
Enhanced analysis of ultrasonic
impedance logs: Improved
imaging and fluid channel
detection

July 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Simon Andreas Hoff

2020
Sim

on Andreas H
off

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Enhanced analysis of ultrasonic
impedance logs: Improved imaging and
fluid channel detection

Simon Andreas Hoff

Cybernetics and Robotics
Submission date: July 2020
Supervisor: Lasse Løvstakken
Co-supervisor: Erlend Magnus Viggen

Norwegian University of Science and Technology
Department of Engineering Cybernetics

i

Abstract
The aim of this thesis is to detect vertical features in the the casing cement
of oil and gas wells by using pattern recognition techniques based on ma-
chine learning on ultrasonic log data. Detecting channels is an important
part of well integrity evaluations, which is the process of evaluating whether
the casing cement provides a hydraulic seal of the annulus of the well. Au-
tomatic detection of channels in the casing cement can be used to make
well integrity evaluations more efficient and robust, which is important for
rig safety, as well as for plug and abandonment, and CO2 injection. While
automatic feature detection in well logs is common, most such detection
has been focused on picking azimuthal features in the well logs. Therefore,
existing methods are not suitable for detecting channels in the casing ce-
ment, as such features are mainly vertical. In this work, well log images
are interpolated using corrected measurement locations and state of the art
statistical interpolation techniques in order to aid the annotation process.
It is shown that this process explains artefacts visible in the raw images
normally displayed for well integrity evaluations. To detect channels, image
segmentation is performed using deep learning. While several improvements
are made compared to the similar approach used in a previous project this
work is based on, the results indicate that deep learning may not be the best
alternative for such detection.

ii

Sammendrag
Målet med denne oppgaven er å detektere vertikale trekk i sementen rundt
foringsrøret i olje- og gassbrønner ved å bruke mønstergjenkjenningsteknikker
basert på maskinlæring på ultralydloggdata. Å oppdage kanaler er en vik-
tig del i vurdering av brønnintegritet, som er prosessen med å evaluere om
foringsrørets sement gir en hydraulisk tetning av brønnens ringrom. Au-
tomatisk deteksjon av kanaler i foringsrøret kan sement brukes til å gjøre
evalueringer av brønnintegritet mer effektive og robuste. Dette er viktig både
for riggsikkerhet, men også for plugging og forlating, og brønner som vur-
deres for CO2-injeksjon. Selv om automatisk deteksjon av trekk i brønnlog-
ger er vanlig, har de fleste løsninger for dette vært fokusert på å detektere
trekk i horisontal retning i brønnloggene. Derfor er eksisterende metoder
ikke egnet for å oppdage kanaler i foringsrørets sement, ettersom slike trekk
hovedsakelig er vertikale. I denne oppgaven interpoleres brønnloggbilder
ved bruk av korrigerte målelokasjoner og statistiske interpolasjonsteknikker
for å hjelpe evalueringsprosessen. Det vises at denne prosessen forklarer
artefakter som er synlige i bildene som normalt vises for evaluering av brøn-
nintegritet. For å oppdage kanaler, benyttes bildesegmentering ved bruk
av dyp læring. Mens flere forbedringer er gjort sammenlignet med den lig-
nende tilnærmingen brukt i et tidligere prosjekt dette arbeidet er basert på,
indikerer resultatene at dyp læring kanskje ikke er det beste alternativet for
deteksjon av kanaler i brønnloggdata.

Preface

One of the initial challenges of this process was resampling the images to the
same physical resolution. Previously, we used nearest neighbor interpolation
to achieve this. However, we were concerned that this would cause issues
for the convolutional kernels when learning features.

This led to exploring corrections for where the measurements are made,
and how to reconstruct an image based on that additional information. Us-
ing kriging turned out to provide great results, and explain artefacts seen in
the raw images.

This means that this thesis has ended up running down two different
paths: First, I explore in detail how to localize where each measurement
is collected from, and use this to reconstruct upsampled images. Second, I
annotate raw images, using what I learned from the image upsampling, and
use these data as input for a deep learning model.

Because this thesis combines the field of data science and machine learn-
ing with petroleum technology, I have tried to make this thesis accessible for
people of either background. This means that a lot of basic material well
known to people working in the corresponding fields will be presented.

I would like to thank all the people who have helped me in the work with
this thesis. First, I would like to thank my advisor Erlend Magnus Viggen for
all the fruitful discussions, for the advice on dealing with confusing results,
and for all the help in proof reading the thesis. I would like to thank Ioan
Alexandru Merciu for all the insights on how to interpret the well logs, as
well as sharing industry insights. Finally, I would like to thank my wonderful
wife Kaja for all her love and support.

iii

Contents

1 Introduction 1
1.1 Previous work . 1
1.2 Acknowledgements . 2
1.3 Thesis structure . 2

2 Drilling, cementing, and logging 4
2.1 Well construction . 4
2.2 Well logging . 5
2.3 Acoustic logging . 6
2.4 Well log evaluation . 6
2.5 Channel classification . 8

3 Machine learning 11
3.1 The supervised learning problem 11
3.2 Semi-supervised learning . 12
3.3 Learning algorithms . 12
3.4 Model testing . 13
3.5 Validation data . 13
3.6 Resampling methods . 14

3.6.1 Cross-validation . 14
3.6.2 Bootstrapping . 15

4 Deep learning 16
4.1 The artificial neuron . 16
4.2 Artificial neural networks . 18

4.2.1 Fully connected neural networks 18
4.2.2 Convolutional neural networks 20

4.3 Training neural networks . 22
4.3.1 Transfer learning . 23
4.3.2 Constraining the parameter space 23
4.3.3 Kernel initialization 24

4.4 Image segmentation . 24
4.4.1 Metrics for image segmentation 26

iv

CONTENTS v

5 Log data and imaging 28
5.1 Data handling . 28
5.2 Measurement locations . 29
5.3 Nearest Neighbor interpolation 35
5.4 Gaussian processes . 35

6 Deep learning methods for fluid channel detection 48
6.1 Image annotation . 48
6.2 Models . 49
6.3 Model training . 49
6.4 Model selection . 54

7 Channel detection results 56
7.1 Testing training methods . 56
7.2 Model selection . 58
7.3 Final testing . 60

8 Discussion 63
8.1 Well log imaging . 63
8.2 Deep learning . 64
8.3 Future work . 66

9 Conclusion 68

References 69

Chapter 1

Introduction

To a large extent, operations in the petroleum domain include drilling. An
important part of the drilling process is placing and cementing the casing.
The cement is important for securing the casing in place, and also for pro-
viding a hydraulically isolating layer. In order to verify that the cement has
been placed properly, there are two options. One may perform hydraulic
pressure testing of the well, or one could use well logging techniques to
measure the presence of cement. Evaluating the quality of the cement job
from such logs is a critical task, as it is important both for the safety of
the drilling operation, but also for plug and abandonment (P&A), as well
as wells considered for CO2 injection.

Providing automated analysis tools to assist evaluators in assessing the
quality of the cement job would help make evaluations better, and more
consistent. Existing feature detection tools for well logs are only able to A
common problem in cement jobs is that channels of mud are left through
the cement, as shown by [1]. Further, over time it is common for the cement
to degrade, leaving cracks and microannuli through the cement as shown by
[2]. These features may be visible in well log images, but it can still be time-
consuming to assess whether each such feature will allow vertical fluid flow
or not, and as such whether it will influence the integrity of the well. The
aim of this thesis is to improve the deep learning-based model developed in
[3], to assist well integrity evaluations.

1.1 Previous work

In the past, much emphasis has been put on detecting sinusoidal shapes
in the azimuthal direction in log images, as these are the results of planar
features intersecting the well, such as formation fractures, or transitions
between different geological layers. A common approach to this is using
the Hough transform, as shown by [4], [5], and [6]. The shortcoming of
such methods is however that they rely on matching pre-defined patterns to

1

2 CHAPTER 1. INTRODUCTION

the images. This works well in the azimuthal direction, as it has a limited
extent. However, features in the vertical direction can be arbitrarily long,
and as such, one can no longer rely on pre-defined patterns. In recent years,
advances in machine learning and particularly deep learning has enabled
computer vision techniques well suited to handling such features, which will
be the topic of this thesis.

This thesis is based on an earlier project at NTNU [3], meaning that some
of the work presented here was performed for that project. Consequently
some of the theory and methods presented will be similar or identical to
those presented in [3].

This thesis has to a large extent aimed to solve some of the problems
encountered in the previous project. First, a large emphasis has been put on
increasing the size of the labelled data set, as well as increasing the quality of
the labels. Further, semi-supervised learning has been employed to leverage
unlabelled data to improve model performance. Additionally, an approach
to making the model periodic in the azimuthal direction has been imple-
mented in order to solve the problem of poor detection around the edges of
the image seen in [3]. Finally, in order to support the annotation process,
the measurement setup has been analyzed. This has included analysis of
the locations of the measurements collected, as well as a study in how to
interpolate the measurements, focusing on Gaussian processes, also known
as kriging.

1.2 Acknowledgements
The author would like to thank Equinor ASA for providing the data used
for this thesis, and CIUS for providing computational resources.

1.3 Thesis structure
Chapter 1 Introduction: This chapter

Chapter 2 Drilling, cementing, and logging: An introduction to drilling
operations and logging. Furthermore, well integrity evaluations are in-
troduced, and the topic of channel classification is discussed.

Chapter 3 Machine learning: A simple introduction to the foundations
of machine learning, with emphasis on how computers learn from data,
and how to structure the data for training and testing.

Chapter 4 Deep learning: Background on artificial neural networks,
deep learning, and image classification.

Chapter 5 Log data and imaging: Methods for improving the display
of well log images.

1.3. THESIS STRUCTURE 3

Chapter 6 Deep learning methods for fluid channel detection: Meth-
ods for training and testing the deep learning based model for use in
well integrity evaluations.

Chapter 7 Channel detection results: Results from the deep learning
part of the project.

Chapter 8 Discussion: Discussion of the results obtained, and what re-
mains to be done.

Chapter 9 Conclusion: A summary of the findings in this thesis.

Chapter 2

Drilling, cementing, and
logging

This chapter will provide a brief introduction to how oil wells are con-
structed, from drilling the wellbore, through the construction and validation
phases, to the operational stage.

2.1 Well construction

An important part of petroleum rig operation is drilling. The process of
drilling is illustrated in Figure 2.1, and in the following a short description
is provided. First, a hole is drilled using a drillstring. In order to remove
formation cuttings from the well, a drilling fluid, often referred to as mud,
is sprayed from the drillbit, creating an upward flow in the wellbore which
brings cuttings to the surface. After drilling the section is complete, the
drillstring is extracted from the well. At this point, a steel pipe referred
to as a casing or liner is inserted into the well. A casing extends from the
top of the well, whereas a liner will be fixed to the bottom of the existing
casing in the well. This casing serves two purposes: First, it should isolate
any fluid in the wellbore from fluids in the formation. Second, it serves
to stabilize the hole, preventing the surrounding formation from collapsing
inward. Finally, a cement is injected in the annulus between the casing and
formation to stabilize the casing, and to provide a hydraulically isolating
layer to prevent any fluid flow from occuring on the outside of the casing.

In order to verify that the cement provides hydraulic isolation, testing
is necessary. Common ways of testing is to do a hydraulic pressure test, in
which one pressurizes the wellbore with a constant pressure, checking to see
if the pressure drops, which would indicate a leaking flow on the outside of
the casing. Such testing could damage the cement [7], meaning that non-
destructive testing is often preferred. One such approach is to use logging
tools to evaluate the quality of the cement job.

4

2.2. WELL LOGGING 5

Figure 2.1: Overview of how drilling is performed. (a) The well is drilled.
After reaching the desired depth, the drillpipe is pulled out of the hole.
(b) A casing is inserted to stabilize the hole. (c) Cement is pumped down
inside the casing to the bottom, pushing it up into the annulus [8]. Before
and after the cement are spacer fluids, designed to prevent the cement from
being contaminated by drilling mud.

2.2 Well logging

The first wireline well log was recorded by Schlumberger 1927, and processed
using methods developed by Sabba Ștefănescu [9]. In that case the formation
resistivity was recorded at a number of depths to test for the presence of
hydrocarbon. In the following decades great advances have been made in
measuring the borehole conditions using wireline logging techniques.

Wireline logging is performed by lowering a measurement apparatus into
the wellbore. This is held up by a wire which also serves as a signal carrier for
collecting the logging data. Typically the toolstring is built from a number
of individual tools that are lowered into the hole together. In some cases, a
well is logged multiple times. This can be for a number of reasons: There
may be a need to run multiple different toolstrings in order to collect all
the desired measurements. Another reason may be that an interval of the
log is showing signs of poor data quality, which means that one will run
the toolstring across the affected interval again, in what is referred to as a
“repeat pass”. For cased hole logging, it is typically routine to do a repeat
pass to verify that the measurements are repeatable.

6 CHAPTER 2. DRILLING, CEMENTING, AND LOGGING

2.3 Acoustic logging

In order to evaluate the quality of a cement job, acoustic tools are essential.
Traditionally, the cement bond log (CBL) [10, 11, 12], which quantifies how
well the cement has bonded to the casing, has been used for this purpose.
Additionally, CBL tools typically provide the variable density log (VDL),
which allows the evaluator to see the measured waveforms for each depth.
CBL and VDL are considered standard logs, and most suppliers offer logging
services with these tools.

Both the CBL and VDL logs have a limited ability to capture physical
features that are only present on a limited angular interval at a certain
depth, for instance that the cement is only present on one side of the casing.
This is because the CBL is based on a sonic measurement where a wave
propagates vertically along the whole circumference of the casing, meaning
that the measurement lacks directivity.

The ultrasonic logging tool overcomes this limitation by making multi-
ple measurements in different azimuthal directions at every depth. Current
ultrasonic logging techniques are used to measure e.g. internal and external
radii, casing thickness, and acoustic impedance. This means that the ultra-
sonic log can be used both to inspect the state of the casing, and to classify
the material present behind the casing by measuring acoustic impedance
behind the casing.

For this thesis, all data have been collected with Schlumberger’s Ultra-
Sonic Imager Tool (USIT). For the remainder of this thesis, any reference
to ultrasonic measurements will be referring to measurements made by the
USIT tool. A typical USIT log is shown in Figure 2.2.

2.4 Well log evaluation

Well integrity evaluations are challenging due to the large volume of available
data, and are highly subjective [7, 13]. To assess the integrity of a well, one
must at minimum have two different physical measurements supporting the
interpretation, as specified by the NORSOK D010 standard [14].

As it is impossible to know the physical reality behind the casing, often
referred to as the ground truth, evaluators must rely on estimates of the
physical properties behind the casing. Further, one must investigate multiple
logs to make decisions, for instance one would use both casing thickness
logs, radius logs, and acoustic impedance logs to make an assessment of
the acoustic impedance behind the casing. This makes the decision making
process more complex than if one could examine a single image.

The USIT tool is run with centralizers to ensure that the distance be-
tween the transducer and casing is the same as the focal distance of the
ultrasonic transducer [13]. This means that, as pointed out by [15], tool

2.4. WELL LOG EVALUATION 7

0 90 180 270 360

Azimuth [Deg]

XXX6.0

XXX8.0

XXX0.0

XXX2.0

XXX4.0

XXX6.0

XXX8.0

XXX0.0

XXX2.0

XXX4.0

XXX6.0

XXX8.0

XXX0.0

D
ep

th
[m

]

AIBK

0 90 180 270 360

Azimuth [Deg]

THBK

0 90 180 270 360

Azimuth [Deg]

IRBK

0 5 10 −0.1 0.0 0.1 −0.1 0.0 0.1

Figure 2.2: Example of an ultrasonic log from the dataset provided by
Equinor. AIBK is the impedance behind casing, measured in MRayl, THBK
is the thickness deviation from average thickness per depth, measured in
inches, and IRBK is the internal radius deviation from average per depth,
measured in inches.

8 CHAPTER 2. DRILLING, CEMENTING, AND LOGGING

Figure 2.3: A cemented casing section. The acoustic impedance map is
referenced at the interface between casing and cement.

eccentering may lead to wrong acoustic impedance estimates, which may
cause certain regions of good cement to appear as fluid patches or channels.

Common practice well integrity evaluations is to consider any impedance
below 2.6 MRayl to be a fluid, where the interval from 0 to 0.3MRayl to be
gas, and the interval from 0.3 to 2.6 MRayl to be water or mud [13, 16].

To make the evaluation easier a custom colormap can be used for display-
ing the images. In the following gas will be labelled as red, water/mud as
blue, and higher impedances will follow a yellow/brown colormap. Further,
impedance values below 0 are labelled as green. This can either mean that
the data point was missing, or that the correction for nonplanar geometry
[15] applied to the impedance estimate has pushed the value below 0. While
this ambiguity could cause problems when performing evaluations, it can be
argued that in the case of a missing measurement next to a fluid, it is best
to assume that there is fluid in the location of the missing measurement as
well, as this leads to a pessimistic rather than optimistic evaluation of the
well integrity.

2.5 Channel classification

Classifying channels in ultrasonic logs is in the first instance a simple task:
In the evaluation we look for any area that can contribute to hydraulic flow.
This is possible both for what is typically referred to as a channel, i.e. a
vertically connected area of fluid behind the casing, but also for so-called
fluid patches of significant size. It is important to note that ultrasonic log-
ging tools are only able to detect the acoustic impedance directly behind
the casing as shown in Figure 2.3, meaning that it is possible that chan-
nels can exist further into the cement than the location where the acoustic
impedance measurement is referenced.

A challenge when classifying channels just based on the acoustic impedance

2.5. CHANNEL CLASSIFICATION 9

behind casing (AIBK) is that various conditions may affect the acoustic
impedance estimate. An example of this is casing grooves. If the well has
been drilled further before the logging run, the drillstring may have scraped
the casing, creating a small groove. This groove can often lead to lower
acoustic impedance estimates than the ground truth. Because the groove
will form a stripe, this will have the appearance of a channel even though it
is likely not one, as seen in Figure 2.4. Notice that the “channel like feature”
in the acoustic impedance image matches with the groove seen clearly in the
thickness image. The thickness image is considered more robust than the
acoustic impedance image [15, 13]. As such, the acoustic impedance values
in the area of the casing groove cannot be trusted. However, there may
still be a channel behind this area. To evaluate this, one must consider the
appearance of the surrounding areas, looking for fluid patches and channels
where the AIBK estimates are reliable, and use this to make a decision on
whether there may be a channel behind the casing in the area of the casing
groove.

10 CHAPTER 2. DRILLING, CEMENTING, AND LOGGING

0 90 180 270 360

Azimuth [Deg]

XXX2.0

XXX4.0

XXX6.0

XXX8.0

XXX0.0

XXX2.0

XXX4.0

XXX6.0

XXX8.0

XXX0.0

XXX2.0

D
ep

th
[m

]

AIBK

0 90 180 270 360

Azimuth [Deg]

THBK

0 2 4 6 8 10 −0.1 0.0 0.1

Figure 2.4: An example of a casing groove. Note how the acoustic image
shows what appears to be a fluid channel in the same location as the casing
groove.

Chapter 3

Machine learning

Machine learning describes the process of teaching a machine to recognize
patterns. This chapter will provide a brief introduction to the theoretical
side of machine learning, and discuss concepts important to the work in this
thesis.

Machine learning is a field in artificial intelligence which attempts to al-
low computer systems to learn from experience. Machine learning is divided
into three branches; supervised learning, unsupervised learning, and rein-
forcement learning. Supervised learning is performed by supplying labelled
examples, where the goal is to learn the relationship between the data and
the corresponding labels. For unsupervised learning, no labels are supplied,
meaning that the goal is to find patterns in the data, without the model be-
ing able to understand what these patterns mean. Reinforcement learning
is inspired by human learning. Here, a decision problem or data is supplied.
The model then makes a decision based on the information supplied. At
some later stage, either immediately or after several more decisions, infor-
mation is supplied about how successful the decision was. This chapter will
focus mostly on supervised learning, as this is the most relevant for this
thesis.

3.1 The supervised learning problem

The supervised learning problem may be stated as follows: We seek to learn
an unknown target function f that maps data points from the input space
X onto the output space Y . A set of data points x are collected from X .
Additionally each data point in x is assigned a label, which is added to y.
The goal is to learn the relationship between x and y, that is, approximate
f : X → Y . To achieve this, a set of hypotheses for approximating f is pro-
posed. Normally the hypothesis set is the parameter space of a parametric
model. For example, a linear model may be chosen as the hypothesis set.
In that case, the hypothesis set is Rn+1 where n is equal to the dimension

11

12 CHAPTER 3. MACHINE LEARNING

of X . In order to pick a final hypothesis from the hypothesis set, a learning
algorithm is used. The purpose of this algorithm is to pick the hypothesis
h from the hypothesis set that provides the best match to f . Because f
is unknown, quantifying this “match” is data driven, measuring the simi-
larity between h(x) and the assigned labels y. This similarity measure will
normally be domain-specific.

3.2 Semi-supervised learning

For many applications, labelling of data (assigning labels y to data points
x) is very time consuming. This presents challenges for supervised learning,
where data availability heavily affects the ability to train a well-performing
model. Unsupervised learning does not suffer from this problem, as the
data does not require manual assessment. This means that as long as data
is available, it can be used for learning. However, since unsupervised learn-
ing only looks for general patterns, these will not necessarily contain the
information of interest. Further, manual intervention is normally required
to analyze the meaning of the classifications produced by an unsupervised
learning model. It is clear that supervised learning is necessary when the
objective is to detect specific features.

Semi-supervised learning is a technique based on using unlabelled train-
ing data to improve the out-of-sample performance of a given supervised
learning model. A simple option is to use pseudo labels [17]. This is per-
formed as follows: After training the model to a point where classifications
are reasonably precise, the training is halted. The model is then used to
classify a number of unlabelled data points. These classifications are set as
the labels for the data points, and the data points are added to the training
set. Thereafter the model is trained for a number of iterations before the
process is repeated.

As explained by Arazo et al. in [18], pseudo labels introduce confirma-
tion bias to the model, because the model will be trained with some wrong
predictions. An option to deal with this problem is to give more weight to
labelled samples than unlabelled samples in the learning process. [18] uses
convex combinations of labelled and unlabelled data in order to alleviate
this problem, however this will not necessarily work on more complex data
than simple points in a space, because creating superpositions of complex
data is often not possible.

3.3 Learning algorithms

Learning algorithms vary widely depending on the model type. For linear
regression the least-squares solution may be obtained by simple matrix mul-
tiplication [19]. However, for many modern machine learning models, the

3.4. MODEL TESTING 13

learning problem is solved by mathematical optimization, a process often
referred to as “training”. Many such methods are stochastic, meaning that
there is an element of chance in how the algorithm searches for the optimum.
This often helps the algorithms avoid local optima, and speed up learning in
regions with a small gradient. However, it can also mean that the algorithm
is not able to properly converge to the optimum. A solution to this is to
use checkpoints, saving the best solution so far as the training is performed.
This way, if the learning fails to converge properly, or perhaps even diverges
at some point, the best solution is still retained.

3.4 Model testing

For any learning problem, the goal is to maximize out-of-sample perfor-
mance. This means that contrary to what the training setup indicates, the
goal is not to maximize performance on the training set, so-called in-sample
performance, but rather to maximize performance when the model is ex-
posed to new data.

Because the training data are only a sample from the distribution of
input data, and often influenced by noise, a perfect fit to the training data
does not necessarily translate into good real world performance. A model
of complexity higher than the complexity of the “true” model f , will tend
to fit not only to the general patterns, but also to noise and other errors in
the data.

To verify that the model obtained through training is indeed a good fit,
it is desirable to test it. This is done by splitting the data set before training
into a “training set” and “test set”. Here, the training set is used for training
the model, after which it is tested using the test set. Because the model has
not been exposed to the test data before testing, this can be used as an
estimate of out of sample performance.

3.5 Validation data

In many machine learning problems, the model capacity is higher than that
of the true model f . This is often necessary when the model used for ap-
proximating f is not of the same kind as f . For example approximating a
sinusoidal function with a polynom will, depending on the domain of inter-
est, require many extra parameters to provide a good fit. With insufficient
data, this can lead to the model fitting to artefacts and noise in its training
examples, which does not translate to out of sample performance. This is
commonly referred to as overfitting. A common solution to avoid overfitting,
is splitting the dataset used for training into a training set and a validation
set. The validation set is used for testing the model after each training step.
For each training step, the model is tested on the validation data, which

14 CHAPTER 3. MACHINE LEARNING

Figure 3.1: An illustration of 10 fold crossvalidation. The data are randomly
split into 10 folds. For each iteration one of the folds serves as a test set,
whereas the remaining data are used as the training set.

can be seen as an estimate of the out of sample error, much like the test
data in the previous section. By employing checkpoints based on the model
performance on the validation set, one can retain the last solution before
the model started overfitting. This is because overfitting is characterized by
the performance increasing when measured on training data, and decreasing
when measured on validation data (or other data that are not part of the
training).

3.6 Resampling methods

Resampling methods are used to obtain better information about a model’s
performance. Such techniques are particularly useful if the volume of avail-
able data is limited, as it gives a measure of how the model reacts to vari-
ations in the input data. This section will describe cross-validation and
bootstrapping, which are two of the most common resampling methods.

3.6.1 Cross-validation

Cross-validation involves splitting the data set into n equally sized “folds”
or subsets. The model is then trained on the complement of the fold, and
then tested on the fold, successively over all folds. The performance of the
model may then be estimated by averaging the test statistic over all folds.
Common forms of cross-validation are 5-fold cross-validation, in which the
data are split into 5 folds, 10-fold cross-validation, and leave-one-out cross-
validation (LOOCV), in which each fold is just a single data point. An
illustration of crossvalidation can be seen in Figure 3.1

3.6. RESAMPLING METHODS 15

3.6.2 Bootstrapping

Another option for resampling data is bootstrapping. For each bootstrap
sample, a number of data points are picked from the data set with replace-
ment. The data that have not been sampled constitute the test set for the
given bootstrap sample. Typically one will use several hundred or more
bootstrap samples for estimating model parameters or properties such as
performance.

Chapter 4

Deep learning

This chapter will introduce the area of machine learning called deep learning,
describing common artificial neural network architectures, as well as how
these may be used for feature detecting in images.

In recent years, advances in the the field of deep learning has caused a
paradigm shift in the field of image analysis. Deep learning based methods
have shown a great ability to solve widely different tasks in image classifica-
tion, image segmentation, and object detection. This chapter will introduce
artificial neural networks, and describe the development from simple, fully
connected neural networks, up to fully convolutional neural networks for
image segmentation.

4.1 The artificial neuron

The basic building block of artificial neural networks is the artificial neuron.
The artificial neuron works as shown in Figure 4.1. The artificial neuron
receives N inputs x1, ..., xN . It then computes a weighted sum of these
z =

∑
wixi, where wi denotes the weights. Further, a bias term b is added to

the weighted sum. In order to make computations simpler, a reorganization
is sometimes referred to as the “bias trick”, is applied. Rather than adding a
bias term, the input vector x gets an extra term x0 = 1. This means that the
bias is now the element of the vector of weights. This means that the input
vector is now x = [1, x1, ..., xN]T , and the weight vector is w = [w0, ..., wN]T .
Finally, an activation function f(·) is applied to the result of the weighted
sum, which yields the output y of the neuron.

Traditionally the sigmoid function

σ(z) = 1
1 + e−cz

has been used as the activation function in neural networks. Here, the c is
some constant that is picked before training. For simplicity it may be left

16

4.1. THE ARTIFICIAL NEURON 17

Figure 4.1: The layout of an artificial neuron. A weighted sum is applied to
the input with a bias term. Then the activation function is applied, and the
returned value is output from the artificial neuron.

−5.0 −2.5 0.0 2.5 5.0
z

0

1

2

3

4

5
ReLU

Swish

σ

Figure 4.2: Comparison of the sigmoid activation function, the ReLU, Swish.

as 1. The function gets its name from s-like curve it produces, as seen in
Figure 4.2. The sigmoid function does however suffer from problems, most
commonly the ”vanishing gradient problem”. As is clear from Figure 4.2, if
z is either small or large, the gradient of σ(z) is small, which means that
optimization of the neuron will be slow, as will be explained further later.

In recent years a new activation function called the rectified linear unit
(ReLU) has grown popular. The ReLU is defined as

ReLU(z) = max(0, z).

The ReLU does however still suffer from the vanishing gradient problem.
This has given rise to a number of fixes. The first is the ”leaky” ReLU

ReLUleaky(z) = max(az, z), 0 < a < 1.

18 CHAPTER 4. DEEP LEARNING

In the leaky ReLU the constant a is a hyperparameter, meaning that it is
not trainable, but rather picked ahead of time. Alternatively, the parametric
ReLU leaves a as a trainable parameter.

Both the ordinary ReLU and the leaky ReLU suffer from the problem
that for z = 0, its gradient is undefined. This is solved by the swish activa-
tion function [20], defined by

Swish(z) = σ(z)z.

This function can be seen as a smoothed version of the ReLU, as is shown
in Figure 4.2.

4.2 Artificial neural networks

By combining multiple artificial neurons, a neural network is created. In
the following a form of neural networks referred to as “feed-forward” neural
networks will be presented. These are characterized by a topological orga-
nization where there are no circular connections. The network will receive
its input in one end, propagate the signals through, and provide an output
in the other end.

4.2.1 Fully connected neural networks

The conventional fully connected network architecture is shown in Figure
4.3. For this architecture neurons are organized into layers. There is one
input layer that receives the input vector to the network. Then each input
layer neuron outputs its output value to all neurons in the next layer. The
final layer of the network is referred to as the output layer. Normally, the
output layer will have the same number of neurons as the number of classes
in the classification problem. Here, each neuron represents a certain class,
so that high activation of given neuron corresponds to the presence of its
corresponding class. This is commonly referred to as “one-hot” encoding.
At the output, each class is given a value between 0, and 1. In a single–
class problem, this value is thresholded to retrieve the classification. This
threshold is often set at 0.5, however it can be augmented to serve specific
needs. For instance, in safety critical contexts, where detecting anomalies
is important, one may move the threshold to minimize the risk of false neg-
ative findings, accepting that this will increase the number of false positive
findings.

Fully connected neural networks have a high flexibility for modelling
complex features. However, as the number of neurons per layer, or the
number of layers grows, the number of parameters in the network grows
quickly. This means that there is a limit to how complex networks with this
architecture can be before they become difficult or impossible to train. This

4.2. ARTIFICIAL NEURAL NETWORKS 19

Figure 4.3: Example of a fully connected neural network with 1 hidden layer.
Obtained from [21].

20 CHAPTER 4. DEEP LEARNING

is problematic for classifying images because a typical image will be on the
order of 10000 elements, meaning that a large number of neurons will be
necessary for analyzing the image.

4.2.2 Convolutional neural networks

Convolutional neural networks are based on the observation that when clas-
sifying an image, a certain indicative feature may appear at various locations
in the image. In a fully connected network, there must be multiple neurons
to detect such a feature, because each neuron can only ”see” a certain lo-
cation in the image (as well as its neighborhood) in order for the location
of that feature to be known. Alternatively, the neuron can detect the pres-
ence of such a feature anywhere in the image. However, this means that
the feature detected by the neuron cannot be localized, which means that
downstream neurons cannot use information from this neuron for detecting
compositions of features.

The convolutional neural network solves this problem by replacing the
fully connected layers with sets of convolutional kernels. A convolutional
kernel works as shown in Figures 4.4 and 4.5.

The kernel will see only a small portion of the image at a time, and
apply a weighted sum to the values of the pixels, in the same fashion as the
fully connected layers in the previous section. However, this kernel is moved
across the image, where the weights of the convolutional kernel are the same
every time, generating a new “output image”. A 3x3 kernel will only have
10 free parameters, i.e. 1 parameter for each pixel covered by the kernel,
as well as the bias term. This means that one may typically use quite a
few convolutional kernels and not come close to the number of parameters
required for a single fully connected layer on a normal size image.

In addition to convolutional kernels, convolutional neural networks often
use “pooling” layers in order to reduce the image size. This is useful to
capture features on a larger scale. The pooling layers use a sliding window,
much like the convolutional kernel, however pooling layers normally don’t
use any parameters, but are rather based on simple mathematical operations.
Some of the most common forms of pooling are average-, and max pooling.
Average pooling outputs the average of its input values, whereas max pooling
outputs the maximum of its input values.

While convolutional layers most often slide the kernel one pixel at a time
for each pixel in the output image, it is common for pooling layers to slide
the same number of pixels as the dimension of the pooling window. That is,
if using a 2x2 max pooling layer, the step for each output (stride) will be 2
in the x-direction, and 2 in the y-direction. A one dimensional example of
this is shown in Figure 4.6. For more details, see [22].

Each layer in a convolutional neural network will normally have multiple
convolutional kernels, more commonly called filters. This allows each filter

4.2. ARTIFICIAL NEURAL NETWORKS 21

Figure 4.4: Example of how the input and output from a convolutional layer
relate.

Figure 4.5: Example of a convolutional kernel.

to become specialized at detecting certain features (for instance edges or
curves). Similar to how the human eye works, the early layers of a convo-
lutional neural network will tend to detect “basic” features such as edges or
ridges, whereas layers closer to the output will tend to focus on higher level,
more complex features [23, 24]. In networks made for image classification,
this means that the architecture will typically comprise a number of convo-
lutional layers, often with some pooling layers in between, followed by a few
fully connected layers to form the output of the network [25]. As will be dis-
cussed more later, an alternative to this is the fully convolutional network.
Fully convolutional networks consist only of convolutional and pooling lay-
ers, which means that the output from the network will be another image.
This is useful for tasks like image segmentation.

22 CHAPTER 4. DEEP LEARNING

Figure 4.6: Example of a max-pooling operation.

4.3 Training neural networks

The learning process of a neural network is performed through what is com-
monly referred to as training, as explained in Section 3.3. Training simply
entails performing a mathematical optimization of the neural network’s pa-
rameters with respect to some objective. In a supervised learning context,
this objective is a loss function, that is, a function quantifying the penalty
for discrepancies between the target output and the output of the neural
network. Loss functions are specific to the application. For ordinary classi-
fication problems, a simple option is to use the mean squared error of the
classification, or the slightly better crossentropy.

The gradient of the loss function may be found using a technique called
backpropagation. The idea behind this is that the gradient corresponding
to the parameters of each layer in the network only depends on its current
weights, current activation (the data that have been propagated forward
through the network), the gradient of the activation function used, and the
gradient of the layer one step closer to the output. By using this, one may
start at the output of the network, and then compute the gradient corre-
sponding to each layer by propagating the gradients back to the previous
layers successively. For a more in-depth explanation of backpropagation,
please see [22] or [26].

Utilizing backpropagation, one may feed data through the network, com-
pute the loss at the output, and then perform backpropagation in order to
find the gradient of the loss function given the data, which can be used to
minimize the loss using gradient descent. However, feeding large volumes of
data through the network for computing the gradient at every training step
is computationally expensive. To circumvent this problem, only a small,

4.3. TRAINING NEURAL NETWORKS 23

randomly selected portion of the data is fed through the network at every
training step. This small portion of data is often referred to as a batch. This
approach to training neural networks is called stochastic gradient descent.
There exist many more advanced methods based on these principles, most
notably step size-adjusting algorithms such as RMSprop and Adam. For a
description of these, see [25].

4.3.1 Transfer learning

As mentioned earlier, convolutional neural networks tend to contain filters
that are more general in the first few layers, detecting basic features. Con-
versely, layers close to the output will tend to focus more on higher level
features, more specific to the domain of application. Because of this, a net-
work trained for any arbitrary task will tend to have filters well suited for
any application in the layers close to the input, whereas the layers close to
the output will be more specialized. As pointed out by [27], gradients be-
come increasingly small when backpropagating through the network, mean-
ing that the layers close to the input are far slower to train than layers close
to the output. These moments are leveraged by a technique called transfer
learning. Here, one first trains the network on a dataset separate to the
training data acquired for the specific problem. This will serve as a feasible
initialization for the final training on the domain-specific data.

4.3.2 Constraining the parameter space

Normally, a rule of thumb in any learning problem is that the number of
data points should be significantly higher than the number of learnable
parameters. However, in deep learning, this is often not the case, as neural
networks often have several hundred thousand learnable parameters. This
means that neural networks are prone to overfitting. As mentioned, one of
the ways of overcoming this problem is to use a validation set for retaining
the best performing set of parameters.

However, another way of constraining the parameter space is regular-
ization. Regularization involves adding an extra term to the loss function,
which is dependent on the magnitude of the parameters. This way, parame-
ters that do not directly contribute to reducing the error when training will
be driven to zero to reduce the loss.

Another method that seeks to solve the problem of overfitting with large
parameter spaces is dropout. Dropout works by randomly disabling a per-
centage of neurons of the network during each epoch. If a neuron has grown
highly specialized to detecting a specific feature in only one data point, then
its downstream neurons will also rely on this representation. If that neu-
ron is disabled, all neurons that relied heavily on it, will be forced to rely
on a wider selection of neurons, which will tend to make the network more

24 CHAPTER 4. DEEP LEARNING

general, which often leads to higher out of sample performance.

4.3.3 Kernel initialization

Care must be taken when initializing the weights of a neural network. If
not, the gradient of the network may end up being either very small, often
referred to as a vanishing gradient, or very large, often referred to as an
exploding gradient. This is solved by initializing the network with random
weights. This randomization must be performed carefully to control the
initial gradient of the network. For this thesis, the initializer developed by
He et al. is used [27].

4.4 Image segmentation
Image segmentation is the task of classifying every pixel in an image. This
means that it can be used to precisely describe the composition of an image,
i.e. which features or objects are present in the image, and which pixels
“construct” each feature.

Traditionally, image segmentation has been based on different clustering
methods such as K-means, histogram methods, or thresholding. Another
approach has been using edge detection to differentiate between clusters.
However, such methods have not been able to detect complex patterns in the
data beyond finding pixels of similar value. Deep learning has changed this
by introducing its ability to detect complex structures in images. Ciresan et
al. [28] proposed a deep learning approach to segmenting images by using
a sliding window, classifying each pixel. The drawback of this method is
that there is a lot of redundant computation since all computational steps
are repeated for every pixel, ignoring the fact that the windows overlap.
Further, as was pointed out by Ronneberger et al. [29], there is a tradeoff
between localization accuracy and context. Using a large window provides
a lot of context, but the necessary max-pooling will reduce the localization
accuracy since the part of the input dominating the resulting prediction may
not necessarily be in the location of the pixel of interest.

This problem was solved by Ronneberger et al. [29] proposing the U-Net
architecture. This architecture can be seen as a two stage process: First,
the image is downsampled through a series of convolution and max pooling
layers. This produces a coarse feature map with a high number of channels.
After this the image goes through the same process in reverse, but with the
max-pooling layers replaced by upconvolution layers. Upconvolution works
by taking a single input pixel and returning a filter multiplied with that
pixel value, as shown in Figure 4.7. After each up-convolution, the image is
combined with the final image from the downsampling process at the same
resolution before the two convolutions. This finally produces the output
segmentation map of classifications. It is worth noting that for each level

4.4. IMAGE SEGMENTATION 25

Figure 4.7: Example of upconvolution in 1 dimension.

Figure 4.8: The Unet architecture used for this thesis. The tensor shape is
shown for each layer in the model. B is the batch size, H and W are the
image height and width, respectively, and F is the number of filters used in
the convolutional layers.

26 CHAPTER 4. DEEP LEARNING

A B U I

Figure 4.9: Illustration of the intersection I = A ∩ B, and union U = A ∪ B
between sets A and B.

of the network, the image dimensions are reduced by factor 2, as shown in
Figure 4.8.

4.4.1 Metrics for image segmentation

A key part of machine learning is evaluating the performance of a model,
both under training and after it is trained. Usually one makes the distinc-
tion between metrics, which one will generally seek to maximize, and losses
(loss functions) which one will seek to minimize. The most common scheme
for this is the mean squared error between the ground truth and the pre-
diction, as well as accuracy, which is often defined as the fraction of correct
classifications.

However, this is not ideal for segmentation. One reason for this is that
often the image is highly unbalanced in terms of the number of pixels with
each label. For the well logs, it is typical that less than 10 % of the pixels
are labelled as a channel, that is, they have value 1 in the label image.
This means that the network would achieve a very high accuracy simply by
classifying every pixel as not a channel (i.e. output 0 for every pixel. If
we consider an image consisting of only 5% labels, this raises the question
if a network labelling every pixel as not a channel should be considered to
be 95% right (accuracy), or 50% right (50% of classes identified correctly).
In response to this, a metric which takes the distribution of the number of
different labels into account is preferable.

For this purpose, a good option is the Intersection over Union metric,

IoU = |I|
|U |

= |A ∩ B|
|A ∪ B|

= |A ∩ B|
|A| + |B| − |A ∩ B|

,

where I is the intersection, U is the union, A and B are the sets evaluated,
and | · | denotes the cardinality of a set, that is the number of elements in
a set. A geometric representation of intersection and union are provided in
Figure 4.9. A comparison of the IoU metric and Accuracy is provided in
Figure 4.10.

Another option is the Dice coefficient

Dice = 2|A ∩ B|
|A| + |B|

.

4.4. IMAGE SEGMENTATION 27

Figure 4.10: Demonstration of IoU, and how it differs from accuracy.

These are quite similar metrics, and will give the same results in extreme
cases (every pixel classified as negative or every pixel classified as positive).
The IoU metric punishes worst-case performance more than the Dice coeffi-
cient, much in the same way as L2 norms punish large deviations relatively
more than L1 norms. With a single class classification problem, this distinc-
tion will not necessarily make any difference for the classification results,
however it will tend to draw the output pixel values closer to 0.5. This
means that if the output values are treated as fuzzy, the uncertainty of the
classification may be quantified. The loss function used for this project is
the Jaccard distance, which is one minus the Intersection over Union metric.
However, the Jaccard distance is not smooth. This is problematic because
training the networks requires the gradient of the loss function. If the loss
function is not smooth, the gradient will not be defined for all input values
to the loss function. To solve this problem a smoothing coefficient is added.
This gives

Jaccardsmooth = 1 − |I| + s

|U | + s
,

where s is the smoothing coefficient.

Chapter 5

Log data and imaging

This chapter will describe how the log data are handled, as well as present
tools for analyzing log images at at higher resolution than the original log-
ging resolution.

5.1 Data handling

Most well logging data are provided in files following the DLIS standard
formally known as the API RP66 standard [30]. DLIS-files can be read by
the dlisio python library [31]. However, due to the difficulty of manually
inspecting the contents of these files, we transfer the raw data into the
HDF5 file format [32]. This enables faster access to the data in the file, as
well as letting the user open the file in an appropriate reader to inspect the
contents visually. Furthermore, the dlisio package is still in alpha, meaning
that converting the data to HDF5 provides better reliability because the
implementation will not be dependent on every new version of dlisio working
the same. In order to save time, the conversion software written for this
project only transfers the data necessary for this project to the HDF5 format.
A library for reading DLIS data stored in a specific HDF5 layout called dlish5
was obtained from Erlend Viggen [33]. In order to access the desired data
as easily as possible, a new class was implemented for accessing the data
needed for this project easily, utilizing some of the functionality already
implemented in the dlish5 library.

DLIS files contain data channels with different vertical resolutions. These
data channels will be organized in DLIS frames, where each frame is a collec-
tion of data channels with the same vertical resolution, and measurements
collected at the same depths. Common vertical resolutions are 0.5-, 1-, 2-,
3-, and 6 inch spacings, provided in the corresponding 5B, 10B, 20B, 30B,
and 60B data frames.

To ensure consistency, as well as to provide a storage site for image
annotations, a new frame is created in the HDF5 file. All data relevant to

28

5.2. MEASUREMENT LOCATIONS 29

0 90 180 270 360

Azimuth [deg]

XXX4.0

XXX4.2

XXX4.4

XXX4.6

XXX4.8

XXX5.0

XXX5.2

XXX5.4

D
ep

th
[m

]

Figure 5.1: Image of a casing collar. Notice the alternating high impedance
measurements along the edges of the casing collar, indicating that the mea-
surements have not been taken sequentially from one side to the other. This
log segment is from the dataset provided by Equinor ASA.

the annotation are corrected, and then added to this frame. This ensures
that one will always have access to the data on which the annotations are
based, and that retrieving data is as fast as possible, without requiring
corrections to be applied every time.

Before evaluating, the image logs are corrected for rotations of the tool.
This is done by finding a data channel which contains the rotation of the
“base direction” of the tool. Further, the image is rotated at each depth
according to the given rotation to retrieve the corrected image. For the
rotation, the UCAZ (ultrasonic azimuth) channel is preferred, and if not
present, the RB (relative bearing) channel is used. The UCAZ channel is
preferred as it produces images that better match the rotation corrected logs
presened in official log plots.

5.2 Measurement locations
When evaluating log images at the scale where pixels are clearly distin-
guishable, the exact reference location of each measurement becomes an
important factor in evaluating material properties behind the casing. Fig-
ure 5.1 shows an image of a casing collar, where the alternating pattern on
the edges of the high impedance region suggest that the measurements are
not collected in perfect rows. This means that the measurement locations
used for constructing the image must be considered.

For the remainder of this chapter, we will analyze a short log segment
from the dataset provided by Equinor ASA, shown in Figure 5.2. The UTIM
channel contains the arrival times of ultrasonic pulse echoes for each mea-

30 CHAPTER 5. LOG DATA AND IMAGING

0 90 180 270 360

Azimuth [deg]

XXX3.2

XXX3.4

XXX3.6

D
ep

th
[m

]

AIBK

0 90 180 270 360

Azimuth [deg]

UTIM

6622

6623

6624

6625

6626

6627

6628

6629

Figure 5.2: Example of how UTIM data are stored. The left plot shows a
raw AIBK image, and the right plot shows an image of the UTIM channel
using a grayscale colormap. As can be seen, there is one UTIM value for
every AIBK value, meaning that the measurement time for each individual
measurement is stored.

5.2. MEASUREMENT LOCATIONS 31

0.0 0.2
Azimuth [m]

XXX3.0

XXX3.2

XXX3.4

XXX3.6

D
ep

th
[m

]

0.0 0.1 0.2 0.3

XXX3.10

XXX3.12

XXX3.14

Figure 5.3: Depth corrected measurements from speed corrected depth using
UTIM for each measurement row. The zoomed plot shows that measure-
ments from different rows mix, meaning that there is disagreement between
SCD and the combination of UTIM and cable speed (CS).

surement [34]. Figure 5.2 shows an example of the contents in the UTIM
channel. As can be seen, there is a time measurement for each individ-
ual ultrasonic measurement (such as acoustic impedance). This means that
the channel can be used to obtain additional information about where each
measurement is collected compared to the conventional depth channels. The
depth of each measurement is corrected by using the cable speed as an es-
timate of the tool speed in the measured depth direction (speed along the
well path), as there are no accelerometer data available in this log. Figure
5.3 shows measurements based on the speed corrected depth (SCD) channel,
where all measurements on each row are vertically corrected based on the
time difference from the first time recorded on the row, to the time recorded
for the given measurement, using the cable speed (CS) as an estimate of the
tool speed. The correction is given by

zcorrected = zbegin − CS(z) ∗ (t − tbegin), (5.1)

where zbegin is the reference starting depth (in this case speed corrected
depth) for each row in the image, CS is the cable speed, t is the UTIM value
for given measurement, and tbegin is the starting time (minimum) for each
row in the image.

It is clear that there is disagreement between the depths given by the
logs, and the combination of ultrasonic wave arrival times and cable speed.
For this work, this problem is solved by correcting all measurements using

32 CHAPTER 5. LOG DATA AND IMAGING

0.00 0.25
Azimuth [m]

XXX3.0

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

XXX4.4

D
ep

th
[m

]

0.0 0.1 0.2 0.3

XXX3.56

XXX3.58

XXX3.60

XXX3.62

XXX3.64

Figure 5.4: Depth corrected measurements using only UTIM and CS. Notice
that compared to Figure 5.3, the measurement rows are all separated.

UTIM and a reference starting depth. The correction is given by (5.1),
but here, the reference point zbegin and tbegin is given at the bottom of the
logging interval, meaning that all measurements are referenced in the same
point.

This gives the measurement locations shown in Figure 5.4. Note that the
depth axis is stretched compared to the previous example. By examining
this plot carefully, we observe that the measurements still distribute on
horizontal lines. From the zoomed-in segment in Figure 5.4, it is clear that
the measurements distribute on 4 horizontal lines. We hypothesize that
this is caused by infrequent updates of the clock used for filling the UTIM
channel. Further, we observe that the measurements from the single row are
collected over 2 tool rotations.

When looking at Figure 5.4, it is clear that a depth correction based on
UTIM alone is not representative for how the measurements are collected.
It is well known that the tool is pulled up continuously, which means that
the measurements should form a spiral. Based on this, we try linearly in-
terpolating the recorded times, so that for each set of measurements with
the same given pulse arrival time, our corrected arrival times are evenly dis-
tributed between their uncorrected value, and the next distinct time value
of the row (if it is the last value, the “next” value is found by extrapolating
the distinct time values of the row). Because this is only a segment from

5.2. MEASUREMENT LOCATIONS 33

0.00 0.25

Azimuth [m]

XXX3.0

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

XXX4.4

D
ep

th
[m

]

Figure 5.5: Vertically corrected measurement locations using linear interpo-
lation to vertically distribute measurements with the same UTIM value.

the interior of the log, the next time value is available even if it is outside
the log segment analyzed here. This is shown in Figure 5.5. As is clear from
this figure, the linear interpolation does not always work properly, as it is
unlikely that the tool moves faster over one half of the rotation every time
it records measurements.

Due to this problem, we test an approach where we only rely on the
first UTIM measurement from each row to set the start depth of that row.
The remaining measurements are assumed to be collected over 2 rotations.
In this case, the arrival times are estimated by using the cable speed as an
estimate of vertical tool speed, and the RSAV channel as the ultrasonic probe
rotation speed. Further, we rely on the UTIM channel for determining which
measurements are collected on the first rotation and which measurements
are collected on the second rotation. This correction is shown in Figure 5.6.
For the log in question it is clear that this correction is probably the closest
to replicating the actual locations of each measurement for this particular
log. The preceding examples clearly show that for each measurement row

34 CHAPTER 5. LOG DATA AND IMAGING

0.00 0.25

Azimuth [m]

XXX3.0

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

XXX4.4

D
ep

th
[m

]

Figure 5.6: Vertically corrected measurement locations using RSAV and CS
to vertically distribute measurements from a reference point decided by the
first measurement at each depth in the raw data.

5.3. NEAREST NEIGHBOR INTERPOLATION 35

the image is collected over 2 tool rotations. Further, it is easy to see that
based on this, the conventional way of displaying images is perhaps not
the best representation of the physical reality. It is clear that the vertical
distance between measurements is far greater than the azimuthal distance
between measurements. This means that displaying the measurements as if
they were all collected at the same depth is not necessarily suitable.

5.3 Nearest Neighbor interpolation
Image logs are normally displayed as shown in Figure 5.2. This is based on
making a grid, and then filling each square of the grid with a color corre-
sponding to the measurement made inside the given square. This is based
on an assumption that the measurements are collected on horizontal lines. If
this assumption is broken, this approach is no longer a good representation
of the physical reality, as the grid should be augmented to better represent
where the measurements are made. Based on this, the sampling of the image
must be considered.

The original image display is based on a nearest neighbor interpolation,
where all measurements are assumed to be made at the same depth. If
this assumption is augmented to assume that the measurements are made
at the corrected depths, we may construct an upsampled nearest-neighbor
interpolated image by

NN(~r) = IM(argmin ~r0(d(~r, ~r0)),

where NN is the nearest neighbor interpolated image, IM is the set of mea-
surements, ~r0 is picked from the set of measurement locations, and ~r is the
interpolation location. The result of this is shown in Figure 5.7.

5.4 Gaussian processes
It is clear that the nearest neighbor is still not ideal for viewing the images, as
it is not really a true upsampling, but rather a skewed version of the original
image. The problem with upsampling these images is that most methods
for interpolating 2D data, such as minimum curvature interpolation, rely
on creating a smooth surface that intersects the data points. Creating a
smooth interpolation would not be representative of the physical reality,
as interfaces between fluids and solids, or between different solids, tend
to be sharp. An alternative is to use Gaussian Processes, which in the
geosciences is commonly known as kriging. This is a statistical approach to
interpolation, in which all measurements are assumed to be drawn from a
multivariate normal distribution. One may then estimate the interpolated
image by computing the expected value for each point on an upsampled grid.
This method is actually a regression method, but as Figure 5.8 shows, it has

36 CHAPTER 5. LOG DATA AND IMAGING

0.0 0.1 0.2 0.3

Azimuth [m]

XXX3.2

XXX3.4

XXX3.6

D
ep

th
[m

]

0.0 0.1 0.2 0.3

Azimuth [m]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

Figure 5.7: Original image compared to the nearest-neighbor interpolated
image. Note that the nearest-neighbor interpolated image is stretched in
the depth direction compared to the original image.

5.4. GAUSSIAN PROCESSES 37

the flexibility to be used for interpolation. Further, due to the measurements
being affected by some uncertainty, a perfect fit to the measurements is not
necessarily the best representation of the physical conditions behind the
casing.

Gaussian process regression is performed by considering all the points to
be estimated as a multi-dimensional Gaussian random variable. By applying
some covariance function, as well as the measurements acquired, one may
compute the expectation and variance for each point. Figure 5.8 shows an
example of how gaussian process regression works in the one dimensional
case. In the following, a brief derivation of the process is introduced.

The measurements are collected in the points x0, and are assigned an a
priori expectation E(x0) = µ0 and covariance Cov(x0) = Σ0. The covari-
ance matrix is constructed using a correlation function and a variance. The
variance is either assumed, known from previous data, or estimated.

Similarly, the outputs from the regression are given by x1, and are as-
signed an expectation E(x1) = µ1 and covariance Cov(x1) = Σ1. The co-
variance matrix is constructed using a correlation function and a variance,
similarly to Σ0.

Further,

x =
[
x0
x1

]
is assumed to be drawn from the multivariate normal distribution

f(x) = 1√
(2π)k|Σ|

exp(−1
2(x − µ)T Σ−1(x − µ)),

where k is the dimension of x Here, we have

µ =
[
µ0
µ1

]
, and Σ =

[
Σ0 Σ0,1

Σ1,0 Σ1

]
,

where Σ0,1 = ΣT
1,0 is the covariance between x0 and x1. Thus, the condi-

tional mean and variance of x1 given x0 is given by

E(x1|x0) = µ1 + Σ1,0Σ−1
0 (x0 − µ0)

Cov(x1|x0) = Σ1 − Σ1,0Σ−1
0 Σ0,1.

For more details, please see [35].
The most important part of this process is selecting the covariance func-

tion C to be used. This is normally done by using C(~r0, ~r1) = σ2c(~r0, ~r1),
where σ2 is the variance, and c is a correlation function. Ideally this correla-
tion function would be estimated from data, however, for this thesis it turned
out to require more computation time than what was available to produce

38 CHAPTER 5. LOG DATA AND IMAGING

20 40 60 80

40

50

60

70 E(x1|x0)

µ

Random samples

Figure 5.8: Example of a Gaussian process with a constant a priori expec-
tation µ = 50, σ2 = 42, and a Matérn correlation function with ν = 1.5.
The measurements x0 are marked in black, the red line is the a posteriori
expectation E(x1|x0), and the blue lines are 10 random realizations.

stable results. We therefore use qualitative methods to choose the correla-
tion function. In this section we will use the nearest-neighbor interpolated
image for comparison, as this image is somewhat similar to the raw images
as shown in Figure 5.7, while correcting the depth of the measurements to
the same depths the kriging uses.

First, the Matérn correlation function [35] is tested, which is given by

cν(d) = 21−ν

Γ(ν)

(√
2ν

d

l

)ν

Kν

(√
2ν

d

l

)
(5.2)

Here l is a distance measure, and ν is a smoothness parameter. One can
show that for all half integers ν = n + 0.5, n ∈ N+, the Matérn correlation
function cν is n times differentiable. When ν → inf we get the Gaussian [35]

c(d) = e− d2
2l2 ,

which is also referred to as the squared exponential (SE), or radial basis
function (RBF).

When ν = 0.5 the result is an exponential function [35]

c(d) = e− d
l

When using kriging for interpolation, the expected value image is not
sufficient for making decisions. This is because the expected value image
will tend to be smoother than the ground truth, and does not capture the
variability in the estimates. One could utilize the variance measurement

5.4. GAUSSIAN PROCESSES 39

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

d

Exponential
ν = 1.5
ν = 2.5
Squared exponential (RBF)

Figure 5.9: Comparison between different Matérn functions with ν = 0.5
(exponential),ν = 1.5, ν = 2.5, and ν → inf (Gaussian).

in each point to create a lower bound to a confidence interval, however
this would tend to be an overly pessimistic approach not representative of
the ground truth. As discussed extensively in [36], a better approach is
to combine the expected value image with multiple random realizations of
the image. This way we paint a better picture of what the ground truth
possibly looks like, based on the data available. As mentioned previously,
this analysis is performed on a short log interval. This is due to the large
memory requirements in order to hold the covariance matrix between all the
estimated points. This means that in order to work on a larger interval, the
resolution would have to be decreased, defeating the purpose of this analysis,
which is to analyze the well log on a finer scale.

For all following experiments we use a constant expectation µ = 2.48 MRayl,
and σ2 = (3 MRayl)2. These are based on the mean and variance of the mea-
surements on the analyzed interval.

Additionally, a white kernel is added to all convolution kernels. This
corresponds to what is referred to as “nugget” in the kriging literature.
This stems from the origin of kriging in the gold mining industry, where this
noise term would correspond to finding a gold nugget, which would look like
a noise point. For the purpose of kriging well logs, this noise term represents
the heterogeneity of material in the annulus.

Finally, the library used [37] does not support cylindrical coordinates.
For producing the expectation image this is solved by padding the mea-
surements as shown in Figure 5.10. However, the realizations do not obey

40 CHAPTER 5. LOG DATA AND IMAGING

−0.2 0.0 0.2 0.4 0.6
Azimuth [m]

XXX3.0

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

XXX4.4

D
ep

th
[m

]

Figure 5.10: Example of measurement padding for making the krig expec-
tation image and nearest neighbor image cylindrical. The black lines mark
the edges of where the interpolated image is constructed.

continuity across the edge to the opposite edge. This does not affect the
analysis significantly, but is worth noting.

First, we try the Matérn correlation function with ν = 1.5, which gives
the estimate of Figure 5.11 with l = [5 · 10−2 m, 2 · 10−1 m]. It is easy to see
that this produces an overly smooth estimate, as the random realizations
tend to follow the expectation perfectly, with some noise due to the white
kernel added.

Next, the Matérn correlation function with ν = 1.5 and l =
[7 · 10−3 m, 2 · 10−2 m] is tested, as shown in Figure 5.12. This image ap-
pears overly variable, and the expectation image shows clear signs of the
estimates being ”pulled” towards the a priori expectation of 2.48 MRayl,
indicating that this correlation length is overly short.

5.4. GAUSSIAN PROCESSES 41

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.2
Azimuth [m]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.2
Azimuth [m]

0.0 0.2
Azimuth [m]

0

2

4

6

8

10

Figure 5.11: Example of kriging using a Matérn kernel with ν = 1.5, and l =
[0.05, 0.2]m. Top left: Nearest neighbor-interpolated image for comparison.
Top middle: Krig expectation image. Remaining images: Random samples.

42 CHAPTER 5. LOG DATA AND IMAGING

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.2
Azimuth [m]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.2
Azimuth [m]

0.0 0.2
Azimuth [m]

0

2

4

6

8

10

Figure 5.12: Example of kriging using a Matérn kernel with ν = 1.5, and
l = [0.007, 0.02]m. Top left: Nearest neighbor-interpolated image for com-
parison. Top middle: Krig expectation image. Remaining images: Random
samples.

5.4. GAUSSIAN PROCESSES 43

Further, the Matérn correlation function with ν = 1.5 and l =
[1 · 10−2 m, 4 · 10−2 m] is tested, as shown in Figure 5.13. This image does
not contain the artefacts visible in the earlier examples, making it a feasi-
ble alternative. To further check the quality of the estimates, we check the
depth-wise average acoustic impedance as shown in Figure 5.14. The depth-
wise averages are smoothed by a moving average filter of length 0.23m in
order to remove edge artefacts from the nearest neighbor image. It is clear
by looking at the average impedances that the match is sufficiently good
that this estimate is a plausible representation.

The Gaussian correlation function is tested as shown in Figure 5.15. It
is clear that the Gaussian correlation results in an overly smooth estimate,
as even the random appear smoother than what is probable.

The absolute exponential function, corresponding to a Matérn function
with ν = 0.5, is discouraged in [35], as it typically leads to highly variable
estimates. To verify this, it is tested and shown in Figure 5.16. While the
expectation image looks fairly realistic, with a suitable compromise between
smoothness and following the data, it is clear from the random realizations
that it still allows for more variability than what is plausible.

44 CHAPTER 5. LOG DATA AND IMAGING

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.1 0.2 0.3

Azimuth [m]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.1 0.2 0.3

Azimuth [m]

0.0 0.1 0.2 0.3

Azimuth [m]

0

2

4

6

8

10

Figure 5.13: Example of kriging using a Matérn kernel with ν = 1.5, and l =
[0.01, 0.04]m. Top left: Nearest neighbor-interpolated image for comparison.
Top middle: Krig expectation image. Remaining images: Random samples.

5.4. GAUSSIAN PROCESSES 45

0.0 0.1 0.2 0.3
Azimuth [m]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.1 0.2 0.3
Azimuth [m]

0 1 2 3 4 5
Acoustic impedance [MRayl]

Nearest neighbor

Krig expectation

Average

Figure 5.14: Quality control of the krig expectation for Matérn correlation
with ν = 1.5 and l = [0.01, 0.04]m. The left image shows the nearest neigh-
bor interpolated image, the middle image is the krig expectation, and the
right plot shows the depth-wise average of the nearest neighbor image and
krig expectation image, as well as the a priori mean µ. The depth-wise
averages are smoothed by a moving average filter to remove artefacts

46 CHAPTER 5. LOG DATA AND IMAGING

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.2
Azimuth [m]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.2
Azimuth [m]

0.0 0.2
Azimuth [m]

0

2

4

6

8

10

Figure 5.15: Example of kriging using a Gaussian kernel with l =
[0.01, 0.04]m. Top left: Nearest neighbor-interpolated image for compari-
son. Top middle: Krig expectation image. Remaining images: Random
samples.

5.4. GAUSSIAN PROCESSES 47

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.2
Azimuth [m]

XXX3.2

XXX3.4

XXX3.6

XXX3.8

XXX4.0

XXX4.2

D
ep

th
[m

]

0.0 0.2
Azimuth [m]

0.0 0.2
Azimuth [m]

0

2

4

6

8

10

Figure 5.16: Example of kriging using an exponential kernel with l =
[0.01, 0.04]m. Top left: Nearest neighbor-interpolated image for compari-
son. Top middle: Krig expectation image. Remaining images: Random
samples.

Chapter 6

Deep learning methods for
fluid channel detection

This chapter outlines the methodology used for the deep learning part of this
thesis. Because this is built on the framework of [3], parts of the methodology
is the same. Specifically, this includes how training data are generated, and
how the data are augmented for training.

6.1 Image annotation

Using a software package developed by the author in the earlier project, the
dataset of ultrasonic well logs provided by Equinor ASA has been annotated
by the author to be used for training and testing of deep learning models.
While 10 images were annotated for an earlier project [3], all annotations
have been subjected to a more thorough quality check for this thesis, in order
to ensure consistent evaluations. The images were not resampled using the
methods from the previous chapter because of computational complexity.
However, the methods developed were used in the quality control stage.
One of the reasons for performing quality control on the annotations is that
there is a lot of bias in the evaluations of the logs, as pointed out by Viggen
et al. [7]. Further, it is important to ensure that this bias does not change
over time, which can easily happen when spending weeks performing the
same task. Due to time constraints, the size of this dataset is limited to 29
images.

In the previous project, all logs were resampled to a common resolution
to make sure that features of the same size would have the same appearance.
This was done by nearest neighbor interpolation. However, nearest neighbor
interpolation produces overly pixelated images when upsampling. There is a
possibility that this may alter features in the log, so that the convolutional
kernels’ ability to detect features on such images is inhibited. It is well
known that convolutional neural networks are able to pick up features at

48

6.2. MODELS 49

multiple scales, hence, resampling should be unnecessary. Based on this, we
performed a test early in the work on this thesis, which showed that the
performance of the network was comparable when using resampled images
to that when using original resolution images. Because of this, we proceeded
with images at their original resolution for the remainder of this thesis.

6.2 Models

Like in [3], an implementation of U-net is used for segmenting the image logs.
Parts of this section are therefore similar to the corresponding section in [3].
The implementation of U-net is based on an implementation by Karol Żak
[38]. The model is implemented in Keras [39], with the TensorFlow backend
[40]. This implementation differs from the version of U-net described in [29]
in multiple ways. First, it allows varying the number of levels of the network,
so that one can tune the model behavior more freely. Using fewer levels will
significantly reduce the number of parameters in the network, with the dis-
advantage that the classification of any one pixel will receive context from a
smaller area. Further, this implementation uses padding before convolution
layers that ensures that the classified image is the same size as the input
image. The reason for this change from the original architecture is that it
ensures that the output image always has the same size, independent of the
specific architecture chosen.

In the previous project, zero-padding was used for this. This led to the
network struggling to detect channels around the edges of the image. There
are multiple ways of solving this problem. One option introduced by [41]
is to horizontally stack multiple copies of the image as shown in Figure
6.1, which gives a better impression of the periodic azimuthal direction.
However, this is problematic, as it will at least double the memory usage for
every image (depending on the number of stacked images). Another option
is to make the network periodic in the azimuthal direction. This is done by
applying cylindrical padding, meaning that the top and bottom are zero-
padded, whereas the sides are padded by data from the opposite side of the
image, as shown in Figure 6.2. This is a far more efficient approach, as the
memory overhead is minimized. Therefore, this will be the approach used
in the U-Net model.

6.3 Model training

To train the models, the previously annotated dataset of ultrasonic well log
data provided by Equinor ASA is used. Although the dataset contains a
large number of logs, only 29 log images were labelled for this project due
to time constraints.

50CHAPTER 6. DEEP LEARNING METHODS FOR FLUID CHANNEL DETECTION

0 90 180 270 360 450 540 630 720 810 900 990 1080

Azimuth [Deg]

XXX6.0

XXX8.0

XXX0.0

XXX2.0

XXX4.0

XXX6.0

XXX8.0

XXX0.0

XXX2.0

XXX4.0

XXX6.0

XXX8.0

XXX0.0

D
ep

th
[m

]

AIBK

0 2 4 6 8 10

Figure 6.1: An example of how log images may be horizontally stacked to
improve the perception of the periodic azimuthal axis. This log segment is
the same as in Figure 2.2

6.3. MODEL TRAINING 51

Figure 6.2: An overview of the cylindrical padding process. (a): The original
image. (b) and (c): A stripe of the same width as the padding is picked
from the left side of the image, flipped, and appended to the right side of
the image. (d) and (e): The same process is repeated, taking a segment
from what was the right side of the image, flipping, and appending to the
left side. (f): Finally, zero padding is applied to the top and bottom of the
image.

52CHAPTER 6. DEEP LEARNING METHODS FOR FLUID CHANNEL DETECTION

Because of the limited size of the dataset, transfer learning is tested
as it should help teach the network to recognize basic image features. The
CAMUS dataset [42] is used for this purpose. This is a dataset of segmented
cardiac ultrasonic images. At first glance, these images seem to have very
little in common with the image well logs, they were chosen because they
only have 1 channel (i.e. they are grayscale images), and because the features
in the images are fairly simple, just like the channels in the ultrasonic well
logs.

The small number of labelled log images means that the training process
is more vulnerable to overfitting, which is the phenomenon of the neural
network memorizing training data rather than learning general patterns.
This is a common problem in deep learning since the number of parameters
in the network is normally much larger than the number of data points.
To overcome this problem, semi-supervised learning with pseudo labels is
used, as described in section 3.2. This allows using the unlabelled parts of
the dataset as training data, by generating so-called ”pseudo-labels”, where
the model is used to predict labels for the unlabelled data after each epoch.
This allows exposing the network to a wider array of features, and should
help improve performance. There are different options for how to use these,
ranging from using pseudo-labelled images from the beginning of training, to
using it as a fine-tuning method towards the end of training. For this thesis,
the latter is chosen. This is due to the difficulties with confirmation bias
introduced when using pseudo labels. This is less likely to cause big problems
if the model has already been trained to a point where it is performing well.
This means that the model is first trained using only labelled data. At a
later stage, when the model is starting to get close to peak performance, the
training is switched to using a combination of labelled and pseudo-labelled
data.

A well known technique to avoid overfitting, is to use data augmentation.
Data augmentation is the process of changing the data in ways that don’t
affect the label of the data. Common ways of doing this is shearing, rotating
and flipping images. For our purposes, we only use flipping, as well as a
rotation of the azimuthal reference, that is, we shift where the cylindrical
coordinate system is “opened” to retrieve a 2D image. Traditional rotations
of these images would not work for obvious reasons (the image is very high
and narrow, and a rotation would destroy the periodicity of the image).

Further, because of hardware optimizations, all images in a batch must
be the same size. This is achieved by randomly drawing the images for the
batch as normal. Then the image with the shortest depth interval is found.
All other images in the batch are cut down to this height by drawing a depth
interval from the log by a uniform distribution.

Drawing depth intervals from the logs from a uniform distribution intro-
duces a problem into the learning setup: It will have a tendency to create
unbalanced training data. Typically, the longest logs will contain long free

6.3. MODEL TRAINING 53

pipe intervals containing little interesting information, as there will typically
be no cement behind the casing, which means that the log simply shows a
lot of fluid, with some patches that are typically caused by contact with the
formation. It is desirable to create a system that makes it more probable to
use data with a higher density of non-zero labels for training the network.
Because this classification task is set up with a boolean classification, this
is fairly simple. First, compute a per-depth label density by summing each
row of data. This produces a label density function of depth, as follows:

g(z) =
∑
ϕ

L(z, ϕ) (6.1)

Here, g is the label density per depth index, z is the depth, L is the matrix
of labels, and ϕ is the azimuth. Second, we want the density of labels inside
the slice that will be used for training. This is found by summing g(z) over
the appropriate z. This is obtained by a convolution between g and a rect
function, i.e. a function that is 1 over a given interval, and 0 elsewhere:

rectI(x) =
{

1 x ∈ I
0 else

(6.2)

We then obtain the desired probability distribution for each interval starting
depth as

f(dbegin) = (g ∗ rect[−∆z,0])(zbegin), (6.3)

where f is the desired (unscaled) probability distribution, ∆z is the length
of the depth interval to be sampled, and zbegin is the starting depth of the
depth interval. Finally, the probability distribution is found by normalizing
f

p(zbegin) = f(zbegin)∑
x f(x) (6.4)

This allows sampling depth intervals with probability density f , which will
ensure that there is a significant presence of features in the data that are
provided for training.

This solution solves the problem of sampling large intervals with no
labels. However, this introduces the problem that such intervals will never
be sampled, which is not ideal. To solve this, one may add a small value to
every element in the unscaled probability density function, to ensure that
every depth interval has some small probability of being sampled, like so:

faug(zbegin) = f(zbegin) + b,

where b is the baseline value. To obtain the probability distribution, (6.4)
is applied to faug.

Towards the end of the training, semi-supervised learning with pseudo-
labels [17] is used to improve performance further. This is performed as

54CHAPTER 6. DEEP LEARNING METHODS FOR FLUID CHANNEL DETECTION

follows: For each epoch, the model is used to predict an unlabelled dataset.
The predictions are then rounded and used as pseudo-labels for the unla-
belled data. Each data batch fed to the training algorithm is set up as a
mixture of labelled data and pseudo-labelled data.

6.4 Model selection
Given the general U-net architecture in Figure 4.8, there is a significant
opportunity for modification of the architecture. Specifically, we vary the
number of filters (feature maps). In a previous work [3], the number of levels
of the U-net was varied. However, for this thesis, all models use two levels.
There are two reasons for this:

1. In [3], all images were captured over 72 azimuths. This meant that the
triple pooling used in such an architecture was possible. For this thesis
however, the images are kept at their original resolution, which means
that the network needs to be able to accept images with 36 azimuths.
This is because, as explained in Section 4.4, 2 levels will reduce the
images azimuth dimension to 9, which is not divisible by 2.

2. The findings of [3] indicated that the number of filters had a much
bigger impact on the performance of the network than the number of
levels.

In order to compare the models, their performance must be estimated.
In [3], bootstrapping was used for this purpose. However, this turned out
to give a lot of samples with very poor performance, meaning that the final
estimates of model performance were very low compared to the expected
real world performance. To circumvent this problem, the bootstrapping is
replaced by crossvalidation. Here, the data for each sample are selected as
shown in Figure 3.1.

The training data is used to train the model, whereas the test set is
used to compute an evaluation metric on the trained model. This procedure
is repeated a number of times, and the performance metric of the model
architecture is estimated as the average of the performance metric value
over all bootstrap samples. This allows for comparing the performance of
different model architectures.

Further, to avoid overfitting, validation data checkpoints are employed
when training the model. This means that a few data points are removed
from the training set in order to constitute a validation set. For each training
epoch, a performance metric is computed on the validation data. We store
model weights that resulted in the best validation performance metric rather
than the weights from the final training step. This is done due to the fact
that when the model starts overfitting, the validation metrics will begin
to decline. The checkpoints will therefore ensure that one retains model

6.4. MODEL SELECTION 55

parameters that provide good performance on data that are not present in
the training set.

For final testing of the chosen model from the model selection step, the
model is trained using all the data from the crossvalidation. Further, it
is tested on the test set, and the model is evaluated using the IoU and
Dice coefficients, as well as an ROC curve. An ROC curve is constructed
by varying the classification threshold for a classifier between 0 and 1, and
recording the true positive and false positive rates. A good classifier will be
able to achieve both a high true positive rate and a low false positive rate,
and so, the curve will tend to first go up steeply almost to TPR = 1, and
then slowly approach TPR = 1 while the false positive rate increases. In
order to easily quantify the performance of a classifier based on an ROC
curve, the area under curve metric (AUC) is often used. A higher AUC
will mean that the classifier tends to have a high true positive rate and
low true negative rate simultaneously. A commonly used baseline for ROC
curves is the “chance” curve, i.e. a straight line. However in this case, a
better baseline is to use a simple classifier based on raw AIBK data. In
this case, we clip the AIBK values to the interval [0, 10]MRayl, and then
normalize to the interval [0, 1] by dividing all values by 10. We denote this
by AIBKnorm. Since lower impedance values indicate fluid behind the casing,
a basic approach is to let the channel classifier be one minus the normalized
acoustic impedance value,

S = 1 − AIBKnorm, (6.5)

where 1 is a matrix of 1’s of the same dimensions as AIBK. Classifications
are obtained by applying a threshold to S.

Chapter 7

Channel detection results

This chapter will summarize the results from the deep learning part of this
thesis.

7.1 Testing training methods

First, we discuss the different training methods, namely transfer learning
and and semi-supervised learning. The IoU obtained with each method is
estimated by 10-fold cross-validation. The models are first trained with a
supervised setup, either initialized from a transfer learning model, or from a
random initialization [27]. After the supervised training stage the models are
tested, before a semi-supervised training stage is run. Finally, the models
are tested again. This yields 4 distinct training setups. The model used
for this test is the model that achieved the best results in [3], namely a
U-net with 24 filters. However, as mentioned earlier, the current model
is limited to 2 layers, and uses the cylindrical padding developed for this
thesis. The performance distribution over the folds is shown in Figure 7.1,
while the results of this are summarized in Table 7.1. Figure 7.2 shows the
performance on every fold.

It is clear from Table 7.1 alone that semi-supervised learning provides a
significant benefit. To confirm this, a one-sided Wilcoxon test is performed.
With H0: Original setup > Semi-supervised, p = 0.048, indicating that
H0 should be rejected, so the semi-supervised setup is indeed significantly
better.

Table 7.1: Crossvalidation performance for the different training setups
tested.

No transfer learning Transfer learning
Supervised learning 0.23 ± 0.09 0.30 ± 0.15

Semi-supervised learning 0.31 ± 0.14 0.29 ± 0.13

56

7.1. TESTING TRAINING METHODS 57

0.0 0.5 1.0
IoU

0

1

2

3

4

5

C
ou

nt

(a)

0.0 0.5 1.0
IoU

(b)

0.0 0.5 1.0
IoU

(c)

0.0 0.5 1.0
IoU

(d)

Figure 7.1: Histogram of IoUs from the training testing. (a) Original setup.
(b) Semi-supervised learning. (c) Transfer learning. (d) Transfer learning
and semi-supervised learning.

2 4 6 8 10

0.2

0.4

Fold number

Io
U

(a)
(b)
(c)
(d)

Figure 7.2: Performance per crossvalidation fold for each of the tested train-
ing methods. (a), (b), (c), and (d) represent the same training methods as
in Figure 7.1.

58 CHAPTER 7. CHANNEL DETECTION RESULTS

Table 7.2: Crossvalidation performance for each number of filters tested for
the U-Net model.

Filters IoU
1 0.08 ± 0.07
2 0.09 ± 0.06
4 0.17 ± 0.08
8 0.24 ± 0.11
12 0.29 ± 0.15
18 0.32 ± 0.16
24 0.34 ± 0.16
30 0.32 ± 0.15

7.2 Model selection
In order to assess whether it may improve performance, the Swish activation
function is tested using crossvalidation. This test is performed using 6 mod-
els of 18, 24, and 30 filters, with ReLU and Swish. Testing the significance of
the ReLU’s performance relative to that of Swish (H0: IoUReLU < IoUSwish),
gives p=0.0001, meaning that H0 is rejected, i.e. that Swish does not provide
any improvement over the ReLU.

Based on the tests of the training methods, 8 models are tested using the
combination of supervised learning first, and then semi-supervised learning.
All models use 2 levels, and ReLU activation. Thus, the only variable is the
number of filters. The models and their scores are presented in Table 7.2

Further, a graph of the model performance is shown in Figure 7.4.
Performing Wilcoxon-tests over all pairs yields the matrix of p-values

P =

i\j 1 2 4 8 12 18 24 30

1 0.86 1.0 1.0 1.0 1.0 1.0 1.0
2 0.16 0.99 1.0 1.0 1.0 1.0 1.0
4 9 · 10−4 0.01 0.99 1.0 1.0 1.0 1.0
8 2 · 10−3 6 · 10−3 0.01 0.95 0.99 1.0 1.0
12 2 · 10−3 2 · 10−3 3 · 10−3 0.07 0.92 1.0 0.90
18 9 · 10−4 9 · 10−4 9 · 10−4 0.01 0.10 0.75 0.28
24 2 · 10−3 9 · 10−4 2 · 10−3 9 · 10−4 7 · 10−3 0.28 0.10
301 2 · 10−3 2 · 10−3 2 · 10−3 3 · 10−3 0.11 0.75 0.92

,

Where pi,j is the p-value for the test with H0 : Model with j filters >
Model with i filters(The first index corresponds to the row, and the second
to the column). Here, a low p-value indicates that a model with i filters
is as good, or better than a model with j filters. For example, p24,1 =
2 · 10−3, indicating that 24 filters is significantly better than 1 filter. Note

7.2. MODEL SELECTION 59

2 4 6 8 10
Fold number

0.0

0.2

0.4

0.6

Io
U

1 filter

2 filters

4 filters

8 filters

12 filters

18 filters

24 filters

30 filters

Figure 7.3: Performance per crossvalidation fold for each of the models
tested, corresponding to Table 7.2.

0 3 6 9 12 15 18 21 24 27 30
Filters

0.0

0.1

0.2

0.3

0.4

0.5

Io
U

CV IoU

CV IoU ± σ

Figure 7.4: Graph of the performance as a function of the number of filters
in the U-Net model, with uncertainty.

60 CHAPTER 7. CHANNEL DETECTION RESULTS

0 90 180 270 360
Azimuth [deg]

XXX4.0

XXX5.0

XXX6.0

XXX7.0

XXX8.0

XXX9.0

XXX0.0

D
ep

th
[m

]

AIBK

0 90 180 270 360
Azimuth [deg]

Label

0 90 180 270 360
Azimuth [deg]

Prediction

Figure 7.5: A test of the final U-Net model with 24 filters. This log is from
the Volve data village [43].

Table 7.3: Performance overview for the final U-Net model.
Value

True positive rate 0.63
False positive rate 0.05
False negative rate 0.37
True negative rate 0.95

that in many cases pij 6= 1 − pji. This is unexpected, but is likely due to a
limited data table used in the Wilcoxon test function, which causes limited
resolution in the p-values.

7.3 Final testing
Using the best performing model from the model selection, the model using
24 filters, a final model is trained for testing. Example results are shown
in Figures 7.5 and 7.6. The performance of this model on the test set is
summarized in Table 7.3.

Finally, by moving the threshold for the predictions, an ROC curve is
produced, as shown in Figure 7.7

7.3. FINAL TESTING 61

0 90 180 270 360
Azimuth [deg]

XXX1.0

XXX2.0

XXX3.0

XXX4.0

XXX5.0

XXX6.0

XXX7.0

XXX8.0

D
ep

th
[m

]

AIBK

0 90 180 270 360
Azimuth [deg]

Label

0 90 180 270 360
Azimuth [deg]

Prediction

Figure 7.6: A test of the final U-Net model with 24 filters. This log is from
the Volve data village [43].

Table 7.4: Metrics for the final U-Net model.
Metric Value
IoU 0.44
Dice 0.61

Table 7.5: AUC metrics based on Figure 7.7.
Model AUC
U-Net 0.882
1 − AIBKnorm 0.846

62 CHAPTER 7. CHANNEL DETECTION RESULTS

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

os
it

iv
e

ra
te

U-Net

S = 1− AIBKnorm

Figure 7.7: ROC curve for the final U-Net model, as well as a simple model
used for comparison.

Chapter 8

Discussion

This chapter will discuss the findings in Chapters 5 and 7.

8.1 Well log imaging

As mentioned previously, the analysis of the measurement locations is in-
hibited by the lack of accelerometer data. However, it is still clear from
the analysis used here, that analyzing the measurement locations explains
artefacts in the images normally displayed in ultrasonic well logs.

The nearest neighbor image provides a simple way to paint a better
picture of where the measurements are made. For this thesis, however, the
main use of this image is as a comparison for the kriging images. This
is because the nearest neigbor image retains the general appearance of the
raw image display, while implementing the more accurate information about
where the measurements are collected from.

The kriging produces realistic-looking estimates, although it is challeng-
ing to conclude on which estimate is the best, due to the fact that the ground
truth is unknown. This also means that even if a set of good parameters
for the covariance are found for one log, they will not necessarily be equally
good for a different log, meaning that parameter testing will be necessary for
every new log. It is however clear that the combination of the expectation
image and the random realizations works as a valuable tool to better un-
derstand the possible variation given the measurements. Further, it enables
far better analysis in cases where it is difficult to determine what is behind
the casing from the raw impedance images alone.

The most prominent limitation of the approach is the computational
expense. For this thesis, the longest logging interval used for kriging was
around 1 meter. This means that it is completely infeasible to make evalu-
ations directly on images produced by kriging. One of the reasons for this
is that the kriging library used does not leverage the sparsity of the covari-
ance matrix for this application. It is obvious that the covariance function

63

64 CHAPTER 8. DISCUSSION

around a given point will have compact support, that is, each point will
only correlate with a limited number of points, which are the points in the
immediate neighborhood. This will in turn lead to a sparse covariance ma-
trix, i.e. a matrix with a large fraction of its entries being 0. A library
with specific support for this would be able to save a lot of computational
resources, which would enable kriging of far longer log intervals. This will
further make the random sampling more efficient, as logging intervals far
away from each other can be estimated and sampled independently of each
other.

Another limitation of this analysis is that a constant mean is used. While
this is not critical for such short intervals analyzed here, the mean should
ideally be estimated locally, to avoid biasing the gaussian process as seen in
Figure 5.14.

8.2 Deep learning

The high standard deviation of the estimates in Table 7.1 does at first look
problematic for comparing both different training methods, and for com-
paring models later. However, as shown by Figure 7.2, the performance of
the different training setups is correlated, meaning that most of the varia-
tion is caused by some folds being more challenging to learn than others.
The Wilcoxon test used for comparing different approaches compares per-
formance on a per-fold basis, meaning that the variation in difficulty across
folds is eliminated in the statistical testing.

As seen from Table 7.1 training with either semi-supervised learning,
transfer learning, or both, is significantly better than not using any of the
techniques. However, there is not a significant difference between these 3
methods, with all p values from Wilcoxon tests being larger than 0.2.

At the start of this thesis, we hypothesised that the transfer learning
would introduce a large increase in performance. The results found here
are weaker than expected. This may be due to the fact that the medical
ultrasound images show impedance contrasts. Because of this, detecting
features in such images is based on detecting edges and ridges, and then
creating regions using these edges and ridges. Conversely, the well log data
have absolute impedance values, meaning that here, the model is looking for
features with a certain appearance, and within a given absolute impedance
range.

An alternative approach to transfer learning using an unrelated dataset
could be to generate synthetic data. One could do this by using an algorithm
to first define the output image. This image could be built with a combi-
nation of patches and channels, where the channels could be generated by a
random height, a random width (which can vary randomly across different
depths), and a wandering azimuthal position. From there, one could simply

8.2. DEEP LEARNING 65

translate this to probable impedance values, add casing collar signatures,
and perhaps some noise on top. As this is a fairly simple process, this seems
more feasible than transfer learning on images from a different domain.

Further, the results indicate that semi-supervised learning works well. As
has been discussed earlier, confirmation bias may present a problem in setups
using pseudo-labelling. This is an interesting point for further investigation.
One could also experiment with different thresholds for the pseudo-labels, to
augment the models performance. This step was considered for this thesis,
but was omitted due to time constraints.

Given that the performance with only transfer learning and only semi-
supervised learning is similar, a choice must be made on which one to proceed
with. As mentioned earlier, the dataset used for transfer learning may not
be ideal for this application. By looking at Figure 7.2, we see that semi-
supervised learning achieves the highest peak performance in addition to
having the highest estimated performance by the crossvalidation shown in
Table 7.1. Further, given the access to a large number of unlabelled logs, this
is a simple option to improve performance. Based on this, semi-supervised
learning has been chosen as the training method for the remaining tests.

This means that for model testing, the models are first trained using
supervised learning, and then trained further with semi-supervised learning,
like in the training method tests. The results are shown in Table 7.2. As
with the training method testing, the standard deviations are fairly high.
However, as Figure 7.3 shows, most of this variation is still related to how
challenging the folds are to learn. As seen in Figure 7.4, the performance
peaks around 24 filters. From examining P in (7.2), the models with 18, 24,
and 30 filters are not significantly different. However the figure still indicates
that 24 filters is the best choice for a final model.

Final testing produces the results shown in Table 7.3. It is clear that the
model still has problems detecting all channels like in [3], however the true
positive rate is higher (63% vs 45%). Further, by looking at Figure 7.5, we
see that the addition of the cylindrical padding has been successful in the
sense that the model is able to detect channels “wrapping” around the edge
of the image. This solves the problem observed in the project [3], where
the model would not detect channels that passed the edge of the image,
appearing on the oppisite side. Table 7.4 shows that the final model has an
IoU of 44%. This is higher than the estimated performance of Table 7.2,
however it is worth noting first that this model is trained with all the data
used for the crossvalidation, and that the peak performance of this model in
the crossvalidation testing is higher than 44%, as indicated by Figure 7.3.

The ROC curve in Figure 7.7 shows far better than chance performance.
The ROC curve provides more useful information about the performance
of the classifier than metrics based on a 0.5 threshold. This is because an
evaluator should be able to decide the threshold based on risk tolerance.
In a risk-averse context, the user should be able to set a low threshold to

66 CHAPTER 8. DISCUSSION

minimize the number of false negative findings.
From Table 7.5, we see that the AUC for the U-Net model is slightly

better than the basic model S given in (6.5). This small difference is likely
caused by the basic model detecting free-pipe intervals as channels. This
means that if this method was slightly more refined it might out-perform the
U-net model. This refinement should probably include both some method
for detecting free-pipe intervals, which can be done using a threshold on
the average impedance per depth, as well as some clustering method, that
ignores patches below a certain size. Such an approach would leave only
a few trainable parameters, which should be far easier to learn than the
U-Net’s ∼260000 parameters.

As mentioned previously, well log evaluations are highly subjective. This
means that the edges of features will tend to be highly variable depending on
the evaluator, and sometimes the appearance of the feature. However, it is
more critical that the feature is detected, than exactly where the edges are,
within reason. This means that a performance metric weighting the interior
of a feature more than the exterior could provide a performance benefit over
the IoU and Dice coefficients used for this thesis.

The addition of cylindric padding means that the rotations used for
data augmentation previously is now redundant. However, one may use an
azimuthal rotation of the image that varies slowly in depth in cylindrical
coordinates (shearing in the flat image). This would conserve continuity of
any features, while distorting the image sufficiently to provide the machine
learning with different features than those present in the raw data. For this,
one could for instance generate a depth-wise rotation using a random walk
(brownian motion). This has not been done in this project due to time
constraints, but may be an interesting development for future work.

For this thesis, the deep learning model only received acoustic impedance
images as input. As explained in Chapter 2, well log evaluations are based
on multiple data channels. As such, it is likely that performance could be
improved by including more data channels, such as thickness images.

8.3 Future work

A major problem with the kriging is that the ground truth is not known,
making it difficult to assess which parameters produce the best estimate.
Therefore, an interesting exercise would be to test kriging in a case where the
ground truth is known. A partial solution to this would be to downsample a
high-resolution log, and then use kriging to upsample the log to its original
resolution. This could help shed more light on how to do kriging of AIBK
images. It would also be interesting to test data-driven approaches to finding
the correlation function, and comparing this to the correlation functions used
in this thesis.

8.3. FUTURE WORK 67

As discussed previously, it is still likely that the machine learning ap-
proach to detecting channels could be improved by improving the volume
of labelled data even more. However, as indicated by Figure 7.7, this model
only barely outperforms the naive model based on input data alone. This
indicates that perhaps the machine learning is an overly complex approach
to the problem, and that the problem should rather be approached with sim-
pler, classical image analysis methods, as described previously. It is however
worth noting that the annotations made for this thesis are still useful for
training and testing a classical image analysis method, meaning that a large
portion of the work done for this thesis is still relevant even if deep learning
does not seem like a good tool to solve the feature detection problem posed
in this thesis.

Chapter 9

Conclusion

This thesis utilized deep learning for detecting channels in the casing cement
of oil and gas wells. Alongside this task, a detailed analysis of the ultrasonic
measurements was made, focusing specifically on how to reconstruct images
from the measurements using kriging. This approach yielded a deeper insight
into how to evaluate the logs, and has potential for being a useful tool in
future work on well integrity evaluations, as well as for further research on
feature detection in such well logs.

This thesis implemented several improvements over previous work on
this problem. While the performance was improved over previous efforts,
the results also show that a far simpler approach to the problem yields
competitive results. It is likely that an even larger volume of data would
help the deep learning approach, however given the volume of data available
now, it is not certain that a further increase in data volume will be enough
to make the performance sufficient for operational use.

At this point, the deep learning approach to this problem seems like an
overly complex solution given the results presented here. Therefore, further
work on this problem will likely be more successful with an emphasis on
classical methods.

68

Bibliography

[1] S. H. Bittleston, J. Ferguson, and I. A. Frigaard. “Mud removal and
cement placement during primary cementing of an oil well”. In: Jour-
nal of Engineering Mathematics 43.2-4 (2002), pp. 229–253. issn:
00220833. doi: 10.1023/A:1020370417367.

[2] Ragnhild Skorpa and Torbjørn Vrålstad. “Visualization of fluid flow
through cracks and microannuli in cement sheaths”. In: SPE Journal.
Vol. 23. 4. Society of Petroleum Engineers, 2018, pp. 1067–1074. doi:
10.2118/180019-pa.

[3] Simon Andreas Hoff. “Feature detection in petroleum well logs”. 2020.
[4] M Van Ginkel et al. Robust Curve Detection using a Radon Transform

in Orientation Space Applied to Fracture Detection in Borehole Im-
ages. Tech. rep. 2003, pp. 299–306. url: https://d1rkab7tlqy5f1.
cloudfront.net/TNW/Over%20faculteit/Decaan/Publications/
2001/ASCI2001MGLVPV.pdf.

[5] K. Glossop et al. “An Implementation of the Hough Transformation
for the Identification and Labelling of Fixed Period Sinusoidal Curves”.
In: Computer Vision and Image Understanding (2002). issn: 10773142.
doi: 10.1006/cviu.1999.0747.

[6] Yinyu Wang et al. Method of determining planar events from borehole
or core images. 2007. url: https://patents.google.com/patent/
US7236887B2/en.

[7] Erlend Magnus Viggen et al. “Automatic interpretation of cement eval-
uation logs from cased boreholes using supervised deep neural net-
works”. In: Journal of Petroleum Science and Engineering (2020). in
press.

[8] E.B. Nelson and D. Guillot. Well Cementing. Developments in
petroleum science. Schlumberger, 2006. isbn: 9780978853006. url:
https://books.google.no/books?id=FblqPAAACAAJ.

69

https://doi.org/10.1023/A:1020370417367
https://doi.org/10.2118/180019-pa
https://d1rkab7tlqy5f1.cloudfront.net/TNW/Over%20faculteit/Decaan/Publications/2001/ASCI2001MGLVPV.pdf
https://d1rkab7tlqy5f1.cloudfront.net/TNW/Over%20faculteit/Decaan/Publications/2001/ASCI2001MGLVPV.pdf
https://d1rkab7tlqy5f1.cloudfront.net/TNW/Over%20faculteit/Decaan/Publications/2001/ASCI2001MGLVPV.pdf
https://doi.org/10.1006/cviu.1999.0747
https://patents.google.com/patent/US7236887B2/en
https://patents.google.com/patent/US7236887B2/en
https://books.google.no/books?id=FblqPAAACAAJ

70 BIBLIOGRAPHY

[9] S. Ştefănescu in collaboration with C. and M. Schlumberger. “Sur
la distribution électrique potentielle autour d’une prise de terre
ponctuelle dans un terrain à couches horizontales, homogènes et
isotropes”. In: Le journal de physique et le radium, Série 7, Tome
1 (1930), pp. 132–140.

[10] M. Grosmangin, P.P. Kokesh, and P. Majani. “A Sonic Method for
Analyzing the Quality of Cementation of Borehole Casings”. In: Jour-
nal of Petroleum Technology 13.02 (Feb. 1961), pp. 165–171. issn:
0149-2136. doi: 10.2118/1512-g-pa.

[11] Warren L. Anderson and Terry Walker. “Research Predicts Im-
proved Cement Bond Evaluations With Acoustic Logs”. In: Journal of
Petroleum Technology 13.11 (Nov. 1961), pp. 1093–1097. issn: 0149-
2136. doi: 10.2118/196-pa.

[12] G.H. Pardue and R.L. Morris. “Cement Bond Log-A Study of Ce-
ment and Casing Variables”. In: Journal of Petroleum Technology 15.05
(May 1963), pp. 545–555. issn: 0149-2136. doi: 10.2118/453-pa.

[13] Ioan Alexandru Merciu. Personal communication. Equinor ASA. 2019.
[14] NORSOK STANDARD D-010 Well integrity in drilling and well op-

erations. Tech. rep. url: www.standard.no/petroleum.
[15] A.J. Hayman, R. Hutin, and P.V. Wright. “High-Resolution Cementa-

tion And Corrosion Imaging By Ultrasound”. In: SPWLA 32nd Annual
Logging Symposium (1991).

[16] R. Van Kujik et al. “A novel ultrasonic cased-hole imagerfor enhanced
cement evaluation”. In: 2005 International Petroleum Technology Con-
ference Proceedings. 2005, pp. 855–868. doi: 10.2523/iptc-10546-
ms.

[17] Dong-Hyun Lee. Pseudo-Label : The Simple and Efficient Semi-
Supervised Learning Method for Deep Neural Networks. Tech. rep.

[18] Eric Arazo et al. Pseudo-Labeling and Confirmation Bias in Deep
Semi-Supervised Learning. Tech. rep. arXiv: 1908 . 02983v5. url:
https://git.io/fjQsC..

[19] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin.
Learning from data : a short course. AMLBook.com, 2012. isbn:
9781600490064.

[20] Prajit Ramachandran, Barret Zoph, and Quoc V Le Google Brain.
SEARCHING FOR ACTIVATION FUNCTIONS. Tech. rep. arXiv:
1710.05941v2.

[21] File:Colored neural network.svg - Wikipedia. url: https : / / en .
wikipedia.org/wiki/File:Colored%7B%5C_%7Dneural%7B%5C_
%7Dnetwork.svg (visited on 01/06/2020).

https://doi.org/10.2118/1512-g-pa
https://doi.org/10.2118/196-pa
https://doi.org/10.2118/453-pa
www.standard.no/petroleum
https://doi.org/10.2523/iptc-10546-ms
https://doi.org/10.2523/iptc-10546-ms
https://arxiv.org/abs/1908.02983v5
https://git.io/fjQsC.
https://arxiv.org/abs/1710.05941v2
https://en.wikipedia.org/wiki/File:Colored%7B%5C_%7Dneural%7B%5C_%7Dnetwork.svg
https://en.wikipedia.org/wiki/File:Colored%7B%5C_%7Dneural%7B%5C_%7Dnetwork.svg
https://en.wikipedia.org/wiki/File:Colored%7B%5C_%7Dneural%7B%5C_%7Dnetwork.svg

BIBLIOGRAPHY 71

[22] Michael A. Nielsen. Neural Networks and Deep Learning. 2015. url:
http://neuralnetworksanddeeplearning.com.

[23] Ilya Kuzovkin et al. “Activations of deep convolutional neural networks
are aligned with gamma band activity of human visual cortex”. In:
Communications Biology 1.1 (Dec. 2018), pp. 1–12. issn: 23993642.
doi: 10.1038/s42003-018-0110-y. url: https://www.nature.com/
articles/s42003-018-0110-y.

[24] Grace W Lindsay. Convolutional Neural Networks as a Model of the
Visual System: Past, Present, and Future. Tech. rep.

[25] Francois Chollet. Deep Learning with Python. Vol. 80. Manning Pub-
lications Co., 2018, p. 453. isbn: 9781617294433. eprint: 1-933988-
16-9.

[26] Gareth James et al. An Introduction to Statistical Learning. Vol. 103.
Springer Texts in Statistics. New York, NY: Springer New York, 2013.
isbn: 978-1-4614-7137-0. doi: 10.1007/978-1-4614-7138-7. url:
http://link.springer.com/10.1007/978-1-4614-7138-7.

[27] Kaiming He et al. Deep Residual Learning for Image Recognition.
Tech. rep. arXiv: 1512 . 03385v1. url: http : / / image - net . org /
challenges/LSVRC/2015/.

[28] Dan C Ciresan et al. Deep Neural Networks Segment Neuronal Mem-
branes in Electron Microscopy Images. Tech. rep. 2012. url: http:
//www.idsia.ch/.

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Con-
volutional networks for biomedical image segmentation”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9351.
Springer Verlag, 2015, pp. 234–241. isbn: 9783319245737. doi: 10.
1007/978-3-319-24574-4_28. arXiv: 1505.04597.

[30] Recommended Digital Log Interchange Standard (DLIS), Version
1.00: API Recommended Practice 66 (RP66). Tech. rep. American
Petroleum Insitute, 1991. url: http://www.posc.org/technical/
data%7B%5C_%7Dexchange/RP66/V1/rp66v1.html.

[31] Welcome to dlisio’s documentation! — dlisio 0.1 documentation.
url: https://dlisio.readthedocs.io/en/stable/ (visited on
08/30/2019).

[32] What is HDF5? url: https : / / support . hdfgroup . org / HDF5 /
whatishdf5.html (visited on 01/08/2020).

[33] Erlend Magnus Viggen. Personal communication. NTNU/CIUS. 2019.

http://neuralnetworksanddeeplearning.com
https://doi.org/10.1038/s42003-018-0110-y
https://www.nature.com/articles/s42003-018-0110-y
https://www.nature.com/articles/s42003-018-0110-y
1-933988-16-9
1-933988-16-9
https://doi.org/10.1007/978-1-4614-7138-7
http://link.springer.com/10.1007/978-1-4614-7138-7
https://arxiv.org/abs/1512.03385v1
http://image-net.org/challenges/LSVRC/2015/
http://image-net.org/challenges/LSVRC/2015/
http://www.idsia.ch/
http://www.idsia.ch/
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://arxiv.org/abs/1505.04597
http://www.posc.org/technical/data%7B%5C_%7Dexchange/RP66/V1/rp66v1.html
http://www.posc.org/technical/data%7B%5C_%7Dexchange/RP66/V1/rp66v1.html
https://dlisio.readthedocs.io/en/stable/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://support.hdfgroup.org/HDF5/whatishdf5.html

72 BIBLIOGRAPHY

[34] Erlend Magnus Viggen, Erlend Hårstad, and Jørgen Kvalsvik. “Get-
ting started with acoustic well log data using the dlisio Python li-
brary on the Volve Data Village dataset”. In: Proceedings of the 43rd
Scandinavian Symposium on Physical Acoustics. Ed. by Erlend Mag-
nus Viggen and Lars Hoff. Geilo, Norway: Norwegian Physical So-
ciety, Apr. 15, 2020, p. 36. isbn: 978-82-8123-020-0. url: https :
/ / www . researchgate . net / publication / 340645995 _ Getting _
started _ with _ acoustic _ well _ log _ data _ using _ the _ dlisio _
Python_library_on_the_Volve_Data_Village_dataset,%20Full-
text%20on%20ResearchGate%20https://github.com/equinor/
dlisio-notebooks/blob/master/acoustic.ipynb,%20Companion%
20Jupyter%20Notebook. published.

[35] C E Rasmussen and C K I Williams. Gaussian Processes for
Machine Learning. MIT press. isbn: 9780262182539. url: www .
GaussianProcess.org/gpml.

[36] Albert Tarantola. Inverse Problem Theory and Methods for Model Pa-
rameter Estimation. Society for Industrial and Applied Mathematics,
Jan. 2005. isbn: 978-0-89871-572-9. doi: 10.1137/1.9780898717921.
url: http : / / epubs . siam . org / doi / book / 10 . 1137 / 1 .
9780898717921.

[37] Gaussian Process Regressor. url: https : / / scikit - learn .
org / stable / modules / generated / sklearn . gaussian % 7B %
5C _ %7Dprocess . GaussianProcessRegressor . html (visited on
03/15/2020).

[38] Karol Zak. keras-unet: Helper package with multiple U-Net implemen-
tations in Keras as well as useful utility tools helpful when working
with image semantic segmentation tasks. This library and underlying
tools come from multiple projects I performed working. url: https:
//github.com/karolzak/keras-unet (visited on 12/03/2019).

[39] François Chollet et al. Keras. https://keras.io. 2015.
[40] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems. Tech. rep. arXiv: 1603.04467v2.
url: www.tensorflow.org..

[41] M Peter-Borie et al. “Borehole damaging under thermo-mechanical
loading in the RN-15/IDDP-2 deep well: towards validation of numer-
ical modeling using logging images”. In: (). doi: 10.1186/s40517-
018-0102-7. url: https://doi.org/10.1186/s40517-018-0102-7.

[42] Sarah Leclerc et al. “Deep Learning for Segmentation Using an Open
Large-Scale Dataset in 2D Echocardiography”. In: IEEE transactions
on medical imaging 38.9 (Sept. 2019), pp. 2198–2210. issn: 1558254X.
doi: 10.1109/TMI.2019.2900516. arXiv: 1908.06948.

https://www.researchgate.net/publication/340645995_Getting_started_with_acoustic_well_log_data_using_the_dlisio_Python_library_on_the_Volve_Data_Village_dataset,%20Full-text%20on%20ResearchGate%20https://github.com/equinor/dlisio-notebooks/blob/master/acoustic.ipynb,%20Companion%20Jupyter%20Notebook
https://www.researchgate.net/publication/340645995_Getting_started_with_acoustic_well_log_data_using_the_dlisio_Python_library_on_the_Volve_Data_Village_dataset,%20Full-text%20on%20ResearchGate%20https://github.com/equinor/dlisio-notebooks/blob/master/acoustic.ipynb,%20Companion%20Jupyter%20Notebook
https://www.researchgate.net/publication/340645995_Getting_started_with_acoustic_well_log_data_using_the_dlisio_Python_library_on_the_Volve_Data_Village_dataset,%20Full-text%20on%20ResearchGate%20https://github.com/equinor/dlisio-notebooks/blob/master/acoustic.ipynb,%20Companion%20Jupyter%20Notebook
https://www.researchgate.net/publication/340645995_Getting_started_with_acoustic_well_log_data_using_the_dlisio_Python_library_on_the_Volve_Data_Village_dataset,%20Full-text%20on%20ResearchGate%20https://github.com/equinor/dlisio-notebooks/blob/master/acoustic.ipynb,%20Companion%20Jupyter%20Notebook
https://www.researchgate.net/publication/340645995_Getting_started_with_acoustic_well_log_data_using_the_dlisio_Python_library_on_the_Volve_Data_Village_dataset,%20Full-text%20on%20ResearchGate%20https://github.com/equinor/dlisio-notebooks/blob/master/acoustic.ipynb,%20Companion%20Jupyter%20Notebook
https://www.researchgate.net/publication/340645995_Getting_started_with_acoustic_well_log_data_using_the_dlisio_Python_library_on_the_Volve_Data_Village_dataset,%20Full-text%20on%20ResearchGate%20https://github.com/equinor/dlisio-notebooks/blob/master/acoustic.ipynb,%20Companion%20Jupyter%20Notebook
https://www.researchgate.net/publication/340645995_Getting_started_with_acoustic_well_log_data_using_the_dlisio_Python_library_on_the_Volve_Data_Village_dataset,%20Full-text%20on%20ResearchGate%20https://github.com/equinor/dlisio-notebooks/blob/master/acoustic.ipynb,%20Companion%20Jupyter%20Notebook
www.GaussianProcess.org/gpml
www.GaussianProcess.org/gpml
https://doi.org/10.1137/1.9780898717921
http://epubs.siam.org/doi/book/10.1137/1.9780898717921
http://epubs.siam.org/doi/book/10.1137/1.9780898717921
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian%7B%5C_%7Dprocess.GaussianProcessRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian%7B%5C_%7Dprocess.GaussianProcessRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian%7B%5C_%7Dprocess.GaussianProcessRegressor.html
https://github.com/karolzak/keras-unet
https://github.com/karolzak/keras-unet
https://keras.io
https://arxiv.org/abs/1603.04467v2
www.tensorflow.org.
https://doi.org/10.1186/s40517-018-0102-7
https://doi.org/10.1186/s40517-018-0102-7
https://doi.org/10.1186/s40517-018-0102-7
https://doi.org/10.1109/TMI.2019.2900516
https://arxiv.org/abs/1908.06948

BIBLIOGRAPHY 73

[43] Volve Data Village. url: https://data.equinor.com/dataset/
Volve (visited on 01/03/2020).

https://data.equinor.com/dataset/Volve
https://data.equinor.com/dataset/Volve

