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framework, as well as my continuation, is developed in the Python programming
language and makes extensive use of the OpenAI Gym [1] and Stable Baselines [2]
libraries. The former is a toolkit for developing reinforcement learning algorithms,
and the latter provides full implementations of such algorithms. In addition, the
NumPy package [3] for scientific computing was used for numerical computations,
and the Shapely package [4] for computational geometry was used to aid geometric
representation and manipulation of static and dynamic obstacles.

In order to explore COLREG-compliance in a reinforcement learning framework,
two approaches are taken and compared. The first is a qualitative one, directly
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thank Eivind Meyer for serving as a discussion partner throughout this stage of the
work, which eventually lead to our collaboration on a research paper [5]. This is
contrasted with a risk-based approach, which to a larger extent employs empirical
data and expert knowledge.

Finally, I would like to thank my supervisor Professor Adil Rasheed for his tireless
support and inspirational attitude, which has been especially appreciated in these
unusual times.

Amalie Heiberg,
Trondheim, July 15, 2020
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Abstract

Autonomous systems are becoming ubiquitous, and are now also gaining momen-
tum within the marine sector. Since the electrification of transport is happening
at the same time, the envisioned autonomous vessels promise reduced environ-
mental impact, lower costs, and higher efficiency. Although close monitoring is
still required to ensure safety, the ultimate goal would be total autonomy. One
of the major hurdles is the development of a control system versatile enough to
handle all possible weather and encounter situations, that is also robust and reli-
able. Additionally, the International Regulations for Preventing Collisions at Sea
(COLREGs) must be followed for successful interaction with human sailors. Since
the COLREGs were written for the human mind to interpret, they are written in
ambiguous prose and therefore not machine readable or verifiable.

Due to these challenges and the wide variety of situations to be tackled, classi-
cal model-based approaches prove complicated to implement and computationally
heavy. Within the field of artificial intelligence, deep reinforcement learning (DRL)
has shown great potential for a wide range of applications. Its model-free and self-
learning nature makes it a promising candidate for autonomous vessels. In this
thesis, two ways of incorporating the COLREGs into a DRL-based path following
and obstacle avoidance system are explored. First, the direct usage of sensor data
combined with intuition is looked into. Then, a system based on readily available
theory of collision risk is developed.

Both of the approaches provide good results in testing scenarios, adhering to the
COLREG rules relevant to a single-agent environment – rules 14-16. This means
that in addition to achieving excellent path following and collision avoidance per-
formance in the face of static obstacles, the DRL agent adhered the implemented
COLREGs in situations where the desired behaviour was clearly defined. In both
cases, it was shown that a modular approach to reward function design works well
in DRL applications with multiple objectives.

The successful inclusion of key COLREG rules into a well-functioning path fol-
lowing and collision avoidance system is testament to the potential of DRL in
autonomous vessels.
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Sammendrag

Bruken av og forskning innen autonome systemer har økt kraftig i senere år, inklud-
ert i marin sektor. Ettersom transportsektoren samtidig gjennomgår en omfat-
tende elektrifisering, lover autonom skipsfart ikke bare reduserte kostnader gjen-
nom nedbemanning og mer effektiv drift, men også reduserte utslipp. Helautonomi
kan derfor sies å være et fremtidig mål, selv om det i dag kreves konstant moni-
torering av delvis autonome skip. Et av de største hindrene for å nå dette målet
er utviklingen av et robust og pålitelig kontrollsystem som er i stand til å takle
alle mulige situasjoner og vær. Videre er det essensielt at alle skip følger inter-
nasjonale regler for kollisjonsunngåelse på havet (engelsk forkortelse: COLREGs),
slik at samarbeidet med kapteiner og andre mennesker er trygt. Siden COLREGs
ble skrevet for mennesker, er de ofte formulert på tvetydig vis, og dermed ikke lett
overførbare til eller verifiserbare i en digital kontekst.

Grunnet disse utfordringene er det teknisk krevende å nå målet kun ved bruk
av klassiske og modell-baserte metoder. Kunstig intelligens kan approksimere
beslutningsmodeller, og virker derfor lovende. Forsterkende læring (engelsk: re-
inforcement learning) har vist et spesielt stort potensiale i et bredt spekter av
applikasjoner, inkludert de som krever kontinuerlig tilstands- og handlingsrom.
Siden forsterkende læring i tillegg er en selvlærende og modellfri metode er det
en spesielt god kandidat for autonome skip. I denne masteroppgaven undersøkes
potensialet for å flette COLREGs inn i en kontroller basert på dyp forsterkende
læring (engelsk forkortelse: DRL). For å oppnå dette sammenliknes en kvalitativ
og en risiko-basert metode.

Begge metodene fører til gode resultater i testscenarioer, og følger COLREG-regler
relevante i et miljø med én aktiv agent (regler 14-16). Dette betyr at, i tillegg til
å oppnå svært god stifølging og kollisjonsunngåelse i møte med statiske objekter,
var agentene i stand til å forholde seg til de implementerte COLREG-reglene. I
begge tilfeller var det tydelig at en modulær funksjon for belønning fungerer godt
i applikasjoner hvor agenten skal oppnå ulike konkurrerende mål.

Den vellykkede inkluderingen av viktige COLREG-regler i et DRL-basert system
for stifølging og kollisjonsunngåelse vitner om at DRL er gunstig for autonom
navigasjon på havet.
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Chapter 1
Introduction

In order for autonomous surface vehicles to reach their full operational potential,
adherence to the International Regulations for Preventing Collisions at Sea (COL-
REGs) is essential. However, the incorporation of COLREGs into autonomous
navigation has not been sufficiently researched. This thesis explores two routes to
autonomous COLREG-compliance in a framework based on deep reinforcement
learning.

1.1 Motivation

Over the last few years, the promising idea of autonomous ships has gained traction
through projects such as ReVolt by DNV GL [6] and Yara Birkeland by KONGS-
BERG and Yara [7]. In addition, research into autonomous ships is increasingly
being incentivised through funding bodies that recognise the potential benefits of
autonomy at sea. A notable example of this is the EU-funded four-year project Au-
toship Horizon 2020, which seeks to speed-up the transition towards autonomous
ships in the EU [8]. For the first time in history, the promise of lower emissions,
higher efficiency and fewer accidents via autonomy is becoming tangible.

Human error is a leading cause of accidents on the road [9] [10], and reports show
that accidents at sea are no different. According to the Annual Overview of Ma-
rine Casualties and Incidents published by the European Maritime Safety Agency
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Chapter 1. Introduction

(EMSA), human error was attributed to over 50% of accidental events in the pe-
riod 2011-17 [11]. In addition to reducing accidents and thereby fatalities, damage
to the environment and costs, autonomous marine operations allow for optimised
route planning. This can be done with respect to time spent, or fuel costs. It should
also be mentioned that autonomous ships can move cargo from the road to the sea,
which could lead to less trafficked roads. For instance, the autonomous container
ship Yara Birkeland is expected to reduce the amount of trips made by diesel trucks
by 40,000 a year after its launch in 2020 [12]. Together with the widespread elec-
trification that is taking place, reduced air pollution is another likely and desirable
effect.

An overall reduction of errors as a result of introducing autonomy depends on
the development of robust and reliable systems, which is no trivial task. For au-
tonomous navigation at sea, the vessel’s control system must deal appropriately
with a wide range of situations not only depending on the position of the ownship
(OS) and other ships within a certain radius, but also on environmental factors
such as wind, ocean currents, and waves. Another crucial element is detection,
classification and tracking of objects, which might in itself be challenging in cer-
tain weather conditions. As described more thoroughly in the literature review,
which follows in Section 1.2, the currently proposed solutions generally make im-
portant simplifications and assumptions. Low-level controllers, or autopilots, are
already commercially available, but more research on higher level path planning
and collision avoidance is needed to ensure safe autonomous navigation in real sit-
uations. For collision avoidance, COLREG-compliance is crucial to ensure safety
when encountering other vessels.

Due to the complex nature of autonomy at sea, classical model-based methods may
be challenging to implement for full autonomy. Since modern AI methods have
the advantage of learning, however, such methods could prove useful for model
approximation. Supervised learning approaches are in theory very powerful, but
are limited by their dependency on good and labelled training data. Reinforcement
learning (RL) remedies this by producing data iteratively as the agent, in this case
a marine vessel, interacts with its environment and records the outcomes of actions
taken.

Motivated to start bridging the gap between state-of-the-art RL and the chal-
lenges faced by real vessels, this thesis aims to incorporate the COLREGs into an
autonomous path following and collision avoidance system based on deep reinforce-
ment learning (DRL). Two distinct approaches are explored:

2



Chapter 1. Introduction

1. Based on qualitative methods

2. Based on measures of collision risk and empirical knowledge

The goal is to compare these approaches and achieve a system that generalises well
to a wide range of situations, without being computationally expensive in real-time.

1.2 Literature review

In the past, collision alert systems (CAS) were developed to aid the captain and
crew on board a vessel. These systems were largely extensions of sensors, present-
ing the sensor data to the user in a helpful manner. Examples of CAS systems
are Automatic Radar Plotting Aid (ARPA) and Automatic Identification System
(AIS) (compared in [13]), which are routinely used for collision risk evaluation [14].
As we are moving into the fourth industrial revolution, solutions such as digital
twins and remote sensing are making their ways into the maritime industry [15].
Decision-making is thus gradually being taken from the cognitive realm and into
the digital domain, and the need for highly robust and flexible guidance, navigation
and control (GNC) systems is growing. Since COLAV systems are responsible for
one of the most safety-critical aspects of a vessel’s operation, an integrous COLAV
system is required for any GNC system operating in a dynamic environment [16].
To reach full autonomy at sea, the development of reliable and transparent COLAV
systems is therefore crucial.

Before autonomous vessels became a possibility, the International Regulations for
Preventing Collisions at Sea (COLREGs) were formulated to prevent collisions
between two or more vessels [17]. Although technological advancement has been
great since their publication in 1972, COLREG-compliance for autonomous vessels
is still understudied. One of the main challenges is that the COLREGs were written
for humans to interpret, and must therefore be translated to a machine readable and
verifiable format. Another potential challenge is the indirect communication that
occurs when two vessels meet in a situation with high risk of collision. For instance,
for communication purposes, the COLREGs require relatively sharp manoeuvres
whenever a high-risk situation is encountered. However, from an the point of view
of a system that bases its decisions on energy efficiency, or even risk of collision, this
may not be the optimal behaviour. Hence, the human-machine interface should be
given sufficient attention, so that the autonomous vehicle behaves in a way that
can be appropriately discerned by a human.

In addition to the challenges inherent to the COLREGs, autonomous collision

3



Chapter 1. Introduction

avoidance can be demanding due to the complex dynamics of ships, varying speeds,
and changing environmental conditions [18]. The majority of the proposed solu-
tions for autonomy make assumptions that do not represent reality. Examples of
such assumptions are constant speed of the OS or other ships, good weather condi-
tions, or that the system only operates while the ship is at open sea. It is clear that
an adequate autonomous vessel must be able to deal with all the situations the cur-
rent fleet handles. For instance, given sufficient situational awareness, a full-fledged
autonomous COLAV system should be expected to handle situations involving all
sorts of moving and stationary objects, from container ships to kayaks. For general-
isation, the system must be able to track a high number of objects simultaneously,
and perform well in congested waters.

Before embarking on the development of a COLREG-compliant COLAV system
based on DRL, it is useful to review the currently proposed solutions. A plethora
of COLAV algorithms and architectures for autonomous control have been and are
being researched, and there are many ways to distinguish between these.

1.2.1 Broad comparison of COLAV systems

Broadly speaking, COLAV systems can be classified from three perspectives:

1. Classical and soft systems. One way to look at COLAV systems is through
the lens of so-called classical and soft systems, as described by Statheros et
al. [19]. Classical systems are based on mathematical models and logic, and
thus assume that an optimum can be found analytically or numerically. As a
result, proof of convergence can normally be found, which is one of the reasons
the classical approach is widely used in industry. For collision avoidance, and
many other applications, model predictive control (MPC) is popular. As
shown by Johansen et al. [20] and Eriksen [21], MPC can be used to develop
a COLAV system compliant with the main rules of COLREGs. However, this
method is simulation-based, and would become computationally expensive if
it were to consider a high number of control behaviours at each interval.
Another challenge pointed out in [20] is the dependency of performance on
parameter tuning, which is likely to be time-consuming. However, the method
is powerful due to its ability to formalise for instance physical constraints and
risk measures through cost functions. MPC can also be applied to nonlinear
systems with uncertain environmental disturbances, as done by Soloperto et
al. [22].

MPC is popular, but several other classical methods can also be used for col-
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lision avoidance. Two of these, which have been applied to marine vessels, are
the Velocity Obstacle (VO) and Interval Programming (IvP) methods. The
VO method was first proposed by Fiorini and Shiller in 1998 [23], and works
by creating velocity obstacles: artificial obstacles representing the velocities
that would result in collisions. This method assumes constant velocity for
both the OS and other vessels. Kuwata et al. [24] showed that maritime nav-
igation can be done according to the COLREGs when using the VO method.
Interval programming has also been shown to successfully produce COLAV
systems adhering to the COLREGs [25] [26]. In the collision avoidance appli-
cation, a multi-objective optimisation approach is taken, where weighted IvP
functions are used as objective functions. Dynamic Window (DW) is another
optimisation-based method that has been researched for marine applications
[27]. The strength of DW can be found in its focus on fast dynamics, result-
ing from a reduction of the search space to velocities reachable within a short
time interval [28].

In contrast to classical systems, soft systems assume that the problem at
hand is not readily quantified, and are based on artificial intelligence (AI).
A main group of methods adhering to the soft approach is heuristics, which
are experience-based methods for finding an acceptable solution to a prob-
lem. The A* heuristic, introduced by Hart, Nilsson, and Raphael in 1968
[29], might be the most well-known and widely used. It is a greedy algorithm
for finding the shortest distance employing a heuristic for the distance of
each point to the goal. This means that it is often used for high-level path
and trajectory planning, as was done in [21]. Another widely known heuris-
tic technique is the Artificial Potential Field (APF) method introduced by
Khatib in 1985 [30]. Simply put, it works by creating attractive and repul-
sive artificial fields, on which gradient descent can be done. A main challenge
with the APF method is its tendency to get trapped in local minima. In
[31] it was shown that this can be remedied for collision avoidance when us-
ing an adaptive version of APF. A third well-known heuristic is the genetic
algorithm (GA), which is based on evolutionary theory. Such an approach
is taken in [32], where a genetic algorithm is used for trajectory planning
in an environment with static and dynamic obstacles. APF and GAs are
only two examples of the wide variety of heuristic methods that can be ap-
plied to collision avoidance, and each method exhibits different strengths
and weaknesses. For example, [33] showed that Distributed Tabu Search, a
metaheuristic method, can be used for collision avoidance in highly congested
areas.
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Chapter 1. Introduction

Another set of soft systems is that of machine learning (ML). ML techniques
such as deep learning (DL) and reinforcement learning (RL) have gotten a
lot of attention in the context of autonomous systems. An advantage of ML
techniques is their data-driven nature, which means that they do not require
mathematical models of the vessel of the environment. They also allow trans-
fer learning, which means that knowledge obtained in one situation can be
applied to another. However, only a limited amount of the research has been
devoted to autonomous marine vessels, compared to e.g. driverless cars. In
[34], a deep convolutional neural network (CNN) is trained for COLREGs
compliant collision avoidance for an unmanned surface vehicle. This method
is based on image recognition, and makes use of the visual capabilities of
CNNs. Although the results are compelling, an adequate use of CNNs re-
quires well-balanced and sufficient training data. Due to the lack of real data,
[34] relies on data collected from a ship simulator game. RL shows great po-
tential, as straight-path following, curved path following and simple collision
avoidance by RL has been documented for marine vessel models in [35], [36],
and [37] respectively. In these works, the Deep Deterministic Policy Gradi-
ent (DDPG) [38] algorithm was employed. In addition, Zhao et al. [39] and
Meyer et al. [40] showcased the potency of the continuous actor-critic method
Proximal Policy Optimisation (PPO) [41] for multiship collision avoidance.

2. Deliberative and reactive systems. Secondly, COLAV systems can be
compared via their deliberative and reactive properties [42]. Deliberative sys-
tems can be described by “sense-plan-act”, as they aim to use information
to plan into the future. Reactive systems, on the other hand, can be seen as
“sense-act” systems. These systems exhibit tight coupling and low time delay
between sensed input and actions. In other words, deliberative and reactive
systems are path-planning and low-level control systems, respectively. Some
of the classical systems described above are deliberative, while some are re-
active. For instance, MPC-based systems are deliberative, whilst IvP, DW,
and VO methods are reactive. On the side of soft systems, A* is deliberative,
and the APF method is reactive

3. Modes of communication. A third way of comparing COLAV systems is
by looking at their modes of communication. All vessels above 300 tonnes
engaged on international voyages, all cargo ships above 500 tonnes, and all
passenger ships are required to carry an AIS [43]. The AIS transmits and
receives information about identity, position, course, speed, etc., which can
be incorporated into a COLAV system. Such systems can thus enhance the
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quality of information about other vessels, but depend on infrastructure and
communication with other vehicles. Since one cannot expect complete avail-
ability, a ship is usually equipped with exteroceptive sensors such as cameras,
lidars, and radars, in addition. For an autonomous COLAV system, it would
be beneficial to make use of AIS information, without depending on it.

Several hybrid COLAV systems can and have also been implemented. When com-
bining for instance classical and soft systems, or deliberative and reactive systems,
we get hybrid systems. This is done with increasing frequency [44]. Multi-layered
systems are also being developed, where each subsystem lies on a spectrum be-
tween reactive and deliberative. Such hybrid architectures are able to harvest the
strengths of several methods, using each where they perform best. It can be argued
that modular and layered hybrid systems are likely to become increasingly popular,
due to their intuitive nature. Loe [45] uses a two-layered approach, where delib-
eration is done by a Rapidly-Exploring Random Tree (RRT) algorithm combined
with A*, and the reactive component consists of a modified Dynamic Window al-
gorithm. In [21], the A* deliberative heuristic is combined with a mid-layer and
a reactive MPC-based algorithm, forming a three-layered COLAV system. Other
layered architectures have been proposed by Casalino et al. [46] and Švec et al.
[47].

In summary, a wide range of COLAV systems have been proposed in literature,
generally disregarding the COLREGs. At the same time, the increased focus on au-
tonomous systems in later years requires COLREG-compliance for sufficient safety.
This gap combined with the promise of DRL for autonomous navigation shapes the
objectives of the thesis.

1.3 Objectives

Primary objective: Investigate COLREG-compliance in a path following and
collision avoidance system based on deep reinforcement learning through the com-
parison of two approaches.

Since the COLREGs have been developed to reduce risk of collision, it is interesting
to assess the current methods for measuring collision risk from a DRL perspective.
At the same time, the design of DRL systems is often done using intuition rather
than step-by-step methods, due to the lack of effective methodologies. Comparing
a qualitative approach with a risk-based one could therefore provide useful insights.
Hence, the two approaches to be implemented and compared are:
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• Qualitative approach: aims to incorporate the COLREGs into a DRL
controller using intuition

• Risk-based approach: aims to incorporate the COLREGs into a DRL
controller using state-of-the-art collision risk measures

Doing so, the thesis seeks to answer the following research questions:

• Which of the approaches implemented shows the largest potential for COLREG-
compliant collision avoidance?

• Is deep reinforcement learning suited for COLREG-compliant navigation at
sea?

1.4 Outline of report
The thesis is comprised of five chapters, of which the first is this introductory
chapter providing the main motivation for carrying out the work, along with a
brief literature review of collision avoidance at sea. Moreover, the objectives and
contributions are specified. In Chapter 2, the necessary background is presented.
The chapter presents the most important concepts relevant to this work, namely
marine vessel modelling, path following, collision avoidance and COLREGs, as well
as an introduction to deep reinforcement learning. A short account of previous work
essential to the framework utilised is also given. Next, the design and implemen-
tation details for the simulation environment, DRL algorithms and incorporation
of the COLREGs can be found in Chapter 3. Chapter 4 outlines the methods
employed for performance evaluation, as well as the training and results yielded
by both the qualitative and the risk-based approach. Finally, Chapter 5 concludes
and provides reflections on the thesis, in addition to suggestions for future work.
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Background

In this chapter, the necessary theoretical background is provided. In Section 2.1,
the rationale behind the marine vessel model is presented. Theory on path following
and collision avoidance, including the relevant COLREGs and measures of collision
risk, can be found in Section 2.2.1. Further, Section 2.3 provides the reader with
sufficient theory on deep reinforcement learning, before ending on a short account
of feasibility pooling – an algorithm developed by previous students and used in
this thesis.

2.1 Modelling of marine vessels

In order to develop a DRL-based system for path following and collision avoidance,
it is necessary for the agent to interact with an environment, so that it can learn.
Hence, such a model needs to be in place even though the agent is not provided
with a model of the environment directly. A key element of the environment is the
dynamics of the vessel itself. Therefore, an introduction to the theory used as a
basis for the simulation environment is presented here, which is based on Handbook
of Marine Craft Hydrodynamics and Motion Control by T. I. Fossen [48].

Twelve equations of motion accurately describe the kinematics and kinetics of a
marine vessel. Six of these represent the kinematics of the vessel, which are the
relations between positions and velocities. The remaining six represent the dy-
namics, or kinetics, of the vessel – the relations between forces, moments, and the
momentum. Before expressing the equations of motion, the framework in which
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they are expressed must be introduced.

A marine vessel operates in three-dimensional space with 6 degrees of freedom
(DOF), meaning that its configuration is described by six coordinates. Three of
these represent the position of the ship, and are called surge, sway, and heave.
The remaining three represent the orientation of the ship, called roll, pitch, and
yaw. For an overview of the notation commonly used in conjunction with the six
coordinates, see Table 2.1.1.

Table 2.1.1: Nomenclature for motion of marine vessels [48], as defined by
SNAME [49].

DOF Forces/moments Linear/angular velocities Positions/Euler angles
surge 1 X u x
sway 2 Y v y
heave 3 Z w z
roll 4 K p φ
pitch 5 M q θ
yaw 6 N r ψ

Assumption 1. (Local navigation.) The craft navigates at a local scale.

The positions, velocities, forces, and moments are expressed relative to a frame of
reference. To accurately describe the motion of a marine vessel moving along the
surface of the Earth, a coordinate frame located in Earth’s center of gravity should
be used as reference. As a result, it is usually considered an inertial coordinate
frame, {i} = (xi, yi, zi). However, since many ships do not navigate globally, but
rather locally, the North-East-Down (NED) frame, denoted {n} = (xn, yn, zn), is
often used for simplicity. The X-Y plane of the NED frame is defined as the tan-
gential plane on the surface of the Earth, with the origin moving with the vessel.
The NED frame can therefore be seen as the linear position of the vessel relative
to the inertial frame. Further, the coordinate frame aligned with the position and
orientation of the vessel is called the body frame, {b} = (xb, yb, zb). Specifically,
the x-axis is aligned with the aft-to-fore axis, the y-axis points starboard, and the
z-axis points from the top to bottom of the vessel. The position of the vessel is
best described in the NED frame, whilst velocities, forces, and moments are better
described in the body frame. Using vector notation, such that for instance ωinb
denotes angular velocity of {b} with respect to {n} expressed in {i}, the positions,
velocities, forces and moments can be denoted:
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NED
position

pnnb =

xy
z

 ∈ R3 Attitude Θnb =

φθ
ψ

 ∈ S3

Body-fixed
linear
velocity

vbnb =

uv
w

 ∈ R3 Body-fixed
angular
velocity

ωbnb =

pq
r

 ∈ R3

Body-fixed
force

f bb =

XY
Z

 ∈ R3 Body-fixed
moment

mb
b =

KM
N

 ∈ R3

Here, R3 is the three-dimensional Euclidean space, and S3 is the sphere defined
by three angles on the interval [0, 2π). To simplify the equations of motion, the
vectors are grouped together so as to form a pose vector η, velocity vector ν and
force vector τ , as in Eq. 2.1.1.

η =
[
pnnb
Θnb

]
=



x

y

z

φ

θ

ψ


∈ R3×S3, ν =

[
vnnb
ωbnb

]
=



u

v

w

p

q

r


∈ R6, τ =

[
f bb
mnb

]
=



X

Y

Z

K

M

N


∈ R6

(2.1.1)

Next, the assumption of calm sea is made both for simplification and to allow the
focus to remain on COLREG-compliance.

Assumption 2. (Calm sea.) No external forces, such as wind, waves, and ocean
currents, act on the craft.

Neglecting wind and current and assuming local navigation (and thus no hydro-
static forces), the equations of motion for a marine vessel can be expressed as:

η̇ = J(η)ν
Mν̇ + C(ν) + D(ν)ν = τ

(2.1.2)
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Here, M is the rigid-body mass matrix, C(η) is the rigid-body Coriolis and cen-
tripetal matrix due to rotation of the body frame about the inertial frame, and
D(η) is the vessel’s damping matrix. J(η) is the transformation matrix from the
body to the NED frame, as given by

J(η) =
[
R(Θnb) 03×3

03×3 T(Θnb)

]
(2.1.3)

R(Θnb) is the linear velocity rotation matrix, and T(Θnb) is the angular velocity
transformation. Writing sin, cos, and tan as s, c, and t, the rotation matrix and
transformation are given as in Eq. 2.1.4 and Eq. 2.1.5. Here, a rotation sequence
φ-θ-ψ was chosen as an example.

Rn
b (Θnb) = Rz,ψRy,θRx,φ =

cψ −sψ 0
sψ cψ 0
0 0 1


 cθ 0 sθ

0 1 0
−sθ 0 cθ


1 0 0

0 cφ −sφ
0 sφ cφ


(2.1.4)

T(Θnb) =

1 sψtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.1.5)

Assumption 3. (Horizontal-plane model.) The craft only moves in the horizontal
plane, with no fluctuations in heave, roll, or pitch.

Since this work deals with navigation in the horizontal plane with environmental
forces neglected, it is natural to reduce the model to a 3-DOF model for simplicity.
Doing so gives generalised coordinates η = [xn, yn, ψn]>, with velocity vector ν =
[u, v, r]>. The 3-DOF model thus becomes

η̇ = Rz,ψ(η)ν
Mν̇ + C(ν) + D(ν)ν = τ

(2.1.6)

For path following in the horizontal plane, usually accomplished through course
control, four variables called heading, course, crab, and sideslip are especially
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Figure 2.1.1: Ocean current triangle for the horizontal plane.

important. The heading ψ is defined as the angle between the aft-to-fore axis of
the vessel and the true north. Defining U =

√
u2 + v2 as the horizontal-plane speed

of the vessel, the course χ is defined as the angle between U and the true north,
whilst the crab angle βc is defined as the angle between U and the aft-to-fore axis of
the vessel. Lastly, the sideslip angle is defined as the angle between the aft-to-fore
axis of the vessel and the relative speed, Ur =

√
(u− u2

c) + (v − vc)2, where uc
and vc are the horizontal components of the velocity of the current. A visualisation
of these angles is shown in Fig. 2.1.1.

The course angle can also be expressed as the sum of the heading and crab angles,
which is an important relationship often used in course control:

χ = ψ + βc (2.1.7)

However, when there is no wind or current present, as is assumed here, the sideslip
and crab angles are equal, giving Ur = U .

13



Chapter 2. Background

2.2 Path following and collision avoidance for ma-
rine vessels

Here, a short introduction to classical path following and collision avoidance is
given for comparative purposes. Path following and collision avoidance are closely
connected and can be seen as competing objectives, as collision avoidance is essen-
tially a deviation from a preassigned trajectory in the face of obstacles. In Section
2.2.1, the basics of a common path following algorithm for marine vessels is pre-
sented, and in Section 2.2.2, a short definition of collision avoidance and the type
of system aimed for in this work are given. It should be noted that the sections on
path following are based on Handbook of Marine Craft Hydrodynamics and Motion
Control by T. I. Fossen [48].

2.2.1 Path following

In path following, the goal is for a vessel to converge to a predefined reference path.
Since the path given is parameterised without the use of time, the controller only
responds to spatial variables, such as Euclidean distance to the path. In trajectory
tracking, importance is also given the temporal error.

A common method for straight-line path following is line-of-sight (LOS), where the
path is represented using waypoints expressed in the NED frame. Defining a kth
waypoint as pnk = [xk, yk]> for k = 1, ..., n, the path is comprised of the straight-
line segments between subsequent waypoints pnk and pnk+1. A positive angle αp can
then be found between a straight-line segment and the x-axis of the NED frame,
called the path tangential angle:

αp = atan2(yk+1 − yk, xk+1 − xk) (2.2.1)

The function atan2 is used to ensure the calculation of the correct angle by taking
the sign of the x-coordinates into account. To get the positive angle, the result
belonging to the interval [−π, π] must be mapped to [0, 2π]. Doing so, the position
pn = [x, y] of the vessel can be expressed in a path-fixed coordinate frame by rotat-
ing by αp around the zn-axis and translating the origin to pnk . The corresponding
rotation matrix is given by

R(αp) =
[
cosαp −sinαp
sinαp cosαp

]
(2.2.2)
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Combining rotation and translation, the path-fixed coordinates can be found (Eq.
2.2.3). These coordinates are often referred to as the along-track error, xe, and the
cross-track error (CTE), ye.

pe =
[
xe

ye

]
= R(αp)>(pn − pnk ) (2.2.3)

The purpose of transforming the vessel position to the path-fixed frame is to align
the x-axis of the reference frame with the path. In this way, the control objective
is simply to diminish the CTE, such that:

lim
t→∞

ye(t) = 0 (2.2.4)

To achieve smooth transitions between the waypoints, an acceptance region Rk

around a waypoint pnk is defined. Doing so, the autopilot looks to the next waypoint
once the ship has entered the acceptance region of the current waypoint. Circular
acceptance regions are most commonly used, and a widely used heuristic for the
acceptance region is 2Lpp, where Lpp is the ship length. The switching condition
for the autopilot is thus:

(xk − x)2 + (yk − y)2 ≤ R2
k (2.2.5)

In classical control, the vessel course can then be controlled using for instance a
PID controller.

In this work, however, a smooth path is constructed as a parametric curve, com-
plicating the calculation of the CTE slightly. Choosing the arc-length ω as the
function parameter, the path can be parametrised as

pd(ω) = [xd(ω), yd(ω)]> (2.2.6)

where xd(ω) and yd(ω) are given in the NED-frame. Since the path is defined as a
function of ω, we can find the value of ω corresponding to the closest point on the
path, denoted ω̄, via the optimisation problem

ω̄ = arg min
ω

(xn − xd(ω))2 + (yn − yd(ω))2 (2.2.7)
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Figure 2.2.1: Illustration of key concepts for navigation with respect to path
following. The path reference point pd(ω), i.e. point yielding the closest Euclidean
distance to the vessel, is here located right of the vessel, while the look-ahead
reference point pd(ω̄ + ∆LA) is located a distance ∆LA further along the path [5].

In turn, the CTE, illustrated in Fig. 2.2.1, can easily be found by first calculating
the point on the path corresponding to the path variable ω̄, before applying it to
the equation below:

ye =
∥∥∥[xn, yn]T − pd(ω̄)

∥∥∥ (2.2.8)

To provide the RL agent with information about the path ahead, allowing for
smoother and more sensical behaviour, it is useful to consider the look-ahead dis-
tance ∆LA. Setting the desired course angle equal to the direction to the corre-
sponding point on the path, pd(ω̄ + ∆LA), the look-ahead distance can be used to
adjust the trade-off between path following and actuation. Following this scheme,
the heading error ψ̃ is defined as the deviation between the vessel heading ψ and
the direction towards the look-ahead point, illustrated in Fig. 2.2.1. The heading
error is calculated according to
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ψ̃ = atan2
(
yd(ω̄ + ∆LA)− yn
xd(ω̄ + ∆LA)− xn

)
− ψ (2.2.9)

In an attempt to further improve the agent’s ability to maneuver in a smooth
manner, the look-ahead heading error ψ̃LA is introduced. Defining the path angle
αp as the angle between the derivatives x′p and y′p at the point corresponding to
the arc-length ω̄ gives

αp(ω̄) = atan2(y′p(ω̄), x′p(ω̄)) (2.2.10)

Finally, the look-ahead heading error is then given as the difference between the
path angle at the look-ahead point, αp(ω̄ + ∆LA), and the heading of the OS, ψ:

ψ̃LA = αp(ω̄ + ∆LA)− ψ (2.2.11)

2.2.2 Collision avoidance

It is challenging to find a clear-cut definition of collision avoidance systems. In
essence, it is a system which aims to enhance the active safety of the vehicle [50].
This can be achieved through advanced breaking controllers, as proposed in the
article cited, or by evading the obstacle through course controllers.

A collision avoidance system for a marine vessel can be structured in many ways,
but is generally focused on changing the vessel’s course according to the COLREGs.
Several of the most important algorithms used for such systems today are discussed
in the literature review in Section 1.2. Moreover, as touched upon in the review, a
marine collision avoidance system is normally either comprised of a single unit or a
set of modules arranged in cascade. In a modular system, the higher level modules
are deliberative, and deal with long-term planning. Low-level modules are reactive,
responding rapidly to sudden changes in the environment.

Although an RL approach allows either an end-to-end system or a cascaded archi-
tecture, the former is employed in this work. This means that the system takes an
observation vector containing information about the vessel state and environment
as input, and outputs the desired control input directly.

In either case, the collision avoidance system makes part of the control system of
a vessel, which in turn is one of the modules in a guidance, navigation and control
(GNC) system, illustrated in Fig. 2.2.2. Due to the difference in computational
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load, the high-level guidance system runs at a lower frequency than the low-level
motion control system – enabled by the decoupling of the systems.

Figure 2.2.2: GNC system architecture [51]

2.2.3 Relevant COLREG rules

Below, the relevant sections of the International Regulations for Preventing Colli-
sions at Sea [52] are presented. As can be seen, the two main takeaways from these
rules are that 1) the give way vessel should take early and substantial action, and
2) safe speed should be ensured at all times, such that course alteration is effective
towards avoiding collisions where there is sufficient sea-room. Since rules 6 and 8
are especially difficult to quantify, compliance to rules 14-16 is the focus of the work.

Rule 6: Safe speed

Every vessel shall at all times proceed at a safe speed so that she can
take proper and effective action to avoid collision and be stopped within
a distance appropriate to the prevailing circumstances and conditions.

Rule 8: Action to avoid collision

(b) Any alteration of course and/or speed to avoid collision shall, if the
circumstances of the case admit, be large enough to be readily apparent
to another vessel observing visually or by radar; a succession of small
alterations of course and/or speed should be avoided.

(c) If there is sufficient sea-room, alteration of course alone may be the
most effective action to avoid a close-quarters situation provided that
it is made in good time, is substantial and does not result in another
close-quarters situation.

(d) Action taken to avoid collision with another vessel shall be such as
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to result in passing at a safe distance. The effectiveness of the action
shall be carefully checked until the other vessel is finally past and clear.

(e) If necessary to avoid collision or allow more time to assess the
situation, a vessel shall slacken her speed or take all way off by stopping
or reversing her means of propulsion.

Rule 14: Head-on situation

(a) When two power-driven vessels are meeting on reciprocal or nearly
reciprocal courses so as to involve risk of collision each shall alter her
course to starboard so that each shall pass on the port side of the other.

(b) Such a situation shall be deemed to exist when a vessel sees the other
ahead or nearly ahead and by night she could see the masthead lights of
the other in a line or nearly in a line and/or both sidelights and by day
she observes the corresponding aspect of the other vessel.

(c) When a vessel is in any doubt as to whether such a situation exists
she shall assume that it does exist and act accordingly.

Rule 15: Crossing situation

When two power-driven vessels are crossing so as to involve risk of
collision, the vessel which has the other on her own starboard side shall
keep out of the way and shall, if the circumstances of the case admit,
avoid crossing ahead of the other vessel.

Rule 16: Action by give-way vessel

Every vessel which is directed to keep out of the way of another vessel
shall, so far as possible, take early and substantial action to keep well
clear.

2.2.4 Measures of collision risk

The rules presented in Section 2.2.3 were intended for human interpretation, and
contain ambiguities such as "large enough" (Rule 8) and "substantial action" (Rule
16). How can they be translated into a form that can be used in reinforcement
learning? An important first step is recognising the relationship between the COL-
REGs and collision risk. The COLREGs are in place to reduce collision risk, but
also affect the risk level indirectly by influencing the probable behaviour of the
target ship (TS). Since there is such an interdependence between the rules and the
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risk level, employing a measure of risk as a proxy for the COLREGs may prove
useful.

Analysing the historical trends of measuring collision risk, three main developments
in methods used can be observed [14]:

1. Traffic flow theory

2. Ship safety domains

3. Collision risk indexes

The initial efforts to quantify collision risk were based on traffic flow theory, a
method built on empirical studies and statistical analysis of traffic in specific water
areas. For instance, Cookcroft [53] investigated the collision rates for ships of
varying tonnage relative to their position in a water area. Goodwin [54] took it
further and studied the rate of dangerous encounters.

As statistical analysis of historical data was deemed insufficient for dynamic col-
lision avoidance, ship safety domains were introduced. The ship safety domain
defines a region around the ship in question which should not be entered by other
ships. Hence, there is a risk of collision if one ship is inside the safety domain
of another, and the ship domain can be said to be a generalisation of a safe dis-
tance [55]. When applying the ship domain to an encounter situation in order to
determine risk, one of the four safety criteria are normally used:

1. the OS domain should not be violated by a TS

2. a TS domain should not be violated by the OS

3. neither of the ship domains should be violated

4. ship domains should not overlap, such that they remain mutually exclusive.

In the more recent contributions of Rawson et al. [56] and Wang and Chin [57] in
2014 and 2016, the last criterion of non-overlapping ship domains is used.

It is important to note that a ship domain is usually defined depending on which
situation the ship finds itself in, in order to respect the COLREGs. For instance,
the domain used while the OS is overtaking another ship is symmetrical with origin
coinciding with the centre of the OS. In a head-on situation, on the other hand,
the origin is shifted to the right of the OS, as close encounters on the starboard
side are to be avoided.

Davis et al. [58] expanded the theory of ship safety domains in their well-known
work on ship arenas. The ship arena defines the distances around the OS at which

20



Chapter 2. Background

action should be made to avoid a dangerous encounter, and is therefore larger than
the ship safety domains proposed initially. In addition to the OS’s length and
velocity, the distance to the closest point of approach (DCPA) and the time to
the closest point of approach (TCPA) are used to construct the limits of the ship
arena. A geometrical representation of DCPA and TCPA are presented in Fig.
2.2.3, giving rise to the equations

DCPA = R sin(χR − χOS − θT − π) (2.2.12)

and

TCPA = R

VR
cos(χR − χOS − θT − π) (2.2.13)

where R is the absolute distance between the OS and TS, and VR and χR are the
relative speed and course between them. In addition, χOS is the course of the OS,
while θT is the bearing of the TS relative to the OS.

Figure 2.2.3: Geometric representation of DCPA and DCPA.

This leads to the next development in collision risk evaluation, namely collision
risk indexes (CRIs), which are based largely on the DCPA and TCPA. In addition,
a CRI can include the absolute distance from the OS to the TS R, velocity ratio
K of two encountering ships, relative course χR, and other key features. Recently,

21



Chapter 2. Background

simple CRIs alone are considered unable to capture the gradual and complex nature
of collision risk. As a result, it has become the norm to combine the CRI with fuzzy
logic or the fuzzy comprehensive evaluation method. In fuzzy logic, fuzzy IF-THEN
rules are applied to the parameters involved, such as DCPA and TCPA, in order to
determine the level of risk. In the fuzzy comprehensive evaluation method, on the
other hand, membership functions u(·) ∈ [0, 1] are used instead of IF-THEN rules,
taking more details into account. The final CRI is then given as the weighted sum
of the membership function outputs, as exemplified below:

CRI = αDCPA ·uDCPA(DCPA)+αTCPA ·uTCPA(TCPA)+αR ·uR(R) (2.2.14a)

αDCPA + αTCPA + αR = 1 (2.2.14b)

2.3 Deep reinforcement learning

Machine learning (ML) is the branch of artificial intelligence (AI) that has received
most attention over the past few decades, and is often what is referred to when
talking about AI. Creating machines that can learn has proven immensely useful
in tasks such as image recognition and natural language processing, and ML is now
widely used by companies such as Facebook and Google [59]. Possibly the most
popular type of ML is that of deep learning (DL), which requires large amounts of
labelled training data. Reinforcement learning (RL), on the other hand, attempts to
solve problems in a more intuitive fashion, through trial and error. The combination
of DL and RL forms deep reinforcement learning (DRL) – a hybrid system described
in section 2.3.3. First, however, it is necessary to take a closer look at RL and DL
separately.

2.3.1 Reinforcement learning

In reinforcement learning, a problem is posed as an agent interacting with its
environment. Although a plethora of RL algorithms exist, they share core features.
In essence, the interplay between the agent and the environment is described by Fig.
2.3.1. As can be seen, the flow of information is represented by states, rewards, and
actions. The state St provides the agent with key information about its position
in the environment at time t, whilst the reward Rt provides feedback, expressing
the value associated with the previous action taken. The reward signal is used to
update the agent’s understanding of its environment, and must be designed before
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training the agent, called reward shaping. Based on the current understanding and
information about state, the agent decides what to do – which action At to take.
When an action is executed, a new state St+1 and reward Rt+1 are yielded.

Figure 2.3.1: A representation of the interaction between the RL agent and
environment [60].

It follows from the formulation of the RL agent and environment that the system
does not depend on detailed a priori information, but rather learns about the
consequences of actions through observations. As a result, RL allows for model-
free solutions, meaning that the RL approach can be useful in situations where good
models for the system at hand are unavailable, or where the model is complex. A
potential benefit of learning is a more generalised mapping from the state-space to
the action-space, which is a weakness in conventional approaches such as MPC.

2.3.1.1 Markov decision processes

A fundamental assumption in RL systems is that the problem to be solved is appro-
priately described as a Markov decision process (MDP). One of the key attributes
of MDPs is that they have the Markov property. This means that the probability
distributions of future states are dependent on the present state and action only.
For MDPs, we can thus say that all the information about past states and actions
needed to predict the future is baked into the present state and action, as shown
in Eq. 2.3.1.

P(St+1 = s′|St = st, At = at, St−1 = st−1, At−1 = at−1, ...S0 = s0)
= P(St+1 = s′|St = st, At = at)

(2.3.1)

In simple terms, an MDP is a system consisting of a set of possible states s ∈
S and a set of possible actions a ∈ A, where each transition from one state to
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another can be represented by a transition function and a reward function. The
transition function T (s, a, s′) models the transitions between states stochastically,
and is equivalent to the probability that an action a takes the agent from a state
s to a new state s′. The reward function R(s, a) describes the immediate reward
given after completing this transition. In addition, an MDP is defined by an initial
state s0, or distribution, and possibly a terminal state sf .

T (s, a, s′) = P(St+1 = s′|St = st, At = at) (2.3.2)

R(s, a) = E(Rt|St = st, At = at) (2.3.3)

The MDP framework was generalised by the introduction of partially observable
Markov decision processes (POMDP), where the true state of a system is unob-
servable by the agent. As a result, an agent dealing with a POMDP assumes MDP
dynamics, but must build beliefs about its environment through observation [61].
This can be done directly by constructing an internal model, or indirectly by it-
eratively registering the effects of actions over time. An illustrative example of
an indirect way of solving a problem is rolling a die many times and continuously
updating the mean, instead of calculating it directly using a known probability
distribution for the outcomes.

2.3.1.2 Policies, value functions, and the Bellman equation

An RL problem can be modelled as a POMDP – or an MDP where the transition
and reward functions are unknown. If they are known, the problem can be solved
using classical optimisation approaches, such as value iteration or policy iteration.
However, these approaches easily become computationally infeasible due to large
state and action spaces. For stochastic processes, where a decision gives rise to a
distribution of outcomes, this is especially true [62]. In order for an RL agent to
learn which action to take given a specific state, it must have an understanding
of the quality of an action, given this state, relative to a predefined criterion.
Therefore, the first necessary component when building the RL framework is the
return, denoted G, which is a cumulative reward resulting from said quality of
action. Since the RL agent is always operating relative to predefined measures
of quality, the return can be defined in any way that is conducive to solving the
problem. For instance, the return can be defined as the sum of rewards over a finite
horizon T . In this case, we place the same value on all rewards obtained over a
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fixed window of time:

Gfinite = E

[
t+T∑
k=t

Rk

]
(2.3.4)

However, since a common goal is to solve a problem quickly and efficiently, the
return is often formulated as the infinite-horizon discounted sum of rewards. This
means that a higher value is placed on rewards that come sooner. Another reason
for using a discounted return is that rewards that lie far into the future come with
higher uncertainty. The discounted sum of rewards then incentivises the agent
to base its decisions more on the rewards that lie closer in time, reflecting the
unreliability of predictions about future states. Hence, we define a discount factor
γ ∈ [0, 1), such that the return becomes:

Gdiscounted = E
[
Rt + γRt+1 + γ2Rt+2 + ...+ γiRt+i

]
= E

[ ∞∑
k=0

γkRt+k

]
(2.3.5)

The next step is to introduce a few useful concepts with corresponding mathemat-
ical representations: the policy, the state-value, and the action-value. The policy is
the mapping from state to action, or a sequence of decisions [62], and is essentially
what the RL should learn. Since the process at hand is not necessarily determin-
istic, the policy function π can be either deterministic or stochastic. In most real
applications, the policy is modelled as stochastic in order to handle uncertainty in
the environment. A good policy can be achieved by learning from observations of
rewards, and the value functions help learning by keeping track of these rewards.
The state-value describes the expected utility of starting in a specific state s, given
a policy π. The action-value is simply an extension of this, describing the expected
utility of starting in a specific state s and taking a specific action a, given a policy
π.

Mathematically, the state-value function vπ (Eq. 2.3.6) is the expected return,
given a state s and a policy π. The state-value function is also commonly called
the value function.

vπ(s) = E

[ ∞∑
k=0

γkRt+k|St = s, π

]
(2.3.6)
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Due to the Markov property, we can define the state-value function as the expected
sum of the immediate reward and the discounted value of the next state:

vπ(s) = E [Rt + γvπ(St+1)|St = s, π] (2.3.7)

Building on the state-value function, the action-value function qπ (Eq. 2.3.8) can be
defined as the expected return. The action-value function is also called the quality
function, and can be seen as a measure of the quality of a specific state-action pair.

qπ(s, a) = E

[ ∞∑
k=0

γkRt+k|St = s,At = a, π

]
(2.3.8)

Using the same logic as before, the quality function can be defined as the expected
sum of the immediate reward when taking action a, plus the discounted value of
the next state:

qπ(s, a) = E [Rt + γvπ(St+1)|St = s,At = a, π] (2.3.9)

The goal of the RL agent is to maximise the return, which is done by learning a
policy that leads to maximal return. Since the optimal policy π∗ is the policy that
yields the optimal return, we define the optimal policy as in Eq. 2.3.10. Here, the
optimal value function v∗ is defined as the maximum action-value for state s, as
given by the optimal action-value function q∗.

π∗(a|s) = arg max
π

v∗(s) = arg max
π

E

[ ∞∑
k=0

γkRt+k|π

]
(2.3.10)

So, how do we solve the problem of finding the optimal policy? In the 1950s, E.
Bellman introduced dynamic programming (DP), a method for solving a problem
by breaking it down into sub-problems, and recursively solving those. To use DP,
the problem must have optimal substructure, and exclusively consist of optimal
sub-problems. MDPs satisfy both of these requirements. The value functions give
us the framework for expressing the overlapping sub-problems, as the value can be
found recursively. For the optimal substructure, we utilise a core principle of DP,
namely the principle of optimality. In essence, the principle of optimality states
that an optimal policy for a given state is independent of the previous states,
meaning that the problem has optimal substructure. For MDPs, the Bellman
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equation (Eq. 2.3.11), or principle of optimality equation, provides the necessary
condition for fulfilling the principle of optimality.

v∗(s) = max
a∈A

q∗(s, a) (2.3.11)

Using Eq. 2.3.9 to substitute for q∗ in Eq. 2.3.11, and vice versa, the recursive
equations for solving the RL problem can be formulated:

v∗(s) = max
a∈A

q∗(s, a)

= max
a∈A

E [Rt + γv∗(St+1)|St = s,At = a, π∗]

= max
a∈A

∑
s′,r

T (s, a, s′) [r + γv∗(s′)]
(2.3.12)

q∗(s, a) = E
[
Rt + γmax

a′∈A
q∗(St+1, a

′)|St = s,At = a

]
=
∑
s′,r

T (s, a, s′)
[
r + γmax

a′∈A
q∗(s′, a′)

] (2.3.13)

2.3.1.3 Learning methods

As mentioned in Section 2.3.1.2, the Bellman equation can be solved explicitly
using a method such as value or policy iteration. However, these methods are
computationally expensive, and very slow for problems with large state- and action-
spaces. Through RL, the value and policy functions can be approximated, giving a
computationally simpler problem. At the same time, the exploration and learning
might take time.

There are many learning methods available within RL. One way to categorise
the algorithms is by distinguishing between model-based and model-free meth-
ods. Model-based methods attempt to explicitly model the transition and reward
functions, which can later be used for more long-term planning and optimisation.
An example of a model-based algorithm is simulated policy learning (SimPLe) [63],
which is based on video prediction models. Model-free methods, on the other hand,
attempt to approximate the value functions by representing them as for instance
tabular mappings from state-action pair to quality value. Important examples
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of tabular model-free algorithms are Q-learning [64] and SARSA (State-Action-
Reward-State-Action) [65]. Today, model-free algorithms are by far the most pop-
ular, although one might expect the introduction of more model-based algorithms
in the future due to the extensive amount of training required for their model-free
counterparts.

Another important distinction between RL algorithms is whether they are so-called
actor-critic, actor-only, or critic-only algorithms. The policy of an RL agent is used
to make decisions, and can thus be seen as the actor of the system. Conversely, the
action-value function, or quality function, gives value to each state-action pair. It
is therefore said to be the critic. In other words, actor-only methods approximate
the policy function, critic-only methods approximate the action-value function, and
actor-critic methods approximate both. Deep Q-learning (DQN) and SARSA are
well-known critic-only methods, while actor-only methods have limited usability as
they require a restricted policy space [66]. Actor-critic methods such as deep de-
terministic policy gradients (DDPG) [38] and proximal policy optimisation (PPO)
[41] can be said to make use of the best of both worlds, and can be applied to
continuous state and action spaces. PPO is described in greater detail in 2.3.3.3.

In order to approximate the value functions, the RL agent must learn through
observations. As decent amounts of well-balanced real data is often difficult to
obtain, letting the agent learn through simulations might be beneficial. When
running simulations, it is common to define an episode as either a certain amount
of single steps (actions) taken in the environment, or as the period up until a specific
event, such as the loss of a life in a game. Updates to the value functions may be
done off-line after an episode, or on-line after every single step or after a specific
number of steps within an episode. The former is called Monte Carlo learning, and
has the disadvantages of high variance and no exploitation of the Markov property
[67]. Temporal Difference (TD) learning, on the other hand, exploits the Markov
property and has relatively low variance [67]. Therefore, it is often used in RL
applications. TD learning works by making adjustments to the state-value and
action-value functions after observing the reward received over n steps. Using a
learning rate α and n = 1 number of steps, and denoting the next action and state
as a′ and s′, v and q can be approximated as follows:

V (s) = V (s) + α[r + γV (s′)− V (s)] (2.3.14)

Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (2.3.15)
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The above equations describe how the value functions are updated, but not how
the next action, a′, is chosen. SARSA is an on-policy algorithm, which means that
the behaviour policy is the same as its update policy, as in Eq. 2.3.15. In SARSA,
both the value of an action and the next action are chosen based on an ε-greedy
algorithm that chooses a random action a certain percentage of the time and the
action with the highest expected return the rest of the time. Off-policy algorithms
such as Q-learning and PPO choose the next action independently of the current
policy. For instance, Q-learning learns greedily, always maximising the expected
action-value, but determines the next action in an ε-greedy fashion.

2.3.2 Deep learning

Deep learning (DL) is a subcategory of machine learning in which deep neural
networks (DNNs) are used to approximate functions. This is traditionally done by
training the network on a large amount of data, through supervised learning. In
RL problems, the RL agent generates training data by taking note of the reward
received as a result of a specific state-action pairing. The key idea behind this
method is seeing the problem at hand as a black box, and iteratively adjusting
the parameters of the model to decrease the error between the prediction and the
correct labels. Due to the high level of customisation possible, DL can be applied
to a wide range of problems where the function or model at hand is complex or
unknown. The two main types of problems tackled by DL are regression and
classification problems, which aim to approximate a mapping function from an
input to a continuous and discrete output, respectively.

2.3.2.1 Artificial neural networks

Artificial neural networks (ANNs) consist of artificial neurons, or nodes, arranged
in a network made up of layers, as illustrated in Fig. 2.3.2. A simple neural net-
work is built up of three such layers: an input layer, a hidden layer, and an output
layer. A DNN is an ANN with more than one hidden layer.

The architecture of an ANN is a function of the types of nodes present in the
network, as well as how they are connected. In a feed-forward network, such as the
one illustrated, the flow of information only travels in one direction through the
network. In addition, no memory of past states is held. The layers are also dense,
meaning that each node connects to all the nodes in the next layer. However,
many types of ANNs with different functionalities exist, and can be implemented
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Figure 2.3.2: Simple and deep neural networks.

in conjunction with RL algorithms. For instance, recurrent NNs make predictions
based on both present and past states, as they contain feedback loops. In long
short-term memory (LSTM) networks, a type of recurrent network, a memory cell
called an LSTM unit is implemented to handle the vanishing gradient problem that
is prone to occur in RNNs. Another widely used type of layer is the convolutional
layer, where filters are applied to the input data. Convolutional layers are especially
useful when processing images or other data that contains higher level features that
can be detected by filters.

Deep learning works by finding meaning in data through learning, which means
that their only source of information is the input data. If this data is skewed,
or the network is over-trained on a specific dataset, it might overfit on the data
used. As a result, proper pre-processing of the data is necessary to avoid poor
results. The most primitive way of reducing overfitting is early stopping, which is
simply monitoring the performance of the network on a validation data set that
has not been used for training. It is also common to use batch learning, where the
network learns from a specific number of datapoints at once, reducing the sensitivity
to individual datapoints. Several other techniques have also been developed to
generalise the training, called regularisation. In L1 and L2 regularisation, a term
proportional to the weights in the neural network is added to the cost function.
The idea behind these techniques is that large weights indicate overfitting, as very
high importance is given to a specific input or feature. Dropout is another widely
used technique, where a percentage of weights are set to zero at each iteration.
This way, dependency on specific inputs is prevented.
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Convergence is not guaranteed for neural networks, but some techniques exist to
improve the speed, performance, and stability. When creating an ANN, the weights
must be initialised. Weight initialisation is often done using a normal distribution.
However, other initialisation methods can work better for certain types of activation
functions. For instance, Xavier and He initialisation were developed for the tanh
and ReLU activation functions, respectively. In these initialisation methods, the
number of input neurons is taken into account, such that the variance of the layer is
reduced. By doing so, the network learns better, as the gradients do not explode or
vanish as easily. Batch normalisation improves learning speed and stability during
training by converting a the output of a layer to zero-mean and unit variance,
before it acts as input to the next layer. In addition, it can be mentioned that
batch learning increases stability by reducing the fluctuations that could arise from
making updates to the network based on single data points.

2.3.2.2 Artificial neurons

The basic building block in a deep neural network is the artificial neuron. As the
nomenclature reveals, these are inspired by the neurons found in biological nervous
systems. Like their natural counterparts, artificial neurons produce an output
based on its inputs and parameters. The simplest artificial neuron was introduced
by F. Rosenblatt in the late 1950’s, and is called a perceptron. A visualisation of
the perceptron with its inputs xi, weights wi and output y is shown in Fig. 2.3.3.

Figure 2.3.3: The perceptron [68]

If the sum of the weighted inputs is higher than a specified threshold, the perceptron
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is excited. If the weighted sum is below the threshold, the output is zero (Eq.
2.3.16). In essence, the perceptron makes decisions or predictions based on the
input data.

output =

0 if
∑
j wjxj < threshold

1 if
∑
j wjxj > threshold

(2.3.16)

One downside when using perceptrons is that a small change in the input can
cause a drastic change in the output. In addition, only linear relationships can be
described. By using a nonlinear and smoother activation function, training becomes
easier and more complex correlations between inputs and outputs can be modelled.
The S-shaped sigmoid and hyperbolic tangent functions have been widely used for
this purpose, but suffer from slow convergence and the vanishing gradient problem
(described in Section 2.3.2.3) due to saturation. As a result, the rectified linear unit
(ReLU) has become increasingly popular. ReLU is simply y = max(

∑
j wjxj , 0),

meaning that it is zero for negative weighted sums, and equal to the weighted sum
for positive sums. Some other versions of the ReLU, such as leaky ReLU with a
slight negative gradient for sums below zero, have also been introduced to further
tackle the problem of vanishing gradient that might arise due to saturation for
negative values. For classification problems, the softmax function is often used for
the output layer. This way, the sum of the outputs in the output layer is unity,
which means that the outputs can be seen as probabilities.

2.3.2.3 Backpropagation and gradient descent

How do deep neural networks learn? The first step in learning from labelled data
is passing the data through the network, a so-called forward pass. Then, a loss
function, or objective function, is used to calculate the loss. Mean square error
(MSE) is a metric commonly used as loss (Eq. 2.3.17). Here, the ypred is the
ground truth value, and ytarget is the output of the network, or the predicted
value. n is the batch size – the number of data points passed through the network
between each update to the parameters.

MSE = 1
2n (ytarget − ypred)2 (2.3.17)

The calculated loss can then be used to adjust the parameters of the network,
which is called backpropagation. To minimise the error, an optimisation algorithm
called gradient descent is used when updating the weights and biases. When the
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batch size is set to 1, stochastic gradient descent is used, where the update rule
is given by Eq. 2.3.18. E corresponds to the loss, α is the learning rate, and wij
is the weight given to the output from neuron i in one layer to neuron j in the
subsequent layer. Other methods are batch gradient descent for larger batch sizes,
and mini-batch gradient descent, which takes the middle road.

wij = wij − α
∂E

∂wij
(2.3.18)

By calculating the partial derivatives of the error to the parameters of the last
layer in the network, an adjustment can be made to each of these parameters in
a way that corresponds to their influence on the error. In feed-forward networks,
where the data is processed sequentially during the forward pass, the chain rule
can be used to iteratively calculate the partial derivatives of the error to all the
parameters in the network.

∂E

∂wij
= ∂E

∂yj

∂yj
∂zj

∂zj
∂wij

(2.3.19)

= ∂E

∂yj

∂yj
∂zj

yi (2.3.20)

= ∂E

∂yj
σ′j(zj)yi (2.3.21)

Here, zj =
∑n
k=1 wkjyk + bj is the input to neuron j, and σ′j(·) is the activation

function of neuron j. The activation of neuron j and output from neuron i are
given from the forward pass, and the partial derivative of E with respect to the
output of neuron j can be calculated using results from previous iterations. For
the output layer, this derivative is equal to the derivative of the loss function with
respect to the output ypred. By introducing notation for layers, the derivative of
the error with respect to the output of the ith neuron in the (l−1)th layer becomes

∂E

∂yl−1
i

=
∑
j∈Nl

(
∂E

∂ylj

∂ylj
∂zlj

ωlij

)
(2.3.22)

where Nj is the number of neurons in layer l.
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2.3.3 Deep reinforcement learning

Although a reinforcement learning framework does not immediately require deep
neural networks, the combination of reinforcement learning and deep learning has
become increasingly popular. In reinforcement learning, the ultimate goal is to
find an appropriate behaviour policy. For problems exhibiting continuous state
and action spaces, this is normally done by approximating the action-value and
policy functions via an actor-critic method. In this work, the proximal policy
optimisation algorithm is used, which is a policy gradient method based on trust
region policy optimisation (TRPO). Before introducing the formal basis of PPO
in Section 2.3.3.3, the basics of policy gradient methods and trust region methods
are therefore covered in Sections 2.3.3.1 and 2.3.3.2. It should be noted that the
following sections are based on [69], [41] and [70].

2.3.3.1 Policy gradient methods

As previously discussed, the main objective in reinforcement learning is to dis-
cover a stochastic behaviour policy πθ that maximises the return. This policy is
parametrised by for instance the weights and biases of a neural network, denoted θ.
The optimal policy is therefore the policy with the optimal parameters, as defined
by Eq. 2.3.23.

θ∗ = arg max
θ

E

[∑
t

r(st, at)
]

(2.3.23)

Denoting the trajectory as τ and the return (sum of discounted rewards) as R(τ),
the objective function J(θ) can be written as

J(θ) = Eτ∼πθ(τ) [R(τ)] (2.3.24)

Further, utilising the relations

Ex∼p(x) [f(x)] =
∫
p(x)f(x)dx (2.3.25)

∇θf(x) = f(x)∇θlog f(x) (2.3.26)

the objective function and its gradient can be expressed as in Eq. 2.3.27 and 2.3.28.
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J(θ) =
∫
πθ(τ)R(τ)dτ (2.3.27)

∇θJ(θ) =
∫
∇θπθ(τ)R(τ)dτ (2.3.28)

=
∫
πθ(τ)∇θlogπθ(τ)R(τ)dτ (2.3.29)

= Eτ∼πθ(τ) [∇θlogπθ(τ)R(τ)] (2.3.30)

Since the gradient can be represented as an expectation, it can be estimated using
samples, such that the policy gradient and update rule become

∇θJ(θ) ≈ 1
N

N∑
i=1

(
T∑
t=1
∇θ logπθ(ai,t|si,t)

)(
T∑
t=1

r(si,t, ai,t)
)

(2.3.31)

and

θ ← θ + α∇θJ(θ) (2.3.32)

The first term in Eq. 2.3.31 measures the likelihood of a trajectory under the
current policy. By multiplying this with the rewards, maximising J(θ) leads to
increased likelihood for trajectories with higher rewards. In addition, the change
from multiplication to a sum of logarithmic terms counteracts the problems of
vanishing and exploding gradients that often arise in deep learning. Further, N is
the batch size used for optimisation, and T is the number of steps in an episode.
In eq. 2.3.32, α is the learning rate of the system.

A problem with the policy gradient method above is its high variance and resulting
issues with convergence. Naturally, one way to remedy this is to limit the variance
of the gradient. Recognising the sum of the rewards as the action-value function
Q(s, a), we define an advantage function A(s, a), such that

A(st, at) = Q(st, at)− V (st) (2.3.33)

where V (s) is the value function. The subscript t indicates the point in time. Since
the action-value function gives the expected reward given a specific action a taken

35



Chapter 2. Background

in state s and the value function expressed the expected reward when taking the
best action available in state s, the advantage function is effectively a measure of
whether the action taken is better or worse than the current policy. In this case,
the value function V (s) is used as baseline, and the rewards are thus recalibrated
according to the current policy – which reduces the variance of the gradient.

∇θJ(θ) ≈ 1
N

N∑
i=1

T∑
t=1
∇θ logπθ(ai,t|si,t)(Q(si,t, ai,t)− V (si,t)) (2.3.34)

≈ 1
N

N∑
i=1

T∑
t=1
∇θ logπθ(ai,t|si,t)A(ai,t|si,t) (2.3.35)

More generally, the estimated policy gradient (PG) can be written as

ĝ = Êt
[
∇θ logπθ(at|st)Ât

]
(2.3.36)

where Êt[·] denotes the estimated expectation at time t, computes as an empirical
average over a finite batch of samples equal to the one represented in Eq. 2.3.34.
Similarly, Ât is an estimate of the advantage of action at given state st, often
computed according to Eq. 2.3.33. The estimator ĝ can be found by differentiating
the objective

LPG(θ) = Êt
[
logπθ(at|st)Ât

]
(2.3.37)

2.3.3.2 Trust region methods

The main challenge when using vanilla policy gradient methods is that blindly mak-
ing updates according to the gradient may be problematic. When little attention is
paid to the shape of the objective function and what learning rate is appropriate,
the algorithm is prone to make leaps that effectively ruin the training process. A
common way to address this issue is via trust region methods – of which trust
region policy optimisation (TRPO) [69] is the most famous. These methods make
sure that the expected reward does not decrease when performing updates to the
policy.

According to the chain rule, the objective used in vanilla policy gradient optimisa-
tion, Eq. 2.3.37, can be written as
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LIS(θ) = Êt
[
πθ(at|st)
πθold(at|st)

Ât

]
(2.3.38)

This objective employs importance sampling (IS), which allows state-actions to be
sampled from the old policy πθold , meaning that LIS can be seen as a surrogate
loss. Applying IS alleviates some of the issues connected to on-policy methods such
as TRPO and PPO.

Furthermore, trust region methods assume that only the local approximation of our
objective is accurate. TRPO handles this by expanding the optimisation problem
to include a constraint on the Kullback–Leibler (KL) divergence between the old
and new policies πθold and πθ. KL divergence, also called relative entropy, is a
common way of measuring the difference between probability distributions such
as behavioural policies in reinforcement learning. The resulting objective function
becomes

LTRPO(θ) = max
θ

Êt
[
πθ(at|st)
πθold(at|st)

Ât

]
(2.3.39)

s.t. Êt [KL [πθold(·|st), πθ(·|st)] ] ≤ δ (2.3.40)

This way, a constraint is imposed on the change in the policy possible under a
single update, according to the hyperparameter δ.

2.3.3.3 Proximal policy optimisation

The proximal policy optimisation (PPO) method was first introduced as an attempt
to mitigate the main drawbacks of the other methods that were available. The
creators of PPO at OpenAI found that Q-learning, vanilla policy gradient methods
and trust region policy optimisation (TRPO) methods all suffered from lack of
either scalability, sample efficiency, or robustness [41]. They noted that TRPO was
generally the most sample efficient and robust approach, and sought to develop a
more less complex method that would still offer these advantages.

PPO is based on the objective function used in vanilla policy gradient optimisation,
and adds a modification in the spirit of the trust region approach. Let rt(θ) be
the probability ratio from rt(θ) = πθ(at|st)

πθold(at|st)
, such that an unchanged policy yields

r = 1. By adding a clipping function to the objective, as in Eq. 2.3.41, a lower
bound is imposed on the unclipped objective. The lower bound is dependent on
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Figure 2.3.4: Plots showing a single timestep of the surrogate function LCLIP

as a function of the probability ratio r, for positive advantages (left) and negative
advantages (right). The red circle on each plot shows the starting point for the
optimization, i.e., r = 1. Note that LCLIP sums many of these terms [41].

the hyperparameter ε, which is often set to a value in the neighbourhood of 0.2. In
practice, this means that large estimated improvements are ignored, which leads
to a more stable training process overall.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât] (2.3.41)

The objective function is represented graphically in Fig. 2.3.4.

2.4 Previous work

2.4.1 Feasibility pooling

One of the key features of the framework developed by previous students and
continued in this thesis is the virtual sensor suite [71]. Despite its usefulness as a
realistic abstraction of real sensors, the high number of individual sensors calls for
a state-space reduction before feeding the data to the DRL algorithm. To do so,
sensors are partitioned into sectors. How, then, should the distance information
from a set of sensors be mapped to a single parameter for the sector? Two options
are min and max pooling, which give overly pessimistic and optimistic estimates.
Instead, the feasibility pooling procedure introduced in [71] is used. When applying
this method, the maximum reachable distance within the sector is found, taking
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the width of the vessel and the positions of any detected obstacles. The algorithm
does this by iterating over the individual sensor readings belonging to the sector in
question, from the shortest to longest detected distance, while determining whether
or not the vessel can continue beyond this point without colliding. Two possible
scenarios are shown in Fig. 2.4.1a.

(a) Full distance is reachable. (b) Less than half the distance is reachable.

Figure 2.4.1: Illustration of the feasibility algorithm for two different scenarios.
The algorithm iterates over sensor readings in ascending order, and decides if the
vessel can feasibly continue past this point. In the scenario displayed in the figure
on the right, the opening is deemed too narrow for the full distance to be reachable
[5].

The feasibility pooling algorithm can be found in Appendix A.
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The overall goal of this thesis is to explore the incorporation of the COLREGs into
an end-to-end and DRL-based path following and collision avoidance system. Since
several other master students have contributed to the same line of research, a simu-
lation environment was already in place. The elements of the environment essential
to this work are described in Section 3.1, while details on the DRL algorithm itself,
including the observation vector employed, are given in Section 3.3.

In line with the objectives presented in Section 1.3, a qualitative implementation of
relevant COLREGs is explored in Section 3.4. This was done as it is the most com-
monly used method for reward shaping in RL. The work on the qualitative approach
also served as a contribution to the collaborative paper Meyer et al. [5]. Next, a
risk-based approach is taken in Section 3.5. Although quantification of collision risk
is fuzzy, collision risk evaluation methods have historically been developed using
statistical analysis and expert knowledge, as elaborated upon in Section 2.2.4. It
is therefore a more quantitative approach, allowing for an interesting comparison
with the former qualitative one.

3.1 Simulation environment structure

The simulation environment used in this work is based on [72], which in turn was
developed using the OpenAI Gym [1] toolkit. OpenAI Gym is widely used for
the development of RL algorithms. Moreover, the Python library Stable Baselines
[2] provided the RL algorithm, PPO, itself. It is also worth mentioning that the
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simulation of the rangefinder sensors is done with the help of the Shapely Python
package [4], which allows for efficient calculation of intersection points once the
objects in question (such as the OS and obstacles) are represented as geometric,
planar shapes.

Furthermore, the simulation environment is modular, and consists of classes repre-
senting the main constituents of the system: environment, vessel, obstacles, path,
and rewarder. The Env base class acts as a blank slate on which customisable
elements such as vessels and obstacles can be added. Another way to see it is as an
interface between the agent itself (the PPO algorithm) and the rest of the frame-
work. For instance, the Vessel base class receives actions and sends observations
through the Env class. In addition, instances of the Obstacle and Path base classes
are implemented, which are also updated via Env. Finally, the Rewarder base class
allows for straight-forward implementation of different reward schemes.

Specialised classes inheriting from the base classes can be implemented with ease.
Two important classes, namely MovingObstacles and RealWorld, are examples
of this. These environments inherit the Env properties and supply the simplified
training scenario and AIS-based scenarios, respectively.

For a detailed account of the implementation and rendering details, please refer to
[72], as only the overarching elements have been described here.

3.2 Vessel model
As outlined in Section 2.1, a 3-DOF model is employed, as it provides a minimal
but sufficient model for the problem at hand. Specifically, the vessel dynamics of
the miniature supply ship Cybership II depicted in Fig. 3.2 are used, with the
parameters identified in [73]. This vessel is a 1:70 replica of length 1.225 m and
mass 23.8 kg – a small and agile vessel. Further, it is equipped with rudders and
propellers aft and one bow thruster fore, meaning it is a fully actuated vessel. For
the sake of reducing the action space, however, the bow thruster is neglected. The
resulting control vector is therefore fc = [fu, fr]>, where fu is the force input in
surge, and fr is the moment input in yaw.

Choosing a model of a smaller vessel with higher maneuverability allows the focus
to remain on the DRL and COLREGs, as the training can be more challenging
when using a more complex model that introduces destabilising characteristics
such as inertial delay. In addition, using a smaller model means that testing on a
real vessel would be relatively straight-forward later on.
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Figure 3.2.1: A photo of the real-life CyberShip II vessel [74].

3.3 DRL algorithm details
The PPO algorithm described in Section 2.3.3.3 was chosen due to its ability to
handle continuous action and state spaces and its convincing track records [75] [76].
After testing and comparing, it was found that a configuration of two hidden lay-
ers of 64 units each was sufficient for both the actor and the critic network. More
complex or larger networks did not achieve better performance, but did generally
require a longer time to converge, due to the higher number of parameters. Fur-
ther, the hyperbolic tangent (tanh) activation function was used. The combination
of small networks and the tanh activation function is default for PPO in Stable
Baselines, and recommended in [75], supporting the choices. The hyperparameters
used are summarised in Table 3.3.1.

Parameter Interpretation Value
γ Discount factor 0.999
T Timesteps per training iteration 1024
NA Number of parallel actors 8
K Training epochs 106

η Learning rate 0.0002
NMB Number of minibatches 32
λ Bias vs. variance parameter 0.95
c1 Value function coefficient 0.5
c2 Entropy coefficient 0.01
ε Clipping parameter 0.2

Table 3.3.1: Hyperparameters for PPO algorithm.

Furthermore, the vessel and sensor suite were configurated according to the values

42



Chapter 3. Design and implementation

in Table 3.3.2

Parameter Interpretation Value
Umax Maximum vessel speed 10 m/s
N Number of sensors 180
Sr Sensor distance 1.5 km
d Number of sensor sectors 9
∆LA Look-ahead distance 3 km

Table 3.3.2: Vessel configuration

3.3.1 Observation vector

In order for the RL agent to learn a useful policy, it must be provided with sufficient
information about the states of the vessel and the environment. An intuitive way
to do so is by feeding it an observation vector s containing information relevant for
path following and collision avoidance – which are the two main tasks. Considering
navigation to be the identification of the vessel state relative to the desired path and
perception the process of obtaining information through the sensor measurements,
the problem can be broken down, such that s = [sn, sp, λ]T , where λ ∈ [0, 1] is
a parameter aiding the weighting of the rewards given for the two tasks. In this
section, the navigation-based and perception-based feature vectors sn and sp are
described, while λ is described as a part of the reward function in Section 3.4.1.

3.3.1.1 Navigation

Whenever the vessel is not detecting obstacles closeby, it must efficiently follow the
path. Therefore, it is necessary that the path navigation feature vector appropri-
ately describes the vessel state in relation to the path. Using the parameterisation
described in 2.2.1, the key features are those presented in Table 3.3.3. This way,
the path-follwing feature vector becomes

sn =
[
u, v, r, ε, ψ̃, ψ̃LA

]T (3.3.1)

3.3.1.2 Perception

For the perception of its environment, the vessel is equipped with virtual rangefinder
sensors. Since moving obstacles can approach on any side, the sensor suite is com-
prised of N distance sensors uniformly distributed around the vessel. These sensors
have a maximum detection range of Sr.
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Feature Definition
Surge velocity u
Sway velocity v
Yaw rate r
Cross-track error ε

Heading error ψ̃

Look-ahead heading error ψ̃LA

Table 3.3.3: Path following feature vector sn.

Further, the individual sensors are assigned to D sectors according to a customis-
able distribution. Such partitioning was deemed necessary in [71], where it was
noted that feeding raw sensor measurements to the agent leads to poor perfor-
mance. A likely reason for this is a well-known challenge within AI research,
namely the curse of dimensionality, which often arises when too many features are
used and the agent is unable to generalise well [77].

One way to lower the dimensionality would be to simply decrease the number of
sensors. However, this would also reduce the resolution – a highly undesirable
situation. Instead, a logistic function is applied to the distribution of the sectors,
reflecting the higher risk of collision associated with obstacles detected ahead. To
achieve the logistic partitioning illustrated in Fig. 3.3.1, the sensors are mapped to
sectors according to Eq. 3.3.2, where the index i ∈ {1, . . . , N} denotes the sensor
index, and κ ∈ {1, . . . , D} denotes the sector index. Furthermore, σ denotes the
logistic sigmoid function, while γC is a parameter allowing for adjustment of the
sector distribution, ranging from uniform to denser in front of the vessel.

κ : i 7→ κ(i) =

Dσ (γCN i− γC
2

)
︸ ︷︷ ︸
Non-linear mapping

− Dσ
(
−γC2

)
︸ ︷︷ ︸
Constant offset

 (3.3.2)

Now that sensors have been assigned to sectors, the next step is mapping the sensor
measurements to sector measurements. It is possible to simply return the minimum
or maximum values, but these approaches are generally too conservative or liberal,
either imposing unreasonable restrictions on the vessel’s movements or allowing
risky behaviour. In [71], a novel approach coined feasibility pooling was suggested,
which takes the middle ground. This method is described in Section 2.4.1, and is
applied here.

To ensure that all features are of the same magnitude, and to avoid discontinuities
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Figure 3.3.1: Rangefinder sensor suite partitioned into D = 9 sectors according
to the the mapping function κ with the scale parameter γC = 0.13 [5].

in the input to the agent when an obstacle exits the sensor range, the distance d
calculated by the feasibility pooling algorithm is converted to closeness. Defining
this mapping as c(d) : R 7→ [0, 1] such that 0 corresponds to no obstacle detection,
and 1 to a collision, we have that

c(d) = clip
(

1− d

Sr
, 0, 1

)
(3.3.3)

In addition to the rangefinder sensors, it is assumed that obstacle velocities are
known. In real-life applications, this is usually obtained via AIS. To facilitate the
agent’s learning, the velocity vectors are decomposed relative to the center line of
the corresponding sector. The y component is defined as parallel to the center line,
and as positive in the direction towards the vessel. Conversely, the x component
is defined normal to the center line, with positive values facing in the clockwise
direction. This is illustrated in Fig. 3.3.2.

Finally, the velocity and position information obtained are concatenated, such that
the perception-based feature vector becomes
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Figure 3.3.2: Velocity decomposition for two moving obstacles, α and β [5].

sp =

c ((d1)) , vx,1, vy,1︸ ︷︷ ︸
First sector

, . . . ,

T (3.3.4)

3.4 Qualitative implementation of COLREGs

To investigate the ability of DRL agents to learn COLREGs, it is interesting to
first assess whether or not satisfactory behaviour can be learnt using a qualitative
approach based on the already available rangefinder sensor and AIS information.
In RL, a general goal is to keep the reward function as limited as possible, prevent-
ing over-engineering and allowing the agent to discover the optimal behaviour on
its own. At the same time, such a bottom-up method is likely to introduce unex-
pected behaviours, since the RL agent may find local optimums when the reward
function is too basic. Below, the rationale behind the qualitative reward function
is presented, and the results are to be found in Section 3.4.

3.4.1 Reward function

Since the vessel’s task is constituted by two well-defined subtasks, namely path
following and collision avoidance, it makes sense to also define the reward function

46



Chapter 3. Design and implementation

in terms of these two subtasks, giving the independent terms rpath and rcolav. In
essence, there is a trade-off between path following and collision avoidance, where
the latter is considered most critical. At the same time, the vessel should focus on
path following whenever the risk of collision is low. Therefore, a weighting coef-
ficient λ ∈ [0, 1] is used, as it was discovered that, depending on the tuning, the
agent either too easily gave up on the path following task to avoid collisions, or dis-
regarded the risk of collision when on the path. The weighting is done individually
for each target vessel, which will be described in greater detail in Section 3.4.1.3.

Furthermore, to make sure that the vessel learns to move along the path rather
than standing still, a living penalty rexists < 0 is added to encourage completion of
the path. Although the exact value of this penalty is unimportant, it must be suffi-
ciently negative to prevent the agent from collecting positive reward while standing
still. On the other hand, it cannot be excessively negative to the point where it
disrupts learning of path following and collision avoidance. Setting rexists = −1
yielded the desired balance.

In addition, it is crucial that the agent receives a sufficiently negative reward
rcollision whenever a collision is detected. Combining the elements presented so
far, the tentative and simplified reward becomes

r =

rcollision, if collision
λrpath + (1− λ) rcolav + rexists, otherwise

(3.4.1)

Since we are dealing with both static and dynamic obstacles, which pose inherently
different risks, the reward rcolav is further divided into two parts, rcolav,stat and
rcolav,dyn. This way, it is possible to regard the COLREGs only when dealing with
dynamic obstacles (other vessels), and to adjust the penalties given when detecting
static and dynamic obstacles such that the respective risk levels can be accounted
for. This gives

rcolav = rcolav,stat︸ ︷︷ ︸
Static component

+ rcolav,dyn︸ ︷︷ ︸
Dynamic component

(3.4.2)

In the following subsections, the path following reward and the static and dynamic
collision avoidance rewards are described in detail. Instead of dividing the con-
figuration of the parameters into individual tables for each section, the complete
configuration is provided here, in Table 3.4.1, for reference.
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Parameter Interpretation Value
γe Cross-track error scaling 0.5
αx Raw COLAV penalty scaling 75
γθ,stat Sensor angle scaling for static obst. 10
γθ,dyn Sensor angle scaling for dyn. obst. 1
γx Static obstacle distance scaling 0.01
γ+
v,st.b. Scaling of vy ≥ 0, s.b. side 0.004
γ−v,st.b. Scaling of vy < 0, s.b. side 0.05
γ+
v,port Scaling of vy ≥ 0, port side 0.007
γ−v,port Scaling of vy < 0, port side 0.005
γ+
v,stern Scaling of vy ≥ 0, astern 0.007
γ−v,stern Scaling of vy < 0, astern 0.005
γx,st.b. Dyn. obst. distance scaling, st.b. 0.007
γx,port Dyn. obst. distance scaling, port 0.009
γx,stern Dyn. obst. distance scaling, stern 0.01
α+
λ Translation of λ, vy ≥ 0 4
α−λ Translation of λ, vy < 0 2
γ+
λ Distance scaling of λ, vy ≥ 0 0.003
γ−λ Distance scaling of λ, vy < 0 0.005
rcoll Collision reward -10000
rexists Living penalty -1

Table 3.4.1: Reward configuration for the qualitative approach

3.4.1.1 Path following performance

The overall behaviour classified as path following can be broken down to two dis-
tinct behaviours: 1) reduction of distance to the path, and 2) movement along the
path. Doing this allows for efficient incentivisation based on the navigation features
provided as input to the agent.

One way to formalise the reward given when the agent reduces the distance to
the path is through the cross-track error (CTE), as the absolute CTE

∣∣ε(t)∣∣ is
equivalent to the distance to the path. The next question is how to design the
reward function such that it gives rise to the desired behaviours in the agent. As
discussed in Section 2.3.2.3, there problem of vanishing gradient is likely to occur
if the reward is too sparse. At the same time, it is necessary to accentuate the
reward given when the agent is behaving correctly. The exponential function of
form exp

(
−γε

∣∣ε(t)∣∣) with γε > 0 combines a sharp peak for small
∣∣ε(t)∣∣ and flat tails

for more efficient learning, and is therefore chosen here. It should be mentioned
that a regular Gaussian is generally considered the go-to function when penalising
cross-track error in simple path following [78] [37]. Path following combined with
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collision avoidance requires a slightly different function profile, however, as the
agent must retain its overall path following goal while straying from it to avoid
collisions. As shown in Fig. 3.4.1a, to achieve flat tails similar to those present in
the absolute exponential, the Gaussian requires a large and relatively flat area for
small cross-track errors, leading to imprecise rewards in this region.

For the second desired behaviour, progression along the path, the heading error
ψ̃ provides a useful basis. Since we would like to reward the agent such that
the maximum reward is given when the heading error is zero and the speed is
equal to the maximum vessel speed Umax, the term u(t)

Umax
cos ψ̃(t) was chosen. This

also means that a negative reward is given if the OS is travelling in the opposite
direction to the path. In order to combine the two terms derived for CTE reduction
and path tracking, they are simply multiplied. Since the CTE-based term is always
positive and the velocity-based term takes values in the range [−1, 1], the properties
described are preserved, and the preliminary path following reward becomes

r
(t)
path = u(t)

Umax
cos ψ̃(t)︸ ︷︷ ︸

Velocity-based reward

exp
(
−γε|ε(t)|

)
︸ ︷︷ ︸
CTE-based reward

A problem with the reward function above is the presence of corner cases where the
reward is zero. This happens whenever the vessel is immobile and u(t) = 0, when
moving at an angle perpendicular to the path such that ψ̃(t) = ±π2 , and when the
absolute CTE becomes large such that exp

(
−γε

∣∣ε(t)∣∣) → 0. To resolve the two
former situations, constant multiplier terms γr are added to each term to ensure
nonzero rewards in the aforementioned situations. Doing so results in a constant
reward bias, which is then removed by subtracting γ2

r . This gives the final reward
function for path following

r
(t)
path =

(
u(t)

Umax
cos ψ̃(t) + γr

)
︸ ︷︷ ︸
Velocity-based reward

(
exp

(
−γε|ε(t)|

)
+ γr

)
︸ ︷︷ ︸

CTE-based reward

−γ2
r (3.4.3)

Since the multiplication of the two terms leads to interdependence and a more
complex reward function, it could be argued that it would be better to simply add
the terms together instead. With the proposed solution, however, the two terms are
linked in such a way that there is a significantly higher reward when both aspects
of the path following (CTE and velocity) are fulfilled than when only one is. This
accentuated difference is visible in Fig. 3.4.1b.
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(a) Cross-section of the path following reward landscape assuming path-
tangential full-speed motion visualized for both Gaussian and absolute ex-
ponential kernels for cross-track error rewarding.

(b) Path following reward function assuming full speed.

Figure 3.4.1: Cross-section and level curves for the path following reward function
with γε = 0.05 [5].
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3.4.1.2 Static obstacle avoidance performance

Moving onto reward shaping for static obstacle avoidance, the requirements are
largely opposite; instead of being awarded with a positive reward when moving
closer, the reward should be increasingly negative. To penalise a decreasing dis-
tance, or increasing closeness, a raw distance penalty is defined based on the dis-
tance x measured by the sensor in question. This way, the sensor measurements
are used directly in the calculation of the reward.

Since the rate of change of the collision risk is intuitively much higher as the OS
is getting closer to a TS, it is natural to employ a nonlinear function for the raw
distance penalty. For instance, an exponential function accurately reflects how a
decrease in distance from the TS of a few metres is significantly worse when the TS
is already close. A good function candidate is therefore αx exp (−γxx), where αx
and γx are chosen such that sufficiently high negative rewards are given as objects
get closer to the OS, but no negative reward is given when the shore or object
is considered to be at a safe distance. The tuning of these parameters is highly
dependent on the type of situation at hand, as the accepted shortest distance from
the OS to an obstacle varies greatly according to the terrain. Here, values were
chosen such that negative rewards are given when the distance measured is less
than 500 m, and falls sharply when entering a radius of 250 m – as shown in Fig.
3.4.2.
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Figure 3.4.2: Plot showing the raw distance penalty for static obstacles with
αx = 75.
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Moreover, it is useful to consider the immobility of static obstacles to limit the
reactivity of the agent. Provided that no external forces such as wind or current
are acting on the OS, and that the vessel is unable to move backwards, a static
obstacle only poses a threat when detected ahead of the OS. By adding a weighting
term, this can be integrated into the path following reward function. A function
that highly prioritises the measurements taken by sensors associated with small
angles relative to the centerline was chosen, and is shown in blue in Fig. 3.4.3.
The weighting term for dynamic obstacles is also shown, and will be dicussed in
the next section.
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Figure 3.4.3: Plot showing sensor angle weighting for static and dynamic obsta-
cles

The resulting reward given when a static obstacle is detected at a distance x, and
at a sensor angle θ with respect to the centerline of the vessel is therefore given by

r
(t)
obst,stat = − 1

1 + γθ,stat|θ|︸ ︷︷ ︸
Weighting term

αx exp (−γxx)︸ ︷︷ ︸
Raw distance penalty

(3.4.4)

For the entire sensor suite, the overall collision avoidance reward for static obsta-
cles, rcolav,stat, is then given as the weighted average of the individual rewards.
Denoting the ith distance sensor measurement as xi and the vessel-relative angle
of the corresponding sensor ray as θi, the overall reward becomes as in Eq. 3.4.5.
A weighted average is used to prevent the weighting term itself from introducing

52



Chapter 3. Design and implementation

effects that are unaccounted for, as the only objective is to place assign relative pri-
orities. For instance, the weight distributions used for static and dynamic obstacles
can now be compared without considering the exact values of the weights.

r
(t)
colav,stat = −

N∑
i=1

αx
1 + γθ,stat|θi|

exp (−γxxi)

N∑
i=1

1
1 + γθ,stat|θi|

(3.4.5)

In Fig. 3.4.4, the static collision avoidance penalty is illustrated as a function
of obstacle distance and angle. As expected, the highest penalty (most negative
reward) is assigned at small distances and angles.

Figure 3.4.4: Static obstacle closeness penalty landscape as a function of obstacle
distance and angle relative to the vessel with the scale parameters γθ = 10, γx =
0.01. The maximum penalty is imposed for obstacles located right in front of the
vessel [5].

3.4.1.3 Dynamic obstacle avoidance performance

For dynamic obstacle avoidance, we expand on the framework developed for static
obstacles. Firstly, the penalty should reflect the relevant COLREGs such that the
agent is incentivised to learn COLREG-compliant behaviour. Since the COLREGs
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are defined according to the bearing of a TS relative to the OS, an intuitive way to
guide the RL agent towards COLREGs compliance is to adjust the static obstacle
penalty (Eq. 3.4.4) according to the relative bearing of the dynamic obstacle. The
area around a vessel is normally split into three sectors: port, starboard, and stern,
as illustrated in Fig. 3.4.5. Therefore, a tunable parameter ζx was added to allow
for differentiated weighting of these sectors.

Figure 3.4.5: Illustration of sectors around the OS [5].

According to the COLREGs, it is desirable that crossings take place on the port
side, meaning that the weighting of sensor readings on the starboard side should
be higher. However, since it is assumed at this stage of the work that the target
vessels have restricted maneuverability, sensor readings on the port side and astern
must also be sufficiently penalized, such that the OS acts as the give-way ship in
all situations. Since the reward function is such that a lower value of γx gives a
higher penalty (more negative reward), denoting starboard as "st.b.", we thus have
that γx,st.b. < γx,port ≤ γx,stern.

ζx(θ) =


γx,st.b., if θ ≥ 0° and θ < 112.5°
γx,port, if θ ≥ −112.5° and θ < 0°
γx,stern, if θ ≥ 112.5° or θ < −112.5°

(3.4.6)

Furthermore, the reward must reflect the variable risk associated with the direction
of a TS’s velocity; an approaching TS gives rise to a much higher risk than a
receding one. In addition, the relatively steep function used as weighting term
in Eq. 3.4.4 was exchanged for a flatter function of the form 1/(1 + exp(x)), so
as to give dynamic obstacles detected around the OS sufficient priority. This is
showcased in Fig. 3.4.3. It should be re-iterated that it is not the numerical value
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of the weights that matters, but rather the relative difference between them. Since
the static and dynamic obstacles are treated separately, the weights distributed
among static obstacles do not affect the dynamic obstacles, and vice versa. Making
adjustments to the static obstacle penalty to adhere to the requirements discussed,
the penalty for a single dynamic obstacle was chosen as

robst,dyn = − 1
1 + exp(γθ,dyn|θ|)︸ ︷︷ ︸

Weighting term

αx exp ((ζvvy − ζx)x)︸ ︷︷ ︸
Raw penalty

(3.4.7)

where x is the distance to the obstacle, θ is the vessel-relative angle (bearing angle),
and vy is the velocity component in the direction towards the vessel. The scaling
factor for velocity, ζv, is given as a function of the angle θ and the velocity vy,
whilst the scaling factor for distance ζx is a function of the angle θ only. Such
a shaping of the reward function parameters acts as in indirect classification of
encounter situations and guides the agent towards COLREG-compliant behavior.
As was mentioned, it is often argued that reward functions in RL should not be
over-engineered, which might seem to be the case here. However, it was found
that an algorithm with less adaptation of the reward function according to the
situation, and therefore fewer parameters, was in fact harder to tune due to the
subsequent high level of dependency between different encounter situations. Due to
these difficulties, it was deemed impossible to achieve COLREGs-compliance with
fewer adjustable parameters in this setup. For instance, since the starboard side
is already heavily penalised, lighter weighting of velocity was needed to prevent
the agent from reacting too strongly when detecting a TS on the starboard side.
The sign of the velocity component of the TS towards the OS is therefore used
to determine whether the TS is moving towards the OS or moving away, which
together with the sensor angle θ provides a good basis for determining a reasonable
scaling factor for vy. This scaling factor, ζv, is therefore given as

ζv(θ, vy) =



γ+
v,st.b. if vy ≥ 0

γ−v,st.b. if vy < 0
if θ > 0° and
θ < 112.5°γ+

v,port if vy ≥ 0

γ−v,port if vy < 0
if θ > −112.5°
and θ < 0°γ+

v,stern if vy ≥ 0

γ−v,stern if vy < 0
otherwise

(3.4.8)
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An illustration of the effects of ζx and ζv on the overall reward for each sensor is
presented in Fig. 3.4.6, where the black and blue graphs represent the baseline
case where a dynamic obstacle is detected with zero speed and the grey and red
graphs represent a detected obstacle speed of vy = 5 ms−1 – a speed close to the
average of the target vessels included from the AIS-based scenarios. A few different
configurations were tested for the reward term robst,dyn, with extensive tuning each
time. Initially, for instance, the velocity term was added such that the raw distance
penalty was given as αx exp (ζvvy − ζxx), which appeared more natural. However,
this function decreases to zero more or less at the same point regardless of the
detected speed vy. The final form was chosen due to the way a positive detected
speed "lifts" the function upwards. This ensures that the penalty is negative for
a larger radius around the OS, without significantly altering the characteristics of
the reward function.
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Figure 3.4.6: Plot showing the raw distance penalty for dynamic obstacles with
αx = 75.

Finally, as was done for static obstacles, we then compute the complete dynamic
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obstacle avoidance reward according to the weighted average

r
(t)
colav,dyn = −

N∑
i=1

αx(1− λi)
1 + exp(γθ,dyn|θi|)

exp ((ζvviy − ζx)xi)

N∑
i=1

1
1 + exp(γθ,dyn|θi|)

(3.4.9)

where λi is a parameter referred to as a prioritisation factor. The prioritisation
factor regulates the relative importance of path following and collision avoidance in
an encounter situation. A higher value indicates a greater focus on path following,
while a low value ignores the path following in favor of collision avoidance. This
parameter function depends on the velocity viy detected, and takes the distance xi
measured by the sensor as input, according to the logistic function

λ
(t)
i = 1

1 + exp
(
−γλ(viy)x(t)

i + αλ(viy)
) (3.4.10)

Here, αλ(vy) and γλ(vy) are tunable parameters. Two sets of constant values were
chosen such that the overall function for λi would depend solely on the sign of the
speed vy of the TS towards the OS, giving higher values when vy < 0. In other
words, λi incorporates the difference in risk between crossing ahead and astern of
a TS, allowing the agent to return to path following quicker in a situation where
the TS facing away from the OS. Formally, we have

αλ(vy) =

α+
λ , if vy ≥ 0
α−λ , if vy < 0

(3.4.11)

and

γλ(vy) =

γ+
λ , if vy ≥ 0
γ−λ , if vy < 0

(3.4.12)

The difference in the prioritisation factor in the respective scenarios (vy ≥ 0 and
vy < 0) is illustrated in Fig. 3.4.7. In the case of a receding target vessel, path fol-
lowing is prioritised higher than collision avoidance whenever the distance exceeds
approximately 400 m. Conversely, this only happens at approximately 1300 m in
the case of an approaching target vessel.
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Figure 3.4.7: Plot showing the prioritisation factor λ as a function of the mea-
sured distance x, for vy ≥ 0 and vy < 0.

3.5 Risk-based implementation of COLREGs

A risk-based approach offers an interesting contrast to the qualitative implementa-
tion elaborated on in Section 3.4, and could provide a useful leverage point in future
research. Building on the theory presented in Section 2.2.4, a collision risk index
(CRI) is calculated using fuzzy evaluation. Here, this translates to a weighted sum
of evaluated risk factors, a method which is described in detail in Section 3.5.1.1.
Doing so elegantly encapsulates the continuous and fuzzy nature of collision risk,
making it a convincing choice for translating the COLREGs into a DRL-based
framework.

3.5.1 Reward function

Collision risk is normally only applied to encounter situations between two dynamic
objects, and the collision risk index to be presented here is no exception. This means
that the components for path following, static obstacle avoidance, collision penalty
and living penalty must be defined separately. Reusing the corresponding parts
from the previous approach makes sense since the DRL setup for path following
and static obstacles produced excellent results in the earlier stages of the work. The
rewards for path following and static obstacle avoidance are given in Eq. 3.4.3 and
Eq. 3.4.5 respectively, while the collision and living penalties are negative integers.
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As a result, the total reward function has the same structure as before, reiterated
below, only with a risk-based penalty for dynamic obstacles (rcolav,dyn).

r =

rcollision, if collision
λrpath + (1− λ) rcolav + rexists, otherwise

(3.5.1)

The penalty for dynamic obstacles makes part of the overall penalty for collision
avoidance, denoted rcolav and given by

rcolav = rcolav,dyn + rcolav,stat (3.5.2)

For every TS detected by the OS, a collision risk index (CRI) ∈ [0, 1] is calculated
(see Section 3.5.1.1). Due to the index’s property of increasing with increasing
collision risk, it can be used semi-directly in the reward function. By multiplying
the CRIi of each target vessel i with a scaling factor βCRI > 0, the penalty level
can be adjusted to the right magnitude relative to the rest of the reward function:

rcolav,dyn = −
∑

βCRI · CRIi (3.5.3)

3.5.1.1 Calculation of collision risk index

In order to determine the collision risk in an encounter situation, one must first
define what constitutes a collision risk, and how much each risk factor contributes
to the overall risk. The state-of-the-art methods of computing CRI generally make
use of fuzzy evaluation to do so [14], which is therefore a natural choice here. In
short, three steps should be followed:

1. Define individual risk factors

2. Define membership functions

3. Design overall CRI as a function of membership functions

In the following, the chosen risk factors and their membership functions are elab-
orated on, before designing the CRI function based on them.
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A common starting point for defining risk is looking at the distance and time
to the point of closest approach, denoted DCPA and TCPA. As the explanatory
name reveals, the closest point of approach (CPA) is the closest point relative to
the OS that the TS in question will come, given that the relative course and relative
velocity between the two ships stay the same. The DCPA, then, is the distance
to the CPA, whilst the TCPA is the time until the TS arrives at the CPA. Put
differently, the DCPA quantifies the severity of a potential collision situation, while
the TCPA quantifies the urgency of it. It is customary to employ upper and lower
bounds for these quantities when determining the risk level associated with them,
denoted dL and dU for DCPA, and tL and tU for TCPA. Doing so, the membership
functions uDCPA and uTCPA output 1 (highest risk level) whenever |DCPA| ≤ dL
and |TCPA| ≤ tL, respectively. Conversely, the outputs are 0 when |DCPA| ≥ dU

and |TCPA| ≥ tU . As was done in Gang et al. [79], a second-order function is used
between the two extremities. In other works, such as Chen et al. [80], a sinusoidal
function is used instead. Although the latter has the virtue of being smooth, it was
deemed to be inexpedient due to the large outputs for a wide interval of values,
overshadowing other elements of the CRI. Since the sensor range used in this work
is relatively short (1500 m), the steeper second-order function was found to improve
learning. It is worth noting that the sinusoidal function may be more suited in a
setup with fewer obstacles and vessels where AIS data from a larger region is used.

The values for the lower and upper bounds depend largely on the application. In
general, dL defines the minimal safe encounter distance and dU is the absolute safe
encounter distance [79]. For DCPA, we thus have that

uDCPA =


1 if |DCPA| ≤ dL
0 if |DCPA| ≥ dU(
dU−|DCPA|
dU−dL

)2
else

(3.5.4)

with dL and dU as positive integers. The DCPA membership function is presented
graphically in Fig. 3.5.1.

For the bounds on TCPA, the method used in [79] and presented in Eq. 3.5.5 is
employed. Doing so adjusts the output of uTCPA according to the distance between
the OS and TS, accurately presenting the high risk when the distance is below or
close to the lower bound dL and low risk when it is closer to the upper bound dL.
It should be noted that it is assumed that DCPA never exceeds dU , meaning that
dU is set to the maximum detectable DCPA.
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Figure 3.5.1: Membership function for DCPA with dL = 320 m and dU = 1500
m.

tL =


√
d2
L
−DCPA2

vR
if |DCPA| ≤ dL

dL−DCPA
vR

if |DCPA| > dL
(3.5.5a)

tU =
√
d2
U −DCPA2

vR
(3.5.5b)

In [79], equal importance has been given to positive and negative values of TCPA,
through the membership function for TCPA below:

uTCPA =


1 if |TCPA| ≤ tL
0 if |TCPA| ≥ tU(
tU−|TCPA|
tU−tL

)2
else

(3.5.6)

However, noting that negative values of TCPA indicate that the OS and TS have
passed each other, it makes sense to pay attention to the sign of TCPA. This is
supported by [81], where a fuzzy case-based reasoning system for collision avoid-
ance is proposed. In their work, the TCPA membership function in Fig. 3.5.2 is
employed, indicating the significantly higher risk associated with positive values of
TCPA.

Following this line of reasoning, a distinction between positive and negative values
of TCPA is made according to Eq. 3.5.7. The cut-off value for negative values
(negative limit) was chosen as tNL = dL

vR
, such that the degree of membership is
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Figure 3.5.2: Membership function for TCPA employed in [81]. SAN = Safe
Negative, DAN = Dangerous Negative, VDP = Very Dangerous Positive, DAP =
Dangerous Positive, MEP = Medium Positive, SAP = Safe Positive, VSP = Very
Safe Positive.

larger than zero whenever the OS is less than dL time steps away from the TS.

uTCPA =




1 if TCPA ≤ tL
0 if TCPA ≥ tU(
tU−TCPA
tU−tL

)2
else

if TCPA ≥ 0

0 if TCPA ≤ tL(
tNL−|TCPA|

tNL

)2
else

if TCPA < 0

(3.5.7)

The membership function for TCPA is plotted in Fig. 3.5.3.
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Figure 3.5.3: Membership function for TCPA with dL = 320 m, dU = 1500 m
and vR = 1 m/s.

Further, the collision risk depends on the position of the TS relative to the OS,
which can be expressed through the absolute distance R between them and the
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bearing angle of the TS, θT . Since the risk is higher on the starboard side of the
OS, as expressed in Rule 14 (head-on situation) of the COLREGs, the membership
functions should be designed with a bias on that side. Inspired by Davis et al. [58],
it is customary to introduce a bias of 19° starboard. Davis developed the concept
of ship arena, briefly described in Section 2.2.4, and designed a scaling of the upper
bound as

RD = 1.7 cos
(
θT

π

180 − 19°
)

+
√(

4.4 + 2.89 cos2
(
θT

π

180 − 19°
))

(3.5.8)

while the lower bound is usually taken as 12 times the OS length Lpp [79], but
set to 8Lpp here due to smaller scale. Initially, the upper bound given by RD was
implemented, but it quickly became clear that adjustments had to be made to
make sure the agent received sufficiently negative reward when approaching TSs,
regardless of their bearing angle. The difference in scaling of 4.4 times for ships
detected at 19° and 161 ° (180°−19°) was too large considering the relatively densely
populated training and testing scenarios and a restricted sensor range of 1500 m.
Through testing, it was observed that the distance membership function could be
made uniform while still preserving the correct behaviour in head-on situations as
long as the membership function for the bearing angle θT was given enough weight.
As a result, the lower and upper bounds for the absolute distance R were chosen
as

RL = βRLLpp (3.5.9a)

RU = βRULpp (3.5.9b)

with βRL and βRU chosen as appropriate scaling constants.

Following the logic applied to the membership functions for TCPA and DCPA, we
arrive at the following membership function for the absolute distance between the
OS and TS:

uR =


1 if R ≤ RL
0 if R ≥ RU(
RU−R
RU−RL

)2
else

(3.5.10)

To ensure the appropriate behaviour in head-on situations, the function for the
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Figure 3.5.4: Membership function for distance to the target ship, with θT = 0°.

bearing angle of the TS relative to the OS should be largest on the starboard side.
Defining θPU , θPU , θPU , and θPU as the positive upper, positive lower, negative
upper, and negative lower bounds on θT , the membership function for the bearing
angle can be defined as below and illustrated in Fig. 3.5.5.

uθT =


clip

((
θPU−θT
θPU−θPL

)2
, 0, 1

)
if θT ≥ 0

clip
((

θNU−|θT |
θNU−θNL

)2
, 0, 1

)
if θT < 0

(3.5.11)
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Figure 3.5.5: Membership function for the bearing angle of the target ship, with
θPU = 180°, θPL = 45°, θNU = 90°, and θNL = 22.5°.

After implementing a CRI containing the four membership functions introduced so
far, it became clear that it was necessary to add an element to the CRI to deter
the OS from crossing ahead of a TS. Since the speed of the TS towards the OS can
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be used to quantify whether or not the OS is ahead of the TS, and the speed of
the TS towards and perpendicular to the OS (vy and vx) are readily available in
the observation vector, an additional membership function was designed based on
these speeds. Hence, we define uV (·) as the ratio of the TS’s speed towards the OS
to its absolute speed, as in Eq. 3.5.12. The choice of such a ratio was done to avoid
issues with differences in speed among the TSs, which easily could have arisen if
the numerical value of vy had been used instead. On the other hand, it might be
desirable to distinguish between crossing ahead ships travelling at different speeds,
as faster ships naturally pose a higher risk. However, since the speeds of the TSs in
the training and testing scenarios have been sampled from a narrow range of 6 ± 1
m/s, it is considered outside of the scope of this work. It is worth noting that uV (·)
is negative when vy is negative, emphasising the advantage of astern crossings.

uV = vy√
v2
x + v2

y

(3.5.12)

Integrating the introduced membership functions into a collision risk index, we
have that

CRI = max (0, αCPA
√
uDCPA · uTCPA + αθT uθT + αRuR + αV uV ) (3.5.13)

where the CPA composite term was designed in such a way that a combination of
low values for both DCPA and TCPA gives rise to a high CRI. It also accurately
expresses how a low value of either DCPA or TCPA significantly reduces the overall
risk. The max-function is applied to ensure that the CRI is always larger or equal
to zero.

Finally, values are assigned to the weights such that the sum is equal to unity,
giving

αCPA + αθT + αR + αV = 1 (3.5.14)

In this work, the numerical values in Table 3.5.1 are used. Initial choices were made
based on values suggested in literature [80] [82], emphasising DCPA and TCPA.
However, it was discovered that more weight had to be placed on the target bearing
angle, absolute distance and approaching velocity to achieve the desired behaviour.
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The configuration of the path following and static obstacle rewards listed in Table
3.4.1 have been reused here.

Parameter Interpretation Value
βCRI Scaling factor for overall risk level 10
βRL Scaling factor for the lower bound on distance 8
βRU Scaling factor for the upper bound on distance 18
θPU Positive upper limit for the bearing angle θT 180°
θPL Positive lower limit for the bearing angle θT 45°
θNU Negative upper limit for the bearing angle θT 90°
θNL Negative lower limit for the bearing angle θT 22.5°
αCPA Weighting of CPA membership function 0.3
αθT Weighting of target bearing angle membership function 0.2
αR Weighting of absolute distance membership function 0.3
αV Weighting of approaching velocity membership function 0.2
dL Minimal safe encounter distance 320 m
dU Absolute safe encounter distance 1500 m

Table 3.5.1: Reward configuration for the risk-based approach.
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Results

In this section, the results from the qualitative and risk-based implementations of
the COLREGs are presented and evaluated.

4.1 Performance evaluation
In order to allow for comparison between the two approaches explored, a three-
step evaluation process is employed. First, the agent’s behaviour and performance
in the training environment is assessed, and snippets from situations relevant to
rules 14-16 of the COLREGs are presented. Next, two-vessel testing scenarios are
constructed to specifically test for COLREG-compliance. Lastly, the agents are
evaluated in AIS-based environments. These modes of assessment are described
individually in the following subsections.

4.1.1 Performance in training environment

A natural starting point for performance evaluation is assessment of the agent’s
behaviour in its training environment. By collecting statistics on the collision
rate, level of path completion, and reward, overall performance can be evaluated.
These statistics both serve as a guide for when to stop the training, and as a
point of comparison between approaches. Moreover, snippets are chosen from the
simulations in the training environment in order to highlight the behaviour in
situations where the COLREGs apply. The COLREGs cannot be said to always
apply since the training environment often presents the agent with difficult and
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unrealistic situations containing various static and dynamic obstacles which cannot
be accurately subjected to the COLREGs.

4.1.2 Testing of COLREG-compliance

The next step in the testing process is subjecting the agent to scenarios specifically
designed to capture COLREG-compliance. This is especially useful since it is
difficult to find examples of scenarios perfectly showcasing COLREG-compliance in
the training environment itself. Through simpler two-vessel scenarios, however, the
agent’s success can easily be quantified. One scenario to be tested is self-evident,
namely the head-on scenario. In addition, two different crossing situations, one
from starboard and one from the port side were chosen. For each scenario, the
initial angles and path angles of the TS are varied slightly within a range of ±5°
of the default angles given in Table 4.1.1, which allows for repetitive testing in the
respective scenarios.

Scenario Default initial
TS bearing angle

Default
TS path angle

Head-on 0° 0°
Crossing from starboard -30° 90°
Crossing from port 50° -70°

Table 4.1.1: Default initial TS positions and path angles for COLREG-compliance
tests.

It should be noted that the target ships have been modelled large in the testing sce-
narios to reflect the size of the large ships encountered in the AIS-based scenarios,
and for visual clarity.

4.1.3 AIS-based testing

Lastly, three environments based on real-world high-fidelity terrain data are used
to assess the overall performance of the agent. These environments were developed
in [72] using AIS tracking data from the Trondheim Fjord area, and are distinctly
different in nature. In the illustrations presented in the following, a dashed black
line represents the desired vessel trajectory. Each TS is drawn at its initial position,
and their trajectories are drawn as dotted red lines. Note that these are examples
of spawned environments, and that the a set amount of target ships are chosen
from the AIS database each time an instance of the specific scenario is created,
giving different scenarios each time the environment is instantiated. Additionally,
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the apparent density of TS trajectories does not directly reflect the amount of
encounters, as this depends on the speed of each individual vessel.

The first AIS-based scenario is the Trondheim scenario exemplified in Fig. 4.1.1,
in which the agent is required to cross a fjord of width ∼12 km while following a
straight path. Doing so, it mainly meets crossing traffic consisting of larger vessels.
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Figure 4.1.1: Map of the Trondheim test scenario.

In the challenging Ørland-Agdenes scenario in Fig. 4.1.2, the agent meets two-
way traffic in a narrow fjord entrance region. To successfully complete the path,
it must blend into the heavy traffic while avoiding head-on collisions. In addition,
the ability to overtake other vessels is assessed. As in the Trondheim scenario, the
vessels are mainly larger than the OS.

Lastly, the Froan scenario offers a demanding terrain with hundreds of small is-
lands. As a result, it tests the ability of the agent to generalise to a challenging
environment with a high density of static obstacles varying in size and shape. The
area is less trafficked, and the vessels encountered are of similar size and speed to
those of the OS. The scenario is presented in Fig. 4.1.3.
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Figure 4.1.2: Map of the Ørland-Agdenes test scenario.
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Figure 4.1.3: Map of the Froan test scenario.
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4.2 Qualitative approach
Here, the results obtained using the qualitative approach are presented, following
the procedure outlined.

4.2.1 Training

To choose a suited agent for testing, statistics from the training process were mon-
itored. When the agent did no longer record collisions for over 500 episodes and
the episode rewards stagnated after about 4000 episodes the training was halted.
In Fig. 4.2.1 and 4.2.2 the frequency of collisions and progress are presented, show-
casing a low collision rate and high path completion rate at the end of training.
It is interesting to note that the collision rate quickly decreases, and after only
2000 episodes, the agent is already performing very well. The episode rewards are
plotted in Fig. 4.2.3, showing a sharp increase in reward over the first 500 episodes,
before slowly climbing and converging at a steady level.

Next, common collision avoidance maneuvers from the training environment are
shown in Fig. 4.2.4. The snippets presented are representative of the agent’s behav-
ior in realistic encounter situations, which indicate that it is COLREG-compliant
in the situations where the rules can be accurately discerned. As can be seen from
Fig. 4.2.4a, the agent prefers to cross ahead of the TS at a distance of approxi-
mately 600 m to keep it on its port side in the head-on situation. Although not
clearly defined in the COLREGs, there is a distance at which crossing ahead of
other ships is considered safe, which has been indirectly communicated through
the reward function. In situations such as this one, there is a trade-off between the
penalty for keeping a TS on its starboard side and crossing ahead of it. Situations
that distinctly require astern crossings, on the other hand, are handled with ease,
as shown in Fig. 4.2.4b.
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Figure 4.2.1: Collisions during training of qualitative agent. Each vertical line
indicates a collision, and the line corresponds to the ratio of number of collisions
to number of episodes.
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Figure 4.2.2: Path progress during training of qualitative agent.
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Figure 4.2.3: Accumulative reward during training of qualitative agent.
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(a) Head-on situation
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(c) Overtaking
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Figure 4.2.4: Qualitative agent performing common naval collision avoidance
maneuvers in the training environment. The agent’s trajectory is drawn as a blue
dashed line, and the target ships with trajectories are drawn in red. The dotted
vessel outlines show their positions 100 time steps prior to the present time.
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4.2.2 Testing of COLREG-compliance

Next, the agent was applied to the scenarios constructed for testing of COLREG-
compliance, and the results can be seen in Fig. 4.2.5. Clearly, the agent adheres to
the targeted COLREGs rules, and excellently follows the path once the TS is out
of the sensor range. In Fig.4.2.5a, the OS adheres to Rule 14 by altering her course
to starboard in a head-on situation. Further, as seen in Figs. 4.2.5b and 4.2.5c, the
agent avoids crossing ahead of a TS when it can make a reasonable maneuver to
cross astern, as described by Rules 15, 16, and 18. It was noted, however, that there
is a "cut-off" when the TS approaches from an angle θT > 40°. In these situations,
it chooses to cross ahead, although with a good margin. This makes intuitive sense,
as it effectively resolves the conflict without making sharp maneuvers. At the same
time, it is important to note the ambiguity of the COLREGs in these cases, stating
that the give-way vessel should "keep well clear".

To thoroughly test COLREG-compliance, the three testing scenarios were simu-
lated for 100 episodes each. For the head-on scenario, the incoming angle of the
TS and the path angle αp of the TS were varied such that θT ∈ [−5°, 5°] and
αp ∈ [−5°, 5°]. Similarly, the incoming angle and path angle of the TS were varied
with ± 5° relative to the angles utilised for the crossing from starboard and crossing
from port scenarios in Fig. 4.2.5.

Scenario Success rate
Head-on 100%
Crossing from starboard 100%
Crossing from port 100%

Table 4.2.1: Qualitative agent: results from repetitive testing of COLREGs with
slightly varying scenarios, 100 episodes.
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Head on.
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(b) Test scenario 2:
Crossing from starboard.
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(c) Test scenario 2:
Crossing from port.

Figure 4.2.5: Qualitative agent in COLREG-compliance test scenarios. The
agent’s trajectory is drawn as a blue dashed line, and the target ships with trajec-
tories are drawn in red. The dotted vessel outlines show their positions 100 time
steps prior to the present time.

4.2.3 Testing in AIS-based environment

Extending the testing to scenarios based on real-world AIS data, it can be seen that
the agent behaves in a COLREG-compliant manner in situations where the COL-
REGs clearly define an expected behaviour. Some examples of this are presented in
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Fig. 4.2.6, where situations similar to those chosen from the training environment
(Fig. 4.2.4) were chosen for comparison. The main difference between the training
environment and the AIS-based environment is the shapes and sizes of the static
obstacles, which represent land and islands in the AIS-based environment. As seen
in Fig. 4.2.6d, the agent has generalised sufficiently to tackle these scenarios with
ease. Furthermore, overall trajectories undertaken by the agent in the Trondheim,
Ørland-Agdenes and Froan scenarios can be seen in Fig. 4.2.7. Although the agent
had no issue traversing the difficult terrain of Froan, it struggled when encountering
target ships in restricted waters. The likely explanation for this is that the training
environment does not reflect such situations properly for the agent to be prepared
for them. For instance, in the training environment, the OS can always sail around
a circular obstacle when encountering a TS close to such an obstacle. In the Froan
scenario, this is not the case, and the OS easily gets lost attempting to find other
ways to the goal. It should therefore be noted that in the scenario presented, the
OS did not encounter another vessel after entering the narrow end section of the
desired path, but is included to showcase the agent’s ability to navigate in restricted
waters in the absence of target ships.
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(d) Static COLAV

Figure 4.2.6: Qualitative agent performing common naval collision avoidance
maneuvers in the AIS-based environment. The agent trajectory is drawn as a blue
dashed line, and the target ships are drawn in red. The dotted vessel outlines show
their positions 100 time steps prior to the present time.
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(a) Qualitative agent’s trajectory
in the Ørland-Agdenes test scenario.
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(b) Qualitative agent’s trajectory
in the Trondheim test scenario.
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(c) Qualitative agent’s trajectory
in the Froan test scenario.

Figure 4.2.7: Qualitative agent trajectories in the AIS-based environments drawn
as blue dashed lines. Target ships and trajectories are drawn in red.
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4.3 Risk-based approach
In this section, the results obtained using the risk-based agent are showcased in
same procedural manner as in Section 4.2, presenting training statistics, snippets
from the training environment, COLREG-compliance tests, and testing in AIS-
based environments.

4.3.1 Training

Although the design of the risk-based agent proved easier to tune due to the modu-
larity of the fuzzy logic, the training process was less efficient from a collision point
of view, and the convergence rate was significantly poorer than for the qualitative
approach. This is seen in Fig. 4.3.1, where the pattern is denser than when training
the qualitative agent. After about 4000 episodes, the collision rate dropped to near
zero, however, and the progress rate rose to 100%, as shown in Fig. 4.3.2, at which
point the training was stopped. The last training process statistic to evaluate is
the accumulative reward, seen in Fig. 4.3.3. As was the case for the qualitative
agent, the learning is steep initially, before the reward smoothens out and rises
slowly. The agent used for further testing was chosen slightly before the training
end point due to the slight dip in performance at the very end.
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Figure 4.3.1: Collisions during training of risk-based agent. Each vertical line
indicates a collision, and the line corresponds to the ratio of number of collisions
to number of episodes.

The training statistics are of course of utmost importance to assess the overall per-
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formance, but they do not reveal the level of COLREG-compliance, which must be
evaluated separately. Snippets from the training environment have been included
in Fig. 4.3.4, showcasing scenarios similar to those presented for the previous ap-
proach. It is clear that the agent behaves in a COLREG-compliant manner in
situations precisely defined by the COLREGs by passing on the right in head-on
situations, slowing down and passing astern instead of ahead, and allowing space
between the OS and the TS during overtaking.
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Figure 4.3.2: Path progress during training of risk-based agent.
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Figure 4.3.3: Accumulative reward during training of risk-based agent.
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(c) Overtaking
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(d) Static COLAV

Figure 4.3.4: Risk-based agent performing common naval collision avoidance
maneuvers in the training environment. The agent’s trajectory is drawn as a blue
dashed line, and the target ships with trajectories are drawn in red. The dotted
vessel outlines show their positions 100 time steps prior to the present time.
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4.3.2 Testing of COLREG-compliance

The next step in the evaluation process is COLREG-compliance testing with repet-
itive testing of each scenario. As seen in Fig. 4.3.5 the risk-based agent adheres
to the COLREG rules 16-18; the OS keeps the TS on her port side in the head-on
situation, and passes astern in both crossing situations. In addition, the agent fol-
lows the path well once the TS has been surpassed. Repetitive testing shows that
these results are stable, as the correct behaviour was seen in 100% of the episodes
for each testing scenario. These results are summarised in Table 4.3.1.

Scenario Success rate
Head-on 100%
Crossing from starboard 100%
Crossing from port 100%

Table 4.3.1: Risk-based agent: results from repetitive testing of COLREGs with
slightly varying scenarios, 100 episodes.
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(a) Test scenario 1:
Head on.
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(b) Test scenario 2:
Crossing from starboard.
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(c) Test scenario 2:
Crossing from port.

Figure 4.3.5: Risk-based agent in COLREG-compliance test scenarios. The
agent’s trajectory is drawn as a blue dashed line, and the target ships with trajec-
tories are drawn in red. The dotted vessel outlines show their positions 100 time
steps prior to the present time.

4.3.3 Testing in AIS-based environment

Finally, the risk-based agent is assessed in the AIS-based environment. The snip-
pets presented in Fig. 4.3.6 display COLREG-compliant behaviour and excellent
static obstacle avoidance. As with the qualitative approach, we see in Fig. 4.3.6b
that astern crossings are especially convincing. This is likely due to the lack of am-
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biguity; the agent is keeping the TS on its port side while avoiding crossing ahead.
Lastly, the overall trajectories are presented in Fig. 4.3.7, illustrating the agent’s
ability to dynamically follow a predetermined path in the face of static and moving
obstacles. Moreover, the overall trajectories taken in the AIS-based environments
are presented in Fig. 4.3.7, showcasing a great ability for dynamic path following
and collision avoidance.
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Figure 4.3.6: Risk-based agent performing common naval collision avoidance
maneuvers in the AIS-based environment. The agent trajectory is drawn as a blue
dashed line, and the target ships are drawn in red. The dotted vessel outlines show
their positions 100 time steps prior to the present time.
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(a) Risk-based agent’s trajectory
in the Ørland-Agdenes test scenario.
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(b) Risk-based agent’s trajectory
in the Trondheim test scenario.
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(c) Risk-based agent’s trajectory
in the Froan test scenario.

Figure 4.3.7: Risk-based agent trajectories in the AIS-based environments drawn
as blue dashed lines. Target ships and trajectories are drawn in red.
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Conclusion and future work

Ending the thesis, this section contains a brief discussion and concluding remarks
in Section 5.1, as well as suggested future work in Section 5.2.

5.1 Discussion and conclusion
The primary objective of the thesis was to investigate COLREG-compliance in a
path following and collision avoidance system based on deep reinforcement learning
through the comparison of a qualitative and a risk-based approach. As demon-
strated in Section 4, both approaches produced COLREG-compliant behaviour
when tested in scenarios relevant to COLREG rules 16-18, which are the main
rules directly dictating desired collision avoidance behaviour. As such, DRL has
proven to be up to the task of COLREG-compliant collision avoidance at sea.

Although the two approaches investigated produced similar end results, distinctions
can be made regarding the ease of implementation and convergence, as well as
general experience throughout the process. The qualitative approach, which was
intended to be more intuitive and straight-forward to implement, turned out to be
the hardest to tune. This can likely be attributed to the combination of different
functions employed in the overall reward, including exponential functions, which
made it challenging to predict how the tuning of the parameters would affect the
agent’s behaviour. On the other hand, the use of steeper functions in all likelihood
contributed to the better convergence seen in the qualitative approach.

The opposite characteristics were observed for the risk-based approach, where the
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tuning required less effort. A major reason for this is that the method is more trans-
parent and explicit, consisting of relatively simple building blocks later combined
through fuzzy comprehension. Moreover, being based on state-of-the-art collision
risk measures, it was easier to be convinced by the approach. These virtues of
transparency and trust cannot be downplayed for safety-critical applications such
as collision avoidance. Unfortunately, the unintended effect was a slower conver-
gence rate.

How, then, can the first research question be answered: which of the approaches
implemented shows the greatest potential for COLREG-compliant collision avoid-
ance? The high convergence rate of the qualitative approach provides evidence
that it captures the COLREGs well, and can be said to be the preferred method of
the two at face value. However, as transparency and trust are vital in any collision
avoidance system, the risk-based method seems to hold the greatest potential in
the long run. This is especially true as it is reasonable to think that the conver-
gence issues of the risk-based method can be resolved by introducing a mapping
from the collision index to the reward. Doing so, the features of the risk level can
be accentuated for faster learning.

In either case, the COLREGs must be adapted for machine readability and inter-
pretability, clearly defining the required behaviour in different environments and
situations. Until then, it will be impossible to accurately assess the success of any
autonomous vessel and claim that it is fully COLREG-compliant. Having said
that, the results obtained in this work bear witness to the ability of DRL to handle
COLREG rules. Resultantly, once the COLREGs are modernised for digital ap-
plications, DRL can be expected to produce COLREG-compliant and autonomous
collision avoidance systems. In other words, DRL is suited for COLREG-compliant
navigation at sea – answering the second research question.

5.2 Future work

5.2.1 Multi-agent environments

In the work and results presented in this thesis, the agent is interacting with vessels
that are blindly following predetermined paths. Needless to say, such a setup is
not very realistic, as most encountered target vessels would make attempts to avoid
collisions. Therefore, extending the work to a multi-agent environment would be
a natural next step in the process of investigating COLREG-compliance in a DRL
framework.
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The simulation environment provided as a starting point was expanded to begin
exploring training and testing in multi-agent scenarios. However, since the focus
here has been on COLREG-compliance, and the topic of multi-agent DRL systems
is worthy of an entire master thesis of its own, it has been left for future students
to tackle.

Some of the challenges posed in multi-agent systems, especially in combination
with the current framework, are: 1) the Sable Baselines package providing the
DRL algorithms is not currently compatible with multi-agent systems, and 2) the
high computational complexity of the current virtual sensor suite would lead to
a significant slowing of simulation times. This is the case since the time step
and/or maximum velocity must be decreased to ensure predictability while training
multiple agents at once. As a result, it might be necessary to significantly alter the
framework, finding inspiration in implementations of PPO for multi-agent systems
and swarm robotics, e.g. TensorSwarm [83].

5.2.2 Explainability and stability analysis

A major point of criticism towards AI methods such as DRL is the lack of ex-
plainability and analysability. Neural networks are considered to be black boxes,
meaning that their inner workings are difficult to access and evaluate. Furthermore,
stability analyses are necessary to assess the robustness of any control system in a
safety-critical application. Consequently, it is crucial to move towards less opaque
AI.

As a response to the criticism, the field of explainable AI (XAI) has emerged, seek-
ing to develop methods to increase the transparency of AI systems. XAI techniques
can largely be separated into two categories based on the type of interpretability
they bring to the table: perceptive interpretability or interpretability by mathemat-
ical structures [84]. A large group of techniques within perceptive interpretability
relies on saliency to express the basis of decisions to the user, for instance by cre-
ating heat maps or presenting the probabilities of different outputs. Techniques
based on mathematical structures attempt to understand and express the underly-
ing mechanisms of the neural network. Examples of this are clustering methods and
subspace analysis, aiming to determine the underpinnings of the decisions made by
the neural network.

XAI is only one side of the coin, however, as it does not encompass the domain
of stability analysis. As such, XAI alone does not bridge the gap between DRL
and real-life, satefy-critical applications, which require robust control systems. Al-
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though this is a relatively unexplored area, some methods have been proposed.
In [85], quadratic constraints and semidefinite programming is used to perform a
robustness analysis based on properties such as the boundedness and monotonicity
of the network’s activation function. Another possibility is extracting analysable
equations from the neural network via symbolic regression, as proposed in [86]
this year. Symbolic regression could also potentially be used to express an agent’s
learning in the form of ordinary differential equations.

5.2.3 Realistic environments

As outlined in Section 2.1, a fundamental assumption here has been calm sea – the
absence of environmental disturbances such as wind, ocean currents, and waves. An
interesting extension would be to include such disturbances to determine whether
the DRL system is able to deal with them. Based on the findings and experiences
working with DRL (and the PPO algorithm specifically), it seems likely that a
DRL system would efficiently counteract moderate disturbances. In [78], good
path following results are obtained for a DRL-based path following system in the
face of disturbances, providing evidence for this. A way to further aid efficient
learning is to include key information about the environment, such as the direction
of current, in the observation vector. However, if the goal is to also include the
environmental data in the risk assessment, there is a longer way to go. In their 2019
review of collision risk measures, Ozturk and Cicek note that little consideration
of environmental factors is made in state-of-the-art methods for assessing collision
risk [87]. Filling that gap in research is therefore needed before applying a purely
risk-based DRL approach to the problem.
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Appendix A
Feasibility pooling algorithm

Algorithm 1 Feasibility pooling for rangefinder sensors [71].
Require:

Vessel width W ∈ R+

Angle between neighboring sensors θ
Sensor rangefinder measurements for current sector x = {x1, . . . , xn}
procedure FeasibilityPooling(x)

Initialize I to be the indices of x sorted in ascending order according to the measurements xi
for i ∈ I do

Arc-length di ← θxi
Opening-width y ← di/2
Opening was found si ← false
for j ← 0 to n do

if xj > xi then
y ← y + di
if y > W then

si ← true
break

else
y ← y + di/2
if y > W then

si ← true
break

y ← 0
if si is false then return xi
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