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Problem description

The Norwegian Defense Research Establishment (Forsvarets forskningsinstitutt,
FFI) is currently considering the use of unmanned surface vessels (USVs) for use
in various military applications. Two test platforms, Odin and Frigg, have been
developed to study the use of this technology in maritime mine countermeasures
(MMCM) operations and as support vessels for autonomous underwater vehicles.
The USVs will require a high degree of autonomy, which necessitates robust and
inherently safe control algorithms.

In the future MMCM concept, USVs are required to operate together in mine
sweeping operations. In these operations, two USVs will cooperate in towing a
closed-loop influence sweep, with the intent of triggering any potential mines in an
area by simulating a larger ship moving through the water. The USVs are physically
connected by the mine sweep cables, and must keep a more or less fixed inter-vessel
distance in order to obtain the desired cable positioning.

Specifically, the USVs must operate in such a way that:

• The mine sweep cables follow a predetermined path made up by waypoints

• The USVs keep a constant cross-track distance on either side of the path

• The USVs maintain a constant speed along the path

• Collisions within the formation and with other vessels are avoided

• The formation is stable in the presence of environmental disturbances

• The formation is robust to changes in vessel dynamics caused by the mine
sweep cables, which are heavy

A robust formation control algorithm for USVs is crucial in such operations. Not
only is the operation safer when the vessels are unmanned and autonomous, it is
also very difficult to maintain the desired formation over time when operating the
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vessels manually. This thesis will investigate the use of one such formation control
algorithm for two interconnected, underactuated USVs (such as Odin and Frigg) in
the presence of ocean currents.

Proposed subtasks for this thesis include:

• Perform a literature study in the field of formation control of underactuated
marine surface vessels, with particular focus on cases where the vessels are
physically interconnected

• Derive a mathematical model of the system, including cable dynamics and
environmental disturbances

• Make a well-reasoned choice of formation control algorithm based on the
literature study and do potential alterations for use of the algorithm in mine
sweeping operations with USVs

• Perform a mathematical analysis of the system, including stability analysis of
relevant parts of the algorithm

• Implement the proposed formation control algorithm in a simulated environ-
ment including the cable dynamics and environmental disturbances

• Implement the proposed formation control algorithm in a ROS environment
and perform full-scale experiments with Odin and Frigg

• Evaluate the performance of the implemented formation control algorithm
based on the results from simulated and real-world experiments

The thesis will build upon preliminary work performed in a previous project
assignment.
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Abstract

In this thesis, a possible formation control method is proposed for the next generation
of future Norwegian unmanned Maritime Mine Counter Measures (MMCM) for
autonomous mine-sweeps, which is currently researched by the Norwegian Defence
Research Establishment (FFI). Having the capability of performing autonomous
mine-sweeps reduces the risk for personnel, potentially saving human lives.

A formation control method based on the Null-Space-Based Behavior Control
(NSB) principle is proposed for formations of two interconnected underactuated
unmanned surface vessels (USVs) in the presence of constant irrotational ocean
currents. Inspired by Line-Of-Sight (LOS) ideas, the traditional Closed Loop Inverse
Kinematics (CLIK) barycenter task is replaced by a LOS path following method for
the barycenter. Two theorems are presented where it is proven that the closed-loop
formation and barycenter tasks are UGES and USGES, respectively, under certain
conditions. By treating the cable as a state dependent disturbance, the robustness
properties of both tasks are then investigated to ensure they remain bounded when
connecting the cable.

A 3-DOF simulation model of a floating cable is presented, where the hydro-
dynamic drag model is extended to incorporate the effects of ocean currents, and
verified against experimental data. The developed method is then implemented
and simulated, both with and without the cable. In the simulations, the task errors
converge to zero for straight-line paths, while they remain bounded during turns.

Finally, the NSB method is implemented in C++/ROS and integrated into the
existing autonomous systems of the development vessels Odin and Frigg by FFI.
Full-scale experiments, without the sweep, at sea, are then performed to verify the
proposed formation control method for the intended application. The tests show
promising results, but a steady-state error is observed for the barycenter task’s cross-
track error. Based on the promising results, further experiments are planned by FFI
using the proposed NSB method and the sweep.
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Sammendrag

I denne oppgaven blir en mulig formasjonsstyringsmetode foreslått for autonom
minerydding for den neste generasjonen av mineryddere for Sjøforsvaret, som for
øyeblikket er under utvikling av Forsvarets Forskningsinstitutt (FFI). Ved å utvikle
autonome mineryddingsfartøy kan personell fjernes fra risikoområder, som kan
spare menneskeliv.

En formasjonsstyringsmetode basert på Null-Space-Based Behavior Control
(NSB)-prinsippet blir foreslått for formasjoner av to sammenkoblede underaktuerte
ubemannede overflatefarkoster (USV-er) under forstyrrelse av havstrømmer. In-
spirert av idéer fra Line-Of-Sight (LOS), blir den tradisjonelle Closed Loop Inverse
Kinematics (CLIK) barycenteroppgaven erstattet av en LOS-metode for banefølging
av barycenteret. To teoremer blir presentert hvor det bevises at de lukkede sløyfene
for henholdsvis formasjons- og barycenteroppgaven er UGES og USGES under visse
betingelser. Videre, ved å behandle kabelen som en tilstandsvarierende forstyrrelse,
undersøkes robusthetsegenskapene til begge oppgavene for å sikre at de forblir
stabile.

En 3-DOF simuleringsmodell av slepet blir presentert, med en utvidet modell
for den hydrodynamiske motstanden for å inkludere havstrømmer, og verifisert mot
eksperimentell data. Den foreslåtte metoden blir så implementert og simulert, både
med, og uten, kabel, hvor oppgavefeilene konvergerer til null for rette linjer, og
forblir avgrenset under svinger.

Til slutt blir NSB-metoden implementert i C++/ROS og integrert inn i de eksis-
terende autonome systemene til utviklingsfarkostene Odin og Frigg fra FFI. Full-
skala eksperimenter til sjøs blir så utført for å verifisere den foreslåtte metoden
for det tiltenkte bruksområdet. Eksperimentene viser lovende resultater, men et
stasjonæravvik blir observert for cross-track-feilen til barycenteroppgaven. På bak-
grunn av de lovende resultatene er videre forsøk med den foreslåtte NSB-metoden
og det faktiske slepet planlagt av FFI.
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1 | Introduction

1.1 Motivation

In 2015, the NorwegianMinistry of Defence initiated the startup of a conceptual phase
for future marine systems for minesweeping and clearance. The next generation
of Maritime Mine Counter Measures (MMCM) capability will be based upon small
crewless surface vessels that can be deployed from a crewed ship outside the mined
area, meaning the operation can be performed at a safe distance, reducing the risk
for personnel, see Midtgaard and Nakjem (2016). To achieve this, FFI has acquired
the vessels Odin and Frigg as a development platform, see Fig. 1.1.

Odin and Frigg are two 10.5m long vessels powered by a pair of Hamilton
waterjets and equipped with sensors for autonomous operation. As they are equipped
with a dual waterjet system, they are capable of being fully actuated in three Degrees
Of Freedom (DOF): surge, sway, and yaw. However, in the applications considered in
this thesis, both waterjets are linked together, rendering the system underactuated
with only control forces and moments in surge and yaw. Linking the waterjets
together at maneuvering speeds is common as it is more energy-efficient.

(a) Odin. (b) Frigg.

Figure 1.1: The Odin and Frigg USVs considered in this thesis. Courtesy of FFI.
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2 CHAPTER 1. INTRODUCTION

The FFI USV systems Odin and Frigg will operate in minesweeping operations. In
these operations, the vessels will tow influence equipment to trigger possible mines
in the operational area. The minesweeping equipment can be very heavy or require
a large special displacement. It is therefore beneficial for the vessels to cooperate
while towing, illustrated in Fig. 1.2. A formation control algorithm is thus required
in cases where there is a physical interconnection between the vessels.

Figure 1.2: Illustration of Odin and Frigg performing a mine-sweep operation.
Courtesy of FFI.

1.2 Previous Work

An approach to the formation control problem is presented in Ihle, Jouffroy and Fos-
sen (2006), which introduces a solution based on a set of virtual constraint functions
for inter-vessel distances and Lagrangian multipliers. By including feedback from
the constraints, the desired formation is obtained. In Ihle, Arcak and Fossen (2006),
a passivity-based method for synchronous path following is presented where the
passivity properties of the closed-loop system are preserved. Moreover, in Skjetne
et al. (2002), a nonlinear formation control law is presented. Each vessel’s position is
defined relative to a formation reference point, which should follow the desired path.
However, all these papers consider fully actuated vehicles, meaning they cannot
immediately be applied to underactuated marine vessels, which is the area of focus
in this thesis.



1.2. PREVIOUS WORK 3

In Kyrkjebø (2007), a leader-follower approach for surface vessels using a virtual
vessel concept is presented, while in Lapierre et al. (2003), a leader-follower method
for two underactuated underwater vehicles is presented. Here, the follower adapts
its speed based on the leader position to obtain the desired formation. The topic
of leader-follower methods is also discussed in, e.g., Breivik et al. (2008), where a
guided leader-follower approach inspired by concepts from integrator backstepping
and cascade theory is presented. Furthermore, in Belleter (2016), constant bearing
guidance is used for the follower to track the leader. However, leader-follower
methods suffer from the fact that communication is unidirectional, meaning the
leader will not adapt its speed according to the follower.

The problem of straight-line path following formations of marine vessels is
studied in Børhaug et al. (2006, 2011); Belleter and Pettersen (2014). In Børhaug
et al. (2006, 2011), the case without ocean currents is investigated, and an UGAS and
ULES decentralized control strategy is proposed. The desired formation is obtained
through each vessel in the formation using an ILOS guidance law to follow the
desired path, while the desired along-path distance between each vessel is obtained
with a nonlinear velocity control law. The topic is further studied in Belleter and
Pettersen (2014), which combines the results from Børhaug et al. (2008); Caharija
et al. (2012) with Børhaug et al. (2011) to create a formation control law allowing
straight-line path following for formations of marine vessels under the influence of
constant ocean currents. However, all of these methods are restricted to straight-line
paths, and cannot be applied for curved paths.

A behavioral-based control approach using the Null-Space-Based (NSB) control
scheme is presented in Arrichiello et al. (2006a,b). Here, a platoon of underactuated
marine vessels is considered. This centralized guidance system decomposes the
control objective into different tasks, where each task is assigned a priority, which is
solved independently of each other using a Closed Loop Inverse Kinematics (CLIK)
algorithm. The solutions of each task are then combined by projecting the solution
of one task into the null-space of the higher priority task. Similar approaches are
widely studied for other autonomous vehicles, such as mobile robotics applications,
see Antonelli and Chiaverini (2003); Antonelli et al. (2005); Antonelli and Chiaverini
(2006).

Although the topic of formation control, in general, is well-studied, the scenario
when the vessels are physically interconnected is less studied.

The task of using autonomous vessels connected with a boom for automatic
oil spill confinement is studied in Giron-Sierra et al. (2014, 2015). In Giron-Sierra
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et al. (2014), experimental results are obtained with two scaled USVs towing a boom.
Further full-scale experiments with two 2.4m USVs was then performed in Giron-
Sierra et al. (2015). However, both these papers utilized a leader-follower approach,
which is undesirable due to the unidirectional communication.

In Pereda et al. (2011), the NSB method is considered for the same application as
above - automatic oil spill confinement. Although the paper considers the formation
control of two interconnected vessels, the boom and the actual formation control
simulations are decoupled during the simulation studies as the boom simulations are
computationally intensive. Hence, the formation control method was never actually
tested in an interconnected scenario. Although this paper originates from the same
research group as Giron-Sierra et al. (2014, 2015), no experimental results with the
NSB method was, to the author’s knowledge, performed, for unknown reasons.

The NSB method is further utilized in Arrichiello et al. (2010, 2011) for au-
tonomous caging and transporting purposes. Experimental results were obtained
with two 2.1m long USVs connected on a floating rope. However, in this paper,
no rigid formation task is selected, allowing the inter-vessel distance to fluctuate
between a minimum and maximum threshold, which is not desirable during a mine-
sweep.

Related to the experiments Arrichiello et al. (2010, 2011) is the paper Bhattacharya
et al. (2011), which develops a model of a floating rope in 3-DOF. Here, each endpoint
of the rope is assumed connected to a vessel. However, during the simulation of
the rope dynamics, predetermined trajectories of each vessel are used. Hence, the
simulations fail to capture the closed-loop response with a formation control method
with the rope.

Considering the actual application of mine-sweep with Odin and Frigg, some
research has been performed by FFI. Although the work is not yet published, a simple
leader-follower method has been implemented and tested, where the leader was using
an ILOS method for straight-line path following. However, as mentioned before,
the unidirectional communications result in suboptimal performance, especially
during turns, where the leader is unable to adapt its speed according to the follower.
Therefore, the need for a cooperative method has been concluded by FFI, setting the
background of this thesis.

During the author’s specialization project Eek (2019) in the fall of 2019, the
performance of the ILOS from Belleter and Pettersen (2014) and a NSB method
inspired from Pereda et al. (2011), were compared for straight-line path following
for formations of two USVs in the presence of ocean currents. Although no physical
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connection between the vessels was considered here, the work was still useful to
determine which control method was most suited for the application. The report
concluded that the NSB method is more suited due to its ability to maintain the
inter-vessel distance, which is crucial when the vessels are physically connected.
However, notably slower convergence to the desired path was achieved by the NSB
than the ILOS method. Hence, suggestions were made to improve the transient
phase by replacing the traditional Closed Loop Inverse Kinematics (CLIK) with a
LOS method for the barycenter task, for which, a possible approach is presented in
this thesis.

1.3 Objectives

In particular, this thesis will address the coordination between the two vessels and
how they should maneuver to follow the desired path while maintaining an inter-
vessel formation. Furthermore, the vessels will be connected by a physical cable,
representing the sweep.

During a mine-sweep, both vessels should make the barycenter, which is the
centroid of the two vessels, follow a predetermined path, denoted by waypoints,
while driving with a constant along-path speed. Simultaneously, the vessels should
keep a rigid formation perpendicular to the path, such that the inter-vessel distance
remains constant. Moreover, the cable is connected along the centerline, at the stern,
of each vessel.

On request from FFI, all numerical values of the different parameters for Odin
and Frigg are omitted in this thesis. As a result, only the structure of the various
matrices and parameters are given in Chapter 2 without any numerical values. The
same applies to the waterjet model, where some of the figures are plotted without
numerical values. For the cable model in Chapter 3, only the total number of rigid
links used in the simulation model are given, while no numerical values for the total
mass, length, and drag coefficients are given for the same reason. Additionally, the
desired inter-vessel distance for the formation task function value is not given in
Chapter 5 and Chapter 6.

Finally, it should be noted that all parameters used for the overall objectives,
such as inter-vessel distance, along-path speed, and cable length, do not necessarily
reflect the values used during the actual mine-sweep application, and is chosen in
the thesis to test the methods in similar scenarios.
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1.4 Contributions

The main contributions of the work presented in this thesis are as follows:

• Research of previous work on the topic of formation control of underactuated
marine vessels.

• Extending the hydrodynamic drag model from Bhattacharya et al. (2011) to
include effects from ocean currents.

• Using the script from Bhattacharya (2020a) as a base, the improved cable model
was generated, and a method to export the model to MATLAB was created.

• Verification of the new hydrodynamic drag model and the resulting model
against experimental data.

• Inspired by Belleter et al. (2019), a novel approach using ideas from traditional
LOS methods for the barycenter task is proposed.

• Using the vessel model and maneuvering controllers proposed in Moe et al.
(2016), the stability properties of both the formation and barycenter tasks,
without the cable, are investigated in detail, and two theorems are presented.

• Investigating the robustness properties against non-vanishing perturbations
of the NSB tasks. As the cable may be seen as a disturbance, this is important
to understand how the addition of the cable may affect the NSB performance.

• Implementation of the proposed formation method in MATLAB/Simulink.

• A simulation study evaluating the performance of the proposed formation
method in the following scenarios: (1) ideal case with the vessel model and
controllers from Moe et al. (2016), (2) using the vessel model in Chapter 2
without the cable and (3) using the vessel model in Chapter 2 with the cable.

• Implementation of the proposed formation method in C++. The method was
then integrated into the existing autonomous systems of Odin and Frigg by
FFI using ROS.

• Evaluation and verification of the proposed formation control method through
full-scale experiments on board Odin and Frigg.
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1.5 Outline

This thesis is divided into seven chapters and three appendices, described below:

Chapter 2 presents the mathematical model used to describe the dynamics of ma-
rine vessels, along with the nonlinear actuator model of the waterjets, which
is equipped by Odin. Additionally, a linearized model of the waterjet dynam-
ics is derived. Finally, the maneuvering controllers for surge and heading is
presented.

Chapter 3 presents the mathematical model used to describe the dynamics of the
cable. First, the equation of motions is derived using Lagrangian mechanics,
including an extended hydrodynamic model capturing the effects of ocean
currents. Then, the implementation aspect of how to solve the resulting DAE
system in MATLAB is discussed. Next, the equations used to connect the cable
with the vessels are presented. Finally, the resulting model is verified against
experimental data.

Chapter 4 first gives an overview of the background of behavioral methods, and
the NSB mathematics is given. Then, the details of the three tasks consti-
tuting the NSB method are presented, including a novel LOS path following
approach for the barycenter task. Next, the closed-loop stability of both the
formation and barycenter tasks, along with the robustness properties against
non-vanishing perturbations is investigated. Finally, the interpolation method
using to generate the path is presented.

Chapter 5 contains several simulation studies to evaluate the NSB method under
different scenarios. First, the theoretical stability analysis is illustrated using
the vessel model and controllers from Moe et al. (2016). Then, more scenarios
are evaluated using the vessel model and controllers from Chapter 2 both with
and without the cable. Finally, the simulation results are discussed.

Chapter 6 starts by discussing the C++ implementation of the NSB method, and
the ROS interface with the existing autonomous system on board Odin and
Frigg. Then, the results from full-scale experiments are presented. Finally, the
experimental results are discussed.

Chapter 7 gives a conclusion drawn from the results and suggests further work.

Appendix A presents the theoretical proofs of Lemmas 4.2–4.4, which is not in-
cluded in the main body for readability.
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Appendix B contains detailed derivations of various mathematical expressions that
are left out of the main body for readability.

Appendix C gives the expressions for the vessel model from Moe et al. (2016).



2 | Vessel Modeling

The purpose of this chapter is to introduce the mathematical modeling that describes
the equations of motion of an underactuated marine vessel. This is beneficial, as
it allows accurate replication of the actual vessel behavior, making it possible to
see how methods will perform in real-life by simulations. Furthermore, having a
mathematical model of the system is advantageous during the design and tuning of
maneuvering controllers.

The model considered describes the dynamics of a displacement vessel, meaning
it will only be valid for low-speed applications, as Odin is a Rigid Buoyancy Boat
(RBB). This further implies that for high-speed applications, the dynamics changes
towards those of a planing vessel, rendering this model invalid.

First, the notation and reference frames used throughout this thesis are given.
Next, the 3-DOF equations of motion are stated. Then, the equations describing the
waterjet dynamics are presented. Finally, the maneuvering controllers used for the
simulation model of Odin is presented. All notation and results in this chapter, except
Section 2.3 and Section 2.4, are based on Fossen (2011) unless stated otherwise.

On request from FFI, all numerical values of the different parameters for Odin are
omitted. Consequently, only the structure of the various matrices and parameters
are given in this chapter without any numerical values.

The theory presented in this chapter, except the addition of the reaction forces
in Eq. (2.1b), was initially written in (Eek; 2019, Chapters 2 and 3) and restated here
for completeness.

2.1 Reference Frames

In this section the reference frames used throughout this thesis to analyze the 3-DOF
motion of a marine vessel are presented.

NED The north-east-down (NED) coordinate system {𝑛} = (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) is located

9
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with the origin 𝑜𝑛 at a given longitude and latitude. It is defined as the tangent
plane on the Earth’s surface where the x-axis points towards the North, y-axis
towards the East, while the z-axis points down. When operating in a local
area, with an approximately constant longitude and latitude, the frame can be
assumed inertial, and Newton’s laws still apply.

BODY The body-fixed coordinate system {𝑏} = (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) is fixed with the origin
𝑜𝑏 in the vessel’s Center of Origin (CO) and hence moves along with the vessel.
In this thesis, the Center of Origin is chosen to coincide with the Center of
Gravity (CG). Each of the axes, defined as positive forward, starboard, and
downward, coincides with the inertia’s principal axes.

FLOW The flow coordinate system {flow} = (𝑥flow, 𝑦flow, 𝑧flow) is defined as a ro-
tation of {𝑏} such that 𝑥flow points directly into the relative freestream flow.
Due to its convenience, it is often used for calculating hydrodynamic forces.

CABLE The body-fixed coordinate system {𝑐} = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) is fixed at the point C
where the cable is attached to the vessel, with its axes defined parallel to {𝑏}.
When calculating the forces applied from the cable on the vessel, they will be
given in this frame.

2.2 Equations of Motion

This section will present the equations of motion used to describe the dynamics of
a marine vessel in 3-DOF, expressed in CG. As Odin is a RBB, its dynamics change
from low to high speeds. As a result, the model presented here will only be valid for
low-speed applications where Odin can be considered a displacement vessel.

According to Fossen (2011),the rigid-body dynamics of a marine vessel under the
influence of irrotational constant ocean current can be expressed as

¤𝜼𝑛 = R𝑧,𝜓𝝂
𝑏
𝑟 + V𝑐 (2.1a)

M ¤𝝂𝑏𝑟 + C(𝝂𝑏𝑟 )𝝂𝑏𝑟 + D(𝝂𝑏𝑟 )𝝂𝑏𝑟 = 𝝉𝑏env + 𝝉𝑏cable + 𝝉
𝑏, (2.1b)

where R𝑧,𝜓 ∈ R3×3 is the rotation matrix from {𝑏} to {𝑛} which in 3-DOF is equal
to the principal rotation about the z-axis, V𝑐 ∈ R3 the ocean currents, M ∈ R3×3

the system inertia matrix, C(𝝂𝑏𝑟 ) ∈ R3×3 the rigid-body Coriolis and centripetal
matrix including added mass due to the rotation of {𝑏} about {𝑛}, D(𝝂𝑏𝑟 ) ∈ R3×3 a
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damping matrix containing both linear potential damping and nonlinear damping
terms, 𝝉 env ∈ R3 are disturbances cased by environmental forces such as ocean
current, 𝝉 cable ∈ R3 are the reaction forces exerted by the cable on the vessel caused
by the vessels towing the cable and 𝝂𝑏𝑟 ∈ R3 the relative velocity vector in {𝑏}.

Assumption 2.1. The ocean current in the inertial frame is assumed to be constant

and irrotational, i.e. V𝑐 ≜
[
𝑉𝑥 𝑉𝑦 0

]𝑇 . Furthermore, there exists a constant 𝑉max > 0

such that ∥V𝑐 ∥ =
√
𝑉 2
𝑥 +𝑉 2

𝑦 < 𝑉max, i.e. the ocean current is bounded.

2.2.1 System Inertia Matrix

The system inertia matrix, is given as the sum of the rigid-body mass matrix and
hydrodynamic added mass

M = MRB + MA, (2.2)

given by

MRB =


𝑚 0 0

0 𝑚 0

0 0 𝐼𝑧


, MA =


−𝑋 ¤𝑢 0 0

0 −𝑌¤𝑣 −𝑌¤𝑟
0 −𝑁 ¤𝑣 −𝑁 ¤𝑟


, (2.3)

where 𝐼𝑧 is the moment of inertia about the z-axis.

2.2.2 Coriolis and Centripetal Matrix

The Coriolis and centripetal matrix, can be expressed as a sum of rigid-body and
hydrodynamic terms, where the rigid-body part can be expressed using a Lagrangian
parameterization Fossen (2011)

CRB(𝝂𝑟 ) =


0 0 −𝑚𝑣𝑟
0 0 𝑚𝑢𝑟

𝑚𝑣𝑟 −𝑚𝑢𝑟 0


(2.4a)

CA(𝝂𝑟 ) =


0 0 𝑌¤𝑣𝑣𝑟 + 𝑌¤𝑟𝑟

0 0 −𝑋 ¤𝑢𝑢𝑟

−𝑌¤𝑣𝑣𝑟 − 𝑌¤𝑟𝑟 𝑋 ¤𝑢𝑢𝑟 0


. (2.4b)
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2.2.3 Damping

The total damping matrix D(𝝂𝑟 ), consists of a sum of linear and nonlinear damping
terms

D(𝝂𝑟 ) = D + D𝑁 (𝝂𝑟 ) . (2.5)

The linear damping terms D are dominating at low velocities and are present due to
potential damping and possible skin friction, while the nonlinear terms D𝑁 (𝝂𝑟 ) are
modelled as quadratic terms and are due to viscous forces and wave drift, see Fossen
(2011)

D =


−𝑋𝑢 0 0

0 −𝑌𝑣 −𝑌𝑟
0 −𝑁𝑣 −𝑁𝑟


(2.6a)

D𝑁 (𝝂𝑟 ) =


−𝑋 |𝑢 |𝑢 |𝑢𝑟 | 0 0

0 −𝑌 |𝑣 |𝑣 |𝑣𝑟 | 0

0 0 −𝑁 |𝑟 |𝑟 |𝑟 |


. (2.6b)

2.3 Waterjet Dynamics

This section will provide a simplified mathematical model of the dynamics of each of
the two waterjets which powers Odin. The model presented in this section, except
Section 2.3.1, is developed by FFI. The simulation model consists of two parts, namely
thrust modeling and force andmoment calculations. Themodel inputs are the relative
velocity 𝝂𝑟 of the vessel, in addition to the waterjet demands

u =


𝑢nozzle

𝑢throttle

𝑢bucket


, (2.7)

which are the demanded nozzle angle, throttle and reverse bucket level respectively.
An overview of the model is given in Fig. 2.1.

First, the throttle demand 𝑢throttle ∈ [0, 100] is converted to the desired waterjet
shaft revolutions per minute (RPM) through the mapping

𝜔rpm,𝑑 = 𝜔min +
𝑢throttle

100
(𝜔max − 𝜔min) , (2.8)
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Figure 2.1: System overview of waterjet model

where𝜔min and𝜔max is the minimum and maximum RPM of the waterjet respectively.
To imitate the behavior of a physical actuator, which has constraints on how fast the
shaft rotation can be changed, a constraint on the maximum allowed RPM change
per time step is added through a rate limiter

𝜔𝑘 =


𝜔𝑘−1 + ¤𝜔max, ∥𝜔rpm,𝑑 − 𝜔𝑘−1∥ > ¤𝜔max

𝜔rpm,𝑑 , ∥𝜔rpm,𝑑 − 𝜔𝑘−1∥ < ¤𝜔max
, (2.9)

where ¤𝜔max is the maximum allowed change per time step and 𝜔𝑘 and 𝜔𝑘−1 are the
shaft RPM values at the current and previous time step.

The thrust model which converts the waterjet shaft RPM to thrust is modeled as
a second-order polynomial function

𝑇wj =
1
2
𝛼rpm

(
𝑎0 + 𝑎1𝑢𝑟 + 𝑎2𝑢2𝑟

)
, (2.10)

where 𝑢𝑟 is the relative surge speed of the vessel and 𝛼rpm a scaling factor given by

𝛼rpm
(
𝜔rpm

)
= 𝑏0 + 𝑏1𝜔rpm + 𝑏2𝜔2

rpm. (2.11)

The resulting thrust is not only dependent on the shaft RPM but also on the relative
velocity of the vessel. The reason is that the waterjet works by taking water from an
intake underneath the vessel in front of the actuator which is accelerated through
the waterjet and discharged through the nozzle to create a forward propulsive force
by Newton’s third law of motion. The resulting thrust as a function of relative surge
speed and throttle demand can be seen in Fig. 2.2.
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Figure 2.2: Waterjet thrust as a function of relative surge speed and throttle demand.
The thrust is plotted without numerical data on request by FFI.

Next, the forces and moments are modeled as a function of the reverse bucket
position and the nozzle angle. The nozzle demand 𝑢nozzle ∈ [−100, 100] is mapped to
the desired nozzle angle of the waterjet using a similar mapping as the throttle

𝛿nozzle,𝑑 = 𝛿min +
(𝑢nozzle

100
+ 1

) (
𝛿max − 𝛿min

2

)
, (2.12)

where 𝛿min and 𝛿max is the minimum and maximum nozzle angle respectively. In
the case where the operation area of the nozzle angle is centered around zero i.e
𝛿min = −𝛿max, (2.12) reduces to (2.8). The desired nozzle angle is then modelled with
a rate limiter equal to (2.9)

𝛿𝑘 =


𝛿𝑘−1 + ¤𝛿max, ∥𝛿nozzle,𝑑 − 𝛿𝑘−1∥ > ¤𝛿max

𝛿nozzle,𝑑 , ∥𝛿nozzle,𝑑 − 𝛿𝑘−1∥ < ¤𝛿max
, (2.13)

where ¤𝛿max is the maximum allowed change in nozzle angle per time step and 𝛿𝑘 and
𝛿𝑘−1 are the nozzle angles at the current and previous time step.

As the operation area of the nozzle angle is limited, the waterjet is not able to
generate negative thrust using only the throttle and nozzle. By using the deflector,
the jet stream splits into three components: one aft jet and two directed forward
and to the sides, allowing the vessel to slow down. The reverse bucket demand
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𝑢bucket ∈ [−100, 100] is mapped to desired bucket position as

𝛾bucket,𝑑 = −1 +
(𝑢bucket

100
+ 1

)
, (2.14)

where the deflector is fully lowered when 𝛾bucket,𝑑 = − 1 and fully raised when
𝛾bucket,𝑑 = 1. Again, the reverse bucket dynamics are passed through the rate limiter

𝛾𝑘 =


𝛾𝑘−1 + ¤𝛾max, ∥𝛾bucket,𝑑 − 𝛾𝑘−1∥ > ¤𝛾max

𝛾bucket,𝑑 , ∥𝛾bucket,𝑑 − 𝛾𝑘−1∥ < ¤𝛾max
, (2.15)

where ¤𝛾max is the maximum allowed change in reverse bucket position per time step
and 𝛾𝑘 and 𝛾𝑘−1 the reverse bucket positions at the current and previous time step.

Using the deflector position 𝛾 the expression for the reverse and forward thrust
component caused by the deflected jetstream is

𝑇rev =


𝑇wj (−𝑏𝛾bucket + 𝑏) , 𝛾bucket ≥ 0

𝑇wj [(𝑏 − 1) 𝛾bucket + 𝑏] , 𝛾bucket < 0
(2.16)

𝑇fwd = 𝑇wj −𝑇rev, (2.17)

where 𝑏 is a constant. It can be observed that when 𝛾bucket = 0, i.e. when the reverse
bucket is in neutral position, the forward and reverse thrust components cancel
each other. Finally, the 𝑥 component of the force generated by the waterjet can be
calculated as

𝑓𝑥 = 𝑓𝑥,nozzle + 𝑓𝑥,portduct + 𝑓𝑥,stbduct (2.18)

𝑓𝑥,nozzle = 𝑇fwd cos (𝛿nozzle) (2.19)

𝑓𝑥,portduct =
1
2
𝑇rev cos (𝛽1) cos (𝛽2)

(
1 − 𝛿nozzle

𝛿max

)
(2.20)

𝑓𝑥,stbduct =
1
2
𝑇rev cos (−𝛽1) cos (𝛽2)

(
1 + 𝛿nozzle

𝛿max

)
, (2.21)

and similarly with the 𝑦 component

𝑓𝑦 = 𝑓𝑦,nozzle + 𝑓𝑦,portduct + 𝑓𝑦,stbduct (2.22)

𝑓𝑦,nozzle = 𝑇fwd sin (𝛿nozzle) (2.23)

𝑓𝑦,portduct =
1
2
𝑇rev sin (𝛽1) cos (𝛽2)

(
1 − 𝛿nozzle

𝛿max

)
(2.24)
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𝑓𝑦,stbduct =
1
2
𝑇rev sin (−𝛽1) cos (𝛽2)

(
1 + 𝛿nozzle

𝛿max

)
, (2.25)

where 𝛽1 and 𝛽2 are the angles the jetstream is deflected to port/starboard and down
when the reverse bucket is in use. The generated moment about the z-axis generated
is equal to

𝑚𝑧 = 𝑙𝑥 𝑓𝑦 − 𝑙𝑦 𝑓𝑥 , (2.26)

where 𝑙𝑖 are the lever arm for the 𝑥 and 𝑦 forces respectively. Finally, the generalized
force vector generated by a single waterjet can be expressed as

𝝉𝑏 =


𝑓𝑥

𝑓𝑦

𝑚𝑧


. (2.27)

2.3.1 Linearization of Waterjet Dynamics

In this section, a linearized version of the waterjet dynamics between the nozzle
angle demand and the generated z moment is derived to simplify the controller
design for the heading autopilot. Inspired by the modeling of rudder dynamics in
Fossen (2011), a similar expression on the form

𝜏3 = −𝑁𝑢nozzle𝑢nozzle, (2.28)

is derived. Many different methods are developed for control of ships equipped
with main propellers and aft rudders as they are common actuators for conventional
marine craft. By approximating the dynamics for the waterjet similarly, it opens
up the possibilities to utilize those methods, such as pole-placement algorithms for
tuning of heading PID controllers for Odin.

Looking at the waterjet dynamics in Section 2.3, it can be noticed that while
the total dynamics are nonlinear, most of the nonlinearities arise from the thrust
model (2.10) and the reverse bucket thrust components in (2.18) and (2.22). In fact,
with the reverse bucket duct fully raised and for small nozzle angles, the nonlinear
dynamics are less dominant and a linear approximation such as (2.28) could represent
the actual behavior quite well in those cases.

Assumption 2.2. Both waterjets are equal and positioned symmetric about the xz-

plane (port/starbord) of the vessel.

Assumption 2.3. The marine vessel is operating at a constant surge speed 𝑢0 such
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that the throttle demand required to maintain the speed satisfies 𝑢throttle ≥ 10 implying

𝑢duct = 100, i.e. fully raised according to (2.36).

Assumption 2.4. The nozzle angle is centered around zero with a relatively small

maximum angle 𝛿max.

Under Assumption 2.2, the total moment generated about the z-axis is equal to

𝜏3 =𝑚𝑧 = 2𝑙𝑥 𝑓𝑦, (2.29)

as the moment generated by the x-components from each of the waterjets cancel each
other. Further, Assumption 2.3 implies that the latter two terms in (2.22) vanishes
due to the reverse duct being fully raised. By using the approximation sin(𝑥) ≈ 𝑥
with Assumption 2.4, a linear approximation to the generated moment about the
z-axis by the nozzle angle can be expressed as

𝜏3 = 2𝑙𝑥𝑇fwd,𝑖
𝛿max

100
𝑢throttle, (2.30)

where 𝑇fwd,𝑖 is the forward thrust generated by each of the waterjets.
To calculate the forward thrust 𝑇fwd required to operate at the constant surge

speed 𝑢0, the forward speed model is used

𝑇fwd =
∑
𝑖

𝑇fwd,𝑖 = −𝑋𝑢𝑢0 − 𝑋 |𝑢 |𝑢 |𝑢0 |𝑢0. (2.31)

This means the linear relationship between the nozzle angle demand and the gener-
ated moment about the z-axis can be related through the constant

𝑁𝑢nozzle =

(
𝑋𝑢𝑢0 + 𝑋 |𝑢 |𝑢 |𝑢0 |𝑢0

)
𝑙𝑥𝛿max

100
. (2.32)

Similarly, the relationship between the nozzle angle demand and the generated y
force can be linearized as

𝜏2 = −𝑌𝑢nozzle𝑢nozzle, (2.33)

with

𝑌𝑢nozzle =

(
𝑋𝑢𝑢0 + 𝑋 |𝑢 |𝑢 |𝑢0 |𝑢0

)
𝛿max

100
. (2.34)

The linearized waterjet dynamics are plotted against the actual dynamics in
Fig. 2.3. It can be noticed that the linearization resembles the actual generated forces
and moments well, even for large values of 𝑢nozzle, meaning the linearized model is a
good approximation.
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Figure 2.3: Linearized waterjet dynamics vs actual dynamics. Plotted without
numerical data on request by FFI.
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2.4 Maneuvering Controllers

This section will present the maneuvering controllers for heading and surge using
simplified control design methods. The controllers are not tuned for the real vessel,
but the simulation model of Odin. Even though the simulation model presented
earlier in this chapter is designed to represent the actual vessel dynamics, a perfect
model is impossible. Therefore, it is desirable to have well-tuned maneuvering
controllers for the simulation model than using the actual values from Odin, which
will perform sub-optimal in simulations.

The maneuvering controllers presented in this section operate directly on the
desired throttle and steering demands of the waterjet, instead of desired force allo-
cation. This is due to the complexity and uncertainties in both the waterjet model
and the vessel parameters. An implication of this is that more advanced control
techniques such as acceleration feed-forward and feedback-linearization are not
possible as the mapping from desired force/torque to desired throttle and steering
demands is unknown.

The autopilots presented here were first introduced in Eek (2019), and briefly
repeated here for convenience. The reader is referred to Eek (2019) for more details.

2.4.1 Surge Controller

The selected controller for the surge speed is a PI controller, with anti-windup
using the tracking back calculation scheme. Due to the aforementioned reasons, the
controller operates directly on the desired throttle demand

𝑢throttle = −𝐾𝑝 (𝑢−𝑢𝑑 ) −𝐾𝑖
∫ 𝑡

0
(𝑢−𝑢𝑑 ) 𝑑𝜏 −

1
𝑇𝑡

∫ 𝑡

0
(𝑢throttle−𝑢throttle,unsat) 𝑑𝜏, (2.35)

where 𝑢throttle,unsat ∈ R is the unsaturated value of 𝑢throttle and 𝑇𝑡 the tracking time
constant chosen to be equal to the integral time constant of the PI controller. In Eek
(2019) it was shown that by choosing 𝐾𝑝 = 150 and the integral time-constant 𝑇𝑖 = 5
satisfactory performance of the surge dynamics were obtained.

The reason for operating directly on the desired throttle demand is that it elimi-
nates the need for an additional control allocation method, which would have been
complicated due to the nonlinear nature and model uncertainties of the waterjet
model. By operating directly on 𝑢throttle, the need for a control allocation block is
bypassed, simplifying the control system design.

As mentioned in Section 2.3, the waterjet is equipped with a reverse bucket duct,
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which can be lowered to deflect the water stream forward to generate a negative
thrust. When the throttle demand 𝑢throttle < 0, this deflector will be lowered down

𝑢duct =


100, 𝑢throttle ≥ 10

−100, 𝑢throttle ≤ −10

10 · 𝑢throttle, otherwise

(2.36)

𝑢throttle =


100, 𝑢throttle ≥ 100

|𝑢throttle |, otherwise
. (2.37)

To generate a negative thrust demand when lowering the deflector, a positive throttle
demand is still required. Therefore, the throttle demand absolute value of 𝑢throttle is
sent to the actuators instead of 𝑢throttle directly. This is similar to the current method
used for Odin, and is thus chosen to resemble this behavior.

2.4.2 Heading Controller

The heading controller design presented in here is based on the first-order Nomoto
model

(𝐼𝑧 − 𝑁 ¤𝑟 ) ¥𝜓 + 𝑁𝑟
¤𝜓 = 𝜏3, (2.38)

which describes the sway-yaw dynamics decoupled from the surge. Odin is capable
of having full actuation in all three degrees of freedom as it is equipped with two
waterjets. However, in this thesis, they are linked together, meaning the same
commands are sent to both waterjets. The implication of this is that Odin, for the
applications targeted in this thesis, will be under-actuatedwithout directly controlling
the sway dynamics.

2.4.2.1 Reference Model

To ensure that the vessel is able to follow the desired heading reference at anymoment
in time, a position reference model from Fossen (2011) is used. The reference model
is motivated by the dynamics of a mass-damper-spring (MDS) system to generate
the desired heading reference

𝜓
(3)
𝑑

+ (2𝜁 + 1)𝜔𝑛
¥𝜓𝑑 + (2𝜁 + 1)𝜔2

𝑛
¤𝜓𝑑 + 𝜔3

𝑛𝜓𝑑 = 𝜔3
𝑛𝜓𝑟 , (2.39)

where 𝜓𝑑 is the desired heading, 𝜓𝑟 the reference signal and 𝜁 and 𝜔𝑛 the relative
damping ration and natural frequency respectively. Using a reference model such
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as (2.39) ensures that the control system receives smooth reference signals for the
desired heading𝜓𝑑 and its derivative ¤𝑟𝑑 .

2.4.2.2 PID Controller

To control the heading of the vessel a standard PID controller will be utilized on the
form

𝑢nozzle = −𝐾𝑝 (𝜓−𝜓𝑑 )−𝐾𝑖
∫ 𝑡

0
(𝜓−𝜓𝑑 ) 𝑑𝜏−𝐾𝑑 (𝑟−𝑟𝑑 )−

1
𝑇𝑡

∫ 𝑡

0
(𝑢nozzle−𝑢nozzle,unsat) 𝑑𝜏,

(2.40)
where 𝑢nozzle is the nozzle demand to the waterjet, 𝑟 the yaw rate of the vessel, 𝑟𝑑
the desired yaw rate, and 𝑢nozzle,unsat the unsaturated nozzle demand. By inserting
the PID controller (2.40) with expression for the linearized waterjet dynamics in
Section 2.3.1 into the Nomoto model (2.38) gives the closed loop form

−𝑁 ¤𝑟 − 𝐼𝑧
𝑁𝑢nozzle︸     ︷︷     ︸
𝑚

¥𝜓 + 𝑁𝑟

𝑁𝑢nozzle︸  ︷︷  ︸
𝑑

¤𝜓 = 𝑢nozzle. (2.41)

Then, the pole-placement algorithm from (Fossen; 2011, Table 12.2) was used
to tune the heading PID controller by selecting a proper bandwidth and relative
damping ratio. The tracking back-calculation time constant 𝑇𝑡 was further chosen
according to the rule-of-thumb given in Markaroglu et al. (2006) as

𝑇𝑡 =
√
𝑇𝑖 ·𝑇𝑑 , (2.42)

where 𝑇𝑖 and 𝑇𝑑 is the integral and derivative time constants of (2.40). The different
control parameters were in Eek (2019) chosen as𝜔𝑛 = 3, 𝜁 = 1 for the PID parameters
and the natural frequency 𝜔𝑛,ref = 2 for the reference model.



3 | Cable Modeling

In this chapter, a discrete mathematical model describing the equations of motion of
a flexible floating cable is presented using analytical mechanics. First, a model based
on Bhattacharya et al. (2011) is presented, where a new hydrodynamic drag model
is proposed to incorporate the effects of ocean currents. Then, a solution to the
differential-algebraic equation system DAE is presented, such that it can be simulated
using MATLAB. Next, the cable model presented in this chapter is connected with
the vessel model presented in Chapter 2. Finally, the cable model is verified through
several simulations verifying the extended hydrodynamic drag model when exposed
to ocean currents, and that the simulated loads on the vessels from the cable model
match experimental data.

The model and theory presented in this chapter, except Section 3.4 and Sec-
tion 3.5, is based on Bhattacharya et al. (2011) unless stated otherwise. However, the
hydrodynamic drag model Section 3.2.2 has been extended to incorporate the effects
of ocean currents by the author of this thesis.

3.1 Introduction

The ability to express the cable dynamics as a mathematical model through the
equations of motion is advantageous. It allows validation of the formation control
methods presented later in the thesis in simulations under realistic scenarios instead
of having to resort to experiments. Thus, several studies have been performed with
the goal of modeling and simulation of a cable.

In Jiménez et al. (2005) Newtonian and canonical methods were used to study
the motion of a rope falling from a table. However, the model only considers a
one-dimensional system. Further, as the study considers a rope in the air, it does not
incorporate hydrodynamic drag forces.

Two other models (1) Euler Angle Cable (EAC) and (2) Rigid Bar Cable (RBC) for
underwater cable dynamics are proposed in Johansen (2007), for the application of

22
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fish trawler systems. The first model shows good coincidence between simulations
and experiments at the cost of higher computational complexity. In contrast, the
latter model can be considered as a trade-off between accuracy and computational
speed to be better suited for real-time simulations. However, both these models
describe the cable dynamics in 3D, which is unnecessary for the 3-DOF applications
considered in this thesis.

In Arrichiello et al. (2018), the dynamics of a flexible cable towed by an Au-
tonomous Underwater Vehicle (AUV) is modeled similarly as an industrial manipula-
tor using the Newton-Euler recursive Algorithm. However, similarly to the latter
method, Arrichiello et al. (2018) also considers 3D cable dynamics.

Kheiri et al. (2013) presents a nonlinear model for a towed, neutrally buoyant
flexible slender cylinder in the horizontal plane. The inviscid and viscous dynamic
forces are both modeled to third-order accuracy. The resulting PDE is then trans-
formed into a discrete ODE. However, the authors experienced several stability issues
with the derived model under various scenarios. Further, the accuracy obtained by
this model was found to be superfluous for the application considered in this thesis.

In Pereda et al. (2011), a discrete model for a cable towed behind two marine
vessels for oil spill confinement is presented. Here, the dynamics of each link are
modeled using Newton’s 2. law, and the continuity of the cable is ensured through a
closing condition forcing all links to remain connected. While the model presented
in Pereda et al. (2011) only includes linear hydrodynamic drag forces, it is further
extended to incorporate quadratic damping in Jimenez and Giron-Sierra (2018).
However, as the linear and angular accelerations are calculated individually for each
link, the model is sensitive to numerical errors, causing the closing condition to
diverge, i.e., the links will not necessarily remain connected to each other. During
the simulation, an extra correction after each iteration must thus be performed
attaching the links again, see Jimenez (2016), making the method sub-optimal seen
from efficiency and implementation point of view.

Bhattacharya et al. (2011) also consider a similar scenario with oil spill confine-
ment, and present several models describing the dynamics of a cable towed behind
two marine vessels, including a continuous PDE based on a nonlinear wave equation.
However, for the applications considered here, the two discrete methods (1) force
controlled system and (2) position controlled system , also presented in the paper, are
of more interest. The first model takes the forces applied by the two vessels as input
and outputs the link angle, i.e., the angle the link forms with the global inertia frame,
and the cable end positions, while the second model takes the cable end positions
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as input and outputs the link angles and forces that would have been applied from
the vessels to obtain such a position. The latter approach matches well with the
application considered in this thesis as the cable ends will be connected to each
vessel and thus have a known position which can be used as an input to the model.
Further, by using Newton’s third law, the calculated forces given as the output will
correspond to the forces applied by the cable on each vessel, i.e., how towing the
cable will affect the dynamics of each vessel slowing it down. However, neither of
the models from Bhattacharya et al. (2011) considers how the cable dynamics will be
affected by ocean currents.

3.2 Cable dynamics

In the modeling of the dynamics of the flexible floating cable, an approximate discrete
model from Bhattacharya et al. (2011) is used, where the cable is approximated by 𝑛
rigid cylindrical links connected by revolute joints, see Fig. 3.1a. More specifically,
the model presented here is based on the Position Controlled System model in Bhat-
tacharya et al. (2011). The endpoints of the cable are assumed rigidly attached to each
boat, implying the endpoint positions {𝑥𝐿, 𝑦𝐿, 𝑥𝑅, 𝑦𝑅}, and their derivatives are known,
while the link angles 𝜃𝑖 and the forces applied by the two vessels

{
𝑓𝐿𝑥 , 𝑓𝐿𝑦, 𝑓𝑅𝑥 , 𝑓𝑅𝑦

}
are unknown.

Link 1 (Left) Link 𝑛 (Right)

(a) Discrete model consisting of 𝑛 rigid links.

𝑠

𝑝𝑖

𝑟𝑖 (𝑠)

𝜃𝑖

(b) The ith link

Figure 3.1: Discrete model visualization

Assumption 3.1. When modeling the cable dynamics, only 3-DOF motion in the

horizontal plane, i.e. position in x- and y-direction along with the link angle, will be

considered.



3.2. CABLE DYNAMICS 25

An implication of Assumption 3.1 is that both gravity and buoyancy forces will
be neglected when deriving the equations of motion of the cable. Thus, no potential
forces will affect system dynamics. This assumption will also imply that the cable
is assumed to float at the ocean surface at all times. In reality, this is not true as it
will sink a bit when towed and thus be located below the surface. However, this
assumption is made to simplify the modeling of cable dynamics and match the 3-DOF
assumption in Chapter 2.

To derive the equations of motion, the system is expressed in terms of the
generalized coordinates by modelling each link as a rigid cylinder with length 𝐿𝑖 and
mass𝑚𝑖 .

𝑞𝑖 ∈ {𝜃1, 𝜃2, . . . , 𝜃𝑛} , (3.1)

where 𝜃𝑖 is the link angle of link 𝑖 ∈ 1, . . . , 𝑛 and is defined as the angle that the
link forms with the x axis of the NED reference frame. Then, the hydrodynamic
forces and torques are expressed in terms of generalized forces, before the Lagrange’s
equations of motion are found.

Remark 3.1. In Bhattacharya et al. (2011), a different global inertial frame is used

with a horizontal x-axis, vertical y-axis, and the z-axis pointing up, out of the paper,

completing the right-hand rule. However, the validity of the model is not affected,

meaning the model presented here will be identical, only differing in the definition of 𝜃𝑖 ,

see Fig. 3.1b and (Bhattacharya et al.; 2011, Fig. 4b).

3.2.1 Kinematics

First, to derive the forward kinematics of the cable, the position of the center of mass
of link 𝑖 can be expressed as

p𝑖 =

𝑥𝐿

𝑦𝐿

 +
𝑖−1∑
𝑗=1

𝐿 𝑗


cos(𝜃 𝑗 )

sin(𝜃 𝑗 )

 +
𝐿𝑖

2


cos(𝜃𝑖)

sin(𝜃𝑖)

 , (3.2)

where 𝐿 𝑗 is the length of link 𝑗 , and {𝑥,𝑦}𝐿 is the NED position of the base link,
connected to the left vessel. Similarly, the position of the end link, connected to the
right vessel can be expressed as

𝑥𝑅

𝑦𝑅

 =


𝑥𝐿

𝑦𝐿

 +
𝑛∑
𝑗=1

𝐿 𝑗


cos(𝜃 𝑗 )

sin(𝜃 𝑗 )

 . (3.3)

Further, by taking the time derivative of (3.2), the velocity of the center of mass
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of link 𝑖 can be expressed as

v𝑖 =

¤𝑥𝐿
¤𝑦𝐿

 +
𝑖−1∑
𝑗=1

𝐿 𝑗 ¤𝜃 𝑗

− sin(𝜃 𝑗 )

cos(𝜃 𝑗 )

 +
𝐿𝑖

2
¤𝜃𝑖


− sin(𝜃𝑖)

cos(𝜃𝑖)

 . (3.4)

3.2.2 Hydrodynamic drag forces

In Bhattacharya et al. (2011), the hydrodynamic drag forces and torques are modeled
using a linear drag model. The drag effects are modeled by splitting the velocity
into two components (1) parallel to the link, meaning it is parallel to the y-axis
(v∥

𝑖
) and (2) perpendicular to the link, rendering it parallel to the x-axis (v⊥

𝑖 ). At
low-speed operations, the drag is assumed to be linear to the speed, but with different
drag coefficients for the parallel and perpendicular components. The net external
hydrodynamic drag forces and torque on the ith link are then calculated by taking
the integral of the drag force and torque per unit length across the whole link.

However, the hydrodynamic drag model presented in Bhattacharya et al. (2011)
has a shortcoming where the effects of ocean current are neglected when calculating
the hydrodynamic drag forces and torque. When themodel presented in Bhattacharya
et al. (2011) is simulated in scenarios where ocean currents are present, the accuracy
of the model would not be satisfactory as the hydrodynamic drag effects would fail
to include the hydrodynamic effects due to the ocean current, and thus would not be
realistic. For instance, consider the case where a stationary cable, with zero absolute
velocity to the inertia frame, with both ends connected to rigid stationary objects, is
located in an environment exposed to ocean currents. With the model presented in
Bhattacharya et al. (2011), the resulting hydrodynamic forces and torques would be
zero as the cable has no absolute velocity to the inertia frame. However, the cable
would still have a non-zero relative velocity to the freestream flow around the cable,
resulting in non-zero hydrodynamic drag forces and torques in the real world. In
other words, the model presented in Bhattacharya et al. (2011) would fail to capture
these hydrodynamic drag effects as the absolute velocity, which in this case, would
be zero.

Consider the following scenario, which further highlights the importance of
including the hydrodynamic effects due to the ocean current. A cable with both ends
free, i.e., neither cable ends are connected to anything, and with zero initial velocity,
is located in an environment exposed to ocean currents. Thinking logically, as the
cable is not connected to anything, it should drift with the ocean current. However,
as in the last scenario, the model presented in Bhattacharya et al. (2011) would be
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unaffected by the ocean currents, and remain at the same position at all times, again
since the absolute velocity is zero resulting in zero hydrodynamic drag forces and
torques. By extending the drag model to include the relative velocities, the effects of
the ocean currents would be captured, and the cable would begin to drift.

To extend the model presented in Bhattacharya et al. (2011) to include effects
caused by ocean currents, a new proposal of how to calculate the hydrodynamic
forces and torque is presented in this thesis. Instead of using the absolute velocities
when calculating the hydrodynamic forces and torques, a modified approach by
using the relative velocities is proposed

F𝑖 =

𝐹𝑖,𝑥

𝐹𝑖,𝑦

 = −
∫ −𝐿𝑖/2

−𝐿𝑖/2

(
𝑐𝑉 v∥

𝑟,𝑖
(𝑠) + 𝑐𝑆v⊥

𝑟,𝑖 (𝑠)
)
𝑑𝑠 (3.5a)

𝜏𝑖 = −
∫ −𝐿𝑖/2

−𝐿𝑖/2
¤r𝑖 (𝑠) ×

(
𝑐𝑉 v∥

𝑟,𝑖
(𝑠) + 𝑐𝑆v⊥

𝑟,𝑖 (𝑠)
)
𝑑𝑠, (3.5b)

where the absolute velocities in the expression from (Bhattacharya et al.; 2011, Eq.
8) are replaced with the relative velocities

v∥
𝑟,𝑖

=

û∥
𝑖
· ©­«¤r𝑖 (𝑠) −


𝑉𝑥

𝑉𝑦

ª®¬
 û∥

𝑖
(3.6a)

v⊥
𝑟,𝑖 =

û⊥
𝑖 · ©­«¤r𝑖 (𝑠) −


𝑉𝑥

𝑉𝑦

ª®¬
 û⊥

𝑖 , (3.6b)

where û∥
𝑖
=


cos(𝜃𝑖)

sin(𝜃𝑖)

 and û⊥
𝑖 =


− sin(𝜃𝑖)

cos(𝜃𝑖)

 are the parallel and perpendicular unit

velocity components of the link, and 𝑉𝑥 and 𝑉𝑦 are the ocean components in x and y
direction given in NED. The velocity of r𝑖 (𝑠) is still modeled as in Bhattacharya et al.
(2011) and is given by

¤r𝑖 (𝑠) =
𝑑

𝑑𝑡

©­«p𝑖 + 𝑠

cos(𝜃𝑖)

sin(𝜃𝑖)

ª®¬ = v𝑖 + 𝑠

− sin(𝜃𝑖)

cos(𝜃𝑖)

 ¤𝜃𝑖 . (3.7)

Note how, by using the relative instead of the absolute velocity, effects caused by
the ocean current now will be captured by the drag model. The contributing factors
for the hydrodynamic drag forces and torques are no longer the cable’s movement
to the inertia frame, but rather the freestream flow surrounding the cable. In the
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trivial case with no ocean currents, the proposed drag model (3.5) reduces to the
drag model presented in Bhattacharya et al. (2011).

3.2.3 Generalized forces

When deriving the equations of motion for a mechanical system using analytical
mechanics, all external non potential forces must be expressed in terms of generalized
forces. The generalized force associated with the generalized coordinate 𝑞𝑖 is defined
in Egeland and Gravdahl (2002) as

𝑄𝑖 ≜
𝑛∑

𝑘=1

𝜕r𝑘
𝜕𝑞𝑖

· F𝑘 , (3.8)

where r𝑘 is the contact point of the force F𝑘 . Using (3.8) the generalized force for
each of the generalized coordinates may then be expressed as

𝑄𝜃𝑖 =


𝑓𝐿𝑥

𝑓𝐿𝑦

 ·
𝜕


𝑥𝐿

𝑦𝐿


𝜕𝜃𝑖

+

𝑓𝑅𝑥

𝑓𝑅𝑦

 ·
𝜕


𝑥𝑅

𝑦𝑅


𝜕𝜃𝑖

+
𝑛∑
𝑗=1

F𝑗 ·
𝜕p𝑗

𝜕𝜃𝑖

= −𝑓𝑅𝑥𝐿𝑖 sin(𝜃𝑖) + 𝑓𝑅𝑦𝐿𝑖 cos(𝜃𝑖) + 𝜏𝑖 +
𝑛∑
𝑗=1

F𝑗 ·
𝜕p𝑗

𝜕𝜃𝑖
. (3.9)

Equally, the generalized force for the left cable end may be expressed as

𝑄𝑥𝐿 =


𝑓𝐿𝑥

𝑓𝐿𝑦

 ·
𝜕


𝑥𝐿

𝑦𝐿


𝜕𝑥𝐿

+

𝑓𝑅𝑥

𝑓𝑅𝑦

 ·
𝜕


𝑥𝑅

𝑦𝑅


𝜕𝑥𝐿

+
𝑛∑
𝑗=1

F𝑗 ·
𝜕p𝑗

𝜕𝑥𝐿

= 𝑓𝐿𝑥 + 𝑓𝑅𝑥 +
𝑛∑
𝑗=1

F𝑗,𝑥 (3.10a)

𝑄𝑦𝐿 = 𝑓𝐿𝑦 + 𝑓𝑅𝑦 +
𝑛∑
𝑗=1

F𝑗,𝑦 . (3.10b)

3.2.4 Lagrange’s equations of motion

Lagrange’s equations of motion is then formulated using the Lagrangian

L = 𝐾 − 𝑃, (3.11)
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defined as the difference in kinetic and potential energy. As only the motion in the
horizontal plane is considered Assumption 3.1, no potential forces are affecting the
system. Thus the Lagrangian simplifies to the kinetic energy of the whole system

L = 𝐾 =

𝑛∑
𝑖=1

(
1
2
𝑚𝑖 ∥v𝑖 ∥22 +

1
2
𝑚𝑖𝐿

2
𝑖

12
¤𝜃 2𝑖
)
, (3.12)

where 𝐼𝑖 = 1
12𝑚𝑖𝐿

2
𝑖 is the moment of inertia for each link about its center. The

equations of motion describing the cable dynamics are then given by the Euler-
Lagrange equation

𝑑

𝑑𝑡

(
𝜕L
𝜕 ¤𝜎

)
− 𝜕L
𝜕𝜎

−𝑄𝜎 = 0 (3.13)

for all 𝜎 ∈ {𝑥𝐿, 𝑦𝐿, 𝜃1, 𝜃2, . . . , 𝜃𝑛}.
It should be noted how (3.13) does not include any terms consisting of the right

cable end position 𝑥𝑅, 𝑦𝑅 or their derivatives. Instead, the dynamics of the right cable
end position is expressed through taking the time derivative of (3.3) to obtain the
velocity constraint 

¤𝑥𝑅
¤𝑦𝑅

 −

¤𝑥𝐿
¤𝑦𝐿

 −
𝑛∑
𝑗=1

𝐿 𝑗 ¤𝜃 𝑗

− sin(𝜃 𝑗 )

cos(𝜃 𝑗 )

 = 0, (3.14)

and by taking the time derivative again, the acceleration constraint is obtained
¥𝑥𝑅
¥𝑦𝑅

 −

¥𝑥𝐿
¥𝑦𝐿

 −
𝑛∑
𝑗=1

𝐿 𝑗
©­« ¥𝜃 𝑗


− sin(𝜃 𝑗 )

cos(𝜃 𝑗 )

 − ¤𝜃 2𝑗

cos(𝜃 𝑗 )

sin(𝜃 𝑗 )

ª®¬ = 0. (3.15)

Together, (3.13) and (3.15) form 𝑛 + 4 equations, which are 2nd order ODEs in
link angles 𝜃𝑖 and algebraic in the forces

{
𝑓𝐿𝑥 , 𝑓𝐿𝑦, 𝑓𝑅𝑥 , 𝑓𝑅𝑦

}
. As the system contains

both differential and algebraic equations, it is not an ODE, but rather a differential
algebraic equation system (DAE).

3.3 Solving the DAE system

This section will present a method of transforming the DAE system obtained when
modeling the cable dynamics in the last section into a structure that will allow it to be
solved using MATLAB. Bhattacharya et al. (2011) does not explain the exact steps of
the method, and it is not covered in detail in the paper. However, the implementation
of the method used in Bhattacharya et al. (2011) may be found in the corresponding
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code to the paper, which is published on Bhattacharya’s web page Bhattacharya
(2020b). The method presented here may be seen as an attempt to formalize the
implementation in Bhattacharya (2020a).

In general, DAE systems differ from ODEs in that they include an algebraic
constraint that restricts the solution to the constraint manifold, which makes them
generally more challenging to solve. DAEs often arise when modeling many different
systems, including mechanical systems, see, for instance, Gerdts (2015).

All DAEs may be converted into a system of ODEs by eliminating the algebraic
equations through differentiating the equations. The number of derivatives needed
to eliminate all algebraic equations is a measurement of the DAEs complexity and
is called the differential index, see Egeland and Gravdahl (2002). Naturally, a DAE
systemwith a higher index will be more complicated to convert into an ODE than one
with a lower index. In Shmoylova et al. (2013), it was stated that a mechanical system
with holonomic constraints is typically an index-3 system. This is also the case
with the system (3.13) and (3.3) where the holonomic constraint, the latter equation,
was differentiated twice to obtain the acceleration constraint (3.15), transforming
the system into an index-1 system. Therefore, taking the derivative once more will
transform the system into an ODE, implying the original system was an index-3
system.

When solving higher-order DAEs, a common approach is to convert it into
an index-1 system using index reduction methods, e.g., Iwata et al. (2019). The
importance of index reduction methods can be emphasized by the fact that the ODE
solvers in MATLAB only solve index-1 DAEs, implying higher-order systems must
be transformed into index-1 systems to be able to solve them using MATLAB, the
reader is referred to The Mathworks (2020a) for more details.

To solve the system of equations describing the DAE system presented in last
section, define the two sets of variables

𝝃 ≜
[
𝑓𝐿𝑥 , 𝑓𝐿𝑦, 𝑓𝑅𝑥 , 𝑓𝑅𝑦, ¥𝜽

𝑇
]𝑇

(3.16a)

𝜻 ≜
[
p𝑇𝐿 , ¤p

𝑇
𝐿 , ¥p

𝑇
𝐿 , p

𝑇
𝑅, ¤p

𝑇
𝑅, ¥p

𝑇
𝑅, 𝜽

𝑇 , ¤𝜽𝑇 ,𝑉𝑥 ,𝑉𝑦
]𝑇

(3.16b)

where 𝝃 ∈ R𝑛+4 contains all the unknown algebraic variables and the second deriva-
tives of the link angles, and 𝜻 ∈ R2𝑛+8 the remaining variables. It is then possible to
write the DAE as

0 = g (𝝃 , 𝜻 ) , (3.17)

where g =
[
𝑔𝑥𝐿 , 𝑔𝑦𝐿 , 𝑔𝑥𝑅 , 𝑔𝑥𝑅 , 𝑔𝜃1, . . . , 𝑔𝜃𝑛

]𝑇 contains all the equations given by (3.13)
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and (3.15).

To rewrite (3.17), it can be observed how the variables in 𝝃 never appear together
in the same term. This is the case as all terms consisting of the forces 𝑓( ·) originate
from the last term in (3.13) through the generalized forces, while all terms consisting
of the second derivatives of the link angles originate from the first term. It is,
therefore, possible to rewrite the system in the form

M (𝜽 ) 𝝃 − f (𝜻 ) = 0, (3.18)

where f contains all the terms independent of 𝝃 and each element in the first matrix
is calculated as

M =
{
𝑚𝑖 𝑗

}
=

{
𝜕g𝑖
𝜕𝝃 𝑗

}
∈ R(𝑛+4)×(𝑛+4) , (3.19)

i.e. the Jacobian of g with respect to 𝝃 , where {g, 𝝃 }𝑘 denotes the 𝑘 th element of the
vector.

Hence, (3.18) may be solved by inverting M

𝝃 = M (𝜽 )−1 f (𝜻 ) . (3.20)

By using (3.20) it is then possible to solve and integrate (3.13) and (3.15) for
{𝑓𝐿𝑥 , 𝑓𝐿𝑦, 𝑓𝑅𝑥 , 𝑓𝑅𝑦, 𝜽𝑇 } given trajectories of both cable end positions and their deriva-
tives and a given initial configuration of link angles 𝜽 and angular link velocities ¤𝜽
satisfying the continuity constraint (3.3) and velocity constraint (3.14) respectively.

Example 3.1 Example with 𝑛 = 2

To demonstrate how the model presented above can be solved, lets consider
the simple case where 𝑛 = 2. Note, even in this simple case, the expressions of the
hydrodynamic forces and torque (3.5) are too complicated to be calculated by hand,
and the exact expressions will thus not be included in this example.

The first step when deriving the equations of motion using Lagrangian mechanics
is to express the position of the center of mass for each link using the generalized
coordinates. In this case, the generalized coordinates can be chosen as the two link
angles 𝜃1 and 𝜃2. The position of the center of mass for each link may then be found
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to be

p1 =


𝑥𝐿 + 1

2𝐿 cos𝜃1

𝑦𝐿 + 1
2𝐿 sin𝜃1

 , p2 =


𝑥𝐿 + 𝐿 cos𝜃1 + 1

2𝐿 cos𝜃2

𝑦𝐿 + 𝐿 sin𝜃1 + 1
2𝐿 sin𝜃2

 , (3.21)

with the corresponding velocities

v1 =


¤𝑥𝐿 − 1

2𝐿
¤𝜃1 sin𝜃1

¤𝑦𝐿 + 1
2𝐿

¤𝜃1 cos𝜃1

 , v2 =


¤𝑥𝐿 − 𝐿 ¤𝜃1 sin𝜃1 + 1

2𝐿
¤𝜃2 sin𝜃2

¤𝑦𝐿 + 𝐿 ¤𝜃1 cos𝜃1 + 1
2𝐿

¤𝜃2 cos𝜃2

 . (3.22)

Next, consider the generalized forces affecting each of the generalized coordinates,
in addition to the left cable end

𝑄𝜃1 = −𝑓𝑅𝑥𝐿 sin𝜃1 + 𝑓𝑅𝑦𝐿 cos𝜃1 + 𝐹𝑑𝑟𝑎𝑔,𝜃1 (𝜻 ) (3.23a)

𝑄𝜃2 = −𝑓𝑅𝑥𝐿 sin𝜃2 + 𝑓𝑅𝑦𝐿 cos𝜃2 + 𝐹𝑑𝑟𝑎𝑔,𝜃2 (𝜻 ) (3.23b)

𝑄𝑥𝐿 = 𝑓𝐿𝑥 + 𝑓𝑅𝑥 + 𝐹𝑑𝑟𝑎𝑔,𝑥𝐿 (𝜻 ) (3.23c)

𝑄𝑦𝐿 = 𝑓𝐿𝑦 + 𝑓𝑅𝑦 + 𝐹𝑑𝑟𝑎𝑔,𝑦𝐿 (𝜻 ) , (3.23d)

where 𝐹𝑑𝑟𝑎𝑔,( ·) are the generalized force components due to hydrodynamic drag
forces and torques. Then, the kinetic energy for the system may be found to be

𝐾 =
1
2
𝑚

[(
¤𝑥𝐿 −

1
2
𝐿 ¤𝜃1 sin𝜃1

)2
+

(
¤𝑦𝐿 +

1
2
𝐿 ¤𝜃1 cos𝜃1

)2]
+ 1
2
𝑚

[(
¤𝑥𝐿 − 𝐿 ¤𝜃1 sin𝜃1 +

1
2
𝐿 ¤𝜃2 sin𝜃2

)2
+

(
¤𝑦𝐿 + 𝐿 ¤𝜃1 cos𝜃1 +

1
2
𝐿 ¤𝜃2 cos𝜃2

)2]
+ 1
24
𝑚𝐿2

(
¤𝜃1
2 + ¤𝜃2

2
)
.

(3.24)

After differentiating the kinetic energy according to the Euler-Lagrange equation,
and some algebraic simplifications the following system of equations is obtained:

0 = −𝑓𝐿𝑥 − 𝑓𝑅𝑥 + 2𝑚 ¥𝑥𝐿 −
3
2
𝑚𝐿 ¤𝜃 21 cos𝜃1 −

1
2
𝑚𝐿 ¤𝜃 22 cos𝜃2

− 3
2
𝑚𝐿 ¥𝜃1 sin𝜃1 −

1
2
𝑚𝐿 ¥𝜃2 sin𝜃2 − 𝐹𝑑𝑟𝑎𝑔,𝑥𝐿 (𝜻 ) (3.25a)

0 = −𝑓𝐿𝑦 − 𝑓𝑅𝑦 + 2𝑚 ¥𝑦𝐿 −
3
2
𝑚𝐿 ¤𝜃 21 sin𝜃1 −

1
2
𝑚𝐿 ¤𝜃 22 sin𝜃2

+ 3
2
𝑚𝐿 ¥𝜃1 sin𝜃1 +

1
2
𝑚𝐿 ¥𝜃2 sin𝜃2 − 𝐹𝑑𝑟𝑎𝑔,𝑦𝐿 (𝜻 ) (3.25b)

0 = −¥𝑥𝐿 + ¥𝑥𝑅 + 𝐿 ¤𝜃 21 cos𝜃1 + 𝐿 ¤𝜃 22 cos𝜃2 + 𝐿 ¥𝜃1 sin𝜃1 + 𝐿 ¥𝜃2 sin𝜃2 (3.25c)
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0 = −¥𝑦𝐿 + ¥𝑦𝑅 + 𝐿 ¤𝜃 21 sin𝜃1 + 𝐿 ¤𝜃 22 sin𝜃2 − 𝐿 ¥𝜃1 cos𝜃1 − 𝐿 ¥𝜃2 cos𝜃2 (3.25d)

0 = −𝑓𝑅𝑦𝐿 cos𝜃1 + 𝑓𝑅𝑥𝐿 sin𝜃1 +
3
2
𝑚 ¥𝑦𝐿 cos𝜃1 +

4
3
𝑚𝐿 ¥𝜃1 −

3
2
𝑚 ¥𝑥𝐿 sin𝜃1

+ 1
2
𝑚𝐿 ¥𝜃2 cos (𝜃1 − 𝜃2) +

1
2
𝑚𝐿 ¤𝜃 22 sin (𝜃1 − 𝜃2) − 𝐹𝑑𝑟𝑎𝑔,𝜃1 (𝜻 ) (3.25e)

0 = −𝑓𝑅𝑦𝐿 cos𝜃2 + 𝑓𝑅𝑥𝐿 sin𝜃2 +
1
2
𝑚 ¥𝑦𝐿 cos𝜃2 +

1
3
𝑚𝐿 ¥𝜃2 −

1
2
𝑚 ¥𝑥𝐿 sin𝜃2

+ 1
2
𝑚𝐿 ¥𝜃1 cos (𝜃1 − 𝜃2) −

1
2
𝑚𝐿 ¤𝜃 21 sin (𝜃1 − 𝜃2) − 𝐹𝑑𝑟𝑎𝑔,𝜃2 (𝜻 ) , (3.25f)

where the equations in (3.25) correspond to the equations for 𝑥𝐿 , 𝑦𝐿 , 𝑥𝑅 , 𝑦𝑅 , 𝜃1 and
𝜃2 respectively. The matrix M is then calculated by taking the Jacobian of (3.25) with
respect to 𝝃 to obtain

M(𝜻 ) =



−1 0 −1 0 − 3
2𝑚𝐿 sin𝜃1 − 1

2𝑚𝐿 sin𝜃2

0 1 0 −1 3
2𝑚𝐿 cos𝜃1

1
2𝑚𝐿 cos𝜃2

0 0 0 0 𝐿 sin𝜃1 𝐿 sin𝜃2

0 0 0 0 −𝐿 cos𝜃1 −𝐿 cos𝜃2
0 0 𝐿 sin𝜃1 −𝐿 cos𝜃1 4

3𝑚𝐿
2 1

2𝑚𝐿 cos (𝜃1 − 𝜃2)

0 0 𝐿 sin𝜃2 −𝐿 cos𝜃2 1
2𝑚𝐿 cos (𝜃1 − 𝜃2)

1
3𝑚𝐿

2


.

(3.26)
The vector f , which holds the remaining terms must then be equal to

f =



−2𝑚 ¥𝑥𝐿 + 3
2𝑚𝐿

¤𝜃 21 cos𝜃1 + 1
2𝑚𝐿

¤𝜃 22 cos𝜃2 + 𝐹𝑑𝑟𝑎𝑔,𝑥𝐿 (𝜻 )

−2𝑚 ¥𝑦𝐿 + 3
2𝑚𝐿

¤𝜃 21 sin𝜃1 + 1
2𝑚𝐿

¤𝜃 22 sin𝜃2 + 𝐹𝑑𝑟𝑎𝑔,𝑦𝐿 (𝜻 )

¥𝑥𝐿 − ¥𝑥𝑅 − 𝐿 ¤𝜃 21 cos𝜃1 − 𝐿 ¤𝜃 22 cos𝜃2
¥𝑦𝐿 − ¥𝑦𝑅 − 𝐿 ¤𝜃 21 sin𝜃1 − 𝐿 ¤𝜃 22 sin𝜃2

− 3
2𝑚 ¥𝑦𝐿 cos𝜃1 + 3

2𝑚 ¥𝑥𝐿 sin𝜃1 − 1
2𝑚𝐿

¤𝜃 22 sin (𝜃1 − 𝜃2) + 𝐹𝑑𝑟𝑎𝑔,𝜃1 (𝜻 )

− 1
2𝑚 ¥𝑦𝐿 cos𝜃2 + 1

2𝑚 ¥𝑥𝐿 sin𝜃2 + 1
2𝑚𝐿

¤𝜃 21 sin (𝜃1 − 𝜃2) + 𝐹𝑑𝑟𝑎𝑔,𝜃2 (𝜻 )


. (3.27)

To check when the matrix is non-singular, and thus can be inverted to solve the
system, the determinant is calculated to be

det (M) = 𝐿4 sin2 (𝜃1 − 𝜃2) , (3.28)

which is non-zero whenever 𝜃1 ≠ 𝜃2. Hence, the system is well-defined, and a
solution can be found, as long as the cable configuration is not equivalent to a
straight line. The intuition behind this is trivial, as this case will only occur if the
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euclidean distance between the two vessels, where the cable ends are connected, is
equal to the total length of the cable. In this case, an infinite force will be required
to ensure the cable’s continuity as the cable would break if the euclidean distance
between the vessels is larger than the total length of the cable. Thus, it can be
concluded that the simple system considered in this example is well defined as long
the euclidean distance between the two cable ends are strictly less than the total
length of the cable.

End Example 3.1

3.3.1 Practical implementation

Due to the size and complexity of the system when 𝑛 increases, it is not feasible to
calculate the equations of motion for the system by hand. Instead, another approach
was taken where the equations were implemented in the symbolic programming
languageWolfram Language, see Wolfram Research (2020), which performs all the
calculations described in Section 3.2 symbolically. The equations are then trans-
formed into the form of (3.18). Finally, the program creates a file of a MATLAB
function that takes all the required states 𝜻 as input parameters and returns the
matrix M and the vector f . The MATLAB function may then be called at each time
step in the simulation in MATLAB to calculate M and f given the current states,
before solving the system with (3.20).

In general, increasing the number of links would yield better resolution and be
more accurate as the link length would be smaller. However, with the currently
available processing capacity, it was found that 𝑛 = 20 is the upper limit on the
number of links to use for the cable mode. This is due to processing and memory
limitations, both during the model derivation using Wolfram Language and the
compile and run-time of the generated model in MATLAB/Simulink.

Remark 3.2. An attempt deriving the equations of motion using the Matlab Symbolic

Toolbox The MathWorks (2020b) was also done. However, while being simpler to use

than Wolfram Language, it lacked performance and suffered from a long computational

time when performing the symbolic calculations. When the number of links increased

(𝑛 = 10), it had still not managed to calculate the kinetic energy expression when stopped

after 24 hours. In comparison, the same calculations take just about 30min in Wolfram

Language for 𝑛 = 10, and about 48 h for 𝑛 = 20.
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Remark 3.3. The implementation described above is not entirely self-developed but

rather heavily influenced by the existing implementation from Bhattacharya (2020a).

This code, which already implemented the full model as presented in Bhattacharya et al.

(2011), was used as a starting base. It has further been extended to incorporate ocean

currents and export the finished model to a MATLAB compatible format by the author

of this thesis.

3.4 Connection with vessel

This section aims to connect the cable model presented in this chapter with the vessel
model presented in Chapter 2. Firstly, the necessary theory needed to calculate how
the exerted forces by the cable on each of the vessels will affect the vessel dynamics
will be provided. Then, the position, velocity, and acceleration (PVA) of the cable
endpoints are calculated based on the position of CO for the vessel.

An illustration of how the end point of the cable is connected to the vessel in the
point 𝐶 is illustrated in Figure 3.2.

3.4.1 Cable forces

To calculate the impact on the vessel dynamics from the additional forces on the
vessel from the cable, the forces must be transformed to the body-fixed coordinate
system of each vessel such that they can be used in (2.1b). First, the reactive force on
the vessel from the cable, expressed in {𝑐} can be calculated as

𝝉𝑐cable = R𝑧,𝜓


−𝑓𝑖,𝑥
−𝑓𝑖,𝑦
0


, (3.29)

Cable

r𝑏
𝑏𝑐

𝐶𝑂𝐶

Figure 3.2: Illustration of connection between cable and vessel
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where 𝑓𝑖,𝑥 and 𝑓𝑖,𝑦 , 𝑖 ∈ {𝐿, 𝑅} are the forces, expressed in {𝑛}, on the left and right
cable ends from each vessel respectively. The negative signs arise from Newton’s
third law of motion as the reactive forces on the vessels from the cable is opposite
from the forces on the cable from the vessels. To transform the forces expressed in
{𝑐} to {𝑏}, the system transformation matrix from Fossen (2011) is used, which in
3-DOF takes the form of

H
(
r𝑏
𝑏𝑐

)
=


1 0 −𝑦𝑏

𝑏𝑐

0 1 𝑥𝑏
𝑏𝑐

0 0 1


, (3.30)

where r𝑏
𝑏𝑐

is the vector from CO to 𝐶 expressed in {𝑏}, as illustrated in Figure 3.2.
The force can then be transformed from {𝑐} to {𝑏} as

𝝉𝑏cable = H
(
r𝑏
𝑏𝑐

)𝑇
𝝉𝑐cable, (3.31)

which is included in (2.1b) to add the forces from the cable in the vessel dynamics.

3.4.2 PVA of cable end points

One of the requirements when simulating the cable model presented in this chapter is
that the position, velocity, and acceleration (PVA) of the cable endpoints are known,
as these states are used as inputs to the model. However, the PVA of the point 𝐶
must be calculated from the vessel’s PVA in CO as the cable is not attached directly
to CO of the vessels.

First, it can be observed that the position of 𝐶 can be found by the translation

𝜼𝑛𝑐 = 𝜼𝑛
𝑏
+ R𝑧,𝜓 r𝑏

𝑏𝑐
, (3.32)

where 𝜼𝑛
𝑏
is the position of the vessel, the point CO, expressed in {𝑛}. Next, the

velocity is found by taking the time-derivative

¤𝜼𝑛𝑐 = ¤𝜼𝑛
𝑏
+ ¤R𝑧,𝜓 r𝑏

𝑏𝑐
+ R𝑧,𝜓 ¤r𝑏𝑏𝑐 (3.33)

= R𝑧,𝜓𝝂
𝑏 + R𝑧,𝜓S

©­­­­«

0

0

𝑟


ª®®®®¬

r𝑏
𝑏𝑐
, (3.34)
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where the last term in (3.33) is zero as the vector from CO to𝐶 is constant in {𝑏}, 𝝂𝑏

the velocity of the vessel in {𝑏}, 𝑟 the yaw rate and S (·) the skew-symmetric matrix.
Finally, the acceleration is found by taking the time-derivative of (3.34) to obtain

¥𝜼𝑛𝑐 = ¤R𝑧,𝜓𝝂
𝑏 + R𝑧,𝜓 ¤𝝂𝑏 + ¤R𝑧,𝜓S

©­­­­«

0

0

𝑟


ª®®®®¬

r𝑏
𝑏𝑐

+ R𝑧,𝜓
¤S
©­­­­«

0

0

𝑟


ª®®®®¬

r𝑏
𝑏𝑐

+ R𝑧,𝜓S
©­­­­«

0

0

𝑟


ª®®®®¬
¤r𝑏
𝑏𝑐

(3.35)

= R𝑧,𝜓S
©­­­­«

0

0

𝑟


ª®®®®¬
𝝂𝑏 + R𝑧,𝜓 ¤𝝂𝑏

︸                        ︷︷                        ︸
¥𝜼𝑛
𝑏

+ R𝑧,𝜓S2
©­­­­«

0

0

𝑟


ª®®®®¬

r𝑏
𝑏𝑐

︸             ︷︷             ︸
Centripetal acceleration

+ R𝑧,𝜓S
©­­­­«

0

0

¤𝑟


ª®®®®¬

r𝑏
𝑏𝑐

︸            ︷︷            ︸
Traversal acceleration

, (3.36)

where ¤𝑟 is the derivative of the yaw rate, i.e. the yaw acceleration.
When looking at the PVA equations, it is clear how the lever arm from CO to 𝐶

introduces new terms arising from Traversal and Centripetal acceleration. However,
it can be observed that there are no Coriolis terms present in (3.36) as there are no
motion of 𝐶 in {𝑏} relative to CO.

3.5 Model verification

In this section, the model will be simulated under different scenarios to verify the
model behavior.

3.5.1 Ocean currents

The purpose of this scenario is to verify that the new hydrodynamic drag model
presented in Section 3.2.2 exhibits behavior as expected when exposed to an envi-
ronment where ocean currents are present. In the scenario considered here, the
cables’ endpoints are attached to two stationary poles located in the middle of an
irrotational and constant ocean current. The system is then simulated to analyze
how the ocean currents will affect the cable motion.

The simulation results are presented in Fig. 3.3. The figure shows that the
cable converges to the form of a catenary when exposed to ocean currents, which
minimizes the hydrodynamic impact on the cable. Bhattacharya et al. (2011) showed
that the steady-state solution of the cable, when the motion of both ends was equal
to constant parallel velocities, would take the shape of a catenary. As the scenario
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considered here is equivalent to a cable with constant parallel velocities of the ends
with no ocean currents, it is expected that the same steady-state solution would be
seen here.

Further, the cable in this scenario displays a clear analogy to a hanging cable
influenced by gravity, which is also well known to take the shape of a catenary,
minimizing the potential energy of the cable. By observing that the irrotational
constant ocean current is analogous to a uniform gravitational field, it is no surprise
that the cable takes the shape of a catenary.

Looking at Fig. 3.3, it is safe to conclude that the extended hydrodynamic drag
model presented in Section 3.2.2 produces a realistic cable motion similar to what is
expected when considering the steady-state solution.
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Figure 3.3: Cable affected by constant ocean currents.
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3.5.2 Drag coefficients

The purpose of this section is to find reasonable estimates of the parallel and per-
pendicular drag coefficients in (3.5) to improve the transient phase of the cable
concerning the load experienced on each vessel from the cable.

While the steady-state solution of the cable was confirmed to be reasonable in
the last section, it is difficult to conclude anything of the transient response of the
cable from this simple scenario as the transient phase is heavily determined by choice
of drag coefficient values.

The transient response of the cable is investigated by comparing data logged
from full-scale experiments performed by FFI with the simulated behavior. In the
experiment, the vessels were controlled using a leader-follower method on the
straight-line path segments. Due to limitations in the leader-follower method, the
vessels were controlled manually throughout the turns to maintain the desired
formation.

During the tests, data such as the positions and body-fixed velocities of the
vessels were logged. Also, the experienced load on the vessels from the cable was
measured using a load cell. The goal is not to find drag coefficients corresponding
to a perfect one-to-one matching with experimental data due to the complicated
nature of the system dynamics. Instead, the goal is to find drag coefficients such that
the experienced load on the vessels from the cable, in simulation, will be within the
same order of magnitude to the experimental data.

The logged movement of the vessels was used as the endpoints of the cable, to
recreate the experiments. Using the vessels’ recorded positions from experiments
as direct inputs to the cable model eliminates any impacts caused by the model
uncertainties of the vessel model in Chapter 2. This way, it is possible to isolate the
cable model’s behavior, allowing a more accurate comparison.

To simulate the cable dynamics, the PVA of the cable’s endpoints must be known.
To recreate the experiments, the PVA of both vessels must, therefore, be calculated.
This imposed a challenge as only the positions (latitude and longitude) and body-fixed
velocities were logged during the experiments. Hence, an attempt to recalculate the
vessels’ PVA from these data was done by numerical differentiation of the available
data.

For the following simulation, the number of rigid links is chosen as 𝑛 = 20. The
numerical values of the total mass, length, and drag coefficients of the cable used in
the simulation are not given in this thesis on request from FFI. This is done to avoid
the possibility of recreating the exact cable model used, as FFI has requested that the
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experienced load from the cable remains confidential.

The cable model was then implemented in MATLAB/Simulink, according to
Section 3.3.1. Moreover, the simulation is performed without ocean currents as it
is unknown if, and what the ocean current was during the tests. The mismatch
in ocean currents could be a potential error source, but simulating with no ocean
currents, will introduce less error than simulating with the wrong ocean currents,
thus minimizing the impact.

The resulting loads from the simulation with the chosen drag coefficients, along
with the experimental data, is plotted in Fig. 3.4a, while the corresponding surge
speed of the vessels are found in Fig. 3.4b. It can be seen that the cable model, with
the given choice of drag coefficients, gives an experienced load within the same order
of magnitude to the experimental data.

The figures show that the simulated load matches well with the experimental
data for the first three periods, which are similar when considering the surge speed
characteristics under each of these periods. For the fourth period, between 𝑡 = 700 s
and 1000 s, the simulated load deviates a bit more from the experimental data, where
the vessel had somewhat higher surge speeds. This indicates that the linear drag
model (3.5) is less accurate when the speed increases.

However, it can be noticed that the simulated load does not match the exper-
imental for the last period between 𝑡 = 1200 s and 1500 s. By looking at Fig. 3.4b,
the surge speeds during this period are equal, and even a bit smaller, in magnitude
compared with the first three periods. However, the recorded loads are much higher
than the load for the first three periods, almost at the same level as the fourth period.
The simulated loads, on the other hand, are similar in this period as the first three.

It is unknown why the recorded load of the last period differs so much, and it is
probably the reason for the mismatch between the simulated cable model and the
experimental data as the simulated loads are similar in magnitude to the three first
periods.

During the last period, different simulated loads for Odin and Frigg can be
observed. The mismatch is likely to be caused by how PVA had to be obtained
through numerical differentiation. An implication of this is that the cable model’s
velocity and acceleration constraints are no longer necessarily satisfied at each time
step of the simulation. Hence, throughout the simulation, the position of the right
endpoint and the vessel’s position diverge a bit, causing Odin to be positioned a bit
before Frigg towards the end of the simulation. Hence Odin experience a higher
load as it must tow a more substantial amount of the cable than Frigg. The diverge
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is a direct result of the numerical differentiation required to obtain the vessels PVA
and is avoided if the vessels’ trajectories are generated such that the velocity and
acceleration constraints are satisfied at all times. However, this has no significant
effect on the results as the experienced loads for both vessels are still within the
same order of magnitude.

Regardless of the mismatch during the last period, it can be concluded that the
linear drag model (3.5) is a reasonable approximation for the low-speed applications
considered in this thesis and that the experienced load on the vessels from the cable
will be within the same order of magnitude as experienced in experiments.
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Figure 3.4: Comparison of simulation vs. experiments. Plotted without numerical
data on request by FFI.



4 | Formation Control

In this chapter, a method for formation control of two underactuated USVs using
the NSB framework is presented. First, a brief introduction to the field of behavioral-
based formation control methods is given. Then, the mathematical foundation of
the NSB framework is presented, and the interface between the formation control
system and the maneuvering controllers is established. Next, the different tasks for
the NSB framework are then presented, including the proposal of a new definition
of the barycenter task, inspired by line-of-sight methods. Then, rigorous closed-loop
stability analysis for the formation and barycenter tasks are performed in the ideal
case with no model uncertainties, using the vessel model and autopilots from Moe
et al. (2016). Finally, the robustness properties against nonvanishing perturbations
are investigated to see how the cable dynamics affect the tasks’ errors.

4.1 Introduction

When designing autonomous systems, they must be designed to have the autonomy
to plan and navigate complex environments, with often dynamically changing areas,
in real-time. These environments can be intricate to describe mathematically, making
it difficult to design a single control law fusing all available information at once.
Alternatively, an idea to overcome this issue is to divide the overall objectives into
several sub-problems that are simpler to solve individually. The solutions from each
sub-problem may then be combined to obtain a solution that will hopefully fulfill
the overall objectives. Instead of considering an objective like "Move from point A to

point B without colliding," it could be split into the two sub-problems (1) "Maintain a
minimum distance to all obstacles" and (2) "Move towards the target location.".

This concept builds up the foundation of behavioral-based methods. To handle
complex missions, behavioral-based methods usually decompose the problem into
a set of simple tasks, which are solved independently and then combined to solve
the mission. While the introduction of fundamental tasks simplifies the planning,

43
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caution must be taken when combining the individual task solutions. In particular,
when different tasks counteract, meaning a single solution cannot satisfy all, a proper
policy must be applied to minimize the conflict among the tasks.

In general, behavioral methods may be divided into two classes depending on
how the solutions are combined, which are competitive and cooperative. An example
of a competitive scheme is the layered control system (LCS) Brooks (1986) where
each task, working independently, is assigned a priority level, and higher-priority
tasks solve conflicts by subsuming the lower ones. The implications are that only
the highest-priority task is correctly achieved, and lower-priority tasks are only
allowed to influence the decision once the first task is fulfilled. Instead of all tasks
cooperating to solve the overall goal, they are competitive and subsume lower-level
tasks until they are fulfilled themselves.

In a cooperative scheme, on the other hand, instead of the individual task com-
peting against each other, the output of each task is combined using a weighted sum
according to their priority, meaning no task is fully achieved but rather a compromise
of the relative task weightings. An example using this approach is the motor schema

control (MSC) Arkin (1989); Balch and Arkin (1998).
Another example of a cooperative scheme is the Null-Space-Based behavioral

control (NSB) presented in Antonelli and Chiaverini (2003, 2006), which uses a
different approach to combine the task solutions. Instead of using a weighted sum,
causing no task to be fully achieved, the solutions of the different tasks are combined
by projecting the solution from one task onto the null-space of the higher-priority
task. By the projection, all components from the lower-priority tasks which would
conflict with higher-priority tasks are therefore removed, also allowing lower priority
tasks to be fulfilled as long they do not counteract the other tasks. In Antonelli et al.
(2005) the three methods are compared, and showed that NSB will perform better
than MSC and LCS for obstacle avoidance and path following for mobile robots.

The NSB method was first used to coordinate a platoon of marine surface vessels
in Arrichiello et al. (2006a,b). In Arrichiello et al. (2006a), the method was applied for
vessels that are underactuated at high velocities and fully-actuated at low-velocities,
while the vessel is underactuated at all velocities in Arrichiello et al. (2006b). In this
case, the NSB system can be seen as a centralized guidance block, which outputs
an individual velocity for each vessel to achieve the desired behavior using state
measurements from all vessels Fig. 4.1. The task of controlling the dynamics are left
up to the maneuvering controller of each vessel. Hence, the NSB system can focus
on the kinematics needed to fulfill the tasks, rather than the control.
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𝜼, 𝝂

Figure 4.1: Overview of centralized NSB guidance system. Inspired by (Arrichiello
et al.; 2006b, Figure 1).

4.2 NSB mathematics

In the NSB framework, for each task, a task variable 𝝈 ∈ R𝑚 to be controlled is
defined as

𝝈 = f (p), (4.1)

where p =
[

p𝑇1 . . . p𝑇𝑛
]𝑇 ∈ R𝑝𝑛 is the concatenated vector of system configurations,

where p𝑖 ∈ R𝑝 is the configuration for system 𝑖 , and f : R𝑝𝑛 → R𝑚 is the task function
which maps the system configuration to the task variable. In this thesis, the vessel
positions are used as the system configuration, i.e. p ∈ R2𝑛 contains the position of
all vessels.

With the expression of the task variable, the goal is to find trajectories of p(𝑡)
such that

lim
𝑡→∞

𝝈𝑑 (𝑡) − 𝝈 (𝑡) = 0, (4.2)

where 𝝈𝑑 (𝑡) ∈ R𝑚 is the desired task value. The differential relationship between the
task variable derivative and the system velocities, is found by taking the derivative
of (4.1)

¤𝝈 =

𝑛∑
𝑖=1

𝜕f (p)
𝜕f (p𝑖)

𝝂𝑖 = J(p)𝝂, (4.3)

where J ∈ R𝑚×𝑝𝑛 is the configuration-dependent task Jacobian matrix, and 𝝂 =[
𝝂𝑇1 . . . 𝝂𝑇𝑛

]𝑇 ∈ R2𝑛 the vessel velocities. To generate desired motion references
p𝑑 (𝑡) for the vessels from the desired task function 𝝈𝑑 (𝑡) an effective way is to
act at the differential level by inverting the locally linear mapping (4.3) Arrichiello
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(2006). Thus, to generate reference velocities for the vessels, (4.3) is inverted using
the Moore-Penrose pseudoinverse

𝝂𝑑 = J† ¤𝝈𝑑 . (4.4)

However, to reduce numerical drift during discrete-time integration of (4.4), feedback
is added to obtain a Closed Loop Inverse Kinematics (CLIK) form, see for instance
Arrichiello et al. (2006b)

𝝂𝑑 = J† ( ¤𝝈𝑑 + Λ𝝈̃) , (4.5)

where Λ ∈ R𝑚×𝑚 > 0 is a matrix of proportional gains and 𝝈̃ = 𝝈𝑑 − 𝝈 the task
error. It can be observed how this closed-loop form is equivalent to a P-controller
of the task error tracking the possibly time-varying 𝝈𝑑 , which is transformed from
task-space to Cartesian coordinates through the Jacobian.

Lemma 4.1. Consider the task function (4.1) with the CLIK control law (4.5). Further-
more, assume that the system velocities perfectly follows the reference vd from (4.5),
i.e. v = v𝑑 . Then, the closed-loop system is UGES if the configuration-dependent task

Jacobian has full row rank, that is JJ𝑇 invertible.

Proof. By inserting (4.5) into (4.3), under the assumption v = v𝑑 , the following
closed-loop task function dynamics is obtained

¤𝝈 = Jv𝑑 (4.6)

= JJ† ( ¤𝝈𝑑 + Λ𝝈̃) . (4.7)

In the case where the configuration-dependent task Jacobian has full rank, JJ† = I as

JJ† = JJ𝑇
(
JJ𝑇

)−1
= I. (4.8)

This gives the task function error dynamics

¤̃𝝈 = −Λ𝝈̃ . (4.9)

Using the C1 Lyapunov Function Candidate (LFC) 𝑉 (𝝈̃) = 1
2 𝝈̃

𝑇 𝝈̃ for which

¤𝑉 = −𝝈̃𝑇 Λ𝝈̃ (4.10)

clearly satisfies the conditions of (Khalil; 2002, Theorem 4.10). Thus, the system is
UGES and UGAS under the conditions given in Lemma 4.1, a result also shown in
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Arrichiello (2006). □

4.2.1 Merging multiple tasks

While (4.5) will make the task variable converge to its desired value for a single task
case, fulfilling (4.2), a method for merging different task output velocities is needed
in the case of multiple tasks. As previously discussed, the NSB framework solves this
by projecting the solution from one task onto the null-space of the higher-priority
task. First, consider the ith task velocity chosen in analogy of (4.5)

𝝂𝑖 = J†
(
¤𝝈 𝑖,𝑑 + Λ𝑖 𝝈̃ 𝑖

)
. (4.11)

Now, let the subscript 𝑖 also denote the priority of the task, i.e. task 1 has the highest
priority followed by task 2 the second highest etc. The velocities of each task can
then be combined by

𝝂𝑑 = 𝝂1 +
(
I − J†1J1

) [
𝝂2 +

(
I − J†2J2

)
𝝂3

]
, (4.12)

where I is the identity matrices of appropriate dimensions. It is clear how components
from lower-priority tasks that would conflict higher-priority tasks are removed
through the projection onto the null-space of the task above. The implication is that
the highest-priority task always will be fulfilled, while the lower-priority tasks are
fulfilled as long they are compatible with the higher-priority task goals.

For illustrative purposes, this can clearly be seen when considering a geometrical
interpretation of (4.12) in an example with two tasks. By defining the null-space
N𝑖 ∈ R𝑝𝑛×𝑝𝑛 of task 𝑖 as

N𝑖 = I − J†
𝑖
J𝑖 , (4.13)

a geometrical interpretation of (4.12) is illustrated in Fig. 4.2. Here, the task output
v2 is projected onto the null-space of v1, removing the components of v2 conflicting
with v1, to create the final output (blue vector).
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v1

v2

N1v2

v𝑑

Figure 4.2: Geometric interpretation of combining velocities through null-space
projections

4.3 Maneuvering Controller interface

In order to use the NSB guidance system with the low-level maneuvering controllers
of Odin and Frigg, the NSB output will need to be converted. As shown in Fig. 4.1
and (4.12), the output from the guidance system is a vector with the desired velocities
for the vessel given in the inertial frame. However, the maneuvering controllers in
Section 2.4 require references for surge and heading. Hence, the velocity vector must
first be decomposed into surge and course references

𝑈NSB = ∥𝝂𝑛
NSB∥2 (4.14a)

𝜒NSB = atan2(𝑣𝑛NSB, 𝑢
𝑛
NSB), (4.14b)

where 𝝂𝑛
NSB = [ 𝑣𝑛NSB 𝑢𝑛NSB ]

𝑇 is the NSB output velocity vector for each vessel,
where the subscript 𝑖 denoting each vessel is omitted for simplicity. Further, this is
converted to the surge and heading references for the maneuvering controllers by

𝑢𝑑 = 𝑈NSB
1 + cos (𝜒NSB − 𝜒)

2
(4.15a)

𝜓𝑑 = 𝜒NSB − arctan
(
𝑣𝑏

𝑢𝑑

)
︸        ︷︷        ︸

𝛽𝑑

, (4.15b)

where the last term of (4.15b) is the desired crab angle of the vessel, i.e. the angle
between the surge and total speed when 𝑢 = 𝑢𝑑 , and (4.15a) was first used in
Arrichiello et al. (2006b).
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4.4 Tasks

When using a behavioral-based approach, the overall mission must be decomposed
into several fundamental tasks. For the overall objectives considered in this thesis
Section 1.3, the three following fundamental tasks are chosen:

1. Obstacle Avoidance - Maintain a safe distance between themselves.

2. Formation - Both vessels should align themselves such that the vector between
them is perpendicular to the path.

3. Barycenter - The barycenter of the vessels should follow a defined trajectory.

4.4.1 Obstacle Avoidance

When operating several vessels close to each other, maintaining the integrity of the
vessel by avoiding other vessels and obstacles is of crucial importance. Thus, this
task is run with the highest priority to maintain a minimum safe distance from each
vessel to any other objects, including the other vessel.

Using the definition from Arrichiello et al. (2006b), the obstacle avoidance task
variable is defined as the Euclidean distance between the vessel 𝑖 and any obstacle or
objects 𝑜 , located at the position p𝑜 ∈ R2, which should be kept above a minimum
distance 𝑑𝑜 ∈ R>0 at all times. As an obstacle may be close to one vessel, but far
from the other, the obstacle avoidance task function is defined individually for each
vessel.

𝝈𝑜 = ∥p𝑖 − p𝑜 ∥ ∈ R (4.16a)

𝝈𝑜,𝑑 = 𝑑𝑜 . (4.16b)

The Jacobian may then be calculated as

J𝑜 =
𝜕

𝜕𝑝𝑖
∥p𝑖 − p𝑜 ∥ =

(
p𝑖 − p𝑜

)𝑇
∥p𝑖 − p𝑜 ∥

= r̂𝑇 . (4.17)

Thus, the Jacobian is equal to the unit vector between the vessel and obstacle position.
By calculating the null-space matrix

N𝑖 = I − r̂r̂𝑇 (4.18)
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it can be seen that when projecting lower-priority tasks into the null-space of this
task, all components not parallel to the tangent of the circle of radius 𝑑𝑜 around p𝑜
will be removed.

For the application considered in this thesis, it is assumed that no external
obstacles will be present in the area of operation. Thus, the only obstacle will be the
other vessel, implying that the only time the task will be activated is when the vessels
are too close to each other to avoid a collision. Thus, when the inter-vessel distance
is above the threshold 𝑑𝑜 , this task is deactivated, meaning it will not conflict the
mission during regular operation.

4.4.2 Formation

The second task aims to keep the vessels in the desired formation relative to the
barycenter. As the vessels will be physically connected for the application considered,
the vessels must keep their formation with the desired inter-vessel distance at all
times. Thus, this task is run with the second-highest priority, meaning it will have
the highest priority during regular operation when the obstacle avoidance task is
deactivated.

For the application considered, where the vessels are towing a cable, it is desirable
that the vessels should maintain a desired cross-track distance 𝑑𝑓 ∈ R>0 from the
barycenter p𝑏 ∈ R2 perpendicular to the path, while maintaining a zero along-track
offset. The formation task function is chosen as

𝝈 𝑓 = ∥p1 − p𝑏 ∥ ∈ R2, (4.19)

where p1 is the position of vessel 1, and p𝑏 is given by (4.26). As the vessels are
required to maintain a desired cross-track distance perpendicular to the path, the
desired task function value is expressed in the path tangential frame

𝝈𝑝

𝑓 ,𝑑
=

[
0 ±𝑑𝑓

]𝑇
(4.20)

𝝈 𝑓 ,𝑑 = 𝑅(𝛾𝑝 (𝜃 ))𝑇𝝈𝑝

𝑓 ,𝑑
(4.21)

where choosing a positive sign for𝑑𝑓 corresponds to that vessel 1 should be positioned
on the starboard side of the formation, while a negative sign corresponds to the port
side. It should be noted how the desired position of vessel 2 is implicitly defined
through (4.19) even as only the desired position of vessel 1 is explicitly defined. As
the barycenter is defined as the midpoint between the vessels, specifying a desired
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position of vessel 1 relative to the barycenter implies that the other vessel must be
positioned at an equally mirrored position through the barycenter.

Similarly, the matrix of proportional gains, Λ𝑝

𝑓
are specified in terms of the

path tangential frame to be able to specify the gains for along- and cross-track
errors independently. Specifying the matrix in the path tangential frame allows
independent tuning of the along- and cross-track errors, which would otherwise
not be possible if the matrix was specified in the inertial frame directly. Hence, the
matrix of proportional gains, expressed in the inertial frame, is equal to

Λ𝑓 = R(𝛾𝑝 (𝜃 ))𝑇 Λ𝑝

𝑓
. (4.22)

Calculating the Jacobian of (4.19) it can easily be verified to be equal to

J𝑓 =


1 − 1

2 0 − 1
2 0

0 1 − 1
2 0 − 1

2

 . (4.23)

Proposition 4.1. Consider the formation task function (4.19) with the configuration-

dependent task Jacobian (4.23). Further, assume that the system velocities perfectly

follow the reference v𝑑,𝑓 . Then, the Jacobian fulfills the conditions of Lemma 4.1 and

the formation task error dynamics is UGES.

Proof. Given the Jacobian Eq. (4.23), and the fact that it has full row rank it is straight
forward to verify that

JJ𝑇 =


1
2 0 − 1

2 0

0 1
2 0 − 1

2




1
2 0

0 1
2

− 1
2 0

0 − 1
2


=
1
2


1 0

0 1

 (4.24)

which clearly is invertible. Thus, the conditions of Lemma 4.1 is fulfilled and the
formation task dynamics is UGES under the assumptions that v = v𝑑,𝑓 , concluding
the proof of Proposition 4.1. □

It should be observed how the task function definition (4.19) differs from the
definitions used in other literature using a rigid formation task definition such as
Arrichiello et al. (2006b); Pereda et al. (2011); Eek (2019), where the desired position
of all vessels relative to the barycenter is specified.

While the definitions used in these works are easy to understand, they are not
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well-posed as the rows are linearly dependent. Thus, the Jacobian has not full row
rank, an observation first made in Antonelli et al. (2008), with the implications that
the conditions for Proposition 4.1 is no longer fulfilled, and neither UGES or UGAS
may be proven for the task error dynamics. Additionally, it would affect the stability
analysis in Section 4.4.4 as the conditions of Proposition 4.3 would no longer be
fulfilled since the barycenter and formation tasks are no longer orthogonal.

By using the reduced task function (4.19), as proposed in Antonelli et al. (2008),
the nice interpretation of Arrichiello et al. (2006b); Pereda et al. (2011); Eek (2019) is
lost, but it is possible to prove UGES for the task individually according to Proposi-
tion 4.1, and UGAS for the formation and barycenter tasks combined according to
Proposition 4.3.

4.4.3 Barycenter

The last task, running at the lowest priority, is the barycenter task, which aims to
move the barycenter of the vessels along the desired path. Consequently, this task
will only take effect when the desired velocities for path following do not conflict
with the velocities needed to maintain the desired formation. This way, it is ensured
that the vessels will prioritize keeping the formation over following the path, which
is essential when the vessels are physically connected.

Traditionally when this task is incorporated into the NSB framework, it is de-
fined using a task function which is then solved using the CLIK control law (4.5)
similarly to the two previous task definitions. However, as covered in Eek (2019),
this approach gave a rather slow convergence towards the desired path compared
to other approaches such as the integral Line-of-Sight (ILOS) method proposed in
Belleter and Pettersen (2014). Furthermore, attempts to decrease the convergence
time by increasing the proportional gain matrix Λ, see (4.5), introduced unwanted
oscillations to the system (Eek; 2019, Section 5.5.6).

To overcome this issue, and to obtain faster convergence towards the desired path,
a novel approach for path following of the barycenter within the NSB framework
utilizing ideas inspired from traditional LOS methods is presented in this section.
To the author’s knowledge, such an attempt to combine the field of LOS and NSB is
unique in the literature of formation control for marine surface vessels.

The LOS method presented here is inspired by the recent results on the curved
path following in the presence of unknown ocean currents by Belleter et al. (2019).
The same underlying ideas of Belleter et al. (2019) has been used in designing a LOS
method for the barycenter.
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p𝑏

𝑃(
𝑥𝑝 (𝜃 ),𝑦𝑝 (𝜃 )

)
𝑇

𝑁

𝑦
𝑝

𝑝𝑏 𝑥
𝑝

𝑝𝑏

𝛾𝑝 (𝜃 )
𝑋

𝑌

𝑥𝑏

𝑦𝑏

Figure 4.3: Definition of the path and path following errors.

However, as the relative velocities of the vessels are not available for feedback in
the application considered here in this thesis, the following method is expressed in
terms of the absolute velocities instead of relative velocities, which are commonly
used when expressing LOS methods with unknown ocean currents Caharija et al.
(2012); Wiig et al. (2018); Belleter et al. (2019). One direct implication of this is that the
ocean current observed used to estimate the inertia frame ocean current components
in Belleter et al. (2019) is superfluous, and it is not present in the following model.

4.4.3.1 Problem definition

The objective of the LOS guidance law presented in this section is to make the
barycenter of the two vessels converge and follow a given smooth path 𝑃 and
maintain a desired total speed 𝑈 =

√
𝑢2 + 𝑣2 tangential to the path in the presence

of unknown constant irrotational ocean currents. The path 𝑃 is parametrized using
a path variable 𝜃 ∈ R with respect to the inertia frame. Moreover, for each point
on the path

(
𝑥𝑝 (𝜃 ), 𝑦𝑝 (𝜃 )

)
∈ 𝑃 a path tangential frame is introduced, see Fig. 4.3.

Using these definitions, the path following errors p𝑝
𝑝𝑏

≜
[
𝑥
𝑝

𝑝𝑏
𝑦
𝑝

𝑝𝑏

]𝑇
expressed in

the path-tangential frame is found to be


𝑥
𝑝

𝑝𝑏

𝑦
𝑝

𝑝𝑏

 =


cos

(
𝛾𝑝 (𝜃 )

)
− sin

(
𝛾𝑝 (𝜃 )

)
sin

(
𝛾𝑝 (𝜃 )

)
cos

(
𝛾𝑝 (𝜃 )

) 
𝑇 
𝑥𝑏 − 𝑥𝑝 (𝜃 )

𝑦𝑏 − 𝑦𝑝 (𝜃 )

 , (4.25)

where𝛾𝑝 (𝜃 ) is the path-tangential angle. Hence, the task errors 𝑥𝑝𝑝𝑏 and𝑦
𝑝

𝑝𝑏
expresses

the position of the barycenter along the path frame tangential and orthogonal axis
respectively. The path following objective for the barycenter is thus fulfilled if the
trajectory of both vessels makes 𝑥𝑝

𝑝𝑏
and 𝑦𝑝

𝑝𝑏
converge to zero.
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4.4.3.2 Barycenter kinematics

The barycenter given the two vessel positions can be expressed as

p𝑏 =
1
2

(
p1 + p2

)
∈ R2, (4.26)

where p𝑖 is the position of the ith vessel. Next, as the position of the barycenter
cannot be controlled directly, only through each of the vessels, it is desirable to
express the barycenter kinematics in terms of the kinematics of each vessel (2.1a).
Taking the time derivative of (4.26) yields

¤p𝑏 =
1
2

(
¤p1 + ¤p2

)
, (4.27)

or in component form

¤𝑥𝑏 =
1
2

[
𝑢1 cos𝜓1 − 𝑣1 sin𝜓1 + 𝑢2 cos𝜓2 − 𝑣2 sin𝜓2

]
(4.28a)

¤𝑦𝑏 =
1
2

[
𝑢1 sin𝜓1 + 𝑣1 cos𝜓1 + 𝑢2 sin𝜓2 + 𝑣2 cos𝜓2

]
. (4.28b)

To see how the kinematics of the barycenter affects the path following error
dynamics, (4.25) is first written in component form

𝑥
𝑝

𝑝𝑏
= (𝑥𝑏 − 𝑥𝑝) cos

(
𝛾𝑝

)
+ (𝑦𝑏 − 𝑦𝑝) sin

(
𝛾𝑝

)
(4.29a)

𝑦
𝑝

𝑝𝑏
= −(𝑥𝑏 − 𝑥𝑝) sin

(
𝛾𝑝

)
+ (𝑦𝑏 − 𝑦𝑝) cos

(
𝛾𝑝

)
. (4.29b)

The path following error dynamics of (4.29) is computed by inserting (4.28) into the
derivative of (4.29), which after some rearrangements and trigonometric identities,
see Section B.1 for details, are found to be

¤𝑥𝑝
𝑝𝑏

=
1
2
𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 cos

(
𝜒2 − 𝛾𝑝

)
− ¤𝜃 (1 − 𝜅 (𝜃 )𝑦𝑝

𝑝𝑏
(4.30a)

¤𝑦𝑝
𝑝𝑏

=
1
2
𝑈1 sin

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 sin

(
𝜒2 − 𝛾𝑝

)
− 𝜅 (𝜃 ) ¤𝜃𝑥𝑝

𝑝𝑏
, (4.30b)

where 𝜅 (𝜃 ) is the curvature of 𝑃 at 𝜃 and 𝜒𝑖 the course of vessel 𝑖 .

4.4.3.3 Path parametrization

As the path is parametrized with the path variable 𝜃 , it is possible to use the update
law of the path variable as an extra degree of freedom when designing the controller
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Lapierre and Soetanto (2007). In Belleter et al. (2019) the update law is chosen to
obtain a desirable behavior of the 𝑥𝑝

𝑝𝑏
dynamics. Inspired by Belleter et al. (2019),

a similar approach will be used here where the update law is chosen such that the
propagation speed of the path tangential frame cancel the undesirable terms of
(4.30a). To obtain the desired 𝑥𝑝

𝑝𝑏
dynamics, the update law is chosen as

¤𝜃 =
1
2
𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 cos

(
𝜒2 − 𝛾𝑝

)
+ 𝑘𝜃 𝑓𝜃

(
𝑥
𝑝

𝑝𝑏
, 𝑦

𝑝

𝑝𝑏

)
, (4.31)

where 𝑘𝜃 ∈ R>0 and 𝑓𝜃 : R2 → R>0 is a control gain and function for convergence of
𝑥
𝑝

𝑝𝑏
. Similarly to Belleter et al. (2019) it will be used to ensure a desirable along-track

error dynamics, and is chosen as

𝑓𝜃

(
𝑥
𝑝

𝑝𝑏
, 𝑦

𝑝

𝑝𝑏

)
=

𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 . (4.32)

Inserting (4.31) into (4.30a) the following error dynamics is obtained

¤𝑥𝑝
𝑝𝑏

= −𝑘𝜃
𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝜃𝜅 (𝜃 )𝑦𝑝
𝑝𝑏
. (4.33)

4.4.3.4 Guidance law

As mentioned earlier, the position of the barycenter can only be controller through
each of the vessels. Thus, the chosen guidance law for path following of the barycen-
ter must be specified in terms of desired heading and surge references, which are the
available control inputs, for each vessel. By calculating the Jacobian of (4.26), (4.27)
can be inverted to find the mapping from the velocity of the barycenter to each of
the vessels

J𝑏 =
1
2


1 0 1 0

0 1 0 1

 . (4.34)

Consequently, by taking the inverse mapping of v𝑏 = J𝑏 [ v1 v2 ]𝑇 , it is easily verified
that the following relationship holds

v1 = v2 = v𝑏 . (4.35)
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Furthermore, given a desired along-path speed𝑈𝑑 and a desired course of the barycen-
ter from the guidance law, the corresponding desired barycenter velocity is given
by

v𝑏,𝑑 =


𝑈𝑑 cos 𝜒𝑏,𝑑

𝑈𝑑 sin 𝜒𝑏,𝑑

 . (4.36)

To make the barycenter converge to the desired path, a LOS guidance law on the
form

𝜒𝑏,𝑑 = 𝛾𝑝 (𝜃 ) − arctan
©­­«

𝑦
𝑝

𝑝𝑏

Δ
(
p𝑝
𝑝𝑏

) ª®®¬ (4.37)

is chosen. The guidance law consists of two terms. The first term is the path
tangential angle, while the second term is the velocity-path relative angle which is
used to steer the barycenter such that its velocity is directed towards a point that is
located a lookahead distance Δ

(
p𝑝
𝑝𝑏

)
ahead of the path tangential frame p𝑝 . Inspired

by Belleter et al. (2019), the lookahead distance has one constant part, and one part
which depends on the path following errors given by

Δ
(
p𝑝
𝑝𝑏

)
=

√
𝜇 +

(
𝑥
𝑝

𝑝𝑏

)2
+

(
𝑦
𝑝

𝑝𝑏

)2
, (4.38)

where 𝜇 ∈ R>0 is a constant. Choosing Δ to depend on 𝑥𝑝
𝑝𝑏

is necessary to be able to
find a bounded value of 𝜇 to prove boundedness of the sway dynamics 𝑣 in Section A.2.
Interestingly, due to the fact that absolute velocities are used, instead of relative, Δ
could be chosen independent of 𝑦𝑝

𝑝𝑏
as shown in Section A.2.1. However, it is still

chosen to let Δ depend on 𝑦𝑝
𝑝𝑏

to ensure a smoother convergence.

The implications of this time-varying lookahead distance are that when the
barycenter is far away from the path, the lookahead distance will be large, ensuring
a smooth convergence. When the barycenter is closer to the path, the lookahead dis-
tance decreases, allowing more rapid convergence. Overall, this leads to a smoother
transient phase of the barycenter task dynamics. An illustration of the proposed
guidance law can be seen in Fig. 4.4.

To generate the desired heading reference for each vessel, crab angle compensa-
tion according to (4.15b) is performed to obtain the following heading guidance law
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𝑃

p𝑝

Δ
(
p𝑝
𝑝𝑏

) pLOS

p𝑏

𝑦
𝑝

𝑝𝑏

𝑥
𝑝

𝑝𝑏
𝑥𝑏 𝑈

LOS vector

𝜓 𝛽
𝜒

𝜒𝑑

𝛾𝑝 (𝜃 )

Figure 4.4: Illustration of the LOS guidance law for path following for the barycenter.
The subscripts for the lower vessel’s states are omitted for simplicity.

for each vessel, omitting the subscript indexes for simplicity

𝜓𝑑 = 𝛾𝑝 (𝜃 ) − arctan
(
𝑣𝑏

𝑢𝑑

)
︸        ︷︷        ︸

𝛽𝑑

− arctan
©­­«

𝑦
𝑝

𝑝𝑏

Δ
(
p𝑝
𝑝𝑏

) ª®®¬ . (4.39)

Substituting (4.39) in (4.30b) the following cross-track error dynamics are ob-
tained, see Section B.2 for details

¤𝑦𝑝
𝑝𝑏

=
1
2
𝑈𝑑,1 sin

(
𝜓𝑑,1 +𝜓1 + 𝛽𝑑,1 − 𝛾𝑝

)
+ 1
2
𝑈𝑑,2 sin

(
𝜓𝑑,2 +𝜓2 + 𝛽𝑑,2 − 𝛾𝑝

)
− 𝜅 (𝜃 ) ¤𝜃𝑥𝑝

𝑝𝑏

+ 1
2
𝑢̃1 sin

(
𝜓1 − 𝛾𝑝

)
+ 1
2
𝑢̃2 sin

(
𝜓2 − 𝛾𝑝

)
(4.40)

= −1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2
− 𝜅 (𝜃 ) ¤𝜃𝑥𝑝

𝑝𝑏
+𝐺1

(
𝜓1, 𝑢̃1,𝜓𝑑,1,𝑈𝑑,1,𝜓2, 𝑢̃2,𝜓𝑑,2,𝑈𝑑,2, 𝑦

𝑝

𝑝𝑏

)
, (4.41)

where𝑈𝑑,𝑖 =
√
𝑢2
𝑑,𝑖

+ 𝑣2
𝑖
being the total desired speed of vessel 𝑖 and𝐺1(·) a perturbing
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term of the error states of the vessels’ autopilots, given by

𝐺1(·) =
1
2
𝐺2

(
𝜓1, 𝑢̃1,𝜓𝑑,1,𝑈𝑑,1, 𝑦

𝑝

𝑝𝑏

)
+ 1
2
𝐺2

(
𝜓2, 𝑢̃2,𝜓𝑑,2,𝑈𝑑,2, 𝑦

𝑝

𝑝𝑏

)
(4.42)

with

𝐺2(𝜓, 𝑢̃,𝜓𝑑 ,𝑈𝑑 , 𝑦
𝑝

𝑝𝑏
) = 𝑈𝑑

(
1 − cos𝜓

)
sin

(
arctan

(
𝑦
𝑝

𝑝𝑏

Δ

))
+ 𝑢̃ sin

(
𝜓 − 𝛾𝑝

)
+𝑈𝑑 cos

(
arctan

(
𝑦
𝑝

𝑝𝑏

Δ

))
sin𝜓 . (4.43)

Note that 𝐺1(·) satisfy

𝐺1

(
0, 0,𝜓𝑑,1,𝑈𝑑,1, 0, 0,𝜓𝑑,2,𝑈𝑑,2, 𝑦

𝑝

𝑝𝑏

)
= 0 (4.44a)

∥𝐺1

(
𝜓1, 𝑢̃1,𝜓𝑑,1,𝑈𝑑,1,𝜓2, 𝑢̃2,𝜓𝑑,2,𝑈𝑑,2, 𝑦

𝑝

𝑝𝑏

)
∥ ≤ 𝜁1

(
𝑈𝑑,1,𝑈𝑑,2

)
∥ [𝜓1 𝑢̃1 𝜓2 𝑢̃2 ]𝑇 ∥

(4.44b)

where 𝜁1
(
𝑈𝑑,1,𝑈𝑑,2

)
> 0. This shows that the perturbing term 𝐺1(·) is zero when

the perturbing states are zero, and has at most linear growth in the perturbing states.

Proposition 4.2. Consider a 𝜃 -parametrized path denoted by 𝑃 (𝜃 ) =
(
𝑥𝑝 (𝜃 ), 𝑦𝑝 (𝜃 )

)
,

with the update law (4.31) and a system given by two vessels with the barycenter

kinematics (4.28). Furthermore, assume that each vessel follows the references of the

guidance law (4.39) perfectly, i.e. 𝜓 = 𝑢̃ = 0. Then, the origin of (4.33), (4.41) is a
uniformly semi-global exponential stable (USGES) equilibrium point.

Proof. This proof makes use of recent results for Lyapunov sufficient conditions for
USGES systems in Pettersen (2017) to prove USGES for Proposition 4.2.

Using the fact that𝜓 = 𝑢̃ = 0 and (4.44a), the cross-track error dynamics (4.41)
simplifies to

¤𝑦𝑝
𝑝𝑏

= −1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏
. (4.45)

Next, consider the C1 Lyapunov Function Candidate 𝑉p𝑝
𝑝𝑏

= 1
2

(
𝑥
𝑝

𝑝𝑏

)2
+ 1

2

(
𝑦
𝑝

𝑝𝑏

)2
.

Taking the derivatives along the trajectories of (4.33) and (4.45)

¤𝑉p𝑝
𝑝𝑏

= 𝑥
𝑝

𝑝𝑏
¤𝑥𝑝
𝑝𝑏

+ 𝑦𝑝
𝑝𝑏

¤𝑦𝑝
𝑝𝑏

(4.46)
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= 𝑥
𝑝

𝑝𝑏

©­­­­«
−𝑘𝜃

𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝜃𝜅 (𝜃 )𝑦𝑝
𝑝𝑏

ª®®®®¬
+ 𝑦𝑝

𝑝𝑏

©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏

ª®®®®¬
(4.47)

= −𝑘𝜃

(
𝑥
𝑝

𝑝𝑏

)2√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 − 1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) (
𝑦
𝑝

𝑝𝑏

)2√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 (4.48)

which is negative definite, meaning UGAS can be concluded. Furthermore, to inves-
tigate USGES, define the error variables

e =


𝑒1

𝑒2

 =


𝑥
𝑝

𝑝𝑏

𝑦
𝑝

𝑝𝑏

 . (4.49)

By substituting the lookahead distance (4.38) and the error variables (4.49), the LFC
derivative (4.48) can be written as

¤𝑉 = −𝑘𝜃
𝑒21√
1 + 𝑒21

− 1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑒22√
𝜇 + 𝑒21 + 2𝑒22

(4.50)

= −e𝑇 Qe (4.51)

for which

Q =


𝑘𝜃√
1+𝑒21

0

0 1
2

𝑈𝑑,1+𝑈𝑑,2√
𝜇+𝑒21+2𝑒22

 > 0 (4.52)

is a positive definite matrix as 𝑘𝜃 ,𝑈𝑑,1,𝑈𝑑,2 > 0. Hence, the following bound holds
∀e ∈ B𝑟

¤𝑉 ≤ −𝑞min∥e∥2, (4.53)

with

𝑞min ≜ 𝜆min
©­­«


𝑘𝜃√
1+𝑟 2

0

0 1
2
𝑈𝑑,1+𝑈𝑑,2√

𝜇+3𝑟 2


ª®®¬ (4.54)

for any ball B𝑟 ≜ {max{|𝑒1 |, |𝑒2 |} < 𝑟 }, 𝑟 > 0, where 𝜆min(A), is defined as the



60 CHAPTER 4. FORMATION CONTROL

minimum eigenvalue of A. Thus, the conditions for (Pettersen; 2017, Theorem 5) is
fulfilled with 𝑘1 = 𝑘2 = 1

2 , 𝑎 = 2 and 𝑘3 = 𝑞min, and USGES can be concluded for the
origin (4.33), (4.41) under the conditions given in Proposition 4.2. □

It can be observed that it is not possible to conclude GES for the origin (4.33),
(4.41) using (Khalil; 2002, Theorem 4.10) as it is not possible to find a positive constant
𝑘3 that is independent of the size of the estimated region of attraction as 𝑘3 converges
to zero when the distance to the path increases Pettersen (2017).

In fact, USGES is the best possible stability guaranties possible for LOS methods
due to the saturation in (4.39), see Fossen and Pettersen (2014).

4.4.4 Stability of merged formation and barycenter tasks

While the previous sections have focused on the stability properties of each task
individually, it is of interest to investigate what stability guarantees may be concluded
when the solutions for the formation and barycenter tasks are combined in the
NSB framework. As discussed in Section 4.2.1, components from lower-priority
tasks that would conflict higher-priority tasks are removed through the null-space
projection (4.12). Thus, it cannot be guaranteed that the lower-priority task errors
will converge to zero from the stability analysis of each task separately. For the tasks
previously defined, only the formation and barycenter tasks will be active during
normal operation. Thus, the following analysis will focus on the stability properties
when these two tasks are active.

A rigorously analysis of the stability properties when combining task solutions
using the projection method (4.12) is performed in Arrichiello (2006); Antonelli
et al. (2008) where it was proven that the resulting system of three tasks would be
UGAS if an orthogonality condition existed between two successive tasks while an
independency condition existed between the remaining tasks. In Antonelli et al.
(2008), two tasks are defined as orthogonal if

J𝑥 J†𝑦 = O𝑚𝑥 ×𝑚𝑦
, (4.55)

whereO𝑚𝑥×𝑚𝑦
is the

(
𝑚𝑥 ×𝑚𝑦

)
null matrix, and two tasks are defined as independent

if
𝜌

(
J𝑇𝑥

)
+ 𝜌

(
J𝑇𝑦

)
= 𝜌

(
[ J𝑇𝑥 J𝑇𝑦 ]

)
, (4.56)

where 𝜌 (·) denotes the rank of the matrix.
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Proposition 4.3. Consider the formation and barycenter tasks defined according to Sec-

tion 4.4.2 and Section 4.4.3 respectively, combined with the null-space-projection (4.12).
Furthermore, assume that the system velocities perfectly follow the reference 𝝂𝑑 . Then,

this two-task system is UGAS, and both tasks’ errors converge to zero asymptotically.

Proof. For a two-task system to be asymptotically stable, the two tasks must be
orthogonal according to Antonelli et al. (2008). Using the two task Jacobians (4.23)
and (4.34), it is straight forward to verify that they satisfy the orthonogality condition
as

J𝑓 J†
𝑏
= O2× 2. (4.57)

Consequently, both the task’s errors are asymptotically stable, and the system is
UGAS, a result also shown in Antonelli et al. (2008). □

4.5 Closed-loop analysis

In this section, the closed-loop stability of the guidance laws presented in the last
section is analyzed. While Proposition 4.1 and Proposition 4.2 proved stability for
both the formation and barycenter tasks respectively, assuming perfect tracking of
the desired surge and heading references, they did not account for the dynamics of
each vessel. It is well known that inadequate tracking by the inner-loop controllers
may destabilize the overall system. Consequently, further analysis is required to
prove overall closed-loop stability when also incorporating the vessel dynamics,
meaning the desired references are not necessarily tracked perfectly at all times. Due
to the vessel model’s parameter uncertainties and the complexity of the waterjet
model in Chapter 2, the selected autopilots in Section 2.4 operate directly on the
desired throttle and steering demands respectively. An implication of this is that
more advanced techniques such as feedback-linearization are not possible, making it
challenging to prove stability with these maneuvering controllers.

Instead, the following stability analysis will be performed under the ideal case
where all model parameters are assumed to be perfectly known. Hence, techniques
such as feedback-linearization may be used in the surge and heading autopilots to
cancel out undesirable nonlinear model dynamics, which are crucial for proving
stability. More specifically, in the following analysis, it will be assumed that the vessel
dynamics, and autopilots, may be described by the vessel model and autopilots in
Moe et al. (2016). The assumptions for when this holds are given in Moe et al. (2016);
Børhaug et al. (2008), and repeated here: Assumption 2.1 and Assumptions 4.1–4.4
for convenience.
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Assumption 4.1 ((Moe et al.; 2016, Assumption 1)). Themotion of the USV is described

in 3-DOF, that is surge, sway, and yaw.

Assumption 4.2 ((Moe et al.; 2016, Assumption 2)). The USV is port-starboard sym-

metric.

Assumption 4.3 ((Moe et al.; 2016, Assumption 3)). The body-fixed coordinate system
is located at a distance (𝑥∗𝑔, 0) from the USV’s CG along the center-line of the vessel

such that the yaw control does not affect the sway motion. Such a transformation does

always exist for port-starboard symmetric vessels Fredriksen and Pettersen (2006).

Assumption 4.4 ((Børhaug et al.; 2008, Assumption A.4)). The function 𝑌 (𝑢,𝑢𝑐)
satisfies

𝑌 (𝑢,𝑢𝑐) ≤ −𝑌min < 0, ∀𝑢 ∈ [0,𝑈𝑑 ] . (4.58)

Given these assumptions, the full model of each vessel, in component form, from
Moe et al. (2016) may be written as

¤𝑥 = cos(𝜓 )𝑢 − sin(𝜓 )𝑣 (4.59a)

¤𝑦 = sin(𝜓 )𝑢 + cos(𝜓 )𝑣 (4.59b)
¤𝜓 = 𝑟 (4.59c)

¤𝑢 = −
𝑑11 + 𝑑𝑞11𝑢
𝑚11

𝑢 + (𝑚22𝑣 +𝑚23𝑟 )
𝑚11

𝑟 + 𝝓𝑇𝑢 (𝜓, 𝑟 )𝜽𝑢 + 𝜏𝑢 (4.59d)

¤𝑣 = 𝑋 (𝑢,𝑢𝑐)𝑟 + 𝑌 (𝑢,𝑢𝑐)𝑣𝑟 (4.59e)

¤𝑟 = 𝐹𝑟 (𝑢, 𝑣, 𝑟 ) + 𝝓𝑇𝑟 (𝑢, 𝑣, 𝑟,𝜓 )𝜽 𝑟 + 𝜏𝑟 (4.59f)

where 𝜽𝑢 = 𝜽 𝑟 = [𝑉𝑥 𝑉𝑦 𝑉 2
𝑥 𝑉 2

𝑦 𝑉𝑥𝑉𝑦 ]𝑇 and the expressions for 𝝓𝑇𝑢 (𝜓, 𝑟 ),𝑋 (𝑢,𝑢𝑐),
𝑌 (𝑢,𝑢𝑐), 𝐹𝑟 (𝑢, 𝑣, 𝑟 ) and 𝝓𝑇𝑟 (𝑢, 𝑣, 𝑟,𝜓 ) are given in Appendix C. It should be noted that
in Moe et al. (2016), the expressions for the sway dynamics are expressed as𝑋 (𝑢𝑟 , 𝑢𝑐)
and 𝑌 (𝑢𝑟 ), i.e. with relative velocities. However, to simplify the stability analyses
later, the expressions have been reformulated in terms of absolute velocities here.

Next, the autopilots for heading and surge from Moe et al. (2016) are presented.
Defining the error states

𝑢̃ = 𝑢 − 𝑢𝑑 (4.60a)

𝜓 = 𝜓 −𝜓𝑑 (4.60b)
¤̃
𝜓 = ¤𝜓 − ¤𝜓𝑑 (4.60c)

𝝃 = [ 𝑢̃ 𝜓
¤̃
𝜓 ]𝑇 (4.60d)
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the following adaptive feedback linearizing PD-controller with sliding-mode is used
to ensure tracking of the desired heading

𝜏𝑟 = −𝐹𝑟 (𝑢, 𝑣, 𝑟 ) − 𝝓𝑇𝑟 (𝑢, 𝑣, 𝑟,𝜓 )𝜽̂ 𝑟 + ¥𝜓𝑑

− (𝑘𝜓 + 𝜆𝑘𝑟 )𝜓 − (𝑘𝑟 + 𝜆) ¤̃𝜓 − 𝑘𝑑 sign
( ¤̃
𝜓 + 𝜆𝜓

)
(4.61a)

¤̂𝜽 𝑟 = 𝛾𝑟𝝓
𝑇
𝑟 (𝑢, 𝑣, 𝑟,𝜓 )

( ¤̃
𝜓 + 𝜆𝜓

)
, (4.61b)

where the gains 𝑘𝜓 , 𝑘𝑟 , 𝜆,𝛾𝑟 are constant and positive and the function sign(𝑥)
returns 1, 0 and −1 when 𝑥 is positive, zero and negative respectively. Further, a
combined feedback linearizing and sliding-mode P-controller is used to track the
desired surge speed

𝜏𝑢 = − 1
𝑚11

(𝑚22𝑣 +𝑚23𝑟 ) 𝑟 +
𝑑11

𝑚11
𝑢𝑑 − 𝝓𝑇𝑢 (𝜓, 𝑟 )𝜽̂𝑢

+
𝑑
𝑞

11
𝑚11

𝑢2 + ¤𝑢𝑑 − 𝑘𝑢𝑢̃ − 𝑘𝑒 sign(𝑢̃) (4.62a)

¤̂𝜽𝑢 = 𝛾𝑢𝝓
𝑇
𝑢 (𝜓, 𝑟 )𝑢̃ . (4.62b)

Proposition 4.4 ((Moe et al.; 2016, Proposition 1)). Given an underactuated surface

vessel described by the vessel model (4.59). Under Assumption 2.1 and Assumptions 4.1–

4.4, the adaptive controllers (4.61) and (4.62) ensures that 𝝃 = 0 is an UGES equilibrium
point and that the references provided by the guidance system is exponentially tracked.

Proof. The proof can be found in Moe et al. (2016). □

During the following stability analyses, the closed-loop system will be seen as a
cascade, where the marine vessel and the autopilots, tracking the guidance references,
are the inner-loop, while the guidance system, each of the NSB tasks, constitute the
outer-loop, according to Fig. 4.1. Consequently, the error states (4.60) may be seen
as perturbations to the nominal dynamics of the guidance method, i.e. the error
dynamics considered in Proposition 4.1 and Proposition 4.2, where the autopilots
perfectly follow the guidance references. Cascaded theory may therefore be used to
prove the overall stability of the cascaded system.

4.5.1 Formation task

When considering stability analysis of the CLIK control law within the NSB frame-
work, a common strategy is to ignore the system dynamics of each vehicle, and
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assume that the vehicles follow the NSB references perfectly, see e.g., Antonelli et al.
(2008); Arrichiello (2006). In this section, the stability analysis will be extended by
investigating the stability of the overall closed-loop system by incorporating the
vessel dynamics (4.59) and adaptive controllers (4.61) and (4.62) into the analysis.

The expression for the closed-loop system is obtained by inserting the CLIK
control law (4.5) into the differential relationship (4.3)

¤̃𝝈 𝑓 = −Λ𝝈̃ 𝑓 − J𝑓 𝝂̃ . (4.63)

Here, the first term denotes the nominal dynamics of the task error, while the last
term is an perturbing term caused from imperfect tracking of the NSB references
due to system dynamics. To express the perturbing term as a function of the error
states of the autopilots (4.60), the velocity vector is decomposed into surge, sway
and heading components. After some rearrangements and trigonometric relations,
the following closed-loop system is obtained, see Section B.3 for details

¤̃𝝈 𝑓 = −Λ𝝈̃ 𝑓 − J𝑓



𝐺3

(
𝜓1, 𝑢̃1,𝜓𝑑,1,𝑈𝑑,1, 𝛽𝑑,1

)
𝐺4

(
𝜓1, 𝑢̃1,𝜓𝑑,1,𝑈𝑑,1, 𝛽𝑑,1

)
𝐺3

(
𝜓2, 𝑢̃2,𝜓𝑑,2,𝑈𝑑,2, 𝛽𝑑,2

)
𝐺4

(
𝜓2, 𝑢̃2,𝜓𝑑,2,𝑈𝑑,2, 𝛽𝑑,2

)


(4.64)

with 𝐺3,4(·) a perturbing term of the error states of the vessel’s autopilots, given by

𝐺3

(
𝜓, 𝑢̃,𝜓𝑑 ,𝑈𝑑 , 𝛽𝑑

)
= 𝑢̃ cos𝜓𝑑 cos𝜓 − 𝑢̃ sin𝜓𝑑 sin𝜓

+𝑈𝑑 cos (𝜓𝑑 + 𝛽𝑑 )
(
1 − cos𝜓

)
−𝑈𝑑 sin (𝜓𝑑 + 𝛽𝑑 ) sin𝜓 (4.65)

𝐺4

(
𝜓, 𝑢̃,𝜓𝑑 ,𝑈𝑑 , 𝛽𝑑

)
= 𝑢̃ sin𝜓𝑑 cos𝜓 + 𝑢̃ cos𝜓𝑑 sin𝜓

−𝑈𝑑 sin (𝜓𝑑 + 𝛽𝑑 )
(
1 − cos𝜓

)
−𝑈𝑑 cos (𝜓𝑑 + 𝛽𝑑 ) sin𝜓 . (4.66)

Note that both 𝐺3,4(·) satisfy

𝐺3,4 (0, 0,𝜓𝑑 ,𝑈𝑑 , 𝛽𝑑 ) = 0 (4.67a)

∥𝐺3,4

(
𝜓, 𝑢̃,𝜓𝑑 ,𝑈𝑑 , 𝛽𝑑

)
∥ ≤ 𝜁3,4 (𝑈𝑑 ) ∥ [𝜓 𝑢̃ ]𝑇 ∥ (4.67b)
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where 𝜁3,4 (𝑈𝑑 ) > 0. This shows that the perturbing term 𝐺3,4(·) is zero when the
perturbing states are zero, and has at most linear growth in the perturbing states.

Next, define the following sets of variables

X̃1 ≜ [ 𝜎̃𝑓 ,𝑥 𝜎̃𝑓 ,𝑦 ]𝑇 (4.68a)

X̃2,𝑖 ≜ [ 𝑢̃𝑖 ¤̃
𝜓𝑖 𝑠𝑖 ]𝑇 (4.68b)

X̃2 ≜ [ X̃
𝑇

2,1 X̃
𝑇

2,2 ]𝑇 , (4.68c)

where X̃2,𝑖 , contains the autopilot error states of each vessel, that converge indepen-
dent of X̃1, and 𝑠𝑖 is defined in Moe et al. (2016) as 𝑠𝑖 =

¤̃
𝜓𝑖 + 𝜆𝑖𝜓𝑖 . The closed-loop

error dynamics of the total system may then be written as

¤̃𝑿1 = −Λ𝝈̃ 𝑓 − J𝑓



𝐺3

(
𝜓1, 𝑢̃1,𝜓𝑑,1,𝑈𝑑,1, 𝛽𝑑,1

)
𝐺4

(
𝜓1, 𝑢̃1,𝜓𝑑,1,𝑈𝑑,1, 𝛽𝑑,1

)
𝐺3

(
𝜓2, 𝑢̃2,𝜓𝑑,2,𝑈𝑑,2, 𝛽𝑑,2

)
𝐺4

(
𝜓2, 𝑢̃2,𝜓𝑑,2,𝑈𝑑,2, 𝛽𝑑,2

)


(4.69a)

¤̃𝑿2,𝑖 =


−

(
𝑑11
𝑚11

+ 𝑘𝑢,𝑖
)
𝑢̃𝑖 − 𝝓𝑇𝑢 (·)𝜽̃𝑢,𝑖 − 𝑘𝑒,𝑖 sign(𝑢̃𝑖)

−𝜆𝑖𝜓𝑖 + 𝑠

−𝑘𝜓,𝑖𝜓𝑖 − 𝑘𝑟,𝑖𝑠𝑖 − 𝝓𝑇𝑟 (·)𝜽̃ 𝑟,𝑖 − 𝑘𝑑,𝑖 sign(𝑠𝑖)


(4.69b)

¤̃𝜽 𝑟,𝑖 = 𝛾𝑟𝝓
𝑇
𝑟 (𝑢, 𝑣, 𝑟,𝜓 )𝑠𝑖 (4.69c)

¤̃𝜽𝑢,𝑖 = 𝛾𝑢𝝓𝑇𝑢 (𝜓, 𝑟 )𝑢̃𝑖 (4.69d)

¤𝑣𝑖 = 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑑𝑖 + 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑖
+ 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣 − 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣𝑐 , (4.69e)

where Eqs. (4.69a)–(4.69b) should converge to zero, while Eqs. (4.69c)–(4.69e) should
remain bounded.

Theorem 4.1. Consider the formation task function (4.19) with the configuration-

dependent task Jacobian (4.23) and a system given by two vessels, each described by

(4.59). Furthermore, the adaptive controllers (4.61) and (4.62) are used as autopilots for
each of the vessels, with the CLIK control law (4.5). Then, under the assumption that the

sway-dynamics are bounded, the origin of the closed-loop system Eqs. (4.69a)–(4.69b) is
an UGES equilibrium point while Eqs. (4.69c)–(4.69e) remains bounded.

Proof. To prove UGES of the equilibrium point of the task function error dynamics,
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results within cascaded systems from (Loría and Panteley; 2005, Theorem 2.1 and
Proposition 2.3) will be used.

First, consider the nominal dynamics given by the first matrix of (4.69a). Selecting
the C1 lyapunov function candidate

𝑉

(
X̃1

)
=
1
2
𝝈̃𝑇
𝑓 𝝈̃ 𝑓 =

1
2
𝜎̃2
𝑓 ,𝑥

+ 1
2
𝜎̃2
𝑓 ,𝑦
, (4.70)

it is positive definite on R and the nominal dynamics is proved UGES in Propo-
sition 4.1, implying both UGAS and ULES. Hence, (Loría and Panteley; 2005, As-
sumption 1a) is trivially satisfied for the nominal system. The existence of positive
constants 𝑐1, 𝑐2, 𝜂 > 0 satisfying (Loría and Panteley; 2005, Assumption 3) is clearly
satisfied with (4.70) 



 𝜕𝑉

𝜕X̃1





 

X̃1


 = 

[ 𝜎̃𝑓 ,𝑥 𝜎̃𝑓 ,𝑦 ]𝑇



2
= 𝜎̃2

𝑓 ,𝑥
+ 𝜎̃2

𝑓 ,𝑦

= 2𝑉
(
X̃1

)
∀


X̃1



 (4.71)



 𝜕𝑉
𝜕X̃1





 = 

X̃1


 ≤ 𝜂 ∀



X̃1


 ≤ 𝜂, (4.72)

i.e. with 𝑐1 = 2 and 𝑐2 = 𝜂 for any choice 𝜂 > 0. As the perturbing system (4.69b) is
UGES by Proposition 4.4 it is also UGAS.

Furthermore, the interconnection term, the second vector of (4.69a), satisfies
the linear growth criteria from (Loría and Panteley; 2005, Assumption 4). More
specifically, it does not grow with X̃1 as it can be bounded by linear functions of X̃2

from (4.67b).

Finally, the conditions of (Loría and Panteley; 2005, Assumption 5) must be inves-
tigated. Following the arguments from (Pettersen; 2017, Remark 11), the assumption
is satisfied by the fact that (4.69b) is UGES, which implies both UGAS and ULES. In
(Pettersen; 2017, Remark 11) it is shown that the properties UGAS + ULES fulfills
(Loría and Panteley; 2005, Assumption 5). All conditions of (Loría and Panteley;
2005, Theorem 2.1) are therefore satisfied, and the origin of the closed-loop system(
X̃1, X̃2

)
= (0, 0) can be concluded UGAS. Additionally, since both subsystems; the

perturbing system (4.69b) and the nominal system (4.69a), are UGES, the cascade
Eqs. (4.69a)–(4.69b) is UGES by (Loría and Panteley; 2005, Proposition 2.3).

Thus, all that remains is to prove boundedness of Eqs. (4.69c)–(4.69d). Bounded-
ness of Eqs. (4.69c)–(4.69d) is proven in the proof of Proposition 4.4 inMoe et al. (2016)
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where it is established that the equilibrium points
(
𝜓, 𝑠,

¤̃𝜽 𝑟

)
= 0 and

(
𝑢̃,

¤̃𝜽𝑢
)
= 0 are

UGS, which implies that both 𝜽̃ 𝑟 and 𝜽̃ 𝑟 are bounded, which concludes the proof of
Theorem 4.2. □

4.5.2 Barycenter task

Proving the closed-loop stability for the barycenter task will be done by following in
the lines of Belleter et al. (2019). First, forward completeness of the system states
is established. Then, the boundedness of the sway dynamics is proven. Finally, the
cascaded system’s stability is established to be USGES, making use of the recent
results for Lyapunov sufficient conditions in Pettersen (2017).

In order to prove the closed-loop system’s stability and that the path following
objective is achieved, it must be shown that the along-track and cross-track error
dynamics converge to zero. Furthermore, the error states of the autopilot of each
vessel respectively must also converge to zero simultaneously. Since the vessels are
underactuated in the sway dynamics, convergence to zero of the sway dynamics can
not be proven in the general case with curved paths. Instead, it must be shown that
the sway dynamics are globally bounded to guarantee that the zero dynamics are
well behaved and do not diverge.

First, the expression for the desired yaw rate dynamics is obtained by taking the
derivative of (4.39)

𝑟𝑑 = ¤𝜓𝑑 = 𝜅 (𝜃 ) ¤𝜃 − ¤𝑣𝑢𝑑 − ¤𝑢𝑑𝑣
𝑢2
𝑑
+ 𝑣2

− 1

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 [
Δ ¤𝑦𝑝

𝑝𝑏
− 𝑦𝑝

𝑝𝑏

(
𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

¤𝑥𝑝
𝑝𝑏

+ 𝜕Δ

𝜕𝑦
𝑝

𝑝𝑏

¤𝑦𝑝
𝑝𝑏

)]
(4.73)

= 𝜅 (𝜃 ) ¤𝜃 − 𝑢𝑑

𝑢2
𝑑
+ 𝑣2

(𝑋 (𝑢,𝑢𝑐)𝑟 + 𝑌 (𝑢,𝑢𝑐)𝑣 − 𝑌 (𝑢,𝑢𝑐)𝑣𝑐) +
¤𝑢𝑑𝑣

𝑢2
𝑑
+ 𝑣2

− 1

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2

(
Δ − 𝑦𝑝

𝑝𝑏

𝜕Δ

𝜕𝑦
𝑝

𝑝𝑏

) 
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏

+𝐺1(·)


− 𝑦𝑝

𝑝𝑏

𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏


−𝑘𝜃

𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝜃𝜅 (𝜃 )𝑦𝑝
𝑝𝑏



. (4.74)
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Looking at (4.74) it is clear how the expression of ¤𝜓𝑑 contains terms depending on ¤𝑣
which depends on the unknown ocean current 𝑢𝑐 and the relative surge and sway
speeds 𝑢𝑟 and 𝑣𝑟 respectively. Interestingly, contrary to Belleter et al. (2019) where
¤𝜓𝑑 were also dependent on unknown variables and could not be realised, it is not
an issue in (4.74). In Belleter et al. (2019), the terms depending on the unknown
ocean currents appeared through the along- and cross-track error dynamics. As these
states could not be measured directly, they had to be calculated, requiring knowledge
about the unknown ocean current. However, in (4.74), the terms depending on
the unknown variables appear through the sway dynamic ¤𝑣 of the vessel, which
can be measured using e.g. an Inertial Measurement Unit (IMU), and is therefore
available for feedback. This, apparently small difference, allows (4.74) to be realised
by obtaining ¤𝑣 through sensor measurement instead of calculated using (4.59e), while
¤𝜓𝑑 in (Belleter et al.; 2019, Eq. (35)) could not.

Next, the following sets of variables are defined

X̃1 ≜ [𝑦𝑝
𝑝𝑏

𝑥
𝑝

𝑝𝑏
]𝑇 (4.75a)

X̃2,𝑖 ≜ [ 𝑢̃𝑖 ¤̃
𝜓𝑖 𝑠𝑖 ]𝑇 (4.75b)

X̃2 ≜ [ X̃
𝑇

2,1 X̃
𝑇

2,2 ]𝑇 , (4.75c)

where X̃2,𝑖 , containing the autopilot error states of each vessel, that converge
independent of X̃1. Thus, the closed-loop error dynamics of the total system may be
written as

¤̃𝑿1 =


− 1

2
(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2+

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝𝑝𝑏
−𝑘𝜃

𝑥
𝑝

𝑝𝑏√
1+

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝜃𝜅 (𝜃 )𝑦𝑝
𝑝𝑏


+


𝐺1(·)

0

 (4.76a)

¤̃𝑿2,𝑖 =


−

(
𝑑11
𝑚11

+ 𝑘𝑢,𝑖
)
𝑢̃𝑖 − 𝝓𝑇𝑢 (·)𝜽̃𝑢,𝑖 − 𝑘𝑒,𝑖 sign(𝑢̃𝑖)

−𝜆𝑖𝜓𝑖 + 𝑠

−𝑘𝜓,𝑖𝜓𝑖 − 𝑘𝑟,𝑖𝑠𝑖 − 𝝓𝑇𝑟 (·)𝜽̃ 𝑟,𝑖 − 𝑘𝑑,𝑖 sign(𝑠𝑖)


(4.76b)

¤̃𝜽 𝑟,𝑖 = 𝛾𝑟𝝓
𝑇
𝑟 (𝑢, 𝑣, 𝑟,𝜓 )𝑠𝑖 (4.76c)

¤̃𝜽𝑢,𝑖 = 𝛾𝑢𝝓𝑇𝑢 (𝜓, 𝑟 )𝑢̃𝑖 (4.76d)

¤𝑣𝑖 = 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑑𝑖 + 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑖
+ 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣𝑖 − 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣𝑐 , (4.76e)
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where Eqs. (4.76a)–(4.76b) should converge to zero, while Eqs. (4.76c)–(4.76e) should
remain bounded.

Lemma 4.2 (Forward Completeness). The trajectories of the closed-loop system (4.76)
are forward complete

Proof. The proof of this lemma is given in Section A.1. □

Lemma 4.3 (Boundedness near (X̃1, X̃2) = 0). The system (4.76e) is bounded near the
manifold (X̃1, X̃2) = 0 if and only if the curvature of 𝑃 satisfies the following condition:

𝜅max ≜ max
𝜃 ∈𝑃

|𝜅 (𝜃 ) | < 𝑌min

𝑋max
, 𝑋max ≜ |𝑋 (𝑢,𝑢𝑐) |∞. (4.77)

Proof. The proof of this lemma is given in Section A.2. □

Lemma 4.4 (Boundedness near X̃2 = 0). The system (4.76e) is bounded near the

manifold X̃2 = 0, independently of X̃1, if the conditions of Lemma 4.3 is satisfied, and

the constant term of the lookahead distance is chosen accordingly to

𝜇 >
4𝑋max

𝑌min − 𝑋max𝜅max
, (4.78)

where 𝑋max ≜ |𝑋 (𝑢,𝑢𝑐) |∞ and 𝜅max ≜ max𝜃 ∈𝑃 |𝜅 (𝜃 ) |.

Proof. The proof of this lemma is given in Section A.3. □

Theorem 4.2. Consider a 𝜃 -parametrized path denoted by 𝑃 (𝜃 ) =
(
𝑥𝑝 (𝜃 ), 𝑦𝑝 (𝜃 )

)
, with

the update law (4.31) and a system given by two vessels, each described by (4.59), giving
the barycenter kinematics (4.28). Furthermore, the adaptive controllers (4.61) and (4.62)
are used as autopilots for each of the vessels, with the guidance law (4.39). Then, under
the conditions of Lemmas 4.2–4.4, the barycenter follows the path 𝑃 with Eqs. (4.76c)–
(4.76e) bounded, and the origin of the closed-loop system Eqs. (4.76a)–(4.76b) is an
USGES equilibrium point.

Proof. First, consider the unactuated sway-dynamics by following the argument
from (Belleter et al.; 2019, Proof of Theorem 1). From the fact that the origin of
(4.76b) is UGES, that the closed-loop system (4.76) is forward complete, and that the
sway-dynamics (4.76e) is bounded near the manifold X̃2 = 0, the existence of a finite
time 𝑇 > 𝑡0 such that the solutions of (4.76b) will be sufficiently close to X̃2 = 0 to
guarantee boundedness of 𝑣𝑖 can be concluded.
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Next, consider the nominal dynamics given by the first matrix of (4.76a). Selecting
the C1 lyapunov function candidate

𝑉

(
X̃1

)
=
1
2

(
𝑥
𝑝

𝑝𝑏

)2
+ 1
2

(
𝑦
𝑝

𝑝𝑏

)2
, (4.79)

it is positive definite on R, and the nominal dynamics is proven UGAS and to satisfy
the conditions of (Pettersen; 2017, Theorem 5) in Proposition 4.2. The existence of
positive constants 𝑐1, 𝑐2, 𝜂 > 0 satisfying (Pettersen; 2017, Assumption 1) is clearly
satisfied with (4.79) 



 𝜕𝑉

𝜕X̃1





 

X̃1


 = 


[𝑦𝑝

𝑝𝑏
𝑥
𝑝

𝑝𝑏
]𝑇




2
=

(
𝑥
𝑝

𝑝𝑏

)2
+

(
𝑦
𝑝

𝑝𝑏

)2
= 2𝑉

(
X̃1

)
∀


X̃1



 (4.80)



 𝜕𝑉
𝜕X̃1





 = 

X̃1


 ≤ 𝜂 ∀



X̃1


 ≤ 𝜂, (4.81)

i.e. with 𝑐1 = 2 and 𝑐2 = 𝜂 for any choice 𝜂 > 0. Next, the perturbing system
(4.76b) is UGES by Proposition 4.4 which implies both UGAS and USGES. Hence,
the perturbing system do also satisfy the conditions of (Pettersen; 2017, Theorem 5).
Finally, the conditions of (Pettersen; 2017, Assumption 2) must be investigated, i.e.
the assumption that the interconnection terms, the second vector of (4.76a), has at
most linear growth in X̃1. From (4.44b) it can be seen that the interconnection term
does not grow with the states X̃1 as it can be bounded by linear functions of X̃2. All
conditions of (Pettersen; 2017, Proposition 9) are therefore satisfied, and the origin
of the closed-loop system

(
X̃1, X̃2

)
= (0, 0) is USGES and UGAS.

Thus, all that remains is to prove boundedness of Eqs. (4.76c)–(4.76d). Bounded-
ness of Eqs. (4.76c)–(4.76d) is established in the proof of Proposition 4.4 in Moe et al.
(2016) where it is shown that the equilibrium points

(
𝜓, 𝑠,

¤̃𝜽 𝑟

)
= 0 and

(
𝑢̃,

¤̃𝜽𝑢
)
= 0 are

UGS, which implies that both 𝜽̃ 𝑟 and 𝜽̃ 𝑟 are bounded. Hence the proof of Theorem 4.2
is concluded. □
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4.6 Robustness against non-vanishing
perturbations

In this section, robustness properties against non-vanishing perturbations of the
formation and barycenter task definitions presented in Section 4.4 are investigated.
Every realistic system will be perturbed by unknown disturbances caused by e.g.,
modeling uncertainties and errors, and other disturbances such as environmental
disturbances.

A system that works as intended in simulations may not work as indented when
tested in a real-world scenario as the simulation model has failed to capture the whole,
real, dynamics of the system. Therefore, investigating the robustness guarantees of
a system could be crucial to ensure that it will still be stable and behave as intended
when operating under non-ideal conditions in the real world.

The importance of investigating the robustness properties of the NSB task defini-
tions in Section 4.4 should be obvious as the term containing the reaction forces in
(2.1b) are left out of the vessel model (4.59) used in the stability analyses in Section 4.5.
Consequently, the stability analysis was performed without considering how the
physical inter-vessel connection will affect the system error dynamics. Additional
analysis is therefore required to investigate how the addition of the cable will affect
the results in Section 4.5.

In the following analysis, the cable will be treated as an unknown bounded state-
dependent perturbation due to the complexity of the cable model from Chapter 3.
The design objective of the cable model presented in Chapter 3 was to obtain a model
that performed sufficiently compared to logged data from real-world experiments to
be used in simulations. The implications are that the complexity renders the model
impractical for use in control design and analysis, which is evident by looking at the
model complexity and size already in Example 1 with 𝑛 = 2. For larger values of 𝑛,
the model complexity increases such that any attempts using the resulting model in
control design and analysis becomes infeasible.

In particular, the effect from the cable is modeled as a perturbing term g(𝑡, x) of
the form

¤x = f (𝑡, x) + g(𝑡, x) (4.82)

where x ≜ [ X̃
𝑇

1 X̃
𝑇

2 ]𝑇 and f (𝑡, 𝑥) is given by the closed-loop systems Eqs. (4.69a)–
(4.69b) and Eqs. (4.76a)–(4.76b) for the formation and barycenter tasks respectively.

Lemma 4.5 (Boundedness of the closed-loop formation task). Assume that the condi-



72 CHAPTER 4. FORMATION CONTROL

tions of Theorem 4.1 are satisfied. Then, for all uniformly bounded disturbances g(𝑡, x),
irrespective of their magnitude, the solution of the perturbed system (4.82), with f given
by Eqs. (4.69a)–(4.69b), is uniformly bounded.

Proof. From the fact that the closed-loop system of the formation task Eqs. (4.69a)–
(4.69b) is UGES, (Khalil; 2002, Lemma 9.2) gives that the perturbed system (4.82) are
uniformly bounded for all bounded disturbances, irrespective of their magnitude. □

Lemma 4.6 (Boundedness of the nominal barycenter task). Assume that the condi-

tions of Proposition 4.2 are satisfied. Then, there exists a positive constant 𝛿 , a constant

𝑐 ∈ (0, 1) and a time 𝑇 ≥ 0, such that if the disturbances are bounded by

∥g(𝑡, x)∥ ≤ 𝛿, (4.83)

then the solutions of the nominal system

¤̃𝑿1 =


− 1

2
(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2+

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝𝑝𝑏
−𝑘𝜃

𝑥
𝑝

𝑝𝑏√
1+

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝜃𝜅 (𝜃 )𝑦𝑝
𝑝𝑏


, (4.84)

perturbed by the disturbances g(𝑡, x), satisfy

∥X̃1(𝑡)∥ ≤

√
𝑘2

𝑘1
∥X̃1(𝑡0)∥𝑒−

(1−𝑐 )𝑘3
2·𝑘2

(𝑡−𝑡0) (4.85)

∀𝑡0 ≤ 𝑡 ≤ 𝑡0 +𝑇 , and

∥X̃1(𝑡)∥ ≤ 𝑘4

𝑘3

√
𝑘2

𝑘1

𝛿

𝑐
∀𝑡 ≥ 𝑡0 +𝑇 . (4.86)

Proof. Using the same Lyapunov function candidate as in the proof of Proposition 4.2:

𝑉p𝑝
𝑝𝑏

(
X̃1

)
= 1

2

(
𝑥
𝑝

𝑝𝑏

)2
+ 1

2

(
𝑦
𝑝

𝑝𝑏

)2
, the partial derivative is bounded by



 𝜕𝑉

𝜕X̃1





 = 


[ 𝑥𝑝
𝑝𝑏

𝑦
𝑝

𝑝𝑏
]𝑇




 ≤ ∥X̃1(𝑡)∥. (4.87)

Hence, the conditions of (Pettersen; 2017, Lemma 12) is satisfied with 𝑘1,2,3 and
𝑎 from Proposition 4.2 and 𝑘4 = 1 = 2𝑘2. Consequently, the upper bound on the
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disturbance may be expressed as

∥g(𝑡, x)∥ ≤ 𝛿 <
𝑘3

𝑘4

(
𝑘1

𝑘2

) 1
𝑎

𝑟𝑐, (4.88)

with 𝑟 given by Proposition 4.2. Hence, the conditions of (Pettersen; 2017, Lemma
12) is satisfied, and the solutions of the nominal system (4.84) perturbed by the
disturbance are uniformly bounded by (4.85) and (4.86) respectively. □

Lemma 4.7 (Boundedness of the closed-loop barycenter task). Assume that the

conditions of Theorem 4.2 are satisfied. Then, the solutions of the perturbed system

(4.82), with f given by Eqs. (4.76a)–(4.76b) is uniformly bounded for disturbances g(𝑡, x)
satisfying the condition

∥g(𝑡, x)∥ ≤ 𝛿, (4.89)

that is, the magnitude of the perturbation is bounded by a sufficiently small value 𝛿 .

Proof. Since USGES is proven of the cascaded system Eqs. (4.76a)–(4.76b) it implies
that the total cascaded system is both UGAS and ULES. Consequently, the system
is ULES in a neighbourhood about the origin, inheriting the robustness properties
of ULES systems. Thus, (Khalil; 2002, Lemma 9.2) can be used to conclude that for
sufficiently small magnitudes of the nonvanishing perturbations, the solutions of
Eqs. (4.76a)–(4.76b) will remain bounded. However, without knowing the Lyapunov
function candidate of the total cascaded system, it is not possible to quantify the
upper bound of the perturbation magnitude, meaning the robustness conclusion
becomes a qualitative one. □

It should be observed that it is not possible to prove robustness properties of the
closed-loop barycenter task dynamics in Lemma 4.7 by (Pettersen; 2017, Lemma 12).
This is because (Pettersen; 2017, Lemma 12) require the total system to satisfy the
conditions of (Pettersen; 2017, Theorem 5), while the cascaded system Eqs. (4.76a)–
(4.76b) satisfies only satisfies the conditions of (Pettersen; 2017, Proposition 9).

As the conditions of (Pettersen; 2017, Theorem 5) are Lyapunov sufficient con-
ditions, they are not automatically necessary conditions for USGES. Consequently,
it cannot be concluded that there exists a Lyapunov function candidate of the total
cascaded system satisfying the conditions of (Pettersen; 2017, Theorem 5) from the
fact that the cascaded system satisfy the conditions of (Pettersen; 2017, Proposition
9).

To be able to show the robustness of the total cascaded system using (Pettersen;
2017, Lemma 12), a new LFC must be found, and proven to satisfy the conditions of



74 CHAPTER 4. FORMATION CONTROL

(Pettersen; 2017, Theorem 5). However, this is non-trivial due to the linear intercon-
nection term in (4.76a) which complicate the proof that ¤𝑉 is negative definite.

4.7 Path generation

In this section, a method for generating a 𝜃 -parametrized path for the barycenter task
is presented. As stated in Section 1.3, the vessels must be able to follow a path denoted
by waypoints. Most other traditional LOS methods operating with waypoints, e.g.,
see Fossen (2011) assume that the waypoints are connected by straight-line path
segments, removing the need of parametrization. However, since the LOS method
presented in Section 4.4.3 are designed to be able to follow curved paths, a method
must be chosen for interpolating the path in-between the waypoints.

Path generation methods based on waypoints are not a new topic, and several
existing methods exist. In Dubins (1957), it was shown that the shortest path, in
time, between two configurations with constant speed is a path formed by straight
lines and circular arc segments. These Dubins paths are a widely used method
for connecting waypoints in the context of LOS methods. However, they have the
drawback that a jump in the yaw rate 𝑟𝑑 is experienced in the transitions between
the straight line and circle segments, as the first derivative of the joined path is
discontinuous, causing a small offset during cross-tracking Fossen (2011).

Another approach for path generation is to use interpolating methods. Many of
these methods are based on piece-wise cubic polynomials, where several different
methods for interpolating cubic polynomials exist, where each method will produce
a different path depending on the rules and constraints used. Two of the most used
methods are the Piecewise Cubic Hermite Interpolation Polynomial (PCHIP) Fritsch
and Carlson (1980) and the Cubic Spline method, which are implemented as the
pchip and spline functions in Matlab respectively. The resulting polynomials by
the first method are created such that the first derivatives are continuous, and shape-
preserving by selecting the slopes such that it respects monotonicity. However, the
second derivatives are not guaranteed to be continuous, meaning jumps are possible.
For the second method, the second derivatives are continuous, resulting in smoother
polynomials than for the first method. However, they tend to have more oscillations
if the original data is non-smooth, as shown in Fig. 4.5.

Consequently, to generate a 𝜃 -parametrized path from waypoints, the PCHIP
interpolation method is chosen as this will generate a path with less oscillations and
which is closer to straight lines. The resulting path for 𝑁 waypoints will therefore
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Figure 4.5: Waypoint interpolation methods

be a piece-wise cubic polynomial composed by 𝑁 − 1 segments, where each segment
may be described by the polynomials

𝑥𝑝 (𝜃 ) = 𝑎3𝜃 3 + 𝑎2𝜃 2 + 𝑎1𝜃 + 𝑎0 (4.90a)

𝑦𝑝 (𝜃 ) = 𝑏3𝜃 3 + 𝑏2𝜃 2 + 𝑏1𝜃 + 𝑏0, (4.90b)

where
(
𝑥𝑝 (𝜃 ), 𝑦𝑝 (𝜃 )

)
∈ 𝑃 is the desired position of the barycenter along the path.

Furthermore, the breaks 𝜃𝑘 ∈ {0, 1, . . . , 𝑁 } of the polynominals are chosen according
to Fossen (2011) such that the path through the waypoints (𝑥𝑘−1, 𝑦𝑘−1) and (𝑥𝑘 , 𝑦𝑘 )
must satisfy

𝑥𝑝 (𝜃𝑘−1) = 𝑥𝑘−1, 𝑥𝑝 (𝜃𝑘 ) = 𝑥𝑘 (4.91a)

𝑦𝑝 (𝜃𝑘−1) = 𝑥𝑘−1, 𝑦𝑝 (𝜃𝑘 ) = 𝑥𝑘 . (4.91b)

Subsequently, as the 𝜃 -parametrized path is parametrized by a unit size path variable,
the path update law (4.31) must be converted to unit size by

¤𝜃 =

1
2𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1

2𝑈2 cos
(
𝜒2 − 𝛾𝑝

)
+ 𝑘𝜃 𝑓𝜃

(
𝑥
𝑝

𝑝𝑏
, 𝑦

𝑝

𝑝𝑏

)
√
𝑥 ′𝑝 (𝜃 )2 + 𝑦 ′𝑝 (𝜃 )2

, (4.92)

where (·) ′ denotes the partial derivative with respect to 𝜃 . Note how this only affects
the implementation of the method, and not the theoretical results presented earlier,
as it is related to the choice of path generation method, while the theoretical results
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were performed for arbitrary paths.



5 | Simulations

In this chapter, several simulations are run in MATLAB/Simulink to see how the for-
mation control method presented in Chapter 4 performs in different scenarios. First,
several scenarios are performed with the vessel model and maneuvering controllers
presented in Section 4.5, to investigate how the formation control method performs
in a hypothetical ideal case. Next, the performance is evaluated using the more
realistic vessel model and maneuvering controllers from Chapter 2. Then, the vessels
are attached to the cable modeled in Chapter 3 to evaluate the formation control
method performance for the total system. Finally, a discussion of the simulation
results is presented.

5.1 Ideal case

In this section, several scenarios are tested using the ideal vessel model and ma-
neuvering controllers presented in Section 4.5, to illustrate the theoretical stability
analysis performed in Section 4.5. In the first scenario, the obstacle avoidance and
formation tasks are deactivated, to demonstrate the isolated barycenter task perfor-
mance on a sinusoidal path. Then, all tasks are activated to see the performance of
the total method in the ideal case.

For both scenarios in this section, the vessels were subject to a constant irrota-
tional ocean current with speed 𝑉max = 1m/s with an angle 𝛽𝑐 = −135° from the
inertial frame, giving the ocean current components 𝑉𝑥 = 𝑉𝑦 ≈ −0.707m/s. The
desired along-path speed is chosen constant to 𝑢𝑑 = 3m/s. Furthermore, to ensure
that the dynamics of Odin and Frigg may be approximated by that of a displacement
vessel, rendering the vessel model (4.59) valid, an upper restriction on the maximum
surge speed reference from the NSB formation control method is set to 𝑢max = 5m/s.

Using the model parameters of Odin, the upper bound of the path curvature
may be found to be 𝜅max = 𝑌min/𝑋max ≈ 0.0882. The controller gains are chosen as
𝑘𝜓 = 1.2, 𝑘𝑟 = 1.3, 𝜆 = 100, 𝑘𝑑 = 10, 𝑘𝑢 = 0.1 and 𝑘𝑒 = 0.1. Furthermore, the adaptive

77
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gains are chosen as 𝛾𝑟 = 5 and 𝛾𝑢 = 1.
For the scenarios considered in this section, the path generationmethod described

in Section 4.7 is not used. Instead, the desired path of the barycenter is defined as

𝑃 ≜


𝑥𝑝 (𝜃 ) = 𝜃

𝑦𝑝 (𝜃 ) = 300 sin (0.005𝜃 ) ,
(5.1)

which has maximum curvature max𝜃 ∈𝑃 |𝜅 (𝜃 ) | = 0.0075. Hence, the constraint in
Lemma 4.3 is satisfied as 𝜅max < 𝑌min/𝑋max. Furthermore, the condition of Lemma 4.4
can be calculated to be 𝜇 > 49.5704m, which is satisfied by choosing 𝜇 = 50m.

For the obstacle avoidance task, the threshold for the minimum allowed distance
between the vessels is chosen as 𝑑0 = 20m and the proportional gain as 𝜆𝑜 = 1. On
request from FFI, the numerical value of the desired task function value is not given
in this thesis, but chosen as 𝝈𝑝

𝑓 ,𝑑
= [ 0 −𝑑𝑓 ]𝑇 , according to (4.20). This corresponds

to that vessel 1 should be located at port side. Furthermore, the matrix of proportional
gains are chosen as

Λ𝑝

𝑓
=


2.5 0

0 0.3

 , (5.2)

which implies that an error in the along-track direction should be penalized more
than in the cross-track direction. This is chosen to have the vessels maintain a better
formation throughout the corners.

5.1.1 Only barycenter task active

In this scenario, the system is simulated with only the barycenter task being active
to illustrate the theoretical results for the barycenter task presented in Section 4.5.2.

The resulting trajectories of both vessels and the barycenter trajectory are shown
in Fig. 5.1. It can be observed from the yellow vessels that neither vessels’ heading
is parallel to the desired path. Instead, they maintain a non-zero sideslip angle to
compensate for the ocean current, which is expected for underactuated vessels. Thus,
the vessels’ heading is not aligned with the path. Interestingly, the velocities are
aligned, ensuring proper path following without any knowledge about the ocean
current.

The path following errors of the different tasks are presented in Fig. 5.2, where
it is shown that both the along-track 𝑥𝑝𝑏𝑝 and cross-track errors 𝑦𝑝𝑏𝑝 converge
to zero for the barycenter task. From the last plot in Fig. 5.2 it can be seen that
since the formation task is deactivated, the vessels will not maintain their desired
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formation, but rather keep approximately their initial relative positions throughout
the simulation while moving the barycenter along the desired path.

From Fig. 5.3, it can be seen that both the surge and heading states converge
exponentially to their desired values. Furthermore, it can be observed that the sway
velocity for both vessels is non-zero due to the curvature of the path and the ocean
currents. However, they remain bounded throughout the simulation.
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Figure 5.1: Path following of the desired sinusiodal path with only the barycenter
task active.
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Figure 5.2: NSB errors of the desired sinusiodal path with only the barycenter task
active.
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Figure 5.3: Desired vs. actual heading (top), surge (middle) and sway (bottom) of
the desired sinusiodal path with only the barycenter task active.



82 CHAPTER 5. SIMULATIONS

5.1.2 All tasks active

In this scenario, the system is simulated with all tasks activated to illustrate the
theoretical results for when the tasks are merged in Section 4.4.4.

The resulting trajectories of both vessels, and the barycenter trajectory are shown
in Fig. 5.4. It can be observed that the vessels maintain their desired formation while
making the barycenter follow the desired path. It can also be seen that the curved
path and the ocean currents make both vessels operate with a non-zero sideslip
angle.

The path following errors of the three tasks can be seen in Fig. 5.5. While the
vessels can make the barycenter follow the path throughout the simulation, small
increases can be seen for the formation task errors in the corners. It is mostly the
along-track error that is affected, but a small increase can be seen for the cross-track
error. However, whenever the path is almost straight, the formation task errors
converge to zero, meaning the formation objective is obtained.

It is of little surprise that the along-track error is affected more than the cross-
track error as the outer vessel needs to cover a much larger distance throughout
the corner than the inner vessel. Thus, the inner vessel needs to slow down, while
the outer vessel needs to increase its surge speed, as observed in Fig. 5.6. Here
the desired and actual surge speed for the vessels increases above and decreases
below the desired along-path speed of 𝑢𝑑 = 3m/s in the outer and inner corners
respectively.

The magnitude of the error decreases with increasing values of Λ𝑓 . However,
with rising values, the resulting performance becomes more aggressive, with more
extensive corrections for small errors, see the aggressive maneuver by the second
vessel towards vessel one at the beginning of Fig. 5.4, and with the risk of introducing
oscillations to the system, as experienced in Eek (2019). Therefore, a trade-off between
formation task errors throughout corners and the risk of introducing oscillations to
the system must be made.
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Figure 5.4: Path following of the desired sinusiodal path with all tasks active.
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Figure 5.5: NSB errors of the desired sinusiodal path with all tasks active.
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Figure 5.6: Desired vs. actual heading (top), surge (middle) and sway (bottom) of
the desired sinusiodal path with all tasks active.
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5.2 Realistic vessel model without cable

In this section, several scenarios are tested using the realistic vessel model and
maneuvering controllers presented in Chapter 2 to illustrate how the formation
control method performs using the vessel models of Odin and Frigg.

For all scenarios in this section, the vessels were subject to a constant irrotational
ocean current with speed 𝑉max = 1m/s with an angle 𝛽𝑐 = −135° from the inertial
frame, giving the ocean current components 𝑉𝑥 = 𝑉𝑦 ≈ −0.707m/s. The desired
along-path speed is chosen constant to 𝑢𝑑 = 3m/s. Furthermore, to ensure that
the dynamics of Odin and Frigg may be approximated by that of a displacement
vessel, rendering the vessel model from Chapter 2 valid, an upper restriction on the
maximum surge speed reference from the NSB formation control method is set to
𝑢max = 5m/s.

As the constraints for the path curvature and lookahead distance in Lemmas 4.3–
4.4 are calculated using the ideal vessel model, it is not possible to calculate the exact
constraints for the realistic vessel model from Chapter 2. However, as the realistic
model’s performance will never be better than in the ideal case, constraints here
must be equal, or more strict, than those in Section 5.1.

Simulating the systemwith the lookahead distance used in the ideal case, resulted
in undesirable oscillations due to the lookahead distance being too small. This is
likely caused by a slower vessel response, causing the vessels not to follow the rapid
references generated with the lookahead distance used in the ideal case. Hence, a
larger lookahead distance of 𝜇 = 1000m is chosen, which is well above the minimum
threshold calculated previously, but necessary to avoid oscillations.

For the obstacle avoidance task, the threshold for the minimum allowed distance
between the vessels is chosen as 𝑑0 = 20m and the proportional gain as 𝜆𝑜 = 1. The
desired task function value of the formation task is chosen as in Section 5.1, but
the numerical value is not given on request from FFI. Furthermore, the matrix of
proportional gains are chosen as

Λ𝑝

𝑓
=


0.3 0

0 0.1

 . (5.3)

The proportional gains of the formation task are notably lower than the values
used in the ideal case. As the vessels’ response is faster in the ideal case, selecting
higher proportional gains is possible due to the high bandwidth of the maneuvering
controllers. However, in the realistic case, the maneuvering controllers’ bandwidth
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will be lower, giving insufficient bandwidth separation between the NSB system and
the maneuvering controllers for high proportional gains, introducing oscillations
to the system as experienced in Eek (2019). Thus, the trade-off between formation
task errors and the risk of introducing oscillations must be set lower, implying that
higher formation task errors are expected in the corners than in the ideal case.

5.2.1 Sinusoidal path

In this scenario, the formation control method with the realistic vessel model is
simulated with same path as in Section 5.1 to compare the performance with the
ideal case.

The resulting trajectories of both vessels along with the barycenter trajectory
are shown in Fig. 5.7. Moreover, it can be observed non-zero sideslip angles for the
vessels to compensate for the unknown ocean current.

The path following errors of the three tasks can be seen in Fig. 5.8. Due to the
more conservative choice of parameters, it can be seen that neither the barycenter
nor formation task errors converge to zero in the curves. Due to the large lookahead
distance, the vessels cannot keep the barycenter on the path throughout the corners,
resulting in cross-track errors of almost 1m. Similarly, due to the small proportional
gain for the along-track formation, the resulting along-track errors for the formation
task is up to almost 2m.

From Fig. 5.9 it can be seen that the sway velocity for both vessels is non-zero due
to the ocean currents and the curvature of the path. However, they remain bounded
throughout the simulation. Furthermore, both the surge and heading states converge
to their desired values, respectively. However, the heading controller for vessel one is
especially affected by some oscillations during the first 𝑡 = 100 s. Interestingly from
Fig. 5.9a it can be seen that the surge rapidly increases to 5m/s in the beginning,
before converging to approximately 3m/s for the rest of the simulation.

In Section 2.3 it was established that the generated yaw moment of the waterjet
model is affected by the waterjet throttle demand, which is non-linear, and controlled
by the surge maneuvering controller. Hence, the rapid change in the surge will
result in a rapid change in the waterjets’ throttle demand, with the implication
that the generated yaw moment for a given nozzle demand will fluctuate, giving an
under-damped response as the linear relationship in Section 2.3.1 is invalidated.

When the surge speed, and by extension the throttle demand, stabilizes, the
linear relationship in the generated yaw moment from Section 2.3.1 again renders
valid, ensuring approximately exponential tracking for the rest of the simulation.
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The hypothesis that rapid changes in the surge dynamics cause the under-damped
response of the heading controller is further supported by Fig. 5.9b. Here, the surge
controller’s initial response is less rapid, with fewer oscillations experienced for the
heading controller.

However, no further attempts to improve the maneuvering controllers were made
in this thesis as the current response was deemed sufficient for testing the formation
control method.
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Figure 5.7: Path following of the desired sinusoidal path without cable.
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Figure 5.8: NSB errors of the desired sinusoidal path without cable.
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Figure 5.9: Desired vs. actual heading (top), surge (middle) and sway (bottom) of
the desired sinusoidal path without cable.
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5.2.2 Sweep

In this scenario, the formation control method is simulated to follow a U-shape path
to replicate a more realistic path used during a mine-sweep application. The path
used in this scenario is identical to that used during experiments in Section 6.3.

The resulting trajectories of both vessels and the barycenter trajectory are shown
in Fig. 5.10. The vessels maintain a non-zero sideslip angle to follow the desired path
by compensating for the ocean currents.

The path following errors for the three tasks can be seen in Fig. 5.11. It can be
observed that all errors converge to zero on the straight-lines. However, especially the
along-track formation task error experiences a rapid increase at the beginning of each
turn, lower and upper left turns in Fig. 5.10. Due to the PCHIP interpolation method
used to generate the path, a rapid change in the path’s curvature is experienced in
the transition between the different path segments, since only the first derivatives
are continuous, causing a jump in the second derivative. Consequently, the outer
vessel needs to traverse a much longer distance than the inner vessel, causing a spike
in the along-track formation task error.

From Fig. 5.12 it can be seen that the outer vessel increases its surge speed to catch
up, and the inner vessel slows down to wait. Although the outer vessel increases
its surge speed, it is not limited by the maximum surge speed. The formation task
along-track error could be decreased by changing the along-track proportional gain.
However, due to the constraints, it is not reasonable to increase the proportional
gain as this would introduce oscillations.
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Figure 5.10: Path following of a path representing a mine-sweep without cable.
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Figure 5.11: NSB errors of a path representing a mine-sweep without cable.
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Figure 5.12: Desired vs. actual heading (top), surge (middle) and sway (bottom) of a
path representing a mine-sweep without cable.



5.3. REALISTIC VESSEL MODEL WITH CABLE 95

5.3 Realistic vessel model with cable

In this section, several scenarios are tested using the realistic vessel model and
maneuvering controllers presented in Chapter 2, with the cable model presented in
Chapter 3 connected to each vessel, to illustrate how the formation control method
performs while being affected by the cable dynamics.

For all scenarios in this section, the cable model from Chapter 3 was used, with
the parameters according to Section 3.5.2. From Chapter 3 it is known that both
vessels and the cable must satisfy the position and velocity constraints (3.3) and (3.14)
respectively, at all times. While this is ensured during the simulation, proper care
must be made to ensure that the initial conditions also fulfill these constraints. This
is solved by specifying the position and velocity for the first vessel, along with the
link angles and velocities of the cable. The second’s position and velocity are then
calculated using the forward kinematics of the cable to ensure that the constraints
are fulfilled.

For the remaining parameters, the same values as in Section 5.2 are used.

5.3.1 Sinusoidal path

In this scenario, the two vessels are simulated with the cable attached with the same
sinusoidal path as before.

The resulting trajectories of both vessels and the cable along with the barycenter
trajectory are shown in Fig. 5.13. It can be observed that the vessels are able to follow
the desired path while maintaining their formation when they are towing a cable.
Further, the influence by the ocean currents on the cable shape may be seen from
the figure, where the cable shape does not follow directly behind vessel trajectories,
but instead drifts a bit towards south-west due to the ocean current from north-east.
Due to the ocean current’s direction, it may be observed that the cable follows better
behind the vessels in the right-turns than the left-turns, which is to be expected.

The path following errors of the three tasks can be seen in Fig. 5.14. It can be
observed how the task errors are not much affected by the addition of the cable, and
that the vessels are still able to achieve their objectives of keeping their formation
and following the desired path.

Furthermore, it can be observed that there are still some oscillations on the head-
ing and surge states in Fig. 5.15. However, since the cable acts similarly to a damper,
the resulting oscillations are smaller, and fade out quicker, than in Section 5.2.1 for
the same scenario without the cable.
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Figure 5.13: Path following of the desired sinusoidal path with the cable.
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Figure 5.14: NSB errors of the desired sinusoidal path with the cable.



98 CHAPTER 5. SIMULATIONS

Time [s]

0 100 200 300 400 500 600 700 800 900 1000

-20

0

20

40

a
n
g
le

 [
d
e
g
]

Heading

0 100 200 300 400 500 600 700 800 900 1000
0

5

u
 [
m

/s
]

Surge

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

v
 [
m

/s
]

Sway

d

u
d u

(a) Vessel 1

Time [s]

0 100 200 300 400 500 600 700 800 900 1000
-100

-50

0

50

a
n
g
le

 [
d
e
g
]

Heading

0 100 200 300 400 500 600 700 800 900 1000

1

2

3

u
 [
m

/s
]

Surge

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

v
 [
m

/s
]

Sway

d

u
d u

(b) Vessel 2

Figure 5.15: Desired vs. actual heading (top), surge (middle) and sway (bottom) of
the desired sinusoidal path with the cable.
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5.3.2 Sweep

In this scenario, the formation control method is simulated to follow a U-shape path
to replicate a more realistic path used during a mine-sweep application with the
cable attached.

The resulting trajectories of the vessels along with the barycenter trajectory and
the cable are shown in Fig. 5.16. The cable is plotted in different colors to allow easier
visualization of the cable shape at each step. While the vessels can converge to the
desired path and maintain their desired formation on the straight lines, they are
unable to follow the path throughout the turn. The error experienced throughout the
turn is because the cable cannot follow the sharp corner due to the hydrodynamic
drag forces and torques. Hence, the vessels must take a slightly larger turn radius,
which can be seen in Fig. 5.16.

The corresponding path following errors for the three tasks can be seen in
Fig. 5.17. The cross-track error for the barycenter task shows that the vessels are
unable to follow the path throughout the turn. The maximum cross-track error
during the turn is approximately −15m. For the formation task, it can be observed
errors up to 5m and −9m in the along-track and cross-track directions respectively.

In Fig. 5.18 it can be seen that while the surge references are followed almost
entirely, a significant error in the heading can be observed during the turn. From tow-
ing the cable, the vessels will experience an additional torque in the yaw-dynamics.
The extra torque from the cable prevents perfect tracking of the desired heading
reference, which again prevents the vessels from following the desired path, as seen
in Fig. 5.16.
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Figure 5.16: Path following of a path representing a mine-sweep with the cable.
The cable is plotted in different color for easier visualization of the different time
steps.
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Figure 5.17: NSB errors of a path representing a mine-sweep with the cable.
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Figure 5.18: Desired vs. actual heading (top), surge (middle) and sway (bottom) of a
path representing a mine-sweep with the cable.
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5.4 Discussion

In the earlier scenarios, it was established that the ideal model in Section 5.1 outper-
formed the more realistic model in Section 5.2. The more realistic model suffers from
a slower response than the ideal case due to the actuator dynamics and constraint of
the waterjets. In the ideal case, on the other hand, no constraints were imposed on
the actuators, implying the heading and surge autopilots could allocate their desired
control forces and moments without any restrictions on magnitude and delays. The
more inadequate response with the realistic model could also be due to the lack of a
feedforward term in the maneuvering controllers. Especially the heading controller
will suffer from this, as the feedforward term contains valuable information regarding
the curvature, and derivative of the curvature.

It is well known that a controller tracking a time-varying reference should include
a feedforward term with the second derivative of the reference for optimal tracking.
Without this term, the resulting heading response will be delayed as the PD controller
can only react once an error from the desired reference has occurred. Hence, it is
believed that the addition of a feedforward term in the heading controller would
be beneficial for the tracking performance, and by extension, the path following
abilities. However, this is not possible now, as it requires a reformulation of the
maneuvering controllers to operate on generalized control forces and include a
control allocation method for converting the desired control forces into waterjet
demands, see Section 2.4 and Eek (2019) for more details.

Another impressive result from the simulation study is how well the NSB method
performed in the case where the cable dynamics were included. Although the
formation control method was designed for the case without any cable, it performed
well under the additional disturbances the cable imposed on the system. It should be
noted that the required turn radius during Section 5.3.2 increased somewhat from
Section 5.2.2, but this is believed to be caused by the additional drag caused by the
cable, not the formation control method itself.

When selecting the drag coefficients of the cable, they were only tuned to match
the recorded loads in Section 3.5.2. Hence, other aspects with the transient response,
such as minimum turning radius and time constants for (de)accelerations, of the
cable was not considered. From this, it can be concluded that it is likely that the
model does not display accurately in these aspects.

From discussing this matter with FFI, information has been received that they
have been able to perform turns with a similar radius with the mine-sweep in real-life
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experiments. Consequently, it is believed that the resulting cable model, with the
drag coefficients from Section 3.5.2, displays characteristics with more drag than
what is experienced by the real-life sweep. The increased drag characteristics will
again have a considerable impact on the vessel’s performance in a scenario, including
a turn such as Section 5.3.2. Therefore, it is expected that better choices of drag
coefficients will result in better performance in the simulations.



6 | Experiments

In this chapter, results from experiments at sea with the two vessels Odin and Frigg
are presented. First, a short introduction to the experiments is presented. Then,
the implementation of the NSB method, with the rest of the autonomous systems
of Odin and Frigg are discussed. Next, a brief discussion is given on the required
sensors for realizing the formation control method. Finally, the results from full-scale
experiments with Odin and Frigg are presented.

6.1 Introduction

It is well known that results obtained through simulations do not automatically
transfer to the real-works as a simulation model will always fail to fully capture
the actual dynamics of a system. Hence, the theoretical work in Chapter 4 and the
simulations in Chapter 5 are no guarantee that the NSB method will work as intended
in the real-world.

To investigate if the NSB formation control method fulfills FFI’s criteria for the
mine-sweep application, full-scale field experiments with the two vessels Odin and
Frigg was performed. The experiments were performed in FFI’s designated test area
for autonomous operations outside of Horten in May 2020.

Unfortunately, the experiments had to be performed without the actual sweep
as they were unavailable at the moment due to maintenance. Nevertheless, the
experiments will still be useful to investigate the performance in real-life. The
vessels Odin and Frigg deployed during the autonomous experiments in this chapter
are depicted in Fig. 6.1.

105
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Figure 6.1: Photo of Odin and Frigg during the experiments. Courtesy of FFI.

6.2 Implementation

In order to perform the full-scale experiments, the formation control method pre-
sented in Chapter 4 had to be implemented and integrated into the existing software
systems of Odin and Frigg. The existing autonomy pipeline for Odin and Frigg
utilizes the Robot Operating System (ROS) framework as the underlying messaging
system. ROS is an open-source software framework commonly used for autonomous
robot applications. The basic principles of ROS are that each task is run in parallel
as separate nodes that communicate over topics. The architecture of ROS allows for a
modular architecture, which greatly simplifies the overall software complexity. The
reader is referred to Stanford Artificial Intelligence Laboratory et al. (2018) for more
details of ROS.

The control system itself is implemented as a standalone C++ library with no ex-
ternal dependencies except Eigen, an open-source linear algebra library, Guennebaud
et al. (2010), to ensure re-usability, maintainability, and portability. The library was
then included in a ROS wrapper to communicate with the rest of the autonomous
system. By separating the control system implementation from ROS, it allows re-use
of the same implementation, by merely writing another wrapper, if it is desirable to
replace ROS with another framework in the future.

An interesting aspect with the NSB method, as presented in Chapter 4, is that it is
designed as a centralized control system, which receives sensor measurements from
both vessels and outputs the desired velocities of each vessel, see Fig. 4.1. However,
for this particular application, it is desirable to have a decentralized system to avoid
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external dependencies besides the two vessels. Thus, the desired references for each
vessel should be calculated onboard each vessel.

In order to decentralize the control system, the choice was made to implement
the same centralized system on both vessels, with the implication that both vessels
calculate the desired NSB velocities for the whole system. The velocity for each vessel
is then extracted and decomposed into the desired surge and heading references,
see Fig. 6.2. By running the same implementation on both vessels, and extracting
the desired velocity for each vessel, this will be equivalent to running a single
centralized system, under the assumption that both vessels receive the same sensor
measurements.

In the implementation, Odin was chosen as vessel one, with Frigg being vessel
two. Hence, according to Section 4.4.2, the desired task function value for the
formation task is specified in terms of the desired along-track and cross-track offset
for Odin.

During the experiments, the existing autopilots of Odin and Frigg, developed
and tuned by FFI, were used. For controlling the heading, a PD controller was used,
while a PI controller was used for the surge.

NSB

NSB

Maneuvering
Control 1 Vessel 1

Maneuvering
Control 2 Vessel 2

𝝈𝑑 , ¤𝝈𝑑

𝝂NSB,1 u 𝜼1, 𝝂1

𝝂NSB,2 u 𝜼2, 𝝂2

𝜼, 𝝂

Figure 6.2: Overview of implemented decentralized NSB guidance system.

6.2.1 Available sensor measurements

The vessels Odin and Frigg are equipped with a great number of sensors for au-
tonomous operation. The implementation relies on available measurements of the
position and body-fixed velocities for both vessels. These measurements can easily
be obtained through a Global Navigation Satellite System (GNSS) and an Inertial
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Navigation System (INS). As it is common to be equipped with these sensors, the
proposed NSB method should be realizable for most vessels.

The required sensormeasurements are received from FFI’s part of the autonomous
system over ROS topics. The received position measurements are represented in a
geographic coordinate system, by latitude, longitude, and elevation. Hence, they
must be converted to local NED coordinates before they can be used in the NSB
method. The conversion is done by using the first-order approximation of theWGS-85
ellipsoid given in Fossen and Perez (2004) and extracting the north and east positions.
Further, the vessels’ orientation in 6-DOF is represented using a quaternion. Hence,
as only the 3-DOF representation is considered here, the vessels’ heading is obtained
by first converting the quaternion to Euler-angles, and then extracting the yaw angle.

Since both vessels run a decentralized version of the NSB method, each vessel
must transmit its position and velocity to the other vessel periodically. Both ves-
sels are equipped with a radio link, allowing inter-vessel communication between
the autonomous systems on both vessels. During the experiments, the inter-vessel
communication link was configured to transmit the position and velocity measure-
ments at a frequency of 10Hz. With a selected desired along-path surge speed of
𝑢𝑑 = 3m/s, this corresponds that each vessel will receive updated position and
velocity measurements of the other vessel approximately every 30 cm on average.

6.3 Sweep

In this scenario, the vessels were set up to follow the same path as Section 5.3.2 and
Section 5.2.2, which is close to what FFI expect an actual path would look like during
a mine-sweep application. The vessels were loaded with the same NSB parameters
as given in Section 5.2, except for the lookahead distance. Before performing the
scenario presented here, several test runs were performed to tune the parameters.
During the tuning process, it was discovered that the vessels could handle a lower
lookahead distance than in the simulations without oscillations. The final choice of
lookahead distance was therefore chosen as 𝜇 = 100m.

On the day of the experiments, it was forecasted wind on approximately 5m/s
from south-southeast. Furthermore, the sea level was relatively calm with almost no
waves, as can be seen from Fig. 6.1. However, knowledge about the magnitude and
direction of any potential ocean currents is unavailable, and therefore unknown. It
should be noted that since the experiments were performed outdoors, knowledge
about the environmental disturbances are not known in detail, implying the points
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above are, at best, guesstimates of the actual environmental disturbances experienced
during the experiments.

The resulting trajectories of Odin and Frigg, along with the barycenter trajec-
tory is shown in Fig. 6.3. It can be observed that the vessels maintain the desired
formation while following the path relatively well. However, a steady-state error on
approximately 1− 2m can be observed for the cross-track error of the path following.
Furthermore, it can be seen that both vessels are weathervaning with a non-zero
sideslip angle towards the south. This is as expected as the steady-state error of
the barycenter always is north of the desired path and due to the direction of the
forecasted wind.

From Fig. 6.3 it can be seen that although the vessels manage to follow the first
turn quite well, an overshoot is experienced during the last turn. The exact reason
for this is unknown, but the tailwind could be a contributing factor, causing the
vessels to not slow down the surge speed fast enough, causing the overshoot.

As the decentralized NSB method is running in parallel on both vessels, separate
NSB errors for the three tasks are calculated online on each vessel. In the ideal case
where both vessels have access to the same sensor measurements, the calculated
errors from both vessels would be identical. However, as the position and velocity
measurements are not shared continuously between the vessels, but rather at a
frequency of 10Hz, small differences in the calculated errors occur.

For completeness, the NSB errors for both vessels are included and can be seen
in Fig. 6.4 and Fig. 6.5 for Odin and Frigg respectively. By comparing the two figures,
it is clear that they are mostly similar. However, some differences can be observed
for the calculated cross-track error for the formation task, where the errors calculate
by Frigg are not centered about zero, unlike those from Odin.

The yaw, surge, and sway states of both vessels are given in Fig. 6.6. It can be
seen from the detailed portion of the heading for both vessels that the yaw angle
does not converge to the heading reference. Although it is not possible to conclude
anything, it could be that this is the reason for the steady-state error experienced for
the cross-track error of the barycenter task.
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Figure 6.3: Path following of a path representing a mine-sweep.
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Figure 6.4: Online calculated NSB errors from Odin of a path representing a mine-
sweep.
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Figure 6.5: Online calculated NSB errors from Frigg of a path representing a mine-
sweep.
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path representing a mine-sweep.
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6.4 Discussion

The most prominent part of the experimental results is the steady-state error for
the cross-track barycenter error. The exact reasons for this steady-state error are
unknown, but several potential factors have been identified. First, the wind, from
the south-southeast, could be a contributing factor to the error, as the barycenter is
always located on the north side of the desired path.

Another factor contributing to the steady-state error could be the lack of integral
effects in the heading controller. In the detailed view of the top subplots in Fig. 6.6, it
can be seen that the headings do not converge to their desired references. During the
experiments, information was received from FFI that they are aware that the vessels,
especially Odin, tends to drag towards starboard, which is verified by Fig. 6.6.

An interesting observation is that Odin was also used to perform the experimental
results in Wiig et al. (2018), with the same PD controller. Here, the cross-track error
converged toward zero without any steady-state error. The author of this thesis
believes that the integral action in the ILOS guidance law compensated for the
lack of an integral term in the heading autopilot. Hence, the failure of the heading
controller’s ability to track the reference entirely, was concealed by the integral
action in the ILOS guidance law, making the cross-track error converge to zero
nevertheless.

When comparing with the simulated scenarios, where the cross-track converged
to zero, the heading autopilots used in Section 5.2 and Section 5.3 included an integral
term. Furthermore, the PD controller used in the ideal case in Section 5.1 compensated
for the ocean currents through the adaptive term.

To further investigate if the lack of integral action could be a contributing factor
to the steady-state error, the scenario in Section 5.2.2 was repeated with a PD instead
of PID controller for the heading. The resulting trajectories and NSB task errors are
shown in Fig. 6.7 and Fig. 6.8 respectively. Interestingly, the cross-track error does
not converge to zero, and a steady-state error can be seen, similar to what happened
during the experiments. This is an indication that the lack of integral effect in the
heading controllers on Odin and Frigg is a contributing factor to the steady-state
cross-track error. It is, therefore, believed that changing to a PID controller for
heading will increase the tracking capabilities of the heading reference, and improve
the path following abilities of the barycenter task. Furthermore, it is believed that
this will also improve the issue where both vessels have a tendency to drag towards
starboard.
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Regardless of the steady-state cross-track error, FFI has given indications that
the experimental results are sufficient for the mine-sweep application. Therefore, it
can be concluded that the full-scale experiments were successful.
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Figure 6.7: The simulated vessels and desired path with a PD-controller for heading
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7 | Conclusion and FutureWork

This chapter will conclude and suggest some further work based on the results and
discussion presented in this thesis.

7.1 Conclusion

In this thesis, the topic of formation control of interconnected marine vessels was
discussed. First, a mathematical model, based on Bhattacharya et al. (2011), describing
the cable dynamics was proposed, with an improved hydrodynamic drag model for
capturing the effects of ocean currents on the cable. The model was then verified
against experimental data, which showed that it produces loads on the vessels within
the same order of magnitude to experimental data.

Next, a behavioral method based on the null-space projection was designed, and
a novel approach for the barycenter task, inspired by LOS methods, was proposed.
Furthermore, a stability analysis of the closed-loop systems for the individual tasks,
with the vessel model from Moe et al. (2016) was performed. The closed-loop error
dynamics of the formation task was proven UGES, while USGES was established for
the barycenter task, which is the best that can be achieved for LOS methods due to
the kinematic representation, which introduces saturation through the trigonometric
functions.

Then, the NSB method was implemented in MATLAB/Simulink. Through several
simulation studies, the performance of the formation control methodwas investigated.
First, the system was simulated with the vessel model and controllers from Moe
et al. (2016) to illustrate the theoretical results, with great success. When only the
barycenter is active, the task errors converge to zero, as expected from the theoretical
results, while small errors are experienced for the along-track formation task errors
when all tasks are active. Then, simulations were performed with the more realistic
vessel model, both with and without the cable attached. The results were somewhat
worse than in the ideal case, due to constraints not included in the vessel model
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from Moe et al. (2016). In the case with the cable, the minimum turning radius of
the interconnected vessels increased, but it is believed this is caused by improper
tuning of the cable parameters as only experimental data on the loads was available.
Nevertheless, similar results were obtained for both with and without the cable,
suggesting the NSB methods manage to perform well when disturbed by the cable
dynamics.

Finally, the NSBmethod was implemented in C++ and integrated into the existing
autonomous systems of Odin and Frigg through a ROS interface. It was then verified
through full-scale experiments at sea with Odin and Frigg, which gave promising
results. Although a steady-state error was experienced for the barycenter task’s cross-
track error, it is believed to be caused by the lack of integral action in the heading
controllers used on Odin and Frigg, not by the NSB method itself. Unfortunately,
experiments with the sweep were not possible, as they were not available at the time.
Nevertheless, due to the promising results, indications have been received from FFI
that further experiments of the NSB method, with the sweep, are planned later.

7.2 Further work

In this section, suggestions to further work is presented. It should be noted that the
proposals are not listed in prioritized order.

• Improve drag coefficients: To improve the transient response of the cable,
better parameter estimation should be performed for the drag coefficients.
Better drag coefficients will likely enhance the transient response of the cable,
e.g., through turns, giving more accurate and realistic results in simulations.

• Investigate robustness properties: More thorough investigations of the
closed-loop system of the barycenter task, Lemma 4.7, should be performed
to quantify the upper bound of the disturbance’s magnitude. One possibility
could be to follow the approach of (Wiig et al.; 2018, Theorem 2) and show that
the total system, including the disturbance, is UGAS, and therefore bounded.
However, this requires to show that the interconnection term from the dis-
turbance satisfies (Loría and Panteley; 2005, Assimption 4), which could be
difficult.

• Lookahead independent of cross-track error: In the proof of Lemma 4.3,
it was shown that the lookahead distance (4.38) could be chosen independently
of the cross-track error. Removing the cross-track error from (4.38) could lead
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to faster convergence of the cross-track error as the lookahead distance will
be smaller, giving more rapid steering towards the desired path.

• Avoid collision with the cable: At the moment, NSB is unaware of where
the cable is, and could, in theory, output desired references causing the vessels
to collide, or run over, the cable. If the vessels, and cable/sweep, are positioned
"nicely" initially, the possibility of this happening is believed to be small.
Nevertheless, it could still be nice to investigate this further from an integrity
point of view.

• Investigate other formation control methods such as LOS: Other forma-
tion control methods than NSB does also exist. An attempt to combine the LOS
method for curved paths in Belleter et al. (2019) with Belleter and Pettersen
(2014) to create a LOS formation control method for curved paths was made
during this thesis. Due to the limited time scope, it was not possible to conclude
the analysis of the closed-loop stability properties, and the work related to this
method is thus not included in the thesis. However, simulation results look
promising, and the method should be investigated further.

• Investigate the possibility of using predictive methods such as MPC:
Within the field of formation control, most of the research has been focused on
reactive methods. However, it was seen in both the simulation and experimen-
tal results that the vessels were not able to follow the desired path correctly
throughout turns. Here, a predictive method such as MPC could be useful
as the vessels’ trajectories through the turns could be predicted, making it
possible to generate surge and heading references, which could result in better
performance than in reactive approaches.

• Add integral action in the heading controllers of Odin and Frigg: As dis-
cussed in Section 6.4, the addition of integral action in the heading controllers
would likely decrease, or remove, the steady-state error in the cross-track error
for the barycenter task. Although this is not a must, it should be considered if
a better path following is desired.

• Better tuning of the NSB parameters: Due to limited time during the ex-
periments, better performance can likely be achieved by spending some more
time tuning the NSB parameters.

• Experiments with sweep: To evaluate the performance of the NSB method
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for the intended mine-sweep application, experiments should be performed
with the sweep.
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A | Stability proofs

The following appendix contains the proofs of Lemmas 4.2–4.4. To improve the
readability, the proofs are left out from the main text, and instead included here.

A.1 Proof of Lemma 4.2

The proof follows along the lines of (Belleter et al.; 2018, Lemma 1).
First, as the closed-loop system of Eqs. (4.76b)–(4.76d) is UGES by Proposition 4.4,

they are trivially forward complete.
Next, as the vector [ X̃

𝑇

2,𝑖 𝜅 (𝜃 ) 𝑢𝑑,𝑖 ¤𝑢𝑑,𝑖 𝑢𝑐 𝑣𝑐 ]𝑇 is bounded, there exist some
scalar 𝛽0 ∈ R>0 such that




[ X̃
𝑇

2,𝑖 𝜅 (𝜃 ) 𝑢𝑑,𝑖 ¤𝑢𝑑,𝑖 𝑢𝑐 𝑣𝑐 ]𝑇



 ≤ 𝛽0. Furthermore, from

(4.74) it can be concluded the existence of some positive functions 𝑎𝑟𝑑 (·) and 𝑏𝑟𝑑 (·)
such that

|𝑟𝑑 (·) | ≤ 𝑎𝑟𝑑 (𝜇, 𝛽0) |𝑣 | + 𝑏𝑟𝑑 (𝜇, 𝛽0) (A.1)

Then, choosing the LFC, omitting subscripts for simplicity

𝑉1(𝑣) =
1
2
𝑣2 (A.2)

whose time derivative along the solutions of (4.76e) is

¤𝑉1(𝑣) = 𝑋 (𝑢𝑑 + 𝑢̃, 𝑢𝑐)𝑟𝑑𝑣 + 𝑋 (𝑢𝑑 + 𝑢̃, 𝑢𝑐)𝑟𝑣

+ 𝑌 (𝑢𝑑 + 𝑢̃, 𝑢𝑐)𝑣2 − 𝑌 (𝑢𝑑 + 𝑢̃, 𝑢𝑐)𝑣𝑐𝑣 (A.3)

Using Young’s inequality, it can be shown that the following bound holds for ¤𝑉 (𝑣)

¤𝑉1(𝑣) ≤ 𝑌 (𝑢𝑑 + 𝑢̃, 𝑢𝑐)𝑣2

+ 𝑋 (𝑢𝑑 + 𝑢̃, 𝑢𝑐) (𝑟 2 + 𝑣2)

+ 𝑋 (𝑢𝑑 + 𝑢̃, 𝑢𝑐) (𝑟 2𝑑 + 𝑣2)
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− 𝑌 (𝑢𝑑 + 𝑢̃, 𝑢𝑐) (𝑣2𝑐 + 𝑣2) (A.4)

≤ 𝛼𝑉 + 𝛽 (A.5)

where 𝛼 ∈ R≥0, 𝛽 ∈ R≥0 are positive scalars. As (A.5) is scalar, the comparison
lemma (Khalil; 2002, Lemma 3.4) may be used to bound the solutions of (A.5) by the
scalar linear system

¤𝑥 = 𝛼𝑥 + 𝛽 (A.6)

whose solution is equal to

𝑥 (𝑡) = ∥𝑥 (𝑡0)∥𝛼 + 𝛽
𝛼

𝑒𝛼 (𝑡−𝑡0) − 𝛽

𝛼
. (A.7)

Hence, by the comparison lemma, the solutions of (A.5) must be upper bounded by

𝑉1(𝑣) ≤
∥𝑥 (𝑡0)∥𝛼 + 𝛽

𝛼
𝑒𝛼 (𝑡−𝑡0) − 𝛽

𝛼
. (A.8)

As 𝑉 (𝑣) is defined for all 𝑡 up to 𝑡max = ∞, it follows that 𝑣 must also be defined
up to 𝑡max = ∞. In the same way as Belleter et al. (2018), the solutions of (4.76e)
thus fulfills the definition of forward completeness in Angeli and Sontag (1999) and
forward completeness of the solution of (4.76e) can be concluded.

Having established forward completeness of Eqs. (4.76b)–(4.76e), only the forward
completeness of (4.76a) remains before forward completeness may be concluded for
the whole closed-loop system (4.76). To show forward completeness of the along-
and cross-track error dynamics, consider the LFC

𝑉2 =
1
2

(
𝑥
𝑝

𝑝𝑏

)2
+ 1
2

(
𝑦
𝑝

𝑝𝑏

)2
, (A.9)

whose derivative along the solutions of (4.76a) is

¤𝑉2 = −𝑘𝜃

(
𝑥
𝑝

𝑝𝑏

)2√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 − 1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) (
𝑦
𝑝

𝑝𝑏

)2√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 +𝐺1(·)𝑦𝑝𝑝𝑏 (A.10)

≤ 𝐺1(·)𝑦𝑝𝑝𝑏 +
(
𝑥
𝑝

𝑝𝑏

)2
(A.11)

Using Young’s inequality, along with the bounds on 𝐺1(·) from (4.44) the following
bound is obtained

¤𝑉2 ≤ 𝑉2 +
1
2
𝜁 21

(
𝑈𝑑,1,𝑈𝑑,2

) 


[𝜓1 𝑢̃1 𝜓2 𝑢̃2 ]𝑇



2 (A.12)
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≤ 𝑉2 + 𝜎2
(
𝑣1, 𝑣2,𝜓1, 𝑢̃1,𝜓2, 𝑢̃2

)
, (A.13)

where 𝜎2(·) ∈ K∞. By viewing the arguments of 𝜎2(·) as inputs to the along- and
cross-track error dynamics, (Angeli and Sontag; 1999, Corollary 2.11) is satisfied
by (A.12) and forward completeness of the solutions of (4.76a) can be concluded.
Similarly to Belleter et al. (2018), the arguments of 𝜎2(·) are all forward complete,
and are therefore valid input signals according to Angeli and Sontag (1999). Forward
completeness for the whole closed-loop system (4.76) is therefore established, and
the proof of Lemma 4.2 is complete.

A.2 Proof of Lemma 4.3

This proof follows along the lines of (Belleter et al.; 2018, Lemma 2).

Recall the sway dynamics (4.76e):

¤𝑣𝑖 = 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑑𝑖 + 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑖
+ 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣𝑖 − 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣𝑐 . (A.14)

Considering the following Lyapunov function candidate𝑉 (𝑣𝑖) = 1
2𝑣

2
𝑖 , whose time

derivative along the solutions of (4.76e) is

¤𝑉 = 𝑣𝑖 ¤𝑣𝑖 = 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑑𝑖𝑣𝑖 + 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑖𝑣𝑖
+ 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣2𝑖 − 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣𝑐𝑣𝑖 (A.15)

≤ 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑟𝑑𝑖𝑣𝑖 + 𝑎𝑥𝑢̃𝑖𝑟𝑑,𝑖𝑣𝑖 + 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑟𝑖𝑣𝑖 + 𝑎𝑥𝑢̃𝑖𝑟𝑖𝑣𝑖
+ 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑣2𝑖 + 𝑎𝑦𝑢̃𝑖𝑣2𝑖 − 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑣𝑐𝑣𝑖 − 𝑎𝑦𝑢̃𝑖𝑣𝑐𝑣𝑖 , (A.16)

where the following fact, which can be concluded to hold for 𝑋 (𝑢,𝑢𝑐) and 𝑌 (𝑢,𝑢𝑐)
from Eqs. (C.2)–(C.3) is used:

𝑋 (𝑢,𝑢𝑐) = 𝑎𝑥𝑢 + 𝑏𝑥𝑢𝑐 + 𝑐𝑥 (A.17)

𝑌 (𝑢,𝑢𝑐) = 𝑎𝑦𝑢 + 𝑏𝑦𝑢𝑐 + 𝑐𝑦 . (A.18)

Next, consider the term 𝑟𝑑,𝑖𝑣𝑖 using the expression for 𝑟𝑑 in (4.74), omitting
subscripts for simplicity

𝑟𝑑𝑣 = 𝜅 (𝜃 ) ¤𝜃𝑣 +
¤𝑢𝑑

𝑢2
𝑑
+ 𝑣2

𝑣2 − 𝑢𝑑 ¤𝑣𝑣
𝑢2
𝑑
+ 𝑣2
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− 𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 [
Δ ¤𝑦𝑝

𝑝𝑏
− 𝑦𝑝

𝑝𝑏

(
𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

¤𝑥𝑝
𝑝𝑏

+ 𝜕Δ

𝜕𝑦
𝑝

𝑝𝑏

¤𝑦𝑝
𝑝𝑏

)]
(A.19)

= 𝜅 (𝜃 )𝑣
©­­­­«
1
2
𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 cos

(
𝜒2 − 𝛾𝑝

)
+

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 ª®®®®¬
+ ¤𝑢𝑑
𝑢2
𝑑
+ 𝑣2

𝑣2 − 𝑢𝑑𝑣

𝑢2
𝑑
+ 𝑣2

(
𝑋 (𝑢,𝑢𝑐)𝑟 + 𝑌 (𝑢,𝑢𝑐)𝑣 − 𝑌 (𝑢,𝑢𝑐)𝑣𝑐

)

− Δ𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 ©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏

+𝐺1(·)
ª®®®®¬

+
𝑦
𝑝

𝑝𝑏
𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2

𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

©­­­­«
−

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝜃𝜅 (𝜃 )𝑦𝑝
𝑝𝑏

ª®®®®¬
+ 𝜕Δ

𝜕𝑦
𝑝

𝑝𝑏

©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏

+𝐺1(·)
ª®®®®¬

. (A.20)

Now, introduce a term 𝐹 (X̃1, X̃2,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑐 , 𝑟 ) to collect all terms that
grows linearly with 𝑣 and the terms that grow quadratically with 𝑣 but vanish when
X̃1 and X̃2 are zero:

𝑟𝑑𝑣 = 𝑣

1 +
Δ𝑥

𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2  𝜅 (𝜃 )
(
1
2
𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 cos

(
𝜒2 − 𝛾𝑝

) )
− 𝑢𝑑

𝑢2
𝑑
+ 𝑣2

𝑌 (𝑢,𝑢𝑐)𝑣2 + 𝐹 (X̃1, X̃2,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑐 , 𝑟 ), (A.21)

where the expression for ¤𝜃 has been inserted in the second last term on the third line
in (A.20) to extract the second term in the first parenthesis on the first line of (A.21)
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and 𝐹 (·) is given by

𝐹 (·) = 𝑣


𝜅 (𝜃 )

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝑢𝑑
𝑢2
𝑑
+ 𝑣2

𝑣2 − 𝑢𝑑𝑣

𝑢2
𝑑
+ 𝑣2

(
𝑋 (𝑢,𝑢𝑐)𝑟 − 𝑌 (𝑢,𝑢𝑐)𝑣𝑐

)

− Δ

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 ©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 )
𝑘𝜃

(
𝑥
𝑝

𝑝𝑏

)2√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 +𝐺1(·)
ª®®®®¬

−
𝑦
𝑝

𝑝𝑏
𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2

𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2
+ 𝜕Δ

𝜕𝑦
𝑝

𝑝𝑏

©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 +𝐺1(·)
ª®®®®¬


. (A.22)

Observe how all terms with partial derivatives of Δ and ¤𝜃 are cancelled due to
skew-symmetry from the definition of the lookahead distance (4.38)

Δ

𝑥
𝑝

𝑝𝑏

¤𝜃𝜅 (𝜃 )𝑦𝑝
𝑝𝑏

− Δ

𝑦
𝑝

𝑝𝑏

¤𝜃𝜅 (𝜃 )𝑥𝑝
𝑝𝑏

=

=
𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2
+

(
𝑦
𝑝

𝑝𝑏

)2 ¤𝜃𝜅 (𝜃 )𝑦𝑝𝑝𝑏 − 𝑦
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2
+

(
𝑦
𝑝

𝑝𝑏

)2 ¤𝜃𝜅 (𝜃 )𝑥𝑝𝑝𝑏 = 0. (A.23)

Furthermore, from (A.22) it can be seen that the function 𝐹 (·) may be upper bounded
by the following inequality

|𝐹 (·) | ≤ 𝐹2(X̃1, X̃2,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑐 , 𝑟 )𝑣2 + 𝐹1(X̃1, X̃2,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑐 , 𝑟 ) |𝑣 |,
(A.24)

where 𝐹1,2(·) are positive functions with

𝐹2(0, 0,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑣) = 0. (A.25)
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Consequently, the term 𝑟𝑑𝑣 may be upper bounded as

𝑟𝑑,𝑖𝑣𝑖 ≤ |𝑣𝑖 |

�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� |𝜅 (𝜃 ) | 12 (

|𝑈𝑖 | + |𝑈 𝑗 |
)
+ |𝐹 (·) |

−
𝑢𝑑,𝑖

𝑢2
𝑑,𝑖

+ 𝑣2
𝑖

𝑌 (𝑢𝑖 , 𝑢𝑐)𝑣2𝑖 (A.26)

≤ |𝑣𝑖 |

�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� |𝜅 (𝜃 ) | 12 (

|𝑢𝑖 | + |𝑣𝑖 | + |𝑢 𝑗 | + |𝑣 𝑗 |
)
+ |𝐹 (·) |

−
𝑢𝑑,𝑖

𝑢2
𝑑,𝑖

+ 𝑣2
𝑖

𝑌 (𝑢𝑖 , 𝑢𝑐)𝑣2𝑖 (A.27)

≤ 1
2

�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� |𝜅 (𝜃 ) |𝑣2𝑖 − 𝑢𝑑,𝑖

𝑢2
𝑑,𝑖

+ 𝑣2
𝑖

𝑌 (𝑢𝑖 , 𝑢𝑐)𝑣2𝑖 + |𝐹 (·) |

+ 1
2

�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� |𝜅 (𝜃 ) | ( |𝑢𝑖 | + |𝑢 𝑗 | + |𝑣 𝑗 |

)
|𝑣𝑖 | (A.28)

≤ |𝜅 (𝜃 ) |𝑣2𝑖 −
𝑢𝑑,𝑖

𝑢2
𝑑,𝑖

+ 𝑣2
𝑖

𝑌 (𝑢𝑖 , 𝑢𝑐)𝑣2𝑖 + |𝐹 (·) |

+ |𝜅 (𝜃 ) |
(
|𝑢𝑖 | + |𝑢 𝑗 | + |𝑣 𝑗 |

)
|𝑣𝑖 |, (A.29)

where it has been used the following boundedness properties�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� ≤ 2. (A.30)

Remark A.1. To be able to have |𝐹 (·) | be upper bounded by a quadratic function of

𝑣 , it is necessary to choose Δ dependent on 𝑥𝑝
𝑝𝑏

in (4.38). However, contrary to Belleter

et al. (2019), the lookahead distance (4.38) could be chosen independently of 𝑦𝑝
𝑝𝑏

as the

guidance law (4.39) does not include the ocean current compensation term 𝑔. The proof

of this is found in Section A.2.1.

Substituting this into (A.16) gives

¤𝑉 ≤
[
|𝜅 (𝜃 ) |𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐) + 𝑌 (𝑢𝑖 , 𝑢𝑐)

]
𝑣2𝑖 + 𝑎𝑥𝑢̃𝑖𝑟𝑑,𝑖𝑣𝑖 + 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑟𝑖𝑣𝑖 + 𝑎𝑥𝑢̃𝑖𝑟𝑖𝑣𝑖

+ 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑣2𝑖 + 𝑎𝑦𝑢̃𝑖𝑣2𝑖 − 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑣𝑐𝑣𝑖 − 𝑎𝑦𝑢̃𝑖𝑣𝑐𝑣𝑖
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+ 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)
[
|𝐹 (·) | + |𝜅 (𝜃 ) |

(
|𝑢𝑖 | + |𝑢 𝑗 | + |𝑣 𝑗 |

) ]
|𝑣𝑖 |. (A.31)

On the manifold where (X̃1, X̃2) = 0, (A.31) simplifies to

¤𝑉 ≤ [|𝜅 (𝜃 ) |𝑋max + 𝑌min] 𝑣2𝑖
+ 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)

[
𝐹1(0, 0,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑣) + |𝜅 (𝜃 ) |

(
|𝑢𝑖 | + |𝑢 𝑗 | + |𝑣 𝑗 |

) ]
|𝑣𝑖 |.

(A.32)

For sufficiently large 𝑣𝑖 , it can be observed that the quadratic term in is dominant.
Consequently, boundedness of (A.32) is guaranteed as long it is negative definite for
sufficiently large 𝑣𝑖 , that is

|𝜅 (𝜃 ) |𝑋max + 𝑌min < 0, (A.33)

which are true whenever the maximum curvature satisfies (4.77). As ¤𝑉 is negative for
sufficiently large 𝑣𝑖 , this implies that𝑉 decreases for sufficiently large 𝑣𝑖 . Furthermore
given the definition𝑉 (𝑣𝑖) = 1

2𝑣
2
𝑖 , a decrease in𝑉 implies a decrease in 𝑣2𝑖 and again in

𝑣𝑖 . In other words, 𝑣𝑖 cannot increase above a certain threshold because this will make
the quadratic term of (A.32) dominant preventing further increase of 𝑣𝑖 . Hence, 𝑣𝑖 is
bounded near the manifold where (X̃1, X̃2) = 0, concluding the proof of Lemma 4.3.

A.2.1 Importance of the choice of lookahead
distance in Eq. (4.38)

The necessity for choosing Δ dependent on 𝑥𝑝
𝑝𝑏

in (4.38) becomes evident from (A.20).
If Δ is chosen independently of 𝑥𝑝

𝑝𝑏
and 𝑦𝑝

𝑝𝑏
, (A.20) reduces to

𝑟𝑑𝑣 = 𝜅 (𝜃 )𝑣
©­­­­«
1
2
𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 cos

(
𝜒2 − 𝛾𝑝

)
+

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 ª®®®®¬
+ ¤𝑢𝑑
𝑢2
𝑑
+ 𝑣2

𝑣2 − 𝑢𝑑𝑣

𝑢2
𝑑
+ 𝑣2

(
𝑋 (𝑢,𝑢𝑐)𝑟 + 𝑌 (𝑢,𝑢𝑐)𝑣 − 𝑌 (𝑢,𝑢𝑐)𝑣𝑐

)

− Δ𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 ©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏

+𝐺1(·)
ª®®®®¬
, (A.34)
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as the partial derivatives of Δ with respect to 𝑥𝑝
𝑝𝑏

and 𝑦𝑝
𝑝𝑏

in this case will be zero.
Now, looking more closely at the term

𝑣
Δ𝜅 (𝜃 ) ¤𝜃𝑥𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 . (A.35)

Focusing on the vessel 𝑖 . Inserting the expression for ¤𝜃 , and isolating the part
independent of 𝑥𝑝

𝑝𝑏
and depending on the part𝑈𝑑,𝑖 :

𝑣𝑖

Δ𝜅 (𝜃 )𝑥𝑝
𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 12𝑈𝑖 cos
(
𝜒𝑖 − 𝛾𝑝

)
. (A.36)

As𝑈𝑖 =

√
𝑢2
𝑖
+ 𝑣2

𝑖
, the growth og𝑈𝑖 is proportional with 𝑣𝑖 , implying that the growth

of (A.36) can be represented by

𝑣2𝑖

Δ𝜅 (𝜃 )𝑥𝑝
𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 . (A.37)

If Δ is chosen independently of 𝑥𝑝
𝑝𝑏

it is clear how this term will go to infinity for
large values of 𝑥𝑝

𝑝𝑏
. If Δ is chosen to grow at least linearly with 𝑥𝑝

𝑝𝑏
then this term

will go to a constant as

lim
𝑥
𝑝

𝑝𝑏
→∞

𝜅 (𝜃 )
(
𝑥
𝑝

𝑝𝑏

)2(
𝑥
𝑝

𝑝𝑏

)2
+

(
𝑦
𝑝

𝑝𝑏

)2 = 1, (A.38)

or to zero if Δ grows more than linear in 𝑥𝑝
𝑝𝑏
. Hence, if this would be the case, 𝑟𝑑𝑣

could grow unbounded with 𝑥𝑝
𝑝𝑏

making it impossible to show boundedness of the
sway dynamics.

In Belleter et al. (2018) is was shown that the lookahead distance also needed to
be chosen dependent on 𝑦𝑏/𝑝 , as a term that could grow unbounded in 𝑦𝑏/𝑝 near the
manifold where 𝑔 = −(𝑦𝑏/𝑝 + 1) was shown to exist. However, since the proposed
method in this thesis is based on absolute velocities, the extra term 𝑔, which was
used to compensate for the ocean currents, is not present in the expression (A.20).
Proving this is straight forward. Assume that Δ depends only on 𝑥𝑝

𝑝𝑏
, then (A.20)
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reduces to

𝑟𝑑𝑣 = 𝜅 (𝜃 )𝑣
©­­­­«
1
2
𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 cos

(
𝜒2 − 𝛾𝑝

)
+

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 ª®®®®¬
+ ¤𝑢𝑑
𝑢2
𝑑
+ 𝑣2

𝑣2 − 𝑢𝑑𝑣

𝑢2
𝑑
+ 𝑣2

(
𝑋 (𝑢,𝑢𝑐)𝑟 + 𝑌 (𝑢,𝑢𝑐)𝑣 − 𝑌 (𝑢,𝑢𝑐)𝑣𝑐

)

− Δ𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 ©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏

+𝐺1(·)
ª®®®®¬

+
𝑦
𝑝

𝑝𝑏
𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2

𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

©­­­­«
−

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝜃𝜅 (𝜃 )𝑦𝑝
𝑝𝑏

ª®®®®¬

. (A.39)

Using the same approach as earlier, the term

𝑣
𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

𝜅 (𝜃 ) ¤𝜃

(
𝑦
𝑝

𝑝𝑏

)2
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 (A.40)

may be isolated, which with the same reasoning as before reduces to

𝑣2𝑖
𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

𝜅 (𝜃 )

(
𝑦
𝑝

𝑝𝑏

)2
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 . (A.41)

It is clear how this term is bounded for all values of 𝑦𝑝
𝑝𝑏

even if Δ depends only on
𝑥
𝑝

𝑝𝑏
. When comparing this to the term from Belleter et al. (2018):

𝑣2𝑟
𝐶𝑟

𝜕Δ

𝜕𝑥𝑏/𝑝
𝜅 (𝜃 )

Δ𝑦𝑏/𝑝 (𝑦𝑏/𝑝 + 𝑔)(
Δ2 +

(
𝑦𝑏/𝑝 + 𝑔

)2)3/2 , (A.42)

it is clear how this could grow unbounded in 𝑦𝑏/𝑝 near the manifold where 𝑔 =

−(𝑦𝑏/𝑝 + 1) as the term in this case would reduce to

𝑣2𝑟
𝐶𝑟

𝜕Δ

𝜕𝑥𝑏/𝑝
𝜅 (𝜃 )

Δ𝑦𝑏/𝑝

(Δ2 + 1)3/2
, (A.43)
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which can only be bounded by choosing Δ dependent on 𝑦𝑏/𝑝 .

However, as the term (A.41) does not include the term 𝑔 there are no manifold
where it can grow unbounded in 𝑦𝑝

𝑝𝑏
, implying the lookahead distance (4.38) could

be chosen independently of 𝑦𝑝
𝑝𝑏
.

A.3 Proof of Lemma 4.4

This proof follows along the lines of (Belleter et al.; 2018, Lemma 3).

Recall the sway dynamics (4.76e):

¤𝑣𝑖 = 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑑𝑖 + 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑖
+ 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣𝑖 − 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣𝑐 . (A.44)

Considering the following Lyapunov function candidate𝑉 (𝑣𝑖) = 1
2𝑣

2
𝑖 , whose time

derivative along the solutions of (4.76e) is

¤𝑉 = 𝑣𝑖 ¤𝑣𝑖 = 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑑𝑖𝑣𝑖 + 𝑋 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑟𝑖𝑣𝑖
+ 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣2𝑖 − 𝑌 (𝑢𝑑,𝑖 + 𝑢̃𝑖 , 𝑢𝑐)𝑣𝑐𝑣𝑖 (A.45)

≤ 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑟𝑑𝑖𝑣𝑖 + 𝑎𝑥𝑢̃𝑖𝑟𝑑,𝑖𝑣𝑖 + 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑟𝑖𝑣𝑖 + 𝑎𝑥𝑢̃𝑖𝑟𝑖𝑣𝑖
+ 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑣2𝑖 + 𝑎𝑦𝑢̃𝑖𝑣2𝑖 − 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑣𝑐𝑣𝑖 − 𝑎𝑦𝑢̃𝑖𝑣𝑐𝑣𝑖 , (A.46)

where the following fact, which can be concluded to hold for 𝑋 (𝑢,𝑢𝑐) and 𝑌 (𝑢,𝑢𝑐)
from Eqs. (C.2)–(C.3) is used:

𝑋 (𝑢,𝑢𝑐) = 𝑎𝑥𝑢 + 𝑏𝑥𝑢𝑐 + 𝑐𝑥 (A.47)

𝑌 (𝑢,𝑢𝑐) = 𝑎𝑦𝑢 + 𝑏𝑦𝑢𝑐 + 𝑐𝑦 . (A.48)

Next, consider the term 𝑟𝑑,𝑖𝑣𝑖 using the expression for 𝑟𝑑 in (4.74), omitting
subscripts for simplicity

𝑟𝑑𝑣 = 𝜅 (𝜃 ) ¤𝜃𝑣 +
¤𝑢𝑑

𝑢2
𝑑
+ 𝑣2

𝑣2 − 𝑢𝑑 ¤𝑣𝑣
𝑢2
𝑑
+ 𝑣2

− 𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 [
Δ ¤𝑦𝑝

𝑝𝑏
− 𝑦𝑝

𝑝𝑏

(
𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

¤𝑥𝑝
𝑝𝑏

+ 𝜕Δ

𝜕𝑦
𝑝

𝑝𝑏

¤𝑦𝑝
𝑝𝑏

)]
(A.49)
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= 𝜅 (𝜃 )𝑣
©­­­­«
1
2
𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 cos

(
𝜒2 − 𝛾𝑝

)
+

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 ª®®®®¬
+ ¤𝑢𝑑
𝑢2
𝑑
+ 𝑣2

𝑣2 − 𝑢𝑑𝑣

𝑢2
𝑑
+ 𝑣2

(
𝑋 (𝑢,𝑢𝑐)𝑟 + 𝑌 (𝑢,𝑢𝑐)𝑣 − 𝑌 (𝑢,𝑢𝑐)𝑣𝑐

)

− Δ𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 ©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏

+𝐺1(·)
ª®®®®¬

+
𝑦
𝑝

𝑝𝑏
𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2

𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

©­­­­«
−

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝜃𝜅 (𝜃 )𝑦𝑝
𝑝𝑏

ª®®®®¬
+ 𝜕Δ

𝜕𝑦
𝑝

𝑝𝑏

©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏

+𝐺1(·)
ª®®®®¬

. (A.50)

Now, introduce a term 𝐻 (X̃1, X̃2,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑐 , 𝑟 ) to collect all terms that
have less than quadratic growth in 𝑣 and/or vanish when X̃2 = 0.

𝑟𝑑𝑣 = 𝜅 (𝜃 )𝑣
1 +

𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
(
1
2
𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 cos

(
𝜒2 − 𝛾𝑝

) )

− Δ𝑣

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 ©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 +𝐺1(·)
ª®®®®¬

−
Δ𝑦

𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 𝜕Δ

𝜕𝑦
𝑝

𝑝𝑏

©­­­­«
−1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2 +𝐺1(·)
ª®®®®¬

− 𝑢𝑑

𝑢2
𝑑
+ 𝑣2

𝑌 (𝑢,𝑢𝑐)𝑣2 + 𝐻 (·) (A.51)
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where

𝐻 (·) = 𝑣


𝜅 (𝜃 )

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 + ¤𝑢𝑑𝑣
𝑢2
𝑑
+ 𝑣2

− 𝑢𝑑𝑣

𝑢2
𝑑
+ 𝑣2

(
𝑋 (𝑢,𝑢𝑐)𝑟 − 𝑌 (𝑢,𝑢𝑐)𝑣𝑐

)

+ Δ

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2𝜅 (𝜃 ) 𝑘𝜃

(
𝑥
𝑝

𝑝𝑏

)2√
1 +

(
𝑥
𝑝

𝑝𝑏

)2 −
𝑦
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 𝜕Δ

𝜕𝑥
𝑝

𝑝𝑏

𝑘𝜃𝑥
𝑝

𝑝𝑏√
1 +

(
𝑥
𝑝

𝑝𝑏

)2

. (A.52)

Similarly to Section A.2, all terms with partial derivatives of Δ and ¤𝜃 are cancelled
due to skew-symmetry due to the choice of lookahead distance (4.38). Consequently,
the term 𝑟𝑑𝑣 may be upper bounded as

𝑟𝑑,𝑖𝑣𝑖 ≤ |𝑣𝑖 |

�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� |𝜅 (𝜃 ) | 12 (

|𝑈𝑖 | + |𝑈 𝑗 |
)

+ |𝑣𝑖 |
���� 1Δ ���� 12 (

|𝑈𝑑,𝑖 | + |𝑈𝑑,𝑗 | + |𝐺1(·) |
)

+ |𝑣𝑖 |

�������
𝑦
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2
������� 12 (

|𝑈𝑑,𝑖 | + |𝑈𝑑,𝑗 | + |𝐺1(·) |
)

−
𝑢𝑑,𝑖

𝑢2
𝑑,𝑖

+ 𝑣2
𝑖

𝑌 (𝑢𝑖 , 𝑢𝑐)𝑣2𝑖 + |𝐻 (·). (A.53)

Next, substituting the following inequalities�������
𝑦
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2
������� ≤

���� 1Δ ���� (A.54)

|𝑈𝑑,𝑖 | ≤ 4( |𝑢𝑖 | + |𝑣𝑖 | + |𝑢̃𝑖 |, (A.55)

the bound on 𝑟𝑑𝑣 in (A.53) may further be given as

𝑟𝑑,𝑖𝑣𝑖 ≤
1
2
𝑣2𝑖

�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� |𝜅 (𝜃 ) | + 1

2
|𝑣𝑖 |

�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� |𝜅 (𝜃 ) | |𝑢𝑖 |
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+ 1
2
|𝑣𝑖 |

�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� |𝜅 (𝜃 ) | |𝑈 𝑗 | −

𝑢𝑑,𝑖

𝑢2
𝑑,𝑖

+ 𝑣2
𝑖

𝑌 (𝑢𝑖 , 𝑢𝑐)𝑣2𝑖 + |𝐻 (·) |

+ |𝑣𝑖 |
���� 2Δ ���� (2 ( |𝑢𝑖 | + |𝑣𝑖 |) +

1
2
|𝑢̃𝑖 | + 2

(
|𝑢 𝑗 | + |𝑣 𝑗 |

)
+ 1
2
|𝑢̃ 𝑗 | + |𝐺1(·) |

)
(A.56)

≤ 𝑣2𝑖


1
2
|𝜅 (𝜃 ) |

�������
1 +

Δ𝑥
𝑝

𝑝𝑏

Δ2 +
(
𝑦
𝑝

𝑝𝑏

)2 
������� + 4

Δ

 −
𝑢𝑑,𝑖

𝑢2
𝑑,𝑖

+ 𝑣2
𝑖

𝑌 (𝑢𝑖 , 𝑢𝑐)𝑣2𝑖 + Φ(·) (A.57)

≤ 𝑣2𝑖
[
|𝜅 (𝜃 ) | + 4

Δ

]
−

𝑢𝑑,𝑖

𝑢2
𝑑,𝑖

+ 𝑣2
𝑖

𝑌 (𝑢𝑖 , 𝑢𝑐)𝑣2𝑖 + Φ(·), (A.58)

where the inequality (A.30) is used, and the function Φ(·) is introduced to collect
the remaining terms that have less than quadratic growth in 𝑣𝑖 and/or vanish when
X̃2 = 0. From the definitions of Φ(·) and 𝐻 (·) it is obvious that there exists some
positive bounded functions 𝐹0,2(X̃1, X̃2,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑐 , 𝑟 ) such that

Φ(·) ≤ 𝐹2(·)𝑣2𝑖 + 𝐹2(·) |𝑣𝑖 | + 𝐹0(·), (A.59)

with
𝐹2(X̃1, 0,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑐 , 𝑟 ) = 0. (A.60)

Hence, substituting the bound (A.58) into (A.46), the following bound for the Lya-
punov function candidate derivative is obtained

¤𝑉 ≤ 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)
( [
|𝜅 (𝜃 ) | + 4

Δ

]
𝑣2𝑖 + Φ(·)

)
+ 𝑎𝑥𝑢̃𝑖𝑟𝑑,𝑖𝑣𝑖 + 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑟𝑖𝑣𝑖 + 𝑎𝑥𝑢̃𝑖𝑟𝑖𝑣𝑖

+ 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑣2𝑖 + 𝑎𝑦𝑢̃𝑖𝑣2𝑖 − 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑣𝑐𝑣𝑖 − 𝑎𝑦𝑢̃𝑖𝑣𝑐𝑣𝑖 −
𝑢𝑑,𝑖

𝑢2
𝑑,𝑖

+ 𝑣2
𝑖

𝑌 (𝑢𝑖 , 𝑢𝑐)𝑣2𝑖

(A.61)

≤
(
𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)

[
|𝜅 (𝜃 ) | + 4

Δ

]
− 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)

)
𝑣2𝑖 + 𝑎𝑥𝑢̃𝑖𝑟𝑑,𝑖𝑣𝑖 + 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑟𝑖𝑣𝑖 + 𝑎𝑥𝑢̃𝑖𝑟𝑖𝑣𝑖

+ 𝑎𝑦𝑢̃𝑖𝑣2𝑖 − 𝑌 (𝑢𝑑,𝑖 , 𝑢𝑐)𝑣𝑐𝑣𝑖 − 𝑎𝑦𝑢̃𝑖𝑣𝑐𝑣𝑖 + 𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)Φ(·) . (A.62)

On the manifold where X̃2 = 0, the following bound is obtained

¤𝑉 ≤
(
𝑋max

[
𝜅max +

4
Δ

]
− 𝑌min

)
𝑣2𝑖

𝑋 (𝑢𝑑,𝑖 , 𝑢𝑐)
(
𝐹1(X̃1, 0,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑐 , 𝑟 ) |𝑣𝑖 |

+ 𝐹0(X̃1, 0,Δ, 𝜃,𝑢𝑑 , ¤𝑢𝑑 , 𝑣, 𝑣𝑐 , 𝑢𝑐 , 𝑟 )
)
. (A.63)
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For sufficiently large 𝑣𝑖 , it can be observed that the quadratic term is dominant.
Hence, boundedness of 𝑣𝑟 near the manifold X̃2 = 0 is guaranteed whenever the
following condition holds

𝑋max

[
𝜅max +

4
Δ

]
− 𝑌min < 0, (A.64)

such that the quadratic term is negative definite. Using the lookahead distance
definition (4.38), it can be seen that this condition is fulfilled whenever

𝜇 >
4𝑋max

𝑌min − 𝜅max𝑋max
. (A.65)

Furthermore, observe how this is well defined as the denominator is nonzero and
positive whenever the condition from Lemma 4.3 is satisfied. As ¤𝑉 is negative
definite for sufficiently large mangnitudes of 𝑣𝑖 near the manifold X̃2 = 0, the
Lyapunov function candidate𝑉 (𝑣𝑖) = 1

2𝑣
2
𝑖 must decrease for sufficiently large 𝑣𝑖 , and

by extension, the magnitude of 𝑣𝑖 must decrease for sufficiently large 𝑣𝑖 . Hence, 𝑣𝑖
is bounded near the manifold where X̃2 = 0 if the constant part of the lookahead
distance 𝜇 is chosen accordingly to the condition in Lemma 4.4.



B | Derivations of expressions

In this appendix, thorough derivations of various expressions throughout the thesis
are presented. The derivations are left out in their respective locations throughout
the thesis for readability, and instead given here in their full length.

B.1 Derivations of Eq. (4.30)

This sections presents the derivations of (4.30). Taking the time derivative of (4.29a)
gives

¤𝑥𝑝
𝑝𝑏

= ( ¤𝑥𝑏 − ¤𝑥𝑝) cos𝛾𝑝 − (𝑥𝑏 − 𝑥𝑝) ¤𝛾𝑝 sin𝛾𝑝

+ ( ¤𝑦𝑏 − ¤𝑦𝑝) sin𝛾𝑝 + (𝑦𝑏 − 𝑦𝑝) ¤𝛾𝑝 cos𝛾𝑝 . (B.1)

Using the fact that ¤𝛾𝑝 = 𝜅 (𝜃 ) ¤𝜃 , and by inserting the barycenter kinematics (4.28), the
above equation may be rearranged to

¤𝑥𝑝
𝑝𝑏

= ¤𝑥𝑏 cos𝛾𝑝 − ¤𝑥𝑝 cos𝛾𝑝 + ¤𝑦𝑏 sin𝛾𝑝 − ¤𝑦𝑝 sin𝛾𝑝

+ 𝜅 (𝜃 ) ¤𝜃
[
(𝑦𝑏 − 𝑦𝑝) sin𝛾𝑝 − (𝑥𝑏 − 𝑥𝑝) cos𝛾𝑝

]
(B.2)

=
1
2

[
𝑢1 cos𝜓1 − 𝑣1 sin𝜓1 + 𝑢2 cos𝜓2 − 𝑣2 sin𝜓2

]
cos𝛾𝑝

+ 1
2

[
𝑢1 sin𝜓1 + 𝑣1 cos𝜓1 + 𝑢2 sin𝜓2 + 𝑣2 cos𝜓2

]
sin𝛾𝑝

+ 𝜅 (𝜃 ) ¤𝜃𝑦𝑝
𝑝𝑏

− ¤𝑥𝑝 cos𝛾𝑝 − ¤𝑦𝑝 sin𝛾𝑝 . (B.3)

Next, it is known that the kinematics of vessel 𝑖 may be expressed in terms of the
total speed𝑈 =

√
𝑢2 + 𝑣2 and the course 𝜒𝑖 as

𝑢𝑖 cos𝜓𝑖 − 𝑣𝑖 sin𝜓𝑖 = 𝑈𝑖 cos 𝜒𝑖 (B.4)

𝑢𝑖 sin𝜓𝑖 + 𝑣𝑖 cos𝜓𝑖 = 𝑈𝑖 sin 𝜒𝑖 . (B.5)

143
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Furthermore, by taking a closer look at the two last terms in (B.3) it can be observed
that ¤𝑥𝑝 cos𝛾𝑝 + ¤𝑦𝑝 sin𝛾𝑝 represents the movement of p𝑝 along the path, and thus is
equal to ¤𝜃 . Thus, (B.3) may be further simplified to

¤𝑥𝑝
𝑝𝑏

=
1
2

[
𝑈1 cos 𝜒1 +𝑈2 cos 𝜒2

]
cos𝛾𝑝

+ 1
2

[
𝑈1 sin 𝜒1 +𝑈2 sin 𝜒2

]
sin𝛾𝑝 − ¤𝜃

(
1 − 𝜅 (𝜃 ) ¤𝜃𝑦𝑝

𝑝𝑏

)
(B.6)

=
1
2
𝑈1 cos

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 cos

(
𝜒2 − 𝛾𝑝

)
− ¤𝜃 (1 − 𝜅 (𝜃 )𝑦𝑝

𝑝𝑏
, (B.7)

where the trigonometric sum formula has been used to obtain the last equation,
which is the expression given in (4.30a). Similarly, the cross-track error dynamics
are obtained by taking the time derivative of (4.29b)

¤𝑦𝑝
𝑝𝑏

= −( ¤𝑥𝑏 − ¤𝑥𝑝) sin𝛾𝑝 − (𝑥𝑏 − 𝑥𝑝) ¤𝛾𝑝 cos𝛾𝑝

+ ( ¤𝑦𝑏 − ¤𝑦𝑝) cos𝛾𝑝 − (𝑦𝑏 − 𝑦𝑝) ¤𝛾𝑝 sin𝛾𝑝 (B.8)

= − ¤𝑥𝑏 sin𝛾𝑝 + ¤𝑥𝑝 sin𝛾𝑝 + ¤𝑦𝑏 cos𝛾𝑝 − ¤𝑦𝑝 cos𝛾𝑝
− 𝜅 (𝜃 ) ¤𝜃

[
(𝑥𝑏 − 𝑥𝑝) cos𝛾𝑝 + (𝑦𝑏 − 𝑦𝑝) sin𝛾𝑝

]
(B.9)

= − ¤𝑥𝑏 sin𝛾𝑝 + ¤𝑦𝑏 cos𝛾𝑝 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝𝑝𝑏
+ ¤𝑥𝑝 sin𝛾𝑝 − ¤𝑦𝑝 cos𝛾𝑝 . (B.10)

Again, take a closer look at the last two terms. While they in (B.3) represented
the movement of p𝑝 along the path, the two last terms in (B.10) represents the
movement of p𝑝 perpendicular to the path. As p𝑝 is obviously on the path at all
times by definition, these terms are equal to zero. Next, by inserting the barycenter
kinematics, and performing the same rearrangements as for the along-path error
dynamics, the following expression is obtained

¤𝑦𝑝
𝑝𝑏

= −1
2

[
𝑢1 cos𝜓1 − 𝑣1 sin𝜓1 + 𝑢2 cos𝜓2 − 𝑣2 sin𝜓2

]
sin𝛾𝑝

+ 1
2

[
𝑢1 sin𝜓1 + 𝑣1 cos𝜓1 + 𝑢2 sin𝜓2 + 𝑣2 cos𝜓2

]
cos𝛾𝑝

− 𝜅 (𝜃 ) ¤𝜃𝑥𝑝
𝑝𝑏

(B.11)

= −1
2

[
𝑈1 cos 𝜒1 +𝑈2 cos 𝜒2

]
sin𝛾𝑝

+ 1
2

[
𝑈1 sin 𝜒1 +𝑈2 sin 𝜒2

]
cos𝛾𝑝 − 𝜅 (𝜃 ) ¤𝜃𝑥𝑝𝑝𝑏 (B.12)

=
1
2
𝑈1 sin

(
𝜒1 − 𝛾𝑝

)
+ 1
2
𝑈2 sin

(
𝜒2 − 𝛾𝑝

)
− 𝜅 (𝜃 ) ¤𝜃𝑥𝑝

𝑝𝑏
, (B.13)
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which is identical to (4.30b).

B.2 Derivations of Eq. (4.41)

This section presents the derivations of (4.41). First, rewriting the trigonometric
terms of (4.30b) as, omitting subscripts

𝑈 sin
(
𝜒 − 𝛾𝑝

)
= 𝑈 sin

(
𝜓 + 𝛽 − 𝛾𝑝

)
(B.14)

= 𝑈
[
sin

(
𝜓 − 𝛾𝑝

)
cos 𝛽 + cos

(
𝜓 − 𝛾𝑝

)
sin 𝛽

]
. (B.15)

= 𝑢 sin
(
𝜓 − 𝛾𝑝

)
+ 𝑣 cos

(
𝜓 − 𝛾𝑝

)
(B.16)

= [𝑢𝑑 + 𝑢̃] sin
(
𝜓 − 𝛾𝑝

)
+ 𝑣 cos

(
𝜓 − 𝛾𝑝

)
, (B.17)

where the total speed𝑈 was be decomposed into the surge and sway speed through
the crab angle. Next, a trick is performed by converting the first sinusoidal term and
the cosinusoidal term into amplitude-phase form by using the following trigonomtric
identities

𝐴 sin(𝜔𝑡) + 𝐵 cos(𝜔𝑡) = 𝐶 sin(𝜔𝑡 + 𝜙) (B.18a)

𝐶 =
√
𝐴2 + 𝐵2 (B.18b)

𝜙 = arctan
(
𝐵

𝐴

)
. (B.18c)

Here, 𝐴 = 𝑢𝑑 , 𝐵 = 𝑣 giving 𝜙 = arctan
(
𝑣
𝑢𝑑

)
= 𝛽𝑑 and 𝐶 =

√
𝑢2
𝑑
+ 𝑣2 = 𝑈𝑑 , where 𝛽𝑑

is the desired crab angle. Thus, (B.17) may be written as

𝑈 sin
(
𝜒 − 𝛾𝑝

)
= 𝑈𝑑 sin

(
𝜓 + 𝛽𝑑 − 𝛾𝑝

)
+ 𝑢̃ sin

(
𝜓 − 𝛾𝑝

)
(B.19)

= 𝑈𝑑 sin
(
𝜓𝑑 +𝜓 + 𝛽𝑑 − 𝛾𝑝

)
+ 𝑢̃ sin

(
𝜓 − 𝛾𝑝

)
. (B.20)

Using (B.20), (4.30b) can be written as

¤𝑦𝑝
𝑝𝑏

=
1
2
𝑈𝑑,1 sin

(
𝜓𝑑,1 +𝜓1 + 𝛽𝑑,1 − 𝛾𝑝

)
+ 1
2
𝑈𝑑,2 sin

(
𝜓𝑑,2 +𝜓2 + 𝛽𝑑,2 − 𝛾𝑝

)
− 𝜅 (𝜃 ) ¤𝜃𝑥𝑝

𝑝𝑏

+ 1
2
𝑢̃1 sin

(
𝜓1 − 𝛾𝑝

)
+ 1
2
𝑢̃2 sin

(
𝜓2 − 𝛾𝑝

)
, (B.21)
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which is identical to (4.40). Then, substituting the guidance law (4.39) into the first
term of (B.20), again omitting subscript indexes

𝑈𝑑 sin
(
𝜓𝑑 +𝜓 + 𝛽𝑑 − 𝛾𝑝

)
= 𝑈𝑑 sin

(
− arctan

(
𝑦
𝑝

𝑝𝑏

Δ

)
+𝜓

)
(B.22)

= 𝑈𝑑

[
sin

(
− arctan

(
𝑦
𝑝

𝑝𝑏

Δ

))
cos𝜓 + cos

(
− arctan

(
𝑦
𝑝

𝑝𝑏

Δ

))
sin𝜓

]
+𝑈𝑑 sin

(
− arctan

(
𝑦
𝑝

𝑝𝑏

Δ

))
−𝑈𝑑 sin

(
− arctan

(
𝑦
𝑝

𝑝𝑏

Δ

))
. (B.23)

Further, by inserting the trigonometric identity

sin
(
arctan

(
𝑥

𝑦

))
=

𝑥√
𝑥2 + 𝑦2

, (B.24)

into (B.23) the following expression is obtained

𝑈𝑑 sin
(
𝜓𝑑 +𝜓 + 𝛽𝑑 − 𝛾𝑝

)
= −𝑈𝑑 sin

(
𝜓𝑑,1 +𝜓1 + 𝛽𝑑,1 − 𝛾𝑝

)
− 𝜅 (𝜃 ) ¤𝜃𝑥𝑝

𝑝𝑏
+𝐺2(𝜓, 𝑢̃,𝜓𝑑 ,𝑈𝑑 , 𝑦

𝑝

𝑝𝑏
), (B.25)

with

𝐺2(𝜓, 𝑢̃,𝜓𝑑 ,𝑈𝑑 , 𝑦
𝑝

𝑝𝑏
) = 𝑈𝑑

(
1 − cos𝜓

)
sin

(
arctan

(
𝑦
𝑝

𝑝𝑏

Δ

))
+ 𝑢̃ sin

(
𝜓 − 𝛾𝑝

)
+𝑈𝑑 cos

(
arctan

(
𝑦
𝑝

𝑝𝑏

Δ

))
sin𝜓 . (B.26)

Inserting (B.25) into (B.21) gives the expression given in (4.41)

¤𝑦𝑝
𝑝𝑏

= −1
2

(
𝑈𝑑,1 +𝑈𝑑,2

) 𝑦
𝑝

𝑝𝑏√
Δ2 +

(
𝑦
𝑝

𝑝𝑏

)2
− 𝜅 (𝜃 ) ¤𝜃𝑥𝑝

𝑝𝑏
+𝐺1

(
𝜓1, 𝑢̃1,𝜓𝑑,1,𝑈𝑑,1,𝜓2, 𝑢̃2,𝜓𝑑,2,𝑈𝑑,2, 𝑦

𝑝

𝑝𝑏

)
, (B.27)

with

𝐺1(·) =
1
2
𝐺2

(
𝜓1, 𝑢̃1,𝜓𝑑,1,𝑈𝑑,1, 𝑦

𝑝

𝑝𝑏

)
+ 1
2
𝐺2

(
𝜓2, 𝑢̃2,𝜓𝑑,2,𝑈𝑑,2, 𝑦

𝑝

𝑝𝑏

)
. (B.28)
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B.3 Derivations of Eq. (4.64)

To find an expression for the closed-loop error dynamics for the formation task
function, start with the differential relationship (4.3)

¤𝝈 = J𝑓 𝝂 (B.29)

= J𝑓 (𝝂𝑑 + 𝝂̃) . (B.30)

Then, inserting the CLIK control law (4.5) gives (4.63)

¤̃𝝈 = −Λ𝝈̃ − J𝑓 𝝂̃ . (B.31)

Next, the perturbing term will be expressed as a function of the error states of the
autopilots (4.60). It is known that the velocity vector may be expressed using the
total speed and the course of the vessel, omitting vessel indexes

𝝂 =


𝑈 cos(𝜒)

𝑈 sin(𝜒)

 , (B.32)

and similarly, the desired velocity may be expressed by substituting the total speed
and course with the desired total speed and course respectively. The velocity error 𝝂̃
may therefore be expressed as

𝝂̃ =



𝑈1 cos(𝜒1) −𝑈𝑑,1 cos(𝜒𝑑,1)

𝑈1 sin(𝜒1) −𝑈𝑑,1 sin(𝜒𝑑,1)

𝑈2 cos(𝜒2) −𝑈𝑑,2 cos(𝜒𝑑,2)

𝑈2 sin(𝜒2) −𝑈𝑑,2 sin(𝜒𝑑,2)


(B.33)

Now, consider the x components of (B.33), omitting vessel indexes. Using (B.5),
they can be expressed using the surge and sway speed of the vessel

𝑈 cos(𝜒) −𝑈𝑑 cos(𝜒𝑑 ) = 𝑢 cos
(
𝜓𝑑 +𝜓

)
− 𝑣 sin

(
𝜓𝑑 +𝜓

)
− (𝑢𝑑 cos𝜓𝑑 − 𝑣 sin𝜓𝑑 ) (B.34)

= (𝑢𝑑 + 𝑢̃)
[
cos𝜓𝑑 cos𝜓 − sin𝜓𝑑 sin𝜓

]
+ 𝑣

[
sin𝜓𝑑 cos𝜓 − cos𝜓𝑑 sin𝜓

]
− (𝑢𝑑 cos𝜓𝑑 − 𝑣 sin𝜓𝑑 ) (B.35)
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= 𝑢̃ cos𝜓𝑑 cos𝜓 − 𝑢̃ sin𝜓𝑑 sin𝜓

− (𝑢𝑑 cos𝜓𝑑 − 𝑣 sin𝜓𝑑 )
(
1 − cos𝜓

)
− (𝑢𝑑 sin𝜓𝑑 + 𝑣 cos𝜓𝑑 ) sin𝜓 (B.36)

Next, the middle two lines of the last expression is transformed into amplitude-phase
form by using (B.18c) and the corresponding trigonometric identities for cosine

𝐴 cos(𝜔𝑡) + 𝐵 sin(𝜔𝑡) = 𝐶 cos(𝜔𝑡 − 𝜙) (B.37a)

𝐶 =
√
𝐴2 + 𝐵2 (B.37b)

𝜙 = arctan
(
−𝐵
𝐴

)
. (B.37c)

𝑈 cos(𝜒) −𝑈𝑑 cos(𝜒𝑑 ) = 𝑢̃ cos𝜓𝑑 cos𝜓 − 𝑢̃ sin𝜓𝑑 sin𝜓

+𝑈𝑑 cos (𝜓𝑑 + 𝛽𝑑 )
(
1 − cos𝜓

)
−𝑈𝑑 sin (𝜓𝑑 + 𝛽𝑑 ) sin𝜓 (B.38)

= 𝐺3

(
𝜓, 𝑢̃,𝜓𝑑 ,𝑈𝑑 , 𝛽𝑑

)
. (B.39)

By repeating the process for the y components of (B.33)

𝑈 sin(𝜒) −𝑈𝑑 sin(𝜒𝑑 ) = 𝑢 sin
(
𝜓𝑑 +𝜓

)
+ 𝑣 cos

(
𝜓𝑑 +𝜓

)
− (𝑢𝑑 sin𝜓𝑑 + 𝑣 cos𝜓𝑑 ) (B.40)

= (𝑢𝑑 + 𝑢̃)
[
sin𝜓𝑑 cos𝜓 − cos𝜓𝑑 sin𝜓

]
+ 𝑣

[
cos𝜓𝑑 cos𝜓 − sin𝜓𝑑 sin𝜓

]
− (𝑢𝑑 sin𝜓𝑑 + 𝑣 cos𝜓𝑑 ) (B.41)

= 𝑢̃ sin𝜓𝑑 cos𝜓 + 𝑢̃ cos𝜓𝑑 sin𝜓

− (𝑢𝑑 sin𝜓𝑑 + 𝑣 cos𝜓𝑑 )
(
1 − cos𝜓

)
+ (𝑢𝑑 cos𝜓𝑑 − 𝑣 sin𝜓𝑑 ) sin𝜓 (B.42)

= 𝑢̃ sin𝜓𝑑 cos𝜓 + 𝑢̃ cos𝜓𝑑 sin𝜓

−𝑈𝑑 sin (𝜓𝑑 + 𝛽𝑑 )
(
1 − cos𝜓

)
−𝑈𝑑 cos (𝜓𝑑 + 𝛽𝑑 ) sin𝜓 (B.43)

= 𝐺4

(
𝜓, 𝑢̃,𝜓𝑑 ,𝑈𝑑 , 𝛽𝑑

)
. (B.44)
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The velocity error (B.33) may therefore be expressed accordingly to (4.64)

¤̃𝝈 = −Λ𝝈̃ − J𝑓



𝐺3

(
𝜓1, 𝑢̃1,𝜓𝑑,1, 𝑢𝑑,1, 𝑣1

)
𝐺4

(
𝜓1, 𝑢̃1,𝜓𝑑,1, 𝑢𝑑,1, 𝑣1

)
𝐺3

(
𝜓2, 𝑢̃2,𝜓𝑑,2, 𝑢𝑑,2, 𝑣2

)
𝐺4

(
𝜓2, 𝑢̃2,𝜓𝑑,2, 𝑢𝑑,2, 𝑣2

)

, (B.45)

with the expressions for 𝐺3,4(·) given in (B.39) and (B.44) respectively.



C | Vessel model expressions

𝝓𝑇𝑢 (𝜓, 𝑟 ) =



−𝑑11+2𝑑𝑞11𝑢
𝑚11

cos(𝜓 ) − 𝑚𝐴
11−𝑚𝐴

22
𝑚11

𝑟 sin(𝜓 )

−𝑑11+2𝑑𝑞11𝑢
𝑚11

sin(𝜓 ) + 𝑚𝐴
11−𝑚𝐴

22
𝑚11

𝑟 cos(𝜓 )

−𝑑𝑞11 cos2(𝜓 )

−𝑑𝑞11 sin2(𝜓 )

−2𝑑𝑞11 cos(𝜓 ) sin(𝜓 )


(C.1)

𝑋 (𝑢,𝑢𝑐) =
1
Γ

(
𝑚33

(
−𝑑23 −𝑚11(𝑢 − 𝑢𝑐) −𝑚𝑅𝐵

11 𝑢𝑐

)
+𝑚23𝑑33 +𝑚23

(
𝑚23(𝑢 − 𝑢𝑐) +𝑚𝑅𝐵

23 𝑢𝑐 +𝑚𝐴
22𝑢𝑐

) )
(C.2)

𝑌 (𝑢,𝑢𝑐) =
1
Γ

(
−𝑚33𝑑22 +𝑚23𝑑32 +𝑚23

(
𝑚𝐴

22 −𝑚𝐴
11

)
(𝑢 − 𝑢𝑐)

)
(C.3)

𝐹𝑟 (𝑢, 𝑣, 𝑟 ) =
𝑚22

Γ
(− (𝑚22𝑣 −𝑚23𝑟 ) 𝑢 +𝑚11𝑢𝑣 − 𝑑32𝑣 − 𝑑33𝑟 )

− 𝑚23

Γ
(−𝑚11𝑟𝑢 − 𝑑22𝑣 − 𝑑23𝑟 ) (C.4)

where, Γ =𝑚22𝑚33−𝑚2
23 > 0. Further, the function 𝝓𝑇𝑟 (𝑢, 𝑣, 𝑟,𝜓 ) = [ 𝜙𝑟1 . . . 𝜙𝑟5 ]

is given by 
𝜙𝑟1

𝜙𝑟2

 =


cos(𝜓 ) − sin(𝜓 )

sin(𝜓 ) cos(𝜓 )



𝑎1

𝑎2

 (C.5)

𝜙𝑟3 = −𝑚22

Γ

(
𝑚𝐴

11 −𝑚𝐴
22

)
cos(𝜓 ) sin(𝜓 ) (C.6)

𝜙𝑟4 =
𝑚22

Γ

(
𝑚𝐴

11 −𝑚𝐴
22

)
cos(𝜓 ) sin(𝜓 ) (C.7)

𝜙𝑟5 =
𝑚22

Γ

(
𝑚𝐴

11 −𝑚𝐴
22

) (
1 − 2 sin2(𝜓 )

)
(C.8)
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where

𝑎1 =
𝑚22

Γ

((
𝑚𝐴

11 −𝑚𝐴
22

)
𝑣 +

(
𝑚𝐴

23 −𝑚𝐴
22

)
𝑟

)
− 𝑚23

Γ
𝑚𝐴

11𝑟 (C.9)

𝑎2 =
𝑚22

Γ

(
𝑑32 −

(
𝑚𝐴

11 −𝑚𝐴
22

)
𝑢

)
− 𝑚23

Γ
𝑑22. (C.10)
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