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Abstract

This thesis is an investigation of recent state-of-the-art methods and architectures
for segmentation[61, 38, 37, 78, 49] using Facebook Artificial Intelligence Research’s
(FAIR) software framework Detectron2’s[77] implementation of Mask R-CNN[38]. We
validate the method’s results through experiments over the MS COCO[48] dataset
as reported by He et al., and we conduct our own training and evaluation of several
different configurations of the method on our own data. For this we provide a novel
custom dataset[14] from planktonic images captured in-situ[60] in a lab environment
suited for object detection and instance segmentation. We provide results, trained
models, and the code necessary to embed a module of the Mask R-CNN implementation
into existing in-situ imaging systems. Our results show that the method performs
excellently in terms of accuracy while having a low enough computational overhead
to operate in real-time in-situ.

Code and miscellaneous files have been made available at: https://github.com/
AILARON/Segmentation
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Sammendrag

Denne oppgaven er en undersøkelse av nylig presenterte state-of-the-art metoder og
nettverksarkitekturer for bildesegmentering[61, 38, 37, 78, 49] ved bruk av Facebook
Artificial Intelligence Research (FAIR) sitt software rammeverk, Detectron2 sin im-
plementasjon av Mask R-CNN[38]. Vi bekrefter resultatene fra metoden presentert
av He et al. gjennom våre egne ekperimenter utført på MS COCO[48] datasettet. Vi
utfører også vår egen trening og evaluering av flere forskjellige konfigurasjoner av
metoden på egen data. For dette tilfører vi et nytt, egenprodusert, annotert datasett[14]
bestående av plankton bilder tatt in-situ[60] i lab-omgivelser, som egner seg for objekt
deteksjon og instansiert segmentering. Vi oppgir resultater, ferdig trente modeller
og kode nødvendig for å innlemme en modul av Mask R-CNN implementasjonen i
eksisterende in-situ avbildningssystermer. Resultatene våre viser at metoden utfører
oppgaven med strålende nøyaktighet samtidig som at operasjonstiden er lav nok til å
prosessere data i sanntid in-situ.

Kode og andre filer er tilgjengeliggjort ved:
https://github.com/AILARON/Segmentation
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Chapter 1

Introduction

This introductory chapter will briefly provide context for the material presented in
this report and give motivation and a description of the problem to be solved. The
contributions of the report are defined and elaborated and we provide a map for the
reader outlining the rest of this thesis.

1.1 Motivation and Problem description

Planktonic organisms form the principal source of food for consumers on higher trophic
levels in the food chain. These organisms are susceptible to environmental changes,
and studying their temporal variation in spatial abundance and taxa distribution[24]
plays an integral part in understanding and predicting the development of ecosystems
in the ocean. Manual methods for analyzing the gathered data are time-consuming
and limits the study in the research field.

Currently, research[68, 16, 80, 18, 66] focuses on applying handcrafted computer
vision techniques for performing automatic visual recognition tasks on planktonic
images to aid scientists in their work. There has been a lot of progress in the tasks of
using deep learning for detection, classification, and segmentation of images recently
[51, 70, 37, 38]. State-of-the-art techniques are being applied to autonomous driving,
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2 CHAPTER 1. INTRODUCTION

general scene understanding, medical imagery, and inspection tasks in industrial ap-
plications, among other things. Efforts of applying deep learning methods to plankton
imaging systems have mainly been applied to classification, while detection and seg-
mentation have been left to traditional methods in these types of frameworks. We
seek to apply recent deep learning techniques for segmentation to accurately identify
and extract plankton from real-time time-series image scenes taken in-situ.

1.2 Contributions

We showcase that recent state-of-the-art methods of deep learning applied to the visual
recognition tasks of object detection and instance segmentation on planktonic data
produce excellent results in terms of accuracy while having a low enough computa-
tional overhead to operate in real-time in-situ. The main contribution of this thesis is:
due to the lack of annotated planktonic images suited for instance segmentation, we
provide such a manually annotated dataset on the widely accepted format standard
of MS COCO[48]. We show the performance of Mask R-CNN’s[38] detection and
instance segmentation trained on the novel custom data and validate its viability and
superiority in replacing traditional methods. We provide results, trained models, and
code necessary to embed a module of this method in existing in-situ imaging systems.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 summarizes existing necessary
and relevant knowledge on deep learning and image segmentation. It covers significant
contributions and recent developments to the field leading up to the state-of-the-art.
Chapter 3 elaborate on the details of the methods and implementations used for the
experiments in this thesis while chapter 4 describes the datasets evaluated by them.
Definitions of evaluation metrics and what they represent can be found in chapter 5,
before we present our experimental results in terms of these metrics in chapter 6. In
chapter 7 we discuss what can be gathered from the results while chapter 8 is devoted
to the conclusion and proposals for future work.



Chapter 2

Theory Background

In this chapter, the necessary and relevant knowledge to follow and fully understand
the problem and possible solutions to it is discussed. First computer vision and its
role in deep learning will be described as well as how the state-of-the-art methods
for image processing have developed. The following will be an introduction to the
problem of segmentation and how the previously mentioned methods evolved into the
most promising concepts used for segmentation today.

2.1 Computer vision

The subfield of single-image processing can be further divided into the tasks of Clas-
sification, Detection, Localization and Segmentation of objects. These different
tasks are not isolated from one another. They can be viewed as the natural progression
steps in a process from very coarse to fine-grained inference.

A digital image is most commonly represented by a rectangular cluster of pixels.
Each pixel gives a discretized and uniform representation of color for the area of the
world it covers. Because it discretizes a continuous world, there will be some loss
of information, but if the resolution of the image is high enough, this loss can be
negligible depending on the application.

3



4 CHAPTER 2. THEORY BACKGROUND

2.2 Deep Learning and Neural Networks

Traditional machine-learning methods are limited in how well they process raw data
input. They often rely on domain expertise and explicit engineering of features or
patterns to extract to make sense of the data. This is also true for image processing
methods. Deep learning encompasses approaches that structure algorithms in layers
into a network. In image processing, this can come in the form of transforming the
raw pixel data into information about the presence or absence of edges in different
locations at the first layer, then concatenate these edges into more complex features in
the later layers. The most important aspect of deep learning and the biggest difference
from the traditional methods is that the features emphasized in the processing of data
are not engineered by domain-experts, but learned by the method[46].

There are four main types of machine learning:

• Supervised learning is the case when an input data point 𝑥 is provided with a
ground truth target 𝑡 . The methods objective is to find the function 𝑓 that maps
the output 𝑦 = 𝑓 (𝑥) such that it matches 𝑡 .

• Weakly- or semi-supervised learning are the supervised methods with noise,
incomplete, or otherwise imperfect labels to the data.

• Unsupervised learning is the class of methods tasked with finding the underlying
structure in the data without any prior information. This usually involves
clustering or dimensionality reduction.

• Reinforcement learning is the process of letting the method develop a model or
policy for the task-environment based on trial and error indicated by rewards
received.

This section will provide an introduction to the fundamentals of one of the most
used architectures used in deep learning, the neural network.

Artificial Neural Networks are constructs inspired by biological neurons. The
artificial neurons that make out these networks are called perceptrons, and the networks
they make out are sometimes called multi-layer perceptrons (fig. 2.1). The perceptron
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(fig. 2.2) was developed by Rosenblatt (1961)[62] inspired by previous work done by
McCulloch and Pitts (1943)[54]. The perceptrons send a weighted sum of the inputs
plus a bias though an activation function as an output, as seen in eq. (2.1) The result is
then fed into a new layer of perceptrons unless the perceptron is in the output layer.
In image processing, the nodes of the input layer usually take in the pixel values.

𝑧 =
∑

𝑤𝑖𝑥𝑖 + 𝑏

𝑦 = 𝑓 (𝑧)
(2.1)

The learned parameters in the perceptrons are the weights on the connections
between the perceptrons in two layers in the network.

Figure 2.1: Example of a fully connected (fc) neural network.1

Training the MLP through supervised learning is the method that has shown the
best performance in the field. Properly adjusting the learnable parameters until they
properly approximate a map from the input data to their respective target labels is the
purpose of the training algorithm.

The loss function also called cost function is usually the measure used to determine

1Image from https://freecontent.manning.com/neural-network-architectures/
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Figure 2.2: Single perceptron.2

how closely the function between the input and labels has been approximated. Ac-
cording to the universal approximation, theorem as first proved by Cybenko (1989)[21],
every continuous function defined in R𝑛 can be arbitrarily well approximated by a
feed-forward artificial neural network with finite neurons in one hidden layer. This
theorem is based on an assumption on the activation function, namely that it is non-
polynomial[47]. The potential of ANNs does not lie in choosing the optimal activation
function, according to Hornik (1991)[39], but the composition of the architecture itself.
Equation (2.2) show the definitions of the mean square error (MSE) and binary cross-
entropy loss, which are commonly used loss functions. For a data sample 𝑖 considered
as a class 𝑘 we denote the ground truth as 𝑔𝑡𝑖 (𝑔𝑡𝑖 = 1 if sample 𝑖 is of class 𝑘 , and
𝑔𝑡𝑖 = 0 if not) and the predicted probability of sample 𝑖 being of class 𝑘 as 𝑦𝑖 .

𝑀𝑆𝐸 =
1
𝑁

𝑁∑
𝑖=0

(𝑔𝑡𝑖 − 𝑦𝑖 )2

𝐵𝐶𝐿𝐸 = − 1
𝑁

𝑁∑
𝑖=0

𝑔𝑡𝑖 · log(𝑦𝑖 ) + (1 − 𝑔𝑡𝑖 ) · log(1 − 𝑦𝑖 ))
(2.2)

2Image from https://mc.ai/pytorch-introduction-to-neural-network%E2%80%8A-
%E2%80%8Afeedforward-neural-network-model/
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There is a multitude of activation functions to choose and the following are some
of the more popular choices.

• Logistic/Sigmoid[33]
𝑓 (𝑧) = 1

1 + 𝑒−𝑧 (2.3)

• Hyper-tangent
𝑓 (𝑧) = tanh 𝑧 (2.4)

• Rectified Linear Unit - ReLU [56]

𝑓 (𝑧) = max(0, 𝑧) (2.5)

• Leaky ReLU [52]

𝑓 (𝑧) =

𝑧, 𝑧 ≥ 0
𝑧
𝑎
, 𝑧 < 0

where a is a constant. (2.6)

• Softmax[17, 57]

𝑓 (z) =



𝑓 (𝑧1)
...

𝑓 (𝑧𝑖 )
...

𝑓 (𝑧𝑛)


, 𝑓 (𝑧𝑖 ) =

𝑒𝑧𝑖∑𝑛
𝑗=0 𝑒

𝑧 𝑗
(2.7)

The sigmoid and tanh function were originally popular choices, but later work
showed that ReLU and leaky ReLU generally leads to faster convergence [44, 79]. The
softmax activation function is usually found in the output layer of a classifier as it
normalizes the outputs so they sum to 1.

3Image from http://www.programmersought.com/article/1060528072/
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Figure 2.3: Graph representation of the activation functions. Leaky ReLU "leaks"
negative values in the negative half-plane.3

Epochs and batches are hyper-parameters used in the training process. The data
is usually divided into batches for optimal training, and batch normalization is the
concept of evaluating the loss, performance, or doing adjustment over a whole batch
at a time to optimize training speed. One epoch is the evaluation of all batches in the
set.

Optimizing the loss function is the objective of the training algorithm and the most
commonly used method for optimization is gradient descent (eq. (2.8)) first proposed
by the mathematician Cauchy (1847)[19][15]. This method was further developed
and used by Rumelhart et al. (1986)[63] to develop the back-propagation algorithm.
Differentiating the loss function with respect to the outputs 𝑦𝑖 and applying the chain
rule, under certain assumptions to get the gradient with respect to the weights in the
previous layer will enable the system to apply the same technique propagating the
calculated error backward through the layers. The parameter 𝛼 is called the learning
rate and determines how much each training iteration impacts the parameters in the
network.

\𝑛+1 = \𝑛 − 𝛼∇𝐿(\𝑛) (2.8)
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The different hyper-parameters can and should be tweaked to attain optimal results.

2.2.1 Convolutional Neural Networks

The convolutional network was initially conceptualized by Fukushima (1988)[28], but
only the architecture was proposed here without any learning algorithm to go with
it. Later LeCun et al. (1998)[45] applied the learning algorithm back-propagation[63],
and laid the basis of the convolutional network (CNN) used in newer methods in his
classification network.

As input to a fully connected network, it doesn’t matter how the data is ordered
as long as all the data is consistently ordered in the same fixed way. This makes
them unable to conserve local contextual connections in the data. The convolutional
structure seen in fig. 2.4 makes better use of the local information by the convolution
operation. It is a mathematical operation used for filtering images usually for blurring,
sharpening, smoothing, edge detection, and more. This is done by convolving a kernel
matrix or receptive field with an image. The definition of a discrete 2-dimensional
convolution is shown in eq. (2.9).

(𝑔 ∗ 𝑓 ) [𝑥,𝑦] =
∞∑

𝑚=−∞

∞∑
𝑛=−∞

𝑓 [𝑥,𝑦]𝑔[𝑥 −𝑚,𝑦 − 𝑛] (2.9)

Compared to a fully connected layer having a weighted sum going from one layer
to another, this is simply a bit more sophisticated operation, and the learned weights
can now be found as the entries in the kernels of the different filters in each layer.

The strength of the convolutional architecture is the ability to learn low-level
concepts early in the network and higher-level concepts and specialized feature maps
later in the network. This is done by aggregating the low-level features by pooling
them together. This is one of the fundamental steps in a classification method. Pooling
in a CNN is usually done by representing an area in the feature map by either the
average or the max value - named average pooling and max pooling respectively. As a
network grows deeper it usually grows wider, adding more specialized feature maps

4Image from http://what-when-how.com/wp-content/uploads/2012/07/tmp725d63_thumb.png
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Figure 2.4: An example of a convolutional network structure with increasing number
of filters or feature maps per layer and pooling in between to reduce dimentsionality.4

to maintain expressiveness. The pooling reduces computational complexity and the
added maps increase it.

2.2.2 The evolution of commonly used architectures

Multi-layer feed-forward neural networks are very flexible and can be constructed
in virtually an unlimited number of different ways. The performance of the architec-
ture or method applied to a specific problem will depend on aspects including the
number of filters per layer, kernel sizes, different types of pooling, optimization, regu-
larization techniques, and activation functions. Having this many different properties
to change is what makes these types of networks notorious for being described as
"black box" systems. This is also the reason why a lot of the breakthroughs in deep
learning with ANN’s have come iteratively with new architectures introducing new
techniques or a beneficial combination of already known techniques. This section will
present some of the most influential architectures. These methods have made such
significant contributions to the field that they have become widely accepted standards
and their architectures pose as base building blocks for new methods. They were
all introduced as winners through the annual ImageNet Large Scale Visual Recogni-
tion Challenge[41] (ILSVRC)5, mainly a classification challenge. The architectures in

5http://www.image-net.org/challenges/LSVRC/
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question are AlexNet[44], VGG-Net[67], GoogLeNet[70] and ResNet[37] as seen in
fig. 2.5.

Figure 2.5: Winners of the annual ILSVRC by year.6 The graphs are showcasing the top-
5 classification error-rates achieved by the winning method each year. As a comparison,
human error-rate on the same data by an expert annotator was measured to get as low
as 5.1% by Russakovsky et al. (2015)[64].

• AlexNet proposed by Krizhevsky et al. (2012)[44] was the first deep architecture
to win the ILSVRC challenge in 2012. It achieved a top-5 test accuracy of
84.6% compared to the second-best entry using traditional feature engineering
methods with an accuracy of 73.8%. This was a huge improvement, solidifying
the potential of CNN’s in the field. The architecture showed in Figure 2.6, consists
of 5 convolutional layers with max-pooling, ReLU activation function, followed
by 3 fully connected layers. The convolutional layers produce the downscaled
feature vector which is classified by the fully connected layers. It also features
dropout to combat overfitting.

6Image from https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-
resnet-and-more-666091488df5
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Figure 2.6: Topology of AlexNet, the first CNN to win the ILSVRC. Figure from [44].

• VGG-Net proposed by Simonyan and Zisserman (2014)[67] was a set of vari-
ous models and configurations with slightly different numbers of layers and
configurations. The submitted configuration won the ILSVRC-13 challenge and
achieved a top-5 test accuracy of 92.7%. This configuration is often referred to as
VGG-16 as it had 16 weight layers - 13 convolutional layers and 3 fully connected
ones. The main contribution and changes from the previous architectures was
more layers making the network deeper, and the use of smaller receptive fields.
Where AlexNet used a receptive field of 7×7 in the first convolutional layer then
pooling, VGG had three consecutive convolutional layers with receptive fields
of 3 × 3 before pooling. The effective receptive fields in both cases are the same,
but the three sequential layers with ReLU activation between each layer results
in more non-linearity and almost halving the number of parameters with an
equal number of filters. The increased non-linearity through more activations
makes the objective function more discriminative making the network easier to
train. The reduction in parameters can be seen as a regularization imposed on
the effective 7 × 7 receptive field.

• GoogLeNet proposed by Szegedy et al. (2015)[70], winning the ILSVRC-14 chal-
lenge followed the trend of being deeper than the previous winners. It consisted
of 22 layers but showed a greater complexity than simply stacking layers se-
quentially. Even though it did not show as significant a leap in performance as
the previous years, it showed a top-5 test accuracy of 93.3%. Its structure was
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motivated by the fact that a network’s performance tends to increase with size.
Both depth in terms of the number of layers and with as in the number of filters
per layer. A straight forward increase in size by increasing the number of layers
and filters increases computational overhead and number of parameters making
the networks more prone to over-fitting. Each layer consisted of an inception
module (fig. 2.7) performing pooling, large-scaled convolution, and small-scaled
convolution in parallel. This network-in-network approach gave a significant
gain in quality at a small increase in computational overhead compared to adding
the same amount of layers in sequence.

Figure 2.7: Inception building block creating the "network-in-network" structure of
GoogLeNet. Figure from [70].

• ResNet proposed by He et al. (2016)[37] showed a significant increase in both
performance and depth, almost halving the top-5 test error-rate from the previous
winner, GoogLeNet. It was the first network to outperform human expert
annotators on the test data[64] with a top-5 test accuracy of 96.4%. The best
architecture configuration had 152 layers compared to the previous year’s winner
at 22 layers, and combated the challenges of training such deep a network with
the introduction of the residual building block (fig. 3.2). Adding identity skip
connections applied to architectures conceptually similar to that of AlexNet[44]
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and VGG-19[70] provides later layers with both the output and the unchanged
input of previous layers ensuring an emphasis on different features than that of
the previous layers. This helps to speed up training and combats the vanishing
gradient problem, where the gradient tends toward zero in the back-propagation,
increasing the time to or preventing convergence. For more details on this
mechanism in network architectures see section 3.3.1.

All these architectures were originally applied to methods of classification. One can
argue that this is a task necessary in several other sub tasks of single image processing
as well. In the evolution from classification to segmentation, the desired result changes
from a single class for the image as a whole to a class for sub-regions of the image.
Next, we take a look at how this transition was achieved from the methods mentioned
in this section.

2.3 Image Segmentation

Image segmentation is in it’s most general form the task of dividing an image into
smaller sections or segments by grouping pixels together based on some definition of
similarity between them. There are multiple different types of segmentation, among
them:

• Semantic segmentation is classifying each pixel in the image as belonging to a
class. This is a more fine-grained inference of determining what class the object
in an image is.

• Instanced segmentation is semantic segmentation, but now, each pixel is labeled
with what object instance of a class it belongs to as well as the class.

• Panoptic segmentation is providing additional contextual information to each
instance, differentiating between foreground elements and background elements.
(or "thing" classes and "stuff" classes as they often are referred to in literature.)

Segmentation of an image can be viewed as a classification task without the as
heavy reduction in dimensionality, a more fine-grained inference than simply class



2.3. IMAGE SEGMENTATION 15

scores for the image as a whole. The naive approach inferred from how a convolutional
network works would be to stack convolutional layers without pooling where the last
layer would have as many feature maps as there were classes with a softmax activation
to have the same resolution on the output as the input. Conserving the resolution
of the original image would be very computationally expensive, thus infeasible on
larger images. Looking at the success of the classification architectures discussed
in section 2.2.2, a similar approach with modifications was proposed by Long et al.
(2015)[51]. They were the first to train a fully convolutional network (abbreviated
FCN) end-to-end for segmentation. The idea was based on altering the classifiers so
they output a classification score for sub-regions of the image instead of the image
as a whole. By replacing the fully connected layers in well-established classification
methods with convolutional layers (fig. 2.8) the network would output heatmaps
of pixels for each class instead of classification scores. These heatmaps were then
upscaled by transpose convolutions (also referred to as fractionally strided convolutions
or deconvolutions) to make the output of each heatmap the same resolution as the
input image for pixel-wise classification. This modification was applied by Long et al.
to AlexNet[44], VGG-net[67] and GoogLeNet[70] and showed significant improvement
over traditional methods and the previous state-of-the-art method of SDS[35] on the
Pascal VOC-{11,12}[27] datasets.

The contributions of Long et al. (2015)[51] with the FCN is considered a cornerstone
for segmentation as it showed that convolutional neural networks were capable of
efficient learning on arbitrary sized input that beat the state-of-the-art. There are
however significant shortcomings on the method inhibiting it from certain applications.
Some of the most significant aspects of potential improvement were: inference time as
it did not run in real-time, did not consider global contextual information, and had no
object instance awareness. As the authors said themselves: "(...) global information
resolves what while local information resolves where (...)". The receptive fields and
feature abstraction preserves the local information, but other mechanisms need to be
applied for the global information to be considered. The FCN provided a good base as
an encoder-decoder network for other methods to be developed that would improve on
the method’s weak points like run-time and instance awareness.
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Figure 2.8: Fully convolutional network created from classifier architecture. Figure
compounded from [51]



Chapter 3

Methodology and
Implementations

This chapter will describe the methods, architectures and implementation frameworks
used in this thesis. First, we present Faster[61] and Mask R-CNN[38], two recent
methods for object detection and instance segmentation respectively. We detail the
contributions of the methods and the mechanisms that makes them perform like they
do. Next, we present the architecture models and features compatible with modules of
the methods before we give an overview of the implementations software frameworks
we are using to run experiments with.

3.1 Faster R-CNN

In this section, we will give an overview of some of the details of the Faster R-CNN
algorithm. Faster R-CNN[61] is an iteration in a line of evolving algorithms that are
built on the same core concepts, mechanisms, and architecture. It forms the base for
Mask R-CNN detailed in section 3.2. The system consists of two modules. The first
module contains deep convolutional networks that extract features from an image and

17
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proposes regions of interest (RoI) as input to the detector which is the second module.

Region Proposal Networks

There are many different region proposal methods (for instance [76, 82]) and in ef-
fective detection methods [36, 30], generating the region proposals was the test-time
bottleneck. With Faster R-CNN Ren et al. proposed the use of a FCN[51] as a region
proposal network. A region proposal network (RPN) takes an image of any size as input
and outputs a set of rectangular region proposals. A sliding window approach is used
where multiple region proposals are generated for each window position with the box
anchors in the middle of the window.

Multi-task loss

The networks RPN and second module have two separate output layers which output
the class prediction and bounding box regression offsets for each RoI from the first mod-
ule. The classification layer outputs a discrete probability distribution 𝑝 = (𝑝0, . . . , 𝑝𝐾 )
as the result of softmax activation over 𝐾 + 1 class outputs from a fully connected
network. The box layer outputs box offsets 𝑡𝑘 = (𝑡𝑘𝑥 , 𝑡𝑘𝑦 , 𝑡𝑘𝑤, 𝑡𝑘ℎ ) for each class 𝑘 given
in the parametrization from [61] given in eq. (3.1)[61]. The parametrization is a
scale-invariant translation and log-space width and height shift relative to the object
proposal. The parameters 𝑥,𝑦,𝑤,ℎ denote a box’s center coordinates, weight and
height and subscript 𝑎 denote that it’s for the anchor box.

𝑡𝑥 =
𝑥 − 𝑥𝑎
𝑤𝑎

, 𝑡𝑦 =
𝑦 − 𝑦𝑎
ℎ𝑎

𝑡𝑤 = log( 𝑤
𝑤𝑎

), 𝑡ℎ = log( ℎ
ℎ𝑎

)
(3.1)

The loss function evaluated for each RoI is defined in eq. (3.3)[30] below. The tuple
𝑡𝑢 denotes the box predictions for a class 𝑢 and the tuple 𝑣 = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑤, 𝑣ℎ) defines
the ground truth. The Iverson bracket indicator function [𝑢 ≤ 1] in eq. (3.3)[30] is
evaluated to 1 when 𝑢 ≤ 1 and 0 otherwise. This results in a box lsos of 0 for boxes
not of the RoI’s class.
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𝐿(𝑝,𝑢, 𝑡𝑢, 𝑣) = 𝐿𝑐𝑙𝑠 (𝑝,𝑢) + 𝐿𝑏𝑜𝑥 (𝑡𝑢, 𝑣) (3.2)

Each of the loss components 𝐿𝑐𝑙𝑠 and 𝐿𝑏𝑜𝑥 in eq. (3.2)[30] is defined in eq. (3.3)[30].
The hyper-parameter _ is a weight that controls the balance between the different task
losses, but in general it is set to _ = 1.

𝐿𝑐𝑙𝑠 (𝑝,𝑢) = − log(𝑝𝑢)

𝐿𝑏𝑜𝑥 (𝑡𝑢, 𝑣) = _[𝑢 ≤ 1]𝐿𝑙𝑜𝑐 (𝑡𝑢, 𝑣)
(3.3)

The location offset loss 𝐿𝑙𝑜𝑐 from eq. (3.3)[30] is expressed in eq. (3.4)[30].

𝐿𝑙𝑜𝑐 (𝑡𝑢, 𝑣) =
∑

𝑖∈{𝑥,𝑦,𝑤,ℎ}
smooth𝐿1 (𝑡𝑖 − 𝑣𝑖 ) (3.4)

The smooth𝐿1 from eq. (3.4)[30] is a robust 𝐿1 loss defined in eq. (3.5)[30] that has
a low sensitivity to outlier values.

smooth𝐿1 (𝑥) =

0.5𝑥2 if |𝑥 | < 1

|𝑥 | − 0.5 otherwise
(3.5)

For a full image loss seen in eq. (3.6)[61], the average loss contribution from each
object prediction from eq. (3.2)[30] is considered.

𝐿𝑡𝑜𝑡 =
1
𝑁𝑐𝑙𝑠

∑
𝑖

𝐿𝑐𝑙𝑠 +
1

𝑁𝑏𝑜𝑥

∑
𝑖

𝐿𝑏𝑜𝑥 (3.6)

Shared architecture features

The RPN module and the whole system share convolutional layers in a unified network
throughout the first module. The shared layers are trained in an alternating multi-step
training routine. First, the RPN is trained and fine-tuned end-to-end for the region
proposal task. Next, a separate Fast R-CNN[30] network is trained using the proposals
from the RPN. Now the detector and the RPN have separately trained networks and
do not share layers. In the third step, the Fast R-CNN layers from the previous step
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Figure 3.1: The generalMask R-CNN architecture.

are used to initialize the base of a new RPN and only the layers unique to the RPN are
trained. Lastly, the shared layers and RPN layers are kept fixed while the Fast R-CNN
layers are trained. This approach results in the next iteration in the R-CNN family of
algorithms, Faster R-CNN named for it’s reduced region proposal generation time.

3.2 Mask R-CNN

In this section we elaborate on the key elements of Mask R-CNN. The work by He
et al. (2017)[38] mainly adds a branch for segmentation decoupled from the box offset
prediction and object classification as well as a mechanism for pixel alignment on RoIs
added to it’s predecessor Faster R-CNN[61] detailed in section 3.1.

The method is built on the efforts of Ren et al. (2015)[61] and adopts the first stage
of Faster R-CNN. The full architecture shown in fig. 3.1 is divided into two stages like
it’s predecessor, the backbone and the head. The backbone is identical to that of Faster
R-CNN, and it is in the second stage of the algorithm, the head, that the novelty of
this method lies.

The most significant addition to the head is a new branch parallel to the branch
doing box regression and classification. This branch outputs an𝑚 ×𝑚 semantic mask
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from each RoI by passing the feature map through a fully convolutional network
(FCN)[51]. Using an FCN like Long et al. (2015)[51] rather than a fully connected (fc)
network like some previous efforts[59, 58, 22], Mask R-CNN achieves more accurate
masks prediction with fewer parameters as proved by experiments. Keeping this in a
separate branch allows the segmentation network to preserve the spatial layout of the
RoI without reducing its dimensionality into a more compact feature representation
better suited for classification.

Themethod is performingmore than one task on each RoI which entails considering
a multi-task objective function. The total loss is threefold and includes separate
losses for the bounding box, class and mask of a RoI, 𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 . The
classification loss 𝐿𝑐𝑙𝑠 and bounding box loss 𝐿𝑏𝑜𝑥 are the same as that of the preceding
algorithms[30, 61] detailed in section 3.1. The mask loss 𝐿𝑚𝑎𝑠𝑘 is defined as the average
binary cross-entropy loss (eq. (2.2)) considered over the mask associated with the RoI.
The mask branch outputs 𝐾 ×𝑚 ×𝑚 dimensional output, which is an𝑚 ×𝑚 binary
mask for each class 𝑘 . The loss 𝐿𝑚𝑎𝑠𝑘 for an RoI classified as class 𝑘 is only defined
on mask 𝑘 , which means that only the class for the appropriate class is contributing
to the loss and competition between classes is avoided in the mask generation. This
decouples object classification and mask generation which sets this algorithm apart
from the common practice in semantic segmentation using FCNs[51]. It is achieved
by considering a binary loss over a per-pixel sigmoid activation on a per-class basis
instead of a multinomial loss over a per-pixel softmax activation for the mask. This
distinction is considered crucial for Mask R-CNN’s success over other methods.

RoIAlign is an operation alternative to RoIPool[30] intended to eliminate the
misalignment between the RoI and the extracted features from the input image caused
by the quantizations applied by the operation. This mechanism is to address the
heavy dependency on a high correspondence in the spatial alignment between the
pixels in the input image and the feature in the feature map. RoIAlign uses bilinear
transformations[36] to calculate the exact values at sampling points in each RoI bin.
The results are not sensitive to the number of sampling locations or how many points
are sampled as long as no quantization is performed, 4 locations are used for each
discrete spatial RoI bin.
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3.3 Backbone architectures

This section will give a more in-depth elaboration on the details and structure of the
backbone architectures commonly used in visual recognition. This field of research if
moving away from "feature engineering" more towards "network engineering"[44, 37,
67, 70]. The difficulty of designing new architectures increases with the number of
hyper-parameters as discussed in section 2.2. Some of the networks architectures like
discussed in section 2.2.2 like VGG[67] and GoogLeNet[70] has proven themselves to
be robust in a wide array of methods[25, 30, 61, 38, 51, 59]. These recent efforts in the
field has introduced an emphasis on modularity and a split-transform-merge strategy
like ResNet[37] blocks from He et al. and the Inception module[70, 71, 72] by Szegedy
et al. respectively.

3.3.1 Residual blocks - ResNet & ResNeXt

The modular blocks introduced with ResNet[37] stacked together in different con-
figurations have been used by multiple recent methods [30, 61, 51, 59]. They also
form the basis for all the different architecture modules used in Mask R-CNN[38] in
the implementations presented in section 3.4.2. In table 3.1 the baseline structural
configurations available in that framework are presented.

The residual blocks with skip connections feature multiple benefits[37] without
increasing structural or parametric complexity from the equivalent plain structure.
Some of these benefits are that they handle identity mappings in deeper structures
without driving the weights to zero and easier optimization because of the "shortcuts"
introduced between layers. It also allows for the training of deeper networks as the
identity input from earlier layers ensure that layers further down learn something else
increasing accuracy.

Taking inspiration from the inception module’s[70, 71, 72] split-transform-merge
tactic the modified residual blocks of ResNeXt were designed with internal parallel
paths by Xie et al. (2017)[78]. Their results show that increasing the cardinality (number
of parallel paths) in a block is a more effective way of gaining accuracy than increasing
the width (number of filters) or depth (number of layers) of the network. Figure
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stage output ResNet-50 ResNet-101 ResNeXt-101
conv1 112×112 7×7, 64, stride 2

conv2 56×56 3×3 max pool, stride 2
1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3


1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3


1 × 1, 64
3 × 3, 64, *
1 × 1, 256

 × 3

conv3 28×28

1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4


1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4


1 × 1, 128
3 × 3, 128, *
1 × 1, 512

 × 4

conv4 14×14

1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 6


1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 23


1 × 1, 256
3 × 3, 256, *
1 × 1, 1024

 × 23

conv5 7×7

1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3


1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3


1 × 1, 512
3 × 3, 512, *
1 × 1, 2048

 × 3

1×1 global average pool, 1000-d fc, softmax
# params. 25.5 × 106 44.0 × 106

FLOPs 3.8 - 4.1 × 109 ** 7.8 × 109

Table 3.1: The architectural structure of the ResNet[37] and ResNeXt[78] networks
at different depths. Inside the brackets we find the shapes of a residual block and
outside the brackets the number of blocks stacked in the given stage. FLOPs means
Floating-point Operations Per second.
* Cardinality 𝐶 = 32, eg. grouped convolutions with 32 groups.
**[37, 78] disagree on this value
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Figure 3.2: Left: The basic residual block module of ResNet[37] with skip connection.
Right: A block of ResNeXt[78], with 𝐶 = 32. Each layer is represented as [# channels
in, filter size, # channels out]. This figure is from[78].

3.2 illustrates this evolution to the block modules of the ResNeXt[78]. The blocks
are subject to two rules so a block template could be designed so all modules can be
determined according to the same rules. These are (i) blocks producing spatial maps
of the same size have the same hyperparameters (width and filter size) and (ii) the
downsampling of the spatial map is inverse proportional to the number of filters to
keep computational complexity.

Because the concept of Mask R-CNN is a very general and highly modulated
algorithm the modules can contain different network sub-architectures as long as the
input and output dimensions match. In fig. 3.3 two different examples of configurations
for the architecture head are depicted.

3.3.2 Feature Pyramid Networks

Learning features and detecting objects on multiple scales in recognition systems either
requires multi-scale training or other mechanisms to introduce scale-invariance to the
performance of a convolutional network. Feature pyramids are basic components in
mechanisms to handle this challenge.
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Figure 3.3: Two different configurations of the head in Mask R-CNN. The Faster R-
CNN[61] head is extended by the ResNet[37] C4 (Left) and FPN[49] (Right) backbones.
This figure is from [38].

Figure 3.4: The topological layout of multiple different alternatives for feature maps in
a pyramid structure. This figure is from [49].
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Recent detectors like Faster R-CNN[61] have avoided using pyramid representa-
tions because they are expensive in terms of computation time and memory. Lin et al.
(2017)[49] propose a multi-scale pyramidal hierarchy of deep CNNs with marginal
extra cost. In fig. 3.4 we see different alternatives of pyramid structures. Alternative (a)
is slow because it computes feature maps on different image scales independently, (b)
uses only single scale detection for faster inference, but this limits the performance and
range of detectable objects and in (c) the feature hierarchies in a CNN are reused as if it
already was a featured pyramid structure. Combining multiple of these approaches into
(d) the inherent FPN from [49], we keep the speed of (b) and (c) while also increasing
accuracy like (a).

Using the feature activation from the last residual block in each of the different
convolutional stages past the first one in the ResNet[37] architectures supports the
desired pyramidal structure. Adding skip connections between the feature maps of
different scales for bottom-up and top-down pathways between the differently scaled
feature maps enhances the representations in the other layers.

The new structure of the FPN[49] provides a powerful at a marginally increased
cost to already existing recognition frameworks or for the use in modular building
blocks like RPNs(section 3.1).

3.4 Implementation frameworks

The modular and flexible nature of deep learning algorithms opens the possibilities
of implementing them in virtually infinite different ways in software systems. In
this section we present software libraries providing building block tools and fully
implemented software systems used for the experiments conducted in this thesis.

3.4.1 Various libraries

Torch[20] is an open-source machine learning software library made available to the
scientific community as a tool to simplify the comparison, extension, and even addition
to learning algorithms. The core package of torch provides a flexible N-dimensional
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array, a tensor, which supports a multitude of manipulative and mathematical opera-
tions. The library also features a modular way to instantiate a framework for neural
network architectures (section 2.2). This provides an easy way to build a network,
defining its parameters and interconnections between layers as well as forward and
backward passes to automate inference of data samples and backpropagation while
training. As of 2018, Torch is no longer in development[8].

Caffe[42] (Convolutional Architecture for Fast Feature Embedding) is an open-
source machine learning software library similar to Torch. It is implemented in C++
and features bindings to Python and MATLAB. It is mainly developed at UC Berkley[1],
but has a lot of contributors today.

Caffe2 is yet another library originating at Facebook. Today it is a deprecated
project and it was merged into PyTorch in 2018.

PyTorch is a Python package based on the torch library. It is the last iteration in
the Torch/Caffe family of libraries and features a dynamic definition of computational
graphs in contrast to other libraries like TensorFlow which requires the entire graph
to be defined before you can run your models.

3.4.2 Detectron2

Detectron2 is Facebook AI Research’s (FAIR) software system that implements state-
of-the-art object detection algorithms. It is the finished implementation of maskrcnn-
benchmark[53], a ground-up rewrite in PyTorch of its predecessor Detectron[31] which
was based on Caffe2. The purpose of these projects is to further develop upon the
flexibility and support provided by their building block learning frameworks to facilitate
research for object detection. In the systems, there are multiple implementations of
popular algorithms built on several different backbone model architectures in addition
to the possibility of rapid implementation and evaluation of novel algorithms and
architectures.

In the Detectron system the following algorithms are implemented and available:

• R-FCN[23]

• Fast R-CNN[30]



28 CHAPTER 3. METHODOLOGY AND IMPLEMENTATIONS

• Faster R-CNN[61]

• RetinaNet[50]

• Mask R-CNN[38]

The following backbone architectures are available:

• VGG16[67]

• Feature Pyramid Networks (FPN)[49] (with the below arhitectures)

• ResNet[37], both the 50, 101 and 152 layer versions

• ResNeXt[78], both the 50, 101 and 152 layer versions

In this thesis, we only elaborate on the algorithms and backbone architectures used
or evaluated. For details about the other implementations available in Detectron2, see
the referenced sources.

3.4.3 The PySilCam software suite

The PySilCam[60] suite developed by Davies et al. (2017)[24] from SINTEF is a pipeline
used for in-situ image processing on a lightweight autonomous underwater vehi-
cle (LAUV). The system features an image processing pipeline suited for real-time
sequential image segmentation and object extraction for classification. The images
are corrected by a clean background to reduce noise, then a segmentation mask is
generated for the images by traditional clustering methods based on binary threshold-
ing. Based on the clustering of thresholded pixels in the segmentation mask object
regions are defined and particles are extracted based on the segmentation areas. After
extraction, the image segments are classified. At the end of a processing sequence, the
data from all the extracted objects are saved and made available for post-processing.

This software suite used in-situ has provided all the custom imaging data used in
this thesis.



Chapter 4

Datasets

In this section, we will discuss the importance of data quality and present the data
used in experiments conducted for this thesis.

Data is arguably one of the most important factors in a machine learning task.
What kind of data is available will heavily influence what method or approach should
be chosen and how the said approach will perform. Compiling the necessary quantity
of data of sufficient quality and representing it in with relevant information to aid the
learning method can easily be the most challenging part of a machine-learning task.
The dataset needs to have a large enough scale to capture the full scale of the problem
and needs to be structured in a way that is efficient for the system to analyze. This is
especially true for deep learning architectures. The effort of constructing such datasets
is extremely time consuming and requires a lot of resources. Manually annotating an
image with near-perfect pixel-wise labeling with all relevant information usable in
fully supervised learning can take up to several hours per image. Because this is such a
critical part across all tasks in the field of machine learning and by consequence image
segmentation a wide arrange of standardized datasets have been constructed by the
research community for easy comparison between different systems.

29
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4.1 Microsoft Common Objects in Context (COCO)

MS COCO[48] is a recent large scale dataset for holistic scene understanding associated
with segmentation and captioning. It is used as a dataset in several challenges with
detection being the most relevant ones for this setting. That particular dataset consists
of more than 80 classes, 200 000 images divided roughly 40% - 20% - 40% into train,
validation, and test images. The test set is further divided into subsets for extra
validation of challenge results. The results of this challenge are presented at the
European Conference on Computer Vision (ECCV)1 annually together with that of
ILSVRC. It has grown in popularity over the past years due to its large scale, and the
creators arguing that it can train object detectors with better localization capabilities
than other datasets.[29, 81]

4.2 Custom Planktonic Dataset - Copepod-petridish

There are datasets containing millions of microscopic images of planktonic organisms
made available from several different research groups around the world. An overview
was provided in Bergum (2019)[13], but is omitted here as it is not relevant for the
scope of this thesis. The WHOI[69] dataset is one of these datasets with high quality.
The data consists of single organism image segments for classification with complete
annotation labels. This data is not suited for our task however as we seek to extract
the single object regions from full image scenes. You can say that the data available in
[69] matches the output but not the input of the process we seek to develop.

The emphasis on supervised learning in this project founded a need for available
data annotated for segmentation or object detection. To the best of our knowledge,
there are no published datasets for this purpose available anywhere. This made it
clear that producing such a dataset was a necessary contribution in order to conduct
meaningful experiments. In this section we will go over the details of the novel
data, aspects of the labeling process, and the resulting dataset referred to as ailaron-
copepod-petridish[14].

1http://image-net.org/challenges/ilsvrc+coco2016
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The images

The images used to build the custom dataset was captured by the SilCam in a lab
environment. In this experiment, one of the types of planktonic organisms of interest
for this project, copepods, were passed in front of the camera to guarantee the capture
of the organisms. The collection consists of 131 images of resolution 2448×2050. This
set of data was chosen because of the quantity, quality, and properties of the samples.
There are relatively few images making it possible to verify that they are of decent
quality without major noise or distortions. These images were already processed by
the PySilCam suite and readily available with object exports, binary segmentation
masks, inferred stats, and background-corrected images as outputs from the PySilCam
Software Suite.

Challenges connected to individual data samples: Many factors are playing
into what quality the data available has. This includes what the data is representing,
what equipment is used to sample it, and the nature of the environment it is sampled
in. Below are some phenomenons that typically can cause problems for not only
segmentation algorithms, but possibly other image processing tasks as well. They
are very problem dependent and will potentially affect different models to a varying
degree[73]. The first ones are usually subject to the conditions of the equipment or
environment while the latter are usually subject to what the data is representing.

• Blur can occur due to multiple reasons. It can be due to problems in the camera
model or lens adjustment or focus, rapid movement, or disturbing elements
like for example smoke. This effect will make contours between regions blend
into one another or be otherwise misrepresented. This effect does not show a
dominating presence in the raw images but has been reported to have a greater
effect on the background corrected samples.

• Vignetting is the effect of an image having a border around the edges and corners
that is or appears darker than the rest. This can occur because of filters or the
structure of the lens casing blocking light in certain areas. It is a common
occurrence in unprocessed microscopic images. The image scene has a great



32 CHAPTER 4. DATASETS

variation in illumination, vignetting occurring towards the edges except for the
top edge of the image.

• Occlusion is when something is fully or partially hidden by something else. This
can happen due to the viewpoint of the camera or objects relative position to
one another. A single object can also perform self-occlusion by attaining different
poses making some parts of the object occlude other parts. Only parts of an
object being visible can affect an algorithm’s ability to properly detect it. Self-
occlusion is a common occurrence with one of the classes obscuring some of
the characteristic features of the objects.

• Transparency is a form of occlusion creating a problem of definition. If one
object is seen through another transparent object, which class does the pixel(s)
in question belong to, the object in the background of the transparent object? The
object seen through the transparent object can also become warped, potentially
lowering performance. Most object instances in the data show a degree of
transparency, but very few are overlapping so we see one though the other. The
transparency issue will rather make it harder for the method to distinguish the
objects from the background.

Image Annotation

Image annotation is the task of annotating the contents of an image with labels. What
kind of annotations an image is provided depends on the task the image is used for
and the agent annotating the labels. Unless otherwise expressed, image annotation
is in this part referring to the human-powered task of manual annotation. Efforts to
develop frameworks to automatically annotate images, such as [10, 12], have been
made, but these frameworks also require a baseline of manually annotated data to
train on. Most of these types of frameworks however are dependent on a baseline of
manually annotated images to develop them. There are a lot of aspects to consider when
determining what kind of information and what level of detail on that information one
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applies to the annotations. An elaboration on methods and aspects of image annotation
can be found in the work of Hanbury (2008)[34].

To create annotated images three things are needed:

• Images

• An person to annotate the images

• A tool or platform to annotate the images on

The images used are those captured from the system mentioned in section 3.4.3.
The person annotating the images is the author of this thesis. The platform used to
annotate the images has a wider range of alternatives than the two previous points.
Several tools and platforms were considered such as LabelImg[75], TrainingData.io[74]
and LabelMe[65]. More examples can be found in an overview by Morikawa (2019)[55].
Among these the VGG image annotator tool[26] is used to label the images in this
project. This tool was chosen over the others based on how available it is to use, the
features it provides and the effort needed to invest in making it run and learn how to
use it.

VGG Image Annotation Tool (VIA)

The tool is a simple and standalone software kit suited for the annotation of both audio,
images, and video. The tool runs in a browser and requires no setup or installation
before determining the settings of the annotations. It is an open-source project based
on HTML, Javascript, and CSS without any dependency on external libraries. It is
developed by the Visual Geometry Group (VGG) from the University of Oxford. It is
licensed as BSD-2 which allows the use in both commercial applications and academic
projects, such as this one.

The labeling process

Manually annotating images is a strenuous task. The result will depend on several
different factors. The amount of information included in the annotation, the precision
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Figure 4.1: Image scene in the VGG Image annotation tool.
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ID Description

blur The object or region around the object is blurred.
light The object is in a part of the image that is more illuminated

than other areas.
vignetting The object is located towards the border of the image in a

darker part cause by vignetting.
self_occlusion The object is oriented in such a way that it is occluding large

parts of itself. This is also used in the extremely rare case that
it is occluded by another object.

edge The object is partly outside the image.

Table 4.1: The ID’s and descriptions of the region properties used in the VIA from
fig. 4.2b during the labeling process.

of the labeling, and the tools used are some factors that can have an impact on how
well the annotations turn out. Some degree of inaccuracy and error must be assumed
to be associated with the annotations applied to the data. This is a natural consequence
of the limited resources available in this type of project.

The most obvious property to apply to a region is the category of the object in the
region. This metadata is defined as thing_classes = [’oil’, ’other’, ’bubble’,

’faecal_pellets’, ’copepod’, ’diatom_chain’, ’oily_gas’] as in fig. 4.2a in
order to keep the same format as is output from the PySilCam for continuity and
format unity. It is important to note that the categories are 1-indexed in the COCO
format, but 0-indexed in the standard Detectron2 format.

Because the task of annotation preferably should only have to be done once over a
set of data, additional information that is considered valuable if applied in the right
way was included. Some of these annotations are redundant in the scope of this project
as they are not put to use in the experiments conducted here, but the information was
included in the files published together with the ailaron-copepod-petridish dataset.
The properties in question can be seen in table 4.1.

It is important to note that even though there are 7 classes included in the descrip-
tion and properties here, only 1 class is used in this dataset. All annotated objects are
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of type "copepod". The extra classes and indices are included for the sake of unity to
the output of the PySilCam during the image processing.

Set division

To achieve unbiased evaluation results, it is good practice to divide a dataset into
different subsets for different purposes. A common way to divide a set is into approx-
imately 70% - 15% - 15% of training, validation and test samples respectively. One
example of how to use the different sets can be to use the training samples to update
weights during training, the validation set to tune hyperparameters, and the test set to
benchmark performance. We have divided our dataset as follows:

• 88 training samples with 541 instances of copepods

• 19 validation images with 115 instances of copepods

• 19 test images with 120 instances of copepods

The split is intended to create separate samples for different purposes in the process
of training a model. The training samples should be used to update weight during
training while evaluating the validation set at a certain integration interval to tune
hyper-parameters. When a model is fully trained its performance can be benchmarked
over the test samples. This separation of samples ensure good practice in terms of
objective evaluation metrics and avoid under- or overfitting the model.

Data formats

The ailaron-copepod-petridish is made available both in the standard MS COCO data
format and in the standard Detectron2 data format at [14]. In the conversion, the raw
files exported from the VIA tool to the COCO format and the standard Detectron2
format the information on the region properties are lost as there seemed to be no
appropriate data fields for this information.

The Detectron2 standard dataset dictionaries contain both required and optional
fields. The dataset format is in the form of a list[dict] with specifications similiar
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to COCO’s json format. Each dictionary element in the list contains the information
about one image. The data fields used are the following:

• "file_name": string, the full directory path to the image file.

• "height", "width": integers, the pixel shapes of the image.

• "annotations": list[dict], each dictionary contains the annotations for one
object instance in the image

– "bbox": list[float] 4 numbers representing the bounding box coordinates.

– "bbox_mode": structures.BoxMode, themodes are XYXY_ABS and XYHW_ABS,
representing either [xmin,ymin,xmax,ymax] or [xmin,ymin,height,width]
respectively. The BoxMode type is not JSON serializable by default and is
not included in the json files. XYXY has mostly been used, but XYHW is the
standard Coco format.

– "category_id": int, in the range of [0,num_classes-1].

– "segmentation": list[list[float]], represents a list of polygons. Each list[float]
is one simply connected polygon.

For a full overview of available data fields for the standard dataset dictionary
format used by Detectron2 see [6].
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(a) (b)

Figure 4.2: These are the property options used in the VIA
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Evaluation Metrics

To measure how well a learned method is performing its task, we need some objective
metrics of evaluation. These should be standard and well known to reflect the con-
tribution of a new method compared to other systems. Depending on the task and
different properties of the system, some aspects of the performance of the method
may be of greater importance or significance than others and if they are mutually
exclusive, a compromise must be met. This usually applies to the aspect of accuracy
versus overhead in the form of inference time, memory usage, and training time.

5.1 Memory and run time

Memory and run-time are often regarded as less important than other metrics because
they will vary wildly depending on hardware and implementational details. Yielding
some indication or qualitative assessment of the overhead conditioned to achieve
similar results is often helpful to the community for other researchers to evaluate
whether a systemwill be suitable to their system or not. Single image scene labeling and
real-time video analysis, for instance, have quite different requirements on inference
time. Some specialized embedded systems might not have the computational power
or memory capacity recommended or required for certain methods intended for GPU
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accelerated deep networks. In these cases, trade-offs[40] between speed and accuracy
might be necessary. Because the frameworks explored in this thesis are intended for
in-situ analysis, reporting, and considering the computational overhead on inference
is important.

5.2 Accuracy

Accuracy is most commonly used as a comparison when proposing new methods as
this usually is an indication of the theoretical potential achieved in the approach used.
There several different ways to measure accuracy, later in this chapter we will briefly
describe some of the most popular ones.

We assume to have 𝐾 + 1 different classes labeled as 𝐶0,𝐶1, . . . ,𝐶𝐾 where 𝐶0 often
is defined as the void class indicating no class or background.

• A true positive(TP) occurs when the sample is predicted to belong to class 𝐶𝑘 ,
and the ground truth is 𝐶𝑘 .

• A false positive(FP) occurs when the sample is predicted to belong to class 𝐶𝑘 ,
but the ground truth is not 𝐶𝑘 .

• A false negative(FN) occurs when the sample is predicted to belong to a class
other than 𝐶𝑘 , but the ground truth is 𝐶𝑘 .

For a single pixel, this is obvious, but for the detection of an object, this is generally
determined whenever the IoU between the prediction and ground truth is greater than
some threshold. In the following 𝑝𝑖 𝑗 is the amount of pixels of class i inferred to belong
to class j. This means that 𝑝𝑖𝑖 are true positive pixels, 𝑝𝑖 𝑗 are false positives and 𝑝 𝑗𝑖 are
false negatives.

5.3 Intersection over union

Intersection over Union (IoU) measures the overlap between two boundaries. In seg-
mentation we operate with two different types of boundaries, bounding boxes, and
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segmentation masks. It can be defined as the number of pixels in common between
ground truth and the prediction divided by the total number of pixels in the combined
area. The mean IoU is the IoU scores averaged on a per-class basis. This is usually the
standard metric for semantic segmentation purposes.

𝐼𝑜𝑈 =

𝑘∑
𝑖=0

𝑝𝑖𝑖∑𝑘
𝑗=0 𝑝𝑖 𝑗 +

∑𝑘
𝑗=0 𝑝 𝑗𝑖 − 𝑝𝑖𝑖

𝑚𝐼𝑜𝑈 =
1

𝑘 + 1

𝑘∑
𝑖=0

𝑝𝑖𝑖∑𝑘
𝑗=0 𝑝𝑖 𝑗 +

∑𝑘
𝑗=0 𝑝 𝑗𝑖 − 𝑝𝑖𝑖

(5.1)

5.4 Precision and Recall

Precision is a measure of how accurate your predictions are, this means how many of
your predictions are correct. Recall is a measure of howmany of the correct predictions
you made.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(5.2)

Observing the relationship between precision and recall can yield another useful
metric, the Average Precision[7]. It represents a weighted mean of precisions with
the increase in recall from a previous ratio threshold as the weight. In eq. (5.3) the
mathematical definition of AP is defined where 𝑅𝑛 and 𝑃𝑛 is the Recall and precision
respectively at the 𝑛th threshold.

𝐴𝑃 =
∑
𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛 (5.3)

5.5 Metrics used in the experiments

This is an overview and explanation of the specific metrics we will be presenting
and comparing in chapter 6. These are some of the metrics available in the evaluator
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module suited for COCO evaluation[2] in the Detectron2 framework.
AP is an abbreviation for average precision and unless specified otherwise it is

averaged over multiple different IoU values. This is normally called the mean average
precision (mAP). Specifically for the COCO metric, a range of [0.50:0.05:0.95] (10
different values) is used in the Detectron2 implementation. This is different from the
most commonly used traditional AP, which is computed at a fixed IoU value of 0.50.

• AP50 is the traditional AP computed at an IoU value of 0.50. This is the standard
metric used in some settings[27].

• AP75 is the AP computed at an IoU value of 0.75 and is considered a fairly strict
metric.

• AP𝑆 is the AP for small objects with an area < 322 pixels.

• AP𝑀 is the AP for medium objects with an 322 < area < 962 pixels.

• AP𝐿 is the AP for large objects with an area > 962 pixels.

The IoU percentage thresholds can be misleading as they are not equivalent to
overlap. An IoU of 0.5 is equivalent to 2

3 of a boundary overlapping with 2
3 of another

boundary. To reach 0.75 IoU almost 86% of the boundaries must overlap.
These metrics are considered over both the bounding boxes and the segmentation

masks of the objects, distinguished using a superscript bb (AP𝑏𝑏 ) for bounding boxes
and m for masks (AP𝑚).

Training time is presented in terms of the total amount of seconds taken per
training iteration (s/it) and the inference time is presented in terms of the total
amount of seconds to infer predictions on an image (s/im).
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Results

In this chapter, the findings and results from experiments are stated. For an elaboration
on the different metrics, how they are evaluated, and what they entail see chapter 5.
First, we state and validate the results presented by the authors of the methods used in
[38], then we present the results from our novel experiments. In the end, we summarize
and compare the results to verify that they are reasonable, relevant, and valid. All
results presented of a particular model are single-model results, meaning they are all
procured from the same model and not the best values selected from multiple different
models.

The notation of themodel shorthand follows the format of [BackboneType]-[depth]-
[feature]-[learning schedule]. For all the models used in the experiments, we initialize
the weights to a state resulting from training over the Coco dataset. The learning
schedule is howmuch training has been done by the model we import the weights from.
Most of the models are trained with a 3x schedule which is equivalent to approximately
37 COCO epochs1, while some only have 1x which is approximately 12 COCO epochs.
For example, R50-C4-1x means a stage 4 ResNet-50 backbone on the 1x training

schedule, while X101-FPN-3x means an FPN head architecture and a ResNeXt-101

1This is training for one epoch over the Coco dataset. Explanations on the coco dataset and what an
epoch is can be found in section 4.1 and epoch in section 2.2
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Backbone 𝐴𝑃𝑏𝑏 AP𝑏𝑏50 AP𝑏𝑏75 AP𝑏𝑏
𝑆

AP𝑏𝑏
𝑀

AP𝑏𝑏
𝐿

R101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
X101-FPN 39.8 62.3 43.4 22.1 43.2 51.2

Table 6.1: Object Detection bounding box AP on COCO test-dev[48] of Mask R-
CNN. See table 6.6 for comparison to the custom dataset. This is a table recreated from
parts of table 3 in [38]. This reference should be examined further for more detailed
metrics.

backbone on the 3x schedule. For more details on the differences in architecture see
chapter 3. We use the same hyperparameters in training for all the models. We train
for 20 000 iterations with a learning rate warm-up schedule2to a base learning rate of
0.00025.. We use a training batch size of 5 and the number of region proposals offered
by the RPN is the default values for each of the backbone architectures[4]. Most of the
models seem to have stabilized without overfitting at this number of iterations (see
fig. 6.1)

For an explanation of the different evaluation metrics stated in this chapter, see
chapter 5.

6.1 Results on existing top-quality datasets

Tables 6.1 and 6.2 show the results from He et al. (2017)[38] running the Mask R-CNN
algorithm over the Coco dataset used in their paper presenting the method. Using the
best architecture, ResNeXt101-101-FPN, Mask R-CNN further improves results over
the single-model results they present from other models. They show an increase in
single-task performance from the benefits of multi-task training and new aligning
mechanism which separates the method from Faster R-CNN.

Table 6.3 shows the results when evaluating some of the trained Mask R-CNN
models available in the Detectron framework. We show the AP metrics for object
detection and instance segmentation masks over the 2017 minival set consisting of

2See [4] for details.
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Backbone 𝐴𝑃𝑚 AP𝑚50 AP𝑚75 AP𝑚
𝑆

AP𝑚
𝑀

AP𝑚
𝐿

R101-C4 33.1 54.9 34.8 12.1 35.6 51.1
R101-FPN 35.7 58.8 37.8 15.5 38.1 52.4
X101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

Table 6.2: Instance segmentationmask AP on COCO test-dev[48] of Mask R-CNN.
See table 6.7 for comparison to the custom dataset. This is a table recreated from parts
of table 1 in [38]. This reference should be examined further for more detailed metrics.

Backbone 𝐴𝑃𝑏𝑏 AP𝑏𝑏50 AP𝑏𝑏75 𝐴𝑃𝑚 AP𝑚50 AP𝑚75
R101-C4-3x 42.576 62.121 46.048 36.652 58.478 39.256
R101-FPN-3x 42.928 63.323 46.834 38.629 60.449 41.271

X101-FPN-32-8d-3x 44.275 64.463 48.618 39.520 61.696 42.570

Table 6.3: Instance segmentation mask AP and Instance segmentation bbox AP
on coco-minival-2017[48] of Mask R-CNN. See table 6.1 and table 6.2 for comparison
to the paper results. These are metrics from experiments trying to recreate the results
of [38].
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Backbone AP𝑏𝑏 AP𝑏𝑏50 AP𝑏𝑏75 AP𝑏𝑏
𝑆

AP𝑏𝑏
𝑀

AP𝑏𝑏
𝐿

R101-C4-3x 65.231 97.283 78.054 - 51.153 66.320
R101-FPN-3x 64.772 95.453 76.115 - 52.173 65.700

X101-FPN-32x8d-3x 67.736 94.155 80.087 - 62.633 68.337

Table 6.4: Object Detection bounding box APs over
ailaron-copepod-petridish-test from some select backbones with available
checkpoints for Faster R-CNN in Detectron2 framework.

5000 iamges. For a full per-category rundown see appendix C.

6.2 Results on the Custom Planktonic Data

In this section, we present the results of the experiments on the ailaron-copepod-
petridish[14] data using our training procedure on multiple different architectures.

Table 6.4 shows results from Faster R-CNN implementation in detectron2. He et al.
(2017)[38] shows an increase in the individual performances of the bounding box and
segmentation mask accuracy by considering a loss over multiple tasks in the training
process. Our results do not show the same performance increase, but rather very
similar results to that of table 6.6.

Our ailaron-copepod-petridish is represented in two different formats, the Detec-
tron standard dictionary format, and the Coco format (see chapter 4). Because we are
using the built-in Coco Evaluator[5] we consistently state the results from evaluating
over the coco format datasets unless otherwise stated as the standard Detectron format
is automatically changed to the coco format by the implementation. The manual
conversion that is done by custom code (appendix B) and the automatic conversion
do not match, however. In table 6.5 some results when evaluating over the Detectron
format dataset after automatic conversion can be found. These are included to illus-
trate the differences from other results (table 6.6 & table 6.7). The values do not differ
significantly from the perspective of the AP values. The object sizes are somehow
calculated differently, with no significant impact on the AP.
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Figure 6.1: Validation loss on ailaron-copepod-petridish-val every evaluation
step during training.

Backbone AP𝑏𝑏 AP𝑏𝑏50 AP𝑏𝑏75 AP𝑏𝑏
𝑀

AP𝑚 AP𝑚50 AP𝑚75 AP𝑚
𝑀

R50-C4-3x 66.461 99.101 78.683 71.094 17.486 89.281 0.083 66.461
R50-DC5-3x 61.328 94.167 74.064 67.731 25.955 93.337 0.459 25.957
R50-FPN-3x 65.356 93.766 80.526 71.245 39.161 95.919 3.542 39.172
X101-FPN-3x 67.789 96.513 80.774 72.944 42.020 99.715 7.628 42.033

Table 6.5: Some sample results on evaluation over the detectron2 format datasets.
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Backbone AP𝑏𝑏 AP𝑏𝑏50 AP𝑏𝑏75 AP𝑏𝑏
𝑆

AP𝑏𝑏
𝑀

AP𝑏𝑏
𝐿

R50-C4-1x 63.645 93.981 76.370 - 50.679 64.709
R50-DC5-1x 61.058 93.483 73.344 - 34.215 62.998
R50-FPN-1x 66.551 93.925 78.967 - 53.249 67.489
R50-C4-3x 64.719 97.138 76.584 - 40.502 66.834
R50-DC5-3x 59.767 92.146 72.093 - 46.909 61.354
R50-FPN-3x 64.067 92.018 78.886 - 54.923 64.864
R101-C4-3x 65.283 94.259 80.584 - 51.239 66.416
R101-DC5-3x 61.044 96.915 66.346 - 44.013 63.445
R101-FPN-3x 64.497 95.336 79.196 - 49.102 65.946

X101-FPN-32x8d-3x 66.305 94.651 79.458 - 54.543 67.229

Table 6.6: Object Detection bounding box AP on
ailaron-copepod-petridish-test after training on
ailaron-copepod-petridish-train for the backbones with available check-
points for Mask R-CNN in Detectron2 framework.

Tables 6.6 and 6.7 show the object detection and instance segmentation mask
accuracy results of the different models trained over ailaron-copepod-petridish-test.

Table 6.6 show the object detection accuracy from the experiments on ailaron-
copepod-petridish-test after training on ailaron-copepod-petridish-train. We see a total
and relative increase of 6.784 points and 11.4% respectively on the AP𝑏𝑏 from the worst
to the best performing model. These are very small differences which means that all
the models are performing almost equally well in terms of bounding box accuracy for
object detection.

In terms of instance segmentation masks (table 6.7) however, there are major
differences in performance between the models. We can see an extraordinary large
total and relative improvements of 27.688 points and 206.1% respectively on the AP𝑚

from the worst to the best performing models. We see that feature of the network
has the largest impact on the AP𝑚 . The C4 shows the weakest performance, the DC5
version shows significant improvement and the FPN shows even further improvement
beyond the performance of the DC5, see chapter 3 for differences in the architectures.
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Figure 6.2: Object Detection bounding box AP on ailaron-copepod-petridish-val
every evaluation step during training.
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Figure 6.3: Instance segmentation mask AP on ailaron-copepod-petridish-val
every evaluation step during training.
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Backbone AP𝑚 AP𝑚50 AP𝑚75 AP𝑚
𝑆

AP𝑚
𝑀

AP𝑚
𝐿

R50-C4-1x 13.431 72.337 0.087 - 6.674 19.604
R50-DC5-1x 23.240 89.192 0.069 - 9.372 28.218
R50-FPN-1x 38.374 93.048 6.445 - 22.948 42.574
R50-C4-3x 17.153 87.881 0.083 - 6.750 23.762
R50-DC5-3x 25.504 91.408 0.459 - 13.628 31.386
R50-FPN-3x 38.491 94.254 3.542 - 24.217 43.762
R101-C4-3x 14.266 76.429 0.145 - 6.812 20.891
R101-DC5-3x 27.121 92.309 0.761 - 16.723 33.861
R101-FPN-3x 38.189 96.645 6.464 - 25.922 44.059

X101-FPN-32x8d-3x 41.119 97.843 7.628 - 28.604 46.139

Table 6.7: Instance segmentation mask AP on ailaron-copepod-petridish-test
after training on ailaron-copepod-petridish-train for the backbones with avail-
able checkpoints for Mask R-CNN in Detectron2 framework.

The depth of the networks shows less of an impact on the performance though as we
see the differences between the ResNet-101 and ResNet-50 backbones are very small.
The findings are in line with that of He et al. (2017)[38], but the gaps in performance
from the features are a lot larger in our results than that of the paper.

Table 6.8 shows the accuracy of models trained on the predictions output from the
PySilCam[60]. The images used for training are the same as in the training part of the
custom dataset. The trained models are evaluated against both the output from the
PySilCam and the ground truths on the test set. This shows how well the model learns
the ground truth, the output of the PySilCam, and how well this learning corresponds
to actual the truth.

The annotations output from the PySilCam used for both training and testing are
filtered based on object size. Any object with a bounding box area lower than 322

pixels are not included as annotations.

In fig. 6.4 and 6.5 we can see an example image from the test split of the ailaron-
copepod-petridish dataset with some annotations overlaid. Both figures show the same
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Figure 6.4: (a) Full image scene sample from ailaron-copepod-petridish-testwith
output from PySilCam visualized. (b) Zoom of PySilCam ouput visualized. (c) The
Box and mask prediction outputs from the X101-FPN model presented in table 6.8.



6.2. RESULTS ON THE CUSTOM PLANKTONIC DATA 53

Test set 𝐴𝑃𝑏𝑏 AP𝑏𝑏50 AP𝑏𝑏75 𝐴𝑃𝑚 AP𝑚50 AP𝑚75
PySilCam output 11.033 21.328 9.229 9.040 19.141 8.307
ailaron-copepod
-petridish-train

1.064 3.702 0.697 0.872 4.604 0.000

Table 6.8: Instance segmentation mask AP and Instance segmentation bbox AP
from X101-FPN-32x8d-3x models trained over the segmentation result from the
PySilCam[60] evaluated on the ailaron-copepod-petridish-test.

image but different annotations. Figure 6.4 shows poorly fitting annotations both for
the bounding boxex and the masks. (a) shows a full image scene with the full output
from the PySilCam framework after processing the image. It is clear that there are a
lot of small boxes and masks that shouldn’t be there, compared to fig. 6.5 (a) which has
the manual annotations visualized (fig. 6.5 (b) is a zoom with the manual labels). We
see that the predictions in fig. 6.5 (c) from the X101-FPN-32x8d-3x3model follow the
ground truth very well. It is not perfect though, as the 𝐴𝑃𝑚 is not at 100. The zoom
fig. 6.5 (c) which is prediction outputs from a different X101-FPN-32x8d-3x4does not
follow what it has trained on, eg. (b) as well and we see from table 6.8 that it generally
has very poor performance.

Summary

In table 6.9 we show the overall accuracy on object detection (table 6.6) and instance
segmentation mask (table 6.7) together with the training and inference speed for the
models.

In training speed we see a significant difference from the fastest to the slowest
training time with a relative increase of 224.7% in terms of seconds per iteration. The
relative increase in accuracy for object detection and segmentation mask from the
fastest to the slowest training models are 2.5% and 139.7% respectively.

For inference time we see a relative increase of 123% from the fastest to the
3The model from table 6.6, 6.7 & 6.9
4The model from table 6.8
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Backbone training
(s/iter)

inference
(s/im) AP𝑏𝑏 AP𝑚

R50-C4-1x 0.1163 0.162453 63.645 13.431
R50-DC5-1x 0.2279 0.209720 61.058 23.240
R50-FPN-1x 0.1726 0.104279 66.551 38.374
R50-C4-3x 0.1152 0.224492 64.719 17.153
R50-DC5-3x 0.2293 0.140033 59.767 25.504
R50-FPN-3x 0.1777 0.110596 64.067 38.491
R101-C4-3x 0.1847 0.238032 65.283 14.266
R101-DC5-3x 0.2992 0.100673 61.044 27.121
R101-FPN-3x 0.2440 0.123223 64.497 38.189

X101-FPN-32x8d-3x 0.4893 0.163017 66.305 41.119

Table 6.9: Key performance metrics to compare across the different models in order
to choose the model best suited for application. Same models as table 6.6 & table 6.7.
All models are evaluated on ailaron-copepod-petridish-test after training on
ailaron-copepod-petridish-train. For comparison to other datasets see the de-
tectron Model Zoo[3].
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Figure 6.5: (a) Full image scene sample from ailaron-copepod-petridish-testwith
ground truth labels visualized. (b) Zoom of ground truth labels visualized. (c) The Box
and mask prediction outputs from the X101-FPN model presented in table 6.9.
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slowest model. The most accurate one in terms of segmentation, ResNeXt-101 with
FPN, shows to be exactly halfway between those two models.



Chapter 7

Discussion

In this chapter, we discuss the different aspects associated with the results presented
in chapter 6.

7.1 Confirming results on existing datasets

We only download and run inference on the trained models shown to be the best-
performing ones by the authors, He et al.. It is important to note that we run the
evaluation over the validation set coco-minival-17, not the test-dev17 set as pre-
sented in the paper[38] presenting the method. This will cause some deviations from
the results presented in the paper, which we see as a slight increase in all the metrics.
This is not surprising as the training process isn’t completely independent of the
validation set which will cause the model to have a naturally better fit to this data
than completely unseen data like the test set. It is in general considered bad practice
to benchmark performance on data the model has interacted with during the training
process, but we were left with no other choice as the framework wouldn’t properly
load the annotations for the test set. The results still show the essence of the findings,
if not the same metric values.
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7.2 Experiments on the custom planktonic dataset

It is important to note that the results presented here are on the ailaron-copepod-
petridish data, a binary detection dataset which is a significant difference from the
existing datasets like Coco[48] featuring upwards of one hundred classes.

Accuracy considerations for Mask R-CNN are twofold as it is doing both object
detection like it’s predecessor Faster R-CNN and instance segmentation in the second
branch in the head of the architecture. In general, the variance in object detection
accuracy among the models is so small compared to that of the segmentation that this
is of little interest do discuss. The mask accuracy is varying a lot and the most accurate
segmentation model is a clear winner over the other candidates.

Pre-training on the Coco dataset is performed on all the models we train ourselves
as we start on a model checkpoint. It interesting to note that the different pre-training
schedules don’t seem to have any significant effect on the different backbones, espe-
cially the FPNs. The data used for pre-trained is quite different from the planktonic
scenes. We start with the weights suited for the Coco data and fine-tuning them to the
ailaron-copepod-petridish data. The 1x models have been trained on 1

3 the number of
epochs from the 3x, and the gain from the last 2

3 ’s of the pre-training are not making a
significant impact.

Training speed is of shrinking significance as computing power and available
hardware is becoming less and less of an issue. This means that the training time
is considered less important because it can be done on powerful GPU accelerated
hardware designed for computationally heavy operations and the training of deep
structures. In time-sensitive situations, it can still be an important metric to consider.
If trade-offs have to be made training speed is likely to be the first one to be sacrificed if
the improvement in other metrics is significant. Especially the increase in segmentation
accuracy is more desired than low training time in this case. This is because training
does not have to be done in-situ where hardware availability might be limited.

Certain hyperparameters like how many region proposals are generated and the
batch size used will impact the time for one training iteration, while others like learning
rate will affect how many iterations are required to reach a desirable performance.
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In conjunction with tuning these parameters the total time to train the model can be
changed. The experiments are all performed with the default value of region proposals
connected to the backbone architectures in the implementation documentation[4], the
same batch size, and the same base learning rate. Varying these values might produce
different results from the ones presented here.

Inference time is of varying significance depending on the application of the
system. This will the importance of a low inference time will depend on whether the
data has to be processed in real-time and if so, how fast the samples are collected. The
hardware available in the in-situ system is comparable to the hardware used for these
experiments, so an inference stated in the results here will likely be very similar to
what would be the reality in the in-situ system. There is some correlation between the
features of the backbone architecture in terms of the total inference time per image,
but less so connected to the depth of the architecture. Luckily there doesn’t seem
to be a positive correlation between inference time and accuracy, meaning we don’t
necessarily have to make a sacrifice with increased inference time to achieve better
accuracy. Because we want to process images in real-time, we preferably need the
inverse of the inference time to be lower than the sampling frequency to be able to
keep up with the processing. The system is designed to run at approximately 5 samples
per second, so an inference time of less than 0.2 seconds per image is to be desired.
Not all the models fulfill the criteria, but most of them do, the one with the highest
AP𝑚 included.

The Weakly supervised experiment is using segmentation predictions from
the pipeline of traditional methods. This is the closest comparison we do between the
output from the PySilCam and the ground truths labeled manually. Implementing a
process to evaluate this would have been very time consuming and was not set as a
priority for this project. Comparing the results from a model trained on the manual
"perfect" annotations (fig. 6.5 predictions (c) comapred to ground truth (b)) of the
ailaron-copepod-petridish data and the weak predictions of the PySilCam will at least
close in on quantifying the viability of the output from the old framework(fig. 6.4
predictions (c) compared to training truth (b)). The results are not directly comparable
for the same reason the custom models are not comparable to that of other datasets.
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We move from binary detection and segmentation to multi-class consideration. If we
filter away all objects with a bounding box area of < 322, as we know there are no
objects below that threshold, the predictions from the PySilCam detects a total of 627
objects. Only 316 of them are classified as Copepods by the pipeline. This results in
a copepod precision of 50,4%. By inspection of the data however, we can determine
that all objects that should be detected in this data are supposed to be copepods. This
should hopefully illustrate the poor quality of these predictions by the PySilCam.
Note that no threshold filtering on class confidence is considered. Object detection
is determined by pixel clustering, and the object is classified into the category with
the highest class score. From the results in table 6.8 we can see that these weren’t
very successful experiments. This made it clear that further efforts should either be
unsupervised or we need better data to continue the supervised learning as using the
PySilCam’s output as annotations for a weakly supervised approach does not seem
viable. Early attempts to train models using this approach and manually inspecting
the results was what motivated the manual annotation and construction of the novel
dataset.

Dataset format inconsistencies have been discovered in the manual construc-
tion of Coco format annotations and the automatic conversion from the Detectron
default dictionary format. Unfortunately, the cause for this has not been uncovered.
We consistently state the results from evaluating the coco format other than in table 6.5
because we also use the Detectron built-in Coco evaluator. It is very peculiar that
this inconsistency arises as the Detectron default dictionaries are created from a coco
format using custom-written code detailed in appendix B, then the framework converts
it back again.

Summary

To summarize the impact of all of the metrics, if a "best model" is to be chosen for this
application based on the results we have on the ailaron-copepod-petridish-test, it will
be the ResNeXt-101-FPN model. This model did not shot the highest AP in the object
detection, the the difference to the next model is only from 66305 to 66.551 points. This
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is a total and relative increase of 0.246 and 0.37% respectively. The model is showing
an impressive improvement of 2.628 points in AP𝑚 (relative improvement of 6.8%) on
the second most accurately segmenting model however, which is a significant increase.
It is exactly in the center of the range of inference time but is by far the slowest model
to train. The inference time is 0.163 s/im, which is fast enough as the framework is
designed to run at approximately 5 frames per second and this model can handle 6 per
second. The training time is a sacrifice worth making as the training is not something
that has to be done frequently and the benefits in accuracy outweigh the downsides to
increased training time by a long shot.
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Chapter 8

Conclusions and future work

This chapter will discuss the conclusions that can be drawn from the findings and
results presented previously in the thesis

Conclusion

The dataset constructed, the models trained and the results presented from the work in
this thesis only provide a proof of concept. Showing that there seems to be significant
promise in Mask R-CNN for this application. It is quite clear that the Mask R-CNN
algorithm is well suited for the task of detecting and segmenting planktonic organisms
in an image scene in real-time in an in-situ system compared to the one considered
here. There is still potential for improvement if certain limitations to the project and
future work are addressed.

Future Work

This section presents proposals for the next steps for the continuation of the work or
possible improvements on the work presented in this thesis.
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• Finalizing a module to embed in the PySilCam software suite as an alternative
to the currently used modules is a natural task to consider. Most of the code
necessary for the implementation exists in the files submitted as an attachment
to this thesis and uploaded to the GitHub connected to it. This can be reorganized
to provide such a module.

• Mask R-CNN is a general algorithm that is constructed by modular network
architectures, concepts, and mechanisms. In this thesis, we have been using the
implementation of the software framework Detectron2 by Facebook’s Artificial
Intelligence Research. This is a heavy dependency if only parts of the imple-
mentations are utilized in practice. After further results in what architectural
configuration gives the best performance in the application at hand, looking
at the possibility to develop a more lightweight custom implementation of the
algorithm in another framework should be considered as this can lighten the
memory overhead and dependencies required on the in-situ system.

• The Detectron2 framework contains a lot of tools and implementations of concep-
tual architectures intended to make it easy to implement new custom algorithms
for research. Exploring the potential of these tools and implementing other
promising algorithms to compare to the already implemented ones is a very
relevant direction to take.

• The focus of the experiments in this thesis has been to give a broad analysis of the
potential of mainly Mask R-CNN so little work has been put into the tuning of
hyper-parameters used during training of the models. A more thorough analysis
of the available configurations offered by the implementation and tuning of the
hyper-parameters where the potential for improvement can be found is likely to
improve upon the results shown in this thesis.

• The dataset constructed as a part of the contributions in this thesis only allowed
binary detection and segmentation due to the inclusion of only one object class in
the data. The number of data samples was also very limited due to the resources
available for labeling. Increasing both the quality and quantity of data will be
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necessary to perform a more detailed analysis of the performance of algorithms
on this type of data.

• The software system currently performing object extraction, the PySilCam, is
performing the segmentation after pre-processing the images in the form of
background correction. All the experiments in this thesis have been conducted
on raw unprocessed image scenes. Adapting the manual annotations to the
background-corrected images and do training and evaluation over sets of those
samples and compare the results to that of the models trained and evaluated on
raw images could provide valuable insight in whether the background correction
step is necessary or even beneficial.

Due to the work extended beyond this thesis for the conference submission in
appendix A and the work promised there some of the points in the future work will be
addressed after the thesis period. This mainly concerns the implementation of a module
for the PySilCam software suite and the evaluation of Mask R-CNN’s performance on
the background-corrected images as these are topics related to the submission.

Increasing the amount of annotated data is also being addressed as a marine
biologist has been hired for the task of annotating some of the stored data.
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Abstract—Planktonic species are one of the most numerous
organisms on the planet and form the basis for the ecological
food chain in the ocean, making them a key component of
aquatic ecosystems. These organisms are susceptible to envi-
ronmental changes, and studying their temporal variation in
spatial abundance and taxa distribution plays an integral part in
understanding and predicting the development of ecosystems in
the ocean. The study of these planktonic organisms has been
limited by manual analysis until recent years where several
efforts of developing automatic imaging systems to aid scientists
in gathering the necessary data [1, 2, 3].

Davies et al. (2017) [4] (PySilCam Suite[5]) developed a particle
imaging system, that features traditional methods of computer
vision for pre-processing and segmentation of the input images.
Particles are extracted based on a binary threshold mask and
classified by a deep convolutional neural network (DNN) to build
a distribution of the particles extracted from the images. The
location of the extracted particle is saved as the objects’ bounding
box. The evaluation of the performance of this framework
motivates finding alternative methods of analyzing the images to
improve upon the measurement of planktonic distribution and
concentration.

Our contribution is a novel framework using deep learning
instanced semantic segmentation for in-situ imaging and parti-
cle extraction, calculating their distribution and concentration.
As part of this contribution, we have developed a manually
annotated dataset for segmentation to train the deep learning
architecture in our framework.

The proposed system substitutes the particle segmentation,
extraction, and classification with a fully supervised deep learning
method capable of object detection, localization, semantic, and
instanced segmentation. The architecture used is detectron2[6],
an extension of the Mask R-CNN[7] which is the next iteration of
Fast and Faster R-CNN[8, 9]. This method has been chosen as its
backbone architecture and method has provided the foundation
for multiple winning contenders in both the ILSVRC [10] and
COCOC [11] competitions as well as achieving state-of-the-
art results on the PASCAL VOC[12] among other widely used
datasets.

The framework (fig. 1) starts by performing pre-processing
on each image with a moving average background correction

This research is funded by RCN FRINATEK IKTPLUSS program (project
number 262701) and supported by NTNU AMOS.

using images recorded prior to the raw image being processed[4].
The background-corrected image is then used as the input for
the segmentation process. The inferred data from the instance
segmentation is then used to build the particle distribution and
output images with the bounding boxes and segmentation masks
of each object visualized.

As a requirement for the framework to function appropriately,
training data of sufficient quality is necessary. As part of the
work, we compile a novel dataset with complete bounding
boxes and instanced semantic segmentation masks from images
captured in a lab environment. The dataset is a key contribution,
as even though multiple publicly available datasets containing
microscopic images of particles and planktonic life forms exist,
like, for instance[13], they are classification sets and not suited
for supervised segmentation. Our novel dataset is to the best of
our knowledge, the first publicly available, manually annotated
planktonic dataset suited for the task of supervised instanced
semantic segmentation.

We benchmark the performance of previous efforts of tra-
ditional segmentation compared to our novel framework using
the annotated dataset as ground truth to gauge the difference
in performance. The perfomance of a deep learning method will
depend on its model architecture and learnable parameters. We
train multiple models using both our annotated dataset (a) and
post-processed classification and segmentation output from the
PySilCam Suite (b) as training data and evaluate and compare
the different models performance. We also quantify the impact
of using pre-processed background-corrected images (d) or the
raw images (c) as input to the framework. Indecies (a)-(d) are
referenced in fig. 1. Evaluation results of the deep learning archi-
tecture adopted in our framework show better performance in
terms of speed and accuracy on captured images in-situ compared
to the system developed in the PySilCam Suite by Davies et al.
(2017) [4] based on traditional segmentation methods. Moreover,
the network achieved better identification and classification of
objects when the corrected image (d) replaced the raw image (c)
input to the workflow. From fig. 2-3 a copepod was identified with
a higher probability of 98% and as one entity by our framework,
compared to 88.9% from the PySilCam Suite. Furthermore, a
significant improvement in the object classification was clear
when we train the model for our framework over our novel
labeled dataset before the in-situ operations.

The complete framework is embedded in an autonomous light-
weight underwater vehicle (LAUV). Its purpose is to provide data
for the construction of a dynamic probability density map from
the real-time identification and classification of plankton taxa.



Fig. 1. A simple topological overview of our framework. The background correction module is from the PySilCam suite, the Mask R-CNN is the deep
learning method embedded in the framework. The dotted lines represent processes performed as a necessary preparation steps before the framework is put to
use in-situ. The pretrained model is embeded into the framework and the learnable parameters impacted by this process are indicated in orange.

Fig. 2. From left to right: the raw captured image from the camera and
a zoomed cropped identified copepod. Overlay of unfiltered data of class,
bounding box and binary threshold mask output from the PySilCam Suite are
shown on the raw image. The class is determined by the highest classification
probability. Clearly, the antennas are identified as unique copepod instances.

Fig. 3. From left to right: corrected background image and a zoomed cropped
copepod of the framework end result. Overlay of inferred class, bounding
box and segmentation mask from detectron2. Clearly, the copepod object is
identified as one instance.
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Appendix B

Code

In this chapter we will provide some documentation for the code submitted in con-
junction with the thesis which has been made available on https://github.com/

AILARON/Segmentation[14]. This will not be a full documentation and the code qual-
ity is very bad, so use at your own risk! All the code has been used with Jupyter
Notebooks and is structured in such a way that using the cell structure in Jupyter is
necessary if the code is to be run without major refactoring. If a function isn’t covered
for a file it means it has nearly the same implementation as in a previously covered
file.

Unless otherwise stated this is code written by the author of this thesis.

B.1 build_dataset.py

This file contains functions and code for importing the information in *.csv and export
files output from the PySilCam and building Detectron2 standard dictionary dataset.
It has dependencies on https://github.com/facebookresearch/detectron2[77]
and https://github.com/emlynjdavies/PySilCam[60].

• def extract_pixels(im, bbox)
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This function binary image (im) as a nd-array of a binary segmentation mask and
a bounding box [x_min, y_min, x_max, y_max] on, list of 4 integers XYXY_abs
format see section 4.2 and returns two arrays containing the x and y coordinates
of any countour detected within the bounding box.

• def read_stats(directory = DIRECTORY)

Reads a *.csv stat file from PySilCam output with path directory and returns it
as a dictionary.

• def build_annotation_dictionary(directory = DIRECTORY,

size_threshold = 0)

Takes in the root directory of a PySilCam data folder with subfolders ’proc’, ’raw’,
export, etc., reads the *-STATS.csv file and returns a Detectron2 standard dataset
dictionary from the csv file and images in the subfolders. It will only include
objects with a size_threshold < ’equivalent_diameter’. Parts of this function is
based parts on the tutorial found at https://colab.research.google.com/
drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5

• def create_json_file(data, file_name, directory=EXPORT_DIR):

Json-serializes and saves data as directory/file_name.json.

• def read_json_file(file_name, directory=EXPORT_DIR)

Loads directory/file_name.json and returns the contents of the file. This function
assumes it is reading a Detectron2 standard dictionary formated file as it tries to
add a non-JSON-serializable field to every segmentation object in the dictionary
before returning it.

https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
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• def save_dataset_visualization(dataset,

directory=VISUALIZE_DIR)

Loads the dataset with name ’dataset’ which is assumed to already be registered
in the Detectron2 dictionary database and the dataset dictionary file can be
found in ’directory’. It will load all the segmentation annotations from the
dataset and visualize them on the images and save the images in the dataset
with visualizations to ’directory’.

B.2 dataset_training.py

This file contains code and functions used for training Detectron2 models. Dependent
on https://github.com/facebookresearch/detectron2[77]

• class LossEvalHook(HookBase)

class MyTrainer(DefaultTrained):

These are a custom classes from
https://gist.github.com/ortegatron/c0dad15e49c2b74de8bb09a5615d9f6b,
instantiating some of the default classes in Detectron2 adding evaluation hooks
in the trained in order to report validation loss.

• def train_dataset(dataset):

This function is deprecated, but the actual implementation doing what it is
intended to do is found in a cell further down. Define ’task’ and ’arch_backbone’
to fit a config file at the Detectron2 github [77] and train after defining parameters.
Code for evaluating a dataset is further down in the same cell.

• def inference(dataset,

output_path = OUTPUT_PATH,

inference_dir = os.path.join(DIRECTORY,

https://github.com/facebookresearch/detectron2
https://gist.github.com/ortegatron/c0dad15e49c2b74de8bb09a5615d9f6b
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INFERENCE_DIR),

weights = "model_final.pth")

This function passes every file in a dataset through amodel and infers predictions,
and saves the prediction visualizations on the images to ’inference_dir’. There
are some difficulties loading models into the current config cfg, but if a model
was trained and is still in memory it will not be a problem.

• def inference_over_directory(dataset,

files_dir,

output_path = OUTPUT_PATH,

inference_dir = os.path.join(DIRECTORY,

INFERENCE_DIR)):

This function will pass all files in ’files_dir’ through the currently loaded cfg
model and save the images with visualized predictions to ’inference_dir’. It is
supposed to load a model checkpoint from ’output_path’ but the model loading
isn’t working as intended.

In this file there is also code for registering datasets both on the detectron format
and the Coco format.

B.3 Utilities.py

Some of the code in here should maybe be in the more aptly named build_dataset.py
as a lot of the functions in here does that, but it is not.

• def clean_vgg_annotator_coco_file(file_name, directory)

Takes ’file_name’+’.json’ file assumed to be a coco dataset dictionary file and
adapts it to the style with fields for the ailaron-copepod-petridish-dataset[14],
saves a new file as ’file_name’+’clean.json’ and returns the dataset dictionary.
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• def extract_sample_list_from_coco_set(file_name,

directory)

Returns the a list of files contained in the dataset file ’file_name’+’.json’ and
saves it as ’file_name’+’_files.json’.

• def split_sample_list(file_name, directory)

Splits the list of filenames in ’file_name’+’.json’ roughly into 15%-70%-15% splits
at random, returns the dictionary and saves it as ’file_name’+’_split_sets.json’.

• split_coco_set(dataset_file_name,

split_file_name,

directory)

Splits the dataset in ’dataset_file_name’+’.json’ into the train, validation and
test set lists specified by ’split_file_name’+’.json’, returns and saves the dataset
dictionaries as ’dataset_file_name’+’_’+{’train’,’val’,’test’}+’.json’

• def from_coco_to_detectron_default_dataset(coco_dataset,

coco_directory,

image_directory)

Converts a coco format dataset into a Detectron2 default dictionary dataset
format. This is redundant as I found out that there is a build-in function for this
in the Detectron2 framework.

• def from_detectron_to_ \...\

coco_default_dataset(detectron_dataset,

dataset_directory,

area_threshold = 0)
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COnverts a detectron2 dataset dictinoary into a coco dataset filtering away all
objects with a boundingbox area < ’area_threshold’

The remaining cells in this file are filled with function calls in order to manipulate
dataset dictionary files.

B.4 metric_plotting.py

File for plotting the results coming out of the ’metric.json’ files output from Detectron2
during training.

• def load_json_arr(json_path)

Loads the metrics as a list of dictionaries.

• def load_files_in_dir(directory = "./")

Returns two lists containing the names of all the files in ’directory’

• def plot_all_models(models = [],

files = [],

saveto = "/home/sondreab/Desktop/METRICS/test",

figname = 'fig.pdf',

metric = "validation loss"):

Plos the metric put in as a parameter from all ’files’ for all ’models’ and saves
into a plot at ’saveto/figname’.



Appendix C

Extended results

This chapter contains extended results considered too expansive or not relevant enough
to include in the main chapters. For the main results see chapter 6.

Evaluation of Mask R-CNN on MS COCO

These are he extended results from running evaluation of trained models in Mask R-
CNN[38] over the coco-minival-2017 dataset. For details on the model architectures
see section 3.3 and for explanation of the metrics see section 5.5.

ResNet101-C4-3x

Evaluation results for bbox:

| AP | AP50 | AP75 | APs | APm | APl |

|:------:|:------:|:------:|:------:|:------:|:------:|

| 42.576 | 62.121 | 46.048 | 23.162 | 47.069 | 57.639 |

| category | AP | category | AP | category | AP |

|:--------------|:-------|:-------------|:-------|:---------------|:-------|
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| person | 55.793 | bicycle | 33.369 | car | 43.746 |

| motorcycle | 45.541 | airplane | 67.715 | bus | 67.597 |

| train | 65.477 | truck | 35.952 | boat | 28.425 |

| traffic light | 25.765 | fire hydrant | 68.869 | stop sign | 66.963 |

| parking meter | 46.942 | bench | 25.275 | bird | 37.139 |

| cat | 69.284 | dog | 59.732 | horse | 61.445 |

| sheep | 50.008 | cow | 55.384 | elephant | 64.648 |

| bear | 68.836 | zebra | 68.947 | giraffe | 69.047 |

| backpack | 17.493 | umbrella | 41.280 | handbag | 15.435 |

| tie | 34.084 | suitcase | 38.853 | frisbee | 65.146 |

| skis | 26.679 | snowboard | 39.239 | sports ball | 42.227 |

| kite | 40.853 | baseball bat | 25.991 | baseball glove | 36.577 |

| skateboard | 54.755 | surfboard | 40.161 | tennis racket | 51.048 |

| bottle | 38.686 | wine glass | 36.331 | cup | 42.050 |

| fork | 39.993 | knife | 18.808 | spoon | 21.705 |

| bowl | 42.857 | banana | 24.906 | apple | 21.718 |

| sandwich | 37.041 | orange | 30.550 | broccoli | 23.024 |

| carrot | 22.378 | hot dog | 34.065 | pizza | 53.451 |

| donut | 47.440 | cake | 35.944 | chair | 29.403 |

| couch | 44.349 | potted plant | 28.041 | bed | 40.052 |

| dining table | 29.840 | toilet | 63.560 | tv | 58.792 |

| laptop | 63.260 | mouse | 58.099 | remote | 29.897 |

| keyboard | 54.069 | cell phone | 35.746 | microwave | 61.308 |

| oven | 33.899 | toaster | 46.902 | sink | 36.683 |

| refrigerator | 60.299 | book | 13.114 | clock | 49.489 |

| vase | 37.745 | scissors | 30.014 | teddy bear | 49.586 |

| hair drier | 5.759 | toothbrush | 23.501 | | |

Evaluation results for segm:

| AP | AP50 | AP75 | APs | APm | APl |

|:------:|:------:|:------:|:------:|:------:|:------:|
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| 36.652 | 58.478 | 39.256 | 15.839 | 40.290 | 54.823 |

| category | AP | category | AP | category | AP |

|:--------------|:-------|:-------------|:-------|:---------------|:-------|

| person | 45.734 | bicycle | 19.551 | car | 39.378 |

| motorcycle | 34.742 | airplane | 45.709 | bus | 63.672 |

| train | 63.087 | truck | 34.226 | boat | 23.362 |

| traffic light | 25.004 | fire hydrant | 63.772 | stop sign | 64.512 |

| parking meter | 46.996 | bench | 17.147 | bird | 27.674 |

| cat | 65.552 | dog | 54.904 | horse | 39.663 |

| sheep | 41.469 | cow | 43.474 | elephant | 55.869 |

| bear | 66.466 | zebra | 56.116 | giraffe | 48.432 |

| backpack | 16.252 | umbrella | 44.665 | handbag | 13.300 |

| tie | 28.793 | suitcase | 40.306 | frisbee | 61.185 |

| skis | 1.942 | snowboard | 22.081 | sports ball | 41.729 |

| kite | 26.691 | baseball bat | 20.424 | baseball glove | 36.327 |

| skateboard | 30.744 | surfboard | 30.891 | tennis racket | 53.617 |

| bottle | 36.332 | wine glass | 30.271 | cup | 41.460 |

| fork | 17.283 | knife | 12.066 | spoon | 12.699 |

| bowl | 38.500 | banana | 20.759 | apple | 20.016 |

| sandwich | 38.064 | orange | 29.229 | broccoli | 22.222 |

| carrot | 19.124 | hot dog | 28.264 | pizza | 50.951 |

| donut | 46.334 | cake | 36.354 | chair | 19.140 |

| couch | 35.267 | potted plant | 22.624 | bed | 30.967 |

| dining table | 16.120 | toilet | 56.923 | tv | 60.631 |

| laptop | 59.277 | mouse | 56.867 | remote | 24.954 |

| keyboard | 51.321 | cell phone | 31.578 | microwave | 60.731 |

| oven | 32.172 | toaster | 51.083 | sink | 34.500 |

| refrigerator | 59.054 | book | 7.314 | clock | 49.840 |

| vase | 35.931 | scissors | 18.337 | teddy bear | 43.655 |

| hair drier | 2.626 | toothbrush | 15.858 | | |
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ResNet101-FPN-3x

Evaluation results for bbox:

| AP | AP50 | AP75 | APs | APm | APl |

|:------:|:------:|:------:|:------:|:------:|:------:|

| 42.928 | 63.323 | 46.834 | 26.396 | 46.595 | 56.127 |

| category | AP | category | AP | category | AP |

|:--------------|:-------|:-------------|:-------|:---------------|:-------|

| person | 56.564 | bicycle | 33.320 | car | 46.299 |

| motorcycle | 45.460 | airplane | 64.943 | bus | 67.283 |

| train | 63.870 | truck | 37.436 | boat | 30.259 |

| traffic light | 28.938 | fire hydrant | 69.259 | stop sign | 69.186 |

| parking meter | 47.573 | bench | 25.150 | bird | 38.127 |

| cat | 69.155 | dog | 62.371 | horse | 58.714 |

| sheep | 54.080 | cow | 56.453 | elephant | 62.169 |

| bear | 72.848 | zebra | 67.389 | giraffe | 67.861 |

| backpack | 19.134 | umbrella | 39.688 | handbag | 17.461 |

| tie | 38.011 | suitcase | 40.343 | frisbee | 65.476 |

| skis | 27.408 | snowboard | 37.717 | sports ball | 48.816 |

| kite | 43.435 | baseball bat | 28.747 | baseball glove | 38.689 |

| skateboard | 55.744 | surfboard | 38.965 | tennis racket | 50.825 |

| bottle | 41.597 | wine glass | 38.114 | cup | 44.020 |

| fork | 38.213 | knife | 21.140 | spoon | 20.224 |

| bowl | 42.897 | banana | 24.497 | apple | 21.714 |

| sandwich | 36.331 | orange | 31.943 | broccoli | 23.172 |

| carrot | 23.027 | hot dog | 36.191 | pizza | 52.115 |

| donut | 46.332 | cake | 37.851 | chair | 29.237 |

| couch | 42.566 | potted plant | 27.836 | bed | 42.395 |
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| dining table | 29.027 | toilet | 59.803 | tv | 57.551 |

| laptop | 62.153 | mouse | 63.043 | remote | 34.054 |

| keyboard | 51.766 | cell phone | 37.615 | microwave | 55.712 |

| oven | 34.679 | toaster | 37.318 | sink | 38.235 |

| refrigerator | 56.564 | book | 16.775 | clock | 52.138 |

| vase | 39.835 | scissors | 27.648 | teddy bear | 46.279 |

| hair drier | 3.819 | toothbrush | 23.679 | | |

Evaluation results for segm:

| AP | AP50 | AP75 | APs | APm | APl |

|:------:|:------:|:------:|:------:|:------:|:------:|

| 38.629 | 60.449 | 41.271 | 19.484 | 41.324 | 55.289 |

| category | AP | category | AP | category | AP |

|:--------------|:-------|:-------------|:-------|:---------------|:-------|

| person | 48.656 | bicycle | 19.881 | car | 42.382 |

| motorcycle | 35.045 | airplane | 51.234 | bus | 65.135 |

| train | 62.638 | truck | 36.306 | boat | 25.069 |

| traffic light | 27.870 | fire hydrant | 64.924 | stop sign | 68.890 |

| parking meter | 48.242 | bench | 18.392 | bird | 32.358 |

| cat | 67.826 | dog | 59.535 | horse | 41.996 |

| sheep | 46.230 | cow | 48.225 | elephant | 56.882 |

| bear | 70.021 | zebra | 58.701 | giraffe | 51.385 |

| backpack | 18.037 | umbrella | 46.775 | handbag | 16.628 |

| tie | 35.347 | suitcase | 42.334 | frisbee | 64.217 |

| skis | 4.251 | snowboard | 21.587 | sports ball | 48.371 |

| kite | 31.612 | baseball bat | 25.290 | baseball glove | 41.278 |

| skateboard | 33.579 | surfboard | 31.947 | tennis racket | 56.314 |

| bottle | 39.788 | wine glass | 33.805 | cup | 43.778 |

| fork | 18.271 | knife | 13.514 | spoon | 13.922 |

| bowl | 39.950 | banana | 19.389 | apple | 20.794 |



82 APPENDIX C. EXTENDED RESULTS

| sandwich | 37.969 | orange | 31.768 | broccoli | 22.995 |

| carrot | 19.378 | hot dog | 30.518 | pizza | 50.659 |

| donut | 46.410 | cake | 37.695 | chair | 19.690 |

| couch | 36.093 | potted plant | 23.250 | bed | 33.749 |

| dining table | 17.044 | toilet | 59.537 | tv | 60.378 |

| laptop | 60.789 | mouse | 63.925 | remote | 32.339 |

| keyboard | 50.498 | cell phone | 36.643 | microwave | 56.980 |

| oven | 32.181 | toaster | 40.386 | sink | 36.194 |

| refrigerator | 58.806 | book | 10.848 | clock | 51.760 |

| vase | 38.709 | scissors | 22.377 | teddy bear | 44.713 |

| hair drier | 2.207 | toothbrush | 15.221 | | |

RexNeXt101-32x8d-FPN-3x

Evaluation results for bbox:

| AP | AP50 | AP75 | APs | APm | APl |

|:------:|:------:|:------:|:------:|:------:|:------:|

| 44.275 | 64.463 | 48.618 | 27.530 | 47.637 | 56.698 |

| category | AP | category | AP | category | AP |

|:--------------|:-------|:-------------|:-------|:---------------|:-------|

| person | 57.651 | bicycle | 35.388 | car | 47.308 |

| motorcycle | 48.320 | airplane | 68.875 | bus | 68.867 |

| train | 64.160 | truck | 38.008 | boat | 29.573 |

| traffic light | 29.627 | fire hydrant | 70.423 | stop sign | 70.041 |

| parking meter | 49.111 | bench | 28.519 | bird | 39.758 |

| cat | 68.940 | dog | 65.395 | horse | 61.222 |

| sheep | 53.970 | cow | 57.410 | elephant | 63.595 |

| bear | 71.708 | zebra | 66.233 | giraffe | 66.055 |

| backpack | 18.641 | umbrella | 42.009 | handbag | 17.706 |

| tie | 37.690 | suitcase | 43.229 | frisbee | 68.790 |
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| skis | 28.245 | snowboard | 40.892 | sports ball | 50.146 |

| kite | 44.481 | baseball bat | 34.012 | baseball glove | 39.575 |

| skateboard | 55.739 | surfboard | 41.350 | tennis racket | 52.942 |

| bottle | 41.044 | wine glass | 40.146 | cup | 46.715 |

| fork | 42.487 | knife | 24.409 | spoon | 22.919 |

| bowl | 42.706 | banana | 26.665 | apple | 24.040 |

| sandwich | 37.897 | orange | 31.677 | broccoli | 21.495 |

| carrot | 23.065 | hot dog | 38.699 | pizza | 54.799 |

| donut | 47.713 | cake | 36.572 | chair | 31.568 |

| couch | 44.605 | potted plant | 29.309 | bed | 40.774 |

| dining table | 29.508 | toilet | 61.194 | tv | 57.813 |

| laptop | 63.795 | mouse | 63.634 | remote | 37.507 |

| keyboard | 53.320 | cell phone | 38.375 | microwave | 59.853 |

| oven | 35.148 | toaster | 41.602 | sink | 38.742 |

| refrigerator | 57.462 | book | 16.950 | clock | 50.473 |

| vase | 38.557 | scissors | 27.986 | teddy bear | 49.778 |

| hair drier | 5.410 | toothbrush | 29.978 | | |

Evaluation results for segm:

| AP | AP50 | AP75 | APs | APm | APl |

|:------:|:------:|:------:|:------:|:------:|:------:|

| 39.520 | 61.696 | 42.570 | 20.680 | 41.967 | 56.520 |

| category | AP | category | AP | category | AP |

|:--------------|:-------|:-------------|:-------|:---------------|:-------|

| person | 49.691 | bicycle | 20.808 | car | 43.570 |

| motorcycle | 37.281 | airplane | 52.520 | bus | 67.027 |

| train | 63.167 | truck | 37.239 | boat | 26.006 |

| traffic light | 28.534 | fire hydrant | 65.609 | stop sign | 68.616 |

| parking meter | 48.877 | bench | 20.558 | bird | 33.292 |

| cat | 66.861 | dog | 61.694 | horse | 44.843 |
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| sheep | 47.109 | cow | 48.363 | elephant | 58.010 |

| bear | 69.402 | zebra | 57.214 | giraffe | 49.374 |

| backpack | 18.661 | umbrella | 48.087 | handbag | 16.847 |

| tie | 34.860 | suitcase | 45.394 | frisbee | 66.896 |

| skis | 4.525 | snowboard | 24.961 | sports ball | 49.529 |

| kite | 31.851 | baseball bat | 28.397 | baseball glove | 41.354 |

| skateboard | 34.180 | surfboard | 34.324 | tennis racket | 56.721 |

| bottle | 39.195 | wine glass | 36.178 | cup | 45.935 |

| fork | 21.550 | knife | 16.179 | spoon | 15.688 |

| bowl | 38.990 | banana | 21.918 | apple | 23.024 |

| sandwich | 38.252 | orange | 31.746 | broccoli | 20.692 |

| carrot | 19.348 | hot dog | 30.440 | pizza | 52.075 |

| donut | 46.983 | cake | 35.752 | chair | 21.930 |

| couch | 36.845 | potted plant | 24.326 | bed | 32.816 |

| dining table | 17.269 | toilet | 58.858 | tv | 60.011 |

| laptop | 62.627 | mouse | 62.989 | remote | 34.564 |

| keyboard | 51.869 | cell phone | 37.269 | microwave | 58.977 |

| oven | 32.504 | toaster | 44.622 | sink | 37.177 |

| refrigerator | 58.898 | book | 11.750 | clock | 51.221 |

| vase | 38.320 | scissors | 21.809 | teddy bear | 46.552 |

| hair drier | 4.088 | toothbrush | 18.137 | | |
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Dataset formats

COCO format

Dataset Dictionary:

{

"info" : info,

"images" : [image],

"annotations" : [annotation],

"licenses" : [license],

"categories" : [category],

}

Fields:

info{

"year" : int,

"version" : str,

"description" : str,
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"contributor" : str,

"url" : str,

"date_created" : datetime,

}

image{

"id" : int,

"width" : int,

"height" : int,

"file_name" : str,

"license" : int,

"flickr_url" : str,

"coco_url" : str,

"date_captured" : datetime,

}

annotation{

"id" : int,

"image_id" : int,

"category_id" : int,

"segmentation" : RLE or [polygon],

"area" : float,

"bbox" : [x,y,width,height],

"iscrowd" : 0 or 1,

}

licence{

"id" : int,

"name" : str,

"url" : str,

}
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category{

"id" : int,

"name" : str,

"supercategory" : str,

}
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