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Abstract

This thesis is a study in the utilisation of anisotropic exploration in safe Re-
inforcement Learning (RL). Safe RL is a domain where the goal is to develop
algorithms that may learn optimal policies while simultaneously ensuring that
certain safety constraints are respected during the training process. Safety con-
straints limit the possible exploration space of a policy, and it inevitable that any
isotropic exploration schemes must be morphed, giving anisotropic exploration.

The thesis considers the predictive controller algorithms Linear Quadratic
Regulator (LQR) and Nonlinear Model Predictive Controller (NMPC) as function
approximators in the actor-critic policy gradient method. These approximators
form an estimate of the performance gradient as given by the deterministic policy
gradient under an anisotropic exploration scheme.

The estimated performance gradient under anisotropic exploration is the focus
of the research in the thesis. An analytical evaluation of the estimated perfor-
mance gradient yielded an estimate purely dependent on the state trajectory.
From this, a modified function approximator became apparent, and it is shown
that the resulting estimated performance gradient converges to the true perfor-
mance gradient, regardless of anisotropic exploration.

Further analysis of the estimated performance gradient yielded two bounds
on a potential error. The first bound on the error was established by means
of calculating the relative error between the estimated and true performance
gradient and concludes that the estimate is bounded within a relative factor of 2
from the true performance gradient. The second bound was found through the
means of a Taylor approximation and shows that any error from the estimate
is strictly proportional with the covariance of the state trajectory and to the
curvature of the estimate. Furthermore, under conditions and arguments from
the delta method, the error of the estimate is shown to be reduced to zero.

Experiments using a linear system and quadratic reward function were per-
formed, and they support the theoretical bounds provided by the theory, but also
suggest that the estimated performance gradient is an exact estimate.
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Sammendrag

Denne avhandlingen er en studie i Trygg Forsterkende Læring (eng: Reinforce-
ment Learning, RL) der det blir benyttet utforskningsagenter (eng: policy) som
bruker anisotropisk utforskning. Trygg RL er en ny kategori av RL hvor m̊alet er
å utvikle algoritmer som kan lære seg en optimal handlemetode samtidig som at
tilstandene i systemet aldri bryter noen spesifikke begrensinger under treningspe-
rioden. Dette begrenser derimot utforskningsmulighetene til agenten, og det er,
under trygg RL, uunng̊aelig at utforskningen til agenten blir anisotropisk.

Avhandlingen tar ogs̊a for seg to kontrollerne som hvis form̊al er å approksimere
enten agenten eller verdifunksjonene. De to kontrollerne som blir brukt er den
Lineære-Kvadratiske regulatoren (eng: Linear Quadratic Regulator , LQR), og
den Ulineære Modell-Prediktive Regulatoren (eng: Nonlinear Model Predictive
Control, NMPC).

Hoveddelen av avhandlingen tar for seg en analytisk evaluasjon av konsekvensene
ved anisotropisk utforskning n̊ar en NMPC brukes som en agent samt ved bruk
av aktør-kritikk (eng: Actor-Critic) metoden for å approksimere prestasjonsgra-
dienten (eng: Performance gradient). Fra denne analysen, s̊a kommer det klart
fram at det er mulig å garantere konvergens av den estimerte prestasjonsgradi-
enten, uavhengig av kovariansen til utforsknings algoritmen, ved å gjøre en liten
endring i den kompatible funksjons approksimatoren (eng: Compatible Function
Approximator).

Videre ble det funnet to begrensninger p̊a eventuelle feil ved bruk av den es-
timerte prestasjonsgradienten under anisotropisk utforskning; Ved å bruke relativ
feil, s̊a kommer det fram at den estimerte prestasjonsgradienten er øvre begrenset
i forhold til den faktiske prestasjonsgradienten med en faktor p̊a 2. Videre, ved
bruk av en Taylor ekspansjon, s̊a ble det funnet at en eventuell feil vil g̊a mot
null om kovariansen til tilstandsutviklingen g̊ar mot null over tid. Det ble ogs̊a
vist at en eventuell feil vil være maksimalt proporsjonal til kovariansen i tilstand-
sutviklingen.

Lineære kvadratiske eksperimenter ble gjennomført, der alle samsvarer med
teorien som har blitt utviklet i avhandlingen. Videre s̊a indikerer eksperimentene
at, i et lineært kvadratisk system, s̊a er den estimerte prestasjonsgradienten ek-
sakt, men dette var det derimot ikke grunnlag for å teoretisk bekrefte.
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CHAPTER I. INTRODUCTION

I
Introduction

This thesis was written at the Institute of cybernetics at the Norwegian Univer-
sity of Science and Technology and covers primarily topics in RL and predictive
controllers. The thesis comprises four chapters in total, where this introductory
chapter is the leading chapter and seeks to introduce the reader to the thesis.
The second chapter aims to present the necessary background theory in the top-
ics that will be covered in the third chapter. The penultimate third chapter is
the main chapter of the thesis and covers the research performed by this study.
Finally, a brief review of the theory and results is presented in the final chapter.

This introductory chapter initiates by presenting the motivation for thesis and
the domain of which this thesis is a part of. The research objective of this study is
presented in the second section, together with two precise research questions that
will be investigated in the latter parts of the thesis. The introductory chapter
finalises with a complete outline of the thesis’ structure.

1



CHAPTER I. INTRODUCTION 1.1. MOTIVATION

1.1 Motivation

Safe RL is a new approach to RL that, when properly established, may expand
the possibilities of RL algorithms extensively. Garcia et al. defined in [1] safe RL
as

” ...the process of learning policies that maximize the expectation of the return
in problems in which it is important to ensure reasonable system performance
and/or respect safety constraints during the learning and/or deployment pro-
cesses”.

Looking purely at the first part of this definition, it is a simple description of
any RL algorithm. The goal of the RL algorithm is to always find a solution
that ensures the maximum amount of reward possible. Such a goal may be a
dangerous one in a real-life setting. There are many obstacles and hindrances
that must be obeyed and prioritized above the maximization of some reward.
One cannot design a car that drives the most efficient path, if that is at the cost
of the car never stopping for pedestrians.

RL algorithms are typically trained in simulated environments, where safety
concerns may be considered merely as a penalized act. In these simulated en-
vironments, it is possible for RL algorithms to experience the consequences of
breaking the safety constraints. However, it is difficult to enumerate and model
all safety critical hindrances, and RL algorithms that are trained in simulations
may encounter situations in real-life not considered in the simulations. Impor-
tantly, it is typically much simpler to define a safe set of behaviour than it is to
define all the unsafe behaviours.

This leads into the second part of the definition by Garcia et al. A safe RL
algorithm must always be able to obey certain safety constraints, regardless of
it being trained or deployed. Different methods for achieving this are still in
its research infancy. If it were possible to a priori state the outcome of a small
change of parameters in the RL algorithm, then implementing safe RL could
be simply the limiting of such parametric changes. Such an approach is similar
to the domain of adaptive control, where algorithms improve the performance
of controllers, while simultaneously guaranteeing that certain safety constraints
are never broken. These are algorithms that intertwine with state-of-the-art
controllers in order to improve or adapt their performance to its environment.
Adaptive control is mentioned here as an alternative to RL that may serve similar
approaches.

The primary challenge for a priori determining the outcome of certain para-
metric changes in RL algorithms boils down the most typical implementation of
the algorithms. The most common approach to RL, and indeed other Artificial
Intelligence algorithms, is to utilise Neural Networks as its ”main body”. A neu-
ral network, visualised in Figure 1.1, is a set of nodes that each have a parametric
weight associated with it. These nodes augment the input it receives in a man-
ner defined by its parametric weight. The complete network works by simply

2



CHAPTER I. INTRODUCTION 1.1. MOTIVATION

propagating an input signal through many nodes, giving an output signal on the
other side. The parametric weights for each node is then altered iteratively to
improve the overall performance. With a small set of nodes, it may be possible
to completely define what any parametric changes may introduce to the system.
However, these networks are commonly too large for any such specific knowledge,
and the networks are typically just considered as a black box.

Figure 1.1: Basic concept of a neural network with the hidden neurons in the
centre

As mentioned previously, adaptive controllers augment the parameters of a
controller in a way to improve its performance. One approach to safe RL may
be to utilize RL in a similar fashion as adaptive controllers. It is shown in [2]
that RL algorithms may work in synergy with predictive controller algorithms
as LQR and NMPC. The predictive controller algorithms ensure that the system
is always inside the environments safe set, while the RL algorithms improve the
controllers’ performance in said environment. If properly implemented, such a
safe RL algorithm may be trained on-line in real environments. However, some
challenges that must be overcome still persist, and one specific challenge is that
of exploration.

Any RL algorithm must be able to explore its environment, and the theory
for established RL suggest that it has to have unrestricted exploration, i.e. the
exploration behaviour must be isotropic. This is not possible in neither safe RL
nor with predictive controllers limiting the RL algorithms exploration. The ex-
ploration must be restricted, and the consequences are anisotropic exploration
behaviour. This thesis is primarily an investigation in the consequences of such
anisotropic exploration, and if the RL algorithm is able to improve the perfor-
mance under anisotropic circumstances.

3



CHAPTER I. INTRODUCTION 1.2. RESEARCH OBJECTIVE

1.2 Research objective

This goal for this thesis is to further the research within the context of safe
reinforcement learning. It aims to investigate how predictive control algorithms
might be utilized in synergy with RL algorithms. Furthermore, it endeavours to
produce results that might be beneficial for the future of safe RL. Formalized,
the research objective of this thesis is to:

Look into the combination of predictive control algorithms together with RL,
and to research some of the challenges that face safe RL.

The research objective is divided into two specific research questions in order
to structure both the research and the thesis itself:

1. How are NMPC integrated with RL?

• How to use NMPC as a value function approximator for Q-learning?

• How to use NMPC as a policy in the policy gradient method?

2. What are the consequences of using anisotropic exploration in the context
of NMPC and RL?

• Does the approximate policy gradient depend on the shape of the
exploration?

Safe RL consists of state-of-the-art algorithms within both Machine Learning
(ML) and control engineering. It is important to get a proper grasp on presented
work, and as such, the first part of the research in this thesis is dedicated to a
literature study with the end goal given as the first research question. The first
research question is also in line with the first part of the research objective ”To
look into the combination of predictive control algorithms together with RL”.

The second research question tackles the second part of the research objective
and is looking at a key element of RL, namely exploration policies. The purpose
of the second question is to analytically investigate the anisotropic exploration
policies and attempt to bound the consequences of such policies.

4



CHAPTER I. INTRODUCTION 1.3. THESIS OUTLINE

1.3 Thesis outline

This thesis consists of 4 chapters divided into several sections. The first chapter
is the current introductory chapter that provides motivation and the goals for
the thesis. It also presents the research objective and goals. The second chapter
is the literature and background studies that present basic key concepts. In this
chapter, the basics of RL and NMPC will be thoroughly presented, along with
other essential material that is necessary for the later chapters. The two leading
sections in chapter three will be directed at the investigation of the research goals,
where each of the two sections will pertain its own research question as a whole.
The third chapter concludes by presenting some experiments and discussions
about the results. The fourth and final chapter is a summary of the thesis,
together with concluding remarks and discussions about further work around the
research objective.

5



CHAPTER II. BASIC CONCEPTS

II
Basic Concepts

This chapter entails three sections that each aims to present some fundamental
concepts in the three categories of Reinforcement Learning (RL), control theory,
and statistics. The chapter is presented as such to enable the reader to get a
rudimentary understanding of the primary concepts that is to be used in the
next chapter.

The first section discusses RL and starts by presenting some important nota-
tions that are fundamental in the domain of RL. The section proceeds further by
introducing the most basic RL algorithm Q-learning. A brief discussing on some
subtle differences between stochastic and deterministic policies are mentioned
before the section continues by presenting the deterministic policy gradient. The
first section finalises by discussing the least squares solution for linear equations.

The second section presents the predictive controllers that will be utilised
later on in this thesis. This section starts by presenting the linear-quadratic
system before presenting an optimal solver in the form of the Linear Quadratic
Regulator (LQR). The second predictive method, a generalisation of the LQR,
the Nonlinear Model Predictive Controller (NMPC) is then introduced before the
section finalises by briefly discussing the Karush Kuhn Tucker (KKT) conditions
which are essential in order to calculate the sensitivities of the NMPC scheme.

The final section is a mathematical section that describes some statistical
tools and results that will be used in the analytical evaluation performed in
chapter three. Primarily, it discusses the expected value and its generalisation
to moments. It also describes how to extend these moments of variables to
encompass vectors and matrices. Finally, the Taylor expansion of moments of
functions is detailed, in addition to its relationship to the delta method.

6



CHAPTER II. BASIC CONCEPTS 2.1. REINFORCEMENT LEARNING

2.1 Reinforcement Learning

This thesis tackles theoretically complex problems, and proper fundamentals are
essential for further review. This section serves to introduce fundamental con-
cepts in RL that should familiarise the reader with the subject. It primarily
considers background material specialised towards the applications for this the-
sis. Therefore, there might be some definitions and assumptions given here that
may be of importance for later results (i.e., type of performance indicator).

This section starts by presenting the key concepts for the RL algorithms used
in this thesis. With the concepts laid out, the section then presents one of the
more basic RL algorithm Q-learning, which will be used later. It briefly touches
upon some small differences between stochastic and deterministic policies before
properly presenting policy gradient methods. It finalises by shortly discussing
some least-squares solutions that are essential for later results. The following
section is primarily based upon the book Reinforcement Learning: An introduc-
tion, [3]

2.1.1 Background

RL is a subcategory of Machine Learning (ML) that has a vast application space.
It is a class of algorithms that learn more analogous to human beings, in op-
position to its counterparts in the class of ML. The working principles of RL,
summarised in Figure 2.1, are as follows:

An agent is placed in an environment. The agent is aware of the current
state of the environment st, and has a set of actions, called policies πk(st), it
may deploy. It chooses some action at and applies it to the environment. The
environment’s state st is updated to the next state, and the agent receives some
reward r(st, at) based on the performance of the action. From this reward, the
agent updates its internal parameters in order to tweak its policy to be better
than the previous policy πk+1 > πk.

The analogy to human learning behaviour becomes clear if one replaces the
agent with a human, and the rewards with sensory inputs. This analogy is
practical as it provides a reasonable method of understanding the principles of
how the algorithms learn.

2.1.2 Basics Concepts and Notation

RL algorithms may be described in two parts: Its environment and the agent
itself. The environment is usually described as a Markov Decision Process (MDP).
The MDP is a discrete-time stochastic method for modelling decision processes
of partially random systems, and may, for a discrete system, be summarised in
the following four elements:

7



CHAPTER II. BASIC CONCEPTS 2.1. REINFORCEMENT LEARNING

Agent/Algorithm

Physical enviroment
𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

Action: 
𝜋(𝑎𝑡|𝑠)

Reward: 
𝑅(𝑟𝑡|𝑠𝑡 , 𝑎𝑡)

State: 
𝑠𝑡

Figure 2.1: Classical feedback loop visualisation of RL

1. S: A set of all possible states

2. A: A set of all possible actions

3. P(st+1|st, at): The transition probability of reaching state st+1, given state
st and action at

4. r(st, at) : The immediate reward when taking action at in state st

An equivalent representation of the environment that is more common in control
engineering is that of the state space representation. The MDP share a couple
of elements in common with the state space representation, namely the sets of
possible states and actions. In addition, state progression and immediate rewards
are commonly noted as

xt+1 = f(x, u, ξ), L(xt, ut), (2.1.1)

where ξ denotes the randomness in the system. In addition, both f and L may
be nonlinear. In this thesis, the state space representation will be preferred.
However, the MDP representation has its nuances, and it will be used where
appropriate.

Agent and Policy
The agent uses its policy as its method of asserting its presence in the environ-
ment. A policy is typically a stochastic function where π(st) denotes the prob-
ability density of choosing any possible action in the action space A. Whereas
π(st) and π(at|st) represents the densities and probabilities, at refers to a spe-
cific action in the state st. The final part of the actor is its internal parameters

8
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θ. These are parameters that tweak and change the policy π and are the sole
method of improving the agent’s performance. The agents’ policy is described
by its internal parameters θ and is denoted πθ. The policies may have many
different shapes and forms, but one common policy is that of the ε-greedy policy
πεθ. This policy is derived from selecting an action in the action-value function
that yields the best value.

πεθ = arg min
a
Qπθ (st, at). (2.1.2)

Reward Function and Performance Objective
The reward function r(at, st, st+1) is a part that enables the actor to perceive
the difference between good and poor performance. The reward function also
defines the optimal solution, even though this solution is not apparent. The
design of the reward function is therefore a critical part when designing the RL
algorithm. The performance of the actor is also indicated through the reward
function as the performance objective J(πθ). The performance objective can
have some different shapes and designs [4], depending on the type of system. For
this thesis, the performance objective that is of interest is that of a discounted
episodic performance objective,

J(πθ) = E[

N∑
t=1

γt−1r(at, st, st+1)]. (2.1.3)

The interpretation of this performance objective is that it is the sum of all accu-
mulated discounted reward in the future. The discount γ is a value that enables
the prioritisation of long- or short-term rewards. It is essential in stochastic sys-
tems, as such a system will never reach a steady state. They will continue to
accumulate rewards in infinite time. Discounting ensures that the performance
objective will stabilise at some value. The discounting will affect the optimal so-
lution, so it is also a design variable. The performance objective defines the goal
of any RL algorithm, and if r(at, st, st+1) is defined as a reward, then the goal
would be to maximise the amount of reward and therefore also maximise the per-
formance objective. Similarly, in the case of r(at, st, st+1) indicating penalties,
the goal would be to minimise the performance objective.

Value Functions
With the environment, agents, and reward functions properly described, the next
concept to be presented is value functions. These represent the value of being
in some specific state in the environment. There are two basic value functions,
typically (and confusingly) named Value function V (s), and Action-value function
Q(s, a). The value function (eq 2.1.4) is the discounted value of being in the
current state st, and only selecting actions based upon the current policy πθ for
all future. Similarly, the action-value function (eq 2.1.5) is the discounted value
of being in the current state st, immediately applying some action at, before
thereafter selecting actions based upon the current policy for all future. A formal

9
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definition of the value functions may be found in [3]. In this thesis, it is the
Bellman equations of the value functions that are of interests, which are defined
as:

Definition 2.1.1. Bellman value functions: The Bellman equations for the value
function and action-value function are given as [3]

Vπθ (st) = Ea∼πθ [r(st, a] + γEs∼ρ[V (st+1|πθ)] (2.1.4)

Qπθ (st, at) = r(st, at) + γEs∼ρ[V (st+1|πθ)]. (2.1.5)

ρ is the distribution for the state trajectory Sn, ρ =
∫ ∑∞

t=0 γ
tp(s0)p(st|s0, t, πθ)dso

[5] . The state trajectory is simply the sequence of states st encountered during
training. πθ is the distribution of the policy.

There exists at least one optimal policy, denoted π∗θ(s), such that it performs
better than all other policies. The value functions for this policy are typically
named optimal value functions.

Definition 2.1.2. Optimal Value functions: The optimal value functions and
the relationships with the optimal policy may be written through the Bellman
equations as [3]

V ∗πθ (st) = Ea∼π∗θ [r(st, a)] + γEs∼ρ[V ∗πθ (st+1|π∗θ)] (2.1.6)

Q∗πθ (st, at) = r(st, at) + γEs∼ρ[V ∗πθ (st+1|π∗θ)] (2.1.7)

π∗θ = arg min
a
Q∗πθ (st, at). (2.1.8)

Another important value function is that of the difference between the action-
value function and value function, the Advantage function A(s, a) (2.1.9). The
advantage function represents the advantage of choosing one action above an-
other. It is always either positive or negative, depending on if the performance
objective is that of a maximising or minimising goal.

Definition 2.1.3. Advantage functions: The advantage of utilising one specific
action instead of the policy may be quantified through the advantage function.

Aπθ (st, at) = Qπθ (st, at)− Vπθ (st). (2.1.9)

2.1.3 TD and Q-learning

With the basics concepts properly described, it is time to move on to the first
RL algorithm that will be of use in this thesis, Q-learning. Q-learning is an
algorithm that utilises a function approximator Q̂πθ (s, a) that attempts to ap-
proximate the optimal action-value function Qπθ (s, a). From this approximation,
the agent utilises the ε-greedy policy, which consists of choosing an action as
πεθ = arg mina Q̂πθ (s, a). The function approximator may be anything from tab-
ular methods in discrete approximation schemes to linear and neural networks

10
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in continuous approximation schemes. It relies on estimating the optimal action-
value function, typically by using gradient descent in order to minimise the mean
squared error E[(Qπθ−Q̂πθ )2] [3]. The solution, as given by the gradient descent,
may be found as

δ = r + min
at+1

Q̂πθ (st+1, at+1)− Q̂πθ (st, at), (2.1.10)

θk+1 = θk + αEs∼ρ[δ∇θQ̂πθ (st, at)], (2.1.11)

where δ is known as the Temporal Difference (TD) error and represents the
immediate error in the estimate. The policy in the classic Q-learning method is
typically chosen as the ε-greedy policy and the internal parameters θ of the policy
are also the parameters that parametrise the function approximator. Therefore,
an improvement of the estimate Q̂ also yields an improved policy πθ.

A note on subscripts; in this thesis, the subscript k indicates a batch update.
A batch is a collection of evaluations such that the expected value may be properly
evaluated. The subscript t indicates immediate time changes and are typically
constrained within each episode. One batch may consist of several hundreds of
episodes.

It is also worth mentioning that there are other similar RL algorithms and
concepts that are based upon the TD error, like the on-policy algorithm SARSA
[6]. These algorithms and terms are not used here, so for the sake of brevity, they
are excluded.

2.1.4 Stochastic vs deterministic policies

Before proceeding to the next algorithm, it is necessary to discuss the differences
between a stochastic and deterministic policy. This distinction becomes crucial
in the next subsection, as the policy gradient [7] is different in both cases. Pre-
viously, π(st) has been used to describe the probability density of choosing an
action in each state st. When the agent is in some state st, and it has a stochastic
policy, it will not always choose the same action at, even if the action is derived
from the policy. The probability that the agent selects a specific action at is cho-
sen is given by π(at|st). Such a policy is often not that beneficial in a controller
setting, as a predictable outcome of the controller is preferred. A deterministic
policy will typically be a much better choice in such a setting. Deterministic
policies ensure that some specific action at is chosen deterministically when in
a specific state st. The probability density π(st) is therefore reduced to a Dirac
Delta function centred at the optimal action at.

One problem encountered when utilising deterministic policies is that of explo-
ration. As will be apparent in the next section, the deterministic policy gradient
is dependent on choosing actions that differ from the policy. Therefore, it is typ-
ical that any deterministic policies are followed by a stochastic behaviour policy,
denoted here as β(st). This behaviour policy has some constraints, which will be
discussed later.

11
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2.1.5 Policy gradient

While Q-learning works well at tackling many problems, it has one disadvantage.
It does not directly attempt to solve the problem; its primary goal is that of
attempting to fit some function approximation to the optimal action-value func-
tion. The resulting policy may be interpreted as more of a side effect of what it is
actually trying to do. A more hands down direct method would be to find a pol-
icy that either maximises or minimises, depending on the goal, the performance
objective directly. Such methods are typically referred to as policy gradients and
have some advantages above the value-function based algorithms.

Definition 2.1.4. Policy gradient: The deterministic policy gradient, introduced
in [5], is a method of updating the policy parameters θ, and are given as

θk+1 = θk + αEs∼ρ[∇θJ(πθ(s))], (2.1.12)

where ρ represents the probability density for the state trajectory Sn [5], and J
is the performance objective.

The policy gradient utilises the gradient ascent/descent optimisation tech-
nique applied to the performance objective, giving the policy parameter update
law as (2.1.12). These algorithms also typically utilise value function approxima-
tions in order to improve the policies. One common policy gradient method to be
discussed soon is the actor-critic method, visualised in Figure 2.2. This method
updates its policy (agent) based upon the policy gradient, while also utilising
value function approximation (critic) in order to improve these updates.

The performance gradient in (2.1.12) may furthermore be written as [5],

∇θJ(πθ) = E s∼ρ
a∼πθ

[∇θπθ(st)∇aQπθ (st, at)] (2.1.13)

= E s∼ρ
a∼πθ

[∇θπθ(st)∇aAπθ (st, at)], (2.1.14)

where the definition of the advantage function (2.1.9) has been used, and ∇θπθ
are the first order sensitivities of the policy πθ. One issue when utilising a de-
terministic policy is that of inadequate exploration. This may be solved through
defining a separate exploration policy β that ensures sufficient exploration of the
state space S. This exploration policy is stochastic by nature and as such, the
performance gradient must be additionally sampled across the distribution β.

Definition 2.1.5. Exploration policy: The exploration policy is the behaviour
policy that is used in order to generate actions differing from the agent policy πθ.

β : e = a− πθ(s), a ∼ N (πθ,ΣΣ>) ⇒ e ∼ N (0,ΣΣ>), (2.1.15)

Assuming that e results from a Normal distribution via a polynomially bounded
function [5],[8], and that e constitutes an isotropic exploration scheme then the
true performance gradient, as used in this thesis, may finally be defined:

12
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Definition 2.1.6. True Performance gradient: The true performance gradient
is the gradient of the performance objective, and are given as

∇θJ(πθ) = E s∼ρ
a∼β

[∇θπθ∇aAπθ (s, a)] (2.1.16)

where ρ represents the probability density for the state trajectory Sn [5] and β
represents the probability density of the exploration policy.

Actor
Policy Improvement

Action 𝑎𝑡 Enviroment
Policy Application

Critic
Policy Evaluation

Reward 𝑟𝑡

State 𝑠𝑡

State 𝑠𝑡

Value 
Function

𝑄

Figure 2.2: Feedback loop visualisation of the Actor Critic method

Actor-Critic
The policy gradient requires the gradient of the advantage function ∇aAπθ to be
known; however, the advantage function is typically unknown, as it depends on
the true environment and system dynamics. Consequently, in order to have a
correct policy gradient, it must be estimated. This estimation is something that
the actor-critic method introduces to the policy gradient. The critic in the actor-
critic is an estimation of the advantage function in (2.1.16). However, instead
of estimating the gradient ∇aAπθ directly, the critic estimates the advantage
function Aπθ function of which the gradient is subsequently calculated. Therefore,
the estimation of Aπθ must be such that it enables the direct calculation of the
gradient ∇aAπθ . A function approximator that entails this property is known as
a compatible function approximator, and one such approximator is defined as:

Definition 2.1.7. Compatible Function Approximator: A compatible function
approximator is any function approximator that preserves the true action-value
function gradient[5]:

Q̂πθ (s, a) = (a− πθ(s))>∇θπ>θ ω + V̂ν(s), (2.1.17)
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where ω are the weights that parametrise the function approximator Q̂πθ , and

V̂ν may be any baseline function that is not dependent on the action space A.

Whereas V̂ν may be any function not dependent on the action a, for reasons
specified later, it is advantageous that V̂ν is an approximation of the value func-
tion Vπθ . The parameters ω of the critic Q̂πθ , and ν of the baseline function V̂ν
may be learned through utilising the Q-learning algorithm discussed previously.
It is important to note that, as V̂ν is an approximation of Vπθ , ν is the solution to

the minimisation problem E[(Vπθ − V̂ν)2], and the TD error is therefore slightly
different. The parameter update laws for the critic and baseline functions are
given as:

ωk+1 = ωk + αωE[(r + γQ̂πθ (st+1, πθ(st+1))− Q̂πθ (st, at))∇ωQ̂πθ (st, at)],
(2.1.18)

νk+1 = νk + ανE[(r + γV̂ν(st+1)− V̂ν(st))∇ν V̂ν(st)]. (2.1.19)

With the compatible function approximator, and the fact that ∇aQ = ∇aA, the
estimated performance gradient for the actor-critic method may be defined:

Definition 2.1.8. Estimated Performance Gradient: The estimated performance
gradient, as provided by the actor-critic method, is an estimate of the true per-
formance gradient defined in 2.1.6, and is given as

∇θĴ(πθ) = E s∼ρ
a∼β

[∇θπθ∇aQ̂πθ (s, a)] (2.1.20)

= E s∼ρ
a∼β

[∇θπθ∇θπ>θ ]ω. (2.1.21)

It is shown in [5], that if the actions are chosen according to the exploratory
behaviour policy β, that is β : e ∼ N (0, σI), then this estimated performance
gradient is an exact estimate of the true performance gradient,

E s∼ρ
a∼β

[∇θĴ(πθ)] = E s∼ρ
a∼β

[∇θJ(πθ)]. (2.1.22)

2.1.6 Least squares

The concluding part for the RL introduction is that of the least squares solu-
tion. The classical and straightforward approach towards the actor-critic method
is visualised in a feedback loop style in Figure 2.2 and of which equations are
presented in the previous subsection. This approach constitutes of initially get-
ting a proper estimate of the critic, through the iterative update laws (2.1.18)
and (2.1.19), before doing another pass and updating the policy parameters θ
through the iterative policy gradient update law (2.1.12). However, the least
squares solution allows simultaneously updating the critic and actor parameters,
given that the function approximators are linear.

Inspection of the iterative equations (2.1.18) and (2.1.19) makes it clear that
these updates are linear in the parameters ω and ν, given that V̂ν is a linear
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function approximator. Also, these equations search for a stationary solution
where ωk+1 = ωk, which is equivalent to

0 = E s∼ρ
a∼β

[(r + γQ̂πθ (st+1, πθ(st+1)− Q̂πθ (st, at))∇ωQ̂πθ (st, at)]. (2.1.23)

Inserting the compatible function approximator Q̂πθ , using a linear function ap-

proximator V̂ν = ψ(s)>ν, and denoting e = a− πθ yields

0 = E s∼ρ
a∼β

[(r + γψ(st+1)>ν − e>∇θπ>θ ω − ψ(st)
>ν)∇θπθe], (2.1.24)

which has the shape 0 = E[Aω] + E[B]. The least squares solution for ω may
then be written as:

ω = E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1E s∼ρ
a∼β

[∇θπθe(r + γV̂ν(st+1)− V̂ν(st))]. (2.1.25)

A similar approach may be used in order to solve for ν. With this, the estimated
performance gradient may be calculated as

∇θĴ(πθ) =E s∼ρ
a∼β

[∇θπθ∇θπ>θ ]E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1 (2.1.26)

· E s∼ρ
a∼β

[∇θπθe(r + γV̂ν(st+1)− V̂ν(st))],

which makes for a more direct update law for the policy parameters θ.
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2.2 Predictive Control Algorithms

Predictive control algorithms are algorithms that allow for the control of both
simple and advanced systems. They are powerful tools that, when combined with
proper model dynamics, may control the most complex and advanced systems.
The key working principle behind these controllers is the controller’s internal
model. With a sufficiently accurate model, these controllers may predict any
outcome of any input, and as such also choose an input that is in line with
achieving a desired goal. This advantage is typically also one of the more con-
siderable weaknesses of such controllers. An insufficient model results in a poor
outcome. There are many methods that may negate issues caused by poor mod-
elling and, as will be explored later, RL may become an additional method for
this purpose.

This section will introduce some theory and concepts on the predictive con-
trollers that will be used in this thesis. It will not explain these concepts ex-
tensively, and it is assumed that the reader has previous experience with the
predictive control algorithms presented here. This section will present the two
controllers LQR and NMPC in consecutive order. The focus of the section will
be on the procedures and properties that will be used in chapter three.

Optimization
Predict enviroment

Model
Estimate future

Enviroment
Future

Inputs 𝑢𝑡

Goals
𝐽

Future Inputs
𝑢[𝑡0,𝑡𝑁−1]

Future
𝑠[𝑡1,𝑡𝑁]

Predicted Future Ƹ𝑠[𝑡1,𝑡𝑁]

Prediction error

Constraints
𝑔

Figure 2.3: Feedback loop visualization of a generic predictive controller

2.2.1 Linear Quadratic Regulator

The LQR [9] is a simple controller that has a simple shape u = −Ks, where K is
some feedback parameters. The LQR has an advantage above more regular con-
trollers in the sense that it is possible to prioritise how fast the controller should
work (size of the input u) versus how much deviations the states may have (size
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of the error s). This prioritisation is performed by using a performance objec-
tive J , where J typically extends across a prediction horizon N . The LQR may
be calculated merely from linear system dynamics and quadratic performance
objective, thereby the name linear quadratic regulator.

xt+1 = Axt +But, L(x, u) =

[
x
u

]> [
T N
N> R

] [
x
u

]
(2.2.1)

J =

N∑
t=0

L(xt+1, ut). (2.2.2)

For the above linear, quadratic system, the finite horizon LQR is simply the se-
quence of inputs uN that minimises the performance objective J =

∑N
t=0 L(xt+1, ut),

in more mathematical terms:

u∗ = arg min
x,u

N∑
t=0

L(xt+1, ut) (2.2.3)

s.t

xt+1 = Axt + but, t ∈ [0, N − 1],

where u∗ is the optimal sequence of input for the system described by the dynam-
ics, across the prediction horizon N . The performance objective is, as previously
mentioned, quadratic and may be represented as a sum across the prediction hori-
zon, J(x, u) =

∑N
t=0

1
2x
>
t+1Qt+1xt+1 + 1

2u
>
t Rtut. The time-dependent feedback

parameters Kt may be calculated from the following recursive algebraic Ricatti
equations [10]:

ut = −Ktxt (2.2.4)

Kt = R−1
t B>t Pt+1(I +BtR

−1
t B>t Pt+1)−1At (2.2.5)

Pt = Qt +A>t Pt+1(I +BtR
−1
t B>t Pt+1)−1At (2.2.6)

PN = QN , (2.2.7)

where the sequence of inputs u∗ are retrieved from the feedback law u∗ = −Ktut.
It is interesting that if N → ∞, then the time-varying feedback gain Kt, and
the time-varying Ricatti matrix Pt stabilises to a constant value. An LQR with
N → ∞ is typically called infinite horizon LQR and are one type of controller
that is of interest later on. The advantage of the infinite horizon controller is
that the sequence of equations (2.2.4) - (2.2.7) becomes time-independent, and
simplifies to [10]

ut = −Kxt (2.2.8)

K = R−1B>P (I +BR−1B>P )−1A (2.2.9)

P = Q+A>P (I +BR−1B>P )−1A (2.2.10)

P = P> ≥ 0 (2.2.11)

where, interestingly, the Ricatti matrix P denotes the total cost, such that
minx,u

∑N
t=0 L(xt+1, ut) = x>0 Px0
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2.2.2 Nonlinear Model Predictive Control

While the LQR is excellent for some problems, they are generally not applicable
to systems which have significant constraints on states and dynamics. In addition,
if the linearised system dynamics become too inaccurate, then the LQR will also
struggle to provide consistent results. The Nonlinear Model Predictive Controller
(NMPC) [11][12] is one solution to such problems. It is a controller that serves
the same purpose, to find a sequence of inputs that minimise some performance
objective J , however, it may also incorporate inequalities and nonlinearities. The
sequence of inputs is derived based upon the performance objective and all of
the constraints. In typical operations as a controller, the NMPC will calculate a
sequence of outputs, where only the first input will be applied to the system. The
state trajectory estimated in the optimisation is then fed back to the controller,
and a new sequence of outputs are produced, visualised in Figure 2.3

In opposition to the LQR, the NMPC is able to cope with both nonlinear
system dynamics and with system constraints. This flexibility makes them much
more useful in settings where violations of certain state and input constraints
are critical. NMPC’s are a broad category of controllers and have many different
shapes and forms. The type of NMPC that are of interest in this thesis are those
on the following form,

u∗ = arg min
x,u

J(x, u) (2.2.12)

s.t

geq(x, u) = 0

gIeq(x, u) ≤ 0.

Where J may be a nonlinear performance objective, geq is a set of linear equalities,
and gieq us a set of nonlinear inequalities. This type of problem is fundamental
later in this thesis. In opposition to the LQR, this type of problem does not have
a trivial solution, and, depending on the shapes and forms of the costs and con-
straints functions, the problem might be particularly hard to solve. As a result,
there exists a multitude of different solvers, each specified towards differently
posed problems. The solvers that will be used in this thesis is part of a class
of solvers known as interior-point solvers [12]. These solvers search for solutions
along the null space of the KKT conditions, given by

L = λᵀgeq + χᵀgIeq + J(x, u) (2.2.13)

∇x,uL(x, u, λ, χ) = 0 (2.2.14)

geq = 0 (2.2.15)

gIeq ≤ 0 (2.2.16)

χ ≥ 0 (2.2.17)

[λ, χ] ◦ [geq, gIeq] = 0. (2.2.18)
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The KKT conditions may furthermore be collected in a KKT-vector,

R(x, u,Λ) =

∇x,uL(x, u,Λ)
geq

χ ◦ gIeq

 = 0, (2.2.19)

where Λ is a vector of the Lagrangian multipliers. The KKT-vector becomes
important later for the derivations of the sensitivities for the NMPC scheme.
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2.3 Statistics

This section will focus on providing the mathematical tools that will be used
when working with the research in this thesis. It is not an extensive list and
provides only the necessary tools required for the research provided in the next
chapter. The focus is upon variance and expected value operators. The concepts
are initially presented in just the scalar case before a short extension to the vector
case is provided. The section ends by briefly discussing Taylor expansion in the
domain of statistics.

2.3.1 Variance and expected Value

In statistics, there are two important properties that is used to describe random
variables. The first property is the mean, generally denoted µ, whereas the
second property is the variance, denoted Σ. These properties are special cases of
a more general concept that is known as moments. The nth moment of a random
variable is the expected value of that variable raised to the nth power. From this,
it should be clear that the mean µ of a random variable χ is also the first moment.
However, the variance is not the second moment of a random variable, but the
second centralised moment, centralised meaning that the expected value is taken
of a random variable centred at zero. In general, the respective nth moment and
nth centralised moment is given by

µ′n = E[χn], (2.3.1)

µn = E[(χ− E[χ])n]. (2.3.2)

The apostrophe indicates that the moment is not centred. The centralised and
regular moments are very much related, and a general conversion formula between
the two is given as:

µn = Σnj=0

(
n

j

)
(−1)n−jµ′jµ

n−j . (2.3.3)

For the research in this thesis, the first, second, and third regular moments of
random variables are of interest. The first moment has already been mentioned
and is simply the mean. For the second moment, the conversion gives rise to the
fairly known formula for the variance,

var(χ) = E[χ2]− E[χ]2 ⇔ (2.3.4)

µ2 = µ′2 − µ2, (2.3.5)

which may be solved for the second moment as

µ′2 = µ2 + µ2. (2.3.6)
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Finally, the third moment µ′3. Utilising the same conversion between central and
regular moments on the third moment, the third moment may be expressed as

µ3 = µ′3 − 3µµ′2 + 2µ3, (2.3.7)

µ′3 = µ3 + 3µ(µ2 + µ2)− 2µ3, (2.3.8)

µ′3 = µ3 + 3µµ2 + µ3. (2.3.9)

The first three moments above are now expressed in terms of the random vari-
able’s mean, variance and skew (third centralised moment). The variance and
mean are often known as they are used as design variables when constructing
random variables of specific distributions. It is also important to note that the
third and first centralised moment of a centred normal distribution is equal to
zero. In fact, every odd centralised moment is zero for a centred normal distri-
bution, but for the calculations in the next chapter, only the three first moments
will be required.

2.3.2 Expansion to matrices and vectors

The equations above are only consistent with scalar random variables, and an
extension to vectors and matrices are required. Consider χ ∈ Rn, a random
variable with mean µ and standard deviation Σ, A ∈ Rn×n, a constant square
matrix, and B ∈ Rn, a constant vector. The following results for the expected
value operator then hold true:

E[χ] = µ (2.3.10)

E[χχ>] = µµ> + ΣΣ> (2.3.11)

E[χ>Aχ] = µ>Aµ+ Tr(ΣAΣ>) (2.3.12)

E[χB>Aχ] = (µµ> + ΣΣ>)A>B. (2.3.13)

The above is the extension of the first and second scalar moments of random
variables to matrices. Typically, the third moment of a random variable is not
known, but by utilising that the third centralised moment is zero and that a
stochastic variable χ may be written as χ = µ + Y , where Y ∼ N (0,ΣΣ>)
(The distribution for Y must the same as the distribution for χ) then the third
moment may be expressed through the first and second moment. This gives the
third moment for matrices (in the form that will be used later) as

E[χχ>Aχ] = µµ>Aµ+ ΣΣ>(A+A>) + µTr(ΣAΣ>). (2.3.14)

2.3.3 Taylor expansion of moments of functions

The final tool that it is necessary to introduce is the Taylor expansion for the
moments of functions of random variables. This is essentially just a Taylor expan-
sion around the mean of a random variable. Consider a random scalar variable
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χ with mean µ and variance ΣΣ>. In addition, consider some unknown function
f(χ). With the function f being unknown, it is difficult to evaluate any moments
of the function E[f(χ)]. Assume now that the first and second derivative of f
exists. The second order Taylor expansion of f around the mean µ becomes

f(χ) ≈ f(µ) + (χ− µ)f ′(µ) +
1

2
(χ− µ)2f ′′(µ) (2.3.15)

Taking the expected value of the approximation yields

E[f(χ)] ≈ E[f(µ)] + E[(χ− µ)f ′(µ)] + E[
1

2
(χ− µ)2f ′′(µ)] (2.3.16)

≈ E[f(µ)] + E[
1

2
(χ− µ)2f ′′(µ)], (2.3.17)

where E[(χ − µ)f ′(µ)] constitutes the first central moment and is zero for all
random variables. Due to f in this case being unknown, the second order term
E[ 1

2 (χ−µ)2f ′′(µ)] is not calculable. Therefore, the first order Taylor approxima-
tion becomes

E[f(χ)] ≈ f(µ) +
1

2
ΣΣ>f ′′(µ) (2.3.18)

E[f(χ)] ≈ f(µ) + ε. (2.3.19)

with an error ε ∝ ΣΣ>f ′′(µ) proportional to the curvature of the function and
to the variance of the variable. Furthermore, if χ satisfies the Central Limit
Theorem (CLT) and ΣΣ> → 0, then the delta method [13] may be applied to
show that the error terms ε→ 0 and that the expansion is an exact estimate.
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III
Research

This chapter encompasses four sections that investigate the research questions
that were proposed in the introduction of this thesis. The first section considers
the first research question and presents two different safe Reinforcement Learning
(RL) schemes that incorporate Nonlinear Model Predictive Controller (NMPC).
One of these schemes is later utilised for experiments. The second section is an
investigation of anisotropic exploration, as per the second research question. In
this section, brief arguments are initially presented that justifies how anisotropic
exploration is inevitable in safe RL schemes. The section then proceeds by an-
alytically evaluating the consequences of anisotropic exploration. The chapter
finalises with the second to last section providing some experiments and comple-
mentary results, whereas the final section provides a discussion of the theory and
experiments.
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3.1 Integration of NMPC in RL

In this thesis, RL will be integrated with NMPC in two different ways. Either
NMPC may serve as a function approximator for the action-value function in
Q-learning, or it may serve as the policy in the policy gradient method.

This section begins by reasoning why an NMPC may serve as a function
approximator and to shortly comment on the similarities between the NMPC
and RL. Only brief arguments that display the key connections between NMPC
and RL are presented. For further proof and rationalisation the reader should
refer [2] and [8]. After that, the NMPC controller in the position as a function
approximator in Q-learning is presented, before ending on how to use the NMPC
scheme as a policy in the policy gradient method.

Actor
Policy improvement

Critic
Policy Evaluation

Optimization
Predict enviroment

Model
Estimate future

Enviroment
Future

Future Inputs
𝑢[𝑡0,𝑡𝑁−1]

Inputs 𝑢𝑡

Predicted Future Ƹ𝑠[𝑡1,𝑡𝑁]

Future
𝑠[𝑡1,𝑡𝑁]

Reward 𝑟𝑡

Prediction Error

Value function
𝑄

Model 
Improvement

Constraint Improvement

Cost Improvement

Figure 3.1: Feedback loop visualisation of a generic predictive controller

3.1.1 NMPC as function approximator

Consider a basic linear system in its state-space representation, together with a
quadratic stage cost L(s, u),

xt+1 = Axt +But , L(s, u) =

[
x
u

]> [
T N
N> R

] [
x
u

]
. (3.1.1)

Moreover, consider applying an RL algorithm that attempts to solve the posed
problem. The goal of the agent would be to minimise the discounted accumulated
cost gained from L(s, u), i.e. to find a policy π such that

πθ = arg min
θ

E[

N∑
t=0

γt−1L(st, ut)]. (3.1.2)

24



CHAPTER III. RESEARCH 3.1. INTEGRATION OF NMPC IN RL

A traditional Q-learning algorithm would attempt to fit a function approximator
Q̂πθ to the true action-value function Qπθ , as a means to improve the policy by
choosing the input that provides the lowest instantaneous value return. This
technique for finding an optimal policy is named policy improvement, and even-
tually, this would possibly ensure that the policy becomes optimal. Traditionally,
the function approximator takes the form of some neural network with internal
weights θ that attempts indirectly to solve, or to find, the solution for the opti-
misation problem (3.1.2). However, for a simple linear quadratic system, as in
(3.1.1), the value function may be gained directly from the system dynamics as
the solution to the following problem:

V ∗πθ (s) = min
x,u

N∑
t=0

γt−1L(xt, ut) (3.1.3)

s.t

xt+1 = Axt +But,

x0 = st,

where the optimal policy in any state st would be the first input from the sequence
u = u0, ..., uN−1 that is generated from the solution of the above scheme, π∗θ(s) =
u0. Furthermore, the optimal action-value function Q∗πθ for the same system
could be generated by solving the same scheme, but with the added constraint
of u0 = at, giving

Q∗πθ (st, at) = min
x,u

N∑
t=0

γt−1L(xt, ut) (3.1.4)

s.t

xt+1 = Axt +But,

x0 = st,

u0 = at.

Note that the bellman equations that are fundamental for the RL algorithms are
still satisfied:

πθ(s) = arg min
a
Q(s, a), V (s) = min

a
Q(s, a) (3.1.5)

There is a multitude of different solvers and methods that may solve such
optimisation problems, and the advantage of being able to express the problem
in such a form will soon become apparent. Consider now that some insight about
the aforementioned system is known a priori, e.g. that the system is linear or
perhaps the structure of some the matrices, to the degree that an estimate of the
environment may be given as

xt+1 = Âxt + B̂ut , L̂(s, u) =

[
x
u

]> [
T̂ N̂

N̂> R̂

] [
x
u

]
, (3.1.6)
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where Â, B̂, T̂ , R̂, N̂ are estimates of the parameters A,B, T,R,N . In traditional
Q-learning, this a priori insight would be difficult to utilise efficiently, as it would
not be clear how to properly initialise the parameters of the neural network in
order to fully exploit the a priori knowledge. However, one may construct a
similar optimisation problem, based upon the a priori insight:

Q̂πθ (s, a) = min
x,u

N∑
t=1

γt−1L̂(xt, ut) V̂πθ (s) = min
x,u

N∑
t=1

γt−1L̂(xt, ut) (3.1.7)

s.t s.t

xt+1 = Âxt + B̂ut xt+1 = Âxt + B̂ut,

x0 = s x0 = s

u0 = a

If the estimated parameters are fairly accurate, then a slight adjustment in the
parameters may yield the optimal policy, and if it were possible to utilise these
modified problems as function approximator in RL, then this would yield and
advantage above traditional methods. This is contrary to neural networks, where
any a priori insight typically must be derived from previously trained networks,
a technique known as transfer learning [14]. Therefore, if the sensitivities neces-
sitated by RL algorithms exist for the optimisation schemes (3.1.7), then there
should be no hindrance for the utilisation of such function approximators above
any other neural network. These sensitivities do exist and will be presented in
next sections.

Note that the example parametrisation and systems provided above would
make it possible to find the optimal policy exactly, due to the solution being
given as a whole by the scheme (3.1.3). This would not be easy to guarantee in
the case of neural networks, even in such a simple environment. However, in the
case where the true system dynamics are stochastic and nonlinear, in addition to
a complex reward function, then it becomes less trivial to fit an exact optimisation
scheme with a limited parametrisation. A final note of interest is that it should
be possible to find the parametrised optimal policy, regardless of the underlying
model implemented in the NMPC scheme, by simply tuning the performance
objective [2].

3.1.2 NMPC and Q-learning

In Q-learning, a proper function approximator is vital for the approximation of
the true action-value function defined in 2.1.3, and as established in the previ-
ous subsection, an optimization problem may work as a function approximator.
Therefore, consider a general environment and the following NMPC schemes as
function approximators for the corresponding action-value function and value
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function:

Q̂πθ (s, a) = min
x,u

Ĵθ(x, u) V̂πθ (s) = min
x,u

Ĵθ(x, u) (3.1.8)

s.t s.t

gθ(x, u) = 0 gθ(x, u) = 0,

hθ(x, u) ≤ 0 hθ(x, u) ≤ 0

x0 = s x0 = s

u0 = a

θ are the internal parameters of the policy that is tuned in order to improve the
function approximation. Note that the only difference between Q̂πθ and V̂πθ is

the lack of the constraint u0 = a in V̂πθ . The parameter update law, as given by
the Q-learning algorithm, (2.1.10) -(2.1.11), is given as

θk+1 = θk + αE s∼ρ
a∼β

[(r + min
a
Q̂πθ (st+1, a)− Q̂πθ (st, at))∇θQ̂πθ (st, at)], (3.1.9)

= θk + αE s∼ρ
a∼β

[(r + V̂πθ (st+1)− Q̂πθ (st, at))∇θQ̂πθ (st, at)]. (3.1.10)

Consequently, the sensitivities ∇θQ̂πθ (st, at) of the NMPC scheme is required
when updating the parameters θ. The Lagrangian defined in (2.2.13) turns the
above constrained scheme with the primal variables (x, u) into an unconstrained
optimisation scheme with the primal and dual variables (x, u,Λ) [12]. Hence, the
necessary sensitivities of the NMPC may simply be extracted from the Lagrangian
[2] as

∇θQ̂πθ (s, a) = ∇θL(x, u,Λ). (3.1.11)

The prime reason for the introduction of NMPC in RL is the NMPC’s abil-
ity to handle constraints, and as such, the consequences of constraints must be
discussed. A violation of a constraint in the NMPC may be compared to an
infinite penalty, and in fact, the NMPC is not solvable if the constraints are
violated. However, RL algorithms do not cope well with infinite penalties, impli-
cating that the scheme must be modified to an extent where infinite penalties are
avoided. This may be performed through either a robust NMPC scheme or with
the introduction of slack variables σ. A robust NMPC has built-in parametric un-
certainties that enable it to guarantee that constraints are never violated, and an
NMPC is as such advantageous for real-life implementation. The slack variables
are a simpler method that heavily penalises constraint violations. Specifically,
the slack variables are optimisation variables that penalise a unit violation of a
constraint by the parameters ω. The RL algorithm will then learn not to violate
the constraints. A general example of a parametrised NMPC with slack variables
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may be written as

Q̂πθ (s, a) = min
x,u

γN (V̂ fθ + ω>f σ) +

N−1∑
t=0

γt(L̂θ(xt, ut) + ω>σt) (3.1.12)

s.t

xt+1 = fθ(xt, ut)

hθ(x, u, σ) ≤ 0

x0 = s, u0 = a

σ ≥ 0,

where L̂θ(xt, ut) is the estimated state reward, ω>σt is the penalty for violating

the constraints, and V̂ fθ is a final cost that constitutes to the Linear Quadratic
Regulator (LQR) infinite horizon controller where N ≤ ∞ and may be approxi-
mated by the infinite Ricatti matrix. The policy is given by the Bellman equa-
tion πθ(s) = arg minaQ(s, a), which is the first input generated from solving the
NMPC scheme in (3.1.12) without the constraint u0 = a.

3.1.3 NMPC and policy gradient

In the policy gradient scheme, the NMPC will act directly as a policy. Its
parametrization is however similar to previous parametrizations, giving the policy
as

πθ(s) = arg min
x,u

γN (V̂ fθ + ω>f σ) +

N−1∑
t=0

γt(L̂θ(xt, ut) + ω>σt) (3.1.13)

s.t

xt+1 = fθ(xt, ut)

hθ(x, u) ≤ 0

x0 = s

σ ≥ 0,

where the action provided by the policy is the first input acquired from the
solution u = u0, ..., uN−1, πθ(s) = u0. The parameter update law for the policy
gradient, as given in definition 2.1.4 and 2.1.6, are

θk+1 = θ + αE s∼ρ
a∼β

[∇θπθ∇aQπθ (st, at)|a=πθ(st)]. (3.1.14)

Through using the actor-critic method to establish an estimate of ∇aQπθ , the
parameter update law for the policy may be written as

θk+1 = θ + αE s∼ρ
a∼β

[∇θπθ∇θπ>θ ]ω. (3.1.15)

Subsequently, the sensitivities of the policy ∇θπθ are required. These may be
acquired from the KKT-vector (2.2.19), where the first-order sensitivities for the
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primal-dual variables y =
[
x u Λ

]>
stem from the linear equations provided

by Implicit Value Theorem (IVT)

∂R∂y

∂y∂θ
+
∂R

∂θ
= 0 (3.1.16)

∂y

∂θ
= −

(∂R
∂y

)−1 ∂R

∂θ
. (3.1.17)

Only the sensitivities of the policy ∇θπθ = (∂u0

∂θ )> are of interest, and they

may be extracted from the vector ∂y
∂θ consisting of the primal-dual sensitives by

utilising the partial derivative of the primal-dual variables, giving

∇θπ>θ = − ∂y

∂u0

>(∂R
∂y

)−1 ∂R

∂θ
(3.1.18)

∇θπθ = −∇θR(∇yR)−1 ∂y

∂u0
. (3.1.19)

The second part of the actor-critic method is the critic, typically parametrised
by ω. It is described through the compatible function approximator defined in
definition 2.1.7, and is reiterated here:

Q̂w(s, a) = (a− πθ(s))>∇θπ>θ ω + V̂ν(s). (3.1.20)

The parameters ω, together with the baseline parameters (discussed in section
2.1.5), has the update laws as given in (2.1.18) - (2.1.19). Utilising the least
squares method yields the complete parameter batch update laws for the actor-
critic policy gradient method as:

νk =E s∼ρ
a∼β

[∇ν V̂ν(st)(∇ν V̂ν(st)− γ∇ν V̂ν(st+1))>]−1E s∼ρ
a∼β

[r∇ν V̂ν(st)] (3.1.21)

ωk =E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1E[∇θπθe(r + γV̂ν(st+1)− V̂ν(st))] (3.1.22)

θk+1 =θ + αE s∼ρ
a∼β

[∇θπθ∇θπ>θ ]ωk. (3.1.23)

Note that νk and ωk are estimations of parameters that are fitted to the dataset
k, and that in order to necessitate only one data sweep, they must be calculated
in order. If e.g. θk+1 were calculated before ω and ν, then the update would be
erroneous, and based upon a combination of the previous dataset and therefore
also a combination of the previous policy parameters θk and θk−1.

3.1.4 Brief summary of section

This section reasoned why an NMPC scheme could be used as a function ap-
proximator in the domain of RL. Furthermore, it presented two common RL
algorithms that utilised an NMPC as a function approximator. The Q-learning
algorithm was primarily presented here as a steppingstone to the policy gradient
with NMPC, making it more intuitive. For the experiments presented later in
this thesis, only the policy gradient with NMPC will be used. The experiments
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consider primarily an infinite horizon LQR policy, but the sensitivities of the LQR
are not apparent. The NMPC is a perfect tool that, with a proper prediction
horizon, may approximate the LQR accurately, and of which the sensitivities are
simple to calculate.
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3.2 Anisotropic Exploration with NMPC and RL

This section concerns itself with the second research goal ”What are the conse-
quences of using anisotropic exploration in the context of NMPC and RL?”. It
starts by presenting why anisotropic exploration might be a problem and why it
might occur. Thereafter, the policy gradient with the actor-critic method is eval-
uated analytically in a general system in order to observe the effects of anisotropic
exploration. The last part of this section establishes some convergence bounds
on the estimated performance gradient.

3.2.1 Why anisotropic exploration may occur

The deterministic policy gradient derived in [5] have the assumption that the
stochastic exploration policy β is a centred normal distribution with isotropic
variance ΣΣ> = σI. It is not given that this assumption extends to an explo-
ration policy with an anisotropic variance; similarly, it also not given that the
results extend with β being not centred. Although mentioned in [8], the conse-
quences of breaking these assumptions have not been thoroughly investigated in
previous literature. With the introduction of safe RL, exploration schemes that
isotropic and centred are no longer always possible, which warrants an investiga-
tion. Previously in this thesis, constraints on the states in the NMPC have been
tackled by utilising penalising slack variables. This enables the scheme to learn
not to violate these constraints, as it is allowed to break the constraints in order
to observe and learn the consequences. If one were to utilise RL in a real-time
setting, then suddenly unbreakable constraints become essential. Anisotropic
exploration arises with the introduction of unbreakable constraints.

Motivating example
Consider an example robot arm, Figure 3.2, that is controlled by an NMPC
scheme. Consider also some obstacles that are in the reach of the robot arm. The
arm is required to operate around the obstacles and the arms safe state domain
Ssafe becomes a subset of the complete state domain S, Ssafe ≤ S. It is desirable
to improve the performance of the arm in real-time by applying an RL algorithm
to the NMPC scheme that controls the arm. However, the exploration policy
is not permitted to explore outside the safe state domain. The exploration is
therefore limited when approaching the edges of the safe state domain, and if the
state of the arm is at the edge on the safe state domain, an isotropic exploration
algorithm is no longer possible as it may not explore in certain directions.
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Free space

Obstacle

Obstacle

Figure 3.2: In this example, the arm has a theoretical reach of the entire green
area. However, a couple of obstacles are within the arms operating area, and the
arm may not approach these. The operating state space for the arm is limited to
a subset state-space Ssafe < S

Implementing safe exploration
A typical stochastic exploration policy β : e = a−πθ(s) may be generated by sim-
ply choosing the exploratory move a as a normally distributed stochastic variable
centred at the policy, a ∼ N (πθ(s),ΣΣ>). However, this method of generating
exploration does not take any considerations of constraints on neither the input
a nor the state s, and is not properly applicable in safe RL schemes. One method
that allows for the generation of safe exploratory moves is an implementation of
small perturbations to the policy variables u0 in the NMPC. The addition of the
term d>u0, where d ∼ N (0,ΣΣ>), to the performance objective is sufficient to
generate a safe exploratory move:

at = arg min
x,u

γN V̂ fθ + d>u0 +

N−1∑
t=0

γt(L̂θ(xt, ut)) (3.2.1)

s.t

xt+1 = fθ(xt, ut)

hθ(x, u) ≤ 0

x0 = s

When d 6= 0, the NMPC scheme will generate a distribution of exploratory ac-
tions centred around the desired policy πθ, while simultaneously respecting any
constraints implemented in the NMPC scheme.

When utilising perturbations in the performance objective to generate ex-
ploratory moves, the covariance of the exploration may no longer be guaranteed
to be isotropic. A simple example is presented that visualises the problem. Con-
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Figure 3.3: Visualisation of anisotropic exploration generated from an NMPC
scheme with isotropic perturbation. The colour is the value of the predicted
state ŝ1,1 that approaches the constraint s ≥ 0

sider the following linear quadratic to generate safe exploratory moves:

at = arg min
x,u

γNx>nPxn + d>u0 +

N−1∑
t=0

γt(

[
xt
ut

]> [
T 0
0 R

] [
xt
ut

]
) (3.2.2)

s.t

xt+1 = Axt +But

x ≥ 0

x0 = s.

Choosing d as a centred isotropic normal distribution, d ∼ N (0, I), the goal would
be to generate isotropic exploration. In Figure 3.3, it is clear that this was not
possible, regardless of the constraints. On the left-hand side, with the state being
s0 = [1 1], neither of the states are close to any hard constraints. Still, the safe
exploration generated becomes anisotropic, with its covariance given as Σ1Σ1 in
(3.2.3). On the right-hand side, the initial states are given as s0 = [.05 .05],
close to the hard constraints s ≥ 0. Here, the actions become limited due to the
activation of the constraint s1 > 0, which in turn increases the anisotropy of the
exploration. The covariance of the second example is given as Σ2Σ2 in (3.2.3).
Another consequence of the constraints is that the exploration mean deviates
away from zero. This is also slightly visible on the right-hand side of Figure 3.3.
However, this is not the primary focus of this thesis, and it will only be briefly
mentioned later.
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Σ1Σ>1 =

[
0.0543 −0.0141
−0.0141 0.0319

]
Σ2Σ>2 =

[
0.0532 −0.0180
−0.0180 0.0270

]
(3.2.3)

3.2.2 Expected value of the estimated policy gradient

A brief recap of some definitions that will be of importance for the analysis to
come is necessitated before proceeding. In chapter two, the true performance
gradient ∇θJ(πθ), as used in the policy gradient method, was defined as

∇θJ(πθ) = E s∼ρ
a∼β

[∇θπθ∇aAπθ (s, a)]. (3.2.4)

Moreover, the estimated performance gradient ∇θĴ(πθ), as derived from the
actor-critic method, were also defined in chapter two as:

∇θĴ(πθ) = E s∼ρ
a∼β

[∇θπθ∇aÂπθ (s, a)]. (3.2.5)

Finally, the exploration, definition 2.1.5, was given as some stochastic policy β:

β : e = a− πθ, a ∼ N (πθ,ΣΣ>), ⇒ e ∼ N (0,ΣΣ>). (3.2.6)

As previously established in (2.1.22), the estimated performance gradient has
been shown to equal the true performance gradient when the exploration policy
is isotropic and centred. The goal of this section will be to explore what happens
when the exploration covariance ΣΣ is not isotropic. This will be done by ana-
lytically evaluating the expected value of the estimated performance gradient for
a general system. Therefore, consider some general deterministic state dynamics
and reward function

st+1 = f(st, at), r = L(st, at), (3.2.7)

and assuming that true advantage function may be written on a quadratic form:

Aπθ =

[
st
at

]>
W

[
st
at

]
+ F>

[
st
at

]
+ C (3.2.8)

=

[
st
at

]> [
W1,1 W1,2

W2,1 W2,2

] [
st
at

]
+

[
F1

F2

]> [
st
at

]
+ C. (3.2.9)

(Note that an advantage function on this form will only be exact for f linear and
L quadratic. In any other cases, it will not be exact). The estimated performance
gradient, while utilizing the actor-critic method, for such a system is given as

∇θJ(πθ) = E s∼ρ
a∼β

[∇θπθ∇θπ>θ ]ω (3.2.10)

ωk = E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1E s∼ρ
a∼β

[∇θπθe(L+ γV̂ν(st+1)− V̂ν(st))],

(3.2.11)
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where V̂ν is a baseline function. The parameters ν of the baseline function are
chosen such that they minimize the mean squared error between the baseline
function and the true value function, ν = arg minν E[(V̂ν − Vπθ )2], of which its

solution is given by solving the least-squares problem in (3.1.21). Given that V̂ν
is sufficiently parametrized, then it may be assumed that its estimation becomes
exact, such that V̂ν = Vπθ . With this assumption, the parameter update law for
ω may be reduced to

ωk = E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1E s∼ρ
a∼β

[∇θπθe(L+ γVπθ (st+1)− Vπθ (st))] (3.2.12)

ωk = E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1E s∼ρ
a∼β

[∇θπθeAπθ (st, at)], (3.2.13)

where it has been used that

Aπθ (st, at) = Qπθ (st, at)− Vπθ (st) (3.2.14)

Aπθ (st, at) = r + γVπθ (st+1)− Vπθ (st). (3.2.15)

From this, the estimated performance gradient may be written as

∇θJ(πθ) = E s∼ρ
a∼β

[∇θπθ∇θπ>θ ]E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1E s∼ρ
a∼β

[∇θπθeAπθ (st, at)].
(3.2.16)

The expected value is taken across the two stochastic variables a and s. The state
s relies on some unknown distribution ρ with an unknown mean µs and covariance
ΣsΣ

>
s . The variable a stems from a distribution with a known variance and a

known mean a ∼ N (µ,ΣΣ>). It is possible to evaluate the expected value of
the estimated performance gradient with respect to a, which is performed in
appendix A. The following analysis is based upon the aforementioned evaluation
presented in (A.4) - (A.6).

Centred and Isotropic exploration
In (A.4) - (A.6), the only constraint on the exploration is that a is a normally
distributed variable, it is possible to extend these results in order to investigate
multiple cases. Initially, it is interesting to verify that, under the typical explo-
ration scheme, the estimated policy gradient does indeed equal the true policy
gradient. Therefore, the first case to be investigated is a centred exploration
scheme with isotropic variance, a ∼ N (πθ, σ

2I). Setting µ = πθ and ΣΣ> = σI in
(A.4) - (A.6) gives the estimated performance gradient with isotropic exploration
as

∇θĴ(πθ) = Es∼ρ[∇θπθ∇θπ>θ ]Es∼ρ[∇θπθσ2∇θπ>θ ]−1Es∼ρ[∇θπθσ2∇aAπθ (st, πθ)]
(3.2.17)

= Es∼ρ[∇θπθ∇aAπθ (st, πθ)] (3.2.18)

= ∇θJ(πθ). (3.2.19)

The estimated performance gradient equalling the true gradient under an explo-
ration scheme with isotropic exploration coincides with previous results presented
in literature [5]. This method of verification (albeit not efficient) is however new.
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Centred and Anisotropic exploration
An anisotropic exploration scheme, meaning that the covariance may not be
written in terms of a scalar and the identity matrix, presents some different
results. In this case, the exploration is given as a ∼ N (πθ,ΣΣ>), which, when
inserted into (A.4) - (A.6), gives the estimated performance gradient as

∇θĴ(πθ) =Es∼ρ[∇θπθ∇θπ>θ ]Es∼ρ[∇θπθΣΣ>∇θπ>θ ]−1 (3.2.20)

· Es∼ρ[∇θπθΣΣ>∇aAπθ (st, πθ)].

Due to the expected value operators in (3.2.20), no immediate further factoriza-
tions could be established at this point. Yet some interesting observations may
still be attained; the dependency on the sensitivities for the advantage function
in Es∼ρ[∇θπθΣΣ>∇aAπθ (st, πθ)] ensures the estimated performance gradient is
zero when θ is optimal, Es∼ρ[∇θπθΣΣ>∇aAπθ (st, π∗θ)] = 0. This entails that the
estimated performance gradient has at the very least a common local minima
with the true performance gradient.

Whereas it proved challenging to investigate the complete estimated perfor-
mance gradient further, there may still be some additional insights in the esti-
mated gradient granted through an investigation of the instantaneous estimated
gradient. Therefore, consider a stationary state s, such that the expected value
operators may be ignored. This yields the instantaneous estimated performance
gradient as

∇θĴ(πθ) = ∇θπθ∇θπ>θ [∇θπθΣΣ>∇θπ>θ ]−1∇θπθΣΣ>∇aAπθ (st, πθ). (3.2.21)

Assuming the following

∇θπθ ∈ Rm×na , rank(∇θπθ) = min(m,na) (3.2.22)

Σ ∈ Rna×na , rank(Σ) = na, (3.2.23)

gives that

∇θπθΣΣ>∇θπ>θ ∈ Rm×m, rank(.) = min(m,na). (3.2.24)

Typically, the dimension of θ is larger than the dimensions of the action a.
This implies that [∇θπθΣΣ>∇θπ>θ ] is rank insufficient and that its true inverse
does not exist. However, its pseudo-inverse exists and may be found by utiliz-
ing the reduced Singular Value Decomposition (SVD) on ∇θπθ. This gives the
Moore–Penrose pseudo-inverse of ∇θπθ as

(∇θπθ)† = (∇θπ>θ ∇θπθ)−1∇θπ>θ . (3.2.25)

The inverse of matrices follows a reverse order distributive property, giving

[∇θπθΣΣ>∇θπ>θ ]−1 = ∇θπ>
−1

θ Σ>
−1

Σ−1∇θπ−1
θ . (3.2.26)

Inserting (3.2.26) in the estimated performance gradient (3.2.21), and utilizing
the pseudo inverse for ∇θπθ, gives the instantaneous estimated performance gra-
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dient as

∇θĴ(πθ) =∇θπθ∇θπ>θ [∇θπθΣΣ>∇θπ>θ ]−1∇θπθΣΣ>∇aA(s, a) (3.2.27)

=∇θπθ [∇θπ>θ ∇θπθ(∇θπ>θ ∇θπθ)−1]︸ ︷︷ ︸
=I

Σ>
−1

Σ−1 (3.2.28)

· [(∇θπ>θ ∇θπθ)−1∇θπ>θ ∇θπθ]︸ ︷︷ ︸
=I

ΣΣ>∇aA(s, a)

∇θĴ(πθ) =∇θJ(πθ). (3.2.29)

This does not imply that the expected value of the estimated performance gra-
dient equal the true gradient. However, it shows that the immediate structure
of the estimated gradient is similar to the true gradient, and indicates that any
dissimilarities arise from the stochastic state trajectory Sn. This property will
be useful later in combination with a Taylor approximation.

Modified approximator, Centred and Anisotropic exploration
The primary hindrance in (3.2.20) is the presence of the exploration covariance
ΣΣ>, which prevents any cancellations in the expected value terms. By looking at
(3.2.20), it may be clear that the addition of the inverse exploration covariance to
the compatible function approximator remove the problem. This addition gives
rise to the modified compatible function approximator.

Definition 3.2.1. Modified Compatible Function Approximator: A Modified
compatible function approximator is designed to cancel any distortions provided
from utilizing anisotropic exploration

Q̄w(s, a) = (a− πθ(s))>(ΣΣ>)−1∇θπ>θ ω + V̂ν(s). (3.2.30)

The modified compatible function approximator yields the modified perfor-
mance gradient ∇θJ̄(πθ), shown in appendix B, (B.5). The modified performance
gradient may be shown to equal the true performance gradient:

∇θJ̄(πθ) =Es∼ρ[∇θπθ(ΣΣ>)−1∇θπ>θ ]E[∇θπθ(ΣΣ>)−1∇θπ>θ ]−1 (3.2.31)

· E[∇θπθ∇aAπθ (st, πθ)]
=E[∇θπθ∇aAπθ (st, πθ)] (3.2.32)

=∇θJ(πθ). (3.2.33)

An important issue with the modified compatible function approximator is its
dependency on the inverse exploration covariance. As shown in Figure 3.3, the
exploration covariance in safe RL is not necessarily predefined nor constant, and
if needed, must be estimated on the fly. In the case of a policy given by an NMPC
as above, the inverse of the covariance matrix may be calculated from the sec-
ond order sensitivities [8]. Thus, the modified compatible function approximator
introduces additional complexity in computation, and it would be advantageous
to have an algorithm that does not depend on the covariance.
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3.2.3 Convergence analysis

While the modified compatible function approximators yield guaranteed conver-
gence, it has not been shown that the estimated performance gradient is erro-
neous, nor has it been shown that it is correct. Should the estimated performance
gradient be shown to converge sufficiently, then there may be no need for a modi-
fied compatible function approximator. Therefore, the following section presents
further analysis into the convergence of the estimated performance gradient.

Two different methods will be utilised in order to limit the size of a possible
error from the estimated performance gradient. The first method will investigate
the error of the performance gradient by calculating the relative and absolute
error of the estimate. The second approach will be to utilise a Taylor expansion
for the estimation of the moments of functions [15]. From this, the error of the
estimate may be bound do a degree n that is proportional with the nth moment.

For the following analysis, it is assumed that the expected value operator is
taken across the distribution ρ, Es∼ρ = E

Relative error
The relative error may be used to quantified the precision of an estimate. The
following will attempt to bound the estimated performance gradient by looking
at the relative error between it and the true performance gradient. The relative
error between the two gradients is given by

||∇θJ(πθ)−∇θĴ(πθ)||
||∇θJ(πθ)||

(3.2.34)

For simplicity, the absolute error will be initially calculated, and later transformed
to the relative error. Due to norm operations on matrices, for the following results
to be valid, the norm must be a submultiplicative induced p-norm. An upper
bound on the error of the two vectors may be given by the triangle inequality,
applying this and expanding gives

||∇θJ −∇θĴ || =
∣∣∣∣∣∣E[∇θπθ∇aA(s, a)] (3.2.35)

− E[∇θπθ∇θπ>θ ]E[∇θπθM∇θπ>θ ]−1E[∇θπθM∇aA(s, a)]
∣∣∣∣∣∣.

Using the triangle inequality and the submultiplicative property of the norm gives
this as

≤||E[∇θπθ∇aA(s, a)]|| (3.2.36)

+ ||E[∇θπθ∇θπ>θ ]|| · ||E[∇θπθM∇θπ>θ ]−1|| · ||E[∇θπθM∇aA(s, a)]||.

By looking at the norm a nonlinear function transformation that is applied to
the expected value operator, then Jensen’s inequality, f(E[X]) ≤ E[f(X)], may
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be used to move the norm inside the expected value

||(.)|| ≤E[||∇θπθ∇aA(s, a)||] (3.2.37)

+ E[||∇θπθ∇θπ>θ ||] · E[||∇θπθM∇θπ>θ ||]−1 · E[||∇θπθM∇aA(s, a)||].

Similarly, the transformation E[f(x)g(x)] ≤ E[f(x)]E[g(x)] may be used to ex-
tract the covariance matrix.

||(.)|| ≤E[||∇θπθ|| · ||∇aA(s, a)||] (3.2.38)

· E[||∇θπθ|| · ||∇θπ>θ ||]−1 · E[||M ||]−1 · E[||M ||]E[||∇θπθ|| · ||∇aA(s, a)||],

which yields

||∇θJ −∇θĴ || ≤E[||∇θπθ|| · ||∇aA(s, a)||] + E[||∇θπθ|| · ||∇aA(s, a)||]. (3.2.39)

Giving the relative error as

||∇θJ −∇θĴ ||
||∇θJ ||

≤2E[||∇θπθ|| · ||∇aA(s, a)||]
E[||∇θπθ|| · ||∇aA(s, a)||]

(3.2.40)

=2. (3.2.41)

Which provides an upper bound on the error. The factor of 2 stems from utilising
the triangle inequality and are expected if the vectors are either identical or
opposite. A lower bound may be found in a similar fashion, where the reverse
triangle inequality is used instead, giving∣∣||∇θJ || − ||∇θĴ ||∣∣ =0, (3.2.42)

which bounds the relative error between the estimated and modified vector be-
tween [0, 2]. It is difficult to improve the upper bound any further as long as
the triangle inequality is being used, and without any methods that allow for the
calculation of the dot product < ∇θJ,∇θĴ >.

Taylor expansion
As seen in (2.3.16), the expected value of a function may be approximated by
a Taylor expansion around its mean. It may be possible to quantify the maxi-
mum size of an error in the estimated performance gradient through its Taylor
expansion. Consider yet again the estimated performance gradient,

∇θĴ(πθ) =E[∇θπθ(s)∇θπθ(s)>]E[∇θπθ(s)M∇θπθ(s)]−1 (3.2.43)

· E[∇θπθ(s)M∇aA(s, πθ)],

where s is a stochastic variable with an unknown density ρ(s). Furthermore,
∇θπθ(s) is an unknown function with full rank. Applying the Taylor expansion
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to (3.2.43) yields

∇θĴ(πθ) =E[∇θπθ(µs)∇θπθ(µs)> + ε1] (3.2.44)

· E[(∇θπθ(µs)M∇θπθ(µs))−1 + ε2]

· E[∇θπθ(µs)M∇aA(µs, πθ) + ε3]

=∇θπθ(µs)∇θπθ(µs)>
(
∇θπθ(µs)M∇θπθ(µs)

)−1
(3.2.45)

· ∇θπθ(µs)M∇aA(s, πθ) + ε∇θ Ĵ

=∇θπθ(µs)∇aA(µs, πθ) + ε∇θ Ĵ , (3.2.46)

where ε∇θ Ĵ is a second order error term proportional to both the combined cur-
vature of the three expected value terms, and to the covariance of the state
trajectory Sn. In addition, the transition from (3.2.45) to (3.2.46) is possible by
similarly utilising the SVD as in(3.2.27).

The Taylor approximation of the true gradient is given by

∇θJ(πθ) = E[∇θπθ(s)∇aA(s, πθ)] (3.2.47)

= ∇θπθ(µs)∇aA(µs, πθ) + ε∇θJ , (3.2.48)

where ε∇θJ is proportional to the covariance of the state trajectory Sn, and to
the curvature of f(s) = ∇θπθ(s)∇aA(s, πθ). With the Taylor approximations of
both the estimated and true performance gradient, the error from the estimated
performance gradient may be written as:

∇θJ(πθ)−∇θĴ(πθ) = ε∇θ Ĵ − ε∇θJ , (3.2.49)

with the error being proportional to both the covariance of the state trajectory
and the curvature of the functions, ε∇θ Ĵ , ε∇θJ ∝ ΣsΣ

>
s . Should the state tra-

jectory and its distribution ρ satisfy limn→∞
√
n(Sn − µs) → N (0,ΣΣ>), that

is the Central Limit Theorem (CLT), where Sn denotes state trajectory, and if
ΣΣ> → 0, then, via arguments from the delta method, it may be shown that
the error terms are reduced to zero as the sample size n increases, as shown in
section 2.3.3, giving

∇θĴ(πθ)−∇θJ(πθ)
s→i.i.d∧∇aA(µs) 6=0−−−−−−−−−−−−−→

ΣsΣ>s →0
0. (3.2.50)

More generally, from the Taylor expansion, it may be guaranteed that any possible
errors in the estimated performance gradient are small in systems with a small
state trajectory covariance and/or curvature in the advantage function and policy
gradient.
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3.3 Experiments

Two different experiments will be performed in order to test the statements pre-
sented in sections 3.2.3. In this section, the setup of the experiment; environment,
system, controller, and RL algorithms, are initially presented. In addition, the
results from the experiments are also presented in the end.

3.3.1 System dynamics

In order to illustrate the results, a simple and completely known system must be
utilised. Consider the following true linear state dynamics,

sk+1 = Ast +Bat, A =

[
0.7 0.3
0 1.1

]
, B =

[
0.1 0.2
0.1 0.2

]
, (3.3.1)

with a stage penalty defined as

L(sk, ak) =

[
s
a

]> [
T N
N> R

] [
s
a

]
, T =

[
8 0
0 8

]
, R =

[
2 0
0 0

]
. (3.3.2)

The policy may be written on the form

πθ(s) = −Ks. (3.3.3)

In a linear quadratic system, the value functions become quadratic as well and
are given as:

Vπθ (st) = stPst, (3.3.4)

Qπθ (st, at) =

[
s
a

]> [
T + γA>PA N + γA>PB
N> + γB>PA R+ γB>PB

] [
s
a

]
, (3.3.5)

giving an advantage function as

Aπθ (s, a) = Qπθ (s, a)− Vπθ (s) (3.3.6)

=

[
s
a

]> [
T − P + γA>PA N + γA>PB
N> + γB>PA R+ γB>PB

] [
s
a

]
, (3.3.7)

where P is found by utilising that

Vπθ (st) = L(st, πθ) + γVπθV (st+1) (3.3.8)

s>t Pst =

[
st
−Kst

]> [
T N
N> R

] [
st
−Kst

]
+ (Ast +Bπθ(st))

>P (Ast +Bπθ(st))

(3.3.9)

⇒ P = T − 2NK +K>RK + (A−BK)>P (A−BK). (3.3.10)

The derivative of the advantage function becomes

∇aA(s, a) = 2(N + γA>PB)s+ (R+ 2γB>PB +R>)a, (3.3.11)
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giving the true performance gradient as

∇θJ(πθ) = E s∼ρ
a∼β

[∇θπθ∇aAπθ (s, a)]. (3.3.12)

The policy that will be used is given as the solution to the following MPC problem

π(s) = min
x,u

x>N P̂θxn +

N−1∑
k=0

x>k T̂θxk + ukR̂θuk (3.3.13)

s.t

xk+1 = Axk +Buk

x0 = s

where the matrices A and B are defined as above, the cross-matrix N is a zero
matrix, and the matrices T̂θ and R̂θ are defined as

T̂θ =

[
3 0
0 3

]
, R̂θ =

[
2 0
0 2

]
. (3.3.14)

Additionally, Pθ was initiated as the resulting Ricatti-matrix to the pairs {A,B, T̂θ, R̂θ}.
The horizon limitN is set toN = 10. The exploration is created through a normal
distribution centred at πθ with a standard-deviation given as a non-symmetric
non-diagonal matrix, such that the exploration is anisotropic.

Σ1 =

[
0.3 0.05
0 0.1

]
(3.3.15)

Σ1Σ>1 =

[
0.0925 0.005
0.005 0.01

]
. (3.3.16)

The starting state s0 for each episode is selected as a normal distribution around[
0.3 0.4

]>
s0 =

[
0.3
0.4

]
+N (0, 0.04 ∗ I). (3.3.17)

From the actor critic method, the estimated performance gradient to be used in
the experiments may then be written as

∇θĴ(πθ) =E s∼ρ
a∼β

[∇θπθ∇θπ>θ ]E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1 (3.3.18)

· E s∼ρ
a∼β

[∇θπθeAπθ (st, at)].

The modified performance gradient is calculated as

∇θJ̄(πθ) =E s∼ρ
a∼β

[∇θπθ(ΣΣ>)−1∇θπ>θ ] (3.3.19)

· E s∼ρ
a∼β

[∇θπθ(ΣΣ>)−1ee>(ΣΣ>)−1∇θπ>θ ]−1

· E s∼ρ
a∼β

[∇θπθe(ΣΣ>)−1Aπθ (st, at)].
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Finally, it is important to note that both E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ] and

E s∼ρ
a∼β

[∇θπθ(ΣΣ>)−1ee>(ΣΣ>)−1∇θπ>θ ]−1 are lacking rank, as mentioned in (3.2.24).

Some workarounds that enable the calculation of the inverse exists, such as the
Sherman-Morrison formula; however, this adds complexity in computation. The
method that was utilised in these experiments was a simple addition of a scaled
identity matrix cI, c << 1. This introduces some numerical inaccuracies that
may affect the results.

3.3.2 Modified and estimated performance gradient

With the above system, the performance gradients, (3.3.12),(3.3.18),(3.3.19),
were calculated from a batch consisting of 1000 episodes. The results are pre-
sented in Figure 3.4. Some interesting observations: After 1000 episodes, the
absolute difference between the estimated and true performance gradient is given
as ||∇θJ(πθ) − ∇θĴ(πθ)|| = 0.0006. Furthermore, the modified and estimated
performance gradient are almost identical during the complete 1000 episodes.
An extended plot of the relative error between the modified and estimated per-
formance gradient is given in Figure 3.5, where the relative error stabilises at
around 0.001.
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Figure 3.4: The evolution of the performance gradients across 1000 episodes
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Figure 3.5: Extended batch across 5000 episodes showing the convergence of the
relative error towards zero

3.3.3 Taylor approximation of the performance gradient

The Taylor approximation has an error proportional to both the covariance of
the state trajectory, and to the curvature of the functions in the expected value
terms. In order to verify that the error is proportional to the covariance of
the state trajectory, the previously mentioned curvature may not be zero. This
becomes an issue if the state trajectory has a mean µs = 0, where the policy πθ(0)
delivers the same actions as the optimal policy π∗θ . In the region around s = 0,
the policy is therefore approximately optimal, which gives the advantage function
and its derivatives as zero ∇aA(0, πθ) = 0 or very small ∇aA(δ, πθ) << 1, where
delta is a small deviation from s = 0 .

If the experiments should be able to test proportionality with the covariance,
the optimum point of the state must be shifted away from s = 0 in order to have
a non-zero curvature. Any area where s 6= 0 suffice, however, a ”large” shift
is justified in order to avoid excessively small numbers in the results. A shift
of optimum may be accomplished by introducing a reference in the policy and
reward functions, giving the shifted policy and reward functions as:

π(s) = min
x,u

(xN − sref)
>P̂θ(xN − sref) +

N−1∑
t=0

(xt − sref)
>T̂θ(xt − sref) (3.3.20)

+ ukR̂θuk

s.t

xk+1 = Axk +Buk

x0 = s

L(sk, ak) =

[
s− sref

a

]> [
T N
N> R

] [
s− sref

a

]
(3.3.21)

The reference point for the system is set to sref =
[
0.4 0.4

]>
. The covari-
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ance of the state trajectory is changed through increasing the covariance of the

starting positions s0. In the first experiment, s0 = N (
[
0.3 0.4

]>
, 0.052I),

of which results are presented in Figure 3.7, whereas in the second simulation

s0 = N (
[
0.3 0.4

]>
, 0.52I), of which the results are presented in Figure 3.8. Key

metrics from the two experiments are given in Table 3.1. Finally, the exploration
policy β may be seen in Figure 3.6

Table 3.1: Key numerical results from the experiments regarding Taylor expan-
sion.

metric Simulation 1 Simulation 2
||ε∇θJ || 0.0051 0.0301
||ε∇θ Ĵ || 0.0046 0.0334

||cov(s)|| 0.0051 0.0340
||ε∇θJ − ε∇θ Ĵ || 0.0017 0.0120

µs
[
0.289 0.423

]> [
0.291 0.424

]>

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 3.6: The exploration utilised in all experiments. The covariance is
anisotropic and centred, with exploration prioritising the first action dimension

a1 above a2. Sampled covariance gives ΣΣ> =

[
0.0925 0.0050
0.0050 0.0100

]
.
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(a) The evolution of the performance gradients across 1000 episodes

(b) The distribution of state s1 across the batch.

Figure 3.7: The Taylor approximation and true performance gradient, with the

optimal position given as sref =
[
0.4 0.4

]>
. Initial conditions were chosen as

s0 = N (
[
0.3 0.4

]>
, 0.052I). Showing (a) the true gradient vs the predicted

gradient from a first order Taylor expansion, and (b) the distribution of the state

trajectories, with them having a covariance cov(Sn) =

[
0.0025 0.0024
0.0024 0.0032

]
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(a) The evolution of the performance gradients across 1000 episodes

(b) The distribution of state s1 across the batch

Figure 3.8: The Taylor approximation and true performance gradient, with

optimal position sref =
[
0.4 0.4

]>
. Initial conditions were chosen as s0 =

N (
[
0.3 0.4

]>
, 0.52I). Showing (a) the true gradient vs the predicted gradi-

ent from a first order Taylor expansion, and (b) the distribution of the state

trajectories, with them having a covariance cov(Sn) =

[
0.0229 −0.0003
−0.0003 0.0315

]
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3.4 Discussion

This section presents a brief discussion about the experiments and their validity.
In general, the most likely source of errors in the experiments would be the
insufficient rank inverse. The experiments are also linear quadratic systems, and
the results do not necessarily extend to more complex systems.

3.4.1 Modified and estimated performance gradient

The experiments support the convergence analysis that is presented in section
3.2.3. In Figure 3.4, the estimated and modified performance gradient are equal,
and both approach the true performance gradient. The convergence of the mod-
ified performance gradient coincides with the theoretical results from (3.2.31) -
(3.2.33).

The relative error between the estimated and modified performance gradi-
ent was shown in (3.2.41) and (3.2.42) to have an upper and lower bound of
[2, 0]. In Figure 3.4, it is clear that the estimated and modified performance
gradient is approximately equal. An extended plot in Figure 3.5 with an ad-

ditional simulation of 5000 episodes shows that the relative error ||∇θ J̄−∇θ Ĵ||||∇θ J̄||
approaches 0, stabilizing at ∼ 0.002. One substantial error source may be due to
E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1 lacking rank, and may be a reason that the relative er-

ror is not smaller. A more proper method e.g. Sherman-Morrisons formula, may
have gotten improved results. With this in mind, it is interesting to note that
the estimated performance gradient was consistently a slightly better estimate
than the modified gradient, with the absolute error in the experiment presented
here being ||∇θĴ − ∇θJ || = 0.00090, whereas ||∇θJ̄ − ∇θJ || = 0.0011. This
discrepancy is however most likely due to numerical errors.

It is important to note that in these experiments, the estimated performance
gradient was an exact estimate, to the same degree as the modified performance
gradient, of the true performance gradient. These results were gained with a fairly
anisotropic exploration policy, as evident in Figure 3.6. It is also interesting
that the estimated performance gradient had an almost identical convergence
trajectory as the modified performance gradient, which is an indication that
the addition of the inverse covariance has no apparent effect on the convergence.
Therefore, the experiments suggest, that in linear quadratic systems, the addition
of the inverse covariance to the compatible function approximator has little to
no effect on the convergence of the estimated performance gradient.

3.4.2 Taylor approximation of the performance gradient

In the Taylor analysis, the error of the expansion was shown to be proportional
to the covariance of the state trajectory. The experiments support this notion,
as from the metrics in Table 3.1 it is clear that the error of the Taylor expansions
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are almost directly proportional to the covariance of the state trajectory. Fur-
thermore, the absolute error of the rest terms ||ε∇θJ − ε∇θ Ĵ || is small, indicating
that the rest terms ε∇θ Ĵ and ε∇θJ are approximately equal. These results are
also visualized in Figure 3.7 (a) and Figure 3.8 (a), where the first order Tay-
lor approximation ∇θπθ∇aAπθ (µs, πθ(µs)) loses accuracy directly proportional
to the covariance of the state trajectory Sn.

These experiments support the notion that the estimated performance gradi-
ent is accurate to a degree proportional to the covariance of the state trajectory.
The most probable error in these experiments may again be numerical inaccura-
cies due to the insufficient rank inverse of E s∼ρ

a∼β
[∇θπθee>∇θπ>θ ]−1.
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IV
Summary

This chapter concludes the thesis. It starts with a review of the results and
findings that have been presented throughout this thesis. Thereafter, precise
conclusions for the research questions are made before the chapter finalises with
a short discussion about future work.
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4.1 Review

The research objective for this thesis was primarily to investigate the combination
of predictive control algorithms and Reinforcement Learning (RL), in addition
to furthering the research within this area. The focus for the research was based
upon the estimated policy gradient proposed method in [5], and the goal was to
provide some looser constraints on the possible methods for exploration such that
it becomes more applicable in safe RL settings. More specifically, the effects of
non-isotropic covariances in the exploration policy were investigated.

The research area combined two different disciplines and the second chapter
provided some key foundations for both the disciplines RL and predictive control.
These concepts served as the necessary basic level of theory that was required
in order to work on the research objective. In addition, the second chapter also
presented some statistical results that were necessary for some of the key results.

The first research question was to properly understand and investigate the
implementation of Nonlinear Model Predictive Controller (NMPC) into RL, of
which are based upon the work by [2] and was presented in section 3.1. This
section started by reasoning briefly for why an NMPC scheme could be used,
before proceeding to the details of the two algorithms. The second algorithm
that was presented, policy gradient with NMPC, were later used in the next
section for both experiments and results.

The second research question was to investigate how exploration affects the
policy gradient algorithm. It started by discussing why the traditional constraints
on the exploration policy are too restrictive in the sense of safe RL, making it
clear that lesser restrictions are required. This discussion is aided by a brief
example that visualises that an anisotropic exploration scheme is inevitable in
safe RL.

An analytical evaluation of the estimated performance gradient was performed
with the purpose of exploring the exact consequences of any normally distributed
exploration scheme. This yielded the equations (A.4) - (A.6), only dependent on
the state trajectory.

Based upon (A.4) - (A.6), a general exploration scheme with isotropic explo-
ration was analysed. It was shown that with such an exploration, the estimated
performance gradient converges to the true performance gradient (3.2.19).

Furthermore, an exploration policy with anisotropic covariance was consid-
ered. In this case, any immediate conclusions could not be drawn; however, a
possible modification of the compatible function approximator became apparent.
With this modification, the performance gradient was shown to converge to the
true performance gradient. These modifications have previously been discussed
in [8], where the same conclusions have been drawn.

Further analysis of the estimated performance gradient was warranted, as
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while the modified compatible function approximator was shown theoretically to
converge, it still introduced additional complexity to the algorithm. The first
approach was to explore the relative error between the estimated and true per-
formance gradient. Through utilising the triangular identity, among others, it
was shown that an upper and lower bound on the relative error of the estimated
performance gradient were [0, 2]. This is not exact, and a gradient pointing in
the complete opposite direction do comply with these results. Further analysis
with a different method was justified.

With a Taylor expansion, it was shown, via arguments from the delta method,
that the estimate converges to the true gradient, provided that the state covari-
ance goes to zero (3.2.50). Furthermore, the Taylor expansion shows that the
error of the estimated policy gradient is at most proportional to the covariance
of the state trajectory. This was also confirmed via experiments.

Experiments with a linear quadratic system were performed in order to il-
lustrate the results. In Figure 3.4, it was shown that both the modified and
estimated performance gradient converges to the true performance gradient un-
der an anisotropic exploration scheme. In Figure 3.4, it is also clear that the
modified and estimated performance gradient are equal, further indicating the
convergence of the estimated performance gradient.

A second experiment was performed where it is illustrated that the estimated
performance gradient has an error at most proportional to the covariance of the
state trajectory.
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4.2 Conclusion

How are NMPC integrated with RL?

NMPC may be integrated as a function approximator in both the traditional
RL algorithms Q-learning (3.1.7) and policy gradient (3.1.4). With the combi-
nation of slack variables in the NMPC, the RL algorithms may learn to respect
safety-critical constraints. Furthermore, with strict constraints, the NMPC may
generate safe exploration steps that guarantee the respect of the constraints. As
such, the NMPC has proper potential in the field of safe RL.

Does the estimated policy gradient depend on the shape of the exploration?

The research provides theoretical ground that any error in the policy gradient
from utilising anisotropic covariance in the exploration is guaranteed to be at most
proportional with the covariance of the state trajectory and to the curvature of
the estimated performance gradient. Furthermore, it is guaranteed that the norm
of the estimated performance gradient is no larger than twice that of the norm of
the true gradient. Finally, experiments strongly suggest that the policy gradient
is independent of anisotropic exploration.
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4.3 Further work

The experiments in this thesis provide strong evidence that the estimated perfor-
mance gradient converges to the true performance gradient regardless of anisotropic
exploration. This proved however to be challenging to show theoretically, and
further analysis in possible errors from anisotropic exploration is of interest. An
expansion of the Taylor analysis appears most appropriate. It is proposed that
any further work may investigate the error from the first order Taylor expansion
through means provided by the Jensen’s gap: f(E[χ]) − E(f(χ))[16][17]. The
Jensen gap may provide further bounds on the error.

Furthermore, safe RL also introduces off-centred exploration, which has not
been discussed to a large degree in this thesis. However, analytical evaluation
of the estimated performance gradient does provide some preliminary results
that off-centred exploration does not converge to the true performance gradient.
These results are provided in Appendix C. It is possible to counter off-centred
exploration by approximating the exploration mean, as shown in [8]. However,
this demands more computing power and a more complex algorithm. Therefore,
it might be beneficial to further analyse the results provided in Appendix C.

The results in appendix C show that any bias will ensure that the estimated
policy gradient is not exact; however, it may be possible to show that the error
decreases as the parameters approach optimal values. Through line-search meth-
ods, it is shown that the gradient in the gradient descent method is reduced to
zero if the estimated gradient is not orthogonal to the gradient, if also the step
length is chosen as per line search methods. These results may be a starting
point for an investigation of the consequences of off-centred exploration.
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A. EXPECTED VALUE CALCULATION

A Expected value calculation

The estimated policy gradient is given as

∇θJ(πθ) = E s∼ρ
a∼β

[∇θπθ∇θπ>θ ]E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ]−1E s∼ρ
a∼β

[∇θπθeAπθ (st, at)]
(A.1)

where the expected value is taken across the two random variables s and a. s is
sampled from the state trajectory with the complex distribution ρ. Due to the
distribution being difficult to evaluate in general, it is not possible to analytically
evaluate the expected value above in terms of the state trajectory Sn. However,
the actions a is a known distribution with expected value dependent on s. This
allows for the possibility to analytically evaluate the expected value in terms of a,
giving the end result as an expected value taken purely across the state trajectory.
Assuming that a is normally distributed with some mean µ and variance ΣΣ>,
a ∼ N (µ,ΣΣ>), and with an advantage function given as

Aπθ =

[
st
at

]>
W

[
st
at

]
+ F>

[
st
at

]
+ C (A.2)

=

[
st
at

]> [
W1,1 W1,2

W2,1 W2,2

] [
st
at

]
+

[
F1

F2

]> [
st
at

]
+ C, (A.3)

then the expected values may be evaluated. With e = a − πθ, there are three
orders of moments that need to be evaluated, of which the procedure are shown
in sections 2.3.1 and 2.3.2. The expected values are therefore reduced to:

E s∼ρ
a∼β

[∇θπθ∇θπ>θ ] =Es∼ρ[∇θπθ∇θπ>θ ] (A.4)

E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ] =Es∼ρ[∇θπθΣΣ>∇θπ>θ ] (A.5)

E s∼ρ
a∼β

[∇θπθeAπθ (st, at)] =Es∼ρ
[
∇θ
(
µs>W1,1s+ (µµ> + ΣΣ>)W2,1s (A.6)

+ (µµ> + ΣΣ>)W>1,2s+ µµ>W2,2µ

+ ΣΣ>(W2,2 +W>2,2)µ+ µTr(ΣW2,2Σ>) + µs>F1

+ (ΣΣ> + µµ>)F2 + µC
)
−∇θπθπθ

(
s>W1,1s

+ µ>W2,1s+ s>W1,2µ+ µ>W2,2µ+ Tr(ΣW2,2Σ>)

+ s>F1 + π>θ f2 + C
)

]

where the identities presented in sections 2.3.1 and 2.3.2 have been used to cal-
culate the higher order moments. In addition, it has been used that a normally
distributed variable χ ∼ N (µ,ΣΣ>) may be written as χ = µ+N (0,ΣΣ>). This
is useful due to the skew of a centred normal distribution are zero, and allows
for the expression to be derived purely in terms of the mean and variance. A
detailed calculation is not provided, as it is extensive. However, all the methods
and tools used to derive the results are presented in section 2.3.1 and 2.3.2.
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B. MODIFIED COMPATIBLE FUNCTION APPROXIMATOR

B Modified compatible function approximator

With the modified compatible function approximator given as

Q̄w(s, a) = (a− πθ(s))>(ΣΣ>)−1∇θπ>θ ω + V̂ν(s), (B.1)

then the least squares solution for critics parameters ω, with e = a − πθ(s), is
given by

0 = E s∼ρ
a∼β

[(r + γQ̂ω(st+1, πθ(st+1)− Q̂ω(st, at))∇ωQ̂ω(st, at)] (B.2)

0 = E s∼ρ
a∼β

[(r + γV̂ν(st+1)− e>(ΣΣ>)−1∇θπ>θ ω + V̂ν(s))∇θπθM−1e] (B.3)

Using M = (ΣΣ>)−1, then the least squares solution for ω becomes

ω = E s∼ρ
a∼β

[∇θπθMee>M∇θπ>θ ]−1E[∇θπθM−1eA(s, a)] (B.4)

The addition of the constant matrix M does not affect the calculations provided
in appendix A. This gives the modified performance gradient as

∇θJ̄(πθ) = E s∼ρ
a∼β

[∇θπθM∇θπ>θ ]E[∇θπθMee>M∇θπ>θ ]−1E[∇θπθMeA(s, a)]

(B.5)

= Es∼ρ[∇θπθM∇θπ>θ ]E[∇θπθMM−1M∇θπ>θ ]−1E[∇θπθMM−1∇aA(s, a)]
(B.6)

= Es∼ρ[∇θπθM∇θπ>θ ]E[∇θπθM∇θπ>θ ]−1E[∇θπθ∇aA(s, a)] (B.7)
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C. OFF-CENTRED EXPLORATION

C Off-centred exploration

The analytical evaluation of the estimated performance gradient also makes it
possible to investigate what happens when utilizing an exploration policy that is
not centred at πθ. Therefore, consider now the following exploration policy

β : e = a− πθ, a ∼ N (πθ + δ,ΣΣ>), ⇒ e ∼ N (δ,ΣΣ>), (C.1)

where δ represents a small deviation from the policy πθ(s). From (A.6) - (A.6),
the estimated performance gradient with the off-centred exploration scheme may
be shown to be

E s∼ρ
a∼β

[∇θπθ∇θπ>θ ] =Es∼ρ[∇θπθ∇θπ>θ ] (C.2)

E s∼ρ
a∼β

[∇θπθee>∇θπ>θ ] =Es∼ρ[∇θπθ(δδ> + ΣΣ>)∇θπ>θ ] (C.3)

E s∼ρ
a∼β

[∇θπθeAπθ (st, at)] =∇θπθ
(

ΣΣ>∇aAπθ (s, πθ) (C.4)

+ (ΣΣ>(W2,2 +W>2,2) +Aπθ (s, πθ + δ) + Tr(ΣW2,2Σ>))δ
)

Which by simple inspection, does not converge to the true performance gradient
as long as δ 6= 0.
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