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Preface
This thesis concludes the author’s degree of Master of Science in Cybernetics and
Robotics at the Norwegian University of Science and Technology (NTNU). It is writ-
ten in collaboration with Det Norske Veritas-Germanisher Lloyd (DNV GL), and the
work has been carried out under the supervision of Edmund Førland Brekke from the
Department of Engineering Cybernetics (NTNU), and co-supervisors Geir Hamre
and Vegard Kamsvåg from DNV GL.

This thesis is a continuation of the author’s project thesis [1] from the fall semester
of 2019. Some sections are partially re-used or influenced from the project thesis, as
it is not published work available for the public. These sections include:

• Parts of Section 3.1 - Section 3.2

• Parts of Chapter 4

• Parts of Section 6.1 - Section 6.2

The work reported in this thesis build on previous advances made by several PhD
and MSc students at NTNU. The tracking framework used in this thesis was devel-
oped by Erik Wilthil and Andreas Flåten in [2, 3], implemented on ReVolt by Håkon
Norbye in [4], and further adapted by the author in [1]. The real-time sensor fusion
pipeline on ReVolt was developed and implemented in [4]. The SBMPC algorithm
was implemented on ReVolt by Tonje Midjås in [5], and the further development of
the SBMPC was based on [6]. The simulator environment has been provided by DNV
GL, along with the physical scale model ReVolt. Illustrations and figures have been
created by the author unless stated otherwise.

The COVID-19 pandemic has had a significant impact on the progress of this
thesis, where access to ReVolt has been restricted or limited from early March to
late May. This drastically reduced the possibility of performing experimental sea
trials. As a consequence, experiments for the closed-loop CAS were prioritized, and
no separate experiments for verifying the tracking system’s performance beforehand
were conducted. Additionally, significant problems with the hardware, especially the
azimuth thrusters, on ReVolt, drastically reduced the testing time of the conducted
experimental sea trials.
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Abstract
In this thesis, a closed-loop collision avoidance system (CAS) based on the scenario-
based model predictive control (SBMPC) is developed and tested for autonomous
surface vessels (ASVs) using the 1:20 scale model ReVolt. The CAS is of great
importance to make robust, safe, and predictable decisions in compliance with the
international regulations for preventing collisions at sea (COLREGS) for ASVs.

The CAS has the ability to use either an integrated probabilistic data association
(IPDA) camera-LiDAR sensor fusion system, or an automatic identification system
(AIS) tracking system based of the missing measurement Kalman filter (MMKF).
Prediction of the own ship trajectory in the SBMPC has been improved by consid-
ering time-varying heading reference, a cross-track error dependent lookahead dis-
tance, and the ability to change course during the prediction horizon. Furthermore,
an improved sensor setup on ReVolt has been employed by moving the LiDAR, and
a camera-LiDAR calibration has been performed.

The collision avoidance (COLAV) method, with the AIS tracking system, has
been implemented and tested in a variety of real-time simulations. The results show
that the SBMPC CAS can avoid the obstacles in compliance with COLREGS in all
performed scenarios. Furthermore, the use of change points improved the efficiency
of the evasive maneuvers as well as making the maneuvers more predictable to other
vessels.

Real-life experiments with ReVolt using IPDA LiDAR tracking was then per-
formed to verify the behavior of the COLAV method. The results show promising
real-time capabilities, successfully avoiding the obstacle in all scenarios. The evasive
maneuvers suffered from slow response due to the low bandwidth of the maneuvering
controllers. The tracking results were verified by ground truth data and showed con-
sistent and accurate estimates. The verification of the camera-LiDAR sensor fusion
system remains as future work.
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Sammendrag
I denne oppgaven har et antikollisjons-system i lukke sløyfe basert på scenariobasert
modellprediktive regulator (SBMPC) blitt utviklet og testet for autonome overflate-
fartøy ved å bruke 1:20 modellskalabåten ReVolt. Antikollisjons-system er vesentlig
for å utføre robuste, trygge og forutsigbare avgjørelser som samsvarer med de inter-
nasjonale forskriftene for forebygging av kollisjon på sjøen (COLREGS).

Antikollisjonssystem kan velge mellom å bruke et integrert probabilistisk datas-
sosiasjonsfilter (IPDA), kamera og LiDAR-sensorfusjonssystem, eller et automatisk
identifikasjonssystem (AIS) trackingsystem basert på et modifisert versjon av Kalman-
filter. Prediksjonen av trajektoren til eget skip i SBMPCen har blitt forbedret ved å ta
hensyn til tidsvarierende headingreferanser, en lookahead-distanse som er avhengig
av cross-track-feil, samt muligheten til å endre kursreferanse underveis i prediksjon-
shorisonten. Dessuten har et nytt sensorsystem blitt satt opp på ReVolt i samarbeid
med ansatte i DNV GL, og en kamera-LiDAR-kalibrering har blitt utført.

Antikollisjonsmetoden, sammen med AIS trackingsystemet, har blitt implementert
og testet i en rekke sanntidssimuleringer. Resultatene viser at det SBMPC-baserte an-
tikollisjonssystemet klarer å unngå dynamiske hindringer i samsvar med COLREGS
i alle utførte scenarier. Videre viste det seg at å endre kursreferanse iløpet av predik-
sjonshorisonten effektiviserte unnamanøvrene i tillegg til å gjøre unnamanøvrene mer
forutsigbare for andre fartøy.

Det ble utført sjøeksperiment med ReVolt, som brukte IPDA LiDAR-tracking,
for å verifiserte oppførselen til antikollisjonsmetoden. Resultatene viser lovende san-
ntidsegenskaper, der hindringen ble unngått i alle utførte kollisjonsscenarier. Unna-
manøvrene led av treg respons grunnet lav bånnbredde på manøvreringsregulatorene.
Trackingresultatene ble verifisert av GNSS-data og viste konsistente og nøyaktige es-
timater. Verifikasjonen av kamera-LiDAR sensorfusjonssystemet gjenstår som videre
arbeid.
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Chapter 1
Introduction

1.1 Motivation

Collisions at sea can cause fatal consequences for the humans involved and signifi-
cant environmental and structural damages. The main contributor can be attributed to
human error, which is responsible for 75%− 96% of maritime casualties. According
to [7], lack of operational skills and situational awareness are the primary reasons
for humans’ accidents. This encourages the development of unmanned autonomous
ships, effectively reducing human involvement in maritime operations. Addition-
ally, autonomous shipping gives environmental and economic benefits, where a 2016
study [8] projected over seven millions dollars could be saved per autonomous vessel
over 25 years.

One of the main challenges of employing autonomous surface vehicles is the
collision avoidance system problem. Simply avoiding an obstacle is not sufficient,
as the maneuvers in maritime navigation should abide by the COLREGS, agreed
upon by the International Maritime Organization in 1972 [9]. This adds another
level of complexity to the problem. Moreover, achieving situational awareness using
sophisticated sensors in a target tracking system is another demanding challenge.
These challenges need to be handled with the utmost respect as they are critical in
the development of a fully operational closed-loop ASV.

1.1.1 The ReVolt project

The classification company DNV GL launched the ReVolt project in 2013 [10]; a
shipping concept envisioned to be a 60m long, zero-emission, unmanned autonomous
cargo ship. The vessel will have a range of 100 nautical miles, operating at a speed
of 6 knots. For testing purposes, a 1:20 scale model has been built, where students in
collaboration with DNV GL employees have been working on the vessel since 2016.
The model boat, from now on referred to as ReVolt, is equipped with a dynamical
position system [11], guidance and path following [12], a stand-alone CAS [5], and
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a LiDAR-camera sensor fusion system [1, 4, 13]. This thesis aims to use the LiDAR-
camera sensor fusion system in a closed-loop CAS.

1.2 Previous work

Substantial research has been done within the field sensor fusion and target tracking
for autonomous vehicles, as well as obstacle avoidance for ASVs. This section will
present some examples of different approaches to these topics.

1.2.1 Previous work on sensor fusion

A collision avoidance system needs a way to acquire information about its surround-
ings, both static and dynamic obstacles. Measurements from the sensor system alone
are not sufficient - the measurements need to be handled in a tracking system to be
associated with an obstacle such an estimate of the obstacle trajectory is obtained.

A popular tracking method is the probabilistic data association filter (PDAF) [14],
which calculates the association probabilities for a set of validated measurements to
a target. These probabilities are subsequently used to weigh the Kalman gain in a
Kalman filter. However, a disadvantage with the PDAF is that it assumes that a target
exists, meaning that the probability of track existence is not available.

The integrated probabilistic data association filter (IPDA) [15] solves this issue by
calculating the existence probability for each track, based on the difference between
the measurements and their predictions. Additionally, the IPDA is significantly more
efficient in track confirmation [16] as the PDAF produces a great amount of false
tracks compared to IPDA with the same detection probability.

Both PDAF and IPDA are single-target tracking algorithms than can be used for
multi-target tracking, given that the obstacles are sufficiently separated. They can
be extended to handle situations where occlusion occur in the multi-target tracking
algorithms Joint PDAF[17] and Joint IPDA[18] respectively. These algorithms will
not be discussed further, and the reader is referred to the given citations for detailed
explanations.

The multi hypothesis tracking algorithm (MHT) is another multi-target tracking
algorithm and provides a systematical solution to the data association problem by
building a tree of potential hypotheses for each candidate target. Then, the combina-
tion of most likely tracks is selected.

Using multiple sensors with complementary abilities can be beneficial to extract
more nuanced information about the nearby environment. Combining the measure-
ments from the different sensors is called sensor fusion and can be described as
combining incomplete and imperfect pieces of mutually complementary sensor in-
formation so that a better understanding of an underlying real-world phenomenon is
achieved Koch [19]. Stiller et al. [20] proposed a multi-sensor concept using differ-
ential global positioning system (DGPS), stereo vision, radio detection and ranging
(RADAR) and LiDAR for an autonomous unsupervised vehicle. The sensory data
were combined into a common obstacle map, achieving high accuracy validated by
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real-time evaluation of the sensor data. The estimation and tracking were performed
using a Kalman filter (see Section 4.1.1), using point position estimates from the
vision sensor and laser scanner.

Examples of sensor fusion in maritime environments have also been shown. Elkins
et al. [21] published a paper on the Autonomous Maritime Navigation project, where
they utilized multiple sensors in a sensor fusion engine to create a world map, in-
cluding X-band RADAR, LiDAR. Obstacle tracking was performed using MHT with
integrated multiple models (IMM) to create an obstacle map to be used for obstacle
avoidance. The development in the field of visual object detection and computer vi-
sion has made it possible to extract more information from camera data. A 2015 study
[22] presented an implementation of a real-time sensor fusion system using RADAR
and camera in order to detect high-speed obstacles at sea. The results showed a sig-
nificant increase in performance using the vision system.

Furthermore, Helgesen [23] demonstrated a JIPDA based sensor fusion system
using LiDAR, RADAR, infrared and electro-optical camera data to detect objects at
sea. Each sensor’s detection capability was evaluated individually and in fusion with
other sensors. It was shown that a fusion of RADAR, LiDAR, and infrared camera
data gave promising results, providing better results than if used separately.

1.2.2 Previous work on collision avoidance

Numerous reviews of collision avoidance systems for manned and unmanned ships
have been given over the last two decades. Although the objectives for manned and
unmanned ships are different, some scholars believe that the conducted research can
be mutually beneficial for the two ship types [24]. In the review articles [25] and
[26], different approaches from the perspective of supporting the human in collision
avoidance (COLAV) are presented, while [27] and [28] presented approaches from
the perspective of developing ASVs. A comprehensive literature review of the state-
of-the-art collision avoidance methods for ships was presented in [29], where they
compared the strengths and weaknesses of different collision prevention techniques
based on three steps; motion prediction, conflict detection, and conflict resolution,
which are the processes of determining evasive maneuvers for collision prevention
[29]. Also, they identified potential synergies and mutual benefits between research
on manned an unmanned ship and outline a possible path towards developing fully
autonomous ships.

In general, the collision avoidance approaches can be divided into two groups:
path-planning methods, whose objective is to find a collision-free path considering
static obstacle, and reactive algorithms, and reactive COLAV methods, whose aim
is to consider obstacles unknown in prior. The path-planning algorithms might not
be applicable for real-time applications with limited processing power [30]. The fur-
ther focus will, therefore, be on reactive collision avoidance methods. Even though
collision avoidance for manned and unmanned ships share similarities, the respective
methods differ in their objectives. While collision avoidance methods for manned
ships focus more on alerting the navigator of potential collision risks, the methods
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for unmanned ships focus on finding a navigational solution avoiding the collision(s).
Thus, the collision prevention methods presented in this thesis will be from the per-
ceptive of developing ASVs.

A much-used reactive method is the artificial potential field (APF), which gener-
ates repulsive virtual force fields around an obstacle and attractive virtual force fields
around the destination. The algorithm does not guarantee a collision-free path but
generates control inputs to move the vehicle in the direction of motion specified by
the virtual force field. This approach is not designed for a dynamic environment but
was addressed in [31] by considering the velocity and the maximal deceleration of the
obstacle. The disadvantage with APF methods is that they can trap the ASV in a local
minimum and that the ship dynamics are assumed holonomic. Also, the solution is
not guaranteed to be optimal.

A hybrid approach of the A* and the dynamic window (DW) method was demon-
strated in [32]. The A* algorithm was used for path planning, and the DW predicted
the movements of the vehicle, including both acceleration and lateral speeds. How-
ever, DW assumed that the static state is always a safe state, which might not hold in
a real-life situation [29].

The Velocity obstacle (VO) algorithm [33] is a simple and popular algorithm
that deals with moving obstacles. A set of velocities that will lead to a collision is
calculated assuming constant speed, meaning that a velocity outside this set will be
collision preventive. This method does not require any information about the vessel’s
dynamics, and promising results were made by both [34] and [35]. However, the
assumption that the obstacle travels with constant speed, along with the assumed
circular shape for obstacles, are some of the disadvantages with the algorithm.

According to Johansen et al. in [36], many of the COLAV methods generally
struggle with handling scalability and managing multiple obstacles in a dense traffic
situation while also taking the ship dynamics, steering and propulsion system, and
environmental disturbances into account. This motivates the use optimization-based
control, more specifically the scenario-based model predictive control (SBMPC)[36].
Trajectories of the dynamical ship model are predicted using a finite set of control be-
haviors, and the trajectories are evaluated in a cost function based on collision risk,
hazard, and compliance with COLREGS and computational cost. The algorithm was
extended and improved in [37] and [6] and showed promising results in real-life ex-
periments. The latter used an IPDA RADAR tracking method, where the results
showed that the IPDA was a suitable tracking method for collision avoidance pur-
poses. These papers [36, 37, 6] are the origin of the collision avoidance system used
in this thesis and will be described in detail in Chapter 5.

1.2.3 Previous work on ReVolt

This thesis is a continuation of previous work done on ReVolt. Kamvsåg [13] devel-
oped a multi-target tracking framework using the multi-target version of the IPDA
namely the Joint IPDA, using camera and Light detection and ranging (LiDAR) as
primary sensors. A modified version of the density-based spatial clustering of appli-
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cations with noise algorithm (DBSCAN) was used to process the LiDAR measure-
ments, resulting in satisfactory results. The object detection algorithm used on the
camera-data was the Faster R-CNN, previously trained by Tangstad [38]. The results
showed that the LiDAR performed satisfactorily within the range of 10-50 meters,
while the camera struggled with ranges exceeding 20 meters. The camera data was
not used to fuse the measurements in the tracking system.

In [4], the old camera was replaced by a Ladybug5+ camera with the ability
to provide high-quality images with a 90% spherical view, a significant improvement
from the previous installation. Moreover, Norbye developed a real-time sensor fusion
pipeline as well as implementing PDAF and IPDA as single-target tracking methods.
Object detection was performed using YOLOv3. The results showed that the IPDA
performed unsatisfactory behavior due to slow initialization, while the PDAF per-
formed better. The camera measurement model and sensor fusion were not imple-
mented due to time synchronization issues.

A solution to that problem was presented by the author of this thesis in [1], where
the Ladybug5+ was integrated as a secondary sensor in the existing tracking system.
The single target tracking system was extended by using both LiDAR and camera
measurements to track targets in real-time. A comparison of LiDAR only tracking
and sensor fusion tracking was made with promising results, but to technical failures
in the conducted experiments, the results could not be verified by ground truth data.

Contributions with regards to COLAV have also been implemented on ReVolt.
Midjås implemented a COLREGS compliant collision avoidance system using SBMPC
in conjunction with an anti-grounding system in [5]. The obstacles were detected us-
ing an automation identification system (AIS), and the collision avoidance system
was tested in both simulator a real-life with promising results.

1.3 Contributions

The primary contribution in this thesis is to combine the sensor fusion tracking sys-
tem [13, 4, 1] and the SBMPC COLAV system [5] in a closed-loop COLREGS com-
pliant CAS. To the author’s knowledge, this is the first time real life experiments
have been demonstrated using a LiDAR-based tracking system in a closed-loop CAS.
Moreover, the work performed in this thesis entails a set of secondary contributions
and can be summarized as:

• Plan and rearrange a new sensor setup on ReVolt in collaboration with DNV
GL employees.

• Performing a new LiDAR-camera calibration.

• Solving the initialization problem on the IPDA algorithm.

• Implementing a cross-track error dependent lookahead distance in the guidance
system.
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• Implementing a time-varying heading reference throughout the prediction hori-
zon in the SBMPC.

• Implementing the ability to change course during the prediction horizon, influ-
enced by Giorgio Kufoalor in [2].

• Implementing the ability to add noise to the simulated AIS messages, making
the simulated scenarios more realistic.

• Developing a tracking-to-COLAV system pipeline, influenced by Erik Wilthil
in [2].

• Results from real-time closed-loop CAS simulations with single and multiple
obstacles, using several configurations in the SBMPC.

• Demonstrating the closed-loop CAS on ReVolt using the IPDA tracker to ob-
tain obstacle information, successfully conducting COLREGS compliant ma-
neuvers in real-time at slow speeds.

1.4 Outline

This thesis is divided into nine chapters, described below:

Chapter 2 presents the maneuvering models used to describe the motion of marine,
along with the heading and speed controllers on ReVolt. Finally, the line-of-
sight guidance system is presented.

Chapter 3 introduces the sensor system on ReVolt along with the results from the
camera-LiDAR calibration.

Chapter 4 introduces the state estimation and tracking algorithms used for COLAV
purposes. Additionally, the measurement models used in the tracking system
are given.

Chapter 5 introduces the SBMPC CAS in detail and presents the new additions to
the previous implementation.

Chapter 6 gives a brief explanation of software frameworks used on ReVolt and the
simulation platform.

Chapter 7 presents the simulation study. The performance of the SBMPC is tested
in numerous scenarios with varying complexity, and the results are discussed.

Chapter 8 presents the results from the conducted experimental sea trials. Finally,
the results are discussed.

Chapter 9 gives a conclusion from the results of this thesis and suggests further
work.
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Chapter 2
Guidance, Navigation, and Control

This chapter presents the mathematical model that describes the equation of motion
used for simulating collision avoidance scenarios. By having an accurate representa-
tion of the actual vessel behavior, one can replicate its behavior and use this to predict
its future behavior. Additionally, a mathematical model of the vessel dynamics can
be used to design maneuvering controllers.

First, the notation and the reference frames used in this chapter are given. Then,
the 3-Degrees of freedom (DOF) maneuvering model is presented along with the
constant velocity model (CV). Next, the maneuvering controllers on ReVolt used
to control heading and surge speed are described. Finally, the guidance system is
presented.

2.1 Notation

The notation in this chapter is the same as in [39], which utilizes the Society of Naval
Architects and Marine Engineers (SNAME)[40]. The SNAME notation can be seen
in table 2.1 and is used to describe forces, moments, velocities, positions and angles
in 6-DOF.

DOF Description
Forces and
moments

Linear and
angular velocities

Position and
Euler angles

1 Motion in the x direction (surge) X u x
2 Motion in the y direction, (sway) Y v y
3 Motion in the z direction, (heave) Z w z
4 Rotation about the x axis, (roll) K p φ
5 Rotation about the y axis, (pitch) M q θ
6 Rotation about the z axis, (yaw) N r ψ

Table 2.1: SNAME notation.

The reference frames used in this thesis are given as:
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NED The north-east-down NED coordinate system {n} = (xn, yn, zn) is located
with the origin on, where on is decided by a given latitude and longitude. The
frame is defined as the tangent plane on the Earth’s surface where the x-axis
points towards the true North, y-axis towards East, and z-axis downwards. Ves-
sels that operate at local areas where one can assume approximately constant
latitude and longitude use this frame for navigational purposes and is referred
to as flat Earth navigation. In this case, the frame is assumed inertial such that
Newton’s law applies.

BODY The body-fixed reference frame {b} = (xb, yb, zb) is fixed with origin ob in
the center of origin of ReVolt, meaning that the frame moves with the vessel.
The x-axis points forward, y-axis starboard, and z-axis down, which makes
them coincide with principal axes of inertia.

2.2 Maneuvering models

2.2.1 3-DOF model

The maneuvering model used to describe the motion of Revolt is a standard 3-DOF
with motion components in surge, sway and yaw. Here, the SNAME notation seen is
used to express the position vector η =

[
x y ψ

]T in {n}, and the velocity vector

ν =
[
u v r

]T in {b}. The 3-DOF model assumes motion only in the horizontal
plane, neglecting the motion in heave, roll and pitch, resulting in w = p = q = 0.

By using the state vectors η and ν the equation of motion can be represented as
[39]

η̇ = R(ψ)ν (2.1a)

Mν̇ + C(ν)ν + D(ν)ν = τ (2.1b)

where R(ψ) is the rotation matrix transforming the velocities in {b} to {n}, defined
as

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.2)

From Table 2.1 one can see that R(ψ) makes a rotation about the z axis.

M is the mass matrix, consisting of the rigid body mass matrix MRB and the
hydrodynamic added mass matrix MA. The latter represents the inertia added to the
system when the accelerating vessel displaces the water surrounding the vessel while
it moves through the water. The mass matrix M is given by M = MRB + MA,
where

MRB =

m 0 0
0 m mxg
0 mxg Iz

 (2.3)
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and

MA =

−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

 (2.4)

Here, m is the mass of the vessel, xg the distance from the center of origin (CO) to
the center of gravity (CG) in x-direction. Iz is the moment of inertia about the z-axis.
Xu̇ represent the force in x direction caused by an accelerating u̇ in surge. This force
can also be written as [41]

Xu̇ ,
∂X

∂u̇
(2.5)

The matrix C(ν) is the Coriolis and centripetal matrix cause by rotation of {b}
about {n}. The the matrix is given as C = CRB + CA, where

CRB =

 0 0 −m(xgr + v)
0 0 mu

m(xgr + v) mu 0

 (2.6)

and

CA =

 0 0 Yv̇vr + Yṙr
0 0 −Xu̇ur

−Yv̇vr − Yṙr Xu̇ur 0

 (2.7)

For lower speed motion, that is speed below 2m/s, the non-linear damping effects
can be neglected, resulting in linear damping only (see Figure 2.1). This can also be
backed up by the simulations performed in [42] where linear damping was valid
approximation for speeds below 7m/s. Since the maximum speed of ReVolt is about
1.5m/s only linear damping is considered in this thesis, resulting in a damping matrix
D(ν) = DL(ν) that is given by

DL =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 (2.8)

which follows the same convention as (2.5).

Lastly, the generalized force vector τ is given by

τ =

τXτY
τN

 =

 FXFY
lrFY

 , (2.9)

where Fx and Fy are the forces in the x-and y-direction respectively coming from the
vessel’s actuators. lr is the moment arm the force is acting on.
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Figure 2.1: Speed regimes for linear and quadratic damping, found in [39, p. 138].

2.2.2 Constant Velocity model

Acquiring all the elements of the rigid-body kinematics of another vessel at sea is
close to impossible. Thus, one cannot use (2.1) to describe the motion of the vessel.
However, the estimated position and velocity of the vessel can be acquired using ex-
teroceptive sensors and a tracking system (See Section 4.2). The constant velocity
(CV) motion model is a motion model that uses only the position and velocity in-
formation to predict the future position of the object as a straight line. As the name
suggests, the motion model assumes that the objects holds a constant velocity and
consequently a constant heading. Let x = [N,V, VN , EN ] be the state vector de-
scribing the position and velocity in North and East of an object. The CV model
describes the motion of this object at time step k + 1 as

xk+1 = Fcvxk, (2.10)

where Fcv is the transition matrix given by

Fcv =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , (2.11)

with T being the time step into the future.
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2.3 Controllers

The controllers implemented on ReVolt were implemented and tuned by Havnegjerde
[12] and is briefly repeated here for convenience. One important detail is that the
heading controller was tuned for a cruise speed of 1m/s, meaning that it may not
perform optimally for other surge speeds. The reader is referred to [12] for more
details.

2.3.1 Speed Controller

The control objective of the speed controller is to minimize the surge speed error
ũ(t) = ud(t)− uf (t) where ud is the time-varying desired surge speed and uf is the
low-pass filtered velocity measurement of ReVolt. The desired surge speed is given
by the second order reference filter

üd + 2ζωnu̇d + ω2
nud = ω2

nuref (2.12)

where uref is the reference surge speed, σ the damping ratio and ωn the natural
frequency. The reference filter’s objective is to give a smooth reference surge speed to
avoid large and unnecessary control efforts when the reference makes a step change.

The control law is given by

τm = τm,FF + τm,FB (2.13)

where τm,FF is the feedforward term and τm,FB is the feedback term. The feedfor-
ward term is given by

τm,FF = Mu̇d + σ(ud) (2.14)

whereMu̇d is the inertia term and σ(ud) is a function giving the steady-state damping
ratio corresponding to the surge speed ud. The feedback term is a PI-controller given
by

τm,FB = Kpũ(t) +Ki

∫ t

0
ũ(t)dτ (2.15)

where Kp is the proportional constant and Ki is the integral gain.

2.3.2 Heading controller

To make the heading controller on ReVolt, the 1.order Nomoto model was used,
which is given by

r

δ
(s) =

K

1 + Ts
(2.16)

and describe how the yaw rate, r, acts when a change in rudder angle (or thruster
angle command δ) occurs. The elements K and T are the gain and time constants
respectively.
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The control objective of the heading controller is to minimize the heading and
yaw error states, given by

ψ̃ = ψd − ψ (2.17)

r̃ = rd − r (2.18)

where ψd and rd are the desired yaw and yaw rate respectively. As for the speed
controller, the desired values are supplied by a reference filter, and a 3.order reference
filter is used to obtain the desired states ψd, rd and ṙd. The reference model is given
by

ψd
ψref

(s) =
ω3
n

(s+ ωn)(s2 + 2ζωns+ ω2
n)

(2.19)

where the elements are as previously described.

Further, the control law is formulated as

τ δ = τ δ,FF + τ δ,FB, (2.20)

consisting of a feedback term ,τ δ,FF , and a feedforward term ,τ δ,FB . The feedfor-
ward term is given by

τ δ,FF =
T

K
(ṙd +

1

K
rd) (2.21)

where K and T are as described in (2.16). The feedback term is given by

τ δ,FB = −(Kpψ̃(t) +Ki

∫ t

0
ψ̃(t)dτ +Kdr̃) (2.22)

and is a PID controller with the proportional, integral and derivative controller gains
Kp,Ki and Kd respectively.

2.4 Line-Of-Sight guidance

Line-of-sight guidance (LOS) is a method frequently used for path following [39].
The objective of the method is to find a desired heading ψd for the heading autopilot,
which forces the vessel to follow a predetermined path of waypoints. There are es-
sentially two guidance approaches that can be used to find the desired course, namely
lookahead-based and enclosure-based steering. In this case, the lookahead-based
steering was used due to the fact that lookahead-based steering has multiple advan-
tages over enclosure-based steering, e.g., computational complexity, and region of
validity. A more thorough and detailed explanation is given in [39, Chapter 10.3].

In lookahead-based steering the desired course is defined to be

χd(e) = αk + χr(e), (2.23)
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Figure 2.2: Simple illustration of the LOS guidance. The desired course χd points towards
the LOS intersection point in the path.

where αk is the path tangential angle and χr the velocity-path relative angle. The
desired path consists of waypoints connected with a straight line between them where
the waypoints in are coordinates given in the NED frame, seen in Figure 2.2. The
waypoints are denoted as

wpt = {p1, p2, ..., pn} where pi = [xi, yi]
T , i ∈ {1, 2, . . . , n}. (2.24)

where n is the number of waypoints. Given two of these waypoints, pk and pk+1, one
can find the path-tangential angle αk by

α := atan2(yk+1 − yk, xk+1 − xk), (2.25)

where k and k + 1 represents the current and next waypoint the vessel shall reach
respectively. By using this angle one can find the cross-track error

e(t) = [x(t)− xk] cos(αk) + [y(t)− yk] sin(αk), (2.26)

which is the shortest distance from the vessel to the desired path, as seen in Figure 2.2.
The path following objective is fulfilled if the vessel is controlled such that the cross-
track error converges to zero, as this implies that the vessel is on the desired path.
Moreover, the velocity-path relative angle χr is defined as

χr(e) = arctan
(−e

∆

)
, (2.27)
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and is used to force the vessel towards a point on the desired path decided by the
lookahead distance ∆. The lookahead distance used in this thesis is based on the
[43], who proposed a solution where ∆ was set small when the cross-track error was
large, and vice versa. Mathematically, this is given by

∆(e) = (∆max −∆min) exp (−γ|e|) + ∆min. (2.28)

where ∆max and ∆min are maximum and minimum values for ∆, and γ the conver-
gence rate towards the path. This is a new addition to the guidance system and results
in a more aggressive angle towards the path when e(t) is larger, and less aggressive
when e(t) is small. The values for the parameters are listed below

∆min 60
∆max 120
γ 1/300

Table 2.2: Parameters used in the time varying lookahead distance.
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Chapter 3
Sensor system

The purpose of this chapter is to introduce the relevant sensors on ReVolt used in tar-
get tracking for COLAV purposes. ReVolt is equipped with a LiDAR and a camera
as exteroceptive sensors, which is used in a sensor fusion system to extract informa-
tion about targets of interest in the vessel’s vicinity. Additionally, an artificial AIS
is implemented in the Cybersea simulator (see Section 6.3) to obtain the ship-status
of present obstacles. Due to the new sensor setup, a camera-LiDAR recalibration is
needed to transform sensor measurements into a common reference frame.

In Section 3.1, the LiDAR on ReVolt is presented with necessary specifications.
Then, the camera and object detection algorithm used to detect nearby boats are pre-
sented. Next, a brief introduction of the AIS is given. Then, the new sensor setup on
ReVolt is presented along with the LiDAR-camera calibration and its results. Finally,
the transformations that connect the sensor measurements to a common world frame
are presented.

3.1 LiDAR

LiDAR is an active sensor that emits laser pulses at a given a time, and measures the
parameters of the reflected pulse. The time of flight principle is then used to calculate
the distance to the reflected point, given by

R =
c

2
(tr − tt). (3.1)

Here, R is the distance, c the speed of light, tr and tt the reflection time and trans-
mission time respectively. The laser pulse is transmitted with a given angle, namely
the elevation ω and azimuth α, as shown in Figure 3.1. By using (3.2) one can con-
vert the point to a Cartesian coordinated frame, which is the LiDAR reference frame.
Using the same notation as in section 2.1, the LiDAR reference frame will from now
on be referred to as {l}.
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X = R cos(ω) sin(α)

Y = R cos(ω) cos(α) (3.2)

Z = R sin(ω).

Figure 3.1: The coordinate system used by the LiDAR [44].

The LiDAR used on ReVolt is a Velodyne VLP-16 Puck, providing a full 360◦

horizontal view and a vertical field view of ±15◦. It has a range of 100m with ac-
curacy of 3cm. The lasers are separated with a 2◦ angle vertically, meaning that the
vertical distance between the LiDAR measurements are dv = R sin(2◦).

Reducing LiDAR points

A common assumption in target tracking algorithms is that a target produces at most
one measurement per scan [3]. The LiDAR returns a point cloud containing thou-
sands of points each second, where a potential target could be the source of a few
hundred of them. To reduce the number of points that are passed on to the tracking
system, a set of reduction methods are performed.

On the open sea, the reflected points will mostly originate from nearby targets,
but as the vessel approaches land, there will be a drastic increase in reflected points
originating from land. Therefore, land masking is performed to remove points orig-
inating from land using data from The Norwegian Mapping Authority (Kartverket).
The map data is pre-processed and represented as a binary grid in {n}, such that if
LiDAR points are within a cell that contains land, the points are discarded. The land
masking algorithm was implemented on ReVolt in [4].

The remaining LiDAR points are still of a considerable amount, and to drasti-
cally reduce the number of points to be analyzed, clustering is performed using the
DBSCAN-algorithm implemented by Kamsvåg in [13]. The reader is referred to
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[13, 4] for a more in-depth explanation of both the clustering and land masking algo-
rithm.

3.2 Camera

ReVolt is equipped with the FLIR Ladybug5+, providing high quality and accurate
imaging in a close to 90% field of view of a full sphere using six cameras in different
directions. The images are received individually by the Ladybug-driver, where each
image is 2464 × 2048 with the image-quality set to 60%. A higher-quality would
increase the data amount significantly, and the selected image quality was deemed
sufficient. Only three of the cameras are used, namely, the cameras pointing towards
the bow, port, and starboard, as they provide the necessary field of view to capture
the nearby surroundings.

The camera model used to map a 3D-scene onto a 2D-image is the Pinhole cam-
era model, where the intrinsic and extrinsic parameters were found by the calibration
performed in [4]. The intrinsic parameters relate the camera coordinates to the image
plane while the extrinsic parameters relate the camera coordinates to the real-world
coordinate system. Using an algorithm capable of detecting objects in an image, one
can, therefore, transform the detected object to a real-world coordinate system. Com-
puter vision advancements and deep learning have produced a number of algorithms
capable of performing visual object detection. The algorithm used on ReVolt is You
Only Look Once version 3 (YOLOv3) [45] due to its real-time capabilities. YOLOv3
on ReVolt was implemented in [4] with close to 100 % detection of labeled boats in
the test set.

As the main focus of this thesis is collision avoidance, the reader is referred to the
author’s specialization report [1] for more details concerning the Ladybug5+, pinhole
camera model, and YOLOv3.

Ladybug5+ coordinate frame

The Ladybug camera has its own coordinate system with origin in the center of the
camera, each of lens have their own coordinate system, shown in Figure 3.2. Using
the same notation as in section 2.1, the following reference frames are added:

Ladybug5+ main-frame The body-fixed reference frame {cf} = (xcf , ycf , zcf ) is
located with origin ocf in the center of the camera structure. The x-axis points
through the lens of camera 0, the z-axis through the lens of camera 5, and
y-axis to complete the right hand rule.

Camera n-frame The body-fixed reference frame {cn} = (xcn , ycn , zcn) is located
with origin in the lens of camera n, where n ∈ {0, 1, 2, 3, 4, 5}. The z-axis
points out of the lens, the x-axis points downwards, and y-axis to complete the
right hand rule.
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Perceived camera 0-frame The body-fixed reference frame {c} = (xc, yc, zc) is
equal to {c0} but rotated −90◦ about zc0 , resulting in the x-axis pointing to
starboard side, and y-axis pointing downwards to complete the right hand rule.

The latter is also known as the standard camera frame and is used in the LiDAR-
camera calibration, and is added now for convenience.

Camera 0 Camera 4

Camera 5

Camera 1

(a) The Ladybug5+ main-frame relative to the
different cameras.

Camera 0 Camera 4

Camera 5

Camera 1

(b) The different camera frames on the Lady-
bug5+.

Figure 3.2: Simple illustration of the camera frames of the Ladybug5+.

3.3 Automatic Identification System

Automatic Identification System (AIS) is an automated tracking system used in the
maritime world to exchange navigational information between vessels. The data is
transmitted every 2− 10 seconds depending on the vessel’s speed, and the data mes-
sage consists of the the vessels size, position, position accuracy, speed over ground
(SOG), course over ground(COG), and a unique identification number called MMSI,
amongst other things [46]. The position accuracy of the AIS data is limited by the
accuracy of the sensor system on the transmitting vessel.

ReVolt is not equipped with an AIS receiver now but is planned to be installed in
the future. However, the simulator used as the simulation platform for ReVolt (see
Section 6.3) is capable of simulating AIS messages.
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3.4 Sensor setup

The sensor system on ReVolt is planned to be expanded by implementing RADAR
and an AIS receiver in the future. Due to the small size of ReVolt, there were limited
possibilities to mount the new sensors, and therefor a rearranging of the previous
sensor setup, seen in Figure 3.3, was needed. Additionally, the previous setup was
prone to lose heading as the metal structure above one of the GNSS receivers blocked
many of the incoming measurements, resulting in only one functional receiver. The
method used by the GNSS on ReVolt uses method 5 in [47] to find the heading, which
requires two GNSS antennas with a sufficient known distance between them.

Figure 3.3: Old sensor setup where the LiDAR is mounted on top of a metal structure above
the GNSS antenna, causing problems to find the heading of ReVolt.

The new setup can be seen in Figure 3.4 and was planned and installed in coop-
eration with DNV GL employees. The old structure was removed, and the LiDAR
was placed on top of the Ladybug5+, while the GNSS antenna was moved to the
center of the vessel. This resulted in a baseline of 1.51m. Where the previous setup
struggled to receive heading measurements, the new setup achieved heading results
almost momentarily after startup. This solution was a major bug fix on ReVolt as the
heading-problem has been a prevalent problem.
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Figure 3.4: New sensor setup where the LiDAR is mounted on top the camera, and the GNSS
antenna on a stand-alone structure in the middle of ReVolt.

3.5 Camera-LiDAR calibration

To fuse the LiDAR and camera measurements in the tracking system, the measure-
ments must be transformed into a common world frame. This transformation de-
pends on the transformation between the sensors. One solution could be to measure
the placement of each sensor relative to {b} manually. However, this might result
in significant errors due to inaccurate measurements and is also time-consuming and
cumbersome. Instead, a semi-automatic lidar-camera calibration method, see [48],
was used to estimate the rigid-body transformation matrix between the two frames
using 3D-3D correspondences between points in the {l} and the perceived camera
frame {c}.

3D point correspondences in the camera frame

The 3D point correspondences in the camera frame are found by using ArUco Mark-
ers, which are special encoded patterns that facilitate the detection and error correc-
tion of the tags themselves [49]. The markers are printed and attached to a cardboard
(or any planar surface), seen in Figure 3.5, both with known dimensions. Given the
marker’s location, the corners of the cardboard can be calculated, resulting in a rota-
tion and translation, [R|d], between the camera and the center of the marker. Thus,
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the corners can be transformed from the marker frame to {c}.

Figure 3.5: The calibration setup. The LiDAR and the camera may be seen at the bow of
ReVolt.

3D point correspondences in the LiDAR frame

The 3D point correspondences in the LiDAR frame are found by detecting edges of
the cardboard. For each edge of the cardboard, the user marks a polygon containing
all the edge points, as illustrated in Figure 3.6. Then, Random Sample Consensus
(RANSAC) is used to fit lines on the points in each of the four polygons. The corners
are then found by using the intersection point of each of the line segments. However,
if the intersection point does not exist, the midpoint of the shortest line segment
between the two lines is approximated to be the corner point. This is done for both
AruCo markers.

When the point correspondences for both camera and LiDAR are obtained, the
rotation and translation between the two frames can be estimated using the Kabsch
algorithm [50]. The derivation of this algorithm will not be explained further, and the
reader is referred to [48] for a detailed explanation.
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Figure 3.6: Marking line segments in the LiDAR 3D pointcloud.

Calibration results

The resulting average rotation and translation between the camera and LiDAR, [Rc
l |dc

cl]
were estimated to be

Rc
l =

 0.999441 0.00632021 0.0328271
−0.006991174 0.99815 0.0179375
−0.0327077 −0.0181543 0.9993

 (3.3)

dc
cl =

0.0115954 m
−0.193193 m
−0.039949 m

 . (3.4)

where (3.3) consists of rotations in yaw, pitch and roll found to be

ψ = 0.489951 rad (3.5)

θ = −1.53268 rad (3.6)

φ = 1.07342 rad. (3.7)

The average transformation matrix may then be constructed as

Tc
l =

[
Rc

l dc
cl

01×3 1

]
, (3.8)

and the RMSE on the average transformation was 1.30748cm according to the cal-
ibration method. This is a slight improvement of the calibration results from [4],
which was performed with a similar setup at approximately the same distances.
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  BODY-frame

LiDAR-frame

Perceived 
camera 0-frame

CG

Figure 3.7: Overview of the reference frames on ReVolt, where dcl is the distance from {c}
to {l}.

3.6 Transformation to a common world

In order to use sensor measurements in the tracking system they must be transformed
from their respective frame to a common world frame, which in this case is {n}. For
the camera n, a given measurement zcn

cn is transformed from {cn} to {n} by

Tn
cn = Tn

bT
b
cf

T
cf
cn , (3.9)

where Tn
b ,T

b
cf

and T
cf
cn are given in [4])

For the LiDAR one can transform the measurement, zl, to {cn} and use (3.9) to
transform the LiDAR measurement zl to {n}. Recall from section 3.2 that {cn} dif-
fers from {c}, so by using (3.8) obtained from the calibration and the transformation
matrix Tcn

c , one can form the transformation matrix

Tn
l = Tn

cnTcn
c Tc

l . (3.10)

The matrices (3.9) and (3.10) make it possible to map the LiDAR and camera
measurements in the real world. By feeding these measurements to a tracking system,
one can extract information about targets of interest in the nearby environment.
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Chapter 4
Tracking and state estimation

Autonomous vehicles rely on measurements from multiple sensors to navigate safely
in their environment. Each sensor has limited precision and uncertainty associated
with each measurement. By combining various sensors, one can estimate the state
of the vehicle, filtering out the uncertainties to the best of its ability. The state is
a quantity that describes the vehicle’s internal behavior, e.g., position, orientation,
velocity, and acceleration. Tracking is the estimation of the motion of one or multiple
moving objects using sensors that detect them. In any system where control theory is
applied, state estimators are critical to be able to function properly.

First, the state estimators Kalman Filter and Extended Kalman filter will be dis-
cussed. Then, the two single-target tracking methods will be presented, namely the
PDAF and IPDA. Finally, the measurement models for each of the sensors on Re-
Volt are given. Section 4.1 and 4.2 are inspired by the the textbook that recently was
introduced in the sensor fusion source at NTNU [16].

4.1 State estimation

This section will focus on the state estimators, or filters as they also are called. The
two terms are often used interchangeably, even though there are some differences. In
electronics, a filter is a device that removes unwanted characteristics on a signal, not
necessarily on a dynamic system. A state estimator estimates the internal states of a
system using sensory data and filters out unwanted noise, thus making it a filter. In
other words, a state estimator is a filter since it removes unwanted noise to replicate
the true state, but a filter is not necessarily a state estimator. Due to the uncertainty of
the sensory data, a state estimator is essential for an autonomous vehicle to estimate
both its own and surrounding objects’ position. This section introduces the state esti-
mators Kalman filter (KF) and its nonlinear extension extended Kalman filter (EKF).
[16].
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4.1.1 Kalman filter

The Kalman filter was first proposed in 1960 [51] by Robert Kalman and is a linear
state estimator. If the following assumptions are satisfied, the Kalman filter is the
optimal minimum mean square error estimator [52]:

• The dynamic system model is linear,

• the process and measurement noise are uncorrelated, white, Gaussian noise
sequences with zero mean and known covariances,

• the system is observable,

• the initial state x0 is Gaussian.

A state space model that satisfies the assumptions above can be written on the form

xk = Fxk−1 + vk, vk ∼ N (0,Q) (4.1a)

zk = Hxk + wk, wk ∼ N (0,R) (4.1b)

x0 ∼ N (x̂0,P0), (4.1c)

where (4.1a) describes the propagation of the state from time k− 1 to k by applying
the transition matrix F to the previous state xk−1, and (4.1b) describes how the mea-
surement zk relates to the state xkthrough the measurement matrix H. The additive
process and measurement noises are given by vk and wk respectively.

The Kalman filter is a two-step process consisting of a prediction step and a
update step:

Predict

In the prediction step the KF predicts the state and covariance for the next time step,
namely x̂k|k−1 and P̂k|k−1. They are estimated using the state estimate of the previ-
ous time step ˆxk−1, the transition matrix F from (4.1) and the noise covariance matrix
Q, starting at the initial state x0 with initial state covariance P0. The prediction step
can be summarized as

x̂k|k−1 = Fx̂k−1 Predicted state estimate (4.2a)

P̂k|k−1 = FP̂k−1FT + Q Predicted state covariance. (4.2b)

.
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Update

In the update step the latest measurement is used to update the state, and can be
summarized as

ẑk|k−1 = Hx̂k|k−1 Predicted measurement (4.3a)

νk = zk − ẑk|k−1 Innovation (4.3b)

Ŝk = HPk|k−1HT + R Innovation covariance (4.3c)

Wk = Pk|k−1HTS−1
k Kalman gain (4.3d)

x̂k = x̂k|k−1 + Wkνk Posterior state estimate (4.3e)

Pk = (I−WkH)Pk|k−1 Posterior covariance. (4.3f)

. Since both process and measurement noise is present in the system, the state esti-
mate cannot solely rely on either the measurement or the predicted state. Therefore,
the effects of the measurement and the state estimate in (4.2a) is weighted by the
Kalman gain (4.3d) to form the posterior state estimate in (4.3e). The Kalman gain
is dependent on the innovation covariance (4.3c) and the predicted covariance (4.2b),
and can be seen as a difference between having confidence in the predicted state ver-
sus confidence in the measurement. From (4.3d), one can see that when the predicted
covariance is large, meaning that the predicted state is uncertain, the measurement
will be weighted more in the posterior state estimate. The opposite occurs when
the innovation covariance is large, meaning that the innovation is uncertain, result-
ing in that the predicted estimate will contribute more to the posterior state estimate.
Lastly, the posterior state covariance (4.3f) is calculated, considering the blending of
the predicted state estimate and the measurement.

4.1.2 Extended Kalman filter

One of the assumptions the aforementioned Kalman filter makes is that the system
needs to be linear. However, more often than not this assumption is strictly impos-
sible to hold [53] and the need for a non-linear state estimator arises. The Extended
Kalman filter is a suboptimal state estimator for non-linear system that linearizes the
non-linear dynamic and/or measurement equations about the latest state estimates
[17]. As for the Kalman filter, the noises are assumed to enter additively. The EKF
model can be written as

xk = f(xk−1) + vk, vk ∼ N (0,Q) (4.4a)

zk = h(xk) + wk, wk ∼ N (0,R) (4.4b)

where f and h are non-linear functions that represent the state transition model and
measurement model functions respectively. As with the Kalman filter, vk and wk are
the process and measurement noise respectively with associated covariance (Q and
R).
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The algorithm is very similar to the Kalman filter, with the main difference being
that the Jacobian of state transition and measurement equations are used in both the
predict and update step to calculate the predicted state covariance, predicted mea-
surement (and consequently the innovation) and the Kalman gain, as seen in (4.7)
and (4.8). The Jacobians of the state transition matrix and the measurement matrix is
given by

Fk =
∂fk
∂x

∣∣∣
x=x̂k

=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xj

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xj

...
...

. . .
...

∂fi
∂x1

∂fi
∂x2

. . . ∂fi
∂xj

 (4.5)

and

Hk =
∂hk

∂x

∣∣∣
x=x̂k

=


∂h1
∂x1

∂h1
∂x2

. . . ∂h1
∂xj

∂h2
∂x1

∂h2
∂x2

. . . ∂h2
∂xj

...
...

. . .
...

∂hi
∂x1

∂hi
∂x2

. . . ∂hi
∂xj

 (4.6)

respectively.

The prediction step of the EKF is quite similar to (4.2) with the addition of the
transition Jacobian.

Predict

x̂k|k−1 = f(x̂k−1) Predicted state estimate (4.7a)

Fk =
∂f(x̂k−1)

∂x̂k−1
Transition Jacobian (4.7b)

P̂k|k−1 = FP̂k−1FT + Q Predicted state covariance (4.7c)

.

The same goes for the update step, where the measurement Jacobian is added,
with the rest being identical to (4.3)
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Update

ẑk|k−1 = Hx̂k|k−1 Predicted measurement (4.8a)

νk = zk − ẑk|k−1 Innovation (4.8b)

Hk =
∂h(x̂k−1)

∂x̂k−1
Measurement Jacobian (4.8c)

Ŝk = HPk|k−1HT + R Innovation covariance (4.8d)

Wk = Pk|k−1HTS−1
k Kalman gain (4.8e)

x̂k = x̂k|k−1 + Wkνk Posterior state estimate (4.8f)

Pk = (I−WkH)Pk|k−1 Posterior covariance (4.8g)

.
The use of the series expansion of the nonlinear functions f and h can cause the

filter to diverge if the evaluation point of the Jacobian is poor. This usually occurs at
the initial starting point as the EKF is sensitive to inaccurate initialization. In general,
if the initial errors and noises are not too large, the EKF performs well [17].

4.2 Target tracking

Being able to detect, track, and estimate moving and stationary obstacles, or targets,
in its vicinity, is critical for an autonomous vehicle to operate properly. When these
estimates are acquired, they can be used in a collision-avoidance pipeline.

The Kalman filter assumes an ideal sensor where all measurements received orig-
inates from the target. However, in a real-world situation, this assumption does not
necessarily hold. In other words, the problem of determining which measurement
originating from which target arises and is known as the data association problem.
Multiple methods exist to solve this problem, both for single and multiple targets.
This section presents a high-level overview of two single-target tracking algorithms,
its assumptions, and its requirements. These algorithms are PDAF and IPDA, where
the latter is the tracking algorithm used during the conducted experiments. The sec-
tion is based on chapter 7 and 8 in [16], [54] and [17]. A more detailed explanation
is given there.

4.2.1 PDAF

In target tracking, several signals are received from the sensors, and the goal is to find
out which measurements are target originated. A multidimensional gate, or region, is
set up to avoid searching the entire measurement space for the measurement from the
target of interest [54]. A measurement within this gate is a valid association candi-
date, and the gate is called a validation region. Any measurement outside this region
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is ignored, meaning that they are ”too far” away to be considered a likely target orig-
inated measurement.

As Figure 4.1 shows, multiple measurements can occur in the validation gate even
though only one of them is target originated, leaving the remaining measurements
clutter or false-alarm originated. Thus, the data association uncertainty arises. There

Figure 4.1: Validation gate with four validated measurements, given as green dots. The red
dots are discared measurements.

are two choices when it comes to the data association:

1. Choose the closest measurement and ignore all other, or

2. find a weighted average of the relevant measurements.

The weights in this case represents the association probabilities to the target, that is,
how likely it is that a measurement within the validation region is target originated.
The PDAF algorithm uses the latter approach to obtain this probabilistic informa-
tion, and the algorithm is based on either the KF or EKF depending on whether the
state and measurement equations are linear or non-linear. By using a set of assump-
tions a state estimation scheme almost as ”simple” as the KF can be made. These
assumptions are [54]:
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A.1 There is only one target of interest, which is modeled by a Markov process.

A.2 The track has been initialized.

A.3 The past information at time k − 1 is approximated by

p(xk−1|zk−1) ∼ N (xk−1; x̂k−1,Pk−1). (4.9)

A.4 A measurement of the target is detected with probability PD.

A.5 A measurement validation region is set up at each time around the predicted
measurement, described in (4.10).

A.6 At most one measurement in the validation region can be originated from the
target.

A.7 The remaining measurements are assumed to be from clutter or false alarm.

It should be noted that even though A.1 states that there is only one target of
interest, the PDAF (and consequently IPDA) can be used to detect multiple targets,
given the targets are sufficiently separated. However, if two targets are too close to
each other, measurements from one of them can be associated with the other, and one
of the tracks may be lost. This problem is handled by JPDA (and JIPDA) but is not
the scope for this thesis.

One cycle of the PDAF algorithm is shown in Figure 4.2 and is pretty similar
to the state estimators (KF and EKF). In addition to the predict and update step, the
PDAF adds the measurement validation and the data association to its algorithm.

Prediction

The PDAF starts in a similar manner as the KF and uses the (4.2a), (4.2b) and (4.3a)
to predict the state, state covariance and the measurement respectively. In addition
the innovation covariance is calculated as in (4.3c).

Measurement Validation

The next step in the process is measurement validation, where the measurement is
validated if it is within the validation gate given by

V = {z : such that νTk Sk
−1νk < γ}. (4.10)

Here,γ is the gate threshold corresponding to the gate probability PG, which is the
probability that the gate contains the target-originated measurement. Normally, this
is set high [54]. The gate threshold γ is obtained from the χ2 tables as the quadratic
form in (4.10) defines the region as χ2 distributed with degrees of freedom being the
same as the dimension of the measurement vector [17]. νk and Sk are the innovation
and innovation covariance respectively, as described in (4.3). Since the innovation is
assumed to be Gaussian, the validation region takes an elliptical shape.
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The volume of the validation gate in (4.10) is

Vk = cnz |γSk|
1
2 , (4.11)

where cnz is the volume of the hyperspace with a dimension equal to the dimension
of the measurement space nz . The validation region is located around the predicted
measurement (4.3a) and the set of all validated measurements is

zk = {zki }
mk
i=1, (4.12)

where mk is the amount of measurements inside the validation region.

Data association

The association probability describe how likely it is that a measurement zi is target
originated. Let the association hypothesis be defined as

θki =

{
zki is the target oriented measurement, i = 1, 2, ...,mk

none of the measurements are target originated, i = 0
(4.13)

with the events being mutually exclusive for mk ≥ 1 [17]. The association probabil-
ities can then be written as

βki = P (θki |Zk). (4.14)

The form of (4.14) depends on the probability mass function µF (m) of the number
clutter measurements and can be split into two clutter models [17]:

1. Poisson model with clutter density λ, given as

µm = e−λV
(λV )m

m!
. (4.15)

2. Diffuse prior model gives as

µm = µm−1 = const. (4.16)

The association probability (4.14) using the Poisson clutter model can then be ex-
panded to be

βki =


Lki

1−PDPG+
∑mk

i=1 Lkj
, i = 1, 2, ...,mk

1−PDPG

1−PDPG+
∑mk

j=1 Lkj
, i = 0

, (4.17)

where the likelihood ratio of the measurement zki is target originated is given by [54]

Lki :=
N (zki ; ẑk|k−1,Sk)

λ
. (4.18)

If the clutter density, λ, is substituted with mk/Vk, where Vk is the volume of the
validation region from (4.10), the nonparametric PDAF is obtained. This means that
the number of clutter measurements are equally likely, and since the amount of clutter
measurements can be either mk or mk − 1 using A.1, the substitution makes sense.
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State Estimation

The posterior state estimation is almost identical to the posterior state estimation in
the KF, and is given by

x̂k = x̂k|k−1 + Wkνk, (4.19)

where Wk is the Kalman gain from (4.3d). The difference between (4.19) and (4.3e)
is the innovation term. Here, νk is the combined innovation

νk =

mk∑
i=1

βikν
i
k (4.20)

where the higher association probabilities will contribute more with their innovations.

The covariance associated with the state update is

Pk|k = β0
kPk|k−1 + (1− β0

k)Pc + P̃k (4.21)

where
Pc = Pk|k−1 −WkSkWT

k (4.22)

is the covariance of the state updated with the correct measurement [54]. The term
β0
k represents the probability that none of the measurements is correct, meaning that

1− β0
k gives the probability of the correct measurement being available. The spread

of the innovation terms is given by

P̃k = Wk

( mk∑
i=1

βi
kν

i
kν

i
k

T − νkνk

)
WT

k (4.23)

This term is positive semi-definite and is added to increase the posterior state covari-
ance due to the measurement origin uncertainty [54].
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Figure 4.2: One cycle of the PDAF algorithm adapted from [54].
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4.2.2 IPDA

The Integrated Probabilistic Data Association filter [15] is an extension of the PDAF
that assumes that the probability of target existence can be calculate at each time
instance. The PDAF assumption A.1 is therefore altered to that the target exists with
probability εk at time k, and does not exists with probability 1− εk. Moreover, if the
target exists at time k the target continues to exists at time k + 1 with a probability
of PS , and seizes to exist with probability 1 − PS . This infers that a target that dies
cannot be reborn again. The remaining assumptions of the PDAF continues to hold
for the IPDA, conditioned on target existence.

The tracking process of the IPDA algorithm is very similar to the PDAF, but the
calculation of the target existence is added as a part of the process. This is done in the
same two-step process, namely the prediction en update process. First, the existence
probability is predicted. Then the state prediction, calculation of association weights,
and the state update are performed in the same manner as in the PDAF. Finally, the
posterior existence probability is calculated. For simplicity, only the first and last step
of this process will be presented in this section.

Existence probability

The existence probability prediction is designed to be a Markov chain and is given[
εk|k−1

1− εk|k−1

]
=

[
p11 p12

p21 p22

] [
εk−1

1− εk−1

]
(4.24)

where εk−1 is the posterior existence probability at time k − 1. The coeffisients of
the 2× 2 transition matrix satisfies p11 + p12 = p21 + p22 = 1.

Existence update

Using

δk = PDPG

(
1 +

1

λ

mk∑
i=1

p(zki |Zk−1)
)

(4.25)

one can form the posterior existence probability for Markov chain one as

εk =
1− δk

1− δkεk|k−1
εk|k−1. (4.26)

where p(zki |Zk−1) = N (zki ; ẑk|k−1,Sk) is the likelihood of the measurement zki
being target originated. From this, the association probabilities can be expressed as
[15]

βli =

{
PDPGp(z

k
i |Zk−1)

λ(1−δk) , i = 1, ...,mk

1−PDPG
1−δk , i = 0.

(4.27)

35



4.3 Measurement models

4.3.1 LiDAR Measurement Model

The raw measurement from the LiDAR is given in spherical coordinates and con-
verted into Cartesian coordinates using (3.2), given in the LiDAR frame {l}. The
state vector x =

[
N E VN VE

]T is given in {n}, and by using the transforma-
tion Tn

l , given by (3.10), the NED frame is obtained from the LiDAR measurements.
The measurement model is then given by

zk,l = Hlxk,l + wk,l p(wk,l) ∼ N (wk,l; 0,Rl), (4.28)

where wk,l is the measurement noise and Hl the measurement matrix given by

Hl =

[
1 0 0 0
0 1 0 0

]
. (4.29)

Note that the subscripts k, l denotes the time step k in {l}. Moreover, the measure-
ment noise covariance matrix Rl is given by

Rl = σ2
l

[
1 0
0 1

]
, (4.30)

where σ2
l = 0.5. This can be justified by the results found in [4] where the LiDAR

centroids had a mean square error (MSE)of 0.39m2 at 50m. As the MSE and σ2
l are

closely related it is reasonable to believe that σ2
l is in the same order of magnitude.

4.3.2 Camera measurement model

As the camera image is in 2D, extracting 3D coordinates is difficult without knowing
additional information, as illustrated in Figure 4.3. A possibility is to assume that all
relevant detections are at sea level, meaning that z = 0, and estimating a 3D position
with sufficient camera elevation [23]. However, due to the small size of ReVolt, the
camera elevation is not sufficient for such a georeferenced approach.

Instead, the ReVolt sensor fusion system processes camera data through a bearing-
only measurement model. YOLOv3 outputs a set of bounding boxes of detected ob-
jects in the pictures, where each bounding box has an associated confidence score.
The center of these bounding boxes is projected to the image plane of camera n,
resulting in the line-of-sight angle ψcn , which describes the direction of where the
target is located in {cn}.

Let then the predicted position of the target in {n} and {cn} be denoted as

x̄t = [xt, yt, zt]
T (4.31)

x̄cn = [xcn , ycn , zcn ]T (4.32)

respectively. The line-of-sight angle ψcn relative to the zcn-axis is given by

ψcn = arctan

(
−ycn
zcn

)
, (4.33)
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Figure 4.3: Illustration of how a box can be projected on to the image plane without knowing
the world coordinate. From the image plane’s perspective, all three boxes are the same, even
though the cube with solid lines is the correct one.

as {cn} is rotated −90◦ about the z-axis relative to {c}. In terms of x̄t, the line
of sight angle can be expressed as a nonlinear function hc(xk) using the inverse of
(3.9), given by

Tcn
n =

[
Rcn

n dcn
cn,n

01×3 1

]
, (4.34)

resulting in

ψcn = arctan

(
r21xt + r22yt + d2

r31xt + r32yt + d3

)
= hc(xk) (4.35)

where rij is the ijth entry of the rotation matrix Rc
n, di is the ith entry of dcncn,n. The

nonlinear function (4.35) describes the relationship between the camera measurement
and the target state, and can be used to form the nonlinear measurement model

zk,c = hc(xk) + wk,c p(wk,c) ∼ N (wk,c; 0, σ2
c ). (4.36)

Here, σ2
c = 0.1 ≈ 6π

180 and corresponds to a measurement uncertainty of about 6◦ and
was found to through trial and error in the author’s project thesis [1].

Furthermore, the Jacobian of (4.35) evaluated at the target state needs to be cal-
culated in order to update the innovation covariance update (4.8), and is given by

Hk =
[
∂h
∂xt

∂h
∂yt

∂h
∂ẋt

∂h
∂ẏt

] ∣∣∣
x=x̄t

. (4.37)

Now, let the denominator and numerator of the arctan-function in (4.35) be denoted
as a = r21xt+r22yt+d2 and b = r31xt+r32yt+d3 respectively. Then the elements
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in (4.37) can written as

∂h

∂xt
=
r21b− r31a

a2 + b2
(4.38)

∂h

∂yt
=
r22b− r32a

a2 + b2
(4.39)

∂h

∂ẋt
=
∂h

∂ẏt
= 0. (4.40)

4.3.3 AIS measurement model

Both the LiDAR and camera produce measurements where the origin of the measure-
ment is unknown. This is not a problem for the AIS, as the transmitted AIS message
contains a unique identification number called MMSI. Thus, only a standard Kalman
filter is required to track the corresponding ship. The AIS measurement model used
in the Kalman filter is based on the work done in [3].

The AIS messages also give position data in the form of latitude and longitude
and can be converted to the local NED reference frame by following the formulas in
[39, p. 38-39]. The NED velocities can be found by using the SOG and COG from
the AIS message as [

VN
VE

]
=

[
V cosχ
V sinχ

]
, (4.41)

where V and χ are the SOG and COG respectively. As these data are obtained from
the GNSS on board the transmitting vessel it is sensible to assume GNSS accuracy
on the measurements. Large position errors may occur due to sampling time quan-
tization when the sampling time is not an integer multiple of the UTC seconds, and
is obviously dependent on the SOG and COG as well as the resolution of the time
stamp. The worst case rounding error can be assumed to be ±0.5s. This error can
be taken in consideration in the measurement covariance matrix by adding a posi-
tion covariance proportional to the NED velocity, scaled by a variance related to the
quantization error. Wilthil et al. [3] suggested a moment matched Gaussian distri-
bution with zero mean and standard deviation σ = 1√

12
. The resulting measurement

covariance matrix can therefor be written as

RA = RGNSS +
1

12
RV (4.42)

where
RGNSS = diag[0.52, 0.12, 0.52, 0.12] (4.43)

and
RV = diag[V 2

N , 0, V
2
E , 0]. (4.44)

Using (4.42) one define the measurement model to be

zk,A = HAxk,A + wk,A p(wk,A) ∼ N (wk,A; 0,RA), (4.45)
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where HA = I4 and the state vector xk,A =
[
N VN E VE

]T . Note that the
state vector xk,A differs from xk,l. This is due to implementation differences and
should be fixed to have consistency in the models. If an AIS is to be installed on
ReVolt to integrate a fusion between AIS and the other exteroceptive sensors, this
certainly needs to be addressed. However, as the AIS messages are strictly used for
tracking in simulations and not for real life experiments, the measurement models do
not interfere with each other, and the problem was not pursued in this thesis.
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Chapter 5
Collision Avoidance

This chapter will present the collision avoidance system (CAS) on ReVolt. First,
the international guidelines for conduct at sea are presented, namely the COLREGS
rules. Then, a short introduction to optimization-based control using model predictive
control (MPC) is given. Finally, the algorithm used for the CAS on ReVolt, SBMPC,
is presented in more detail, including the contributions made of the author of this
thesis.

5.1 International Regulations for Preventing Collisions at
Sea

For a fully autonomous vessel to function properly and safely, it must follow some
guidelines to prevent collisions at sea. The International Maritime Organization
(IMO) has published a set of navigational rules for ships and vessels called Interna-
tional Regulations for Preventing Collisions at Sea (COLREGS), where the objective
is to prevent collision between vessels at sea. The COLREGS gives the ”rules for the
road” and encourages ”good seamanship”, which makes the task of managing colli-
sion avoidance more complex and challenging since it is not enough only to prevent
collision, but one has to do it in a particular manner. They are divided into six parts,
covering different topics, namely:

• PART A - General

• PART B - Steering and sailing

• PART C - Lights and shapes

• PART D - Sound and light signals

• PART E - Exemption

• PART F - Verification of Compliance with the provisions of the Convention
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However, the rules from part B about Steering and sailing, are the most relevant ones
for this thesis. More specific, the rules 6,8,13,14,15,16 and 17 will be described in
the following section, and are direct citations from [9].

5.1.1 Rules

Rule 6 - Safe speed

Every vessel shall at all times proceed at a safe speed so that she can take proper and
effective action to avoid collision and be stopped within a distance appropriate to the
prevailing circumstances and conditions.

Rule 8 - Actions to avoid collision

(a) Any action to avoid collision shall be taken in accordance with the Rules of
this Part and shall, if the circumstances of the case admit, be positive, made in
ample time and with due regard to the observance of good seamanship.

(b) Any alteration of and/or speed to avoid collision shall if the circumstances of
the case admit, be large enough to be readily apparent to another vessel ob-
serving visually or by radar; a succession of small alterations of course and/or
speed should be avoided.

(d) Action taken to avoid collision with another vessel shall be such as to result
in passing at a safe distance. The effectiveness of the action shall be carefully
checked until the other vessel is finally past and clear.

Rule 13 - Overtaking

(a) Notwithstanding anything contained in the Rules of part B, sections I and II,
any vessel overtaking any other shall keep out of the way of the vessel being
overtaken

(b) A vessel shall be deemed to be overtaking when coming up with another vessel
from a direction more than 22.5 degrees abaft her beam that is, in such a posi-
tion with reference to the vessel she is overtaking, that at the night she would
be able to see only the stern light of that vessel but neither of her sidelights.
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Figure 5.1: Simple illustration of the overtaking situation.

Rule 14 - Head-on situation

(a) When two power-driven vessels are meeting on reciprocal or nearly recipro-
cal courses so as to involve risk of a collision, each shall alter her course to
starboard so that each shall pass on the port side of the other.

(b) Such a situation shall be deemed to exist when a vessel sees the other ahead
or nearly ahead and by night she could see the masthead lights of the other in
a line or nearly in a line and/or both sidelights and by day she observes the
corresponding aspect of the number of other vessels.

Figure 5.2: Simple illustration of a head-on situation showing the correct behavior.

Rule 15 - Crossing situation

When two power-driven vessels are crossing so as to involve risk of collision, the
vessel which has the other on her own starboard side shall keep out of the way and
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shall, if the circumstances of the case admit, avoid crossing ahead of the other vessel.

Figure 5.3: Simple illustration of a crossing situation where the correct behavior is for the
vessel that has the other vessel on its starboard side to keep way.

Rule 16 - Actions by give-away vessel

Every vessel which is directed to keep out of the way of another vessel shall, so far
as possible, take early and substantial action to keep well clear.

Rule 17 - Actions by stand-on vessel

(a) (i) Where one of two vessels is to keep out of the way, the other shall keep
her course and speed.

(ii) The latter vessel may, however, take action to avoid collision by her ma-
neuver alone, as soon as it becomes apparent to her that the vessel re-
quired to keep out of the way is not taking appropriate action in compli-
ance with these Rules.

(b) When, from any cause, the vessel required to keep her course and speed finds
herself so close that collision cannot be avoided by the action of the give-way
vessel alone, she shall take such action as will best aid to avoid a collision.

5.2 Model Predictive Control

Model predictive control (MPC) is an advanced optimization-based control method
that can employ a nonlinear vehicle model to predict the optimal future behavior of
the system, based on predictions of obstacles’ motion. The uncertainty regarding the
obstacle predictions can robustly be accounted for along with environmental forces.
In addition, risk, hazard, and operational constraints and objectives can be formalized
in a cost function, which is used in the optimization problem. The optimization
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will result in an optimal control input sequence, where only the first control input is
applied to the system.

for t = 0, 1, 2... do
Get an estimate of the current state, x̂t, using the measurements up until
the current time step.

Solve a dynamic optimization problem on the prediction horizon, using
x̂t as the initial condition.

Apply the first control move, ut, from the solution above.
end

Algorithm 1: Output feedback of the MPC procedure [55].

A basic MPC algorithm is described in Algorithm 1. At each time step, a dynamic
optimization problem is solved over a given time into the future, called the prediction
horizon. This means that MPC uses a moving horizon, where the horizon changes
from t, ..., t+N to t+ 1, ...t+N + 1. The selection of the initial state of the vehicle
model is an important choice. One of the options is to choose either the state estimate
x̂t+1 or the predicted state x∗t+1 computed at time t. The latter does not account for
model errors and disturbances, which can result in a bad estimate of the initial state.
Thus, the state estimate x̂t+1 is a more sensible option.

5.3 Scenario-based model predictive control

The Scenario-based model predictive control is an MPC-based algorithm that evalu-
ates a finite set of scenarios in a cost function to compute an optimal control output.
This algorithm can be applied in a CAS where the scenarios consist of the current
state of the ownship, the predicted trajectory of the ownship generated using a pair
of control behaviors from a finite set of predetermined control behaviors, and the
predicted trajectories of the obstacles. Each of the scenarios is evaluated in a cost
function designed to express the hazard level of the scenario, meaning that the sce-
nario with the minimum associated cost is the optimal one. The control behaviors
used to generate the optimal scenario are then applied as the optimal control output
and transmitted to the autopilots. The algorithm is in turn repeated every tperiod[s]
to produce a new optimal control output. The following section will describe the
SBMPC CAS on ReVolt in detail, which is a continuation of [5], and is based on the
work done in [36], [37]and [6].

Architecture

The system architecture of ReVolt is showed in Figure 5.4 and is a modification of
what Midjås [5] implemented in her thesis. Note that the SBMPC CAS is decoupled
from both the Mission Planning and Guidance modules, which enables the possibility
to use the collision avoidance method in a variety of control system architectures, as
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well as other collision avoidance methods. A pipeline has been developed by the au-
thor to enable the CAS to receive state estimates and associated variances of observ-
able obstacles provided by the tracking system on ReVolt, and is further explained
in Section 6.2. In addition, an obstacle management interface has been implemented
with the purpose of determining the impact of tracks based on the duration of their
lifetime and is heavily based on [6]. This means that a long-lasting track that seizes
to exist should gradually have less impact in a collision avoidance situation. This
obstacle information is one of four main inputs to the SBMPC algorithm, where the
other three are; the current state of the ownship, references for course and speed, χd
and ud respectively, and a list of waypoints giving the desired path for the ASV.

The resulting output of the CAS is a course offset and a speed factor, χm and
um respectively, that are used to form the modified references χc = χd + χm and
uc = ud ·um. These modified references are forwarded to the autopilots (see Section
2.3) which guides the ASV in the direction of predicted collision free path. When
there are no obstacles present the original reference is used, meaning that the initial
condition of modified references are χm0 = 0 and um0 = 1.

Figure 5.4: Flow chart of the system architecture.

Prediction of ownship trajectory

To accurately predict the ship dynamics over the prediction horizon the 3-DOF ma-
neuvering model, explained in Section 2.2.1, in conjunction with the first order Euler
method is used. The 3-DOF model enables the possibility to capture the vessel dy-
namics as well as environmental disturbances as well, even though the latter was
not implemented in this thesis and is therefor left for future work. The CyberSea
simulator (see Section 6.3) uses a 6-DOF maneuvering model of ReVolt with values
acquired from Alfheim and Muggerud in [11] as well as some values from a towing
tank test performed by DNV GL. The 3-DOF model in the SBMPC is based on this
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model and uses its values. The following numerical values are inserted in the mass,
coriolis and damp matrices from (2.3) - (2.8):

Parameter Value Unit
m 300 kg
Iz 298 kg·m2

xg -0.03 m
Xu̇ 6.93 kg
Yv̇ 49.44 kg
Yṙ 7.007 kg·m
Nv̇ 7.028 kg·m
Nṙ 24.556 kg·m2

Xu 0.03074 kg/s
Yv 0.1423 kg/s
Yr 0 kg/s
Nv 0 kg/s
Nr 0.2193 kg·m/s

Table 5.1: Numerical values used in the system matrices in the 3-DOF model.

The first order Euler method is a simple method where the estimated state x̂ at
time k + 1 is approximated by moving a small step along the tangent line of the
estimated state at the previous time step k. Mathematically this is given by

x̂k+1 = x̂k + hf(x̂k, tk) (5.1)

where f(x̂k, tk) is the derivative of x̂k and h is the time step such that tk+1 = tk+h.
The idea behind the method is that if h is chosen small enough the approximation
will not be that different from the actual state. Applying the Euler prediction in the
SBMPC CAS is done by setting x̂k = η̂k and f(x̂k, tk) = R(ψ̂k)ν̂k, and solving
the system equations (2.1). Note that η̂k is in the NED-frame while ν̂k is in the
BODY-frame. This results in the following equations

η̂k+1 = η̂k + hR(ψ̂k)ν̂k (5.2a)

ν̂k+1 = ν̂k + h ˙̂νk (5.2b)
˙̂νk+1 = M−1(τ −C(νk)νk −D(νk)νk) (5.2c)

(5.2d)

where τ is an artificial control input applied to the system given by

τ =

 c1 + d1 +Kp,uũk
(Kp,ψIz)(ψ̃k −Kd,ψ r̂k)

1
lr

(Kp,ψIz)(ψ̃k −Kd,ψ r̂k)

 , (5.3)

where a feedback-linearizing controller and two PD controllers (see Section 2.3) are
used to control speed, heading and yaw rate respectively. They have their own asso-
ciated tuning parameters that were selected to be Kp,u = 1,Kp,ψ = 1 and Kp,ψ = 5.
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The elements d1 and c1 are the first elements of the vectorsC(νk)νk andD(νk)νk
respectively, lr is the distance from CG to the rudder, and ũk = (ud,k − ûk), ψ̃k =

(ψd,k− ψ̂k). Note here that the desired heading reference ψd,k is time dependent and
not constant on the prediction horizon. This improvement is motivated by the fact that
the assumption of keeping guidance constant does not fit with the behaviour of LOS
guidance [5]. The time dependent heading reference is calculated in the same man-
ner as in Section 2.4 for every time step on the prediction horizon using the predicted
states.

In the cases where the ASV performs evasive maneuvers that deviates from the
desired path, one can see from (2.27) that the increase in the cross-track error ek will
cause a larger value for χr,k and subsequently a more aggressive ψd,k towards the
desired path. The resulting optimal trajectory will, therefore, be less conservative
as the inclusion of LOS guidance in the prediction horizon will result in a smoother
trajectory compared to the predicted trajectory from [5].

Prediction of obstacle trajectory

The future motion of the obstacle is highly uncertain and is one of the main challenges
in the collision avoidance problem. A simple short-term prediction of the obstacle
trajectory is to use the CV model described in Section 2.2.2. By using the CV model,
it follows that the obstacle is assumed to have both constant velocity and heading,
resulting in a straight-line trajectory on the prediction horizon. This assumption is
obviously a major simplification of reality, but in many cases, it is sufficient to avoid
collision [36, 37, 6].

The obstacle information is acquired from the tracking system on ReVolt and
is a new addition to the code base. This change was motivated by the fact that the
previous solution obtained obstacle information directly from a simulated AIS sensor,
which is not realistic for an ASV. The position and velocity estimate obtained from
the tracking system is used as the initial state, and the trajectory is predicted using
(2.10) for every time step on the prediction horizon.

In [5] the obstacle information was acquired directly from a simulated AIS sensor,
giving ground truth measurements with no disturbances or uncertainties. However, in
this thesis, the incoming sensor messages are passed through the tracking system, as
a realistic closed-loop CAS would have. The Cybersea simulator can only produce
AIS messages, meaning that simulated camera and LiDAR measurements are not
available, as would be the case for a real-life test. However, by adding white noise
to the simulated AIS messages, an acceptable replication of the LiDAR can be made.
An example of how this is done is shown in Listing 5.1.

1 import numpy as np
2 def addWhiteNoise(measurement,maxError):
3 mean = 0
4 numSamples = 1
5 whiteNoise = np.random.normal(mean, maxError, numSamples)
6 return measurement + whiteNoise

Listing 5.1: Example of how to add white noise in Python.
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Control behaviors

The set of control behavior alternatives used in the prediction of the ownship trajec-
tories are

• Course offset (χm): {−90,−75,−60,−45,−30,−15, 0, 15, 30, 45, 60, 75, 90}

• Speed factor (um): {1, 0.5, 0} corresponding to {keep speed, slow down, stop},

resulting in a total of 13 · 3 = 39 possible scenarios to be evaluated assuming a fixed
control behavior on the prediction horizon. This has been the case for the SBMPC
in [36], [37], [6] and [5] which this thesis is based on. To the author’s knowledge,
there has not been published any work where there is a possibility to change control
behavior on the prediction horizon. In this thesis, there has been implemented the
possibility to change the course offset ncp number of times, resulting in an increase
in scenarios being evaluated. The course offset is changed sgn(χm) · 15◦ every tcp
seconds on the prediction horizon for a total of ncp times, resulting in a total of 39·ncp
scenarios to be evaluated. This was motivated by the fact that an expansion of the
trajectory space may lead to a more optimal trajectory [36][2, Section 5.1]. It was
found that the configuration in Table 5.2 resulted in a more efficient trajectory in all
of the tested collision scenarios. Choosing these parameters is situation-dependent
as they should depend on the length of the prediction horizon, the distances dsafe
and dinit, as well as the velocities of both the ownship and the obstacles. Finding a
general expression for the time and number of change points is not straight forward
and was not further investigated in this thesis. Using the parameters described in
this scenario it was found that choosing tcp = 25s and ncp = 3 showed promising
results. Little to no increase in performance was shown if the number of change
points allowed surpassed 3. With that being said, the author cannot take full credit
for the implementation as it was adapted by implementation by Giorgio Kufoalor in
the Autosea project [2].

Parameter Value
ncp 3
tcp[s] 25

Table 5.2: Change points parameters.

Cost function

The SBMPC cost function used in this thesis evaluates hazard criteria from a collision
avoidance strategy point of view, and is based on [36] and the extensions made in [37]
and [6]. The cost function consists of five main components, and can be described to
be

1. the cost of colliding with an obstacle,

2. the cost of violating COLREGS,
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3. the COLREGS transitional cost,

4. the cost of maneuvering, and

5. the cost of colliding with land,

making the SBMPC a COLREGS-compliant decision method. These components
can be formalized mathematically in the following optimization problem

k∗(t0) = arg min
k
Hk(t0) (5.4)

where

Hk(t0) = max
i

max
t∈D(t0)

(
li(tlost) · cki (ukm, χkm, t)

+ κiµ
k
i (t) + λiτ

k
i (ukm, χ

k
m, t)

)
+ f(ukm, χ

k
m) + g(ukm, χ

k
m)

(5.5)

Here, the SBMPC evaluates all possible scenarios (k) and chooses the control behav-
ior which minimizesHk(t0), where the subscript i denotes an obstacle, t0 the current
time and t the future time. D(t0) is the set that defines the discrete time period where
each scenario is evaluated, and is defined to be D(t0) = t0, t0 +Ts, ..., t0 +T , where
Ts is the sampling time and T the prediction horizon. The following sections will
give more detailed descriptions of the cost function components li, ci, κi, µi, τi, f, g,
and is influenced by [36] and [6].

Collision cost

The first element of the cost function is li(tlost) · ckm, where li(tlost) represents the
track-loss factor and will be discussed later in the section. ckm represents collision
hazard and is defined by

cki (u
k
m, χ

k
m, t) = Cki (t)Rki (t), (5.6)

whereR is the collision risk factor and C the cost associated with collision. The risk
factor is defined as

Rki (t) =

 1
|t−t0|

P
(
dsafei

dk0,i(t)

)q
, if dk0,i(t) ≤ d

safe
i

0, otherwise
(5.7)

where t ≥ t0 is the time of the prediction. The risk factor is only calculated when
the predicted distance between the ownship and an obstacle, dk0,i is lower than a

chosen minimum allowed distance dsafei , that is dk0,i ≤ dsafei . This means that a

predicted trajectory that goes through the circular area with radius dsafei that encloses
the obstacle will have a higher collision cost than a trajectory that falls outside said
area, as illustrated in Figure 5.5. The exponent q ≥ 1 and distance dsafei must be
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chosen with care, and should be large enough to comply with COLREGS rule 16
(See Section 5.1.1), taking early and substantial action to keep well clear of another
vessel. In addition, COLREGS rule 18 must be accounted for when choosing these
parameters, ensuring sufficient distance to vessels that are sailing, fishing, restricted
in their ability to manoeuvre or that appear to not be under command. The collision
risk is time dependent and the exponent p ≥ 1

2 weights the time until collision,
prioritizing collisions that are closest in time.

�
����

Obstacle �

ReVolt

Predicted trajectory with no collision risk

Predicted trajectory with collision risk  

Figure 5.5: Illustration of trajectory with no collision cost.

Furthermore, the cost associated with collision with obstacle i at time t is given
by

Cki = Kcoll
i

∣∣vk
0(t)− vk

i (t)
∣∣2 (5.8)

and scales with the relative kinetic energy of both ReVolt and the obstacle. This cost
is most important if collision with any obstacle is unavoidable. Here, Kcoll

i is the
scaling factor and may depend on multiple properties, like the size and type of the
obstacle, the right to stay on or the responsibility to keep out of the way [36].

Finally, the track-loss factor li(tlost) is introduced, and is a new addition to the
cost function. It was first introduced in [6] and then adapted to the existing code on
ReVolt. The track-loss factor is given by

li(tlost) =
Ts

(tlost)q1
, tlost ≥ Ts, (5.9)

and reduces the collision cost of obstacle i when the tracking system terminates its
track. The track-loss duration is given by tloss and reduces the track-loss factor the
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larger it is, and additionally weighted by the tuning parameter q1 ≥ 1. A track
is discarded if tlost exceeds some short-duration t̄lost, or if the estimate of the track
error covariance exceeds a predefined threshold. This can be done since it is observed
that real tracks that are terminated quickly will be reassigned with a new track-ID,
while false tracks or tracks that leave the tracking system’s sensing range may never
return again [6]. When obstacles are in close range, tlost must be kept as small as
possible since (falsely) terminated tracks that are reassigned as new tracks can deviate
substantially from the lost track. This may occur in the event of a sharp turn. The
effect of the lost track will, however, quickly be reduced, with the new track being
given greater priority.

COLREGS violation cost

The second element of the cost function is the cost of violating the ”rules for the
roads”, namely the COLREGS rules (see Section 5.1.1). An ASV performing colli-
sion avoidance maneuvers must satisfy these rules, and in order to determine whether
or not they have been satisfied or violated, one must determine the different types of
collision situations one can encounter. Thus, the boolean variables CLOSE, OVER-
TAKEN, STARBOARD, HEAD-ON and CROSSING are defined to describe the
rules concerning the collision situation, namely rule 14 and 15. These variables are
set by the following inequality tests at time t in scenario k, using the parameters
described in Table 5.3:

Parameter Description
vko(t) Predicted velocity of the ownship
vki (t) Predicted velocity of obstacle i
Lko(t) Unit vector in LOS direction from ownship to the obstacle i
dko,i(t) Predicted distance between ownship and obstacle i
dcli (t) The largest distance where COLREGS apply

Table 5.3: Parameter description of the COLREGS violation cost.

• CLOSE: An obstacle i is said do be CLOSE to ReVolt if

dko,i ≤ dclose (5.10)

• OVERTAKEN: A vessel is said to be OVERTAKEN by an obstacle i if

vk
o(t)Tvk

i (t) > cos(68.5◦)|vk
o(t)||vk

i (t)| (5.11)

• STARBOARD: An obstacle i is said to be on STARBOARD side of ReVolt if

∠Lk
i (t) ≥ ψk(t) (5.12)
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• HEAD-ON: An obstacle i is said to be HEAD-ON if it is close to ReVolt, and

|vk
i (t)| > 0.05 (5.13)

vk
o(t)Tvk

i (t) < − cos(22.5◦)|vk
o(t)||vk

i (t)| (5.14)

vk
o(t)TLk

i (t) > cos(φahead)|vk
o(t)| (5.15)

where the φahead is to be chosen.

• CROSSING: An obstacle i is said to be CROSSING if is close to ReVolt and

vk
o(t)Tvk

i (t) < cos(68.5◦)|vk
o(t)||vk

i (t)| (5.16)

As previously mentioned, the cost of violating COLREGS is represented as the
term κiµi, where κi is a weighting parameter and µi ∈ {0, 1} is a binary indicator
representing whether or not COLREGS rule 14 or 15 have been violated. By using
the boolean variables defined above, rule 14 and 15 can be defined in terms of:

RULE14 = CLOSE & STARBOARD & HEAD-ON

RULE15 = CLOSE & STARBOARD & CROSSED & NOT OVERTAKEN

and the binary indicator as

µki (t) = RULE14 or RULE15 (5.17)

Note that rule 13, which states that the overtaking vessel shall keep out of the way, is
incorporated implicitly in rule 14, making the term compliant with COLREGS rules
13, 14 and 15.

COLREGS transitional cost

The third element of the cost function is the COLREGS-transitional cost given by the
term λiτ

k
i . The objective of the cost is to penalize control behaviours that will lead to

maneuvers violating COLREGS rules. The term itself consist of the binary indicator
τki ∈ {0, 1} given by

τki (t) = Oki (t) ∨Qki (t) ∨Xk
i (t), (5.18)

and the tuning parameter λi. The elements Oki (t), Qki (t) and Xk
i (t) are also binary

indicators representing which situation the ASV is in. Here, assigning the value 1 to
each elements represent that

Oki (t) = 1 ⇐⇒ the ASV is overtaking the obstacle i

Qki (t) = 1 ⇐⇒ the obstacle i is overtaking the ASV

Xk
i (t) = 1 ⇐⇒ a crossing situation

The following section will explain each scenario k at time t in more detail:
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• Overtaking If the predicted location of obstacle i is not on the same side as
the ASV at time t as observed at time t0, a control behavior in scenario k is
associated with a transitional cost. This is given by

Oki (t) =

{
Oi(t0) ∧ Ski (t) if ¬Ski (t0)

Oi(t0) ∧ ¬Ski (t) if Ski (t0)
(5.19)

where Si(t) = 1 represents that the obstacle i is on starboard side at time
t ∈ {t0 + Ts, ..., t0 + T}. In addition, Oi(t) = 1 represents that the obstacle i
is overtaken by the ASV, as explained in 5.3.

• Being overtaken Here, the same mathematical expression as in (5.19) can be
used to describe whether or not the ASV is being overtaken by obstacle i, given
by

Qki (t) =

{
Qi(t0) ∧ Ski (t) if ¬Ski (t0)

Qi(t0) ∧ ¬Ski (t) if Ski (t0)
(5.20)

The difference between (5.19) and (5.20) is from which perspective the situa-
tion is seen from. Here, Qi(t) = 1 represents that the ASV is being overtaken
by another vessel at time t, opposed to that the ASV is overtaking obstacle i.

• Crossing According to COLREGS, the vessel crossing from starboard side
has the right of way, as seen in Figure 5.3. The correct behavior is for the give
way vessel (vessel that has another vessel on its starboard side) is to make an
starboard maneuver, resulting in the crossing vessel to be on the port side when
the crossing is finished. Any control behavior leading to the crossing vessel
being on the starboard side after a crossing will therefor have an associated
transitional cost. The cost is given by

Xk
i (t) = Xi(t0) ∧ Si(t0) ∧ Ski (t) ∧ turn to port (5.21)

where Xi(t) = 1 indicates that the ASV is in a crossing situation at time t,
where the criteria for the situation is explained in 5.1.1.

Maneuvering effort and grounding cost

The final element of the cost function is the cost of maneuvering, with the purpose
of favoring predictable and straight paths,penalizing high offsets from the nominal
course and speed. The term is given by

f(um, χm) =Kum(1− um) +Kχ(χm) + ∆um(um, um,last)

+ ∆χ(χm, χm,last)
(5.22)

where ∆um ,∆χm and Kχ are penalty functions given by the following equations:

Kχ(χm) =

{
Kχ,portχ

2
m, if turn to port

Kχ,starboardχ
2
m, if turn to starboard

(5.23)
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∆um(um, um,last) = K∆um |um − um,last| (5.24)

∆χ(χm, χm,last) =

{
K∆χ,port(χm, χm,last)

2, if turn to port
K∆χ,starboard(χm, χm,last)

2, if turn to starboard
(5.25)

Here, Kum ,Kχ,K∆um and K∆χ are tuning parameters. Kχ, (5.23) is the penalty
function that penalizes the size of the offset, using the tuning parameters K∆χ,port

and K∆χ,starboard. ∆χ, given in (5.25), on the other hand penalizes the change in the
offset and favours turning to starboard side, working towards COLREGS compliance.
Note that both (5.23) and (5.25) have a squared term, making the cost asymmetric.
The reason for this is to ensure compliance with the COLREGS rules 14,15 and 17
(See Section 5.1.1).

The grounding cost g(·), which gives a penalty based on where the ownship is in
relation to its nearby environment, based of electronic map data, can also be included.
However, this was not opted for in this thesis.

Tuning the parameters

The amount of parameters in the SBMPC makes the tuning job tedious and dif-
ficult. The logic used to tune the parameters used in this thesis was to classify
the hazard level of each cost of the cost function. The hazard level classification
was set to: li(tlost) · cki > λiτ

k
i > κiµ

k
i (t) > f Obviously, the collision cost

li(tlost) · cki (ukm, χkm, t) should contribute to the greatest cost in the cases where it
is calculated, as the end goal is to avoid a collision. The COLREGS transitional cost
was prioritized over the cost of violating the COLREGS rules as aborting COLREGS-
compliant maneuvers was considered more hazardous than just violating COLREGS.
The cost with the least hazard level was decided to be the maneuvering cost as this
cost penalizes guidance deviations, which is not a crucial criterion to consider in a
hazardous situation. The maneuvering cost contributes when the threat of colliding
decreases, e.g., moving away from each other, ensuring that the ASV returns to its
desired path.
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Chapter 6
Implementation

This chapter will give a brief introduction to the implementation aspect of this thesis.
First, the framework used to run the already existing control system will be presented,
namely the Robot Operating System (ROS). Then, the framework used to implement
the track system will be presented. Finally, the CyberSea simulator used for testing
the closed-loop system on ReVolt will be presented.

6.1 Robot Operating System

ROS is an open-source framework designed to simplify developing complex and ro-
bust robotics systems. The system is structured as several small programs communi-
cating by passing messages to one another, enabling the creation of generic modules
that can be applied to numerous applications and classes of robotic systems. The
creators of ROS chose this structure to encourage the users to create, share, and reuse
code to the global robotics community. ROS programs, called nodes, communicate
with each other asynchronously using topic with a subscribe/publish logic, and syn-
chronously using services with a request/response logic. The nodes can be written in
C++, Python, and Lisp, making the communication between programs independent
of the programming language used.

6.2 Autosea framework

The main objective of the Autosea project [2] was to develop closed-loop target track-
ing and collision avoidance systems using sensor fusion for autonomous ships. The
tracking system framework used on the Autosea experiments was developed by Erik
Wilthil and Andreas Flåten [3], and consists of a python library named autoseapy and
a cluster ROS-packages called autosea ros. This framework was implemented and
adapted on ReVolt in [4], and further extended in work done by the author.
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Enabling the tracking system

The tracking system used in real-life experiments on ReVolt is enabled by launching
the lidar camera tracker node using a certain amount of parameters depending on
whether the PDAF or IPDA algorithm is used. These parameters include initializa-
tion values for the tracking-algorithm, measurement covariances for the camera and
LiDAR, and specified topics and services to be used by the node. The subscribers in
the node listen to measurements from their respective sensors and trigger a callback
function that handles the incoming measurement. Both the LiDAR and camera mea-
surements are stamped at acquisition time and stored in their respective measurement
message.

Similar logic is applied to the AIS tracker used in simulations, where the ais tracker
node is launched, which processes the incoming AIS messages and passes it to the
tracker. The tracking algorithm used in the simulator is discussed further in Sec-
tion 7.3

Connecting the tracking system and CAS

A pipeline has been developed for the ReVolt system to connect the tracking system,
and CAS and is a new addition to the code base. The pipeline consists of a node
that collects and processes state information about the ownship and obstacles before
passing it to the SBMPC algorithm every tperiod seconds. Instead of listening contin-
uously to the track system, the node calls a ROS service that requests tracks at a given
timestamp, in which the track system responds to, handling the prediction and the in-
terpolation. This solution was originally developed by the authors of autoseapy and
further adapted for ReVolt. Moreover, the node can handle raw AIS measurements
from the simulation platform if desired (see Section 6.3). The node publishes the op-
timal control input obtained from the SBMPC behavior to the GNC system, meaning
that the node is decoupled from the GNC system and can be used in a variety of con-
trol system architectures. Thus, the new pipeline provides modularity and usability
to the code base, which are important attributes for complex control systems.

6.3 Cybersea simulator

A realistic simulation platform is critical for developing and testing a complex control
system such as ReVolt. It enables a risk-free and efficient analysis that gives an early
insight into potential conflicts in the code. The simulation platform used in this thesis
is the Cybersea simulator provided by DNV GL. It includes a digital twin of ReVolt,
which allows for the same code in both the simulation environment as in a real-life
experiment. The Cybersea simulator is run separately from the control system and
provides the same input to the control system as the real-life ReVolt would do. This
makes it impossible for the control system to distinguish between simulated and real-
life data, which shortens the gap between simulations and real-life testing.

The Cybersea environment, depicted in Figure 6.1, utilizes a detailed map of
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Figure 6.1: Cybersea environment.

Trondheimfjorden, which is the local test environment for autonomous maritime ve-
hicles at NTNU. The simulator displays a multitude of sensory data, allowing remote
monitoring of the system while operating. This includes all motion and forces in all
6 degrees of freedom, thrust forces, and environmental forces. Additionally, the user
can set both the magnitude and direction of environmental forces in the simulation
environment.

The Cybersea simulator also supports the use of up to 32 virtual obstacle ships
in the environment, where the user decides the vessel’s initial state and further be-
havior. The obstacles follow waypoints using the same navigation as in Section 2.4,
as well as using the VO collision avoidance if desired. Although not tuned perfectly,
using the collision avoidance method allows for more realistic collision situations
to be simulated. The data from the simulator is transmitted to the control system
using Modbus, a communication protocol that enables communication amongst de-
vices connected to the same network, except for the obstacle information, which is
transmitted over UDP to the control system as an AIS message (see Section 3.3).
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Chapter 7
Simulation study

This chapter presents the closed-loop real-time simulation studies of the tracking and
COLAV systems implemented on ReVolt. First, the evaluation metrics used to eval-
uate the performance of the AIS tracking system and CAS will be presented. Next,
simulations using the cruise speed of ReVolt while ignoring the range restrictions
of the tracking system are displayed. The purpose is to isolate the performance of
the SBMPC where the tracking range and GNC system are not the restricting fac-
tors. Finally, simulations with tracking system restrictions at a lower cruise speed are
presented to replicate the scenarios conducted in real-life experiments.

7.1 Setup

The first simulated scenarios are standard scenarios where the correct actions are
clear to verify that the new contributions perform as intended. These scenarios are
performed with a single obstacle and include the scenarios head-on, crossing from
port and starboard, overtaking, and being overtaken. Then, some complex situations
using multiple obstacles to replicate a more realistic scenario are tested.

The SBMPC parameters used in both Section 7.4 and Section 7.5 are given in
Table 7.1 and was found using the tuning principles from Section 5.3. As the range
of the two cases are different, given by dinit, the prediction horizon is reduced in the
realistic to reduce unnecessary computation, which in turn reduces the computational
cost.
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(a) Head-on scenario. (b) Crossing from starboard scenario.

(c) Crossing from port scenario. (d) Overtaking scenario.

Figure 7.1: Overview of the scenarios to be simulated in the simulation study. Here, ReVolt
is depicted as the yellow vessel, while the red vessel is the obstacle. The arrows indicate the
expected behavior according to COLREGS.
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Parameter Ideal case Realistic case Description
T [s] 300 150 Predction horizon
DT [s] 0.5 0.5 Time step
tperiod[s] 3 3 Release period of the SBMPC task
P 1 1 Weight on time to evaluation instant
Q 4 4 Weight on distance to evaluatino instant
dinit[m] 150 50 Distance where COLAV is activated
dclose[m] 150 50 Distance where COLREGS are said to apply
dsafe[m] 50 10 Minimal distance that is considered safe
Kcoll 10 10 Collision cost
κ 3 3 Cost of not complying with the COLREGS
λ 10 10 Cost of changing a COLREGS behavior
Kum 2.5 2.5 Cost of deviating from nominal speed
K∆u 0.5 0.5 Cost of changing the speed offset
Kχ,port 1.8 1.8 Cost of deviating from nominal course to port
Kχ,starboard 1.5 1.5 Cost of deviating from nominal course to starboard
K∆χ,port 0.5 0.5 Cost of changing course offset to port
K∆χ,starboard 0.9 0.9 Cost of changing course offset to starboard
φAH [◦] 68.5 68.5 Angle which an obstacle is said to be ahead
φOT [◦] 68.5 68.5 Angle which an obstacle is said to be overtaking the ship
φHO [◦] 22.5 22.5 Angle which an obstacle is said to be head-on
φCR [◦] 68.5 68.5 Angle which an obstacle is said to be crossing

Table 7.1: SBMPC parameters used in the ideal and realistic case.

7.2 Evaluation metrics

7.2.1 Tracking metrics

In order to evaluate the performance of the AIS tracking system a set of metrics are
used: RMSE, average euclidean error (AEE) and average normalized innovation error
(ANIS):

RMSE =

√√√√ 1

N

N∑
i=1

νTi νi (7.1)

AEE =
1

N

N∑
i=1

(νTi νi)
1/2 (7.2)

ANIS =
1

N

N∑
i=1

νTi S
−1
i νi. (7.3)

The first two are used to evaluate the deviation of the state estimate. The ANIS is used
to test the consistency of the filter by considering whether the filter noise is consistent
with the actual measurement noise. As the ANIS should follow a χ2-distribution a
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confidence interval between α and 1− α can be made in order to see the percentage
of measurements that are inside this interval.

It should be noted that these metrics by themselves cannot be used to evaluate
whether the performance of the tracking system is sufficient. As the main objective
is to create a COLREGS compliant CAS, the magnitude of the tracking metrics must
be seen in this context to evaluate the performance of the tracking system.

7.2.2 CAS metrics

A common way of evaluating the performance of COLAV algorithms is to use the per-
formance metrics developed by Woerner in [56], which quantifies the performance of
the COLAV algorithms in terms of safety and COLREGS compliance. These metrics
are useful when comparing different COLAV algorithms in a variety of scenarios.
However, as only a single COLAV algorithm is evaluated here, a more simplistic
metric is deemed sufficient for this thesis’s scope.

To evaluate the performance of the SBMPC the closest point of approach (CPA)
is used. Using the safety distance dsafe is obviously the natural choice that the CPA
is compared with. This leads to the following definition:

Definition 7.2.1 (Satisfactory manever). A satisfactory maneuver of the CAS is when
the maneuver does not violate the COLREGS and the CPA between an obstacle and
the ownship is larger than the safety distance dsafe. Consequently, a CPA closer than
dsafe is deemed as an unsatisfactory behavior.

To compare the performance of the SBMPC with and without change points,
the same scenario will be performed by both cases and plotted over an equal pe-
riod, revealing the difference ineffectiveness. The effectiveness will be quantified in
the euclidean distance between them and the maximum cross-track error during the
maneuver. The reason being that it is desirable to minimize the time usage and cross-
track error during evasive maneuvers while still complying with the COLREGS. This
way, the evasive maneuver will have minimal impact on the path-following objective.

7.3 AIS tracking system

The tracking system in the simulation study uses measurements from simulated AIS
messages in the Cybersea simulator (see Section 6.3) giving ground truth measure-
ments. The current simulator does not support the use of camera or LiDAR. However,
to replicate the behavior of the LiDAR the AIS messages are contaminated with white
noise, as described in Listing 5.1. Recall from Section 3.5 that the RMSE of the av-
erage LiDAR transformation was within the same order of magnitude as the results
from [4]. Due to the limited access to ReVolt it was not possible to verify calibration
results from Section 3.5. Hence, the mean square error (MSE) found in [4], 0.39m2

at 50m, is used as it is reasonable to assume that the MSE from the new calibration
will be in the same order of magnitude as well. Assuming zero bias, one can use that
MSE = σ2 to form the white noise w ∼ N (0, kMSEσ

2
l ), where kMSE = dinit/50

64



is a scaling parameter to make the MSE proportional to the range of the tracking
system.

5 10 15 20 25 30 35 40 45 50 55

Samples[k]

-1.5

-1

-0.5

0

0.5

1

1.5

E
rr

o
r[

m
]

Error in North

(a) Error in east.

5 10 15 20 25 30 35 40 45 50 55

Samples[k]

-1.5

-1

-0.5

0

0.5

1

1.5

E
rr

o
r[

m
]

Error in East

(b) Error in north.

5 10 15 20 25 30 35 40 45 50 55

Samples[k]

-1

0

1

2

3

4

5

6

7

8

9

A
N

IS

(c) Plot of the ANIS where 96% of the mea-
surements were inside the 95% confidence in-
terval.

Figure 7.2: Performance of the MMKF-tracking algorithm used in the ideal case with
kMSE = 3.

The tracking algorithm used in the simulation study was the Missing Measure-
ment Kalman filter (MMKF) adapted from [3]. AIS messages are received at different
rates depending on the speed and status of the ship [46], and it is convenient to use
a fixed sampling rate 1s for all ships [3]. The MMKF works as a standard Kalman
filter (see Section 4.1.1), but performs dead reckoning using the last predicted value
for the iterations when new measurements have not been received.

The tracking system was tested by tracking an obstacle over a 285s period, where
the AIS measurements were transmitted every 5s. The added white noise was set to
w ∼ N (0, 3σ2

l ) as the majority of the simulations were performed with a tracking
range of dinit = 150m. The results are shown in Figure 7.2 and Table 7.2 where 96%
of the measurements were inside the confidence interval. The track system shows a
low average error in both north and east, while the maximum absolute error in north
and east was 1.1210m and 0.9657m, respectively. Similar results were found over
multiple tests, and the results are therefor not repeated.

The tracks do have a noisy behavior with multiple spikes occurring. However,
the magnitude of the spikes is relatively low and does not constitute any real threat.
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Metric Value
RMSEN [m2] 0.4046
RMSEE [m2] 0.5323
AEEN [m] 0.3085
AEEE [m] 0.4316
ANIS [m2] 1.7226

Table 7.2: Metric results.

This will be further discussed in Section 7.6. The tracker completed its computa-
tions within 0.09s for each received AIS measurement, showing sufficient real-time
capabilities. Thus, the performance of the MMKF is deemed sufficient for COLAV
purposes in the simulation study.

7.4 Results from the Ideal case

To evaluate the performance of the SBMPC the ideal case uses the cruise speed of
1m/s in order to get the optimal performance of the GNC system. This is also the
cruise speed of the obstacles in the ideal case. Furthermore, the range restrictions of
the track system on ReVolt are ignored, allowing dinit = 150m. This was the shortest
distance at which the CAS performed satisfactorily while also showing proactive
behavior in all scenarios. The remaining SBMPC parameters can be seen in Table 5.3.
These parameters are tuned differently than in the previous SBMPC on ReVolt[5],
where Kum and Kχ,port are reduced from 100 to 2.5 and 1.8 respectively, enabling
ReVolt to slow down and turn to port if necessary.

7.4.1 Head-on

In a head-on situation, the correct course of action is to alter the course to starboard
such that the vessels pass on the port side of each other, according to COLREGS rule
14 (see Section 5.1.1). As the obstacle is unable to do any maneuvers, it is expected
that ReVolt must do a starboard maneuver such that the vessels pass at a safe distance
according to rule 8 (Section 5.1.1). The obstacle started 250m north of the origin
heading southbound, while ReVolt started in the origin heading northbound. This
initial state of ReVolt will be kept constant during all scenarios.

The course of actions can be seen in Figure 7.4 where the results are satisfac-
tory according to Definition 7.2.1 as the CPA was 45.6m. In the beginning, Revolt
performs a hard starboard maneuver to avoid a collision, as the vessels are moving
straight towards each other. Hence, a large course offset is needed in the early stages
of the scenario, as can be seen in Figure 7.3a where χm = 45◦. As the vessels pas
each other, a smaller offset is needed to avoid entering the safety perimeter, resulting
in the optimal trajectory in Figure 7.4b that approaches the nominal path, opposed to
the trajectory in Figure 7.4a. The optimal trajectory approaches the nominal path if
χd dominates χm, and the optimal trajectory deviates from the nominal path if χm
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dominates χd as in Figure 7.4a. Once the obstacle is passed, the collision is avoided,
and ReVolt can return to its nominal path.

The evasive maneuver performed in the head-on scenario was both satisfying
and smooth, where the cruise speed was maintained during the maneuver, as seen in
Figure 7.3b. The SBMPC chose ncp = 1 as the optimal solution 10 out of 25 SBMPC
cycles before the obstacle was passed, where the remaining optimal solutions were
without change points.

When active, the SBMPC showed promising real-time capabilities, where the
average computational time was 0.9747s with a standard deviation of σ = 0.0532s.
Similar results were found in all single target scenarios, and computational time will
therefor not be repeated in the oncoming scenarios.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and speed course of ReVolt.

Figure 7.3: Optimal course and speed offsets in the head-on scenario.
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Figure 7.4: Course of action in the head-on scenario. The CAS was activated at t = 69s
when do,1 <= dinit. The CPA was 45.60m and is shown in Figure 7.4b.
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7.4.2 Crossing from port

The next scenario is the crossing from port scenario. As ReVolt starts in the origin
heading northbound, the obstacle has to start on the port side of ReVolt going from
west to east. According to COLREGS rule 15 (Section 5.1.1), the vessel that has the
other vessel on starboard side shall keep way, which in this case will be the obsta-
cle. However, as the obstacle is passive, no attempt to follow COLREGS or perform
evasive maneuvers will be attempted, and ReVolt is forced to do the maneuver in
compliance with rule 17. The crossing from port situation will, therefore, be pre-
sented in two different scenarios: (1) The obstacle starts 150m north and 220m west
of the origin such that ReVolt can pass the obstacle with the obstacle being on its port
side during the maneuver, and (2) the obstacle starts at 150m north, and 150m west
of the origin such that ReVolt is not able to pass the obstacle with the cruise speed
of 1m/s and must keep way until the obstacle has passed. ReVolt will, consequently,
pass the obstacle with the obstacle being on ReVolt’s starboard side.

Scenario 1

The course of action in the first crossing from port scenario is shown in Figure 7.6,
showing that ReVolt performs the correct behavior according to the COLREGS. The
keep away vessel shows no attempt to alter its course, resulting in that ReVolt must
take action to avoid a collision. The speed was kept constant during the whole sce-
nario, giving a smooth evasive maneuver without unnecessary stops. The CPA was
45.44m meaning that the evasive maneuver was satisfactory according to Defini-
tion 7.2.1. The SBMPC chose ncp = 3 as the optimal solution 19 out of 23 SBMPC
cycles before passing the obstacle, while the remaining four optimal solutions were
chosen to be ncp = 2. The use of change points can also be seen in the trajectories
in Figure 7.6a and Figure 7.6b respectively as the trajectories turn harder towards
starboard at a later time step, which is expected as the course offset increases during
the prediction horizon.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and actual speed of ReVolt.

Figure 7.5: Optimal course and speed offsets in the crossing from port scenario 1.
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Figure 7.6: Crossing from port scenario 1 where ReVolt is able to pass with the obstacle on
port side. The CPA was 45.44m and is shown in Figure 7.6c.
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Scenario 2

The course of action in second crossing from port scenario is shown in Figure 7.7.
The correct maneuver in this situation is that the obstacle shall keep way as ReVolt
is on starboard side of the obstacle. However, the obstacle keeps its course, and it
forces ReVolt to slow down to avoid collision since crossing in front of the obstacle
is impossible given the current cruise speed. This can be seen in Figure 7.8b where
the speed offset is set to um = 0.5 for a long period of time, as well as in Figure 7.7a
where the optimal trajectory is shorter due to the low speed. It can be observed
from Figure 7.7b that as long as the vessels are in a crossing situation, a starboard
maneuver is preferred. However, when the crossing situation is over, ReVolt returns
to its nominal path.

The evasive maneuver is well within safety distance requirements of Defini-
tion 7.2.1, where the CPA was 64.44m. The large CPA implies that the maneuver
complied with COLREGS rules 8 and 16, as the action is taken in ample time, pass-
ing at a safe distance. Even though ReVolt had to slow down, the speed offset was
kept constant at 0.5, resulting in a smooth behavior. During this scenario, the opti-
mal control behavior included the use of change points 33 out of 35 SBMPC cycles
before the vessels passed each other. The overview of the change points can be seen
in Table 7.3.

Change points #Selected
0 2
1 7
2 15
3 11

Table 7.3: Overview over the use of change points in the crossing from port scenario 2 before
the vessels passed each other.
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Figure 7.7: Crossing from port scenario 2 where ReVolt must stop and pass with the obstacle
on starboard side. The CPA = 64.44m and is shown in Figure 7.7c.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and actual speed of ReVolt.

Figure 7.8: Optimal control behaviors in the crossing from port scenario 2. Observe the long
duration where the optimal speed offset is um = 0.5, causing the ownship to slow down and
let the obstacle pass.
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7.4.3 Crossing from starboard

When the obstacle is crossing from starboard, ReVolt shall keep away while the ob-
stacle can pass freely according to rule 15. Compared to the last scenario, this is a
more realistic crossing situation as the keep away vessel can keep away. Thus, the
expected maneuver is to let the obstacle pass ReVolt before returning to the nominal
path. The COLREGS does not state how the keep away ReVolt should keep away,
meaning that a stopping or starboard maneuver is acceptable. However, since the cost
of deviating from the desired speed is greater than changing course to starboard it is
expected that the latter maneuver is to be performed.

As expected, the starboard maneuver was chosen as the optimal maneuver, as
shown in Figure 7.10. With a CPA of 45.11m the CAS performed satisfactory ac-
cording to Definition 7.2.1 in this scenario as well. The speed was kept constant
nearly the whole time except for a 10 second period at about t = 160s, where it
slowed down momentarily. Nevertheless, the evasive maneuver is both smooth and
efficient as a smaller CPA is almost impossible. In this scenario, there were fewer oc-
currences of change points being the optimal solution, with only 2 out of 19 SBMPC
cycles. These were the first two SBMPC cycles with ncp = 2 and 1 respectively in
the two cycles.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and actual speed of ReVolt.

Figure 7.9: Optimal course and speed offsets in the crossing from starboard scenario.
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Figure 7.10: Crossing from starboard scenario where the CPA was 45.11m and is shown in
Figure 7.10b.
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7.4.4 Overtaking

Next is the overtaking scenario where the obstacle starts 200m north of ReVolt head-
ing northbound with a cruise speed of 0.3m/s. The COLREGS rule 13 (see Sec-
tion 5.1.1) states that the overtaking vessel shall keep out of the way of the overtaken
vessel, which in this case means that ReVolt is supposed to make the evasive maneu-
ver while the obstacle maintains its nominal course. The rule does not state which
side the overtaking shall take place, meaning that both sides are acceptable. However,
as the cost of turning to port is higher than turning to starboard, it is expected that
ReVolt shall pass the obstacle on its starboard side.

The results are displayed in Figure 7.12, where the maneuver was performed
on the starboard side of the obstacle with a CPA of 44.52m. The maneuver was
performed in compliance with rule 13 and 16, taking early and substantial action
such that the overtaken vessel can keep its course. However, Figure 7.15a shows
some oscillatory behavior when passing the obstacle at about 270s− 310s, where the
course varies between 10◦ and 20◦. These oscillations should be avoided, and can be
viewed as a violation of COLREGS rule 8b. The oscillations probably occur due to
the optimal trajectory being tangential to the safety perimeter of the obstacle, whose
position varies due to noisy measurements (see Section 7.3). This will be further
discussed in Section 7.6. However, the oscillations are not of large magnitude, and the
maneuver is not in conflict with the COLREGS, resulting in a satisfactory behavior
according to Definition 7.2.1.

The use of change points was prevalent in this scenario, as seen in Figure 7.11.
Observe how the use of change points decreases as the vessels approach each other,
implying that the use of change points are more efficient at greater distances.
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Figure 7.11: Distribution of the use of change points in the overtaking scenario before pass-
ing the obstacle. Note that the use of change points decreases when ReVolt approaches the
distance dsafe to the obstacle.
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Figure 7.12: Course of action in the overtaking scenario. The CPA was 44.52m and is shown
in Figure 7.12c.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and speed course of ReVolt.

Figure 7.13: Optimal course and speed offsets in the overtaking scenario.
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7.4.5 Being overtaken

The last standard scenario is the case where the obstacle is overtaking ReVolt. How-
ever, due to the passive nature of the obstacle, ReVolt is forced to take action to avoid
a collision. The obstacle starts 300m south of the origin heading northbound with
a cruise speed of 2m/s. As before, a starboard maneuver is expected since the cost
parameters are tuned to favor maneuvers to starboard. However, a slight alteration in
the waypoints was added such that ReVolt started with an initial negative cross-track
error (deviation on port side). This way, the maneuvering cost would increase when
evaluating starboard maneuvers.

The results show that the starboard maneuver was performed with a CPA of
45.13m, seen in Figure 7.14. Note that the SBMPC chose a port maneuver as the op-
timal trajectory in Figure 7.14a, but changed to a starboard maneuver in Figure 7.14b.
This can also be seen quite clearly in Figure 7.15a. The maneuver was smooth and
efficient where the desired speed was maintained at cruise speed during the whole
scenario. As in the overtaking scenario, the use of change points were frequent when
the distance between the vessels was large, gradually increasing as they approached
each other. The overview of the change points are presented in Table 7.4 below.

Number of change points #Selected
0 19
1 18
2 4
3 0

Table 7.4: Overview over the use of change points in the being overtaken scenario before the
obstacle passed ReVolt.
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Figure 7.14: Course of action in the overtaken scenario. The CPA was 45.13m and is shown
in Figure 7.14b.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and speed course of ReVolt.

Figure 7.15: Optimal course and speed offsets in the overtaken scenario.
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7.4.6 Multiple obstacles

The next scenarios will test the SBMPC’s ability to handle complex situations where
multiple obstacles are involved. The scenarios include three obstacle that approaches
ReVolt from different directions such that the three collision situations head-on, cross-
ing from port and starboard occur. Listed below are the initial positions and course
for each obstacle in the scenarios. The scenarios are performed in two cases, with

North East Heading
Obstacle 1 250 0 180
Obstacle 2 150 -220 90
Obstacle 3 250 350 -110

and without range restrictions, where the range restriction is decided by dinit.

Range restrictions

The results can be seen in Figure 7.16 where the CPA to any obstacle was 38.72m,
which is not satisfactory according to Definition 7.2.1. As the range of the tracking
system is only 150m, the only obstacle that is considered in Figure 7.16a is Obsta-
cle 1. Thus, a starboard maneuver similar to the head-on situation in Section 7.4.1
is performed, successfully avoiding the first obstacle, but not considering the other
obstacles. Furthermore, Figure 7.16b shows that ReVolt continues the starboard ma-
neuver to cross Obstacle 2 and keep away from Obstacle 3. However, as the initial
starboard maneuver did not consider Obstacle 2 and 3 due to range restrictions, Re-
Volt is not able to avoid entering the safety perimeter of Obstacle 3, resulting in CPA
of 38.72m, seen in Figure 7.16c. The passing distance is not satisfactory, according
to Definition 7.2.1. However, the vessels are moving away from each other at the
CPA, causing a minimal hazard.

No range restrictions

The next scenario has no range restrictions and considers all the obstacles when pre-
dicting the optimal trajectory. Therefore, it is expected to see a more proactive be-
havior as all obstacles are taken into consideration in the optimization problem. The
course of events are shown in Figure 7.18. In this scenario, the SBMPC chooses to
turn more to starboard than before. This allows ReVolt to cross Obstacle 2 with a
larger CPA, seen in Figure 7.18c, while avoiding the safety perimeters of both obsta-
cles. During this scenario, the CPA to any obstacle was 44.53m, which is classified
as a satisfactory behavior.

Even though the number of obstacles increased, the SBMPC’s real time capabil-
ities was not significantly affected. In fact, with three obstacles present the average
computational time for the SBMPC was 1.05s, only 0.1s more than with one obstacle.
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Figure 7.16: Course of action in the multiple obstacles scenario.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and speed course of ReVolt.

Figure 7.17: Optimal course and speed offsets in the multiple obstacles scenario.
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Figure 7.18: Course of action in the multiple obstacle scenario with no range restrictions.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and speed course of ReVolt.

Figure 7.19: Optimal course and speed offsets in the multiple obstacles scenario.
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7.5 Realistic case

The cruise speed during these scenarios in this section were set as low as possible
to replicate the slow dynamics of the full scale model. The operating speed of the
the full scale model of ReVolt is 6 knots, which constitutes about 0.15m/s for the
1:20 scale model. This operating speed was found to be unfeasible with the current
GNC system, and the lowest cruise speed with acceptable behavior was found to be
u0 = 0.5m/s, which is the cruise speed used in this section. This is also the cruise
speed of the obstacles.

The range of the SBMPC is reduced to replicate the range of the current tracking
system on ReVolt, which is 50m. As the range reduction is not scaled equally as
the cruise speed it is expected that ReVolt is more reactive than in the ideal case.
The range reduction also causes the scaling parameter kMSE to be dinit/50 = 1,
resulting in the noise w ∼ N (0, σ2

l ) used in the MMKF. The tuning parameters used
in the cost function are the same as in Section 7.4 and can be seen in Table 7.1. Note
that the safety distance dsafe is changed, meaning that the CPA must be larger than
dsafe = 10m to satisfy the safety distance requirements of Definition 7.2.1.

It should be noted that the real-time performance of the SBMPC shows similar
results as the one presented Section 7.4.1 and is therefore not repeated here.

7.5.1 Head-on

The setup of this head-on scenario is almost identical to the ideal case, but with the
obstacle starting at 100m north. The results are shown in Figure 7.20 where the
CPA was 14.49m, satisfying the safety distance requirements of Definition 7.2.1.
However, the maneuver do experience some oscillatory behavior before passing the
obstacle, seen in both Figure 7.20b and Figure 7.21a. This is likely to be caused
by the GNC operating at a sub-optimal cruise speed, making the heading controller
slow. Moreover, the speed is kept constant during the whole scenario, and ReVolt
successfully avoids collision.

The use of change points was almost absent at this range, where the only oc-
currence happened in the first SBMPC cycle. This supports the observation from
Section 7.4 that a sufficient range is necessary for change points to be the optimal
solution.
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Figure 7.20: Course of action in the head-on scenario. The CAS was activated at t = 87s
when do,1 <= dinit. The CPA was 14.49m and is shown in Figure 7.20b.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and actual speed of ReVolt.

Figure 7.21: Optimal course and speed offsets in the crossing from port scenario 1.
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7.5.2 Crossing from starboard

The final scenario is the crossing from starboard scenario where the obstacle started at
50m north and east from the origin heading westbound. The course of action can be
seen in Figure 7.22, where ReVolt initially tries to take a starboard maneuver to avoid
the obstacle, as expected. However, due to the slow dynamics of ReVolt and the fact
at the cruise speed is sub-optimal with regards to the GNC system, the planned and
executed maneuver do not coincide. Consequently, a slowing maneuver is performed
as ReVolt was not able to maneuver itself to starboard in time. Moreover, ReVolt
continues to wait patiently until the obstacle has passed before it returns to its nominal
path. Although not optimal, the maneuver complies with the COLREGS rules, taking
action in ample time while keeping away from the crossing obstacle. The CPA was
at 19.44m, seen in Figure 7.22b, and the maneuver is therefore deemed satisfactory
according to Definition 7.2.1.

As in the head-on scenario, the use of change points as the optimal solution oc-
curred only in the first SBMPC cycle, continuing to strengthen the claim that the use
change points are more frequent at greater distances.
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Figure 7.22: Course of action in the head-on scenario. The CAS was activated at t = 39s
when do,1 <= dinit. The CPA was 19.44m and is shown in Figure 7.22b.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and actual speed of ReVolt.

Figure 7.23: Optimal course and speed offsets in the crossing from starboard scenario.
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7.6 Discussion

7.6.1 Tracking

The tracking system performed well in the simulation scenarios, showing close to
ground truth estimates with satisfying real-time capabilities. Even though the AEE
was below 0.5m in both north and east position, one cannot conclude how well the
tracker performed using only this metric. One has to look at the worst-case scenar-
ios and the consequences of that scenario to evaluate the track system in a COLAV
situation. Using the results from Section 7.3, the worst-case scenario occurs when
the maximum error occurs in both north and east at the same time, meaning that the
obstacle is

√
(1.1210m)2 + (0.9657m)2 ≈ 1.48m closer than estimated. When seen

in a collision avoidance context where the safety perimeter dsafe = 40m, an error of
this magnitude would constitute no real threat. Therefore it is reasonable to conclude
that the MMKF performs satisfactorily for COLAV purposes in the simulation study
with regards to the estimation results.

Moreover, the MMKF completes its calculations within 0.1s, a delay that is al-
most negligible at low speeds considering the vessels’ size. If the obstacle were to
travel at higher speeds, e.g., 10m/s, this delay would constitute an error of 1m, which
would not be the determining factor in a collision situation. However, this does not
mean that the delay should be ignored due to its low individual impact, but rather
prioritized to a smaller extent than other contributing factors.

One of these factors could be the interpolation performed when the CAS requests
tracks at a specified timestamp, and interpolation is performed to estimate the state
at the given timestamp. Recall from Section 7.3 that the MMKF uses a fixed up-
date rate of 1s and performs dead reckoning when no new measurements have been
received. Then there is a possibility that the CAS requests tracks immediately be-
fore the MMKF has performed its latest computation, causing a delay of about 1s in
the latest estimate. The accuracy of the estimate then depends on the interpolation
performed. From the results in Section 7.3, one may argue that the interpolation per-
forms well on average, given the tested scenarios, moving according to the CV model.
If the obstacle were to perform a turning maneuver, the tracking system would likely
perform significantly worse. One solution to this could be to implement an (IMM)
that considers multiple motion models to describe the motion of an obstacle. This
solution would require high computational power to perform satisfactorily in a real-
time situation, as it is more computationally expensive.

The MMKF shows great consistency with 96% of the measurements being inside
the 95%-confidence interval, which is expected as the MMKF is tuned with regards
to the contaminated noise. Regardless, the tracking system performs satisfactorily in
the simulated scenarios.

7.6.2 Collision avoidance

The simulation study shows that the CAS using the SBMPC algorithm avoids colli-
sion in all conducted scenarios, performing satisfactory results in a variety of realis-
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tic scenarios, including single and multiple obstacles. The new addition of a time-
varying heading reference for ReVolt throughout the prediction horizon has improved
the predicted trajectories compared to the former implementation, shown in [5]. As
seen in Figure 7.4, the predicted trajectories considers the actual path of ReVolt, re-
sulting in a curved and smooth trajectory compared to the former implementation in
[5, Figure 3.2]. The addition of the tracking system with noisy measurements gives
the simulations a more realistic touch. Regardless, the simulation environment may
be improved using other simulation platforms as Gazebo, where a multitude of exte-
roceptive sensors may be used, including camera and LiDAR. This could drastically
accelerate the development of a fully working sensor fusion tracking system using a
camera and LiDAR.

Evaluating the use of change points

All of the scenarios in Section 7.4 showed a prevalent use of change points as the
optimal solution. In order to quantify the effect of change points in the evasive
maneuvers, the same scenarios are performed without the use of change points. It
is worth mentioning that these maneuvers also performed satisfactory, according to
Definition 7.2.1.

The results are presented in Figure 7.24 and Figure 7.25 where one can see that
the use of change points makes the trajectory of ReVolt more smooth and efficient.
Observe that the trajectories in the head-on scenario in Figure 7.24a are quite similar
in shape, but the trajectories with no change points oscillate more and have a larger
maximum cross-track error. These small adjustments are undesirable and should
be avoided according to COLREGS rule 8, implying that the use of change points
improves the COLREGS compliant maneuver. Additionally, the small adjustments
accumulate and causes a relatively large positional difference of 36.87m when com-
pared at the same timestamp. This is also the case in the crossing from starboard
scenario from Figure 7.24d and the overtaking scenario from Figure 7.25a. One may
argue that the maneuver using no change points in Figure 7.25a complies more with
COLREGS rule 16 as the maneuver turns more to starboard at an earlier time, signal-
ing the indented maneuver. However, the maneuver performed using change points
makes the starboard maneuver simultaneously, but chooses a less steep starboard ma-
neuver. To the author’s understanding of the COLREGS, both maneuvers take early
and substantial action where the obstacle is passed at a safe distance, with the differ-
ence being that the use of change points proves to be the more efficient one.

The greatest difference is in the crossing from port scenarios, plotted in Fig-
ure 7.24b and Figure 7.24c, where the positional difference compared at the same
timestamp are 84.47m and 94.69m apart respectively. These distances may not seem
significant, but one has to remember that these scenarios are performed with a cruise
speed of 1m/s, whereas the full-scale model is planned to operate at a cruise speed of
6m/s, meaning that the distances can be scaled up by 6. In the full-scale scenario, the
difference between the two methods is thus much more significant. It is important to
choose the most effective method, i.e., with change points, to minimize the required
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time and operation costs of the evasive maneuver.
Furthermore, the use of change points is prominent at large distances between the

vessels. This is to be expected as the use of change points expands the maneuvering
space which in turn increases the possibility to find a more optimal trajectory.

The use of change points increases the number of scenarios to be evaluated, which
also increases the computational time. Without using change points the average com-
putational time with one obstacle was 0.3884s, which is expected as the number of
scenarios to be evaluated increases with a factor of ncp = 3. The increase is with-
out a doubt significant and causes further delay in the tracking to collision avoidance
pipeline.

Evaluation of the Ideal case

The CAS performance has been somewhat discussed in the previous section, but a
more detailed evaluation of the performed scenarios is needed.

The SBMPC performed satisfactory in all of the presented scenarios in Sec-
tion 7.4, where the evasive maneuver never had a CPA closer than the permitted safety
distance of dsafe. Nevertheless, an important factor when evaluating the maneuvers
is to verify the maneuver’s ability to comply with the COLREGS. The maneuvers be-
gan momentarily as the obstacle was within dinit = 150m of ReVolt, implying that
rule 8 and 16 were followed. Additionally, the SBMPC chose the correct maneuver
according to the COLREGS in each of the individual scenarios, including the cross-
ing from port scenario where obstacle was the keep away vessel, complying with rule
17.

The overtaking scenario experienced some oscillation when passing the obstacle,
which is undesirable and could potentially be a violation of rule 8b. The reason
is most likely due to the optimal trajectory being located tangential to the safety
perimeter of the obstacle, whose position varies due to noisy measurements. The
predicted trajectory will therefor enter the safety perimeter, which causes a significant
change in cost, and results in a change of course offset. It is not obvious where the
line is drawn for which alterations in course are acceptable, as the alterations need
to be seen in context. In this case, the alterations occurs when ReVolt is directly
starboard of the obstacle, where the oscillations vary between 10◦ − 20◦. From the
obstacle’s point of view, the oscillations are hardly noticeable and cause little to no
confusion for the intent of the maneuver, which implies that the maneuver complies
with rule 8.

Scenarios involving multiple obstacles are difficult to determine the correct ma-
neuver, but due to the tuning of the cost function parameters in Table 7.1, it is ex-
pected that starboard maneuvers are expected. An interesting observation is to see
the impact of the range restrictions Section 7.4.6, where the maneuvers were seem-
ingly similar but differed in performance. In the case with range restrictions, not all
obstacles were considered when performing the evasive maneuver, and the maneuver
began at a later stage, giving the SBMPC less time to react to the situation. This, in
combination with the slow response of the heading controller, leads to an unsatisfac-
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(b) Crossing from port scenario 1 with a dif-
ference of 84.47m.
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(c) Crossing from port scenario 2 scenario with
a difference of 94.69m .
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difference of 29.31m after.

Figure 7.24: Course of action in the overtaken scenario. The CPA was 45.13m and is shown
in Figure 7.14b.
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(a) Overtaking scenario with a difference of
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Figure 7.25: Course of action in the overtaken scenario. The CPA was 45.13m and is shown
in Figure 7.14b.

tory result. In the case with no range restrictions, earlier action was taken where the
need for fine maneuvering was minimal.

Realistic case

The scenarios in the realistic case suffered even more from the slow response of
the heading controller. The sub-optimal performance of the GNC causes significant
oscillations in the range of 10◦− 45◦ in the head-on scenario. Compared to the same
scenario in Section 7.4.1, one can observe that the oscillatory behavior, in this case,
is more rapid and that the course error is larger. From a COLREGS perspective, this
behavior is undesirable as COLREGS rule 8b states that the evasive maneuver should
be apparent to another vessel, where a succession of small alterations in the course
and speed should be avoided.

A solution to this could be to introduce gain scheduling, such that a desirable
response is achieved at different cruise speeds. One might also consider the use of
the bow thruster at lower speeds to increase maneuverability. The difference between
the desired and performed maneuvers implies a mismatch between the models used in
the SBMPC and GNC system. This could be fixed by constraining the yaw rate with
the maximum yaw rate of ReVolt, and by tuning the controllers used in the SBMPC
(see Section 5.3).

Another prominent behavior occurred during the crossing from starboard sce-
nario where the heading controller was unable to perform at speeds close to zero.
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In other words, the speed controller dominates the heading controller, causing lower
maneuverability. This problem could also be solved using the bow thruster, such that
both the speed and heading references are met.
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Chapter 8
Experimental sea trials

In this chapter, results from the conducted experimental sea trials will be presented.
First, a short introduction to the setup of the experiment is presented. Then, the
tracking results will be given. Next, results from the closed-loop collision avoidance
system will be presented. Finally, the results of this chapter will be discussed. To the
author’s knowledge, this is the first time real-life experiments have been conducted
using a LiDAR-based tracking system in a closed-loop CAS.

8.1 Setup

The experimental sea trials were performed in Dorabassenget in Trondheim (See Fig-
ure 8.1) to minimize the effects of environmental forces such as waves and ocean
currents. ReVolt is especially vulnerable to waves due to its small size, which could
cause high frequent roll motions that affect the performance of the tracking system.
However, current and wind forces going from northeast to southwest were observed
during the sea trials, meaning that forward and starboard maneuvers were more chal-
lenging to perform.

The calm sea conditions do, however, come with a price. The urban environment
causes the amount of reflected LiDAR points to increase substantially. The land
masking (see Section 3.1) algorithms remove most of the land points, but not all.
Additionally, a ferry and a tugboat were docked in Dorabassenget, seen in Figure 8.3,
causing a significant amount of clutter measurements.

The target boat used in this thesis was Fjøset II, seen in Figure 8.2, and was
mounted with a GNSS antenna to get ground truth data from the target. The GNSS
data were post-processed using RTKlib [57], giving millimeter precision to the target
boat’s position. Fjøset II will be referred to as the obstacle from now on,

During the experiments, issues with the camera prevented it from being used in
the tracking system. Hence, only the LiDAR was used to update the state estimates.

Due to time restrictions, only two scenarios were conducted, namely the head-on
and crossing from starboard scenario. These scenarios were prioritized as the ex-
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pected evasive maneuvers are predictable, making it easy to interpret the results. The
scenarios were planned to resemble the scenarios in Section 7.5 as much as possible
with ReVolt starting in the origin heading northbound. In the head-on scenario, the
obstacle started at approximately 90m north heading southbound. Correspondingly,
in the starboard scenario, the obstacle started at approximately 30m north and 50m
east heading westbound.

The main parameters used for the IPDA and SBMPC are shown in Table 8.2 and
Table 8.1 respectively. Optimally one would like to test multiple configurations of the
tracking parameters, but due to the circumstances, only one configuration was tested
during the sea trials, seen in Table 8.2. The process noise covariance was set relatively
low as the obstacle’s motion was planned to conform with the CV-model in both
scenarios. For the SBMPC, the same parameters from Section 7.5 were originally
used, but as the heading controller did not perform as expected during preliminary
testing of the GNC, some adjustments had to be made. The cruise speed of ReVolt
was increased to u0 = 1m/s, as that is the cruise speed the heading controller was
tuned for. Additionally the SBMPC update period was increased to tperiod = 5s to
reduce the number of changes in course reference.

SBMPC parameters Value
T [s] 300
DT [s] 0.5
tperiod[s] 5
dinit[m] 50
dclose[m] 50
dsafe[m] 10

Table 8.1: The main SBMPC parameters used during the experimental sea trials. Here, the
same values were used for the cost function tuning parameters as in table 7.1.

Tracking parameters Value
Survival probability 1.0
Init probability 0.2
Confirmation threshold 0.99
Termination threshold 0.1
Process noise covariance 0.1
Gate probability 0.99
Detection probability 0.9
LiDAR measurement covariance 0.5m2

Table 8.2: The main tracking parameters for IPDA used in the experimental sea trials.
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Figure 8.1: 3D photo of Dorabassenget where the experiments were conducted. The red and
yellow line indicate the path of the obstacle and ReVolt respectively in the head-on scenario.
The photo was obtained using Google Earth Pro and GNSS data from the experiment.

Figure 8.2: The target boat used as the passive obstacle in the experiments. The picture was
taken during the experiments conducted in the author’s project thesis [1].

103



(a) The ferry and ReVolt, with Simen Overeng
to the left and the author to the right.

(b) The red tugboat in the background with
ReVolt sailing in front.

Figure 8.3: A ferry and a tugboat were doecked in Dorabassenget during the sea trials,
causing a substantially amount of reflected points from the LiDAR not removed by land
masking.
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8.2 Tracking

This section will first present the tracking results from both scenarios. When present-
ing the tracking results the color codes in Table 8.3 will be used to describe the plots.
Here, the color of LiDAR centroids will gradually fade to black as time passes.

Red Ground truth trajectory of the obstacle
Green Tracks from the tracking system
Yellow Trajectory of ReVolt
Grey/Black LiDAR centroids from DBSCAN
Blue Land border

Table 8.3: Description of the color codes used in the oncoming tracking plots. The land
border is collected from Kartverket [58].

8.2.1 Results

The average track initiation time in both scenarios is presented in table 8.4 and shows
promising results. Once a track is initiated, the average time used from measurement
acquisition to tracking update is below 0.1s, causing a very low delay in the pipeline.

Track initiation head-on [s] 0.4031
Track initiation crossing from starboard [s] 0.3341
Acquisition to track time [s] 0.0765

Table 8.4: The average initiation time using IPDA and the average time used from the acqui-
sition of LiDAR measurement to the estimated track.

The plots in Figure 8.5 and Figure 8.6 shows how the majority of the received
LiDAR measurements and tracks originates from the ferry, located at about 100m
north and 70m east, as well as the tugboat at about 35m east of the origin. Apart
from that, there are few occurrences of clutter, indicating that the land masking is
working as expected.

In both scenarios, one can observe that the position of ReVolt conforms with
estimated tracks. This is because the new LiDAR setup is closer to the surface of the
ReVolt, causing more points originating from ReVolt to be reflected and subsequently
tracked. This problem can be handled when processing the LiDAR points, but the
problem was first discovered during the sea trial. These tracks disrupted the COLAV
decisions in preliminary tests, resulting in the choice of ignoring all obstacles closer
than 3m by the SBMPC. This quick fix is sub-optimal and causes an unnecessary
computational delay in the pipeline.

It was found that of the 91 established tracks during the head-on scenario, only
12 tracks originated from the obstacle. However, of the 12 tracks, only four were
alive long enough to be used in the SBMPC, and only one survived over multiple
SBMPC cycles, lasting about 50s. Similar results were found in the crossing from
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starboard scenario where only eight tracks were target originated, and only one sur-
vived multiple SBMPC cycles, with a total duration of 80s. One reason for the quick
termination of the obstacle originated tracks may be their large covariances, which
is visualized by in Figure 8.4. Here, only four tracks in each scenario are visualized
for demonstration purposes, where the green tracks are the longest surviving ones. It
can be observed that the covariances of the green tracks converge faster to a small
magnitude than the non-green tracks, which may cause the existence probability to
drop below the termination threshold for said tracks.
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(a) Plot of covariance ellipses in the head-on
scenario.
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(b) Plot of covariance ellipses in the crossing
from starboard scenario.

Figure 8.4: Covariance ellipses centered around the estimated position of the tracks. Only a
selection of tracks were chosen for visualization purposes, where all were target originated.

Furthermore, it can be observed from Figure 8.5 and Figure 8.6 how the ground
truth conforms with both the LiDAR centroids and the established tracks. It can be
observed that the estimated and ground truth positions of the obstacle do not con-
form perfectly. However, the error may not necessarily be as large in reality as the
estimated position is based on the LiDAR centroid, while the ground truth position is
measured from the GNSS antenna, where the two points may not necessarily match.
This will be discussed in more detail in Section 8.4. The calculated position errors
in north and east can be seen in Figure 8.7a and Figure 8.7b, with the error metrics
listed in Table 8.5a and Table 7.2. Here, the long-lasting tracks described above are
the tracks that are compared with ground truth. It can be observed that errors are gen-
erally low and do not suffer from spikes, except at the end of the track in the crossing
from starboard scenario.

Surge speed and heading estimates for both scenarios are shown in Figure 8.8
and Figure 8.9 respectively, and compared with ground truth. It can be observed that
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Metric Value
RMSEN [m2] 1.3323
RMSEE [m2] 1.1876
AEEN [m] 1.1577
AEEE [m] 1.0076

(a) Head-on scenario.

Metric Value
RMSEN [m2] 1.6479
RMSEE [m2] 2.7413
AEEN [m] 0.9842
AEEE [m] 1.6473

(b) Crossing from starboard scenario.

Table 8.5: Track metric results from the position estimates.

the estimates from the head-on scenario were very accurate overall, where the largest
errors occurred in the beginning of the tracks as expected. The estimates from the
crossing from starboard scenario showed similar tendencies, but suffered from larger
errors at the end of the track. This can also be seen in Section 8.2.1, where both
the RMSEψ and AEEψ were very large. This may be due to the obstacle being very
close to land, and will be discussed further in Section 8.4. It should be mentioned
that the ground truth surge speed and heading were calculated using the position data
in conjunction with basic equation of motions and trigonometry.

Metric Value
RMSEU [m2/s2] 0.5320
RMSEψ[deg2] 9.4643
AEEU [m/s] 0.2167
AEEψ[deg] 7.9922

(a) Head-on scenario.

Metric Value
RMSEU [m2/s2] 0.2014
RMSEψ[deg2] 48.7292
AEEU [m/s] 0.1258
AEEψ[deg2] 23.0718

(b) Crossing from starboard scenario.

Table 8.6: Track metric results from the surge speed and heading errors.
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(a) Overview of all the estimates during the
head-on scenario.
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(b) A zoomed in version of Figure 8.5a, high-
lighting ReVolt and the obstacle.
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(c) Plot of tracks only, where the number rep-
resents the track id.

Figure 8.5: Track results from the head-on scenario compared with the ground truth position
of the obstacle. The tracks are plotted in the same color for visualization purposes.
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(a) Overview of all the estimates during the
head-on scenario.
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(b) A zoomed in version of Figure 8.6a, high-
lighting ReVolt and the obstacle.
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(c) Plot of tracks only, where the number rep-
resents the track id.

Figure 8.6: Track results from the crossing from starboard scenario compared with the
ground truth position of the obstacle. The tracks are plotted in the same color for visual-
ization purposes.
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(a) Errors the crossing from the head-on scenario. Note how the errors are relatively smooth, with the
major spikes occurring in start of the track.
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(b) Errors the crossing from starboard scenario. The errors stay smooth with few spikes until the end of
the track.

Figure 8.7: Difference between the obstacle track and the ground truth. However, when
analyzing the error one have to consider that the track is based on the position of the LiDAR
centroid, while the ground truth is based on the GNSS antenna mounted in the middle of the
obstacle. The offset between these two will vary over time and is difficult to estimate.
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Figure 8.8: Plot of estimated vs ground truth heading and speed from the head-on scenario.
The estimates are retrieved from the longest living track.
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Crossing from starboard scenario
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(a) Estimated and ground truth heading.

60 70 80 90 100 110 120 130 140

Time [s]

0

1

2

3

4

S
u

rg
e

 s
p

e
e

d
 [

m
/s

]

Ground truth speed

Estimated speed

(b) Estimated and ground truth surge speed.

Figure 8.9: Plot of estimated vs ground truth heading and speed from the head-on scenario.
The estimates are retrieved from the longest living track.
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8.3 Collision Avoidance

In this section, the COLAV results will be presented, where the results from each
scenario will be presented separately. The plots are presented in the same format
as in Chapter 7, and obstacle information is retrieved from the long-lasting tracks,
explained in Section 8.2.1.

Average # of obstacles Average computational time
Head-on 6.90 1.25s
Crossing from starboard 7.55 1.26s

Table 8.7: Table showing the real-time performance of the SBMPC during both scenarios.

8.3.1 Results - Head-on scenario

The course of action in the head-on scenario can be seen in Figure 8.10, showing
promising results. The evasive maneuver is taken in compliance with the COLREGS
(see Figure 5.2) where a starboard maneuver is performed, leaving the obstacle at
port side with a CPA of 10.45m. This is large enough to satisfy the CPA require-
ment of Definition 7.2.1, as dsafe = 10m. One may argue that the maneuver is not
taken in ample time (COLREGS rule 8a), but the action is taken at the earliest time
possible, given the range restrictions of the tracking system. Hence, the maneuver
complies with the COLREGS to its best ability, and the evasive maneuver is deemed
satisfactory according to Definition 7.2.1.

Figure 8.11 shows how the GNC system struggles to follow the reference at lower
speeds, as in Section 7.5.1. The performance is also affected by the environmen-
tal forces, causing even lower maneuverability. This forces the SBMPC to choose
higher course offsets compared to the same scenario in the simulation study (see Sec-
tion 7.5.1), in order to achieve a satisfactory CPA. The speed controller shows similar
performance in the simulations where it uses a long time to reach the reference but
maintains a smooth behavior during the whole scenario.
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(d) t = 92s.

Figure 8.10: Course of action in the head-on scenario during the experimental sea trial . The
CPA was 10.45m and is shown in Figure 8.10b.
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(b) Optimal speed offset and speed course of ReVolt.

Figure 8.11: Optimal course and speed offsets in the head-on scenario.
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8.3.2 Results - Crossing from starboard

The second scenario was the crossing from starboard scenario, where the course of
action can be seen in Figure 8.12, with a CPA of 9.58m. This does not satisfy the
safety distance requirement of Definition 7.2.1 and is not a satisfactory maneuver.
However, from Figure 8.12 and Figure 8.13 one can observe that the SBMPC intends
to slow down and make a starboard maneuver, but the speed controller does not slow
down fast enough, causing ReVolt to drift towards the obstacle. The low speed re-
stricts the maneuverability of ReVolt, which in turn slows and delays the starboard
maneuver with about 80s. This can be seen by comparing Figure 8.12a and Fig-
ure 8.12c. After turning to starboard and passing the obstacle, ReVolt returns to the
nominal path.

As mentioned in Section 8.2.1 the track of the obstacle is lost due to land masking,
seen in Figure 8.12d. This was not desirable, but this did not affect the maneuver to
a large extent as the obstacle would have continued westbound away from ReVolt,
while ReVolt would return to its nominal path.

The execution of the evasive maneuver was not satisfactory according to Defini-
tion 7.2.1, but shows promise nevertheless. The actions are taken as early as possible
with the intent of keeping away, in compliance with the COLREGS. However, the
execution of the maneuver does not comply with COLREGS rule 8d) as ReVolt does
not pass at a safe distance.
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(b) t = 100s.
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(c) t = 144s.
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(d) t = 175s.

Figure 8.12: Course of action in the head-on scenario during the experimental sea trial . The
CPA was 9.58m and is shown in Figure 8.12b. The track was lost at t = 145s due to land
masking as the obstacle was too close to the pier.
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(a) Optimal course offset and actual course of ReVolt.
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(b) Optimal speed offset and speed course of ReVolt.

Figure 8.13: Optimal course and speed offsets in the head-on scenario.
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8.4 Discussion

8.4.1 Tracking system

The tracking system shows great real-time capabilities with low initiation time and
processing time from measurement acquisition to track update. The performance of
the IPDA is a great improvement when compared to the IPDA in Norbye’s master
thesis [4], where the lowest initiation time was 24.36s. It should be noted that the
high initiation time of the IPDA in [4] was probably to be due to a bug in the imple-
mentation where the wrong state vector was used but was fixed in this thesis. It is also
an improvement compared to the best performance of the PDAF, which was 0.728s.
The average processing time from measurement acquisition to tracking update was
0.0765s, which is faster than the LiDAR point cloud frequency of 10Hz. This result
is satisfactory.

The results in Figure 8.5a and Figure 8.6a do show a high amount of tracks orig-
inating from the ferry, as well as numerous tracks originating from the obstacle. This
may imply that the DBSCAN clustering could be improved, as it is desired that only
one measurement should be originated from each target. Additionally, tuning of the
IPDA parameters could also be improved as only one configuration was tested.

When analyzing the position errors in Figure 8.7, one needs to consider that the
LiDAR centroids would not necessarily conform with the position of the GNSS an-
tenna mounted on the obstacle. This causes a time-varying offset depending on the
pose of the obstacle relative to the LiDAR. This offset is difficult to find, and the ac-
tual position error is hard to quantify. It is believed that the use of the camera would
aid this process as object detection can more reliably and accurately find the center
of the obstacle, especially when it is perpendicular to the LOS angle.

It can be observed how the errors in the head-on scenario are relatively smooth
with few spikes occurring. This can be verified by the RMSE and AEE being close to
each other, where large errors would increase the RMSE values. The spikes that do
occur are in the early stages of the track ReVolt, which is expected as the uncertainty
is usually high in the preliminary stages of a track. Similar tendencies can be seen for
the surge speed and heading estimates, where the estimates are close to the ground
truth during the whole scenario. Speed and heading estimates are of great importance
for the SBMPC, as these errors will accumulate when predicting the trajectory of the
obstacle.

The position errors in the crossing from starboard scenario are also quite smooth,
except for a significant spike at the end of the track. This can be seen in Table 8.5b
where the RMSE is much larger than the AEE compared to the head-on scenario. The
spikes may be caused by land masking due to the obstacle being too close to the pier.
This causes the correct measurements to be discarded, resulting in a drastic covari-
ance increase, seen in Figure 8.4. Consequently, this causes the existence probability
to decrease, and the track is eventually terminated. The track uncertainties also affect
the surge speed and heading estimates in Figure 8.9.
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8.4.2 Collision avoidance

The closed-loop CAS shows very promising results in the two conducted scenarios.
In the head-on scenario, the expected starboard maneuvers were performed in com-
pliance with the COLREGS even though the first observed obstacle was about 35m
away, giving the CAS even less time to react. The low tracking range is probably
due to the vertical separation of the LiDAR beams combined with the small obsta-
cle. Recall from Section 3.1 that the LiDAR beams are separated with a 2◦ angle,
meaning that the reflected points will be 35 · sin 2◦ = 1.22m. Considering that the
obstacle is a rigid inflatable boat with no cab, there are few reflected points at large
distances, especially in a head-on scenario. Moreover, the performance of the GNC
system, shown in Figure 8.11, was slower by a large margin when compared to Fig-
ure 7.21. The difference was also amplified by the environmental forces, which the
current GNC system and SBMPC algorithm does not include, and remains as further
work. Another solution would be to implement integral LOS guidance [42], effec-
tively removing constant disturbances as currents and constant wind.

The crossing from starboard scenario shows promise when evaluating the CAS
where the correct maneuvers are chosen. Regardless, the conflict between the heading
and speed controller occurs in this scenario as well, but in this situation, the speed
controller struggles to slow down in time. This causes ReVolt to move too close to
the obstacle, which results in an unsatisfactory CPA. This is not, however, due to the
track system, nor the SBMPC CAS.

The CAS shows great real-time capabilities with low computational time, even
when considering multiple obstacles. The proactive nature of the SBMPC is yet
to be shown due to the low range of the tracking system. The evasive maneuvers
were more reactive, but the inclusion of the COLREGS makes the SBMPC valuable
compared to more reactive methods as DW and VO. Results from the conducted
experimental sea trials show that the closed-loop CAS can perform satisfactorily in
urban environments, given that the vessels operate at low speeds.
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Chapter 9
Conclusion and Future Work

9.1 Conclusion

In this thesis, a closed-loop collision avoidance system based on the scenario-based
model predictive control was implemented and tested in real-time simulations and
experimental sea trials using ReVolt. A new sensor setup has been made in collabora-
tion with DNV GL employees, and a camera-LiDAR calibration has been performed,
giving an accurate transformation between the two sensor frames. A bug in the im-
plemented IPDA algorithm has been fixed, and measurement models for the LiDAR,
camera, and AIS have been formulated.

Improvements to the SBMPC algorithm in [5] have been presented and verified
in closed-loop simulation studies. The results show that the introduction of a time-
varying heading reference in the SBMPC prediction and the use of change points
significantly improves the efficiency of the COLREGS compliant maneuvers.

Then, the closed-loop CAS was tested in experimental sea trails on ReVolt us-
ing an IPDA LiDAR tracking method. To the author’s knowledge, there has not
been conducted any real-life experiments using a LiDAR-based tracking system in
a closed-loop CAS. The results are promising, but the performed maneuvers were
suboptimal, probably due to the slow response of the maneuvering controllers on
ReVolt.

9.2 Future work

In this section, the suggestions for future work on ReVolt will be presented.

• Improve tuning of the maneuvering controllers: The slow response of the
maneuvering controllers was prevalent in the simulation studies and in the ex-
perimental sea trials, displaying the need for better tuning. Introducing gain
scheduling could also improve the performance of the GNC at different cruise-
speeds.
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• Implementing Integral Line-of-sight: The environmental disturbances was a
great contributor to the reduction of maneuverability during the experimental
sea trials. One solution to this problem could be to implement integral line-of-
sight guidance, which compensates for constant disturbances.

• Implement RADAR and AIS: Increase the range of the tracking system by
implementing the exteroceptive sensors RADAR and AIS. Using a combina-
tion of RADAR, LiDAR and camera was shown to give promising results in
[23].

• Camera issue: Investigate the camera issue that occurred during the experi-
mental sea trials.

• Improve the camera-LiDAR sensor fusion system: Gather new data to ver-
ify and improve the performance of the camera-LiDAR fusion system. This
includes tuning of the IPDA tracking system.

• Multi-target tracking: Implement a real-time multi-target tracking algorithm
such as JIPDA or MHT.

• Simulation platform: Investigate the possibility to use a 3D-simulation plat-
form for ReVolt such as Gazebo, where camera, LiDAR and RADAR plugins
are supported. This may make the transition from simulations to real-life test-
ing even shorter.
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