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Summary

In the industry, distributed measurements systems have existed and been used for many
years with great results and success. In recent years, new technologies within the topic of
Internet of Things (IoT) have emerged and completely changed the game. Long Range
Wide Area Network (LoRaWAN) and Narrowband-IoT (NB-IoT) are two of those tech-
nologies who took the market by storm, and specialize in low-power IoT devices. With a
climate focus increasing by the year, a slight shift in focus towards solar energy arrived.
More and more devices and buildings being powered by solar energy new difficulties sur-
faced. Is there a way to at some point be able to predict the delivery of energy (DoE) from
solar panels, based on others around it?

In this thesis an embedded power measurement sensor was designed, tested and finally
implemented using LoRa and NB-IoT as communication. The sensor will measure voltage
and current produced from a solar panel and transmit said data to a back-end application.
A small network of 4 nodes were originally deployed in order to simulate a distributed
measurement system (DMS) using both LoRaWAN and NB-IoT as communication proto-
col. The thesis investigates self-sufficiency, time synchronization, power consumption and
necessary data to identify a time-lag between nodes. The deployed system did to some
extent work as intended, but due to several discussed factors, not provide sufficient and
good enough data.

A full system in order to actually predict cloud movement were never deployed. How-
ever, a small DMS with the intention of illustrating proof-of-concept were deployed but
did not manage to procure sufficient data for a conclusive result.

i



Sammendrag

I dagens industri har distribuerte målesystemer blitt brukt i flere år og gitt gode resultater.
I nyere år har ny teknologi dukket opp innen temaet IoT og fullstended endret spillereg-
lene. LoRaWAN og NB-IoT er to av disse teknologiene som tok markedet med storm og
spesialiserte seg innen ”low power IoT”. Med et stigende klimafokus blant befolkningene
har et lite fokusskifte innen strømforsyning skjedd mot energien fra solen. Apparater og
bygninger blir mer og mer forsynt via solcellepaneler, og dette og ledet til at nye vanske-
ligheter har blitt eksponert. Kan man predikere hvor mye et solcellepanel vil produsere
ved en gitt tid basert på information fra andre paneler i nærheten?

En trådløs strømsensor som målet strøm og spenning og kommuniserer over LoRaWAN
og NB-IoT ble designet og implementert. Sensoren målet strøm og spenning fra et sol-
cellepanel og sender data til en server. Et mindre sensornettverkt på 4 nodes ble originalt
satt i drift for å simulere et DMS vha. LoRaWAN og NB-IoT som kommunikasjonspro-
tokoll. Oppgaven undersøker egenskaper som selvforsyning av strøm, tidssynkronisering
mellom noder, strømforbruk og tidsforsinkelser mellom produksjonen i nodene. Systemet
virker som det skulle til en viss grad, men pga. ufortsette problemer og faktorer diskutert
i oppgaven, ble det ikke produsert nok god reproduserbar data til å trekke konklusjoner.

Et komplett system med evnen til å predikere skybeveglser ble aldri implementert
og testet. Istedenfor ble et liste sensornettverkt på 4 nodes utplassert med intensjon om
”proof-of-concept”, men evnet ikke å produsere nok reproduserbar data til å trekke en
konklusjon.
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Chapter 1
Introduction

1.1 Background

Internet of things (IoT), also defined as the interconnection between the internet and em-
bedded devices, is the new up and coming concept within low power sensor technology.
Its potential is far from reached as there are new applications and possibilities discovered
every year. Billions of devices are already connected to the internet and the number keeps
increasing. IoT is in simple terms helping us make the world simpler, smarter, and more
responsive by merging the physical and digital universe.

Another important keyword is ”smart”. A simple light intensity sensor could easily
measure a value, transmit it to a back-end server, and be called an IoT device. To be smart,
the sensor must contain a chip capable of processing the data and perform predefined
functions with it. For example, the sensor could also determine whether a cloud is above
it or not, if it’s night or day, etc. and also provide the back-end with this information.
Expressions such as ”smart home”, ”smart city” and ”smart industry”, have all undeniably
been adopted by most countries around the world, contributing to a massive advancement
to the world as we knew it.

Further, as the climate problem steadily increases, a general focus for a lot of people
has shifted towards new energy sources, such as solar power. This technology is also
improving every year and can produce an increasing amount of power per cm2. This
has resulted in people purchasing panels to provide energy to their homes, industries, and
even cities. These solutions usually come with big batteries for storage. For households
or industries not capable of using a battery, or just desire efficient usage, it would be
interesting to see if the production from panels could be predicted. Using that information,
parts of the load connected to a panel could, for example, be alleviated, and used more
efficiently.

Certain technologies for this exist already but involve weather stations and big home
projects. These installments are usually too large and inconvenient and based on short-
range communication. This thesis initially planned to look at the development of a flexible
low power sensor, where multiple of those would be deployed in a grid and used to predict

1



the movement of clouds.

1.2 Motivation
To work on a subject so popular and new as the Internet of Things is incredible. New
ways of combining different sensors for new solutions occur almost every day, so to be a
part of the same flow and spear this development is highly motivating. Most importantly,
to engage in the realization of creating something from scratch, combining all aspects
of embedded systems with up and coming communication protocols creates a sense of
ownership.

1.3 Limitations
At the beginning of the thesis, it was already decided to use nRF9160 DK as a modem with
NB-IoT. This was due to close relations with Nordic Semiconductor, and to alleviate some
of the work that would be required to integrate the nrf9160 system-in-package (SiP) with
the rest of the solution. Deploying sensors around the city provided a greater challenge
than expected. Not enough people have locations suited for solar panels and a sensor
(which is not the roof).

The biggest limitation of this thesis was the event of the pandemic, Covid-19. This pro-
vided several problems which delayed the work considerably. Also, due to these delays, a
forced alteration in the thesis scope occurred. Shifting the focus away from cloud move-
ment prediction. Nevertheless, the literature study conducted based on cloud movement
remains.

2



Chapter 2
Literature Review

The scope of this paper is to investigate the possibilities of using a grid of self-powered
smart sensors to predict to some extent the movement of clouds. To realize this task, cer-
tain challenges need to be explored. The main challenges in this project involve commu-
nication, being self-sufficient on power, and synchronization between nodes. This chapter
explores existing technologies and ideas within these fields which could be applicable for
this project.

2.1 Low-power communication

In general, smart sensors function as a wireless sensor powered by a sort of battery to ex-
pand the range of where the sensor can be placed. To do so, the sensor must use a minimum
amount of power to extend its maximum lifetime. To achieve this effect, there are multiple
aspects to be considered. The most important one is choosing an efficient communication
protocol with a focus on coverage, price, and power consumption. For this thesis, only
Low Power Wide Area Network (LPWAN) technologies were considered, as they suited
the scope of this thesis best, and short-range technologies were disregarded. Currently,
there are primarily two different connectivity tracks for the many IoT applications that
require a wide-area coverage, namely ”Unlicensed LPWA” and ”Cellular Technology”.

2.1.1 Unlicensed LPWA

Unlicensed LPWA is new proprietary radio technology. These WANs have been solely
developed for machine-type communication applications and address the important ultra
low-end sensor part of the market. The two main providers of this technology within
this category are Long Range (LoRa) and Sigfox [10]. To evaluate these protocols for
this thesis, K. Mekki, E. Bajic, F. Chaxel, and F. Meyer do a great job highlighting their
differences in their study [11]. Those differences are shown in table 2.1.

3



Table 2.1: Differences between LoRa and Sigfox [11]

Sigfox LoRaWAN
Bandwidth 100 Hz 250kHz and 125kHz

Max. data rate 100 bps 50 kbps
Max. messages/day 140 (Uplink [UL]), 4 (Downlink [DL]) Unlimited
Power consumption about 10 years about 10 years

Max. payload 12 bytes (UL), 8 bytes (DL) 243 bytes
Range 10 km (urban), 40 km (rural) 5 km (urban), 20 km (rural)

2.1.2 Cellular Technology
These technologies operate on the licensed spectrum and have throughout history primar-
ily targeted high-quality mobile data and voice services. Now, on the other hand, new
functionality has evolved and two new main access technologies have emerged, narrow-
band IoT (NB-IoT) and Long-Term Evolution Category M1 (LTE-M) [12]. While these
two are highly complementary to each other, they address different types of use cases
based on their strengths. In a comparative study between these two technologies, done by
B. E. Benhiba, A. A. Madi, and A. Addaim, they discovered certain differences between
NB-IoT and LTE-M [13]. These are shown in table 2.2. The paper concludes that NB-IoT
has a certain advantage over LTE-M. This is due to LTE-M being capable of hand-offs
between cellular towers but at the price of more synchronization and slightly higher power
consumption. This makes NB-IoT a very good choice for static devices, like sensors for
simple measurements.

Table 2.2: Differences between LTE-M and NB-IoT [13]

Cat-M NB-IoT
Max. system bandwidth 1.4MHz 200kHz

Downlink peak rate 1 Mbit/s 66.7 kbps
Uplink peak rate 1 Mbit/s 32.4 kbps

Power consumption about 10 years about 10 years
Module cost Moins de 5$ Moins de 10 $

2.1.3 Cellular vs. Unlicensed in applications
When considering which protocol most suited for an application, different factors are fa-
vored. The most common ones in IoT, are listed below:

1. Quality of Service (QoS)

2. Battery life & Latency

3. Network coverage & range

4. Deployment Model
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5. Cost

6. Coverage

From R. S. Sinha, Y. Wei and S. Hwang’s study [14], NB-IoT, and LoRa are compared in
terms of the aforementioned IoT factors. Quality of service is a feature included in using a
licensed spectrum technology. NB-IoT, for example, uses a time-slotted synchronous pro-
tocol which is optimal for QoS, while LoRa and Sigfox utilize an asynchronous protocol.
This advantage is at the expense of cost, as the licensed band spectrum is typically above
500 million dollars per MHz [14]. This trade-off indicates that applications that require
QoS, prefer NB-IoT. NB-IoT has, in general, better coverage, but the cost of building new
stations is immense compared to setting up a new LoRa gateway. This is illustrated in
table 2.3 and 2.4.

Table 2.3: Current consumption and latency between LoRa and NB-IoT [14]

Peak current Sleep current Latency
LoRa 32 mA 1µA Insensitive to latency

NB-IoT 120/130 mA 5µA < 10s

Table 2.4: Difference of costs between LoRa and NB-IoT [14]

Spectrum cost Network & Deployment cost
LoRa Free $ 100-$/gateway

NB-IoT > $500 million/MHz $15000/base station

2.2 Communication Coverage
For this project, coverage is the most essential aspect to consider when choosing a good
protocol. With regards to LoRa, the public coverage around the country is not that widespread,
and for a LoRa node to function, it needs a LoRaWAN gateway that receives its messages.
So far there are only a small amount of them placed around the country. Considering the
county of Trøndelag, only Trondheim has any coverage at all. The coverage provided is
illustrated in figure 2.2, taken from TTN’s website [2]. Zooming into Trøndelag, there is
a community in Trondheim currently providing 9 gateways for general coverage [1], and
can also be visualized in figure 2.1. A particularly good property of LoRa is the adaptabil-
ity and mobility of the nodes by just setting up a new gateway where coverage is required
[14]. Sigfox currently provides no coverage in Norway, as shown in figure 2.3.

Comparing the coverage of cellular bands and LoRa, two companies in Norway have
approximate the same coverage and provide the best option of LTE-M and Nb-IoT, Telia
and Telenor. Their coverage of the relevant technologies are shown in figure 2.4 and 2.5.
From the figures about coverage, the areas lacking are mainly rural ones. A significant
advantage of the LoRaWAN is its flexibility. The only requirement to expand its coverage
is installing a new gateway around the desired area. From table 3 in R. Balani’s ”Energy
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Figure 2.1: LoRa coverage in Trondheim [1]

Figure 2.2: LoRa coverage in Norway [2]

Consumption Analysis for Bluetooth, WiFi and Cellular Networks” [6] paper, shown in
figure 2.6, the operating range for LoRa is between 5-15 kilometers. This shows that not
many gateways are required to cover a big area.

2.3 Prediction of sky movement and solar irradiance
This section is focused on existing technologies within the ability to observe and predict
cloud movement or estimate it. Several methods exists for this purpose, but the two most
common ones are All-sky images and weather classification and support vector machine
(SVM).

2.3.1 All-sky images
This method uses a machine with camera to picture a large portion of the sky. Its pictures
cover a greater area than any normal camera would be capable of doing. This is often done
by a special camera pointing downward onto a spherical mirror, illustrated in figure 2.7.
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Figure 2.3: Sigfox coverage in Norway [3]

(a) LTE-M (b) NB-IoT

Figure 2.4: Coverage from Telia in Trøndelag [4]

The cloud detection technique used with this all-sky imager is based on the concept that
clouds scatter the visible wavelengths more evenly than clear skies. In order to predict the
movement, cloud velocity and direction of motion is determined using a cross-correlation
method (CCM) applied to two consecutive sky images. The method predicts the movement
within an hour [7].
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(a) LTE-M (b) NB-IoT

Figure 2.5: Coverage from Telenor in Trøndelag [5]

Figure 2.6: Table illustrating power consumption with different LoRaWAN modules [6]

2.3.2 Weather Classification and Support Vector Machines
This technique is meant to forecast the power output of large photovoltaic (PV) systems.
J. Shi, Wei-Jen Lee proposes algorithms for this type of forecasting [15]. In their process,
they divide the weather conditions into four: a rainy day, foggy day, cloudy day, and clear
sky. Weather forecasting data, historical power output data are used with the principle
of support vector machine (SVM) learning to predict the power output of the PV system.
Compared to the all-sky images, they provide the possibility of one-day-ahead forecasting,
instead of within the hour.

2.4 Self-powered IoT Solutions
In a network of many sensors it’s highly inconvenient and at some points expensive, to
frequently be required to maintain and charge the different sensors. The node should,
therefore, be able to recharge itself and maintain itself to a great extent. Tore Apeland
investigates this possibility in his master thesis [16]. From his thesis, two different designs

8



Figure 2.7: TSI 440A Total sky imager [7].

were proposed, one utilizing NB-IoT and an extra development kit (nRF9160), and the
other utilizing a LoRa modem with an ATtiny817 as a central unit. His thesis does not
provide a solution to a working implementation but shows the theory and a suggestion of
how it can be done.

2.5 Node network synchronization
To fulfill the purpose of using data to see cloud movement, synchronization is an essential
aspect of the solution. To use the data, the nodes must, therefore, transmit in sync. L.
Tessaro, C. Raffaldi, M. Rossi, and D. Brunelli propose a lightweight algorithm with self-
calibration for synchronizing industrial LoRa sensor networks [8]. This algorithm also
compensates for clock skew. Hardware functionalities are utilized to compensate for drift
over time and clock skew. The algorithm is illustrated by figure 2.8, and they were able to
manage an average synchronization error of 4.54± 1.28ms. This algorithm is executed in
advance before the nodes are deployed in the field. It does not provide an implementation
for over-the-air synchronization after deployment.
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Figure 2.8: Synchronization algorithm for LoRa sensor network [8].
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Chapter 3
Theory

This chapter is meant to provide the basic theory relevant to the thesis. The most important
aspects to have a basic understanding of is LoRaWAN and the network server The Things
Network (TTN) used to receive LoRa messages. Most of the theory below have been
retrieved from a previous project completed by the author [17].

3.1 LoRaWAN

LoRaWAN is abbreviated from ”Long Range Wide Area Network” and is often mistaken
for LoRa. The difference is that LoRa, compared to the OSI model, is only the physi-
cal layer, while LoRaWAN adds the data-link layer and network layer. LoRaWAN is a
cloud-based MAC-layer but acts as a network layer to manage communication between
the LoRaWAN gateways and end-nodes. The general architecture can be seen in Figure
3.1.
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Figure 3.1: LoRaWAN architecture [9]

3.1.1 Classes

End-devices all serve different purposes and tasks. To optimize a variety of application
profiles, LoRaWAN utilizes different device classes, namely classes A, B, and C.

Class A

This class is meant for all devices where battery life is of utmost importance, while not
needing a full-duplex communication. This class only allows downlink messages when an
uplink message has been sent, meaning the sensor can only receive a message after itself
has sent one. There are specific receive windows for this, RX1 and RX2, shown in figure
3.2. The windows are static and determined by the network. For The Things Network
(TTN) (see section 3.2, the first window is 1 second after the transmission, TX+1s, while
the other on is TX+2s. It’s important to note that the device cannot be reached by the
back-end if a message has not been sent, and will instead be queued and transmitted on
the next received message.

Figure 3.2: Simple illustration of LoRaWAN receive windows.
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DataRate Configuration Indicative physical bit rate [bit/s]
0 LoRa: SF12 / 125 kHz 250
1 LoRa: SF11 / 125 kHz 440
2 LoRa: SF10 / 125 kHz 980
3 LoRa: SF9 / 125 kHz 1760
4 LoRa: SF8 / 125 kHz 3125
5 LoRa: SF7 / 125 kHz 5470
6 LoRa: SF7 / 125 kHz 11 000
7 LoRa: FSK 50 000

Table 3.1: Available data rates for LoRa end-devices, stated in LoRaWAN Regional Parameters
[19].

Class B

Class B acts as a beacon with the same functionality as with class A but adding the possibil-
ity of scheduled downlink windows. This makes the device reachable at specific scheduled
times as well as after each transmission. This class is suited more for less battery hungry
devices which needs some more communication with the back-end.

Class C

Class C is continuous and is suited for devices that require the least amount of latency for
received messages. This class has an always-open downlink window, meaning the device
is always listening for downlink transmissions.

3.1.2 Messages

There are two types of messages used in LoRa communication, downlinks and uplinks.
Uplinks are messages from the end-device, while downlinks are messages to the end-
device. Each message either contains a payload or a join request/response. The payload
size is based on which data rate used for the current device. From table 3.1, data rate
0-6 has a payload maximum size of 255 bytes, while data rate 7 has a maximum payload
of 64 bytes (see RN2483 Command Reference [18]). When transmitting messages, there
are two ways of doing this, either ”confirmed” or ”unconfirmed”. Transmitting confirmed
messages forces the end-node to reply with an acknowledgement. With unconfirmed mes-
sages, the sender ”does not care” whether message is received or not.

3.1.3 Security

Encryption

As the security part of LoRaWAN is not too relevant for the project, it will not be ex-
plained in this project. It is worth mentioning that all messages used in LoRa transfers are
encrypted with AES 128-bit encryption.
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Join procedures

To secure radio transmissions, the LoRaWAN protocol relies on symmetric cryptography
using two different session keys. These keys are:

• Unique 128-bit Network Session Key (nwkSKey) share between the network server
and end-device.

• Unique 128-bit application session key (appSKey) shared end-to-end at the applica-
tion level.

When a device is requesting to join a network server via LoRaWAN, there are two methods
to achieve this, either ”Activation by personalization (ABP)” or ”Over the air activation
(OTAA)”.

To join the network using ABP, the keys nwkSKey and appSKey are generated in
advance and hard-coded into the devices. This is a less secure way to connect to a network
compared to OTAA. Using OTAA, two 8 byte EUI’s and an application key (appKey)
are generated in advance and hard-coded into the device. The procedure for joining over
OTAA is shown in figure 3.3. The important part is that the device and server negotiate
the session keys which may result in a device being denied. Opposed to ABP where the
device is automatically joined and no procedure is necessary.

Figure 3.3: Join procedure sequence diagram
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3.2 The Things network
The Things Network (TTN) is a public global network for IoT devices and gateways, using
LoRaWAN only. Due to this being a public open network, anyone anywhere in the world
can contribute to expanding the network.

3.2.1 TTN Console
The TTN-console is a tool for developers or anyone working with LoRa IoT devices can
manage their devices and applications. Essentially the console is an online GUI. As men-
tioned earlier in section 3.1.3, the keys require in OTAA joining are auto-generated when
adding a device to an application in this console.

3.2.2 Gateways
A gateway is considered a ”bridge” between the network and end-node. Nevertheless, the
gateway and devices don’t ”know each other”, in a way that the device just broadcasts a
message to any gateway that can receive it (based on distance). The gateway will receive
the message and route it to the correct network. The gateway will also listen to the TTN-
handler in case it has enqueued a downlink message for a specific device. This queue is
very important considering some end-devices cannot be reached at any time (see section
3.1.1).

3.2.3 Application
Application is the back-end software that can be utilized to receive the information the
end-node sends. TTN refers to this as an application server and provides two interfaces
the application can use to interact with TTN, either HTTP or MQTT.
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Chapter 4
Specification and Design

This chapter is divided into 5 parts: Functional specification, Technical specification, Ac-
ceptance criteria, Design of original solution, and Design of an alternative solution. Re-
quirements for each part are derived in their respective sections.

4.1 General overview

This section focuses on the entire system as a whole, seen from the perspective of a single
sensor. The solution intends to support both NB-IoT and LoRaWAN, but with only one
protocol active at a time. The solution then consists of an end-device, external LTE modem
(if LTE used for that node), a server to receive and forward LoRaWAN messages (if LoRa
used for node), and a back-end server to log data and synchronize nodes.

The end node samples the current and voltage from a solar panel every second, and
then transmit said data. In the case of LoRa, the message goes via TTN’s server and then
forwarded to a handler/back-end server for logging. When using NB-IoT, the message
travels from the end-node to nRF9160-DK, which forwards it via an MQTT broker di-
rectly to the back-end server/handler for logging. When receiving a message, the server is
capable of generating a callback which can transmit a message back to the end-node. Fig-
ure 4.1 illustrates the solution from one node’s perspective with both protocols available.
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Figure 4.1: Overall system single node communication.

4.2 Functional specification
This section lists the specifications required for creating a functioning end-node network:

1. Each node is portable and operates wirelessly.

2. Each node has recharge capabilities

3. Each node should be self-sufficient on power.

4. Each node should sample an appropriate level of potential power from the solar
panel when measuring.

5. Each node supports wireless 2-way communication for remote configuration of de-
vice.

6. Each node are capable of being reset.

7. Transmitted data from each node must be stored for analysis by a server.

8. A back-end application capable of synchronizing each node on time to provide com-
parable data.

9. Information about location and orientation should be automatically determined and
transmitted.

10. Units must have option for debugging.

11. Units must to some extent be waterproof.

12. Wide coverage for easy deployment of each node.

4.3 Technical Specifications
This is the list of technical specifications corresponding to the functional ones in section
4.2, and split between the end-node and back-end server.
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4.3.1 Single End-node
Hardware

1. Unit is battery-driven (pt. 1 in section 4.2).

2. Unit can be recharged from connected solar panel, or through micro-usb connector
(pt. 2, 3 in section 4.2).

3. Unit must be powered during charging (pt. 3, 4 in section 4.2).

4. Charge controller capable of accepting the current and voltage range produced by
solar panel and micro-usb (pt. 2, 3 in section 4.2).

5. Load circuit for excess produced power to travel (pt. 4 in section 4.2).

6. Simple battery diagnostics (provide battery voltage). (pt. 3 in section 4.2).

7. Provide Voltage and current measurement from connected solar panel to MCU (pt.
4 in section 4.2).

8. Low power consumption (pt. 3 in section 4.2).

9. Support the usage of either a LoRa modem, or nRF9160-DK for LTE modem (pt. 5,
12 in section 4.2).

10. Unit must have a GNSS and 9-axis accelerometer (IMU) for determining location
and orientation (pt. 9 in section 4.2).

11. Unit must reset locally (button) (pt. 6 in section 4.2).

12. Unit must be contained in a waterproof box. (pt. 11 in section 4.2).

13. Option for JTAG interfacing to debug and program unit (pt. 10 in section 4.2).

14. Multiple test points on PCB for debugging (pt. 10 in section 4.2).

Software

1. High duty cycle in sleep mode for save energy.

2. Message interface for uplinks and downlinks (both LoRa and NB-IoT) (pt. 5, 6 in
section 4.2).

3. At desired interval, detect and store wanted measurement data (pt. 4, 6 in section
4.2).

4. Able to transmit stored data to the back-end server using NB-IoT or LoRaWAN (pt.
5 in section 4.2).

5. Capable of executing commands sent from the server (pt. 6, 5 in section 4.2).

6. Be able to Synchronize with server (pt. 8 in section 4.2).

7. Routine for retrieving and determining its angle, orientation and location on startup.
(pt. 9 in section 4.2).
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4.3.2 Server/Handler

Technical specifications for the back-end server corresponding to relevant functional spec-
ifications.

1. Must be able to access a time-server for self-synchronization (pt. 8 in section 4.2).

2. Must be able to have a callback for fast response to all nodes (pt. 5 in section 4.2).

3. Should be able to run a script to synchronize all nodes to a specific time (pt. 8 in
section 4.2).

4. Must support receiving messages from LTE-devices and LoRaWAN-devices (pt. 5,
7, 12 in section 4.2).

5. Must have timer functionality.

6. Must be able to log received data (pt. 7 in section 4.2).

4.4 Acceptance Criteria

Based on the technical requirements in section 4.3, a list of acceptance criteria have been
derived and are shown in table 4.1. These criteria are the are required to be passed for a
system to function as intended.
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Label Description
AC1 End-node transmits measurement data and device

diagnostics over LoRaWAN or NB-IoT
AC2 Server stores received data with correct timestamp

in correct file.
AC3 End-node are self-sufficient and battery should not

lose any % over the course of three weeks.
AC4 End-node measures considerably higher current

that charge-circuit is capable for is sunny weather
when measuring.

AC5 End-node can be deployed anywhere with Lo-
RaWAN or NB-IoT coverage.

AC5.5 End-node is considered having proper coverage
when a total message loss is under 10%.

AC6 Server is capable of synchronizing all active nodes
to specific timestamp.

AC7 End-node must reset, change transmission interval
and timestamp when receiving such commands
from server.

AC9 End-node enters sleep-mode when idle
AC10 End-node supports interface with peripherals over

I2C, UART and SPI.
AC11 End-node can survive outside in rain indefinitely
AC12 End-node must be able to be recharged using

micro-usb and by produced power from a solar
panel.

Table 4.1: Acceptance criteria for entire system

4.5 Design

4.5.1 Original Solution end-node

This section covers the design of the original idea. It will focus on the single node and
server, and not consider the node network as a whole. This is due to there not being
any visual aspects to it, as well as it only matters on the back-end. The context diagram
in figure 4.2 illustrates the mechanics and which parts the printed circuit board (PCB)
interfaces with. The pink box in the figure is only added in the case of NB-IoT, otherwise,
LoRaWAN is utilized and the PCB will communicate directly with the server without an
external board. In the case of NB-IoT, the nRF9160-DK is required to provide an LTE
modem and will act as the central processing unit.
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Figure 4.2: Context diagram for original solution

Simplistic PCB overview

The complete PCB design is explained in section 5.1, and will not be gone into detail here.
This section merely covers a simplistic overview to illustrate the idea behind it based on the
technical specifications in section 4.3. The design is illustrated in figure 4.3. As the figure
shows, the board can be charged by two methods, solar panel, and micro-USB. The board
is entirely battery-driven and uses two different voltage regulators to power the rest of the
circuitry. This includes the external nRF9160 in case NB-IoT is being used. It’s planned to
use three buttons, 2 of which are of dummy behavior (whatever desired), and one RESET
button, used to reset it locally. To visualize different statuses, like functioning properly,
for example, three LEDs will be added. Lastly, the remaining available GPIO pins will be
mapped to headers, providing extra functionality for other peripherals or testing.
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Figure 4.3: Simplistic PCB design original solution.

4.5.2 Alternative Solution end-node

This section covers the alternative solution used for most of the implementation in this
thesis due to reasons mentioned in the introduction. Therefore this solution does not cover
a PCB design, as another existing board has been utilized. T. U. Rasmussen uses in his
study [20], a quite similar board, which made the transition to a new solution more com-
prehensible.

Compared to the context diagram in the original solution [4.4], certain design choices
were made. The dotted rectangle illustrates the hardware components required to merge
his solution with mine. The main components and features his solution is missing are:

1. GNSS

2. IMU with magnetometer for orientation

3. Charging capability from solar panel.

4. Measurement of potential energy from solar panels.

T. U. Rasmussen’s board only accepts 5V for charging the battery. It is therefore
necessary to determine an approach for converting the given voltage range from a panel to
5V.
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Figure 4.4: Context diagram for alternative solution

4.5.3 Back-end application

The back-end server for this thesis needed to provide an option to communicate with end-
nodes over different communication protocols, LoRaWAN, and NB-IoT. Figure 4.1 shows
The Things Network’s server, a server required to receive and forward LoRa messages.
Normally, this could be achieved by routing your own LoRaWAN gateway straight to the
back-end application, but this limits the coverage to that specific gateway. Using TTN’s
handler/server, allows this application to use a preexisting network governed by TTN.
This coverage is shown in figure 2.2. TTN’s server has the option of forwarding their
messages via MQTT. They also provide such API developers can adopt to implement their
application.

Another limitation of this thesis is the use of nRF9160 DK to add LTE functionality.
This modem can use MQTT to send data over NB-IoT. In order to achieve this type of
communication, an MQTT broker needs to be configured. For simplicity and time-saving
reasons, the public MQTT broker ”mqtt.eclipse.org” was utilized.

This back-end server does therefore only require MQTT support to communicate with
any devices used in this application.

4.5.4 Message format

In order to communicate seamlessly, a simple message format was designed. This format
is illustrated in figure 4.5
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Figure 4.5: Message format used in communication between nodes and server.
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Chapter 5
Implementation

This chapter provides a detailed explanation of how the design in the previous chapter was
realized. The chapter will focus on the single node, both hardware, and software, as well as
the back-end application. The single-node part was again split into two sections, original
solution and alternative solution. Explaining each solution, the hardware is split into first
explaining the choice of a component and then its circuitry. As all software was written
for the alternative solution, the software section will only cover this. As the components
of both solutions are very similar, it was not deemed necessary to provide a new section
explaining the software for a potential original solution. Instead Appendix A shows how
to port software from the alternative solution to the original one.

Consistent with both solutions was the choice of solar panels. It was ordered two dif-
ferent types, with different maximum power production. Physical differences are shown in
figure 5.1 while technical differences are listed in the following table: Where Vopen circuit

for both panels were detected by measuring with a multi-meter with no load connected.
Similarly Ishort circuit were detected by connecting the multi-meter in series, both mea-
surements done on a day with clear skies and sunny weather.

Through the course of developing the PCB and schematics for the original solution,
Altium Designer was the main tool. There, most components were of type Surface Mount
Device (SMD), meaning they were soldered with solder paste directly to the PCB, with-
out the use of holes. The software was also used to visualize general circuitry for the
alternative solution.

Poptimal Voptimal Ioptimal Vopen circuit Ishort circuit

Type 1 (big) 4.2W 12V 350mA 16V 400mA
Type 2 (small) 2.0W 6V 333mA 7.5V 380mA

Table 5.1: Solar panels used for this thesis (Type 1: [21], Type2: [22]
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Figure 5.1: The two ordered solar panel types. Type 1 to the left, and type 2 to the right.

5.1 Single Node Hardware with Original Solution
The full schematic for the end-node are located in Appendix B1, with corresponding parts
list in Appendix B3. This section goes into detail of which components were chosen
for a generic embedded end-node in order to realize the relevant acceptance criteria in
section 4.4. Even though this solution is not the main focus for results and testing, due
to circumstances mentioned in the introduction/preface, a PCB for this solution was at
some point created and to some extent tested. The scope is to use LoRa and NB-IoT
in a distributed embedded system and transmit useful data about the potential energy of
connected solar panels for analysis, in other words: a self-sufficient battery-driven smart
sensor that supports multiple communication protocols.

5.1.1 Components
This section explains which main components were used to complete the PCB and why
they were chosen. Some of the minor components in the immediate vicinity of the major
ones are further explained in later sections, as well as calculation required for them to
operate ideally. The components are also seen in Appendix B3.

MCU: ATmega324pb

The main reason for choosing this micro-controller was due to it being a very familiar
system for the developer. Microcontrollers in the AVR family, especially ATmega series
were used frequently in different courses in earlier years of university due to them being
well established in the world of microcontrollers and are simple to implement. In addition,
ATmega324pb was also in the earlier specialization project conducted in spring 2019 [17].
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The ATmega324PB micro-controller utilizes the AVR-based RISK architecture and is
an 8-bit high-performance processor [23]. It contains 1 kB EEPROM storage with 2kB
SRAM. More significantly, it features two separate I2C buses, three UART, one SPI, and
multiple available GPIO pins for analog and digital purposes. In addition, the MCU sup-
ports the external clock source for the processor. This solution does not utilize the possi-
bility for external clock source to reduce power consumption but instead uses an internal
clock source division which reduces the default internal clock of 8MHz to 1MHz. The
MCU features multiple timers, both 8-bit and 16-bit. ”TIMER2” is here of biggest rele-
vance, because it supports the option of the external clock source. This makes ”TIMER2”
ideal for creating a real-time clock (RTC) by connecting a 32.678 kHz crystal. The cir-
cuitry around the MCU is shown in figure 5.2

Circuitry The MCU uses a passive low pass filter between AVCC and VCC to GND
because VCC is supplying the ADC as well as contributing as a reference voltage for all
conversions. It takes a total of three analog voltage inputs, which are voltage and current
measurements from the solar panel (Vpanel and Vcurr), and the battery voltage (Vbat. Since
Vpanel and Vbat outrange the reference voltage of the ADC voltage division for both inputs
were introduced and calculated using standard voltage division formula:

Vout =
RB

RA +RB
∗ Vin (5.1)

where RB represent the resistor connected to ground.

Figure 5.2: Schematic of immediate circuitry around ATmega324PB.
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LoRa modem: RN2483A

RN2483A is a low-power LoRa transceiver developed by Microchip and based on the
LoRaWAN Class A protocol. The modem is familiar due to being used in the previous
project [17]. By integrating a command API, it’s suitable for interfacing with an external
host MCU. This communication is done over UART, it features an implemented proto-
col stack for class A [18]. Voltage requirements lie between 2.1-3.6 V. It can also enter
sleep mode where it only consumes 2 − 26µA [24], depending on the input voltage. The
schematic in Figure 5.3 shows the implementation of RF transmitter RN2483A.

Circuitry As seen in Figure 5.3, the modem is interfaced with UART0 on the MCU,
which also shares the global reset (RST) line. C19 and C20 are the two required decou-
pling capacitors between voltage input and ground. RFH and RFL, the two radio outlets,
are connected to a micro coaxial RF-connector to which the antennas can attach. They
correspond to the frequencies of the modem which are European standard frequencies
868MHz (RFH) and 433MHz (RFL). The end-nodes will in this application be in Norway,
thus only requiring the 868MHz band.

Figure 5.3: Schematic of circuitry near and including RN2483.
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NB-IoT modem: nRF9160-DK

As mentioned in section 1.3, the solution was from the start going to utilize the nRF9160-
DK as the NB-IoT modem. The development kit is a highly functional PCB with a lot
of functionalities. It features an internal GPS that will be utilized in end-nodes meant
to use NB-IoT instead of LoRaWAN. From its datasheet [25] its designed for low-power
consumption with ”IDLE” power consumption of 1.8µA (modem off).

The only circuitry relevant for the NB-IoT modem is its connections to the main board.
Those are illustrated in figure 5.4, and consist of a power supply of 5V, angle, and orienta-
tion sent over SPI and the analog measurements from the solar panel sent as analog input
signals.

Figure 5.4: Connections between the nRF9160-DK and original PCB.

Current sense amplifier: MAX44284

In order to measure the current produced by the solar panel, a current sense amplifier was
deemed necessary. As it can operate between 1.7-5.5V and a supply current of 21µA, it a
good fit for battery-driven applications [26]. It offers high precision and accuracy as well
as an input common-mode voltage range between 0-36V. It presents four different gains to
provide accurate output:

1. G1 = 50V/V - MAX44284F

2. G2 = 100V/V - MAX44284H

3. G3 = 200V/V - MAX44284W

4. G4 = 500V/V - MAX44284E

Circuitry for how its setup are illustrated in figure 5.5.
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Circuitry In order to calculate the value of R2, the highest available voltage drop over it
needs to be calculated. From its MAX44284’s datasheet [26], the voltage drop (Vsenserange)
is calculated by the following formula:

Vsense range =
Vdd
Gi

(5.2)

Vdd was in this case the voltage supply and 3.3V. A gain of 50 was chosen, which resulted
in a Vsenserange of 66mV.R2 was then calculated using Ohm’s law and procedure is shown
in eq. 5.1.1

Vshunt max = Vsense range = Ishort circuit ∗R2 (5.3)

⇒ R2 =
Vsense range

Ishort circuit
(5.4)

Substitutinginusingeq.5.1.1, (5.5)

⇒ R2 =
Vdd

Ishort circuit ∗Gi
(5.6)

With this formula, Vdd as 3.3V, Gi = 50 and Ishort circuit retrieved from table 5.1
(333mA and 350mA), gives R2 type1 = 0.189Ω and R2 type2 = 0.198Ω. To be flex-
ible in attaching a random solar panel to an end-node, the lowest value for R2 is used, and
it’s floored to the nearest available resistor. In this case, that value was 0.18Ω.

Figure 5.5: Schematic showing the circuit for MAX44284.
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GNSS: Teseo-LIV3F

Determining a good and effective GNSS was a more challenging task. The main focus be-
ing low power consumption and a straightforward interface to communicate over. It was
also important the necessary antenna circuitry not became to complex. The Teseo-LIV3F,
developed by STMicroelectronics, became a natural choice befitting desired specifications
in section 4.3. It operates at 2.1-4.3 V input and supports both UART and I2c, making
it fairly easy to transmit data to external host MCU. If necessary, it has an RTC which
could be utilized. Based on the input voltage, it has a default standby current of 17µW
consumption [27]. With a tracking sensitivity of -163 dBm and 1.5m circular error proba-
bility (CEP), the component proves well-suited for this application. The circuitry required
for the component to be operational are shown in figure 5.6 and are based on suggestion
schematic from its user manual [28].

Figure 5.6: Schematic showing the circuit for the GNSS (TESEO-LIV3F).

IMU: ICM-20948

The ICM-20948 IMU was developed by TDK InvenSense and consists of a 3-axis gyro-
scope, 3-axis accelerometer, and 3-axis compass/magnetometer. It features the option for
SPI or I2C interface to an external MCU. The operating voltage range is between 1.71-
3.6V, providing a good range. The chip can enter sleep-mode having a current consump-
tion of 8µA [29], or operating accelerometer and magnetometer only with a consumption
of 158.9µA. The accelerometer features four levels of sensitivity: ±2g, ±4g, ±8g, and
±16g, and the compass has a wide range of ±4900µT . Each data sample is stored in 2
8-bit registers and read like a 16-bit integer. The circuit is shown in figure 5.7.

Circuitry Most of the circuitry is based on suggestion schematic from its datasheet [29].
The main difference being the voltage divider added (R11, R12), to supply the VDDIO
pin with the correct voltage. As VDD range from 1.71-3.6V, the VDDIO range from 1.71-
1.95V, and thus require a voltage divider to reduce the voltage. Using eq. 5.1, R11, and
R12 succeed in providing correct voltage while minimizing to some extent drawn current.
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As the IMU also supports auxiliary devices as a slave over I2C, but not required, those
signals were pulled low.

Figure 5.7: Schematic showing the circuit for the IMU (ICM-20948).

Flash memory: SST25VF080B

The SST25VF080B holds up to 1MB of data and has a standard endurance of 100,000
write cycles. For instance, giving the likelihood of storing minute-measurements of 17
bytes, it can hold data up to 40 days. The device uses an SPI interface, making it friendly to
an external host MCU. It’s also very battery friendly as it in standby mode only consumes
up to 5µA, and operates at 2.7-3.6 V.

Charge controller: BQ24210

As each node is supposed to be operational at all times during the day, the controller has to
support a wide range of voltage input, ranging between 0V at night, to 16V during optimal
conditions. This controller features a battery tracking mode to maximize the charge rate
from solar panels. It can support a current up to 800 mA with a maximum rating of voltage
input between 0 and 20V [30].

Voltage converter: TPS61201DRCT

After comparing the different voltage operating ranges of the other components, an output
voltage (VCC) was deemed to 3.3V. The TPS61201DRCT provides a selectable output
voltage of 3V3 or 5V0. It is rated for a 300 mA output current at 3V3, which should be
quite above the required supply for the rest of the board. With a low quiescent current, at
55µA it suits this application well [31].
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Voltage converter: MCP1253T

The MCP1253T provides a buck/boost DC/DC converter with a low power consumption
rated at 80µA. It achieves up to 120 mA output current with a voltage input range between
2.0-5.5V. It’s capable of being in shutdown mode reaching a reduced power consumption
down to 0.1µA [32].

5.1.2 Power circuit
The part of the schematic that is considered ”power circuit” covers all from connector P1
(solar panel), through the charge controller (U6), pass the battery, and until converted into
both 3V3 and 5V0, and fully illustrated in Appendix B4. U4 (MAX44284) have already
been explained in section 5.1.1. Visualized in the figure, the power is drawn from two
different connectors, either a micro-USB type (J2) or solar panel (P1). J2 is connected
to the controller via a Schottky diode, to prevent backward current through the USB, and
provide 5V to recharge the device.

Charge controller circuit - BQ24210DQCT

Circuitry for the charge controller is primarily based on the suggestion in datasheet [30].
The thermistor (RTH) is added to provide the controller with temperature sensing. PG is
connected directlyEN due to the controller being used in battery tracking mode instead of
load mode [30]. R7 is attached to set a maximum fast-charge current. Using the formula
from the datasheet,

RISET = R7 =
KISET

IISET
(5.7)

whereKISET is 472, and IISET were based on strongest possible current, 400 mA result-
ing, resulting in R7 = 1.18kΩ. PG and CHG are input signals used in series with diodes
(D1 and D2) to providing feedback on weather device is charging and if power applied is
good enough. Their truthtable can be seen in the datasheet [30].

Load circuit

The strongest solar panel is capable of producing a power up to 4.2W, therefore a load
capacity of that power was required. R5 and R6 are therefore two power resistors, with a
power dissipation up to 3W each.

5.1.3 Headers and peripherals
From schematic in Appendix B1, D4, D5, and D6 were three diodes added to provide the
status of the device while operating. Due to wrong order, three red LED’s were ordered
and soldered. The buttons SW1 and SW2 were added to trigger an external interrupt, to
provide extra tools when testing and programming. The RST button causes a hard-reset on
both the MCU and LoRa transceiver, by pulling the reset pin to GND. For testing purposes
and the possibility of new functionality in the future, all remaining free pins from the MCU
were connected to corresponding headers. In addition to remaining free pins, three of the
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Figure 5.8: Schematic load circuit.

measured signals (Vpanel, Vbat and Vcurr were also connected to a header (P2). This was
because, in case of using nRF9160 as a central processor unit, it required those signals to
take measurements).

5.2 PCB results

The assembled PCB is shown in figure 5.9 with its PCB design shown in Appendix B2.
The PCB was created and designed in Altium Designer, and prototype ordered from JL-
CPCB1. Upon receiving ordered prototype, it was soldered at NTNU and partly tested.

5.3 Single Node Hardware with Alternative Solution

The alternative solution consists of using T. U. Rasmussen’s PCB, with the addition of
a few breakout boards to achieve the desired functionality. The schematic for the imple-
mented hardware (not including the PCB), can be found in Appendix C1, with correspond-
ing parts and components list in Appendix C2. This solution prioritized energy measure-
ments and did not provide any support for the angle, orientation, and location data. The
central processor unit, ATmega324PB was used for all nodes, even when using NB-IoT.
In the case of NB-IoT, Tobias’ PCB was used for all measurements, with Atmega324PB

1www.jlcpcb.com
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Figure 5.9: Assembled end-node without battery for original solution.

as the main processor unit. Data was then transferred to the nRF9160-DK over UART and
forwarded to the server by MQTT over NB-IoT.

5.3.1 Components

This section covers the components used in the alternative solution.

T. U. Rasmussen’s Circuit Board

The PCB used in T. U. Rasmussen’s thesis [20], consists of most of the functionality
desired for this task. It provides the same LoRa modem and central processor unit. The
main shortages of the PCB, are its lack of support for variable voltage charging. His charge
controller required a constant 5V input. It does not provide a solution to measure current
and voltage from the panel. Nevertheless, it provides available analog inputs as well as
interfaces like I2C and UART available of communication with potential external sensors.

NB-IoT/CAT-M1 modem: nRF9160 DK

As mentioned in section 1.3, the solution was from the start going to utilize the nRF9160
DK as the NB-IoT modem. The development kit is a highly functional PCB with a lot
of functionalities. From its datasheet [25] its designed for low-power consumption with
”IDLE” power consumption of 1.8µA (modem off). Nevertheless, low power consumption
for the NB-IoT modem was disregarded in the alternative solution and therefore powered
by a power-bank/wall outlet.

The only circuitry relevant for the NB-IoT modem is its connections to the main board.
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For the alternative solution, UART1 was utilized from T. U. Rasmmussen’s PCB to com-
municate with the modem.

INA219: High Side DC Current Sensor

The essence of measuring potential energy lies with the current produced from the panel.
INA219 provides both current and the voltage produced from it. It uses the same principle
in the original solution, measuring the voltage across a shunt resistor to calculate the cur-
rent. The sensor supports a voltage bus range from 0-26V, making it available to measure
both panels [33].

COM-15208: Buck-boost converter

The core component of the COM-15208 breakout-board is the TPS63070 buck-boost con-
verter. This converter supports an input voltage range between 2.0-16V and an output
voltage range between 2.5-9V. With a fixed output voltage at 5V, its power consumption in
standby mode is typical 54µA, which can be reduced to typically 2µA in shutdown mode
[34].

Load circuit

In order to enable and disable the load circuit, a n-channel MOSFET transistor (T1: [35])
were connected between the power resistors and ground (GND) (see fig. 5.8). This tran-
sistor was chosen due to its simple characteristic of acting as a switch. It was capable of
drawing 500 mA, with a drain-source voltage (VDS) up to 60V.

Based on results and testing (explained further in chapter 7), another implementation
was also used. Replacing T1 with a bipolar NPN transistor (2N6178: [36]) could lead
to better results. To use this transistor, a resistor between GPIO1 and the base pin was
required, this resistor was implemented with both 220Ω and 470Ω.

5.3.2 Result
The resulting product is shown in fig. 5.10. The hardware was soldered onto a perfboard
in order to provide better robustness as opposed to using a breadboard.

5.4 Sensor node firmware
This section covers the software for the end-node. These drivers were mainly developed
from scratch, except for the I2C driver. This driver was still modified to suit this solution.
In addition, some software was also imported from an earlier completed project [17], but
greatly modified.

All development for the end-node software was completed with Atmel Studio 7.0 as
the main tool. Atmel Studio provides a lot of advantageous functionality, like device-
programming (setting fuses) and a well known functional debug tool. All software for
the end-node was written in C as this was deemed more practical when programming

38



Figure 5.10: Assembled and connected end-node with battery for alternative solution.

embedded hardware, using the AVR-GCC compiler. The software has been thoroughly
tested, but the main flow of the program still possess a few minor bugs.

5.4.1 RTC
From acceptance criteria 6 in section 4.4, timestamp functionality were required. In order
to provide this, an 8-bit RT-timer was implemented on the ATmega324PB. This was im-
plemented using timer 2 with an external 32.768 kHz crystal. This frequency is perfectly
divisible with 2 (215), making it able to count seconds. This was completed by using
a prescalar of 128, reducing the number of ticks to 256 and overflowing every second.
The end-node was implemented with an internal counter to keep track of a timestamp and
transmit said timestamp as a part of the message. This functionality was later simplified
and disregarded, further explained in section 5.5.3. Nevertheless, each node uses the real-
time counter as an interrupt to do a measurement as well as keeping track of when to send
a message and waking up for sleep. The real-time counter with interrupt is shown in fig.
5.11.

Figure 5.11: Flow chart of real-time timer.
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5.4.2 Drivers
UART

There are three available UART modules on ATmega324PB, two of which are used for the
alternative solution, namely RN2483A or nRF9160 DK interfacing and debug/printing.

When using LoRa, the transceiver is interfaced with the ATmega over UART0 to re-
ceive and send commands. The drivers provide generic functions to transmit single or an
array of characters, as well as receiving single or an array of characters. The MCU uti-
lizes these functions in order to communicate with the transceiver. The second module,
UART2, is then used for debugging with printf functionality to a terminal.

When using NB-IoT with nRF9160 DK, UART0 is not utilized. Instead, only UART2
is used to interface with the modem. This is because the modem requires a header to
attach cables with, and UART2 was available on the circuit board [20]. NB-IoT is not
as restrictive as LoRa in class A and can receive commands at any time. To allow the
nRF9160 to transmit received commands to the ATmega324PB, UART2 was configured
with the possibility of waking the ATmega from sleep by transmitting a start condition and
then receiving the command.

All printf statements were coated with a ”#ifdef DEBUG M” statement. In order to
then have the end-node live printing to a terminal, the code line ”#define DEBUG M” in
”config.h”, has to be uncommented. This saved time and power in order to debug with
printing or not.

RN2483 - Tranceiver driver

This driver inherits and utilizes the functionality from the UART driver. It features func-
tions for OTAA join procedures, setting data-rates and channel duty cycles, and changing
the baud rate. Upon transmitting a correct command to the modem, a response is always
transmitted back. It was therefore created a small list of available responses (based on a
list from the command reference document [18]), in the header file which were used to
provide error information when required.

ADC

The ATmega324PB provides a 10-bit resolution ADC with 7 channels. A simple driver
was developed to read different analog inputs, like battery level for the alternative solution,
and also voltage and current produced for the original solution. The functions featured
initialize the ADC, reads a specific channel, and changes the channel.

INA219 current sensor

This driver was developed to communicate with the high-side current sensor. The sensor
interfaces over I2C. Each register returns a 16-bit value of which needs to be converted to
provide useful information. This information is mainly converted at the back-end applica-
tion but using the formulas explained here. The sensor provides a wide range of options
that can be configured for optimal operability. It uses a 12-bit ADC used for all conver-
sions. By configuring the sensor using software, appropriate scales for the ADC were
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applied. For instance, the bus voltage can be measured from 0-16V or 0-32V2. In this
driver there are multiple procedures for configuring the sensor, reading desired registers,
and triggering a conversion.

The configuration register is a 16-bit register where all configurations are written to.
The three most important configurations were the bus voltage range, shunt voltage drop
range, and when to do a conversion. Conversion could happen either continuously or when
triggered. To save power, each conversion was triggered by software.

The bus voltage scale was set to 0-16V for more accurate measurements and within
the solar panels range. The measured bus voltage is then stored in 12 of the 16 bits in its
register (bit 3-14) and is processed with simple bit-shifting operations after retrieving the
16-bit value

To measure the current, the sensor calculates the voltage drop over the 0.1Ω shunt
resistor (Rshunt). For a most accurate conversion, it could be configured for different
scale ranges:

• 0-40 mV

• 0-80 mV

• 0-160 mV

• 0-320 mV

As the absolute maximum current possible through is 400 mA, maximum voltage drop
(Vshunt), is:

Vshunt = Ishort circuit ∗Rshunt = 40mV (5.8)

and the correct scale is 40 mV.
The last important configuration is the calibration register. The sensor is not capable

of detecting Rshunt, and therefore uses the calibration register to provide required infor-
mation. This register is 16-bits, but because it also supports bidirectional current, MSB
indicates the sign. The register was calculated using the formula from INA219’s datasheet
[33]:

Calibration Register = trunc(
0.04096

LSBcurrent ∗Rshunt
) (5.9)

where LSBcurrent is a desired step-size for the current register where measured current is
stored, and follows the formula:

Imax expected

212
< LSBcurrent <

Imax expected

215
(5.10)

LSBcurrent is then chosen as high as possible. Using Imax expected = 400mA,LSBcurrent
was chosen to be 15µA. Calibration register was then calculated to be 273066.

2From datasheet [33], only the scale changes, the sensor can never exceed 26V on the bus
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Board driver

This driver was implemented to modulate and gather certain functions to make the code
more readable. It features functions for GPIO management like initializing needed GPIO
and pin interrupts to buttons, getting battery percentage (converting read ADC value to
percentage) and in general setting up the board.

Utility functions

This driver contains functions for providing simplicity for the other drivers if needed. The
main functionality is to encode and decode the messages sent and received. It also has the
option to encode floats into hexadecimal, but this was not used in the final version.

General configuration

The entire software solution was designed using the logic provided by the configuration
file ”config.h”. The purpose of this file was to provide simple matters of enabling or
disabling features or even entire modules by commenting singe lines. A snippet of the
code is shown as an example in figure 5.12.

Figure 5.12: Snippet of configuration file.
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Command byte [hex] Command data [hex] Purpose Example

11 xx xx xx xx (4 bytes)
Update timestamp,
4x bytes are the new
timestamp.

”1122334455 (sets
new UNIX time to:
573785173)

22 xx xx (2 bytes) Change the transmis-
sion interval

”22003C” (set interval
to every 3C=60 sec)

99 Doesn’t matter Reset the end-node ”99”

Table 5.2: Downlink configurations available to all nodes.

Message format

After the scope change midways in this thesis, the message format designed in section
4.5.4 was simplified. As the resulting focus went into getting good measurements, aspects
like automatic GPS location, angle, orientation, and timestamps were no longer prioritized.
This resulted in a new uplink message format shown in figure 5.13. The downlink format
remained the same.

Per the acceptance criteria, three configurations were implemented, the ability to re-
set, change transmission interval, and update the timestamp of the end-node. Following
the design in figure 4.5, these commands (with example) were implemented as general
downlink commands:

Figure 5.13: Implemented message format for uplink messages.

5.4.3 Main program

In standard operating mode, the node acts as illustrated in the state diagram in Figure 5.14,
while Appendix E1 show relevant functions and files utilized by the diagram. The red
arrows represent when using NB-IoT, while the black arrows represent LoRaWAN state
transitions. The software is programmed to not trigger on external events (except the ”reset
button”). Each state will follow its flowchart explained below and in accordance with the
state diagram. Timer 2 interrupt is the counter mentioned in section 5.4.1. The default set-
tings are to transmit minute measurements by averaging 60 samples. As mentioned earlier,
this interval can be changed by command, but each sample will always be sampled every
second. The states are: INIT, ACTIVE, SLEEP and NOT JOINED, and are explained in
the following sections. Each state, except for INIT, has a flowchart to visualize its flow.
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The figures show the flow for both options, NB-IoT node, and LoRaWAN node by using
different color coding.

Figure 5.14: State diagram including transitions for both NB-IoT and LoRaWAN.

INIT state

The INIT state is only entered once at startup, or after reset. It initializes all the other
drivers, sets up the board, and attempts to connect to the LoRaWAN (if LoRa is used).

SLEEP state

The ATmega324PB provides multiple power management modes. The one chosen for this
solution is ”power-save mode”, as it provides the lowest power consumption and relevant
wake-up sources [23]. This state also acts like an IDLE state in the sense that it chooses
which state it enters after woken up. This logic was chosen as it’s desirable for the MCU
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to be sleeping as long as possible, and because the MCU can be woken up by UART
and timer interrupts. Power-save mode uses less power due to not enabling the watchdog
timer, which is only enabled just before reset. The flow of the state are shown in figure
5.15, while Appendix E1 show relevant functions and files utilized by the chart. The
figure shows the flow when using NB-IoT illustrated with red arrows, and black arrows for
LoRaWAN. Unique with the NB-IoT flow, is that in order to transmit commands to it from
the server, the modem must be able to wake it up if it’s sleeping. As mentioned before,
this is achieved by receiving a byte over UART. It’s visualized in the figure with the use of
green boxes.

Figure 5.15: Flowchart illustrating the flow in SLEEP state.

NOT JOINED state

This state is only used when end-node uses LoRaWAN. The reason being when NB-IoT
is used, an external modem is used which follows its code flow and keeps the connection
alive. The flow of the state is visualized in figure 5.16, while Appendix E1 show relevant
functions and files utilized by the chart. The node is allowed to attempt to join the network
a certain number of times without using all of its available air time. For this solution, the
maximum amount was set to three times, and after it must wait at least 3 minutes before
retrying. These values are not calculated thoroughly and just based on testing and failing
with the chosen duty cycle.
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Figure 5.16: Flowchart illustrating the flow in NOT JOINED state.

ACTIVE state

In this state is where most of the data retrieving and processing occurs. The entire desired
flow is illustrated in a simplified version in figure 5.17, while Appendix E1 show relevant
functions and files utilized by the chart. The deployed nodes follow this flowchart with
the exception of enabling and disabling the load circuit. In their software version, the
load circuit is enabled at all times due to a logic error realized too late. The new software
has only been implemented in a test node, which does not provide continuous data, but
used for testing and achieves desired functionality. The main idea remains the same. The
node reads the voltage and current registers from INA219 and adds them to the previous
samples. It then polls if the real-time counter is divisible with the chosen transmit interval,
and if true it will read the battery level, and together with the frame it will encode a
hex-string ready to be transmitted. Based on whether the node is using LoRa modem or
NB-IoT, it will either transmit the message and wait for a potential response (LoRa), or
transmit and go straight to sleep (NB-IoT).

5.4.4 nRF9160 DK software

The nRF9160 development kit uses its MCU and therefore needed its software. The code
implemented was made as easy as possible due to insufficient time to comprehend the
massive SDK environment used with Nordic Semiconductor devices. The script is based
on their sample code ”mqtt simple” [37], and heavily modified. Because the power con-
sumption was disregarded, the modem has only one state, ACTIVE. The flow of the state
is shown in figure 5.18, while Appendix E1 show relevant functions and files utilized by
the chart. It will go in a loop maintaining the connection with MQTT broker and poll if the
message has arrived. The modem sleeps between the keep-alive interval, and therefore a
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Figure 5.17: Flowchart illustrating the flow in ACTIVE state.

callback was implemented to be able to receive messages at any time. This thesis will not
go into detail on how to create the needed SDK environment for programming nRF9160
DK. For unknown reasons, the modem (most likely due to software), often disconnected
from the MQTT-broker, and while always trying to reconnect had a massive power con-
sumption which depleted several power banks. Even though the node was deployed, it did
not provide consistent data like the others.

5.5 Server firmware
The main tool for programming the back-end application was Visual Studio Code. This
was simply a familiar and easy-to-use code editor. It was created five different scripts,
the main script that runs continuously and four which can be run whenever needed. The
main script is the actual server which is running continuously. The other four are scripts
for synchronizing the nodes, two for creating graphs (voltage, current and power, and
complete battery life), and one to calculate the packet loss-rate in each node. Only two
scripts will be explained further below, the main script and the one to synchronize all
nodes.

5.5.1 MQTT brokers
The two brokers used for this solution were TTN’s console, and the public broker ”mqtt.eclipse.org”.

TTN Console

The console was briefly explained in section 3.2.1, and is used with LoRa devices. A
big advantage of TTN’s console, is that TTN provides a library for easy integration be-
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Figure 5.18: Flowchart illustrating the flow in nRF9160 NB-IoT modem.

tween server and LoRa nodes [38]. Connection with the broker is achieved by creating a
”HandlerClient” by providing the standard TTN discovery address and the access key for
the application. In addition, it is also required to provide the exact name for the appli-
cation, ”application ID”. The Console also acts as a GUI for configuring application and
device information. Whenever a generic device is added, all EUI’s and keys are generated
automatically. Snapshots of said GUI is illustrated in Appendix D.

The client then subscribes to the application server and whenever available, received
uplink messages from the corresponding end-nodes. Furthermore, both the console and
the client can enqueue downlinks to the end-nodes. This feature is used to configure the
end-nodes in regards to transmit interval, timestamp, and resetting, and utilized in the
synchronization script.

Eclipse broker

This broker is a simple public broker where the developer decides two channels in which
the end-node and server subscribe to one each and publishes in the other one. Eclipse pro-
vides a library for developers to use when using standard MQTT communication, ”paho-
mqtt” [39].
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5.5.2 Main script

This script is continuously running on a computer and stores all messages received by
the end-nodes. In order to communicate with both the LoRaWAN devices (via TTN) and
NB-IoT devices (via Eclipse) concurrently, two extra threads were deemed necessary. The
main program, therefore, consists of three threads, two clients over MQTT and the main
thread. The flow of each thread are shown in figure 5.19, while Appendix E2 show relevant
functions and files utilized by the chart. The main thread simply keeps track of the current
date. The two client threads, after connecting to their broker, waits for a message from an
end-node with the usage of callback functions. After receiving a message, the message is
processed and data extracted. Messages are logged in files with the current date reception
as the name. These files are stored in a folder named after the device ID. Each message in
the files are stored with the following parameters:

• Frame

• Battery level

• Voltage [V]

• Current [mA]

• Power [mW]

where the power parameter is simply calculated by multiplying current with voltage.
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Figure 5.19: Flowchart: Main script back-end application.

5.5.3 OTA synchronization
This is a stand-alone script used to synchronize all nodes that are out of sync. The script
is designed for this solution and therefore only syncs the four registered and active nodes,
but is easily scalable. The general flow is illustrated in figure 5.20, while Appendix E2
show relevant and utilized functions and utilized by the chart. All nodes can be synchro-
nized toward any desired node, but the flowchart and testing were completed with node
2’s timestamp as the target. It’s worth noting that this reference to node 2’s timestamp,
actually refers to the timestamp used by the server when storing the message. As the node
doesn’t send its internal timestamp, the server simply reads the current time whenever re-
ceiving a message. For easier understanding, the flow is explained in the following list and
uses an error margin of up to 3 seconds:

1. Connect to TTN’s MQTT broker (if LoRa nodes are active).

2. Connect to Eclipse’s MQTT broker (if NB-IoT nodes are active).

3. Read the last message sent and stored by node 2.

4. Extract the timestamp and only keep the seconds part while disregarding what hour
it was and how many minutes on it (Ex: 14:24:36⇒ 00:00:36⇒ 36).

5. Same as in 4, but with node 1.

50



6. Find the absolute difference between node 1 and node 2 ( absolute value of (node2.seconds
- node1.seconds) ).

7. Check if difference is greater than 3 seconds.

8. If 7 is true, create a corrected timestamp and transmit it to node 1 (further explained
later).

9. Repeat 5-8 for all remaining nodes.

10. Disconnect the MQTT brokers.

The logic behind calculating a corrected timestamp is based making all the nodes send at a
specific time. As all nodes transmit a message every minute it can be assumed that within
that interval (0-60 seconds), each node will have tried to transmit a message. Therefore, by
synchronizing each node to the same number of seconds into each minute they transmit it
is possible to have them transmit around the same time. For example, Node 2 transmitted
its last message at 14:24:36, and node 1: 14:24:08, then node 1 needs to shift its internal
counter by 28 seconds forward. In the opposite case, where node 2 would synchronize
on node 1, node 2 would have to shift its internal counter backward by 28 seconds. This
is based on the assumption that the nodes’ next transmission would be at 14:25:36 and
14:25:08, respectively, and that the server stores the messages with exact timestamp upon
arrival. The solution is in no way ideal, but compromising and short-term realized. It
accepts an error margin as desired (default is 3 seconds), and does in no way count for
general drift in LoRa transmissions.

Figure 5.20: Flowchart: Synchronization script.
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5.6 Placement and coverage
As 4 solar panels were ordered, 4 nodes were prepared and deployed around the city. Their
placement are shown in figure 5.21. Locations were chosen based on available places with
a big distance between them as possible.

All nodes except LoRa-node 1 were deployed and prepared for outdoor weather. The
nodes are in no way IP67 waterproof, but with a semi-planned way of placing the node,
the chance of water damage is highly reduced. An example of an outdoor installment is
shown in figure 5.23. Node 1, shown in figure 5.22, are located inside in an office at the
university. The boxing solution simply consists of a waterproof plastic container, with a
drilled hole able to fit the solar panel cables.
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Figure 5.21: Location of deployed sensors.
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Figure 5.22: Deployed LoRa-node 1.
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Figure 5.23: Deployed LoRa-node 3. Outside with no roof.
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Chapter 6
Testing & Results

This chapter covers the various testing and results of the system proved and verified against
the acceptance criteria covered in section 4.4. The chapter will be split into to main sec-
tions, covering the original solution and the alternative solution. Due to minimal testing
on the original solution, the alternative one will be the main focus, as these devices are the
ones currently deployed and measuring data. It’s also worth noting that except for the hard-
ware testing and tests for basic functionality like transmitting, receiving, etc. LTE-node 1
did not provide enough data and is therefore not present in most tests.

6.1 Original solution
The original solution, shown in figure 5.9, was in no way thoroughly tested, but instead
only focused on the basic functionalities like certain hardware, debugging UART commu-
nication, and LoRa functionality.

The only components tested, were the MCU, LoRa modem, charge controller, and
voltage converters. Using a multi-meter, the board is capable of converting the battery
voltage into both a 3.3V out for most of the circuitry, and to 5.0V out to the USB header
(J3). Providing power from a power supply into the solar panel header (P1), the two LED
indicators lit up to indicate the battery was recharging and power is good. The next day,
observing the battery voltage, it had increased. When trying to recharge with different
voltages, the LED indicators only seem to stay lit in a specific voltage range between 4.8-
5.2V. At that range, the power supply would provide a current up to 50 mA, as opposed to
less than 10 mA.

Atmel Studio was able to flash code to the MCU via Atmel Ice normally.
Before testing the LoRa modem, UART communication had to be established properly.

It was noticed that there was an error in the PCB design where for both active UARTs, RX
was connected to RX and TX to TX. Also, no UART was connected to a header for simple
debugging. A short-term solution was therefore implemented and a small wire soldered on
to UART2s TX pin. From there the MCU was able to print to a terminal. Having verified
the UART functionality, a slightly adapted main program used in the alternative solution

57



Figure 6.1: Voltage and current measured by INA219.

was executed, and the board starting transmitting normally. This led to the server logging
new files. Further testing was not completed due to focusing on the alternative solution.
From the design it was also noticed that the header for I2C was missing, meaning the
nRF9160-DK modem had no way of communicating with the PCB.

6.2 Alternative Solution

6.2.1 Hardware testing
The main PCB for this solution was a pretested board created by T. U. Rasmussen for
his thesis [20], and there thoroughly tested. The hardware testing consists of confirming
the breakout boards implemented in section 5.3, and the load circuit. To test the INA219
and its measurement ability a circuit based on schematic in Appendix C1 was used, but
with buck-boost converter disconnected. Then a power supply was applied directly to the
INA219 input with an oscilloscope connected in parallel with the power supply socket to
confirm voltage. Also, a multi-meter was connected in series with the power supply to
confirm current. To verify, the PCB’s MCU would then read the values received from
INA219 over I2C, and print values to a computer. All values are illustrated in figures 6.2
and 6.1.

Next, the buck-boost converter (U2) was connected to test charging. As soon as volt-
age went above 2V the circuit starting charging, this was confirmed by observing the LEDs
implemented on in the charge circuit on T. U. Rasmussen’s PCB. Both ”CHG” LED and
”PWR” LED were lit while above 2V. In addition it was verified by connecting an oscillo-
scope to the output of the converter, shown in figure 6.3.

6.3 Potential energy from solar panel
After several days deployed, the different nodes were compared by visualizing the stored
data from each node. These nodes are all deployed with the circuitry shown in Appendix
C1, and using the 2N7000 MOSFET transistor. The current firmware in all deployed nodes
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(a) Oscilloscope: Voltage [V]

(b) Multi-meter: Current [A]

Figure 6.2: Measured voltage and current from oscilloscope and multi-meter respectively.

(a) Output voltage

(b) Input voltage and current.

Figure 6.3: Comparing voltage input and voltage output of the buck-boost converter OCM-15208.
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(a) Snippet from a LoRa-node
1 log, columns explained left to
right: Frame, time, battery, volt-
age, current, power.

(b) Graph showing voltage.

Figure 6.4: Irregular behavior illustrated with a snippet from a log file and graph from the 13th of
May 2020.

provide a ”always-on state” for the transistors. The VGate Source provided by the PCB to
switch on the transistor was out of spec. According to its datasheet, the transistor requires
a voltage up to 5V in order to completely switch on the transistor with a current up to 350
mA. This led to multiple nodes transmitting weird results and measurements. A simple
illustration of the affected result can be seen in figure 6.4. Figure 6.4a show a voltage
changing from 6V to 2V and then up to 7V (fourth column) instantly, instead of gradually.
The fifth column represents current which barely changes in the same timespan. This
behavior was not consistent with all nodes on all days but happened frequently.

Figure 6.5 illustrates a sunny day without any clouds. There, the voltage does not vary
much after 08:00, while the current rises and decreases rapidly. The Node loses the sun at
around 17:00.

Figure 6.6 show four different dates where it was cloudy for the biggest part of the day.

One of the 4 nodes was after a while retrieved back to the office for testing with dif-
ferent transistors and logic. A new test was based on only turning the transistor on at the
moment of measurement. For accurate results, finding the time delay between turning the
transistor on and the current stabilizing was important. The test consists of replacing the
BS170 MOSFET transistor with a 2N6178 bipolar NPN transistor and measuring the time
delay for the voltage to stabilize. Results are shown in figure 6.7.

Afterward, the same test was completed with the 220-ohm resistor instead, this achieved
the result illustrated in figure 6.8. Conclusion from both tests are shown in table 6.1.

This is an extremely low time delay, and simple to implement in a new software driver.
To determine the new resistance across that path, different light intensities were applied
by concealing parts of the solar panel, producing a current and voltage corresponding to
given light intensity. The results are shown in table 6.2. Using the voltage and current
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(a) Current (b) Voltage

Figure 6.5: Measurements from LoRa-node 1 on 14th of June during a sunny day without skies of
LoRa-node 1.

(a) 26.05.20 (b) 02.06.20

(c) 07.06.20 (d) 10.06.20

Figure 6.6: Power [mW] production in different scales of cloudiness from LoRa-node 2

Delay Voltage drop across tran-
sistor when switch ON

With 470Ω resistor 12µs 1.62V
With 220Ω resistor 80 ns 990 mV

Table 6.1: Time delay test results for 2N6178 transistor.
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Figure 6.7: Time delay after switching on 2n6178 NPN transistor with a 470Ω resitor.

Figure 6.8: Time delay after switching on 2n6178 NPN transistor with a 220Ω resistor.

measurements from INA219, which are already proved to be precise, total resistance was
calculated using Ohm’s law. Weather conditions when testing were clear skies.

6.4 Node synchronization

From the implementation mentioned in section 5.5.3, a simple algorithm was developed
to synchronize the nodes with over-the-air messages. Running said script led to a message
sequence shown in figure 6.9. The test was completed on three different nodes, where it
was decided to synchronize against node 2’s timestamp. The figure is partly edited, where
the sequence of actually receiving the messages where removed. The result shows three
nodes sending a message three different times, 18:29.39, 18:29:42 and 18:29:44, node 1,
myboard, and node 2 respectively. Timestamp to synchronize on was node 2’s 18:29:44.
The next message sent after receiving synchronizing command were: 18:31:45, 18:31:46,
and 18:31:44. Running this script provided a lot of variable results. Figure 6.9 is a result
where the synchronization worked. The script was run by transmitting both confirmed and
unconfirmed commands (explained in section 3.1.2) over LoRaWAN. Using unconfirmed
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Voltage Current [mA] Total resistance [Ω]
0.48 25.2 19.05
1.32 74.4 17.74
2.5 138 18.12
2.65 154 17.21
4.4 214 20.56
6.66 284 23.45
7.33 304.8 24.05

Table 6.2: Total resistance in circuitry with different sunlight exposure.

Figure 6.9: Message sequence synchronizing nodes.

messages resulted in multiple occasions where the command was simply not received, and
with no quality of service (QoS) in LoRa, it was not automatically resent. Transmitting
with confirmed messages resulted in multiple retries even though the messages usually
were received.

It is also worth noting that the nodes drift with their transmission timestamp. Even
though the node, in theory, should transmit every 60 seconds (default), due to internal
factors of the ATmega324PB and external crystal, it will drift over time. Figure 6.10 illus-
trates this. The figure shows a very truncated message pool to only provide the necessary
information. Over 42 minutes, the node has drifted 2 seconds.

6.5 Self-sufficiency and low power consumption
Testing self-sufficiency and low power consumption were deemed difficult due to the cir-
cumstances. With the lack of time and available equipment, standard measurements of the
power consumption of the board in different states were not completed. Instead, the main
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Figure 6.10: Illustrates the internal time drift in a node.

test for self-sufficiency was done in accordance with acceptance criteria 3 in section 4.4.
In order to look at the behavior of the nodes, a graph was created which plots the battery
level based on data collected between 14.05.2020 and 15.06.2020 for the three active LoRa
based nodes. LoRa-node 3 stopped sending data on 10.06.2020 because it was recalled due
to the thesis reaching its end. The placement of the remaining two nodes prevents the need
for being recalled. The result can be seen in figure 6.11. Figure 6.12 illustrate examples
of graphs during a couple of nights (00:00-06:00). The biggest battery level drop during a
night was 2 %.

Further, to provide an indication whether a node would be capable of surviving longer
periods of time with less to no sun, a test to understand the current required for a almost
depleted battery and a semi-fully charged battery were conducted. First, a 18650 battery
were depleted until around 3.0V and the PCB then connected to a power supply which
could provide however much power the PCB needed. Afterwards, the same test was con-
ducted with a 3.62V semi-fully charged 18650 battery. Results are shown in table 6.3.

6.6 Coverage and placement

An important acceptance criteria was the criteria about placement and coverage. In order
to test this, and retrieve measurements for analysis, 4 nodes were initially deployed in
four different places, shown in figure 5.21. Over four weeks, the nodes remained outside
(except LoRa-node 1), during which it on some days rained. The nodes took no damage
and LoRa-node 3 was recalled on the 10th of June while approaching the end of thesis
testing. In regards to coverage and acceptance criteria 5.5 in section 4.4, a simple script
was programmed to calculate lost packages and at what percentage it was able to receive.
The total average percentage for each node are listed in table 6.4.
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(a) LoRa node 1 (b) Lora node 2 (until 10th of June)

(c) Lora node 3

Figure 6.11: Battery level changes over a time span of 1 month from 14th of May until 15th of June.

(a) LoRa node 1 - 06.04.2020 (b) Lora node 1 - 06.03.2020

(c) Lora node 2 - 13.05.2020

Figure 6.12: Battery graphs over a time span between 00:00 - 06:00 on different dates.

65



Vbat = 3.0V Vbat = 3.62V

Vsupply
Min. current
drawn [mA] Power[mW] Min. current

drawn [mA]
Power
[mW]

2.63 16.9 44.45 16.7 43.92
3.68 10.7 39.38 10.98 40.41
4.50 9.90 44.55 9.3 41.85
5.46 7.18 39.20 7.1 38.77
7.52 6.1 45.87 5.8 43.62
8.95 4.8 42.96 4.9 43.86
10.62 4.1 43.54 4.3 45.67
12.77 3.6 45.97 3.7 47.25
13.96 3.0 41.91 2.9 40.51

Table 6.3: Current drawn to charge circuit with almost depleted and semi-fully charged 18650
battery.

LoRa-node 1 LoRa-node 2 LoRa-node 3 LTE-node
97.2 % 71.7 % 50.9 % 74.2 %

Table 6.4: Average percentage of packets received.

6.7 Remote configuration of end-nodes

From the acceptance criteria, three types of configuration were required. These were: reset
end-node, change transmission interval, and update internal timestamp. Updating internal
timestamp was already confirmed by section 6.4, which showed the synchronizing. The
remaining two configurations were simply tested by transmitting the appropriate command
(tab. 5.2) from TTN’s console and observing the response. It should also be mentioned
that similar behavior as with node synchronization when using unconfirmed and confirmed
occurred.

The general behavior is shown in figure 6.13a, where a confirmed reset command was
sent two times and the device reset both times. The figure shows LoRa-node 1 sending
and uplink and then immediately receiving a downlink ”99 00 00 00”. 4 seconds later the
console received join requests from the node. 1 minute after joining the node transmits a
new uplink, and then received a new reset command and rejoins. This behavior happened
on multiple occasions and was only solved using unconfirmed messages, shown in figure
6.13b. The downside to using unconfirmed messages is the QoS, where it cannot be guar-
anteed the message is delivered. Disregarding the fact that not necessarily all commands
are received, the end-node executed the reset command every time it arrived. This was ver-
ified by connecting the node to a computer over UART for print functionality and reading
the terminal.

To test the ability to change transmission interval, a command requesting a 10-second
interval was sent first, and then after a short while, a new request for the original 60-second
interval was transmitted. This is shown in figure 6.14. The figure shows that after sending
the downlink ”22000A”, it starts transmitting rapidly, every 10 (0A) seconds. Then, after
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(a) Confirmed reset command

(b) Unconfirmed reset command

Figure 6.13: Snippet from TTN’s Console after a reset command to LoRa-node 1.

receiving the second change request ”22003C”, the node starts transmitting every 60 (3C)
seconds.

6.7.1 Time-lag between nodes’ delivery of energy
As mentioned in the thesis description as well as the introduction, an important aspect of
this thesis was the prediction of Delivery of Energy (DoE). Even though the main focus
had been shifted to achieving a functional distributed sensor network, measurements were
gathered, and in this section compared. To achieve a big as possible indication of time-lag,
LoRa-node 1 and 3 were compared with LoRa-node 2, as their distance is far greater than
between node 1 and 3. For each sample, most of the graph will be shown with a time
span from 11-17, and then an enhanced version for each graph, illustrating the potential
time-lag. Results are shown below:
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Figure 6.14: Snippet from TTN’s Console after command to change transmission interval.

(a) LoRa-node 1: 1100 - 1700 (b) LoRa-node 2: 1100 - 1700

(c) LoRa-node 1: 1300 - 1400 (d) LoRa-node 2: 1300 - 1400

Figure 6.15: Illustration of potential time-lag between Lora node 1 and 2 on 03.06.2020 using
graphs from produced power [mW].
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(a) LoRa-node 1: 1100 - 1700 (b) LoRa-node 2: 1100 - 1700

(c) LoRa-node 1: 1400 - 1500 (d) LoRa-node 2: 1400 - 1500

Figure 6.16: Illustration of potential time-lag between Lora node 1 and 2 on 04.06.2020 using
graphs from produced power [mW].
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(a) LoRa-node 3: 1100 - 1700 (b) LoRa-node 2: 1100 - 1700

(c) LoRa-node 3: 1200 - 1300 (d) LoRa-node 2: 1200 - 1300

Figure 6.17: Illustration of potential time-lag between Lora node 3 and 2 on 04.06.2020 using
graphs from produced power [mW].
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(a) LoRa-node 1: 1100 - 1700 (b) LoRa-node 2: 1100 - 1700

(c) LoRa-node 1: 1500 - 1530 (d) LoRa-node 2: 1500 - 1530

(e) LoRa-node 1: 1420 - 1440 (f) LoRa-node 2: 1420 - 1440

Figure 6.18: Illustration of potential time-lag between Lora node 1 and 2 on 05.06.2020 using
graphs from produced power [mW].
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(a) LoRa-node 1: 1100 - 1700 (b) LoRa-node 2: 1100 - 1700

(c) LoRa-node 1: 1200 - 1300 (d) LoRa-node 2: 1200 - 1300

Figure 6.19: Illustration of potential time-lag between Lora node 1 and 2 on 08.06.2020 using
graphs from produced power [mW].
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(a) LoRa-node 1: 1100 - 1700 (b) LoRa-node 2: 1100 - 1700

(c) LoRa-node 1: 1400 - 1500 (d) LoRa-node 2: 1400 - 1500

Figure 6.20: Illustration of potential time-lag between Lora node 1 and 2 on 28.05.2020 using
graphs from produced power [mW].
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Chapter 7
Discussion

This chapter provides a discussion meant to cover the overall system results in accordance
with the acceptance criteria from section 4.4. Furthermore, the results regarding coverage
and placement, node synchronization, and self-sufficiency are more deeply analyzed in
their respective sections.

7.1 Single end-node system results for original solution
Based on the very short amount of testing completed in section 6.1, only AC9, and AC2
were passed. The device is capable of being recharged by the solar panel, but only at a
specific range of voltages. This suggests there might be a wrong resistor connected to one
of the pins of the controller. From the implementation, multiple resistors were calculated
based on different desired behavior, which could explain the problem. To solve this, more
thorough testing is required. The server received and stored information from the PCB,
but this information is just dummy data, and not measured in any way.

To deploy the PCB similarly to the alternative solution, certain functionalities need to
be tested. Features such as the MAX4484 to measure current was not tested, preventing the
board from passing AC1. In addition, for a fully functional solution as intended, drivers
for three components are required. Those are for the flash memory, GNSS and IMU. These
features have proven to be desired based on testing and discussion done on the alternative
solution, explained further below.

In conclusion, the PCB works to some extent, and need more thorough testing be-
fore any components and parts of the circuitry can be deemed faulty (except for UART
connections).

7.2 Single end-node system results for alternative solution
Looking at figures 6.4, 6.5, and 6.7 [FIND REF], the devices are capable of measuring
current and voltage from the solar panel and doing basic board diagnostics by measuring
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the battery level. Criteria AC1 and AC2 are therefore met. From AC3, the node should be
self-sufficient and the battery must not lose overall percentage over three weeks. Verdict
for this criteria are further discussed in section 7.5. Comparing table 6.3 and figure 6.5, the
load circuit works properly as a significantly higher current is measured as opposed to what
the PCB itself can draw to charge. Nevertheless, the logic used for the deployed boards
turns the transistor on at all times and not only during measurements. This was fixed and
tested with a new transistor, shown in figures 6.7 and6.8, where the voltage drops when
turning it on, proving current goes through the transistor. Using the 470 ohm resistor, a
greater voltage drop occurs opposed to the 220 ohm resistor. Also, the time required to
stabilize the current were measured as low as 80 ns. This delay is easily implemented
in the next firmware update. Table 6.2 show the total resistance in the circuit when U2
(buck-boost converter) is disconnected, and all curent flow through the load circuit. In all
different scale most likely to occur on the outside, the transistor shows a reliable voltage
drop, proving that it’s more suited than the BS170 MOSFET transistor. The new transistor
was never tested over time in the sunlight, but all facts indicate that AC4 is met.

AC7 involves the remote configuring of single or multiple nodes. Each node is capable
of executing a received command, explained in section 6.7. Still, each node does not
receive all packets, and neither can it be guaranteed, which suggests that AC7 was not
passed. This is also connected with the placement and coverage, which is discussed more
in section 7.3.

From section 6.6 everything indicates that the nodes are capable of surviving the out-
doors in rain. The boxing solution should be improved, but for this purpose and available
data, AC11 is passed.

AC12 and Ac12, saying a node must be able to be recharged using micro-USB and
support I2C, UART, and SPI, has already been proven by T. U. Rasmussen in his thesis
[20].

7.3 Coverage and placement

7.3.1 Placement

AC3, AC4, AC5, AC5.5, AC7, and AC6 are all criteria that fall under the category ”cov-
erage and placement”, meaning that both coverage and placement directly factor into the
results affecting these criteria. While AC3 and AC4 are better covered in section 6.5, it’s
worth noting that how nodes are oriented have a direct effect on the criteria. Mentioned
in section 4.5.1, the original plan was to automatically detect and calculate the angle and
orientation of each node. This was scrapped in the alternative solution due to the circum-
stances and the prioritizing necessary to finish the thesis. Nevertheless, as the angle and
orientation differ from the deployed end-nodes, so does the results. For instance, LoRa-
node 1 is placed on the inside behind a window, which limits the amount of sunlight its
able to receive to the size of the windows. The windows add a limiting layer between
the panel and sun, also reducing the amount of light able to hit it. LoRa-node 3 is placed
outside but attached to the corner of two walls vertically. An optimal angle is for the solar
rays to hit the panel perpendicularly, which never occurs in this node. Also, the walls limit
the time-window of receiving light. Optimal angle and orientation would probably provide
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more accurate results and graphs, especially looking at the correlation between nodes in
regards to time-delay between clouds.

7.3.2 Coverage

Looking at the logged files and graphs, figure 6.4 for instance, and especially table 6.4, it is
clear that LoRa-node 2 and 3 do not have well enough coverage to provide good accurate
data. The criteria set in this thesis was to have a packet loss of maximum 10%, and was
only met by LoRa-node 1. This simply suggests that LoRa-node 1 has considerably better
coverage than the other two have. Having to depend on other people’s gateways could
lead to varying results and increased packet loss. The frame counter for each message
only goes up to 255, meaning that if a node would go offline for 4 hours and 15 minutes
(255 minutes), the script calculating the packet loss % would not notice. This all suggests
that better and more consistent data are necessary to pass AC5.5, and perhaps self-owned
LoRaWAN gateways could provide better and more consistent coverage. For LTE-node1,
the coverage was not the main issue, but the software used in the nRF9160DK. Updating
the software to a more robust and better code would most likely solve all NB-IoT coverage
issues. Nevertheless, each node was able to transmit measurement data and diagnostics
through their respective protocol, which indicates that AC5 is passed.

7.3.3 Remote configurations

Sending a command to an end-node, either from TTN’s console or from a simple script,
was proven to be quite easy. However, with the lack of QoS, not being able to guarantee its
arrival can seem to be a problem. In the implementation and testing, it was deemed most
natural to use ”unconfirmed” messages, but this completely removes the little QoS and
that was available in LoRawan, but saves power and does not produce and weird behavior.
Sending confirmed message led to on occasion multiple commands sent, one for each new
message received by the server. The importance of the commands is not grave, such that
if a device was reset a couple of minutes after initially sent, the consequences are not
major. In addition, it can also be argued that if the device is reset multiple times, the main
difference would be the frame of the next message not changing. Change the sample time
of a node, on the other hand, could lead to more noticeable differences in graphs between
graphs with different sampling intervals. At the same time, sending a command to change
interval multiple times does not change anything, as the sample interval variable will just
be set to the same as it already is. Based on how the time synchronizing script works,
repeated messages to update the internal timestamp would work the opposite as intended.
If a node received a command to update its timestamp for transmitting 15 seconds later
than usual, if the same command were sent 1 minute later as well, the node would be
desynced by 15 seconds.

Based on these results, the following table illustrates which commands and whether to
transmit confirmed or unconfirmed:
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Command Confirmed Unconfirmed
Reset x x

Update timestamp x
Change transmit interval x

Table 7.1: Which type each command should use.

7.4 Node synchronization
The success rate for synchronizing nodes depend on multiple factors:

• Airtime

• Internal clock drift

• Coverage

Based on the explanation of the script used to synchronize the nodes and the results it
provided, there are several pitfalls for the script to fail. This was to some extent known
in advance but not taken into consideration as an okay solution in time was preferred over
a not complete one. For starters, the nodes do not provide an internal timestamp in their
message to provide any information on what time their messages were sent. Instead, the
server reads the time from a global server as soon as a new message arrives. Using only this
information disregards the air-time of any message, which varies. In addition, the internal
drift for each node further explained in T. U. Rasmussen’s thesis [20], affects the arrival
time of the message. This factor was not taken into consideration as it was estimated that
all nodes would have a very similar internal drift, due to factors explained by Microchip
[40]. Time was therefore not spent on software and testing for compensating this error.

Based on results in sections 6.4 and 6.7, table 7.1 was constructed and suggests that
”update timestamp command” only should be used as unconfirmed. Assuming a loss rate
of 51%, like LoRa node 3 in table 6.4, the script would be required to run twice as many
times as necessary. This does not pose as much of a problem and can simply be automated
within the main server script. The result is that on a single execution, the script would per-
haps only synchronize some of the nodes, and the rest on the time the script was executed.
In regards to AC6, although the quantity of data is not optimal and the algorithm is flawed,
with a decent error margin and option to be executed multiple times, it is passed.

7.5 Self-sufficiency
In order to understand life expectancy and self-sufficiency, a test to measure drawn current
over time and in different situations is optimal. Since this type of equipment wasn’t avail-
able, different estimation based on other data and results will be used to indicate whether a
node is self-sufficient or not. It’s important to know, that a logic error was found calculat-
ing the percentage of the battery. The calculations assume a voltage range for the battery
to be 0-4.2V, instead of the actual range of 2.5-4.2V. Due to this fact, the variations in
the battery-related graphs will be significantly lower than real, and therefore provide less
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Sunrise Sunset Daylight
01.01.20 09:59 14:43 4:44
01.06.20 03:24 23:09 19:44

Table 7.2: Sunset and sunrise times for Trondheim [41]

information than desired. With regards to the battery graphs, a battery will be considered
depleted at 60%.

For starters, all data was gathered during summer, and because winter is a completely
different environment for a solar panel, other methods were required to estimate winter
behavior. Starting with summer, looking at figure 6.11, it’s quite apparent that the three
LoRa nodes passed AC3. The big battery level drop on the 3rd of June form LoRa-node 1
was due to a battery change. Now, in order to estimate winter behavior, it’s necessary to
know how much power a node requires for optimal charging and how much it’s capable of
producing on a cloudy day. Data on how much current is required to optimally charge the
node are shown in table 6.3. From this data, it appears that the charge circuit is capable
of charging the battery with a power of right under 50 mW. Figure 6.6 show the power
production of four different days with consistent low current production. From all of the
data, the lowest average power produced is fig. 6.6a. This graph shows an average of
35 mW and represents the most cloudy day available. Comparing 6.6a with the other 3
graphs, it would seem plausible for a generic winters day to produce enough power to
charge a battery based on power alone. It’s also worth noting that all measurements are
achieved with an always-on load circuit, which is able to produce a higher power than what
the charge circuit could. Therefore, the nodes must change the measuring logic to only
activate the load circuit that millisecond a measurement is taken. The other problem with
a generic winter’s day is that it’s several hours shorter than in the summer, considering
sunrise to sunset. A website [41], have estimated the sunrise and sunset for each day
throughout the year. Choosing the 1st of January and 1st of June as a winter and summer
day, their sunset and sunrise can be seen in table 7.2. Based on this date, the winter day
daylight windows are up to 15 hours shorter than summer, which could prove to be a
problem for the nodes.

Overall, it’s not enough consistent data by multiple nodes to make a good estimation
on whether a node would survive winter. Most importantly, the logic to only activate load-
circuit upon measuring would greatly improve the correlation between battery behavior
and power produced. Per now, it can be assumed a lot of the power is directed through the
load circuit instead of to the battery, preventing the PCB for charging optimally. Based on
all these results, it does not seem plausible that a node would be able to survive winter,
ergo AC3 is not passed. Improvements for better performance could be to create a better
transmission strategy of when to measure, preventing any transmissions during the night
for instance. Also, it’s highly recommended to do a proper measurement of actual current
consumption.
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7.6 Time-lag between nodes’ delivery of energy
Section 6.7.1 explains the testing/comparing of data from different nodes in order to detect
a possible time-lag between them. As explained in earlier sections, the data pool gathered
between the nodes are not ideal, and consist of several problems. Therefore the most
optimistic days were chosen to attempt to illustrate the time-lag. For most of the figures
in section 6.7.1, the strategy to detect time-lag is not based on when a cloud appears, but
the opposite, when the node gains direct sunlight. This was due to the data received as
a few of them seem to be clear-skied. The exception is figure 6.18. Analyzing the data,
it was noticed a lack of data for actual weather for each day. This could provide a better
understanding of received data and should be implemented in future work.

The two top graphs in figure 6.15 show similarities in behavior over the same period.
Enhancing them shows a potential time-lag of up to 7 minutes. As LoRa-node 1 in the
figure has a considerably lower power output, it’s hard to be too conclusive. This supports
the idea that the pool of data is poor. Figure 6.16 and 6.17 show a comparing between
Lora-node 1 and 2, and Lora-node 3 and 2 on different times of the day. Looking at the top
graphs, it’s hard to imagine a pattern in the cloud movement. Figure 6.19 and 6.20 show
some similarities between the top graphs, but also quite a bit of ”noise”. This noise could
be due to the transistors acting odd, complex clouds or just two completely different parts
of the sky as the direction of the clouds are unknown. Enhancing the images could show
some indication of time-lag, but with the mentioned uncertainties, it’s not conclusive.

A more plausible result can be seen in figure 6.18, where both nodes are most of the
day in complete sunlight. The difference in produced power could be due to the angle
towards the sun, orientation, and time of day. Nevertheless, enhancing graphs (a) and (b)
to between 1500-1530, a time-lag of up to 4 minutes appears between (c) and (d). Looking
at the other big production drop, shown in (e) and (f), a similar time-lag occurs. This time,
it’s up to 3 minutes.

Based on these results it’s clear that more and more consistent data are necessary to
achieve more conclusive results.
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Chapter 8
Conclusion

In this thesis, a system for real-time gathering of acquisition of momentarily potential for
delivery of electrical energy from solar panels was implemented to some extent. Even
though the final solution was not in complete accordance with the original design, a solu-
tion was implemented. Each node is intended to operate indefinitely being self-sufficient
from solar energy and smart power management. This introduced several challenges re-
lated to power management, instrumentation, and wireless connectivity.

Two different embedded designs were proposed, where one was based on the origi-
nal idea, and the other a simplified alternative idea. The original idea was never imple-
mented further than simple hardware testing, while the alternative design was realized by
ordering multiple breakout boards and integrating them with a preexisting board similar
to the original design. Four different nodes were deployed and overtime three of them
collected power measurements from solar panels. During the deployment, features like
synchronization properties, self-sufficiency, and proper measurements were investigated.
The main idea behind the system has proven to work, but several problems and design
flaws occurred which resulted in a sub-optimal data pool. More nodes on different loca-
tions are required for a better correlation between end-nodes in regards to the delivery of
energy prediction.

Most of the acceptance criteria were satisfied and most of the ones that were not passed
are mainly due to not enough and poor data. The end-node was never fully capable of
handling unexpected errors. Also, bugs of unknown cause and origin occurred which both
led to a more fragile system prone to weird and undefined behavior.

The full solution was deployed, and most proofs-of-concept were tested proven to
work, except for the main concept of predicting energy production in solar panels.
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Chapter 9
Future Work

Based on discussion in chapter 7 a number of points for improvements have been identi-
fied.

• Original Solution

• 1. More thourough testing of the BQ24210 and MAX4484.

2. Correct the UART connections in schematics and PCB.

3. Add I2C header for communication between nRF9160-DK and IMU.

4. Test ATmega324PB’s ADC.

5. Implement drivers for SPI, the GNSS (TESEO-LIV3F) and IMU (ICM-20948)
and Flash Memory (SST25VF080B) and test components.

• Alternative Solution

• 1. Update and finalize firmware for nodes with new transistor and battery logic.

2. Create a more robust waterproof packaging for each node.

3. Adopt angle and orientation feature for better measurements. Or at least mea-
sure those values when deploying a node.

4. Strive for locations with good coverage, or place new gateways.

5. Update and finalize firmware for nRF9160DK.

6. Add timestamp to uplink messages to account for air-time and drift when syn-
chronizing.

7. Investigate optimal transmission scheme for when to transmit data to save
power.

8. Do a proper current measurement of a single node while active.
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Appendix A: Porting firmware to
original solution

Most of the hardware are identical between the nodes and operate in a similar matter, but
some of drivers is not necessary. The following list show what steps needs to be taken in
order to port the firmware to the original PCB.

1. Port the following drivers: ADC, BOARD, RN2483A, USART, TIMERS, UTIL
FUNCTIONS and I2C (for the IMU).

2. Port the following single files: ”config.h”, ”main.h”, ”twi.h”,

3. Update the ported drivers’ and files’ remove unnecessary dependencies (”#include
¡...h¿.

4. Add functions in ”board.c” to read ADC values for solar panel voltage and current.

5. Change the struct in ”board.h” to no longer use INA219, and instead add voltage
and current from solar panel as variables.

6. Update the code lines in ”FSM.C” where solar panel voltage and current is calcu-
lated to use functions from pt. 4 instead of reading I2C via INA219.

7. Add desired features and desired ”define statements” in ”config.h” not available with
the alternative solution.

These are the main step required in order to use most of the code from the alternative solu-
tion with the original PCB. New drivers are also necessary to utilize all features available
on the PCB (GNSS, IMU, Flash memory).
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Appendix B: HW End-Node
Original Solution
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B1: Schematic
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B2: PCB Design

92



B3: Parts list
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B4: Power module
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Appendix C: HW End-Node
Alternative Solution
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C1: Schematic
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C2: PCB Design
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Appendix D: The Things
Network

D1: Application server GUI
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D2: Device control panel
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Appendix E: Flowchart mapping
to files

The appendix maps blocks and certain arrows in the flowchart to their respective code files.
This is only if the script/software uses functions from multiple files.

E1: End-node
From state diagram (Figure 5.14:

1. START = main() in ”main.c”.

2. Remaining transitions and states are located in function FSM RUN() in ”FSM.c”
and run sequentially.

Flowchart illustrating SLEEP state (Figure 5.15:

1. Enter power-save mode: Function in ”timers.c”.

2. UART ISR / TIMER2 ISR: Interrupt service routines in ”FSM.c”.

3. Receive string: Function ran by the ISR and located in ”UART.c”.

4. remaining blocks occur sequentially in ”FSM.c” within the state.

Flowchart illustrating NOT JOINED state (Figure 5.16:

1. lora join otaa: Function in ”RN2483A.c”.

2. Remaining blocks and arrows occur sequentially in ”FSM.c” within the state.

Flowchart illustrating ACTIVE state (Figure 5.17:

1. Enable and disable load circuit: Function in ”config.h”.

2. INA219 read voltage and current: Functions in ”INA219.h”.

3. Encode message: Function in ”util functions.c”.

4. Transmit message: Running lora transmit if LoRaWAN, located in ”RN2483A.c”.
Running puts(message) if NB-IoT, located in ”FSM.c”.

5. Set receive flag: Set by lora transmit in ”RN2483A.c”.

6. Remaining blocks and arrows occur sequentially in ”FSM.c” within the state.

Flowchart for nRF9160 is ran by one file, ”main.c”.
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E2: Back-end application
Flowchart illustrating main server script (Figure 5.19:

1. Logger: Function located in ”logger.py”.

2. Wait callback from ...: Behind the scenes infinite loop keeping connection alive and
polls for callback.

3. Uplink callback received: When triggered, uplink callback function is called. Lo-
cated in main script ”TTN-server.py”.

4. Remaining blocks are located in original file ”TTN-server.py” and operate sequen-
tially within their thread.

Flowchart illustrating node synchronization script (Figure 5.20) all happen sequen-
tially in the file ”sync nodes.py”.
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