
Sarah Sayeed Q
ureshi

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

M
as
te
ro
pp

ga
ve

Sarah Sayeed Qureshi

AI Planning Methods for Subsea IMR
Operations

Masteroppgave i Kybernetikk og Robotikk
Veileder: Anastasios Lekkas

Juli 2020

Summary

Inspection, Maintenance and Repair (IMR) operations are essential in the subsea indus-
try, due to the high number of subsea installations. The current approach of performing
these operations are by human-operated underwater vehicles with a low level of autonomy.
Consequently, this thesis is exploring new methods for increasing the level of autonomy
by introducing an aspect of deliberative planning with the use of Automated Planning and
Scheduling (AI Planning). The use of AI Planning is inspired from space applications, as
these have shown great progress in increasing the level of autonomy for mission planning
problems.

This thesis also delves into a novel approach of using Reinforcement Learning (RL) in
order to solve a mission planning problem in the domain of subsea IMR operations. The
explored methods for solving the defined mission planning problem are Hierarchical Task
Network (HTN) and Graphplan from the domain of AI Planning and Q-learning from Re-
inforcement Learning.

Both the AI Planning methods and the RL method are used to solve a mission planning
problem which has been developed with important feedback from Remotely Operated Ve-
hicle (ROV)-operators from the subsea industry. In terms of the mission planning problem,
the aim has been to model and develop a mission in such a manner that it would reflect real
IMR operations. Hence, the domain of the mission planning problem contains elements
such as a subsea panel, a warehouse and a docking station which are common parts of
subsea installations.

The results obtained from the three methods, i.e. HTN, Graphplan and Q-learning give
an indication of how a software agent can solve a mission planning problem in the do-
main of subsea IMR operations. Furthermore, the methods are compared to one another in
their ability to solve the mission planning problem both with and without a replanning as-
pect. The two AI Planning methods are principally compared on their total runtime when
solving the mission, whilst the Q-learning algorithm is evaluated on the ability of actually
solving the mission planning problem by exploring and learning about the environment.

i

Sammendrag

Inspisering-, vedlikehold og reparasjonsoppdrag (eng: Inspection, Maintenance and Re-
pair) er helt essensielle i subsea-industrien, grunnet det store antallet installasjoner som
finnes på havbunnen. Nåværende tilnærming til disse oppdragene er bruken av men-
neskestyrte undervannsdroner som i svært liten grad er autonome. Av den grunn utforsker
denne avhandlingen nye metoder for å kunne øke nivået av autonomi i disse oppdragene
ved å benytte seg av ”AI Planning”. Inspirasjonen til å benytte seg av nettopp disse meto-
dene kommer fra romfartsindustrien hvor kunstig intelligent planlegging (eng: AI Plan-
ning) har hatt veldig lovende fremgang i å øke nivået av autonomi i et oppdrag.

Denne avhandlingen dykker også inn i en ny tilnærming av å løse planleggingsproblemer
for inspisering-, vedlikehold og reparasjonsoppdrag ved bruk av forsterkende læring (eng:
Reinforcement Learning). The utforskede metodene inkluderer ”Graphplan” og Hierarchi-
cal Task Network” (HTN) fra kunstig intelligent planlegging og Q-læring fra forsterkende
læring.

Både metodene innenfor kunstig intelligent planlegging og forsterkende læring er brukt for
å løse et planleggingsoppdrag som har blitt utviklet i samarbeid med fjernstyrte undervannsfarkost-
piloter (eng: Remotely Operated Vehicle-operators) fra subseaindustrien. Hovedmålet er
å modellere og utvikle et planleggingsoppdrag som skal kunne gjenspeile et reelt oppdrag
i industrien. Dermed består omgivelsene i det utviklede domenet av elementer som en
dockingstasjon, et varehus og et panel med et gitt antall ventiler, siden dette er vanlige
deler på en subsea-installasjon.

De oppnådde resultatene fra de tre implementerte metodene, dvs. HTN, Graphplan og
Q-læring, gir en indikasjon på hvordan en såkalt intelligent agent kan løse et slikt oppdrag
som er i sammenheng med inspisering-, vedlikehold og reparasjon av subsea-installasjoner.
I tillegg er methodene sammenlignet med hverandre basert på deres evne til å løse et slikt
oppdrag både med og uten omplanlegging. De to metodene innenfor kunstig intelligent
planlegging sammenlignes basert på kjøretiden deres når de løser planlegginsoppdraget,
mens Q-læring evalueres basert på dens evne til å løse det forenklede scenarioet ved å
utforske og lære av sine omgivelser.

ii

Preface

This thesis represents the conducted work of a master’s project affiliated with the depart-
ment of Engineering Cybernetics at the Norwegian University of Science and Technology
(NTNU). The works of this thesis has been conducted during spring 2020 and focuses
on how to model a Inspection, Maintenance and Repair mission and thereby solve it us-
ing Automated planning and scheduling (AI Planning) and Reinforcement Learning. The
works of this thesis is a continuation of the project thesis from fall 2019 [1], where three
AI Planning methods were explored. Additionally, this project is affiliated with the work
conducted on ”AI Planning for Underwater Intervention Drone” [2] by Libo Xue at the
department of Engineering Cybernetics.

It is worth mentioning that this current master’s project was initially about the potential
use of NASA’s planner EUROPA to solve the mission planning problem in the domain of
an IMR operation. Furthermore, the planner and the solution would be connected to the
low-level controller T-REX. Due to the unfortunate outbreak of Covid-19 and closing of
the university, the initial plan of collaborating closely together in the implementation of
EUROPA and T-REX was no longer possible. The objective of the master’s thesis was
therefore completely modified.

The development of this master’s thesis would not have been possible without the help
and support of professor Anastasios Lekkas at the department of Engineering Cybernetics.
He has helped formulate a clear objective and problem definition for the thesis, which has
been both relevant and interesting. Professor Lekkas also assisted in re-formulating the
objective of the thesis after the impact of the Covid-19 pandemic. Furthermore, Libo Xue,
offered great advice when modeling the IMR operation as a mission planning problem and
in selecting the most appropriate AI planning methods for solving it.

As the work is a continuation of the project thesis, there are several aspects which have
been re-used from the project report. Among these are some parts of the background in-
formation in Chapter 1, the theory regarding AI Planning in Chapter 2 and the explanation
of the Planning Domain Definition Language (PDDL) in Chapter 3. However, all the parts
from the project thesis have been modified to match the works of this thesis, in addition to
being improved and elaborated further.

The two AI planning methods and the Reinforcement Learning method are all imple-
mented in Python 3 and details about the libraries can be found in Chapter 3. The libraries
used for HTN, Graphplan and Q-learning are retrieved from [3], [4] and [5], respectively
and are all Python 3 compatible.

Finally, draw.io is used to produce illustrations related to the planning problems. In addi-
tion, illustrations from other resources are also reproduced in the same software if neces-
sary. The reproduced illustrations are still credited to the original reference.

iii

Acknowledgment

First and foremost, I would like to thank my supervisor Anastasios Lekkas for all the
guidance, motivation and interesting discussion we have had throughout the period of the
master project. Furthermore, I would also like to thank Libo Xue for giving me good ad-
vice regarding the implementation of the AI Planning methods.

I would additionally also thank my fellow graduate student and friends who have sup-
ported and helped me throughout this period of time, with both inspiring discussions and
motivational pep-talks. An extra thank you goes out to my dear friend Misbah, who has
taken out time to help me proofread this thesis.

Last, but not least I would like to thank my family for the immense support they have been
during my time at NTNU, especially this last semester with the unfortunate impact of the
Covid-19 pandemic. I am very thankful for my parents and brother, Sami, who drove all
the way to Trondheim in order to bring me back to Bergen so that I could finish my degree
surrounded by family. I am extremely grateful for my sister, Sophia, who has comforted
and supported me throughout all my years at NTNU, in addition to take out time to help
me with my master thesis.

01.07.2020
Sarah Sayeed Qureshi

iv

Table of Contents

Summary i

Sammendrag ii

Preface iii

Acknowledgment iv

Table of Contents vi

List of Tables vii

List of Figures x

List of Algorithms xi

List of Listings xiii

Abbreviations xiv

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objective . 4
1.3 Contribution . 4
1.4 Outline . 5

2 Theory 7
2.1 Automated Planning and Scheduling . 7

2.1.1 State-Space Planning . 8
2.1.1.1 STanford Research Institute Problem Solver 9
2.1.1.2 Sussman Anomaly . 11
2.1.1.3 Graphplan . 13

v

2.1.2 Plan-Space Planning . 15
2.1.2.1 Hierarchical Task Planner 16
2.1.2.2 Simple Hierarchical Ordered Planner 18

2.2 Machine Learning . 19
2.2.1 Markov Decision Process . 21
2.2.2 Reinforcement Learning . 22

2.2.2.1 Q-learning . 25

3 Tools and Libraries 27
3.1 Modeling Language . 27

3.1.1 PDDL . 27
3.2 Libraries . 30

3.2.1 Graphplan . 30
3.2.2 Hierarchical Task Network . 31
3.2.3 Q-learning . 32

4 Industrial Subsea Mission Definition and Implementation 35
4.1 Industrial Subsea Mission Definition . 35
4.2 Formulation of the Mission Planning Problem 38
4.3 Simplifications and Assumptions . 40
4.4 Problem Formulated in PDDL . 42
4.5 Implementation . 45

4.5.1 Hierarchical Task Network . 46
4.5.2 Graphplan . 50
4.5.3 Q-learning . 56

5 Results and Analysis 61
5.1 Mission Planning Problem without Replanning 61

5.1.1 Solution using Hierarchical Task Network 61
5.1.2 Solution using Graphplan . 65

5.2 Mission Planning Problem with Replanning 68
5.2.1 Solution using Hierarchical Task Network 68
5.2.2 Solution using Graphplan . 71

5.3 Mission Planning Problem solved with Q-learning 74
5.4 Analysis . 80

6 Conclusion 83

7 Further Work 85

Bibliography 87

vi

List of Tables

2.1 Overview of the different states in the HTN planning problem 17
2.2 The state transition probabilities for the example in figure 2.7 22

4.1 Overview of the defined methods and operators for HTN 50
4.2 The initial and goal states for each of the sub-missions for the Q-learning

algorithm . 56

5.1 The partial plan for obtained by solving the ”handle valve” task with HTN 62
5.2 The partial plan obtained by solving the ”inspect panel” task with HTN

for the replanning mission . 63
5.3 The partial plan obtained by solving the ”dock to docking station” task

with HTN for the replanning mission . 64
5.4 The overall solution obtained by the Graphplan algorithm for the mission

planning problem without replanning . 68
5.5 The partial plan obtained by solving the ”handle valve” task with HTN for

the replanning mission . 70
5.6 The overall solution obtained by the Graphplan algorithm for the mission

planning problem with replanning . 73
5.7 Recommended actions based on the obtained Q-table for sub-mission 1 . 74
5.8 Recommended actions based on the obtained Q-table for sub-mission 2 . 76
5.9 Recommended actions based on the obtained Q-table for sub-mission 3 . 78
5.10 Runtime of the implemented AI Planning methods 80

vii

viii

List of Figures

1.1 Examples of vehicles which can be used for IMR operations 3

2.1 Example of a problem space for STRIPS with corresponding operators . . 9
2.2 Example of a STRIPS problem with initial and goal state suffering from

the Sussman anomaly . 12
2.3 Example of a planning problem represented as a planning graph 14
2.4 Example of a problem space for HTN 17
2.5 Examples of Supervised learning . 19
2.6 Example of Unsupervised learning . 20
2.7 Example of a problem represented as a Markov Decision Process 22
2.8 Interaction between software agent and environment in a Markov Decision

Process and Reinforcement Learning . 23

3.1 The corresponding world setup with both initial and goal state of the PDDL
described planning problem . 29

3.2 Examples of existing Graphic User Interfaces for the OpenAI Gym 33

4.1 Overall structure of the subsea installation used in the planning problem . 36
4.2 Examples of tools for the UID . 37
4.3 Overall structure of the subsea installation used in the planning problem . 38
4.4 The defined mission illustrated as a flowchart 39
4.5 Structure of the subsea panel in the planning problem 41
4.6 Overall description of the main tasks of the mission planning problem for

the HTN method . 46
4.7 Description of the tasks of the mission planning problem for the HTN method 47
4.8 Description of the tasks of the mission planning problem for the HTN method 48
4.9 Description of the tasks of the mission planning problem for the HTN method 49
4.10 Overall state-space of the subsea installation used in the planning problem 51
4.11 Modified state-space representation of the mission planning problem do-

main for Q-learning . 57

ix

5.1 The obtained solution by the Graphplan algorithm for part one of the mis-
sion planning problem without replanning 65

5.2 The obtained solution by the Graphplan algorithm for part two of the mis-
sion planning problem without replanning 66

5.3 The obtained solution by the Graphplan algorithm for part one of the mis-
sion planning problem without replanning 67

5.4 . 72
5.5 Overview of sub-mission 1 for the Q-learning algorithm 75
5.6 Overview of sub-mission 2 for the Q-learning algorithm 77
5.7 Overview of sub-mission 3 for the Q-learning algorithm 79

x

List of Algorithms

1 Ground-STRIPS . 11
2 Graphplan . 14
3 Q-learning . 26

xi

xii

Listings

2.1 Initial and goal state for the STRIPS problem suffering from the Sussman
anomaly . 12

2.2 Description of planning problem in the modeling language PDDL 15
3.1 Domain description of the dock-worker-robot example in PDDL 28
3.2 Action description of the dock-worker-robot example in PDDL 29
4.1 PDDL description of the defined planning problem’s domain 42
4.2 PDDL description of the defined planning problem’s initial and goal state 43
4.3 PDDL description of the defined planning problem’s actions 43
4.4 PDDL description of the defined planning problem’s docking-related actions 44
4.5 PDDL description of the defined planning problem’s actions 45
4.6 Initial and goal state for the valve operation part of the Graphplan imple-

mentation . 52
4.7 Initial and goal state for the valve inspection part of the Graphplan imple-

mentation . 52
4.8 Initial and goal state for the re-docking part of the Graphplan implementation 53
4.9 Initial and goal state for the final docking part of the Graphplan implemen-

tation . 53
4.10 Graphplan implementation with the defined actions 53
4.11 Observation and Action Spaces for the custom RL environment 58

xiii

Abbreviations

AI = Artificial Intelligence
API = Application Programming Interface
AUV = Autonomous Underwater Vehicle
FOL = First-Order Logic
GUI = Graphic User Interface
HTN = Hierarchical Task Network
IMR = Inspection, Maintenance and Repair
MDP = Markov Decision Process
ML = Machine Learning
RL = Reinforcement Learning
ROV = Remotely Operated Vehicles
SARSA = State-Action-Reward-State-Action
SHOP = Simple Hierarchical Ordered Planner
TD = Temporal-Difference
UID = Underwater Intervention Drone
UUV = Unmanned Underwater Vehicle

xiv

Chapter 1
Introduction

This chapter gives some introductory notions on the background of conducting the work in
this thesis. The chapter also describes projects and work already conducted in the domain
of underwater vehicles.

1.1 Background and Motivation
There exists more than 5000 subsea wells on the Norwegian Continental Shelf that re-
quire continuous inspection and repair due to aging equipment. Inspection, maintenance
and repair (IMR) operations on these subsea installations currently require several expen-
sive resources, such as offshore support vessels with experienced operators on-board, in
addition to Remotely Operated Vehicles (ROV). It is necessary to have these aforemen-
tioned resources available simultaneously in order to perform IMR operations. This might
not always be the case when a sudden need of repair or inspection occurs, resulting in
a higher response time. Failure on a critical part will consequently result in an overall
increased downtime for the installation [6]. A step towards reducing the overall cost and
response time of IMR operations is to increase the level of autonomy in these operations.
Consequently, this has led to a larger focus on research and development of Autonomous
Underwater Vehicles (AUV) which could potentially replace the aforementioned de facto
standard of using ROVs [7].

An important aspect of underwater vehicles which perform IMR operations are their abil-
ities of being persistent, especially when autonomous. This is also called persistent auton-
omy, and describes the ability of a vehicle to be autonomous for an extended duration of
time, in addition to performing complex tasks without human intervention [7]. Persistent
autonomy is especially important in IMR operations, as the working conditions for the
underwater vehicles are quite challenging on the seabed [8]. However, it is important to
clarify that the first step towards persistent autonomy is to develop a well-defined and ro-
bust autonomous vehicle which can perform the IMR operations. Consequently, the desire

1

Chapter 1. Introduction

of achieving persistent autonomy for IMR operation is a long-term goal.

The development of autonomy in subsea operations and underwater vehicles can draw in-
spiration from space applications, as this is a domain where the development of autonomy
has progressed further. A main point which has been demonstrated in the development of
autonomy within space applications, is that planning is a critical aspect of it [9]. Planning
is defined as an abstract, explicit deliberation process where the actions are both chosen
and organized based on anticipating the expected outcome. A plan also takes into con-
sideration the state of mission, state of vehicle and potential fallbacks [10]. Furthermore,
in space applications it has been demonstrated that autonomy requires several modules
which need to collaborate together, including control, navigation and localization systems.
This is also the case for planning in the subsea domain, in which numerous projects con-
ducted by the CIRS lab at the University of Girona, Spain have given valuable results for
localization approaches [11], underwater intervention [12] and implementation of a con-
trol architecture for the lab’s AUV, Girona 500 AUV [13].

However, it is worth mentioning that several other institutions have also had valuable con-
tributions in developing essential modules for increasing the level of autonomy in under-
water vehicles. Among others, the Norwegian Defence Research Establishment (FFI) has
made progress in developing a navigation system for the HUGIN AUV [14] while the
Monterey Bay Aquarium Research Institute (MBARI) proposed a deliberative control ar-
chitecture for the MBARI AUV [15].

A project which made some of the first steps in incorporating the necessary aforemen-
tioned systems for an autonomous vehicle, was the NextGen IMR project, conducted
between 2014-2017. This project’s approach was inspired from the slogan ”From outer
space to ocean space”, which reflects the inspiration gained by space applications for solv-
ing mission planning problems [16]. The PANDORA project was conducted prior, i.e.
between 2012-2015, and focused on developing persistent autonomous underwater robots.
The main goal was to decrease the level of operator interventions when executing tasks,
while also increasing the overall complexity of the tasks [17]. Both projects made im-
portant progress in developing underwater path planning systems, but still the important
aspect of autonomy; planning, is yet to be explored within the subsea domain.

In addition to the aforementioned projects, the subsea industry has also demonstrated
promising development of underwater vehicles. For instance, during SPE Offshore Eu-
rope 2019, a seminar and conference which is arranged every other year, Oceaneering
showcased their new resident underwater vehicle ”Freedom”. This underwater vehicle can
function both as an ROV, when tethered, and an AUV when untethered [18]. A different
type of resident underwater robot is developed by the Norwegian company Eelume, which
has quite an innovative design as it is shaped as a snake. This increases the vehicle’s flex-
ibility and it can access spaces which are difficult for other vehicles with the same goal
[19]. One of the largest operator in the offshore industry is Equinor, which is collaborat-
ing with both Oceaneering and Eelume to develop Underwater Intervention Drones. An
Underwater Intervention Drone (UID) is a concept introduced by Equinor and represents

2

1.1 Background and Motivation

a hybrid of Remotely Operated Vehicles and Autonomous Vehicles [20].

(a) Oceaneering’s new residing AUV, Freedom [21] (b) Eelume’s resident snake robot [19]

Figure 1.1: Examples of vehicles which can be used for IMR operations

The current progess in developing autonomous underwater vehicles is that the existing
mission control systems normally plan a priori with either minimal or no flexibility to im-
plementing changes during execution. This results in an overall lower level of autonomy
[22]. An approach used in space applications to increase a system’s autonomy has been
the use of automated planning and scheduling technology, also called AI Planning [23].
The same article also explains how the use of AI Planning benefits the system it is applied
to. Some examples are the increase of responsiveness, interactivity and productivity, in
addition to the reduction of cost. These are all desired factors within IMR operations, seen
from an industrial perspective [6].

Another potential approach for solving planning problems based on a mission control sys-
tem is by using learning-based methods [24]. It has been shown in several cases that many
planners in automated planning fail to scale-up from a toy problem to a real scenario and
to result in good solutions. In order to overcome this inconvenience of classical planners in
automated planning, the learning-based planner would exploit domain-specific knowledge
in order to result in good solutions [25].

3

Chapter 1. Introduction

1.2 Objective
This master thesis is a continuation of the work carried out in the project thesis [1]. The
project thesis explored several methods within automated planning and scheduling for
solving a mission planning problem reflecting IMR operations on subsea installations. The
work is targeted towards the oil and gas industry, as they are in charge of majority of the
subsea installations. Hence, the defined mission planning problem in Chapter 4 has been
formulated by gaining important industrial input from the ROV operators Jon Englund and
Peter Baastad at Oceaneering.

This thesis will use two of the explored AI planning methods; Hierarchical Task Network
(HTN) and Graphplan in order to solve a new mission planning problem which would re-
flect an IMR operation. However, the formulated mission in this thesis has a higher level
of complexity compared to previously. The increased mission complexity will reflect a
real scenario to a greater extent. Additionally, this thesis will explore how the aforemen-
tioned classical AI planning methods would create a plan for solving the defined mission
both with and without uncertainty. When the mission contains some uncertain elements,
the overall plan might change under execution.

The main objectives of this thesis include the modeling and structuring of an IMR mission,
in addition to a comparison and analysis of the rationality of the produced plan. Further-
more, determining the overall efficiency of the planner is also an objective. The rationality
of a plan is determined by if the ordered action sequences are correct for reaching the goal
of the mission, while the efficiency is defined based on two different aspects. These as-
pects are the time required by the planner to produce a plan and the time required by the
planner for re-planning purposes due to uncertainties.

Moreover, the aspect of using a learning-based planner in order to solve the mission will
also be explored. An attempt to solve the formulated mission planning problem will be
made with the use of Reinforcement Learning (RL); more precisely the method of Q-
learning.

1.3 Contribution
The contribution of this thesis is the formulation and modeling of an IMR mission with
the assistance from ROV-operators from the industry. Furthermore, the defined mission
planning problem focuses only on the panel and omits the pipeline, making the scenario
more specific.

Furthermore, the work of this thesis attempts to solve a simple mission planning problem
by the use of Reinforcement Learning. Moreover, a new custom environment is created to
represent the subsea domain with all the different installations. This environment can be
further developed, and might be an asset when trying other RL algorithms.

4

1.4 Outline

Another contribution is the comparison between the AI Planning methods, Hierarchical
Task Network and Graphplan. The methods are compared based on their run-time and
their ability to solve a mission planning problems which might require replanning.

1.4 Outline
This thesis is divided into seven chapters. Following the current introductory chapter is the
theory which reflects the prerequisites needed for gaining a better understanding of both
the used AI planning and learning-based methods. Additionally, the theory chapter will
also give important insight in terminology used when explaining the implementation and
results. Following, the tools and library used for implementing and modelling the mission
planning problem are introduced. The chapter will also go into further details of how the
used libraries are comprised. Chapter four contains the mission formulation of the IMR
operation used in the purpose of this thesis. Additionally, the chapter include the actual
implementation of the planners in the context of the mission planning problem. Chapter
five contains the obtained results and analysis, and the thesis is concluded in chapter six.
Lastly, chapter seven sums up future work that can be performed in continuation of the
works of this thesis.

5

Chapter 1. Introduction

6

Chapter 2
Theory

This chapter will give the reader an overview of important aspects of automated planning
and scheduling, while also introducing one to some machine learning aspects. Moreover,
it will present three methods within AI Planning; STRIPS, Hierarchical Task Network and
Graphplan, even though only the two latter are used in the works of this thesis. STRIPS
is a well-known method within AI Planning and Graphplan is a further development of it.
Therefore it is essential to have some knowledge about STRIPS in order to fully under-
stand Graphplan. Thereafter, the chapter explores machine learning aspects and reinforce-
ment learning. Furthermore, this chapter sets the ground for understanding the upcoming
chapters about implementation, modeling and the obtained results.

2.1 Automated Planning and Scheduling

Two of the planning methods which are used in the works of this thesis are within the
domain of automated planning and scheduling, hereby called AI planning. AI planning
is a subarea of Artificial Intelligence (AI) which explores deliberate systems, i.e. systems
that require some extent of reasoning in order to perform actions [10]. Such a reasoning
process, also called deliberation for acting, is carried out by an artificial agent, which both
chooses and performs its actions based on how it can achieve the intended objectives [26].

Deliberation for acting is considered an important aspect of autonomous systems which
operate in a diverse environment and execute a wide variety of tasks. These are mainly
autonomous systems which require low level of human intervention. It is worth mention-
ing that there exist numerous autonomous systems which do not require any deliberation,
even though they also have a low level of human intervention during operations. The main
difference is that the mentioned systems operate in a known environment with predefined,
simpler and fewer tasks, and consequently do not need to reason in order to make any
decisions [27].

7

Chapter 2. Theory

An artificial agent, also called actor, determines which actions to perform and how to per-
form them based on a predictive model. The predictive model is further divided into a
descriptive model and an operational model, where the first describes the set of possible
states which can be reached by performing a certain action. The operational model de-
scribes how to perform the action, which includes the knowledge of which commands are
necessary for executing a certain action.

Furthermore, AI Planning can be divided into two subcategories of planners; state-space
and plan-space planners, which will be explored further throughout this thesis. State-
space planners are commonly used within AI planning as state-space search algorithms,
i.e. algorithms which solve planning problems described in state space and are considered
to be the simplest planning algorithms [10].

2.1.1 State-Space Planning
A state space is a way of gathering all available information regarding a planning problem
in the same space, where a state-transition system is such an example. It is defined as the
following 4-tuple:

∑
= (S,A, γ, cost) or 3-tuple:

∑
= (S,A, γ) if the cost is omitted.

The different terms can be explained in the following manner:
∑

is the general term for a
system, S contains the finite number of states in which the system can be, A contains all
the finite number of actions which the actor can execute and γ describes the state-transition
function. The latter is defined as: γ : S × A −→ S, and can be explained as a partial func-
tion used to evaluate if an action is applicable in the current state. The cost is also defined
as a partial function, which can represent numerous factors such as time, monetary cost or
even energy. The aim is normally to minimize this cost. Since a 3-tuple does not have an
explicitly defined cost, it is defined as cost = 1 whenever γ(s, a) is defined [10].

The state space of a planning problem can be decomposed into an initial state, a goal state
and a transition model. The state space describes all the reachable states from the initial
state given some sequence of actions which connects the initial state and the goal state.
Furthermore, the state space also forms a graph, which is a data structure consisting of
nodes and links which are connecting the nodes to one another [28]. In the case of state
space planning models, the nodes and links in the graph correspond to the states and ac-
tions in the state space, respectively. In the state space, a path can be defined as a sequence
of states which are connected by a sequence of actions [29].

In order to further simplify the classical AI planning problems, several restrictive assump-
tions, also called classical planning assumptions, are imposed on the system. In addition
to the actions A and states S being a finite number, the environment also has to be finite
and static. This means that changes in the systems are only caused by the execution of
some action. Secondly, time is not modeled in any explicit way. The actions A and states
S are both considered as discrete sequences. The last assumption is that the systems is de-
terministic, i.e. every possible state caused by the different available actions is predefined.
Imposing the mentioned assumptions on a system contributes in eliminating potential er-
rors in the actor’s deliberation process. Systems which do not satisfy the aforementioned
assumptions could still be acceptable if the errors are neither infrequent nor have severe

8

2.1 Automated Planning and Scheduling

consequences [27].

The following two sections will present two methods within state-space planning, STan-
ford Research Institute Problem Solver (STRIPS) and Graphplan. Both methods exploit
structuring the available information such as states and actions in a graph.

2.1.1.1 STanford Research Institute Problem Solver

STanford Research Institute Problem Solver, hereby called STRIPS, is a problem solver
introduced in order to improve the efficiency of state space planning problems by search
space size-reduction [10]. In STRIPS, a planning problem is described as a set of well-
formed formulas (wffs), i.e. some finite sequence of symbols, for first-order predicate
calculus. First-order predicate calculus is also known as first-order logic (FOL) and is
used as a language which assumes that a world can be described as objects with some
relation between them which either do or do not hold [29].

The problem space, i.e. the search space for the problem, for STRIPS can be described by
three entities. First, an initial world model, which is a set describing the current state of the
world, operators described as a set with the actions respective precondition, i.e. conditions
which need to be satisfied in the world model and effects on it, and last a goal state which
portrays the desired final state [30].

Figure 2.1 illustrates an example from [30] of a simple worlds space in STRIPS-representation.
It describes the model for a world where there are two locations, a and b, a robot and two
boxes, B and C. The robot is placed at location a and the boxes B and C are both placed
at location b. Additionally, three operators are defined. These describe at which location
the robot and boxes are with respect to each other.

Location a Location b

B CRobot
ATR(a)
AT(B,b)

AT(C,b)

Operators

Figure 2.1: Example of a problem space for STRIPS with corresponding operators [30]

9

Chapter 2. Theory

In order to solve a planning problem with the use of STRIPS, a search graph has to be cre-
ated based on the initial state, possible actions and goal state. For a very simple planning
problem, i.e. a planning problem with few states and actions operations, the search graph
can be created by starting in the initial state and applying all the possible actions. Hence,
the initial state will be the starting node of the search tree. The application of actions
would result in successor nodes, i.e. the states one can reach by applying some action. For
each successor the possible actions are applied, until one of the reached nodes correspond
to the goal state. However, for larger world models, i.e. models with many states and
action operations, this approach would result in an immense search-tree. STRIPS reduces
the search space by using a so-called GPS strategy which extracts the differences between
the current state of the world and the goal state and identifies operators which could re-
duce these differences. Upon detection of such an operator the STRIPS method attempts
to produce a world model to which the identified operator can be applied to, which is then
considered as a subproblem. Solving the subproblem results in reconsidering the original
goal as the desired world model [30].

The STRIPS planner is described in algorithm 1, which has been retrieved from [10]. It
is worth mentioning that the described STRIPS algorithms is ground, which consequently
means that the states and actions are also ground. This means that neither the states nor
the actions contain any free variables, and hence the operators in the planning problem are
not generalized [31].

Algorithm 1 takes a planning problem defined with a set of operators O, an initial state s
and a goal state g as input. It initializes the plan π as empty and then runs in a loop until
it either finds a solution to the planning problem or fails in the attempt. As a starting point
it checks if the initial state s0 satisfies the desired goal state g, as this would terminate the
algorithm. Following, a set of actions A are declared based on which actions are relevant
for the goal g. As mentioned previously, the STRIPS algorithm starts with the goal state
and works its way backtracks to the initial state in order to find a solution and therefore the
set of actions A must be related to g. The algorithm continues by non-deterministically
choosing an action a ∈ A, and then executing a recursive call of the STRIPS algorithm
with the operator O related to the chosen action a, the state s and the sub-goal defined as
any of the preconditions of the action a. Thereafter, the algorithm checks if the recursive
call actually returns a valid sub-plan. Based on this, the current state s is updated and fi-
nally the partial plan π′ for solving the sub-goal is added to the plan for the overall solution
π.

10

2.1 Automated Planning and Scheduling

Algorithm 1 Ground-STRIPS

1: function GROUND-STRIPS(O, s, g)
2: π ← empty plan
3: loop
4: if s satisfies g then return π
5: A← {a | a is ground instance of an operator O and a is relevant for g }
6: if A= ∅ then return failure
7: non-deterministically choose any action a ∈ A
8: π′ ← GROUND-STRIPS(O, s, precond(O))
9: if π′ = failure then return failure

10: s← γ(s, π′) . π′ achieves precond(a) from s
11: s← γ(s, a) . s now satisfies precond(a)
12: π ← π.π′.a

The algorithm is applied upon a planning domain consisting of ground atoms, i.e. a pred-
icate with a finite number of real objects. Consequently, the objects can not be variables
and have to be pre-defined [29]. Operators in the STRIPS domain can therefore be con-
sidered as functions requiring parameters, which are passed on as objects.

One of the key points of the STRIPS method is how it structures the available actions and
states into a graph. In order to find a solution to a certain planning problem, any graph-
search algorithm can be used. Examples of such graph-searching algorithms are breadth-
first, depth-first and A* (A-star). It is worth mentioning that the latter is commonly used
when using the STRIPS method [29].

2.1.1.2 Sussman Anomaly

A disadvantage of state-space planners, and thereby also STRIPS, is that they can suffer
from the Sussman Anomaly. The Sussman anomaly can occur for a planning problem
where the are multiple goals or subgoals which need to be achieved at the same time. The
difficulty occurs when for instance the STRIPS planner achieves one subgoal and has yet
to achieve another subgoal in order to solve the planning problem. The problem is when
the effects of achieving one goal undoes the already existed goal, because in this way the
final solution might not be found unless some re-planning is initiated [10].

The reason that the Sussman anomaly can occur in STRIPS planning problems are that
the search space contains infinitely many solution, but they are redundant. Therefore, a
possible way of finding a solution is to solve for each of the subgoals before combining
the found solutions. This finding of solution for the Sussman Anomaly contributed in
the development of plan-space planning techniques, which searches for solutions through
a space of partial-order plans rather than states. Plan-space planning will be further ex-
plored later in this chapter.

A classical example which illustrates the occurrence of the Sussman anomaly, is the dock-
worker-robot problem illustrated in figure 2.2 with the defined initial and goal states as

11

Chapter 2. Theory

also elaborated in listing 2.1. The domain of problem include one crane, one location,
three containers (c1, c2, c3) and five piles (p1, p2, q1, q2, q3). A possible solution, which
is also the shortest, is that the crane picks up container c3 from the pile p1 and puts it in
pile q1. Furthermore, the crane picks up container c1 and and puts it in pile p2 on top of
container c2 as this satisfies the first part of the goal, i.e. on(c1, c2). The problem is that
in order to achieve the second part of the goal, i.e. on(c2, c3), the planner has to undo one
of the already achieved sub-goals in order to achieve the other sub-goal which is initially
not intuitive for the planner.

a
apkg

tea
raiser

e
iio
ii iiit.it iiIIiiIiiiIitMg.iMn.it iiifMfa g.info.tpgf

ft
r

location 1

q2q1 q3

Location 1

p1 p2 c1

c1

c3

c2

c2

c3

crane1

Figure 2.2: Example of a STRIPS problem with initial and goal state suffering from the Sussman
anomaly [10]

i n i t :
i n (c3 , p1) and t o p (c3 , p1) and on (c3 , c1) and
on (c1 , p a l l e t) and i n (c2 , p2) and t o p (c2 , p2) and
on (c2 , p a l l e t) and t o p (p a l l e t , q1) and t o p (p a l l e t , q2) and
t o p (p a l l e t , q3) and and empty (c r a n e 1)

goa l :
on (c1 , c2) and on (c2 , c3)

Listing 2.1: Initial and goal state for the STRIPS problem suffering from the Sussman anomaly

12

2.1 Automated Planning and Scheduling

2.1.1.3 Graphplan

Graphplan is a planning method within classical AI Planning which exploits a data struc-
ture called planning graph. It is commonly used in STRIPS-resembling domains and al-
ways returns the shortest partial-order plan [32]. A planning graph data structure always
return an admissible heuristic as it either reports that the goal is not reachable from the
current state or it estimates the number of steps necessary in order to reach the goal. The
estimate is always lower than the actual number of steps, which satisfies the third point for
an admissible heuristic as stated above for the heuristic in A* search [29].

A planning graph is defined as a directed graph which is organized into numerous levels,
alternating between a level of states S and actions A until the termination condition is
satisfied. The first level is S0 which describes the initial state of the planning problem,
then the next level A0 is describing the actions that are applicable in A0. This structure is
illustrated in figure 2.3 for a simple planning problem. It is worth mentioning that planning
graphs can only be used in propositional planning problems, i.e. planning problems with
no variables [29].

The Graphplan planner also tackles some of the problems and drawbacks of the STRIPS
planner. For instance, a planning graph includes some mutual exclusion (mutex) condi-
tions. Two actions are considered mutex if their effects include changing the same state
variable to different values. It is worth reminding that for the STRIPS planner mutex ac-
tions resulted in the occurence of the Sussman anomaly. Thus, the set of actions Ai where
i represent the level of the planning graph only include the actions ai whose preconditions
are not mutex in Si [27]. There are also a few examples of mutex relations which may
occur for a planning graph [29]:

• Inconsistent effects: if two actions change the same variable but to different values.
For instance, in the example illustrated in figure 2.3 the action Eat(cake) and the
persistence of ¬Eaten(cake) are inconsistent as the first has effect Eaten(cake)
and the latter has the effect ¬Eaten(cake).

• Interference: the effect of one action is equivalent to the precondition of another ac-
tion, but negated. For the example in figure 2.3 the persistent action of¬Eaten(cake)
interferes with the actionEat(cake) as the precondition of the latter, i.e. ¬Eaten(cake)
is the negated version of the effect of Eat(cake), i.e. Eaten(cake).

• Competing needs: one precondition is mutex with another precondition. For in-
stance, for the example in figure 2.3 Eat(cake) and Bake(cake) in A1 are mutex
since they are both depend on the value of the state Have(cake).

The graphplan algorithm is based on [29] and is illustrated in algorithm 2. It uses the
planning graph not to find a heuristic, but rather to extract a plan directly. It starts by
taking the planning problem as an input, and then repeatedly adds a supplementary level
by calling EXPAND-GRAPH to the problem’s planning graph until all of the goal states
are represented non-mutex. When all goals are represented non-mutex the algorithm calls
EXTRACT-SOLUTION in order to find a plan which solves the problem. If it is not solv-
able, the algorithm expands another level with the use of EXPAND-GRAPH. It continues

13

Chapter 2. Theory

repeatedly until the termination condition is satisfied.

Algorithm 2 Graphplan

1: function GRAPHPLAN(problem)
2: graph← INITIAL-PLANNING-GRAPH(problem)
3: goals← CONJUNCTS(problem.GOAL)
4: nogoods← an empty hash table
5: for tl = 0 to∞ do
6: if goals all non-mutex in St of graph then
7: solution ← EXTRACT-SOLUTION(graph, goals, NUM-

LEVEL(graph), nogoods)
8: if solution 6= failure then
9: return solution

10: if graph and nogoods have both leveled off then
11: return failure
12: graph← EXPAND-GRAPH(graph, problem)

A simple example to which can be formulated using a planning graph is the ”have-cake-
eat-cake” problem. The planning problem with its domain is described in listing 2.2, with
figure 2.3 illustrating the planning graph itself. The domain is described using the de facto
standard in modeling planning problems for AI planning methods, i.e. Planning Domain
Definition Language (PDDL). More details on the modeling language is to be found in
chapter 3.

Figure 2.3 illustrates the alternating levels of actions, Ai, and states, Si. S0 denotes the
initial state as also defined in listing 2.2. The rectangles represent all the possible actions,
while the small squares describe persistent actions which essentially does not change the
current state. Furthermore, the grey curved lines are examples of mutex relations either
between states or actions.

Figure 2.3: Example of a planning problem represented as a planning graph [29]

14

2.1 Automated Planning and Scheduling

(d e f i n e (problem have−cake−e a t−cake)
(: domain cake−world)
(: t y p e s cake)
(: p r e d i c a t e s

(have ? c − cake)
(e a t e n ? c − cake)

)
(: i n i t

have (cake) and
not e a t e n

)
(: goa l

have (cake) and
e a t e n (cake)

)
(: a c t i o n e a t

: parameters (? c − cake)
: p r e c o n d i t i o n (have (? c))
: e f f e c t (not have (? c) and e a t e n (? c))

)
(: a c t i o n bake

: parameters (? c − cake)
: p r e c o n d i t i o n (not have (? c))
: e f f e c t (have (? c))

)
)

Listing 2.2: Description of planning problem in the modeling language PDDL

2.1.2 Plan-Space Planning
A plan space is another alternative for modelling a planning problem to the earlier intro-
duced state space. Plan-space planning constitutes a more elaborate search space, espe-
cially compared to state-space planning, where the search space is directly given by the
state-transition system Σ. The nodes in the plan space are defined as partially specified
plans, while the connecting arcs are defined as plan refinement operations. A partial plan,
also called partial-order plan, π = (A,≺, B, L) is defined as a solution plan for a planning
problem P = (Σ, s0, g). In terms of variables used to describe the planning problem; as
earlier, Σ represents the state-transition system while s0 and g represent the initial and
goal state, respectively. For the partial plan, π, A is the set of ordered actions, while ≺
represents the ordering constraints for these actions. Finally, B represents the binding
constraints for the partial plan and L is the set of causal links [10].

The earlier mentioned plan refinements operations includes operations which contribute in
completing a partial plan by removing possible inconsistencies or to achieve an open goal,
i.e. a reachable goal state. The plan refinements operations follow the least commitment

15

Chapter 2. Theory

principles, which means that only strictly needed constraints are added to the partial plan
[10]. This means that unnecessary constraints are not added to the plan, hence avoiding
over-complications.

Plan-space planning can also be distinguished from the earlier introduced state-space plan-
ing by the definition of its solution plan. Plan-space planning has more generalized plan
structures compared to state-space planning [10]. By using constraint-satisfaction tech-
niques, i.e. techniques which ensure that the defined constraints are satisfied, the resulting
solution of the plan space search is more flexible compared to linear sequences of ground
actions which is the case for solutions of state space search problems [27]. The solution of
a plan-space planning problem results in a more generalized plan, since it considers plan-
ning as two operations, i.e. the choice of actions and ordering the already chosen actions
to achieve the pre-defined goal. Hence, a plan does not necessarily result in a sequence of
actions, but rather a set of planning operators with both ordering and binding constraints
[10].

2.1.2.1 Hierarchical Task Planner

Hierarchical Task Network (HTN) is a planning method which is quite similar to classi-
cal planning in the way it is structured. This includes that the states in the world can be
described by a set of atoms, i.e. variables with only positive measures, and actions as cor-
responding state-transitions. However, HTN can be differentiated from classical planners,
which have been explored earlier, by what the method plans for and how it plans for it [10].

Another distinction between classical planners and HTN, is that HTN’s objectives are
based on executing a set of tasks opposed to achieving a goal state. A task is defined as
something which needs to be done, thus a task network is a set of tasks. Tasks can be
divided into two subcategories: primitive and non-primitive tasks. The first defines tasks
which can be performed directly, while the latter describes tasks where the planner needs
to find out and determine how to perform them [33]. An HTN planner divides the non-
primitive tasks into sub-tasks in order to determine how to execute the non-primitive tasks.
An HTN planner’s objective is also to produce a sequence of action which will result in the
execution of a task. This resembles the classical planners from earlier, but it is important
to distinguish between reaching a goal state and being able to achieve a task [34].

An HTN planner also requires a set of operators and methods to solve a planning problem.
Operators describe the effects of each task, while the methods describe how the planner
could perform various non-primitive tasks. Each method can be defined as a pairing be-
tween a task t and task network d, resulting in the method m = (t, d). The task network
defines the sub-tasks which are necessary to perform in order to achieve the main task t.
The only condition for the task network d is that all the sub-tasks in the set must satisfy
the constraints enforced upon the system [33].

A classical example of a planning problem that is the ”travel” example, described as a
hierarchical task network and then solved as illustrated in figure 2.4. Table 2.1 gives an

16

2.1 Automated Planning and Scheduling

overview of the different states that are reached when solving the planning problem. From
one state to the other, the changes are marked in bold. The main task is denoted as the
initial task in figure 2.4 and represents the overall task one wants to solve in this example,
which is for ”me” to travel from my home to the park. There are two possible methods for
achieving the initial task; ”travel-by-foot” and ”travel-by-taxi”. These are categorized as
methods, since they are considered non-primitive tasks. The methods are therefore further
divided into sub-tasks, i.e. ”call-taxi”, ”ride” and ”pay-driver”. These sub-tasks are at the
lowest level and are therefore considered operators. Finally, there are ordering constraint
on the mentioned operators which enforces them to be executed in a certain order, i.e.
”call-taxi”, then ”ride” and finally ”pay-driver”.

Precond: distance(home,park) ≤ 2 Precond: cash(me) ≥ 1.50 + 0.50*distance(home,park)

 s1 = {location(me)=home, location(taxi)=home, cash(me)=20, distance(home,park)=8}

Initial state:

 s0 = {location(me)=home, cash(me)=20, distance(home,park)=8}

Initial task: travel(me,home,park)

Precondition succeeds

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

travel-by-foot travel-by-taxi

 s2 = {location(me)=park, location(taxi)=park, cash(me)=20, distance(home,park)=8

 s3 = {location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home,park)=8}

Final state

 s1 s2 s3

Precondition fails

 s0

Decomposition into subtasks
ordering

constraint
ordering

constraint

Figure 3: Solving a planning problem in the travel-planning domain.

(a) (b)

Figure 4: Two examples of task decomposition with interleaved subtasks. Arrows on the arcs
indicate ordering constraints. There is no ordering constraint between t3 and t6, hence they may
be performed in either order and their subtasks may be interleaved (provided, of course, that each
task’s preconditions are satisfied).

5

åeÆzESEEg
Figure 2.4: Example of a problem space for HTN [29]

s0 location(me)=home, cash(me)=20, distance(home, park)=8
s1 location(me)=home, location(taxi)=home, cash(me)=20, distance(home, park)=8
s2 location(me)=park, location(taxi)=park, cash(me)=20, distance(home, park)=8
s3 location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home, park)=8

Table 2.1: Overview of the different states in the HTN planning problem

17

Chapter 2. Theory

2.1.2.2 Simple Hierarchical Ordered Planner

Simple Hierarchical Ordered Planner (SHOP) is a planner based the HTN planner prin-
ciples. The main difference which distinguishes SHOP from HTN is the fact that SHOP
uses ordered task decomposition as control strategy. This strategy breaks the main tasks
into smaller subtasks and then generates the plan’s actions in the exact same order as they
will be executed by the system [35]. By having all the actions ordered, a big part of the
existing uncertainty about the world model is removed [34].

The second version of Simple Hierarchical Ordered Planner is simply called SHOP2, and
is a further development of SHOP. One of the main drawbacks of SHOP is that the method
requires the tasks to be totally ordered, which to some extent is considered restrictive. This
requirement prevents the method from potentially interleaving sub-tasks which might be
excessive in order to solve the overall task. Hence, SHOP2 accepts the use of tasks which
are only partially ordered. Consequently, SHOP2 can potentially solve planning problem
faster than SHOP as it can interleave sub-tasks which are not strictly necessary [36].

18

2.2 Machine Learning

2.2 Machine Learning
Machine Learning (ML) is defined as an application of Artificial Intelligence (AI) in which
a system in a changing environment is able to learn, adapt and consequently improve its
performance without being programmed explicitly [37]. A system is able to learn through
a software agent, whose main purpose is to act and consequently learn on the system’s be-
half [38]. The software agent plays the same role as the aforementioned artificial agent in
AI Planning. Machine Learning can in general be categorized into three main approaches;
supervised learning, unsupervised learning and reinforcement learning.

Supervised learning is that the software agent is given some examples of corresponding
input and output, and thereby learns how to map the input to the output by finding such a
function. Examples of supervised learning are for instance classification and regression,
as illustrated in figure 2.5. The latter is mainly used for output represented by continuous
values while classification is used for categorical output. Unsupervised learning is when
the software agent is given some input, in which it is able to find some patterns, regardless
of receiving any explicit feedback. This is often done through clustering, which detects
groups of data which are similar to each other while also detecting outliers, i.e. data which
deviates from the clusters [29]. An example of several clusters and remaining outliers is
depicted in figure 2.6.

Classification Regression

Figure 2.5: Examples of supervised learning [39]

19

Chapter 2. Theory

Outliers

Cluster 3

Cluster 2

Cluster 1

Figure 2.6: Example of unsupervised learning [39]

Another group of machine learning algorithms worth mentioning is semi-supervised learn-
ing. Essentially, this is considered a merge between supervised and unsupervised learning.
The algorithms in semi-supervised learning are given both known and unknown data, as
for supervised and unsupervised learning, respectively. An advantage of combining both
known and unknown data, is the potential increase in learning accuracy [39].

The last category, i.e. Reinforcement Learning (RL), is the aspect of machine learning
which is used in the works of this thesis and will be the main focus among the machine
learning categories. It is further explained in section 2.2.2. Before going into the defini-
tion of Reinforcement Learning and its use cases, some basic notions of Markov Decision
Processes are necessary.

20

2.2 Machine Learning

2.2.1 Markov Decision Process
A Markov Decision Process (MDP) is a mathematical framework for modelling sequen-
tial decision-making processes. A sequential decision-making process is essentially a se-
quence of problems in which the software agent needs to decide which actions to take by
also evaluating how it would affect the subsequent problems [40]. The main purpose of
MDPs are to model a problem where the agent learns through interaction with the envi-
ronment in order to achieve a goal [41].

Markov Decision Processes can be described as the following 4-tuple: (S,A, p, r), where
S represents the state space of the process and includes all the possible states that can be
reached by the agent. The possible actions are represented by the set, A, in the aforemen-
tioned tuple. These control the dynamics of the states. Furthermore, p represents the state
transition function and can also be formulated in the following manner: P (s′|s, a). The
state transition function describes the probability of ending up in some state s′ given an
action a taken from a state s [29]. Lastly, r describes the resulting reward based on the
state transitions. This is the reward used by the agent to determine if the taken action is
beneficial towards achieving the desired goal [40].

The solution of a Markov Decision Process is called a policy, and it describes what ac-
tions the software agent should take in any given state. Such a policy is often denoted π,
while π(s) denotes the recommended action corresponding to the solution in the state s.
Moreover, an optimal solution to an MDP is the policy which ensures the highest amount
of expected utility. This policy is denoted π∗ and is called the optimal policy. As for a
general policy, the recommended action in a given state s is denoted in a similar manner;
π∗(s) [29].

A simple example of a problem formulated as a Markov Decision Process is illustrated in
figure 2.7. It describes a person’s state of mind tomorrow, given the same person’s state of
mind today. The earlier introduced 4-tuple for MDP’s can be used to describe the exam-
ple, i.e. (S,A, p, r). The states S are illustrated as circles in 2.7, while the actions ai ∈ A
are illustrated as arrows. Furthermore, the numbers marked along the actions are the state
transition probabilities p. Table 2.2 sums up the these state transition probabilities where
the first column represents the starting state and the columns represent the end state. For
instance the state transition probability from the state of mind ”bored” one day to the state
of mind ”tired” the following day is 0.5. Finally, it is worth mentioning that in the actual
example there are no explicit rewards r.

21

Chapter 2. Theory

Bored

Scared Tired

0.8

0.4 0.3

0.05 0.2 0.5 0.15

0.2

0.4

Figure 2.7: Example of a problem modelled as a Markov Decision Process [38]

Bored Scared Tired
Bored 0.8 0.2 0.5
Scared 0.05 0.4 0.2
Tired 0.15 0.4 0.3

Table 2.2: The state transition probabilities for the example in figure 2.7

2.2.2 Reinforcement Learning

Reinforcement Learning is, as mentioned previously, another important approach within
Machine Learning. This approach can be distinguished from the aforementioned super-
vised and unsupervised learning, as the software agent learns by the feedback gained by
some reinforcements. Such reinforcements can be modeled as both punishments and re-
wards, which reflects if the software agent is acting in a beneficial manner or not. The aim
in reinforcement learning is to maximize the reward while achieving the desired goal [29].

Figure 2.8 illustrates the interaction between the software agent and the environment. The
sub-scripted t in the figure denotes the time steps at which the agent and environment inter-
acts with each other. This interaction consists of the agent receiving some representation
of the current state s ∈ S of the environment. Based on this state s ∈ S, an action a ∈ A
is selected, which results in the agent receiving the reward Rt+1. Thereby, it also reaches

22

2.2 Machine Learning

a new state which is denoted St+1 in the figure [41].

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S⇥R⇥ S⇥A! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Figure 2.8: Interaction between software agent and environment in a Markov Decision Process [41]

Generally, reinforcement learning is used for solving problems which are modeled as the
previously introduced Markov Decision Process (section 2.2.1). Thus, the main difference
in the modelling of an MDP problem and an RL problem is that for the latter neither the
reward function r nor the state transition probability function p are known a prior to exe-
cution [40].

Like for MDPs, the solution of a RL problem is also called a policy and is found by max-
imizing the expected total reward [29]. The expected total reward is also known as the
value and can be computed as in equation (2.1) or (2.2). V (s) in equation (2.1) represents
the value function as a state-value function, which means that the value function uses the
current state st of the agent and the average over all the possible actions in that state. Fur-
thermore, equation (2.2) uses the current state st and also the each of the possible actions
at separately. This value function is also called an action-value function [38]. Both the
action-value and state-value functions are dependent of a constant γ which denotes the
discount rate between 0 ≤ γ ≤ 1. The discount rate represents the importance of current
steps compared to future steps. For instance, for γ = 0 the future rewards are omitted and
only the immediate rewards are considered [37].

V (s) = E(rt|st = s) = E

{ ∞∑
i=0

γirt+i+1 st = s

}
(2.1)

Q(s, a) = E(rt|st = s, at = a) = E

{ ∞∑
i=0

γirt+i+1 st = s, at = a

}
(2.2)

23

Chapter 2. Theory

As for MDPs, the solution to a RL problem is called a policy and denoted π. In a similar
manner, the optimal policy is denoted π∗ and can be found by choosing the policy which
maximizes the value function [37]. This is described in equation (2.3).

V ∗ = maxπV
π(st) ∀st (2.3)

Equation (2.4) shows the Bellman Equation which is used in RL to find the action which
maximizes the value function. The second part of the equation, i.e. P (st+1|st, at) de-
scribes the probability of moving from the current state st to the next state st+1 by taking
action at. Afterwards the agent follows the optimal policy and V ∗(st+1) represents the cu-
mulative reward which is expected. Furthermore, all the possible states that can be reached
are summed together and discounted by γ. Finally, the immediate reward,E[rt+1] is added
to result in the total expected cumulative reward for the action at [37].

V ∗(st) = maxat

E[rt+1] + γ
∑
st+1

P (st+1|st, at)V ∗(st+1)

 (2.4)

One can distinguish between model-free and model-based reinforcement learning meth-
ods, based on if the methods build a model of the functions describing both the reward
and state transition. A model-free method does not model the the reward and state tran-
sition functions and are therefore dependent on the agent exploring the environment. The
value function for model-free methods are thereby updated locally as the agent explores.
A model-based method on the contrary have known reward and state transition functions
and consequently the model of the problem is complete. In this case the value function
can be computed as in the aforementioned equations, i.e. equations (2.1) and (2.2) [40].

Another central concept within Reinforcement Learning is Temporal-Difference (TD). TD
methods are able to learn regardless of having a model of the dynamics of the environ-
ment, which make the methods model-free [41]. Furthermore, TD methods update the
current state value by using the discounted value, where the discount is γ, of the next state
and reward. This is done by the method by comparing the estimated value of a state and
the obtained discounted value and thereby updating the value of the state. Therefore, TD
methods only need until reaching the next step before updating the value for a state. Such
methods are also called bootstrapping methods as they update based on a known estimate,
as well as doing it in steps [37].

Equation (2.5) describes how a simple TD method updates its value. As mentioned pre-
viously, a TD method updates its value by reaching the next step. This means that at
time-step t+ 1, the method can update its value for the current state by using the value for
rt+1 which is observed and the estimated value for the next state V (st+1). [41].

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.5)

24

2.2 Machine Learning

Within reinforcement learning methods there is generally a trade-off between exploration
and exploitation, which is caused by the dilemma if the agent should explore further or
act on the already discovered information [42]. Through exploration the agent is able to
get information which benefits its long-term well-being. Having an agent which only pri-
oritizes exploration would result in having a lot of knowledge about the environment, but
not putting it to use. On the other hand, an agent who prioritizes exploitation would act
based on whichever action is beneficial in the moment without taking into account later
possibilities. This could also get the agent stuck [29]. An example of a method which
makes a trade-off between exploration and exploitation to decide which action to choose
is the ε-greedy method. Moreover, it is used in the Q-learning algorithm and is described
below.

One can also distinguish between on-policy and off-policy learning algorithms. An on-
policy learning algorithm updates the values and also estimates the total reward based on
the fact that the chosen policy is followed from start to end. An example of such an algo-
rithm is called State-Action-Reward-State-Action (SARSA) On the contrary, an off-policy
learning algorithm does not necessarily assume that the current chosen policy will be fol-
lowed, and selects actions based on whichever maximizes the values [37]. An example of
an off-policy algorithm is Q-learning, which is further explored in the upcoming section.

2.2.2.1 Q-learning

Q-learning is an off-policy TD learning algorithm, making it a model-free algorithm.
The main idea behind the Q-learning is that the algorithm uses the action-value function,
Q(s, a) to approximate the optimal action-value function q∗. The resulting value from the
action-value function is also called the Q-value. Algorithm 3 gives an overview of how
Q-learning works [41].

As a starting point the Q-value, i.e. Q(s, a), for the initial state s is initialized arbitrarily,
while the Q-value for the terminal state sterminal is set to 0. As this is the terminal state,
the Q-value is no longer dependent on any action a. Furthermore, the algorithm loops
through the predefined number of episodes. The number of episodes represents the num-
ber of sequences the algorithm, and thereby the agent, goes through in order to learn about
the environment. The episode is terminated when the termination condition is reached, for
instance upon reaching the desired objective.

For each of the episodes the state variable s is initialized, and then the algorithm performs
one step at a time. A step starts by verifying if the current state corresponds to the terminal
state/objective. If this is the case, the current episode is terminated. If not, an action a is
chosen based on some arbitrary policy. An example for such a policy is the ε-greedy pol-
icy, which essentially chooses a random action a based on the probability defined by the
variable ε. This corresponds to the exploration aspect of the algorithm. For the probability
defined by 1 − ε, the algorithm chooses the action that seems the most reasonable based
on the obtained information up until that point. This represents the exploitation aspect of
the ε-greedy method.

25

Chapter 2. Theory

Based on the action chosen by the ε-greedy method, the agent is able to observe the next
state and the reward. Thereby, it uses all the obtained information to update the Q-value
using the previously defined Q-value, the learning rate α, the reward r, the discount rate γ
and the action which maximizes the future expected reward given the next state s′. Finally,
the current state s is updated [41].

Algorithm 3 Q-learning

1: Initialize Q(s, a) arbitrarily and Q(sterminal, ·) = 0
2: for each episode do
3: s← initial state
4: for each step of episode do
5: while s 6= sterminal do
6: a←action from policy
7: Take action a, observe r, s′

8: Q(s, a)← Q(s, a) + α[r + γ maxaQ(s′, a)−Q(s, a)]
9: s← s′

26

Chapter 3
Tools and Libraries

This chapter will give an overview of the modeling tools and libraries that have been
used for solving the planning problems which will further on be introduced in Chapter 4.
Additionally, this chapter gives an overview of how the different libraries for the different
methods are structured with respect to different files and implementation of the mission
planning problem.

3.1 Modeling Language

A modeling language is an essential tool for gathering known information about a system
or environment in a structured manner, including rules, constraints or description of valid
actions [43]. For instance, how an agent or actor would behave in an environment could be
described using a modeling language, in addition to the environment itself. The upcom-
ing section describes a modeling language called Planning Domain Definition Language
which is used for describing the planning problem for AI Planning methods.

3.1.1 PDDL

Planning Domain Definition Language (PDDL) is a language used to describe the physics
of a planning domain. This includes possible predicates within the domain, the possible
actions, the structure of compound actions and what the resulting effects are of each ac-
tion. Furthermore, many planners also require some additional information about which
actions to carry out in order to achieve some goal, which can be interpreted as an advice
to the planner. The PDDL syntax omits this additional information to retain some neu-
trality. Every planner compensates for this lack of information by extending the notation
of PDDL to fit its own use cases. Hence, there will be great variations in how different
planners would extend the use of PDDL notation [44].

27

Chapter 3. Tools and Libraries

PDDL can be used to describe a planning problem, where the state of a world can be
described based on a collection of variables [44]. As mentioned earlier, a search space
requires four attributes; an initial state, the available actions in a certain state, the effects
of performing an action and the goal state [29].

A simple example of how PDDL can be used to describe a planning problem is described
in listing 3.1 and listing 3.2. This planning problem is described by a domain, the objects
within the domain and their type. The listing also include a list of predicates, which rep-
resent the properties of the defined objects. Furthermore, the listing also defines an initial
and a goal state which describe which state the domain starts in and the desired state, re-
spectively. Finally, the planning problem defines possible actions which are used for going
from the initial state and reaching the desired goal state.

The corresponding illustration of the aforementioned example is shown in figure 3.1, with
both the initial state and the desired goal state.

(d e f i n e (problem dock−worker−r o b o t)
(: domain dock−worker−r o b o t−world)
(: t y p e s

r o b o t
docks
c o n t a i n e r
c o n s t a n t

)
(: o b j e c t s

r1 − r o b o t
d1 , d2 , d3 − docks
c1 − c o n t a i n e r
n i l − c o n s t a n t

)
(: p r e d i c a t e s

(c a r g o ? r − r o b o t)
(l o c ? c − c o n t a i n e r)
(l o c ? r − r o b o t)

)
(: i n i t

l o c (r1) = d3 and
c a r g o (r1) = n i l and
l o c (c1) = d1

)
(: goa l

l o c (r1) = d3 and
l o c (c1) = r1

)
)

Listing 3.1: Domain description of the dock-worker-robot example in PDDL

28

3.1 Modeling Language

(: a c t i o n l o a d
: parameters (? r − r o b o t

? c − c o n t a i n e r
? l − l o c a t i o n)

: p r e c o n d i t i o n (c a r g o (r) = n i l and
l o c (c) = l and
l o c (r) = l)

: e f f e c t (c a r g o (r) = c and
l o c (c) = r

)
(: a c t i o n un lo ad

: parameters (? r − r o b o t
? c − c o n t a i n e r
? l − l o c a t i o n)

: p r e c o n d i t i o n (c a r g o (r) = c
l o c (r) = l)

: e f f e c t (c a r g o (r) = n i l
l o c (c) = l

)
(: a c t i o n move

: parameters (? r − r o b o t
? d − dock
? e − dock)

: p r e c o n d i t i o n (l o c (r) = d)
: e f f e c t (l o c (r) = e

)

Listing 3.2: Action description of the dock-worker-robot example in PDDL

Section 2.3 47

														d3	
	

g:

												d1	

												d3	
	

											d2	c1	

s0:
r1	

r1	 c1	

Figure 2.4: Initial state and goal for Example 2.21.

Example 2.21. Figure 2.4 shows a planning problem P = (⌃, s0, g) in a
planning domain ⌃ = (B, R,X, A) that is a simplified version of the one in
Figure 2.3. B includes one robot, one container, three docks, no piles, and
the constant nil:

B = Robots [Docks [Containers [{nil};

Robots = {r1};

Docks = {d1, d2, d3};

Containers = {c1}.

There are no rigid relations, that is, R = ?. There are two state variables,
X = {cargo(r1), loc(c1)}, with

Range(cargo(r1)) = {c1, nil};

Range(loc(c1)) = {d1, d2, d3, r1}.

A contains three action templates:

load(r, c, l)
pre: cargo(r) = nil, loc(c) = l, loc(r) = l
e↵: cargo(r) c, loc(c) r

cost: 1

unload(r, c, l)
pre: cargo(r) = c, loc(r) = l
e↵: cargo(r) nil, loc(c) l

cost: 1

move(r, d, e)
pre: loc(r) = d
e↵: loc(r) e

cost: 1

The action templates’ parameters have the following ranges:

Range(c) = Containers; Range(d) = Range(e) = Docks;
Range(l) = Locations; Range(r) = Robots.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

I

are

Goal stateInitial state

Figure 3.1: The corresponding world setup with both initial and goal state of the PDDL described
planning problem [27]

29

Chapter 3. Tools and Libraries

3.2 Libraries
All the used libraries are based on the programming language Python. The main reason be-
hind this choice is the potential long-term aspect of this project, where one could possibly
use a simulator to solve the mission planning problem. Numerous existing, open-source
simulators for Unmanned Underwater Vehicles (UUV) are compatible with programs writ-
ten in Python, which would ease the transition from the current Python program to using it
in a simulated environment. Furthermore, the choice of one single programming language
for all the libraries is related to consistency within the works of this project. The reader
only needs to master one programming language when potentially replicating the results
or developing them further.

This chapter will go into further details of how the libraries are structured, in addition to
how they are used in the scope of this thesis. The remaining of this chapter describes each
of the libraries for each of the implemented methods. The actual implementation and the
details regarded to it are to be found in the following chapter, i.e. chapter 4.

3.2.1 Graphplan
The Graphplan algorithm is implemented based on the previously mentioned algorithm 2
in section 2.1.1.3, for which there exists an online resource at GitHub [4]. The GitHub-
repository, ”aima-python”, contains a Python-implementation of the majority of the algo-
rithms introduced in [29], including the Graphplan algorithm.

In order to implement the Graphplan algorithm for a planning problem using the aforemen-
tioned library, eight files from the overall library ”aima-python” are extracted. The follow-
ing files are necessary from ”aima-python”: agents.py, csp.py, logic.py, planning.py,
probability.py, search.py, test.py and utils.py. The remaining files in the library are not
required for using the Graphplan algorithm and are therefore omitted in the works of this
thesis.

The main code for the Graphplan algorithm is implemented in planning.py. The most
important classes in this file are PlanningProblem and GraphPlan. The first class
is used for constructing a planning problem, for instance as defined by the PDDL repre-
sentation of the domain. In order to define a planning problem an initial state, a goal state
and possible actions need to be defined. This is also the case for the implementation of the
self-defined planning problem, which will be introduced and further discussed in chapter
4. Thereafter, the planning problem is redefined as a graph by the GraphPlan class so
that it may be solved using the Graphplan algorithm. Following the creation of the graph
with the associated states and actions, the Graphplan class is able to return a solution to
the planning problem.

The file test.py contains the code for testing the Graphplan algorithm. This is done by
defining an initial state and a desired goal state for the planning problem. Thenceforth, the
planning problem is created and solved. Finally, the solution is linearized in order to return
a solution which is readable for the user and clearly states the different actions necessary

30

3.2 Libraries

for going from the initial state and to reach the predefined goal state.

The remaining of the aforementioned files from the ”aima-python” library contains helper-
functions used by the main Graphplan class in order to solve a planning problem based
on the Graphplan algorithm. Among others, these helper-functions include the ability of
creating suitable structures for both states and actions, determine which actions are exe-
cutable based on the satisfied preconditions and some logic for distinguishing literals from
negated literals.

The ”aima-python” library was chosen due to several reasons. Firstly, it met the require-
ments related to the programming language. Secondly, it was based on a resource which
was heavily used in the research of the Graphplan algorithm. The implementation was
also liable, as it was implemented by the authors of the aforementioned resource [29].

3.2.2 Hierarchical Task Network

The used library for implementing the plan-space planner Hierarchical Task Network(HTN)
is based on a Simple Hierarchical Ordered Planner (SHOP). As mentioned previously in
section 2.1.2.2, the Simple Hierarchical Ordered Planner can be distinguished from clas-
sical Hierarchical Task Network by providing an ordered solution. This means that the
ultimate solution consists of actions to be executed in the correct order, i.e. from start to
end. The used library for the SHOP method is developed in Python by Dana S. Nau and
retrieved from BitBucket [3].

Altogether, the library contains six files. However, only one of them is necessary for
implementing the HTN planner. The remaining are classical examples from AI plan-
ning, such as the blocks world problem as introduced in section 2.1.1.1 for the STRIPS
method and the simple travel problem as introduced for the HTN method in section 2.1.2.1.
The first example is already illustrated in figure 2.1 and the latter in figure 2.4. The re-
spective Python files in the SHOP library for the block world problem are as following:
blocks world examples.py, blocks world methods.py, blocks world methods2.py, blocks world operators.py,
while for the simple travel example: simple travel example.py.

The essential file when implementing the HTN method using this SHOP library is py-
hop.py. This file contains all the necessary helper-functions and classes for implementing
the planning problem as tasks and thereafter solving it. The main file, pyhop.py, contains
two separate classes State and Goal which are used to define the initial state and goal
state, respectively. This is in a similar manner as for the Graphplan algorithm introduced
in the previous section.

Furthermore, pyhop.py also contains helper-functions for defining operators and methods,
which are essentially the primitive tasks and non-primitive tasks, respectively. For the sake
of neatness, the methods and operators will be implemented in separate files. The structure
of the implemented files is explained thoroughly in section 4.5.1 in the upcoming chapter.

31

Chapter 3. Tools and Libraries

Finally, the most important function in pyhop.py is seek plan() as this command tries
to solve the planning problem based on the defined state, tasks and plan. The latter cor-
responds to the current partial plan, which is a plan for solving for instance one single
defined task. The sum of all partial plans constitute the ultimate solution.

There were several other reasons for choosing this library, in addition to the fact that the
library was written in Python. Firstly, it was well-documented and had good readability.
Secondly, the library was created by Dana Nau, who is considered as one of the pioneers
in the field of AI planning and especially within state-space planning.

3.2.3 Q-learning
The only machine learning algorithm used in the works of this thesis is Q-learning. It
differs from the other aforementioned methods and their respective libraries, as there is no
existing library that can directly be used for implementing the Q-learning algorithm. There
are several resources available for the algorithm itself, but they are not compatible with the
environment which had to be created. More details on the environment can be found in
section 4.5.3. Hence, this section will give an overview of which libraries were used in
order to create the required reinforcement learning environment, as this is a prerequisite
for the algorithm itself.

The reinforcement learning environment is based on [45] and retrieved from the corre-
sponding online resource on GitHub [5]. The custom environment is created in a similar
manner as the pre-existing environments which are a part of the OpenAI Gym. The Ope-
nAI Gym is a toolkit which is mainly used for reinforcement learning [45]. By default,
the toolkit contains several environments which already have a common interface. By cre-
ating an environment which is compatible with the OpenAI Gym, already implemented
tools from the toolkit would be more easily compatible.

In order to create a custom environment, which may be both partially or fully observable
based on how much information the software agent has access to, there are a few Ap-
plication Programming Interface (API) methods which have to be included. These are:
step(), reset(), render(), close() and seed(), and it is recommended
that all custom environment also contains these API methods [45]. The method step()
runs one step, i.e. time step, in the dynamics of the defined environment. Secondly,
reset() resets the entire environment and sets the current state back to the initial state.
Following, the method render() provides feedback regarding the environment to the
user. The API method close() is optional, but gives the environment the option to per-
form any necessary cleanup. Finally, the seed() method is used for setting the seed for
the random number generator which would be used by the custom environment.

32

3.2 Libraries

The library [5] was first and foremost chosen based on the available documentation related
to creating a custom environment, which was the case for the works of this thesis. Another
consideration in the choice of library was the long-term aspect of the project. OpenAI
Gym is under continuous development and have potential for implementing an appropriate
simulator with Graphic User Interface (GUI). Examples of existing GUI’s for the OpenAI
Gym are illustrated in figure 3.2.

(a) OpenAI Gym Car Environment [45] (b) OpenAI Gym Lunar Environment [45]

Figure 3.2: Examples of existing Graphic User Interfaces for the OpenAI Gym

33

Chapter 3. Tools and Libraries

34

Chapter 4
Industrial Subsea Mission
Definition and Implementation

This chapter will introduce the subsea mission which is defined with the industrial feed-
back obtained from the ROV operators Jon Englund and Peter Baastad at Oceaneering. It
is worth mentioning that the defined mission is an attempt at reflecting a real mission, but is
obviously simplified in the scope of this thesis. Furthermore, this chapter will describe the
different aspects of the mission which will be solved by the previously introduced methods,
i.e. Graphplan, HTN and Q-learning. This chapter will also explain which design-related
decisions are made for a simpler implementation. Finally, implementation of the mission
planning problem using the previously introduced libraries and tools is described.

4.1 Industrial Subsea Mission Definition
As a starting point, a domain for the subsea mission in the context of Inspection, Mainte-
nance and Repair (IMR) operations was defined. The environment for the defined mission
are a few subsea installations on the seabed, which include a docking station for the Under-
water Intervention Drone (UID), a panel with several valves, a pipeline and a warehouse.
An overall illustration of the setup is shown in figure 4.1. The different arrows illustrates
the potential path of motion of the UID.

35

Chapter 4. Industrial Subsea Mission Definition and Implementation

Pipeline

Docking StationPanel

Warehouse

Figure 4.1: Overall structure of the subsea installation used in the planning problem [2]

The docking station is considered a garage for the UID, so that it is able to charge its batter-
ies and be safely stored whenever it is idle, i.e. not performing any operations or missions.
The UID docks to the station upon completion of mission so that it is securely fastened to
an installation and not able to move unless undocked. This prevents the UID from moving
unnecessarily and potentially colliding due to unexpected disturbances caused by wave
and current forces. Additionally, the docking station is the location where the UID is able
to communicate with the onshore operation room from where the UID is continuously
monitored.

Another part of the overall subsea installation is the panel, which consists of numerous
valves which could for instance control the flow of different substances. The valves can
be operated by the UID assuming that the correct tool is installed on it. Furthermore, the
panel also has built-in bars so that the UID can dock to the panel and be stable when oper-
ating or inspecting the valves.

As illustrated in figure 4.1 the overall subsea installation also consists of a pipeline. The
function of such a pipeline could be to transport oil or gas to an onshore installation, for
instance an oil refinery [46]. Normally, the pipelines span across several kilometres, but in
this current environment only a section of the pipeline is included.

36

4.1 Industrial Subsea Mission Definition

The warehouse is an additional location at the subsea installation where the UID can install
or change tools based on the requirements of the mission or operation. An example of such
a tool is the manipulator torque multiplier tool, whose main function is to prevent damages
on the valves which are caused by over torque [47]. Another commonly used tool in IMR
operations is the cleaning brush, which is used to clean the surface of an installation. An
example of the use of it might be when UID is trying to inspect or operate a valve, but the
valve is covered by marine growth [48]. The UID then cleans the valve and subsequently
operates it.

(a) Multipurpose cleaning tool with round brush [48] (b) Manipulator torque multiplier tool [47]

Figure 4.2: Examples of tools for the UID

Based on the previously introduced environment with the installations, one may formulate
an IMR mission. The IMR mission can either be an inspection mission or an intervention
mission. It is also noteworthy that the overall mission could be a combination of both
inspection and intervention, but in that case the mission is divided accordingly. Hence, the
inspection part could be solved first and followed by the intervention part.

The upcoming sections will go into details about how a mission is defined and afterwards
formulate it as a problem which can be solved with the previously introduced methods.
The problem is formulated based upon input gained by the industry, i.e. the ROV opera-
tors Jon Englund and Peter Baastad at Oceaneering.

37

Chapter 4. Industrial Subsea Mission Definition and Implementation

4.2 Formulation of the Mission Planning Problem
The mission planning problem is defined within the domain described in the previous sec-
tion and illustrated in figure 4.1, with some minor modifications. As a starting point the
pipeline is omitted altogether from the created scenario. Hence, the environment only con-
tains the docking station, the warehouse, the panel with multiple valves and the UID. The
modified setup is illustrated in figure 4.3.

Docking StationPanel

Warehouse

Figure 4.3: Overall structure of the subsea installation used in the planning problem

In the first scenario the mission starts with the UID being located at the docking station.
It is then commanded by the operation center to operate valve 1 on the panel. It is worth
mentioning that in general the operation center can be both onshore and offshore. In order
to operate the desired valve, the UID has to move from the docking station to the panel.
The operation center has communicated to the UID and clarified that valve 1 needs be
operated. The UID docks to the panel for stability, and prepares for operating the valve.
Before arriving at the panel and observing the valve, the UID has no information regard-
ing which manipulator tool is necessary for the operation. Hence, it needs to check if it
has the correct tool installed for operating the required valve upon docking. If the correct
tool is indeed installed, the UID can proceed with the operation. If the correct tool is not
installed, the UID needs to move to the warehouse, change tool, return back to the panel
and dock to it. It is then ready for operating the valve of interest. Upon completion of
operating valve 1, the UID must inspect the remaining valves and update their statuses.
Finally, the UID can move back and dock to the docking station until the next command
from the operation center is received.

The overall structure of the introduced mission is illustrated in figure 4.4 as a flowchart
with the corresponding actions necessary for solving it.

38

4.2 Formulation of the Mission Planning Problem

Mission Planning

Prepare Temporary
Docking

Temporary Docking

Inspect Valve Handle Valve

Update Valve
Status

Check if correct tool
is installed

True False

Operate Valve

Move to
Warehouse

Install Correct
Tool

Undock

Move to Panel

Figure 4.4: Defined mission illustrated as a flowchart

39

Chapter 4. Industrial Subsea Mission Definition and Implementation

4.3 Simplifications and Assumptions
The defined mission planning problem aims to reflect a potential real IMR mission, while
to some extent being solvable and explainable using the three methods introduced earlier
in section 2.1.1.3, 2.1.2.1 and 2.2.2.1. The defined mission planning problem was still
in need for more simplified assumptions to execute the mission and these will further be
explained in this section.

For all the implemented scenarios, the UID always starts at the docking station. Further-
more, it is assumed that the UID is undocked when the mission starts. This means that the
UID has been commanded by the operation center to operate the required valve, and it has
consequently undocked from the docking station to prepare the execution of the mission.
The aforementioned definition of the mission starts from this point.

For simplicity, there exists only one panel in the defined environment. This is seldom the
case, as there would normally be numerous panels in one area of the subsea installation
and the operation center has to specify which valve on which panel needs to be operated.
Secondly, the UID is required to temporary dock close to the valves in order to either in-
spect or operate them. This is due to the fact that there is a low level of visibility caused
by the combination of darkness and marine growth in the deep of the ocean, as explained
by the ROV operators from Oceaneering.

The structure of the mission planning problem has also been based on how the panel is
designed. As mentioned previously, the UID is required to temporary dock to the panel in
order to manipulate, i.e. inspect or operate, the valves. Due to this requirement, the panel
is designed accordingly and contains three bars to which the UID can temporary dock to
while manipulating the valves. Another assumption is that for each bar, the UID can ac-
cess two valves simultaneously. Figure 4.5 illustrates the design of the panel consisting of
six valves. Furthermore, the pair of valves that are accessible from each of the bars are
considered to be manipulable using the same tool. For instance, if one assumes that valves
1 and 4 constitute one pair, then both of the valves are manipulable by e.g. the manipulator
torque multiplier tool.

40

4.3 Simplifications and Assumptions

valve 1 valve 2 valve 3

valve 4 valve 5 valve 6

bar 1 bar 2 bar 3

Figure 4.5: Structure of the subsea panel in the planning problem

Lastly, the task of manipulating, i.e. handling/operating, a valve is initially a very complex
task. Due to the complexity of the task, it is generally divided into multiple smaller tasks
in order to actually execute it. In the works of this thesis, it is assumed that manipulating
a valve is only one single task.

The essential simplifications and assumptions related to the mission may be summed up
as following:

• The mission always starts with the undocked UID at the docking station

• There is only one panel at the subsea installation

• The UID can access two valves simultaneously when temporary docked to the panel

• Manipulating the valve is considered one single task

• Each pair of valves is manipulated by using the same tool

41

Chapter 4. Industrial Subsea Mission Definition and Implementation

4.4 Problem Formulated in PDDL
Finally, the mission planning problem is described using the modeling language PDDL, as
this is the de facto standard for defining planning problems for AI planning methods. List-
ing 4.1, 4.2, 4.3, 4.4 and 4.5 give an overview of how the planning problem is formulated,
as an important aspect of this thesis is how to formulate such a mission planning problem.

Listing 4.1 uses PDDL as to express the domain information, including the types, predi-
cated and objects in the defined environment. Furthermore, listing 4.2 expresses both the
initial and goal states for the mission planning problem as previously described in section
4.2. Both the initial and goal state contains a requirement denoted in italic; ”correct-tool-
installed”. The italic font represents that this requirement is set to either ”correct-tool-
installed” of ”not correct-tool-installed” which is dependent on what is assumed before-
hand. Furthermore, listing 4.3 and 4.4 describe all the actions related to valve manipulation
and docking, respectively. Finally, listing 4.5 describes the actions related to movement of
the UID, in addition to change of tool.

(d e f i n e (problem UID Miss ion P l a n n i n g)
(: domain s u b s e a i n s t a l l a t i o n)
(: t y p e s

l o c a t i o n
v a l v e
t o o l
b a r

)
(: p r e d i c a t e s

(a t ? l − l o c a t i o n)
(v a l v e n e e d s i n s p e c t i o n ? v − v a l v e)
(v a l v e c h e c k e d ? v − v a l v e)
(v a l v e n e e d s h a n d l i n g ? v − v a l v e)
(v a l v e o p e r a t e d ? v − v a l v e)
(c o r r e c t t o o l i n s t a l l e d ? v − v a l v e ? t − t o o l)
(t e m p o r a r y d o c k e d ? b − b a r)
(r e a d y t o f i n a l d o c k ? l − l o c a t i o n)
(r e a d y t o t e m p d o c k ? l − l o c a t i o n)
(f i n i s h e d m i s s i o n)
(f i n a l d o c k e d)

)
(: o b j e c t s

dock ing s t a t i o n , pane l , warehouse − l o c a t i o n
v1 , v2 , v3 , v4 , v5 , v6 − v a l v e
t1 , t2 , t 3 − t o o l

)

Listing 4.1: PDDL description of the defined planning problem’s domain

42

4.4 Problem Formulated in PDDL

(: i n i t
a t (dock ing s t a t i o n) and
v a l v e n e e d s h a n d l i n g (v1) and
v a l v e n e e d s i n s p e c t i o n (v2) and
v a l v e n e e d s i n s p e c t i o n (v3) and
v a l v e n e e d s i n s p e c t i o n (v4) and
v a l v e n e e d s i n s p e c t i o n (v5) and
v a l v e n e e d s i n s p e c t i o n (v4) and
correct-tool-installed (v1) or not correct-tool-installed (v1) and
not f i n i s h e d m i s s i o n)

(: goa l
not a t (dock ing s t a t i o n) and
not v a l v e n e e d s h a n d l i n g (v1) and
not v a l v e n e e d s i n s p e c t i o n (v2) and
not v a l v e n e e d s i n s p e c t i o n (v3) and
not v a l v e n e e d s i n s p e c t i o n (v4) and
not v a l v e n e e d s i n s p e c t i o n (v5) and
not v a l v e n e e d s i n s p e c t i o n (v4) and
not correct-tool-installed (v1) or correct-tool-installed (v1) and
f i n i s h e d m i s s i o n

)

Listing 4.2: PDDL description of the defined planning problem’s initial and goal state

(: a c t i o n i n s p e c t v a l v e
: parameters (? v − v a l v e

? b − b a r
? p a n e l − l o c a t i o n)

: p r e c o n d i t i o n (a t (p a n e l) and
t e m p o r a r y d o c k e d (b) and
v a l v e n e e d s i n s p e c t i o n (v))

: e f f e c t (not v a l v e n e e d s i n s p e c t i o n (v))
)
(: a c t i o n o p e r a t e v a l v e

: parameters (? v − v a l v e
? b − b a r
? p a n e l − l o c a t i o n)

: p r e c o n d i t i o n (a t (p a n e l) and
t e m p o r a r y d o c k e d (b) and
v a l v e n e e d s h a n d l i n g (v))

: e f f e c t (not v a l v e n e e d s h a n d l i n g (v))
)

Listing 4.3: PDDL description of the defined planning problem’s actions

43

Chapter 4. Industrial Subsea Mission Definition and Implementation

(: a c t i o n p r e p a r e t e m p o r a r y dock ing
: parameters (? v − v a l v e

? b − b a r
? p a n e l − l o c a t i o n)

: p r e c o n d i t i o n (a t (p a n e l) and
not t e m p o r a r y d o c k e d and
v a l v e n e e d s h a n d l i n g (v) or
v a l v e n e e d s i n s p e c t i o n (v) and
r e a d y t o t e m p d o c k)

: e f f e c t (t e m p o r a r y d o c k e d)
)
(: a c t i o n undock

: parameters (? p a n e l − l o c a t i o n
?)

: p r e c o n d i t i o n ()
: e f f e c t (not t e m p o r a r y d o c k e d and

not r e a d y t o t e m p d o c k)
)
(: a c t i o n t e m p o r a r i l y dock

: parameters (? v − v a l v e
? b − b a r
? p a n e l − l o c a t i o n)

: p r e c o n d i t i o n (a t (p a n e l) and
not t e m p o r a r y d o c k e d and
v a l v e n e e d s h a n d l i n g (v) or
v a l v e n e e d s i n s p e c t i o n (v))

: e f f e c t (t e m p o r a r y d o c k e d)
)
(: a c t i o n p r e p a r e f i n a l dock ing

: parameters (? d o c k i n g s t a t i o n − l o c a t i o n)
: p r e c o n d i t i o n (a t (d o c k i n g s t a t i o n and

f i n i s h e d m i s s i o n and
not r e a d y t o f i n a l d o c k and
not f i n a l d o c k e d))

: e f f e c t (r e a d y t o f i n a l d o c k)
)
(: a c t i o n f i n a l dock

: parameters (? d o c k i n g s t a t i o n − l o c a t i o n)
: p r e c o n d i t i o n (a t (d o c k i n g s t a t i o n) and

f i n i s h e d m i s s i o n and
r e a d y t o f i n a l d o c k and
not f i n a l d o c k e d)

: e f f e c t (f i n a l d o c k e d)
)

)

Listing 4.4: PDDL description of the defined planning problem’s docking-related actions

44

4.5 Implementation

(: a c t i o n change t o o l
: parameters (? t − t o o l

? warehouse − l o c a t i o n
? v − v a l v e)

: p r e c o n d i t i o n (a t (warehouse)
not c o r r e c t−t o o l− i n s t a l l e d (v , t))

: e f f e c t (c o r r e c t−t o o l− i n s t a l l e d (v , t))
)
(: a c t i o n move

: parameters (? l 1 − l o c a t i o n
? l 2 − l o c a t i o n)

: p r e c o n d i t i o n (a t (l 1))
: e f f e c t (a t (l 2))

)

Listing 4.5: PDDL description of the defined planning problem’s actions

4.5 Implementation

As mentioned previously in the introduction, the work of this thesis includes methods from
both AI Planning and Reinforcement Learning. The theory presented in chapter 2 intro-
duced the reader to three methods within AI planning; STRIPS, HTN and Graphplan, and
one method within Reinforcement learning. Despite of this, the thesis include only the
implementation of Graphplan and HTN from AI planning and Q-learning from Reinforce-
ment Learning.

The STRIPS planner is excluded from the scope of this thesis, as the Graphplan algorithm
is preferred in solving the defined mission. The main reason for this choice is that Graph-
plan is able to overcome the problem with the STRIPS planner and the occurrence of the
Sussman anomaly, as introduced in section 2.1.1.2, which might occur when solving this
mission planning problem. For instance, re-visiting the same location, such as the panel,
due to for example the incorrect tool being installed might potentially invoke the Sussman
anomaly.

The first implementations to be explored are the AI planning methods with HTN and
Graphplan. The structure of dividing the mission into tasks, which is how HTN solves
a planning problem, will be exploited for implementing and solving the previously intro-
duced mission planning problem for Graphplan. Therefore, the implementation of HTN is
explored first and thereby followed by the implementation of Graphplan. The implemen-
tation of the Reinforcement Learning algorithm, i.e. Q-learning, builds on some of the
aspects in Graphplan with regard to the used states and action, and is therefore described
at the end.

45

Chapter 4. Industrial Subsea Mission Definition and Implementation

4.5.1 Hierarchical Task Network
As described previously in section 2.1.2.1, a planning problem which is solved using HTN
must be structured as tasks. Consequently, the introduced mission planning problem is de-
fined by using the task structure. The mission planning problem is divided into three parts,
which represents the main aspects of the mission. These are: ”Handle valve”, ”Inspect
valve” and ”Dock to station”. Hence, the main task to be executed is ”Mission Planning”
and the sub-tasks are ”Handle valve”, ”Inspect valve” and ”Dock to station”. It is also
worth mentioning that the UID’s initial state remains as stated in the mission definition.

Mission Planning

Handle valve Inspect valve Dock to station

Figure 4.6: Overall description of the main tasks of the mission planning problem for the HTN
method

46

4.5 Implementation

From the mission definition and problem formulation, the first part of the defined mission
planning problem is to operate valve 1 on the panel. In order to execute this task, the UID
has to move from the docking station to the panel with the valves. Subsequently, the UID
has to prepare itself for the temporary docking to the panel before actually docking to it.
Upon temporary docking, the UID has to verify if the correct tool is installed before oper-
ating the valve. Depicted as a flowchart, figure 4.7 illustrates the task of handling the valve.

Handle valve

Move to panel

Check
if

correct
tool

Operate

Move to warehouse

Install tool

False

True

Prepare temporary
docking

Temporary docking

Undock

Figure 4.7: Overall description of the main tasks of the mission planning problem for the HTN
method

47

Chapter 4. Industrial Subsea Mission Definition and Implementation

The second part of the defined mission planning problem is to inspect the remaining of
the valves on the panel. A flowchart describing this task is illustrated in figure 4.8. At
this stage, the UID is already at the panel since the task is performed subsequently to the
”Handle valve” task. Regardless, the UID verifies that it is indeed at the panel as it might
harm the UID or installation to perform actions when not in the correct state. For instance,
preparing to dock or try to temporary dock when the UID is already docked to the docking
station does not make any sense.

As previously explained in the mission planning problem definition, the UID has to inspect
five valves in addition to operate one. In order to achieve this, the UID has to undock from
the current bar and dock to the subsequent bar. Therefore, the dotted line in figure 4.8
indicates which methods or operators must be repeated in order to reflect the inspection of
the remaining valves. Upon inspecting the last valve, the UID stays temporarily docked to
the panel until the next task is invoked.

Move to panel

Check if
at panel

Inspect valve

Prepare temporary docking

Temporary docking

Check if
valve

inspected
Update valve status

False

True

True

Undock

False

(Repeat if there are valves yet to be inspected)

Figure 4.8: Overall description of the main tasks of the mission planning problem for the HTN
method

48

4.5 Implementation

Finally, the last part of the defined mission planning problem is to dock to the docking
station. This is performed upon completion of the mission related to the valve, which
includes both inspection and manipulation. As a starting point the UID verifies if it has
completed the mission. If it has indeed completed the inspection and operation of valve as
defined by the mission planning problem, it proceeds to undock from the panel and move
to the docking station. The UID prepares to dock and thereby performs the actual docking
to the docking station.

Dock to station

Check if
done with
mission

Undock

Move to docking
station

Prepare final docking

Stay temporarily
docked to panel

Final docking

False

True

Figure 4.9: Overall description of the main tasks of the mission planning problem for the HTN
method

In order to perform all the aforementioned tasks for the mission planning problems, they
are broken down as methods and operators as explained in section 2.1.2.1. Table 4.1 gives
an overview of the implemented methods and operators, which reflects if a task is primi-
tive or non-primitive.

49

Chapter 4. Industrial Subsea Mission Definition and Implementation

Methods Operators
mission planning move

inspect panel prepareTempDocking
check valves tempDock
handle valve undock
operateValve installTool

dock to docking station operateValve
updateValveStatus

prepareFinalDocking
dockToStation

Table 4.1: Overview of the defined methods and operators for HTN

4.5.2 Graphplan
The implementation of the Graphplan algorithm differs from the implementation of HTN,
as the approaches are quite different. Instead of using tasks, the mission planning problem
is defined using states and actions. Therefore, the mission planning problem’s implemen-
tation is to some extent similar to the mission definition description in PDDL in listing 4.1,
where the states are represented by the predicates.

Some inspiration was also drawn from the HTN method when implementing the Graph-
plan method for the same planning problem by dividing the problem into multiple sub-
problems. In a similar manner, the planning problem is divided into one part for the ”valve
handling”, one part for the ”valve inspection” and a part for ”docking to station”. Addi-
tionally, the aspect of re-docking from one bar to the next is considered a sub-problem
as well. The main reason for this division is that the state-space of the mission planning
problem becomes quite large when there are ten actions and twelve states. Furthermore,
by limiting the size of the problem one increases the chances of convergence and conse-
quently find a reasonable solution.

Otherwise, the domain for the Graphplan algorithm is similar to the one described for the
general mission definition in listing 4.1. The actions and their respective precondition on
the contrary differs a bit from the general mission definition. The main reason for this is
that the used library for the implementation required some additional constraints on the
precondition for each action to ensure that only one action could be taken in some state. A
consequence of not having additional constraint is that the algorithm becomes inconclu-
sive in solving the defined mission planning problem.

In addition, the predicates in the Graphplan algorithm are defined quite similarly as one
would do for the STRIPS method by using first-order logic as explained in section 2.1.1.1.
This means that the predicates can be described as booleans, i.e. by either ”true” or ”false”.

50

4.5 Implementation

An overall description of the states and actions for the defined mission planning problem
is illustrated in figure 4.10. The red circles represent the location-related states, while the
grey circles represent the remaining states. The arrows indicate the actions that make the
UID transition from one state to another.

Docking
Station Warehouse

Panel

Correct
tool

Installed

Ready to
temporary

dock

Temporary
docked

Undocked

Valve
inspected

Valve
operated

Ready
to

final
dock

Final
dock

Move to warehouse

Move to docking station

Change
tool

Move to
panel

Move to
panel

Prepare final
docking

Final
dock

Move to docking
station

Move to
warehouse

Prepare
temporary
docking

Temporary
dock

Inspect
valve

Operate
valve

Undock
Und ock

Undock

Prepare
temporary
docking

Inspect valve

Figure 4.10: Overall state-space of the subsea installation used in the planning problem

51

Chapter 4. Industrial Subsea Mission Definition and Implementation

In order to define the mission planning problem as three sub-missions, it is necessary to
define both initial and goal states to represent where one sub-mission ends and the subse-
quent sub-mission starts. These are defined in listing 4.6, 4.7, 4.8 and 4.9, respectively. It
is worth mentioning that the aforementioned listings do not follow the rules of modeling
with PDDL, and are rather just on a generalized format.

i n i t : At (D o c k i n g S t a t i o n) and
not At (P a n e l) and
not At (Warehouse) and
not ReadyToTempDock and
not ValveOpera t ed and
not TempDocked and
C o r r e c t T o o l I n s t a l l e d and
not F i n i s h e d M i s s i o n and
not P a n e l V i s i t e d and

goa l : Va lveOpe ra t ed

Listing 4.6: Initial and goal state for the valve operation part of the Graphplan implementation

The second part of the mission represents the ”valve inspection”-aspect of the mission
planning problem. The initial and goal state for this part is described in listing 4.7.

i n i t : Va lveOpe ra t ed and
At (P a n e l) and
not At (Warehouse) and
not At (D o c k i n g S t a t i o n) and
TempDocked and
not P a n e l V i s i t e d and
not V a l v e I n s p e c t e d

goa l : V a l v e I n s p e c t e d

Listing 4.7: Initial and goal state for the valve inspection part of the Graphplan implementation

The re-docking aspect of the mission essentially undocks the UID from the current bar and
docks to the subsequent bar. Upon temporary docking to the new bar, the UID inspects the
valves that are accessible. After inspecting the pair of accessible bars, the UID proceeds
to the next bar. The initial and goal state for this part is described in listing 4.8.

52

4.5 Implementation

i n i t : TempDocked and
At (P a n e l) and
not At (Warehouse) and
not At (D o c k i n g S t a t i o n) and
not P a n e l V i s i t e d and
not V a l v e I n s p e c t e d

goa l : TempDocked and
P a n e l V i s i t e d

Listing 4.8: Initial and goal state for the re-docking part of the Graphplan implementation

The last sub-mission is to dock to the docking station upon completion of inspection and
manipulating all the valves at the panel. The initial and goal states are described in listing
4.9.

i n i t : not At (D o c k i n g S t a t i o n) and
At (P a n e l) and
not At (Warehouse) and
F i n i s h e d M i s s i o n and
ValveOpera t ed and
P a n e l I n s p e c t e d and
TempDocked and
not ReadyToFinalDock

goa l : F ina lDocked

Listing 4.9: Initial and goal state for the final docking part of the Graphplan implementation

In order to perform all the aforementioned sub-missions, it is necessary to to define the ac-
tions that are valid within the mission planning domain. In total, twelve actions are defined
for the Graphplan algorithm. They are all described in listing 4.10 with their correspond-
ing preconditions and effects.

a c t i o n : ” MoveToPanel ”
p r e c o n d i t i o n = not At (P a n e l) and

not ValveOpera t ed and
not TempDocked

e f f e c t = At (P a n e l) and
not At (D o c k i n g S t a t i o n) and
not At (Warehouse)

53

Chapter 4. Industrial Subsea Mission Definition and Implementation

a c t i o n : ” MoveToWarehouse ”
p r e c o n d i t i o n = not C o r r e c t T o o l I n s t a l l e d and

not At (Warehouse) and
ValveOpera t ed and
not TempDocked and
P a n e l V i s i t e d

e f f e c t = At (Warehouse) and
not At (P a n e l) and
not At (D o c k i n g S t a t i o n)

a c t i o n : ” MoveToDocking ”
p r e c o n d i t i o n = not At (D o c k i n g S t a t i o n) and

F i n i s h e d M i s s i o n and
not TempDocked

e f f e c t = At (D o c k i n g S t a t i o n) and
not At (P a n e l) and
not At (Warehouse)

a c t i o n : ReadyToTempDock
p r e c o n d i t i o n = not ReadyToTempDock and

At (P a n e l) and
not At (Warehouse) and
not At (D o c k i n g S t a t i o n) and
not TempDocked

e f f e c t = ReadyToTempDock

a c t i o n : TempDock
p r e c o n d i t i o n = ReadyToTempDock and

At (P a n e l) and
not At (Warehouse) and
not At (D o c k i n g S t a t i o n) and
not P a n e l V i s i t e d

e f f e c t = TempDocked and
P a n e l V i s i t e d and
not ReadyToTempDock

a c t i o n : Undock
p r e c o n d i t i o n = TempDocked and

At (P a n e l) and
not At (Warehouse) and
not At (D o c k i n g S t a t i o n)

e f f e c t = not TempDocked and
not ReadyToTempDock

54

4.5 Implementation

a c t i o n : O p e r a t e V a l v e
p r e c o n d i t i o n = At (P a n e l) and

not At (D o c k i n g S t a t i o n) and
not At (Warehouse) and
TempDocked and
not ValveOpera t ed and
C o r r e c t T o o l I n s t a l l e d

e f f e c t = Va lveOpe ra t ed and
not C o r r e c t T o o l I n s t a l l e d

a c t i o n : I n s p e c t V a l v e
p r e c o n d i t i o n = not V a l v e I n s p e c t e d and

TempDocked and
At (P a n e l) and
not At (D o c k i n g S t a t i o n) and
not At (Warehouse)

e f f e c t = V a l v e I n s p e c t e d

a c t i o n : ChangeTool
p r e c o n d i t i o n = At (Warehouse) and

not At (P a n e l) and
not At (D o c k i n g S t a t i o n) and
not C o r r e c t T o o l I n s t a l l e d and
P a n e l V i s i t e d

e f f e c t = C o r r e c t T o o l I n s t a l l e d

a c t i o n : P r e p a r e F i n a l D o c k i n g
p r e c o n d i t i o n = At (D o c k i n g S t a t i o n) and

not At (P a n e l) and
not At (Warehouse) and
not ReadyToFinalDock

e f f e c t = ReadyToFinalDock

a c t i o n : F ina lDock
p r e c o n d i t i o n = At (D o c k i n g S t a t i o n) and

not At (P a n e l) and
not At (Warehouse) and
ReadyToFinalDock

e f f e c t = Fina lDocked

Listing 4.10: Graphplan implementation with the defined actions

55

Chapter 4. Industrial Subsea Mission Definition and Implementation

4.5.3 Q-learning
The Q-learning algorithm requires the implementation of a custom environment which
would reflect the defined mission planning problem and its corresponding domain. The
domain has to contain both states and actions which the software agent will exploit in
order to learn about its surroundings. Consequently, the domain for the subsea mission
planning problem is designed in a similar manner as the one for the Graphplan algorithm,
as this ensures that the states and actions are nearly the same. An overview of the domain
of the mission planning problem is depicted in figure 4.10.

The main difference between the mission planning problem for the Q-learning algorithm
compared to the AI Planning methods is that the mission planning problem is simplified.
First and foremost, it is assumed that the panel in the defined domain only contains two
valves. The first valve needs to be operated and the second valve needs to be inspected.
This simplification is done due to the difficulty of developing a reward function such that
the software agent learns to repeat the same sequence of actions a certain amount of times.
For instance, if there are six valves on the panel the UID has to operate valve 1, inspect
valve 2, then re-dock to next bar in order to access the next two bars and finally repeat the
same actions for re-docking to the last bar and inspecting the remaining valves.

The overall mission planning problem is divided into three parts, in a similar manner as
for the AI Planning methods. The first sub-mission is to operate valve 1, followed by in-
specting valve 2 and finally docking to the docking station upon completion. However,
the domain of mission planning problem still contains the states and actions related to the
change of tool and re-docking. By keeping these aspects in the overall mission planning
domain, the complexity of the overall mission is increased as the software agent has the
option to explore these state even though they are not a part of the desired objective. Fig-
ure 4.11 illustrates the state-space representation assumed in the implementation of the
Q-learning algorithm. The states denoted in bold are the initial state/goal states for each
of the sub-missions and table 4.2 also gives an overview of the initial and goal states for
each sub-mission.

initial state goal state
sub-mission 1 ”Docking Station” ”Valve Operated”
sub-mission 2 ”Valve Operated” ”Valve Inspected”
sub-mission 3 ”Valve Inspected” ”Docking Station”

Table 4.2: The initial and goal states for each of the sub-missions for the Q-learning algorithm

56

4.5 Implementation

Docking
Station Warehouse

Panel

Correct
tool

Installed

Ready to
temporary

dock

Temporary
docked

Undocked

Valve
inspected

Valve
operated

Ready
to

final
dock

Final
dock

Move to warehouse

Move to docking station

Change
tool

Move to
panel

Move to
panel

Prepare final
docking

Final
dock

Move to docking
station

Move to
warehouse

Prepare
temporary
docking

Temporary
dock

Inspect
valve

Operate
valve

Undock
Und ock

Undock

Inspect valve

Prepare temporary
docking

Figure 4.11: Modified state-space representation of the mission planning problem domain for Q-
learning

57

Chapter 4. Industrial Subsea Mission Definition and Implementation

The implementation of the custom Reinforcement Learning Environment, which is utmost
necessary for expressing the mission planning problem in such a manner that the software
agent is able to learn the environment by exploring it, requires several modules. First and
foremost, the observation and action spaces had to be determined. The observation space
contains all the valid observations the environment, i.e. all states that are considered as
valid observation by the software agent. In the same manner, the action space contains all
the objects that are considered as valid actions in the defined environment. These spaces
are defined based on figure 4.11.

Both the action and observation spaces were defined as discrete, i.e. as Boolean variables,
meaning that they are either valid or not valid. Initially the discrete representation of the
spaces denotes each of the object in the space with a number and the corresponding value
of either ”True” of ”False”. To gain a better overview of each state or action and its corre-
sponding value, the data structure of a dictionary was used to connect the discrete object
to its corresponding name defined with the string datatype. Listing 4.11 given an overview
of the defined observation and action spaces.

s e l f . a c t i o n s p a c e = s p a c e s . D i s c r e t e (1 1)
s e l f . a c t i o n s p a c e d i c t i o n a r y =

{0 : ” MoveToPanel ” , 1 : ” MoveToWarehouse ” , 2 : ” MoveToDocking ” ,
3 : ” PrepareTempDock ” , 4 : ”TempDock” , 5 : ” Undock ” ,
6 : ” I n s p e c t V a l v e ” , 7 : ” O p e r a t e V a l v e ” ,
8 : ” ChangeTool ” , 9 : ” P r e p a r e F i n a l D o c k i n g ” , 10 : ” F ina lDock ”}

s e l f . o b s e r v a t i o n s p a c e = s p a c e s . D i s c r e t e (1 1)
s e l f . o b s e r v a t i o n s p a c e d i c t i o n a r y =

{0 : ’ A tPane l ’ , 1 : ’ AtWarehouse ’ , 2 : ’ A t D o c k i n g S t a t i o n ’ ,
3 : ’ ReadyToTempdock ’ , 4 : ’ TempDocked ’ , 5 : ’ Undocked ’ ,
6 : ’ V a l v e I n s p e c t e d ’ , 7 : ’ Va lveOpe ra t ed ’ ,
8 : ’ C o r r e c t T o o l I n s t a l l e d ’ , 9 : ’ ReadyToDock ’ ,
10 : ’ F ina lDock ’}

Listing 4.11: Observation and Action Spaces for the custom RL environment

Moreover, in order for the software agent to learn about the environment and consequently
how to act within it, a reward function is defined to indicate to the software agent which
behaviour within the environment is beneficial in the attempt of reaching the desired ob-
jective. Essentially, the implemented reward function for the defined mission planning
problem is quite simple. For each state the software agent reaches which is not the ob-
jective, i.e. the goal state, the agent receives a penalty of −1. If the next state the agent
reaches is the goal state, then it is rewarded +10.

Furthermore, the number of episodes is defined as 10000, in order to have a high number
of training sequences. The probability of the software agent taking a greedy action is de-
fined as ε = 0.7, and is used by the ε-greedy method in order to determine which action to

58

4.5 Implementation

take for each step in the current episode. Moreover the learning rate is defined as α = 0.1
and the discount rate is set to γ = 1.0. The definition of these variables and the definition
of the Q-learning algorithm can be found in section 2.2.2.1.

Another aspect which was taken into consideration was the fact that all actions were not
valid from each of the states. For instance, if the UID is at the Warehouse it cannot inspect
the valve. Consequently, after the ε-greedy selects an action the implemented algorithm
checks if the action is valid based on the current state of the software agent. If it is valid,
then the software agent can proceed to calculate the Q-value in the Q-table. On the con-
trary, if the the action is not valid, then the Q-value is not calculated and the Q-table
remains unchanged.

59

Chapter 4. Industrial Subsea Mission Definition and Implementation

60

Chapter 5
Results and Analysis

This chapter describes how the different methods are able to solve the previously defined
mission planning problem. Furthermore, the AI planning methods are explainable and can
therefore indicate how the algorithm proceeds to start at some initial state and reaches the
desired goal or objective. The Reinforcement Learning method

5.1 Mission Planning Problem without Replanning
As a starting point this section includes the obtained results for the mission planning prob-
lem described in Chapter 4, however the UID does not need to change the tool in order
to operate the given valve. The need of changing the manipulation tool is discovered
mid-mission, i.e. when the UID is at the panel and ready to operate the valve, and is con-
sequently considered a replanning.

5.1.1 Solution using Hierarchical Task Network
In the same manner as the definition of the mission planning problem in section 4.5.1, the
obtained results are also divided in three to reflect the tasks. The first main task is ”handle
valve” and the corresponding solution is described in table 5.1. The color-coordination
used in the table represent the three different tasks, as depicted in figure 4.6, where yellow
in the task ”handle valve”, red is ”inspect valve” and blue is ”dock to docking station”.
The main task is ”mission planning” and is denoted in bold as this is the main starting
task. Moreover, at each depth the chosen action is also denoted in bold. For instance, in
depth 1 the current task is handle valve.

As table 5.1 represents the start of the mission, depth 0 only contains one task, which is
mission planning. This task consists of three sub-tasks which become available of the al-
gorithm upon exploration. The main task is replaced by the three sub-task; ”handle valve”,

61

Chapter 5. Results and Analysis

”inspect panel” and ”dock to docking station”, which have to be executed in order for the
main task to be executed. In depth 1, the first sub-task is selected which also contains new
sub-tasks. These new tasks are added to the tasks the algorithm need to execute in order
to solve the mission planning problem. For each depth, the first action in the ”Tasks”-
column is selected and performed, until it reaches the last sub-task for the task ”handle
valve” which is to operate the valve. This illustrates the occurrence of hierarchy in a task
network.

Depth Tasks New Tasks

0 mission planning
handle valve
inspect panel

dock to docking station

1
handle valve
inspect panel

dock to docking station

move to panel
prepareTempDocking

tempDock
operate valve

2

move to panel
prepareTempDocking

tempDock
operate valve
inspect panel

dock to docking station

3

prepareTempDocking
tempDock

operate valve
inspect panel

dock to docking station

4

tempDock
operate valve
inspect panel

dock to docking station

5
operate valve
inspect panel

dock to docking station

Table 5.1: The partial plan for obtained by solving the ”handle valve” task with HTN

The second sub-task is ”inspect panel”, denoted in red in table 5.2. The ”inspect panel”
task consists of only one sub-task, i.e. ”inspect valve”. At this point, the UID is docked
to the first bar as depicted in figure 4.5 after having operated the first valve. Therefore, the
UID can inspect valve 2 and update its status without the need of re-docking.

62

5.1 Mission Planning Problem without Replanning

In depth 9 the UID has to continue the inspection, but since it has already inspected the
valves that are reachable from the bar it is currently docked to, it has to re-dock to the next
bar. The re-docking requires the UID to undock, prepare for temporary docking and then
temporary dock. In table 5.2 the depths 10 − 14 are repeated in order to inspect all the
valves on the defined panel. At depth 30, there are not any valves which have not already
been inspected and therefore this sub-task has successfully been executed.

Depth Tasks New Tasks

6
inspect panel

dock to docking station inspect valve

7,
15,
23

inspect valve
dock to docking station

updateValveStatus
inspect valve

8,
16,
24

updateValveStatus
inspect valve

dock to docking station

9,
17,
25

inspect valve
dock to docking station

undock
prepareTempDocking

tempDock
updateValveStatus

inspect valve

10,
18,
26

undock
prepareTempDocking

tempDock
updateValveStatus

inspect valve
dock to docking station

11,
19,
27

prepareTempDocking
tempDockupdateValveStatus

inspect valve
dock to docking station

12,
20,
28,

tempDock
updateValveStatus

inspect valve
dock to docking station

13,
21,
29

updateValveStatus
inspect valve

dock to docking station
14,
22,
30

inspect valve
dock to docking station

Table 5.2: The partial plan obtained by solving the ”inspect panel” task with HTN for the replanning
mission

63

Chapter 5. Results and Analysis

The last remaining task to be executed is ”dock to docking station”, as the handling and
inspection of valves has been completed. The task ”dock to docking station” contains four
sub-tasks. First and foremost, the UID has to undock since it is temporarily docked to the
panel. Upon undocking, the UID moves to the docking station in order to complete solving
the mission planning problem. Upon arrival at the docking station, the UID prepares to
dock and finally docks to the station.

Depth Tasks New Tasks

31 dock to docking station

undock
move to docking station

prepareFinalDocking
dockToStation

32

undock
move to docking station

prepareFinalDocking
dockToStation

33
move to docking station

prepareFinalDocking
dockToStation

34
prepareFinalDocking

dockToStation
35 dockToStation

Table 5.3: The partial plan obtained by solving the ”dock to docking station” task with HTN for the
replanning mission

64

5.1 Mission Planning Problem without Replanning

5.1.2 Solution using Graphplan

As described in the implementation of the Graphplan algorithm in section 4.5.2 the mis-
sion planning problem is divided into three sub-missions. Each of the missions are solved
separately and the final solution is a composition of the solutions obtained by the sub-
mission individually.

As mentioned in the previous chapter in section 4.3, which describes the simplifications
and assumptions related to the mission planning problem, the UID starts at the docking
station. The goal state of the first mission is ”Valve operated”, and the found solution is
depicted in figure 5.1. The actionsAwhich are taken to reach the goal state from the initial
state are the black arrows from the ”Docking station” to the ”Valve operated”. At the end
of this section, table 5.4 describes the total solution where A0 − A3 corresponds to the
solutions to this sub-mission.

Docking
Station

Panel

Ready to
temporary

dock

Temporary
docked

Undocked

Valve
inspected

Valve
operated

Ready
to

final
dock

Final
dock

Move to
panel

Prepare final
docking

Final
dock

Move to docking
station

Prepare
temporary
docking

Inspect
valve

Operate
valve

Undock
Und ock

Undock

Prepare
temporary
docking

Docking
Station

Ready to
temporary

dock

Valve
operated

Final
dock

Temporary
dock

Inspect valve

Figure 5.1: The obtained solution by the Graphplan algorithm for part one of the mission planning
problem without replanning

65

Chapter 5. Results and Analysis

The second part of the mission starts where the aforementioned sub-mission ends, i.e.
”Valve Operated”, and ends at ”Valve Inspected”. However, in order to consider the sub-
mission as completed all the valves have to be inspected and therefore the algorithm ex-
pands the corresponding planning graph (see algorithm 2 in Chapter 2) for each valve
which is yet to be explored. Since the UID is already docked to the panel and has operated
valve 1, the UID can directly inspect valve 2 (see figure 4.5 for valve setup). Subsequently,
it undocks from the current bar, prepares to temporary dock and docks to the next bar.
From this bar it can inspect the two next valves. Lastly, it repeats the re-docking and in-
spects the two remaining valves which indicates the completion of the current sub-mission.
In table 5.4, the actions A4 − A14 describes the aforementioned actions for solving this
part of the mission planning problem.

Docking
Station

Panel

Ready to
temporary

dock

Temporary
docked

Undocked

Valve
inspected

Valve
operated

Ready
to

final
dock

Final
dock

Move to
panel

Prepare final
docking

Final
dock

Move to docking
station

Prepare
temporary
docking

Inspect
valve

Operate
valve

Undock
Und ock

Undock

Prepare
temporary
docking

Ready to
temporary

dock

Undocked

Valve
operated

Final
dock

Temporary
dock

Inspect valve

Figure 5.2: The obtained solution by the Graphplan algorithm for part two of the mission planning
problem without replanning

66

5.1 Mission Planning Problem without Replanning

The last part of the mission planning problem starts where the previous sub-mission ends,
i.e. ”Valve Inspected”, and ends at the state ”Final dock”. The obtained solution by the
Graphplan algorithm starts by undocking the UID from the bar on the panel, followed by
moving to the docking station. Upon arrival at the docking station, the UID prepares to
final dock before docking to the station. The solution for this sub-mission is represented
in table 5.4 as actions A15 −A18.

Docking
Station

Panel

Ready to
temporary

dock

Temporary
docked

Undocked

Valve
inspected

Valve
operated

Ready
to

final
dock

Final
dock

Move to
panel

Prepare final
docking

Final
dock

Move to docking
station

Prepare
temporary
docking

Inspect
valve

Operate
valve

Undock
Und ock

Undock

Prepare
temporary
docking

Docking
Station

Ready to
temporary

dock

Valve
operated

Final
dock

Temporary
dock

æ
Inspect valve

Figure 5.3: The obtained solution by the Graphplan algorithm for part one of the mission planning
problem without replanning

67

Chapter 5. Results and Analysis

Sub-mission A Action

1 A0 −A3

MoveToPanel
ReadyToTempDock

TempDock
OperateValve

2 A4 −A14

InspectValve
Undock

ReadyToTempDock
TempDock

InspectValve
InspectValve

Undock
ReadyToTempDock

TempDock
InspectValve
InspectValve

3 A15 −A18

Undock
MoveToDocking

PrepareFinalDocking
FinalDock

Table 5.4: The overall solution obtained by the Graphplan algorithm for the mission planning prob-
lem without replanning

5.2 Mission Planning Problem with Replanning
The second scenario which is implemented in the work of this thesis includes an aspect of
replanning. In terms of the defined mission planning problem this is implemented as the
requirement of changing the tool on the UID, as it is not able to operate the valve without
the correct tool installed.

5.2.1 Solution using Hierarchical Task Network
The overall solution for the mission planning problem with the replanning aspect is quite
similar to the solution without the replanning aspect. Only the first task, i.e. ”handle
valve”, differs in the overall solution and is described in table 5.5. The remaining two
tasks, i.e. ”inspect panel” and ”dock to docking station” are described earlier in table 5.2
and table 5.3, respectively.

The depths 0−4 in the solution of the ”handle valve” task for the mission planning problem
with replanning is identical to the solution described earlier in table 5.1. The difference
occurs at depth 5 when the UID is not able to operate the valve due to having the incorrect
tool installed. Consequently, the execution of the task ”operate valve” is dependent on the

68

5.2 Mission Planning Problem with Replanning

sub-task ”changeTool”. Depth 6 describes all the newly added tasks which are sub-tasks of
”changeTool”. The UID has to move to the warehouse from the panel, install the required
tool, move back to the panel and thereby re-dock by preparing the temporary docking and
finally temporary dock to the panel again. This is described in depths 7− 11 Upon change
of tool, the UID is able to operate the valve and can continue the mission as described
previously.

Depth Tasks New Tasks

0 mission planning
handle valve
inspect panel

dock to docking station

1
handle valve
inspect panel

dock to docking station

move to panel
prepareTempDocking

tempDock
operate valve

2

move to panel
prepareTempDocking

tempDock
operate valve
inspect panel

dock to docking station

3

prepareTempDocking
tempDock

operate valve
inspect panel

dock to docking station

4

tempDock
operate valve
inspect panel

dock to docking station

5
operate valve
inspect panel

dock to docking station
changeTool

6

changeTool
operate valve
inspect panel

dock to docking station

move to warehouse
install tool

move to panel
prepareTempDocking

tempDock

69

Chapter 5. Results and Analysis

Table 5.5 continued from previous page
Depth Tasks New Tasks

7

move to warehouse
install tool

move to panel
prepareTempDocking

tempDock
operate valve
inspect panel

dock to docking station

8

install tool
move to panel

prepareTempDocking
tempDock

operate valve
inspect panel

dock to docking station

9

move to panel
prepareTempDocking

tempDock
operate valve
inspect panel

dock to docking station

10

prepareTempDocking
tempDock

operate valve
inspect panel

dock to docking station

11

tempDock
operate valve
inspect panel

dock to docking station

12
operate valve
inspect panel

dock to docking station

13
inspect panel

dock to docking station

Table 5.5: The partial plan obtained by solving the ”handle valve” task with HTN for the replanning
mission

70

5.2 Mission Planning Problem with Replanning

5.2.2 Solution using Graphplan
In the same manner as for the HTN method, the overall solutions obtained by the Graph-
plan algorithm for the mission planning problem with and without the replanning aspect
are quite similar. The defined mission planning problem differs in the first sub-mission
which is defined as going from the initial state of the ”Docking Station” and to the goal
state of ”Valve operated”.

The first sub-mission starts identically to the first sub-mission for the mission planning
problem without replanning, i.e. at the state of ”docking station” and moves to the panel
in order to prepare the temporary docking before temporary docking to the panel. Further-
more, the UID tries to operate valve 1, but unlike in the previous mission the UID does
not have the correct tool for operating the valve. Consequently, the UID needs to undock
from the ”panel” and move to the ”warehouse” where it can change the manipulator tool.
Upon completion, the UID moves back to the ”panel”, prepares the temporary docking
and finally temporary docks to the same bar as previously. The UID has now the correct
tool installed and is capable of operating the valve.

Figure 5.4 illustrates the visited states and the chosen actions for solving the mission plan-
ning problem. Furthermore, table 5.6 sums up the actions that are necessary for solving
the mission planning problem, both for each sub-mission and the problem as a whole.
The actions for the described sub-mission are A0 − A9, while the remaining actions are
identical to the solutions for the previous planning planning problem which neglected the
replanning aspect (see table 5.4). These actions are denoted as A10 −A20 and A21 −A24

for sub-mission two and three, respectively.

71

Chapter 5. Results and Analysis

Docking
Station Warehouse

Panel

Correct
tool

Installed

Ready to
temporary

dock

Temporary
docked

Undocked

Valve
inspected

Valve
operated

Ready
to

final
dock

Final
dock

Move to warehouse

Move to docking station

Change
tool

Move to
panel

Move to
panel

Prepare final
docking

Final
dock

Move to docking
station

Move to
warehouse

Prepare
temporary
docking

Temporary
dock

Inspect
valve

Operate
valve

Undock
Und ock

Undock

Inspect valve

Not
operable

Figure 5.4

72

5.2 Mission Planning Problem with Replanning

Mission A Action

1 A0 −A9

MoveToPanel
ReadyToTempDock

TempDock
Undock

MoveToWarehouse
ChangeTool

MoveToPanel
ReadyToTempDock

TempDock
OperateValve

2 A10 −A20

InspectValve
Undock

ReadyToTempDock
TempDock

InspectValve
InspectValve

Undock
ReadyToTempDock

TempDock
InspectValve
InspectValve

3 A21 −A24

Undock
MoveToDocking

PrepareFinalDocking
FinalDock

Table 5.6: The overall solution obtained by the Graphplan algorithm for the mission planning prob-
lem with replanning

73

Chapter 5. Results and Analysis

5.3 Mission Planning Problem solved with Q-learning
The results for the Q-learning algorithm differs from the implementation and consequently
the results as well, since the assumed scenario for this method is a simplification of the
defined mission planning problem as explained earlier in section 4.5.3. However, the sim-
plified mission planning problem is also divided into three sub-missions which are quite
similar to the sub-missions of the Graphplan algorithm. The three sub-missions for Q-
learning are illustrated in figure 5.5, 5.6 and 5.7, respectively.

Furthermore, the first sub-mission is defined from the ”Docking station” as initial state
and ”Valve operated” as goal state. Both these states are depicted as bold circles in figure
5.5. The corresponding Q-table for this sub-mission is denotedQ1 and contains the results
after completing the 10000 episodes which were defined for the Q-learning algorithm.
Based on the Q-table, i.e. Q1, one can determine which action is most beneficial in each
of the defined states. The most beneficial action can be determined as rows in the Q-table
represents each of the states in the environment and the columns represent the actions.
The Q-learning algorithm chooses the action which maximizes the Q-value as explained
in section 2.2.2.1, and these are summed up in table 5.7.

Q1 =

0. 9.6 9.6 9.8 0. 0. 0. 0. 0. 0. 0.
9.7 0. 9.6 0. 0. 0. 0. 0. 9.6 0. 0.
9.7 9.6 0. 0. 0. 0. 0. 0. 0. 9.4 0.
0. 0. 0. 0. 9.9 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 9.9 9.6 10. 0. 0. 0.
0. 9.6 9.6 9.80. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 9.7 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

9.7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9.5
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

State Recommended action

’AtPanel’ PrepareTempDock
’AtWarehouse’ MoveToPanel

’AtDockingStation’ MoveToPanel
’ReadyToTempdock’ TempDock

’TempDocked’ OperateValve
’Undocked’ PrepareTempDock

’ValveInspected’ Undock
’ValveOperated’ MoveToPanel

’CorrectToolInstalled’ MoveToPanel
’ReadyToDock’ FinalDock

’FinalDock’ -

Table 5.7: Recommended actions based on the obtained Q-table for sub-mission 1

74

5.3 Mission Planning Problem solved with Q-learning

Based on table 5.7, if the agent always follows the recommended action, it will be able
to reach the goal state in an efficient manner. For instance, by starting at the ”docking
station” and following the recommended actions at each state result in the plan illustrated
in figure 5.5. However, it is noteworthy that the states ”Ready to final dock” and final
dock do not contribute in reaching the defined goal state, as each of the state only have one
possible action.

Docking
Station Warehouse

Panel

Correct
tool

Installed

Ready to
temporary

dock

Temporary
docked

Undocked

Valve
inspected

Valve
operated

Ready
to

final
dock

Final
dock

Move to warehouse

Move to docking station

Change
tool

Move to
panel

Move to
panel

Prepare final
docking

Final
dock

Move to docking
station

Move to
warehouse

Prepare
temporary
docking

Temporary
dock

Inspect
valve

Operate
valve

Undock
Und ock

Undock

Inspect valve

Figure 5.5: Overview of sub-mission 1 for the Q-learning algorithm

75

Chapter 5. Results and Analysis

The second sub-mission starts at the state ”Valve operated” and the desired goal state is
”Valve inspected”. These states are indicated in bold in figure 5.6, while the corresponding
Q-table is denoted Q2. As for sub-mission 1, the Q-table is the result of the Q-learning al-
gorithm looping through the 10000 episodes in order to determine which actions the agent
should perform at each of the states. Based on the Q-table Q2, table 5.8 is derived as the
recommended actions.

Q2 =

0. 9.6 9.6 9.8 0. 0. 0. 0. 0. 0. 0.
9.7 0. 9.6 0. 0. 0. 0. 0. 9.6 0. 0.
9.7 9.6 0. 0. 0. 0. 0. 0. 0. 9.4 0.
0. 0. 0. 0. 9.9 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 9.9 10. 9.6 0. 0. 0.
0. 9.6 9.6 9.8 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 9.7 0. 0. 0. 0. 0.

9.7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9.5
0. 0. 9.6 0. 0. 0. 0. 0. 0. 0. 0.

State Recommended action

’AtPanel’ PrepareTempDock
’AtWarehouse’ MoveToPanel

’AtDockingStation’ MoveToPanel
’ReadyToTempdock’ TempDock

’TempDocked’ InspectValve
’Undocked’ PrepareTempDock

’ValveInspected’ MoveToPanel
’ValveOperated’ Undock

’CorrectToolInstalled’ MoveToPanel
’ReadyToDock’ FinalDock

’FinalDock’ -

Table 5.8: Recommended actions based on the obtained Q-table for sub-mission 2

Figure 5.6 illustrates the solution based on the recommended actions obtained from the
Q-table Q2 and rendered in table 5.8. The solutions is based on whichever actions result
in the highest reward and thereby chooses the solution with the fewest steps as each step
to a state which is not the desired goal state give a penalty of −1.

76

5.3 Mission Planning Problem solved with Q-learning

Docking
Station Warehouse

Panel

Correct
tool

Installed

Ready to
temporary

dock

Temporary
docked

Undocked

Valve
inspected

Valve
operated

Ready
to

final
dock

Final
dock

Move to warehouse

Move to docking station

Change
tool

Move to
panel

Move to
panel

Prepare final
docking

Final
dock

Move to docking
station

Move to
warehouse

Prepare
temporary
docking

Temporary
dock

Inspect
valve

Operate
valve

Undock
Und ock

Undock

Inspect valve

Prepare temporary
docking

Figure 5.6: Overview of sub-mission 2 for the Q-learning algorithm

The third sub-mission is defined by the initial state ”Valve Inspected” and goal state ”Fi-
nal dock”, which are both denoted in bold in figure 5.7. This is considered the last part
of the overall mission planning problem. The corresponding Q-table which is obtained
after 10000 episodes, is denoted Q3. Based on the Q-table Q3, the recommended actions
for each state can be extracted. Table 5.9 gives an overview of these recommended actions.

77

Chapter 5. Results and Analysis

Q3 =

0. 9.7 9.8 9.399 0. 0. 0. 0. 0. 0. 0.
9.7 0. 9.8 0. 0. 0. 0. 0. 9.6 0. 0.
9.7 9.7 0. 0. 0. 0. 0. 0. 0. 9.9 0.
0. 0. 0. 0. 9.499 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 9.599 8.896 0. 0. 0.
0. 9.536 9.8 9.183 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 9.7 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 9.57 0. 0. 0. 0. 0.

9.7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

State Recommended action
’AtPanel’ MoveToDocking

’AtWarehouse’ MoveToDocking
’AtDockingStation’ PrepareFinalDocking

’ReadyToTempdock’ TempDock
’TempDocked’ InspectValve

’Undocked’ MoveToDocking
’ValveInspected’ Undock
’ValveOperated’ Undock

’CorrectToolInstalled’ MoveToPanel
’ReadyToDock’ FinalDock

’FinalDock’ -

Table 5.9: Recommended actions based on the obtained Q-table for sub-mission 3

78

5.3 Mission Planning Problem solved with Q-learning

Figure 5.7 illustrates the solution based on the recommended actions obtained from the
Q-table Q3 and rendered in table 5.9. It is worth mentioning that the highlighted states
and actions correspond to a solution which would be beneficial for the software agent as it
maximizes the reward from the initial state to the goal state.

Docking
Station Warehouse

Panel

Correct
tool

Installed

Ready to
temporary

dock

Temporary
docked

Undocked

Valve
inspected

Valve
operated

Ready
to

final
dock

Final
dock

Move to warehouse

Move to docking station

Change
tool

Move to
panel

Move to
panel

Prepare final
docking

Final
dock

Move to docking
station

Move to
warehouse

Prepare
temporary
docking

Temporary
dock

Inspect
valve

Operate
valve

Undock
Und ock

Undock

Inspect valve

Prepare temporary
docking

Figure 5.7: Overview of sub-mission 3 for the Q-learning algorithm

79

Chapter 5. Results and Analysis

5.4 Analysis
First and foremost, it is worth mentioning that the three implemented methods are quite
different in their structure and how the solve the mission planning problem. Secondly, the
definition of the mission planning problem varies between the AI Planning methods and
the RL method. However, some comparisons and resulting analysis can still be made.

The AI Planning methods, i.e. Graphplan and HTN, could both be compared with re-
spect to their runtime as they solved the same mission planning problem. Both methods
solved the missions with and without the replanning aspect, and each of their runtimes are
stated in table 5.10. Furthermore, the advantage of implementing AI Planning methods are

The fastest method for both the missions with and without replanning was HTN. For the
mission planning problem without the replanning aspect, i.e. when the correct tool is al-
ready installed, the HTN method was 11 times faster than Graphplan in finding a solution,
while for the mission planning problem with the replanning aspect the HTN method was
13 times faster.

Additionally, the HTN method was twice as fast at solving the mission planning prob-
lem without the replanning aspect compared to the mission planning problem with the
replanning aspect. Furthermore, the first resulted in a solution at depth 39 while the latter
reached a solution at depth 43. The higher level of depth justifies the additional time used
for solving the mission planning problem with the replanning aspect.

Correct Tool Installed Incorrect Tool Installed
HTN 0.007s 0.013s

Graphplan 0.0625s 0.0951s

Table 5.10: Runtime of the implemented AI Planning methods

The mission planning problem defined for the Graphplan algorithm was to some extent
simplified, as it was divided into three sub-missions. By having a reduced state-space, it is
easier for the algorithm to converge to a solution as the planning graph which is created by
the Graphplan algorithm is smaller. Furthermore, a graph searching algorithm will con-
verge faster with a smaller planning graph and consequently the overall runtime would be
better.

Another point worth mentioning is how the defined mission planning problem is divided
for both the Graphplan and Q-learning algorithm, as the division might affect how the al-
gorithms would have solved the problem. The reason for dividing the mission planning
problem was to increase the chances of the algorithms to converge towards a solution.
However, one cannot ensure that the overall solution which is obtained by combining the
solution for each sub-mission is identical to the solution the algorithms could potentially
obtain by solving the mission as only one. It might be necessary to model the mission
planning problem differently, to reach a solution for the whole mission as one. Conse-

80

5.4 Analysis

quently, this would potentially also increase the runtime.

It is worth mentioning that the defined mission planning problem is a simplified version
of a potential IMR mission. Therefore, the variation in the different runtimes described in
table 5.10 are in terms of 1/100 of a second. By increasing the complexity of the mission
planning problem, one might see bigger differences in the overall runtime as wel.

81

Chapter 5. Results and Analysis

82

Chapter 6
Conclusion

This thesis has carried out the work of defining a mission planning problem which reflects
IMR operations in the subsea domain, altogether with the feedback gained from the in-
dustry. The defined mission was The mission planning problem was quite a simplification
compared to a real IMR operation, but did still result in valuable insight about the im-
plemented methods; Graphplan, HTN and Q-learning, in addition to their corresponding
strengths and weaknesses. This sets the ground for further development as it gives an in-
dication of which method could potentially match with some problem definition.

The mission planning problem was defined in such a manner that it required minimal mod-
ification for each of the implemented methods. Furthermore, it was modeled in PDDL
which is the de facto standard for modeling planning problems within AI Planning. The
mission planning problem was implemented similarly for the Graphplan algorithm and the
Q-learning algorithm, as both of them requires a state-space representation.

In regards to the implemented methods, the easiest comparison is between the state-space
planner Graphplan and the plan-space planner HTN as these methods solved nearly the
same two missions. It is worth mentioning that the latter had a better runtime for both
the missions, in addition to solving the mission as a whole. The division into sub-tasks is
how the the method works, and this is therefore not considered as a design modification.
On the contrary, the defined mission planning problem was modified for the Graphplan
algorithm. First and foremost, the mission planning problem was divided into three sub-
mission where the algorithm solved each of them subsequently. Upon completion of the
three sub-missions, the solutions from each of the respective missions were accumulated
to an overall solution. The drawback of finding an overall solution in this manner is the
fact that one cannot guarantee that the method would have solved the problem similarly,
and consequently the overall solution could potentially be wrong.

83

Chapter 6. Conclusion

The defined mission planning problem is simplified when solved by the Q-learning method.
This is due to the fact that a simple reward function was implemented, which did not have
the capability of revisiting the same states before reaching the goal state. For instance if the
initial state was the docking station and the the goal state was also the docking station, then
the defined reward function would not be able to guide the agent into inspecting and oper-
ating the valves. The agent will consider to have completed the mission planning problem,
as the initial state and goal state coincides. Since the defined mission for Q-learning was
a simplification of the overall mission planning problem, it is not possible to compare it
directly with the AI Planning methods. However, it is illustrated in this thesis that a RL
method such as Q-learning has the potential of solving a mission planning problem.

84

Chapter 7
Further Work

In terms of further work, there are many possibilities. First and foremost, the modeling of
the IMR mission could be modified such that the domain includes more details. This would
increase the complexity of the mission, and consequently be more realistic compared to
the actual IMR operation. Furthermore, the level of uncertainty could also be increased by
having multiple cases for which the agent has to replan how to achieve the predefined goal.

Furthermore, the Q-learning algorithm could be improved by implementing a reward func-
tion which is able to represent all the aspects in the overall mission planning, and conse-
quently there would be no need to divide the overall mission into sub-missions. This would
mean that the agent would take into consideration which states it has already explored and
which states require the agent to re-visit in order to complete the defined mission planning
problem.

Another aspect, which would be useful in the development of Reinforcement Learning
methods for solving mission planning problem is a simulator. The custom environment
implemented in this master’s project is compatible with the OpenAI Gym, which has the
ability to connect to pre-existing simulators. It is also possible to implement a simulator
for the defined domain of IMR operation with the corresponding installations such as a
docking station, a warehouse and a subsea panel.

An additional possibility is to use Deep Reinforcement Learning instead of Q-learning, if
the state-space of the mission planning problem increases. If the state-space is too large,
then regular RL methods such as Q-learning struggle to find a final solution.

Lastly, the initial topic for this master’s thesis, which was the connection between the
EUROPA planner and the low-level control architecture T-REX. The incorporation of a
planner such as EUROPA together with a low-level controller could also be part of the
future work within AI planning for IMR operations.

85

Chapter 7. Further Work

86

Bibliography

[1] Sarah Sayeed Qureshi. Mission planning for underwater intervention drones by using
automated planning and scheduling. unpublished, 2019.

[2] Libo Xue and Anastasios M. Lekkas. Ai planning for underwater intervention drone.
Oceans, 2020.

[3] Dana Nau. Pyhop version 1.2.2. Available at https://bitbucket.org/
dananau/pyhop/src/default/.

[4] Stuart Russel and Peter Norvig. Artificial intelligence: A modern approach - online
code repository. Available at https://github.com/aimacode.

[5] Greg Brockman and Jie Tang. Openai gym. Available at https://github.com/
openai/gym.

[6] Ingrid Schjølberg and Ingrid Bouwer Utne. Towards autonomy in rov operations.
IFAC-PapersOnLine, 48(2):183–188, 2015.

[7] Narcı́s Palomeras, Arnau Carrera, Natàlia Hurtós, George C Karras, Charalam-
pos P Bechlioulis, Michael Cashmore, Daniele Magazzeni, Derek Long, Maria Fox,
Kostas J Kyriakopoulos, et al. Toward persistent autonomous intervention in a subsea
panel. Autonomous Robots, 40(7):1279–1306, 2016.

[8] David M Lane, Francesco Maurelli, Petar Kormushev, Marc Carreras, Maria Fox,
and Konstantinos Kyriakopoulos. Persistent autonomy: the challenges of the pandora
project. IFAC Proceedings Volumes, 45(27):268–273, 2012.

[9] Steve Chien, Ari Jonsson, and Russell Knight. Automated planning & scheduling for
space mission operations. 2005.

[10] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

87

https://bitbucket.org/dananau/pyhop/src/default/
https://bitbucket.org/dananau/pyhop/src/default/
https://github.com/aimacode
https://github.com/openai/gym
https://github.com/openai/gym

[11] M. Carreras, P. Ridao, R. Garcia, and T. Nicosevici. Vision-based localization of an
underwater robot in a structured environment. In 2003 IEEE International Confer-
ence on Robotics and Automation (Cat. No.03CH37422), volume 1, pages 971–976
vol.1, Sep. 2003.

[12] M. Prats, J. C. Garcı́a, S. Wirth, D. Ribas, P. J. Sanz, P. Ridao, N. Gracias, and
G. Oliver. Multipurpose autonomous underwater intervention: A systems integration
perspective. In 2012 20th Mediterranean Conference on Control Automation (MED),
pages 1379–1384, July 2012.

[13] M. Carreras, J. Batlle, and P. Ridao. Hybrid coordination of reinforcement learning-
based behaviors for auv control. In Proceedings 2001 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics
in the the Next Millennium (Cat. No.01CH37180), volume 3, pages 1410–1415 vol.3,
Oct 2001.

[14] K. B. Enonsen and O. K. Hagen. Recent developments in the hugin auv terrain
navigation system. In OCEANS’11 MTS/IEEE KONA, pages 1–7, Sep. 2011.

[15] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and R. McEwen. A delibera-
tive architecture for auv control. In 2008 IEEE International Conference on Robotics
and Automation, pages 1049–1054, 2008.

[16] Ingrid Schjølberg, Tor B Gjersvik, Aksel A Transeth, and Ingrid B Utne. Next gen-
eration subsea inspection, maintenance and repair operations. IFAC-PapersOnLine,
49(23):434–439, 2016.

[17] David M Lane, Francesco Maurelli, Petar Kormushev, Marc Carreras, Maria Fox,
and Konstantinos Kyriakopoulos. Pandora-persistent autonomy through learning,
adaptation, observation and replanning. IFAC-PapersOnLine, 48(2):238–243, 2015.

[18] Oceaneering. FreedomTM resident rov. Available at https://www.
oceaneering.com/brochures/freedom-rov/.

[19] ”Eelume Subsea Intervention”. The eelume concept. Available at https://
eelume.com/#the-story.

[20] Equinor. Here are six of the coolest offshore robots. Avail-
able at https://www.equinor.com/en/magazine/
here-are-six-of-the-coolest-offshore-robots.html.

[21] Tormod Haugstad. Den kan gå minst 20 mil på batteri og jobbe p̊a 6.000
meters dyp i 6 måneder. Available at https://www.tu.no/artikler/
den-kan-ga-minst-20-mil-pa-batteri-og-jobbe-pa-6-000-meters-\
dyp-i-6-maneder/473674.

[22] Conor McGann, Frederic Py, Kanna Rajan, John P Ryan, and Richard Henthorn.
Adaptive control for autonomous underwater vehicles. In AAAI, pages 1319–1324,
2008.

88

https://www.oceaneering.com/brochures/freedom-rov/
https://www.oceaneering.com/brochures/freedom-rov/
https://eelume.com/#the-story
https://eelume.com/#the-story
https://www.equinor.com/en/magazine/here-are-six-of-the-coolest-offshore-robots.html
https://www.equinor.com/en/magazine/here-are-six-of-the-coolest-offshore-robots.html
https://www.tu.no/artikler/den-kan-ga-minst-20-mil-pa-batteri-og-jobbe-pa-6-000-meters-\dyp-i-6-maneder/473674
https://www.tu.no/artikler/den-kan-ga-minst-20-mil-pa-batteri-og-jobbe-pa-6-000-meters-\dyp-i-6-maneder/473674
https://www.tu.no/artikler/den-kan-ga-minst-20-mil-pa-batteri-og-jobbe-pa-6-000-meters-\dyp-i-6-maneder/473674

[23] Steve Chien, Benjamin Smith, Gregg Rabideau, Nicola Muscettola, and Kanna Ra-
jan. Automated planning and scheduling for goal-based autonomous spacecraft.
IEEE Intelligent Systems and their applications, 13(5):50–55, 1998.

[24] Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien
Racanière, David Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia.
Learning model-based planning from scratch. arXiv preprint arXiv:1707.06170,
2017.

[25] Sergio Jiménez, Tomás De la Rosa, Susana Fernández, Fernando Fernández, and
Daniel Borrajo. A review of machine learning for automated planning. The Knowl-
edge Engineering Review, 27(4):433–467, 2012.

[26] Félix Ingrand and Malik Ghallab. Deliberation for autonomous robots: A survey.
Artificial Intelligence, 247:10–44, 2017.

[27] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning and acting.
Cambridge University Press, 2016.

[28] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2009.

[29] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[30] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[31] Kenneth H Rosen. Handbook of discrete and combinatorial mathematics. CRC
press, 1999.

[32] Avrim L Blum and Merrick L Furst. Fast planning through planning graph analysis.
Artificial intelligence, 90(1-2):281–300, 1997.

[33] Kutluhan Erol, James Hendler, and Dana S Nau. Htn planning: Complexity and
expressivity. In AAAI, volume 94, pages 1123–1128, 1994.

[34] Dana S Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J William Murdock, Dan
Wu, and Fusun Yaman. Shop2: An htn planning system. Journal of artificial intelli-
gence research, 20:379–404, 2003.

[35] Dana Nau, T-C Au, Okhtay Ilghami, Ugur Kuter, Dan Wu, Fusun Yaman, Héctor
Munoz-Avila, and J William Murdock. Applications of shop and shop2. IEEE Intel-
ligent Systems, 20(2):34–41, 2005.

[36] Dana Nau, Héctor Munoz-Avila, Yue Cao, Amnon Lotem, and Steven Mitchell.
Total-order planning with partially ordered subtasks. In IJCAI, volume 1, pages
425–430, 2001.

[37] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

89

[38] Stephen Marsland. Machine learning: an algorithmic perspective. CRC press, 2015.

[39] Ian Richter. Supervised vs. unsupervised machine learn-
ing. Available at https://blog.seebo.com/
supervised-vs-unsupervised-machine-learning/.

[40] Olivier Sigaud and Olivier Buffet. Markov decision processes in artificial intelli-
gence. John Wiley & Sons, 2013.

[41] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[42] A. Bondu, V. Lemaire, and M. Boullé. Exploration vs. exploitation in active learn-
ing : A bayesian approach. In The 2010 International Joint Conference on Neural
Networks (IJCNN), pages 1–7, 2010.

[43] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal
planning domains. Journal of artificial intelligence research, 20:61–124, 2003.

[44] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the planning domain defini-
tion language, 1998.

[45] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[46] Yong Bai and Qiang Bai. Subsea pipelines and risers. Elsevier, 2005.

[47] Envirent. Manipulator torque multiplier tool. Available at https:
//envirent.no/products/rov-tooling/torque-tool/
manipulator-torque-multiplier-tool/.

[48] Envirent. Multipurpose cleaning tool round brush. Available at https:
//envirent.no/products/rov-tooling/cleaning-tool/
multipurpose-cleaning-tool-round-brush/.

90

https://blog.seebo.com/supervised-vs-unsupervised-machine-learning/
https://blog.seebo.com/supervised-vs-unsupervised-machine-learning/
https://envirent.no/products/rov-tooling/torque-tool/manipulator-torque-multiplier-tool/
https://envirent.no/products/rov-tooling/torque-tool/manipulator-torque-multiplier-tool/
https://envirent.no/products/rov-tooling/torque-tool/manipulator-torque-multiplier-tool/
https://envirent.no/products/rov-tooling/cleaning-tool/multipurpose-cleaning-tool-round-brush/
https://envirent.no/products/rov-tooling/cleaning-tool/multipurpose-cleaning-tool-round-brush/
https://envirent.no/products/rov-tooling/cleaning-tool/multipurpose-cleaning-tool-round-brush/

Sarah Sayeed Q
ureshi

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

M
as
te
ro
pp

ga
ve

Sarah Sayeed Qureshi

AI Planning Methods for Subsea IMR
Operations

Masteroppgave i Kybernetikk og Robotikk
Veileder: Anastasios Lekkas

Juli 2020

	Summary
	Sammendrag
	Preface
	Acknowledgment
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Listings
	Abbreviations
	Introduction
	Background and Motivation
	Objective
	Contribution
	Outline

	Theory
	Automated Planning and Scheduling
	State-Space Planning
	STanford Research Institute Problem Solver
	Sussman Anomaly
	Graphplan

	Plan-Space Planning
	Hierarchical Task Planner
	Simple Hierarchical Ordered Planner

	Machine Learning
	Markov Decision Process
	Reinforcement Learning
	Q-learning

	Tools and Libraries
	Modeling Language
	PDDL

	Libraries
	Graphplan
	Hierarchical Task Network
	Q-learning

	Industrial Subsea Mission Definition and Implementation
	Industrial Subsea Mission Definition
	Formulation of the Mission Planning Problem
	Simplifications and Assumptions
	Problem Formulated in PDDL
	Implementation
	Hierarchical Task Network
	Graphplan
	Q-learning

	Results and Analysis
	Mission Planning Problem without Replanning
	Solution using Hierarchical Task Network
	Solution using Graphplan

	Mission Planning Problem with Replanning
	Solution using Hierarchical Task Network
	Solution using Graphplan

	Mission Planning Problem solved with Q-learning
	Analysis

	Conclusion
	Further Work
	Bibliography

