot of N (jω) is given for some arbitrarily chosen controller. As can
be seen in the plot, it does suppress disturbances at low frequencies. Additionally, it can
be seen that for high frequencies, the disturbances are simply let through. However,
a rather large peak at around 0.3 rad

s can be seen as well. This peak around where
the crossover-frequency, which means that h0(jω) almost entirely negative. As long
as the phase of h0(jω) crosses −180o , there is always a point where the amplitude of
N (jω) > 1. The way to control the size of this peak is by making sure the amplitude
of h0(s) is sufficiently small around −180o , since if it were to be close to 1, then the
system would amplify any noise or disturbance of that frequency by an almost absurd
amount.
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Figure 5.3: N for a poorly controlled process

There are two possible measures that can be taken to suppress the resonance
around the unwanted frequencies. The first is to simply increase the gain margin. If
the amplitude of ho (jω) is small at ̸ ho (jω) ≈ −180, then the fraction 1

1+h0(jω) does not
grow as large. A phase margin of 20dB will ensure that the resonant amplitude will be
less than 1

1− 1
10

≈ 1.11.

The second option is to use the D-part of the controller to "lift" the phase of
the combined controller and plant. Normally, most plants attenuate high-frequency
signals more than low-frequency ones, so by keeping the phase above −180o for
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longer, |h0(s)| can be made to be smaller at the new crossover frequency. Simply
adding a differentiating term can sometimes lead to other problems, since it makes the
system react more to high-frequency noise. The solution is to add a low-pass filter
to the controller as well. An additional advantage of using a low-pass filter is that a
differentiation term will usually require some numerical differentiation, that might be
ill-behaved. A differentiation term in series with a low-pass filter gives a variation of a
high-pass filter, which is a proper transfer function2, that can be written as a causal
system and discretized in a more well-defined manner.

The need for low-pass filters can be shown in figure 5.4. Even if the plot for N (s)
looked good, M(s) shows that high-frequency noise are not sufficiently attenuated,
making it susceptible to noise, which is very often present in the form of electrical
noise.

2Proper transfer function: The order of the denominator (Highest degree of s) is greater or equal to the
order of the numerator
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Figure 5.4: M for a poorly controlled process
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Chapter 6

Automated tuning

The methods from Chapter 5 do not necessarily give controllers that work perfectly
right away. Because of this, some manual tuning may be needed as well. Some of
the required changes may be intuitive, while others may be dependant combinations
of parameters, as well as some trial and error. As a result, the tuning process can
be quite time-consuming. One solution to this is to make up some kind of measure
of the quality of the system response, and then use an optimisation algorithm, like
Nelder-Mead to minimise said cost.

6.1 Nelder-mead

The Nelder-Mead optimisation algorithm is a very popular method for optimising
convex nonlinear problems. The main selling-point of Nelder-Mead is that the search
of the optima is done entirely by a set of measured points and the corresponding
values of the function, without the use of an approximated or an analytical gradient.
This means that the algorithm tends to be a bit slower than most other optimisation
algorithms, like SQP1.Instead, it has the advantage of being usable on a wide set of
convex functions without much prior knowledge about the function. It should be

1SQP: Sequential Quadratic Programming

49
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noted that according to McKinnon (1996), even though the algorithm works well in
practice, it is possible for it to converge towards non-stationary points.

6.1.1 Theory

Lagarias et al. (1998) summarises the Nelder Mead algorithm quite nicely, so it will
only be covered very briefly in this chapter.

Nelder-mead optimises anN -dimensional function by using a setX = {x1, x2, . . . , xn+1}

of N + 1 points. The points are at all times sorted in such a way that

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn+1) (6.1)

At iteration k, the set Xk is updated to Xk+1 by replacing the worst the worst point
xkn+1 in the set. xkn+1 is reflected over or drawn to the "centre of mass" x̄ = ∑N

i=1
xi
N off

the other points, depending on of it improves the point or not. The new point xknew
will be given by

xknew = x̄k + ρ(x̄k − xkn+1) (6.2)

Several possible candidates along the line are tested. If the function дk (·) is defined as

дk (ρ) = f (x̄k + ρ(x̄k − xkn+1)) (6.3)

the update-rule for a single iteration is described in algorithm 6.1.1.
Afterwards, the new set Xk+1 is given by

Xk+1 = {xk1 , x
k
2 , · · · , x

k
n } ∪ {xknew} (6.4)

Lagarias et al. (1998) also expands the algorithm by adding tie-breaking rules for if
two function values in X are the same.
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Figure 6.1: The 4 possible update-steps in Nelder-Mead’s optimisation algorithm
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Algorithm 1 Find xknew = x̄ + ρ(x̄k − xkn+1)
Require: xkn+1, x̄k , дk (·), f (xkn+1)
Ensure: y = xn

1: if д(1) < f (xkn+1) then
2: if д(2) < д(1) then
3: ρ = 2
4: else
5: ρ = 1
6: end if
7: else if д(1/2) < f (xkn+1) then
8: ρ = 1/2
9: else
10: ρ = −1/2
11: end if

6.1.2 Issues

In the two-dimensional case McKinnon (1996) proved that it is possible for the simplex
shrink repeatedly into a line, and that this line can be orthogonal to the steepest decent
direction. As a result, some precaution should be taken with the optimised function,
since the underlying function of a simulation is unknown. If these issues become far
too big, other methods, like simulated annealing or genetic algorithms can also be
used, but they normally need a lot more samples when going from a poor solution to a
decently .
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7.1 Parameter estimation results

Since everything in the simulator is inside Simulink, it is not too hard to get noise-free
measurements, which means no experiments had to be repeated to suppress noise
or disturbances. A step-response seemed to work better with the simulator than an
impulse-response,so that was used instead. The diagonal of Σ after a singular value
decomposition can be used to say something about how much adding additional states
in a model will help in lowering the estimation error.
From the plot in figure 7.1, it can be seen that the diagonal elements of Σ decrease
quite rapidly. Using too many parameters will often cause a mode to be overfitted,
which can lead to problems. As a result, models of order 5,7, 10, 12 and 15 were tested.
To validate the estimated models, they were plotted against the original step-response.
As can be seen in figure 7.2, even the 10th order models struggles with estimating
certain outputs. This is because the inputs and outputs have not been scaled properly,
so the total error will go down significantly more if the error in the HHV is reduced a
little, than if the error in YO2 is eliminated. The solution to this is to scale the inputs
and outputs somewhat. One formulation for the goal of the scaling can be set is to
make as many input-output relations have an amplitude of 1 for some norm (max, L2,
etc.). There is probably a method to finding the optimal solution to this problem, but
for the sake of simplicity, it is also possible to alternate between scaling the inputs and
the outputs, such that the largest norms, are equal to 1. The exact method is not that
important, as long as the HHV or vдrate does not dominate the estimation.
After using ERA to estimate the system, it can be scaled back with the same vectors.
The result, as seen in figure 7.3. The resulting approximated system has a far lower
relative error. This scaling is necessary for creating an accurate low-order model that
can be used for controlling all outputs of the plant, not just the estimated HHV-value.

7.1.1 Choosing a model order

Picking a model order can be somewhat difficult. From what can be seen in figure
7.3. All estimates struggle with matching some of the outputs. Most importantly is
the relation between the input air and steam production. Using a model with 7 states
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Figure 7.1: Σi ,i
sumN

j=1(Σj , j )
from the SVDUΣV ∗ = H1



56 CHAPTER 7. EXPERIMENTAL RESULTS

1.8 2 2.2

104

5

10

F
s
t [

k
g

/s
]

F
aII

 [kg/s]

5

7

12

15

true

1.8 2 2.2

104

4.5

5

F
O

2
 [

k
g

/s
]

1.8 2 2.2

time [s] 104

4.1

4.15

4.2

H
H

V
[J

/s
]

107

1.8 2 2.2

104

5

10

15

F
w,in

 [kg/s]

1.8 2 2.2

104

3

4

1.8 2 2.2

time [s] 104

4

4.5

5
107

1.8 2 2.2

104

5

10

F
aII

 [kg/s]

1.8 2 2.2

104

4.6

4.8

1.8 2 2.2

time [s] 104

4.15

4.2
107

1.8 2 2.2

104

0

1000

2000

3000

v grate [m/s]

1.8 2 2.2

104

-1000

-500

0

1.8 2 2.2

time [s] 104

0

5

10

109

Without disturbances

Figure 7.2: Approximation from un-scaled measurements. The lack of scaling causes
an over-fixation on ˆHHV and vgrate
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Figure 7.3: Approximation from scaled measurements. The relative error is now much
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might look sufficient at first, but later experiments who that a model order of 12 was
found to greatly outperform it when attempting to control the plant. The reason for
why the model has to be so precise is most likely because the controller can get an
immediate increase in steam production by increasing FaI while decreasing FaI I . If
the controller uses this method to suppress immediate changes in steam-production,
then this part of the model has to be as precise as possible.

7.1.2 Expanding the model with disturbances

Additional experiments were also performed in an attempt to estimate a model for
both process disturbances and normal inputs. Figure 7.4 shows how much each each
state contributes to the new approximation. Figure 7.1 and 7.4 are remarkably similar,
but the model without disturbances decreases faster in the beginning, which is the
reason for why a simpler model can be chosen.
Just like in the previous model, the inputs and outputs have to be scaled to get a decent
model. Additionally, the extra inputs representing the measurements require a more
complex model if everything is to be modelled somewhat properly. As a result, a model
of order 15 is used instead of a model of order 12.
The estimated response reinforces the notion that Q_grate does not affect FO2 very
much. This is also the reason as for why the model seems to struggle more with those
outputs than most of the other input-output relationships.
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Figure 7.5: Model that also shows the dynamics of disturbances
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7.2 PID-results

From an earlier project done by a summer-student at SINTEF, another controller has
already been implemented. As a result, implementing SIMC or similar tuning methods
is almost only interesting from the perspective of showing that it can be done. An
easier approach is to make an automatic tuning algorithm that tries to improve on the
parameters that have already been used.

If the simulator does not take too much time for each simulation, it is possible to
automate parts of the tuning process and improve the controller by brute force if some
kind of measure of the quality can be found. Normally, a good measure for the quality
of a controller will involve looking at overshoot, settling time and potential stationary
deviation. In this case, the cost of the controller is instead deviation e of the theoretical
noise-free measurement ynoise-free from the reference value.

cost =
(
m∑
j=1

N∑
i=1

α j
(
eTi , j

)2
)

+
m∑
j=1

β max
Ti

eTi , j +
∑

γj · |
N∑
i=1

eTi , j | (7.1)

(7.2)

MATLAB has an implementation of the Nelder Mead algorithm in accordance
to how it was described in Lagarias et al. (1998). This makes it possible to get good
controllers by automatically tuning the parameters during the night.

Themain drawback is that the algorithm still requires at least around 1000 iterations
to find a really good solution. Additionally, the optimisation does not take robustness
or noise-rejection if it is not made into a part of the cost.

An example of the progress of an automated tuning process can be seen in figure
7.6

7.2.1 AB-controller

Each output-variable is connected to one input-variable, with the secondary air being
used to suppress any changes in the mass-flow of oxygen in the flue gas FO2 and the
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Figure 7.6: Norm of y(t ) − yr ef (t ) at each improved time-step of the Nelder-Mead
optimisation.

Figure 7.7: A/B controller structure. Setpoints are assumed

primary air being used to suppress changes in the production of steam Fst . Using the
primary air to control the steam production over long time-horizons is usually a bad
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idea since both a decent flow of primary and secondary air is needed for the gases to
mix properly and for complete combustion to occur. As a result, the ratio between
primary and secondary air FaI

FaI I
is used as the final controlled variable in the plant. The

controlled input-variable that is used to make this ratio follow the desired reference
is a combination of grate-speed and the mass-flow of waste fed into the combustion
chamber. A scaled difference could also have been used, but using a ratio may be
desirable. Using too much secondary air is not too bad, beyond the loss of energy that
comes from mixing the hot flue gas with ambient air. But using too little is potentially
very bad since it might mean producing noxious gases.
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Figure 7.8: A/B controller disturbance step response
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Figure 7.9: A/B controller disturbance step response

Given a sudden step in process-disturbances, the change can be seen in 7.8. The
change involves all three values forQgrate increasing by 50%. Regardless of the amount
of measurement.-noise affecting the controller, low-pass filtering the signals still
desirable as a safety-precaution. Due to the nature of the simulator having some pure
feed-through terms, it is also necessary for completing a simulation. A basic continuous,
linear, time-invariant low-pass filter with a time-constant of 0.1 was chosen.
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τlow-pass = 0.1 (7.3)

The noise-spectrum may be very different, depending on the type of method that is
used for measuring each variable. A common for of measurement-noise is the hum
from the 50Hz AC-grid. The low-pass filter does serve the rejecting the noise from the
AC-noise, but if the noise has a frequency-component around 1Hz that is too large,
then the result will be far less pretty.

|
1

(50 · 2π ) 0.1j + 1 |≈ 0.0318 (7.4)

|
1

(1 · 2π ) 0.1j + 1 |≈ 0.84673 (7.5)

7.2.2 Cascaded A/B controller

Øie Kolden (2019) also went on to investigate the possibilities of using a theoretical
sensor measuring the heating value of the waste HHV when controlling the plant. The
measure proposed there was an estimate

ˆHHV =
∑
j
CpjFf д, j

(
Tf д −Tamb

)
(7.6)

which is the power delivered to the by a flow of flue-gas. The controller structure,
as seen in figure 7.10 is the same as in 7.7, with the exception that the primary air is
used to control ˆHHV , while the controller that tries to control the steam-production
gives instead a reference to ˆHHV . The main advantage of using this controller should
be that it can detect changes in the power delivered form combustion earlier, which
allows for better control of the steam production.

As can be seen, from figure 7.10, both controllers have a rather similar response to
changes in the waste quality when it comes to the oxygen concentration. The main
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Figure 7.10: Cascaded A/B controller structure

advantage of using an estimate of the HHV-value when controlling the plant is the fact
that the HHV-value changes before the steam-production, so the cascade controller
can suppress the negative peak in the production of steam that happens for both the
A/B-controller and the cascaded A/B-controller.

Figure 7.12 has a noticeable property in its response. It does not change the total
amount of time needed tomake the Fst converge back to its reference, but themaximum
amplitude of the error has decreased significantly. Additionally when looking at the
changes in inputs needed to achieve this, figure 7.11 shows that the inputs are almost
identical, with the only difference being very slight differences in timing, with the
cascaded controller being marginally more aggressive in its usage of primary air.
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Figure 7.11: Cascaded A/B controller disturbance step response
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Figure 7.12: Cascaded A/B controller disturbance step response
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7.3 MPC results

MPC offers a structure for designing a controller that should be able to stabilize the
plant. Nevertheless, there is a multitude of different architectures which may provide
different properties. In combination with this, some weights have to be tuned for the
controller to prioritize the objectives we want to follow.

Multiple criteria should be upheld.

• Fst and FO2 should be stabilized and should reject disturbances.

• Non-zero mean disturbances should be rejected completely.

• The controller should be verifiable through the use of a simulator.

• The ratio between FaI and FaI I should only be able to deviate form the pre-
determined reference ratio temporarily

• In the case where there are hard safety-constraints, the controller should try to
uphold these.

• The controller should be well-behaved, even if the inputs have saturation limits
or limits to the rate of change.

Normally, an MPC differs somewhat from an LQR in that it can express a cost
for the change in variables. The LQR usually has to use high-pass filters to achieve a
similar effect. Fortunately, a low-pass filter on the input is already required to control
the plant, since both MPCs and simulators are bad at handling feed-through terms
through the plant and controller. As a result, the low-pass filter can be used to make a
high-pass filter:

1 − 1
τlow passs + 1 =

τlow passs

τlow passs + 1 = hhigh pass(s) (7.7)

Matlab already has a function lqry, which returns the gain Klqr . Klqr optimizes
the Ricatti equation if an output-cost Qy and a state-cost R is provided. An optional
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cost matrix, N , which punishes or rewards certain combinations of x and u is also
used to implement the punishment for changing the inputs too much.

Klqr = lqry
(
lqry_plant,Qy ,R,N

)
(7.8)

lqry should be used instead of normal lqr, since performing the multiplication Q =
CTQyC may break the positive semi-definiteness of Q , due to numerical errors. Any
cost that may instead result from changes in input or output can be expressed by
expanding the observed states

Clqr =


C

Cinput_filter

C (A − I )


(7.9)

Nelder-Mead can be used to optimise the costs in the controller and estimator.
Because MPCs and LQR are usually tuned by multiplying the weights of factors 10, it
is paramount that the optimised vectors represent exponents of 10, as the alternative
would lead to very poor convergence. As for now, it is assumed that all forms of noise
and disturbances are uncorrelated, so both Rlqe and Qlqe are made to be diagonal
matrices. The same is done for Qy and R, which is used by the controller. Tuning the
plant completely blindly can often be a bad idea since it can lead to several unneeded
steps before reaching any decent results. There is no guarantee that the problem is
truly convex, so it might be preferable to tune the controller manually until it does a
decent job.

7.3.1 Different LQE structures

Section 7.1 showed two different kinds of models, one where the disturbances were
measured, and one where they are almost ignored completely. An LQE usually needs
some measure of variance with regards to measurement noise and process disturbances.
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Figure 7.13: All controllers that assume all disturbances to only come from Qдrate
perform poorly. Only the last one is not based on doing that

By using data that is somewhat representative of process-data, it should, in theory, be
possible to create a good LQE only by using the estimated model and those measures.
In practice, the resulting controllers struggled significantly and performed worse than
the PID-controllers, as shown in figure 7.3.1.

The solution to this would normally be a rather unpleasant one, as it involves
tuning the expected disturbance for each state, and the expected noise for each input.
Luckily, it is not so hard to make an estimator that functions decently, and that can
stabilise the plant in combination with a gentle controller. As a result, tuning the
estimator becomes part of the optimisation tuning problem.
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7.3.2 Integral LQR

Almost any model predictive controller that is not overly aggressive should be able
to fulfil point 1. The second one is a bit more tricky, but the normal solution to this
is to add integral states to all controlled outputs. This also has the added benefit of
allowing reference tracking, even without explicitly creating a feed-forward matrix.
The easiest way to get integral action for the outputs is to expand the state-space

AI =

A 0

I 0

 (7.10)

BI =

B

0

 (7.11)

CI =

C 0

0 I

 (7.12)

DI =

D

0

 (7.13)

(7.14)

As can be seen in figure 7.3.2, the linear quadratic controller still loses to the PID-
controllers on some points. Mostly in regards to steam production andO2 concentration.
The reason for this may come from the fact that the MPC uses one filter on the input
with the cutoff-frequency of 7 seconds to mirror the filter that had to be used during
parameter estimation to avoid aliasing, as well as the filter on the plant input, that
is used to make the estimated plant proper. The PID only uses a filter with a time-
constant of 0.1 seconds, so an aggressive response is required to compete, then the
PID-controller has an advantage.

The main draw-back is that the LQR-controller has an unintended change in the
amount of air released. This also happens to the PID, but that is because the selected
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Figure 7.14: Outputs: LQR versus PIDs

ratio between primary and secondary air is chosen to be different from 1. Even
if aggressive usage of primary and secondary air can be a useful tool for handling
disturbances, changes in grate-speed andwaste-flow should be the preferredmethod for
handling persistent changes in waste-composition. It is possible to give an additional
cost for whenever FaI and FaI I . The resulting controller, as seen in figure 7.3.2 loses a
lot of its ability to reject disturbances properly, while also being somewhat robust.
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Figure 7.16: Outputs: PID vs LQR with integral cost on FaI − FaI I

7.3.3 LQR with integral cost on FaI − FaII

Balancing the normal costs, trying to reject disturbances, while also enforcing a decent
ratio between FaI and FaI I may prove to be a pointless endeavour. It may also mean
not using a very useful tool for rejecting disturbances since allowing the two air-flows
to temporarily deviate has a faster response than changing the amount of waste ted
into the furnace. The intuitive solution to this is to add an integral cost to FaI − FaI I

instead, and then giving it a rather low priority compared to the other objectives. The
resulting response is shown in figure 7.3.3
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Figure 7.18: Outputs: PID vs MPC with integral cost of FaI − FaI I

7.3.4 Discrete MPC

Even if a rather low sampling-time might work well for an MPC in practice, it does
not work as well with the simulator, due to the stiffness of the problem. As a result, a
sampling-time of 20 had to be chosen, even though that is noticeably slower than the
preferable sampling-time of somewhere around one second. As a result, the MPC will
have objectively worse performance than the LQR as long as all inequality-constraints
are inactive. The delay means that the weight used for the LQR may not work as well
for an MPC. The simulation will also run more slowly when an MPC is involved.
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Figure 7.19: Inputs: PID vs MPC with integral cost of FaI − FaI I
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7.4 Robustness analysis

Even though the system is stable with the model that has been given, the assumptions
that were made may be somewhat incorrect. As a result, the constructed controller
should preferably also have at least some robustness against modelling errors. This
analysis will only focus on errors in input gain and on time-delays. All models described
in this section will be of continuous LTI systems.

7.4.1 Combined estimator and physical system

The physical plant, and the one used by the MPC are not entirely the same. As a result,
some extra steps have to be taken when representing both the physical system and
the estimated one in the same state-space. This analysis will only go over input-delays
and not output-delays.

Let A,Bp ,C and D represent the physical system and the matrix B input matrix of
the estimated system. Finally, let Klqe represent the feedback mmatrix used by the
linear quadratic estimator. Then the open-loop system between the real state and the
estimated state can be written as:


x

x̂

 =


A 0

KlqeC A − KlqeC



x

x̂

 +

Bp

B

 u (7.15)

The controlled system is not necessarily the same as the estimated system. A
low-pass filter has to be used by the controller or estimator to make remove all feed-
through terms from LTI-system. This low-pass filter is represented by the matrices
AF , BF and CF . Additionally, the controlled states are not necessarily the same as the
measured outputs, so a different pair of matrices Cc Dc are used to axtract them form
the estimate. Said measurements are used for making the integrator states of the plant.
Finally, a padé-approximation is needed for the delay between the input-filter and the
rest of the process. The delay will be estimated by AD , BD , CD and DD .
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The full system is divided into several smaller sub-systems.

xf ull



xphysical

xestimated

xinput filter

xintegrated outputs

xpadé approxomation

(7.16)

Af ull =



A 0 BpDDCF 0 BpCD

KlqeC A − KlqeC BCF 0 0

0 0 0 AF 0

Cc 0 DDDCF 0 DCD

0 0 BDCF 0 AD


(7.17)

Bf ull =



0

0

BF

0

0


(7.18)

Instead of using normal states as outputs, it is also possible to translate them directly
into the corresponding optimal set of inputs. The matrix Klqr uses the estimated states,
as well as the filtered states and the integrated states.

Cf ull =
[
0 Klqr 0

]
(7.19)
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Because of the low-pass filter, Df ull is always 0. The stability of the feedback loop
can be analysed by adding a padé approximation of a delay in the feedback between
the optimal next input given out by Cf ull and the input used on Bf ull .

7.4.2 The root locus plots

With a fully functioning state-space system of both the physical system and the
estimated one, it becomes possible to say something about how the poles evolve,
depending on delay and static gain error. To test the static gain error, it is simply
sufficient to multiply Bp by some constant. The robustness to delay can be tested by
adding a padé- approximation in the feedback-loop, of some pre-determined order,
and then setting the desired delay. In this analysis, order 9 was chosen, although there
may be reasons for choosing other padé-approximations as well.

In this section, the LQR-controller with integral cost on FaI − FaI I will be covered,
since it was one of the best-performing architectures.

The controller is quite sensitive to time-delays from the results in figure 7.4.2,
becoming unstable if all inputs suffer an input-delay of only 0.3 seconds. If it can be
guaranteed that there will be some inputs without delays, some stronger guarantees
can be given instead. A delay of 5 seconds can be tolerated if there is no delay in the
grate-speed. Sadly, this input that gives a notable improvement is if vдrate .

The fact that vдrate is one of the most problematic inputs was not something that
could be solved in this project. It is especially bad, since it would seem more reasonable
that the fans have a lot less variance in their delay compared to the ram and the grates,
simply because they are a lot faster. In theory, decreasing the reliance onvдrate should
make it better, but no solution was found during this project that also resulted in
performance that could rival the previous controller. There may be some solution,
using a different architecture or bu using a different set of weights.
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Figure 7.20: Root locus plot for delays on all plant inputs
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Figure 7.22: Root locus plot for unmodeled time-delays



Chapter 8

Conclusions and future work

8.1 Conclusion

The task of controlling an MSW combustion process proved to be a difficult one. This
project provided the luxury of working with a simulator, which gave a rich source of
potential data, as well as possibilities to verify the results. This also proved to be at the
core of the issue, since certain kinds of controllers could not be implemented, due to
the simulation time going towards infinity, or the simulator crashing with unknown
errors, if the controller had discrete samples that were too frequent.

In the project, the ERA was implemented, allowing for estimating the dynamics
of a linear system with unmeasured internal states was implemented. Furthermore,
several different LQR and MPC controllers were implemented. Hard limits on the
input-variables were also added to the MPC to better allow it to handle saturation, but
this never became relevant with the disturbance test-data that was available. Hard
limits on the measured outputs, with slack variables were also implemented, but the
results were never discussed properly, due to them never being enforced. Due to what
is assumed to be minor errors in implementation, the LQR-controller was not able to
outperform the PID-controllers. There were, however several more positive outcomes.
A root-locus method was implemented for estimating the stability of a closed-loop
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estimated system. Additionally, a simple method for automatically tuning the PID-
controller and the optimal controllers was also implemented.

8.2 Future work

The purpose of this project was to develop a controller that could outperform the
current PID-controller. This was only achieved in part since the current PID-controller
was improved by the process of automated tuning. There are a multitude of different
things that could be done if more time is was available.

• Themost important improvement is the fact that there wasmost likely something
wrong in how the implementation of the MPC which causes it to under-perform.
It may be because of more aggressive filtering, but the result is that

• Implement some estimate for the robustness of the current PID-controller. Most
likely by using the ERA to make open-loop models that can be analysed.

• Feed-forward control on the plant was implemented,but did not work (see
appendix). The nature of the problem may require a more advanced MIMO feed
forward controller.

• Using integrators instead of low-pass filters could, in theory, implement a better
way to limit the controller from changing the inputs too quickly.

8.3 Possibly useful improvements

Some of the potential future work are relatively large tasks, and should not be pursued
unless there are explicit observations that indicate that they might be needed.

• If the true test-data make the non-linearities in the plant more prominent, a
simplified nonlinear model could be implemented with nonlinear methods like
simple linear regression, or the more advanced SINDy-algorithm. But these
methods usually require full-state measurement.
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• Proper analysis of process-disturbances and measurement-noise should be im-
plemented since it might show the need for specialised band-stop filters.

• Exploration of how the performance degrades if the estimated HHV-value is not
available.

• An exploration of what measurement-techniques are available, and if those
measures could be made to behave well in combination with a linear controller.

• If only process data is available on future unknown plants, Observer Kalman
Filter Identification may be used required for the ERA to work in the presence
of process disturbances and measurement noise.
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Appendix A

Linear Quadratic Regulator

The Linear Quadratic Regulator is a much-explored part of optimal control. It has the
advantage of being able to minimize equation A.1 for any x , simply by pre-computing
a state-feedback matrix Klqr . This can be particularly useful, since a discrete MPC
with an infinite time-horizon and an LQR will give the same sequence of inputs, given
the same costs and same sequence of measurements.

The LQR minimizes a quadratic cost.

J =
∞∑
k=0

xTkQxk + uTk Ruk + xTk Nuk (A.1)

Most sources do not explain why the Riccati equation gives an optimal feedback matrix
Klqr , simply that it does. But Boyd (2008a) gives does give a proof. Since the source is a
set of lecture notes, and not a piece of published work, the proof ill has to be reiterated
here.

Given a controllable plant

xk+1 = Axk + Buk (A.2)
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If the plant is controlable, for some n ≤ ∞

∃u1,u2, . . . ,un : xn = 0 (A.3)

Since all linear systems have their equilibrium at 0,

x0 = 0 (A.4)

xk+1 = Axk + B0 (A.5)

⇒ xk = 0∀k ≥ 0 (A.6)

This implies that if a plant is controllable, there exists an input sequence which ensures
that J ≤ ∞. The way this optimal J is found is by a recursive function. Imagine a
single-step horizon problem, where the cost Q of the current state and of the symetric
cost of the next state P1 are both known. Then the problem looks like

J1 = xTQx + uTRu + (A + Bu)T P1(A + Bu) (A.7)

Q = QT ≥ 0,R = RT ≥ 0 (A.8)

The best single input u can be found by taking the gradient of J with respect to u and
solving for 0. By using ∇u (uTAu + bTu) = (A + AT )u + b from Petersen and Pedersen
(2012), and the symetry of R and Q, ∇u J becomes

∇u J1 = 2
(
R + BRP1B

)
u + 2

(
BT P1Ax

)
(A.9)

Setting ∇u J = 0, and separating u to the left-hand side gives

(
R + BT P1B

)
u = −

(
BT P1A

)
x (A.10)

R is positive definite, while P1 is guaranteed to be positive semidefinite. Therefore,
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no eigenvalue can be zeros and the matrix must be invertible. The optimal input u is
proportional to the state x. The transformation from the current state to optimal input
therefore becomes a trivial matrix-multiplication, with the matrix Klqr ,1

Klqr ,1 = −

(
R + BT P1B

)−1 (
BT P1A

)
(A.11)

As the reader might have guessed, the single-horizon cost can be used to recursively
find the cost of an arbitrary number of steps.

Pk+1 =
(
A − BKlqr ,k

)T
Pk

(
A − BKlqr ,k

)T + KT
lqr ,kRKlqr ,k +Q (A.12)

Because of equation A.3 and A.6, there exists a sequence of inputs that gives a
finite infinite-horizon cost, so the optimal solution has to be just as good or better.
Consequently P should converge to some positive definite matrix P∞ as enough itera-
tions have been done. After the cancelling the redundant terms, the equation for P∞
becomes the Riccati equation

P = AT PB
(
R + BT PA

)−1
BT PA■ (A.13)

The matrix equation will always have at least more than one valid solution, but only
one of them is positive definite, and therefore the correct one. The state feedback gain
can easily be found from the solution.

Klqr = −

(
R + BT PB

)−1 (
BT PA

)
(A.14)

There is also a similair proof in Boyd (2008b), which is based on the idea of
approxomating the dynamics over a time-step h → 0, which gives an optimal input

Klqr ,cont = −R−1BT Pt (A.15)
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And then also solving the Riccati differential equation A.16 backwards in time

− ÛPt = AT Pt + PtA − PtBR
−1BT Pt +Q (A.16)

The solution can also be found by setting ÛPt = 0, and simply solving the matrix
equation.



Appendix B

Feed forward control

This was never implemented into the controller, which is why it is in the appendix.
An alternative to trying to suppress most disturbances to estimate them through

output-measurements, is if they can be measured directly. If the plant is sufficiently
well-behaved, then it is possible to make a feed-forward controller that can cancel the
effects of the process disturbance. Most feed-forward control is done on SISO1 systems,
like what is seen in figure B. In this model, the process dynamics form the controllable
input to the output is P (s), the dynamics from the process disturbance to the output is
G(s) and the feed-forward controller is F (s), while the feed-back controller is C(s). In
a SISO-system, if P (s) has no zeros in the right half-plane the easiest way to make a
controller that will cancel the disturbance is by making

F (s) = 1
P (s)G(s) (B.1)

But this is usually not possible if any of the zeros are in the right half-plane. The result
to this is normally to split P (s) into two P (s) = Pmp (s)Pnmp (s), where Pmp is all the state
that make up a phase system2, while the Pnmp only the poles in the right half-plane. It

1Single Input, Single Output
2Minimum phase will mean that all zeroes are in the left half-plane
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is not possible to get rid of the bad poles, so instead, a set of stable zeros can be used
to counteract Pnmp = (−T1s + 1) · · · (−Tns + 1). Depending on what G(s) is, some factor
α can be chosen as to decide how aggressive the feed-forward controller should be.

Fnot proper(s) = G(s) 1
Pmp (s)

1
(αT1s + 1) · · · (αTns + 1) (B.2)

If P (s) has a higher relative degree than G(s), then a set of low-pass filters is also
needed to make the feed-forward controller realisable.

F (s) = Fnot proper(s)
1

(τlp,1s + 1) · · · (τlp,N s + 1) (B.3)

Where M is the difference in relative degrees between the controllers. α should be
chosen such that the feed-forward controller is not too careful as to not have any
effect at all, but also so that the input does not cause an over-correction in the other
direction. The initial value-theorem can give an indicator as to how the plant might
react to the sudden change. By replacing all s with ω → ∞ and allowing, it is possible
to see what the initial value to an impulse-response will be. In the case of this project,
G(s) is rather slow, and would be able to correct for a lot the reaction in the opposite
direction. As a result, α = 1 would possibly be a decent choice.

In the idealised case, the step-response from an input would look like what it
does in figure B.2, which is the result of a feed-forward controller on the linearized
plant in MATLAB. The undamped response is from the closed-loop system, from a
step-response on the different changes in Qдrate . The damped one is if there is a
feed forward controller there as well. Three controllers try to correct for the changes
in steam production caused by one of the disturbances. These controllers change
FaI − FaI I to achieve this damping effect. A forth feed forward controller measures
FaI − FaI I and tries to nullify its effect on the oxygen concentration by changing
FaI + FaI I

Problems can be seen when this feed forward controller is implemented into the
closed-loop system in figure B.4. In theory, Fst and FO2 should both improve from the
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P(s) +

G(s)

+     
-

C(s)
-
+

v(t)

u(t) y(t)e(t)

F(s)

Figure B.1: Comparison of the different controllers with stochastic disturbances

feed forward controller, but in practice, it only became worse. This may be due to
modelling errors or due to interactions with that LQE3, which did not measure any
disturbances. Additionally, the inputs used were also too large for normal operation,
as seen in figure B.2. An actual implementation would most likely require the usage
of the other two inputs as well. Possibly a MIMO4 method for feed forward control
would be required.

3Linear Quadratic Estimator
4Multiple Input Multiple Output
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Figure B.2: Idealised output of a feed forward controller with α = 1
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Figure B.3: Amplitude of FaI − FaI I for the idealised steam feed forward controllers,
given the same input-step as in figure B.2
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Figure B.4: Outputs: Practical feed forward. The results became worse.
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