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Abstract

Studying the dispersion and abundance of plankton organisms in-situ is a driver to recent
research activities and oceanography due to their ecological importance. With the intro-
duction of underwater marine robots equipped with sensors and advanced cameras, in-situ
identification and classification of underwater microscopic organisms are now possible.
Populations of plankton are naturally of different sizes, which is reflected in plankton im-
agery data sets captured in-situ. Commonly, these data sets suffer from class imbalance,
i.e. most data examples belong to a few highly represented classes while some classes
are ill-represented. Class imbalance impacts the classification performance of deep learn-
ing methods like convolutional neural networks (CNNs), as the imbalance can make the
classifier biased towards the highly represented classes. Classical approaches to address
the issue are resampling strategies and cost-sensitive training. However these methods can
lead to overfitting, the introduction of noise and elimination of valuable information. In
this thesis we investigate a recent method called GAN-based oversampling, which uses the
generative models Generative Adversarial Networks (GANs) to generate synthetic images
of planktonic organisms in order to overcome the class imbalance problem. The generated
images are used in a synthetic oversampling technique, to balance the class distribution
of the data set prior to training a deep neural network. The performance of the GAN and
the quality of the generated images is measured by the Fréchet Inception Distance (FID),
where a lower score is associated with higher diversity and quality. The method is com-
pared to the frequently used methods random majority undersampling and random ma-
jority oversampling, and is evaluated by the classification performance of a CNN called
COAPNet. Our main evaluation metric is the F1 score. Based on the results from our
experiments we can conclude that partial random oversampling is the superior method.
However, GAN-based oversampling can improve classification performance as well and
in some cases achieve results equivalent to random oversampling.
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Sammendrag

Å studere mangfold og spredning av planktonorganismer in-situ er en pådriver for nyere
forskningsaktiviteter og oseanografi på grunn av planktons økologiske betydning. Med
introduksjonen av marine roboter utstyrt med sensorer og avanserte kameraer, er nå lokal
identifisering og klassifisering av mikroskopiske organismer under vann mulig. Populasjo-
nen til ulike planktonarter er naturlig av ulike størrelser, noe som gjenspeiles i datasett av
planktonbilder som er fanget in-situ. Vanligvis lider disse datasettene av class imbalance,
dvs. de fleste dataeksempler tilhører noen få høyt representerte klasser mens noen klasser
er dårlig representert. class imbalance påvirker klassifiseringsytelsen til dype nevrale
nettverk, som convolutional neural networks (CNNs), ettersom ubalansen gjør klassifis-
eringen partisk mot de høyt representerte klassene. Klassiske tilnærminger for å løse prob-
lemet er resampling strategier og kostnads-sensitiv trening. Imidlertid kan disse metodene
føre til overfitting, innføring av støy og eliminering av verdifull informasjon. I denne
oppgaven undersøker vi en nyere metode kalt GAN-basert oversampling, som bruker de
generative modellene Generative Adversarial Networks (GANs), for å generere syntetiske
bilder av plankton organismer for å minske effekten av class imbalance. De genererte
bildene brukes i en syntetisk oversamplingsteknikk for å balansere klassefordelingen av
datasettet før trening av et dypt nevralt nettverk (DNN). Ytelsen til GAN og kvaliteten
på de genererte bildene måles med Fréchet Inception Distance (FID), der en lavere po-
engsum er assosiert med større mangfold og kvalitet blant de genererte bildene. Metoden
sammenlignes med de ofte brukte metodene tilfeldig undersampling og tilfeldig oversam-
pling, og evalueres ved klassifiseringsytelsen til en CNN kalt COAPNet. Vår viktigste
evalueringsmetrikk er F1-poengsum. Basert på resultatene fra eksperimentene våre kan vi
konkludere med at delvis tilfeldig oversampling er den overlegne metoden. Imidlertid kan
GAN-basert oversampling også forbedre klassifiseringsytelsen, og i noen tilfeller oppnå
resultater som tilsvarer de oppnådd av tilfeldig oversampling.
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FID = Fréchet inception distance
GAN = Generative adversarial network
IS = Inception score
KNN = K-nearest neighbour
LMLE-kNN = Large Margin Local Embedding kNN
ML = Machine learning
MLP = Multi layered perceptron
NCL = Neighbouring cleaning rule
OSS = One-sided selection
ReLU = Rectified linear unit
SMOTE = Synthetic Minority Over-sampling Technique
SN-GAN = Spectral normalization GAN
WGAN = Wasserstein GAN
WGAN-GP = WGAN gradient penalty
AUV = Autonomous underwater vehicles
TFDS = TensorFlow Datasets

ix



x



Chapter 1
Introduction

Planktonic organisms are of fundamental ecological importance and are some of the planet’s
most critical organisms. They are the base of the ocean food web, produce an estimated
80% of the world’s oxygen and play a vital role in many biochemical cycles such as the
ocean’s carbon cycle (Witman, 2017). As such, scientists are increasingly studying plank-
tonic organisms and their importance. With imaging-based technology such as underwater
marine robots equipped with sensors and advanced cameras in-situ identification and clas-
sification of underwater microscopic organisms are now possible (Sieracki et al., 2010;
Jaffe, 2014), and is also considered an important task (MacLeod et al., 2010). However,
the classification of plankton has proven to be a difficult task (Benfield et al., 2007; Wang
et al., 2017).

The population of some planktonic species are naturally larger than that of others.
With this difference in population size, when images of plankton are captured in-situ, this
difference will be reflected in the resulting data set. By labeling each image by its plankton
species and associate all images with the same label to the same class, we get a data set
with imbalanced class distributions. The data set is said to suffer from class imbalance, i.e.
some classes are represented by a high number of examples while other are represented by
only a few. An example of such a data set is the publicly available WHOI-Plankton dataset
(Orenstein et al., 2015) which consists of hundred of thousand of images, yet 81% of all
examples belong to one class. Even though Convolutional Neural Networks (CNNs) have
achieved state of the art performance for image classification (Deng et al., 2009; Buda
et al., 2018) , the fine-grained and imbalanced nature of in-situ planktonic data sets makes
classification a difficult task.

For imbalanced data sets, the highly represented classes are referred to as majority
classes while the those that are ill-represented are referred to as minority classes. The
difficulties related to imbalanced classification is that classifiers tend to favour the majority
classes, and have poor performance when it comes to predicting minority class examples.
This is known as the class imbalance problem. The problem origins in the design of
machine learning (ML) algorithms, as most of them are designed to maximize overall
accuracy, without taking relative class distributions into consideration.

1



Chapter 1. Introduction

This is a highly researched and documented topic for classical machine learning mod-
els, and methods of dealing with imbalance are well studied (Japkowicz and Stephen,
2002). The most common and straightforward approach is to use resampling methods.
These methods work on the data, rather than the machine learning model itself, in or-
der to balance the class distribution. The most intuitive strategy is called undersampling
(Dal Pozzolo et al., 2015), which simply removes examples from the majority classes until
all classes inhabits the same number of examples. Oversampling (He and Garcia, 2009) is
a strategy which does the opposite, instead of removing examples, minority class examples
are replicated until balance is achieved. The class imbalance problem can also be tackled
by working on the machine learning model. The class distributions are left unchanged,
and instead these methods forces the classifier to prioritize correctly classifying the mi-
nority classes (Jo and Japkowicz, 2004). Although both groups of methods have shown
to improve classification performance in some cases, they have their drawbacks. Sam-
pling methods can lead to discarding of valuable data or overfitting, and methods working
directly with the ML model can be unfeasible in some cases.

The methods previously mentioned are well studied for classical machine learning
methods. With the rise of artificial neural networks (ANNs) the recent years new meth-
ods to tackle class imbalance have been invented. In this thesis we investigate the use
of a framework for estimating generative models called generative adversarial networks
(GANs) by (Goodfellow et al., 2014) to mitigate the class imbalance problem. GANs are
deep neural network architectures which can learn to generate synthetic data similar to the
data they are trained on. They consists of two neural networks: a discriminative model (D)
and a generative model (G). During the training process of the GAN the G model gener-
ates synthetic data examples while the D model evaluates given examples for authenticity;
i.e. the probability whether a given instance is generated or from the training data. The
objective of G is to maximize the probability of D misclassifying a generated example as
a real one, while D tries to maximize its accuracy. In this process the G model learns to
generate data similar to the training data.

After the invention of GANs, several improvements and different versions has emerged.
The first improvement was conditional GANs (Mirza and Osindero, 2014), which allows
the possibility of generating synthetic data based on a desired label. Another notable ver-
sion of GANs is deep convolutional GANs (DCGANs) (Radford et al., 2015), which uses
CNNs for the discriminator and generator making it possible to train GANs on images.

By training a GAN on a planktonic data set, the generator will learn to generate syn-
thetic images of plankton, similar looking to the original images. This makes is possible to
use GANs for an oversampling procedure, called GAN-based oversampling. In this thesis
we investigate this method and compares it to other sampling techniques.

The remainder of this thesis is organized as follows. Chapter 2 gives an overview of
the theory behind ML, GANs and class imbalance mitigation methods. In chapter 3 the
experimental setup is described and in chapter 4 implementation of the setup is elaborated.
Then, in chapter 5 the results from the experiments are presented and finally chapter 6
concludes the thesis.

2



Chapter 2
Theory

In this chapter we will first go through some fundamentals of machine learning, such as
convolutional neural networks and common evaluation metrics as well as introduce the
class-imbalance problem. Then the class-imbalance problem will be elaborated along
with common class imbalance mitigation methods. Lastly we will go through generative
adversarial networks, and explain how they can be used to tackle the class imbalance
problem.

3



Chapter 2. Theory

2.1 Machine Learning
Machine learning (ML) is defined as an automated process that extracts patterns from
data (Kelleher et al., 2015), and is seen as a subset of artificial intelligence (AI). Machine
learning algorithms has the ability to build a mathematical model based on sample data,
in order to make decisions or predictions without being explicitly programmed to do so
(Koza et al., 1996). ML has become exceedingly popular in the recent years and is used in
a wide variety of applications. To ML build models for classification purposes we usually
use supervised machine learning. Supervised ML techniques automatically learn a model
of the relationship between a set of descriptive features and a target feature based on a
set om sample data. This sample data is refereed to as training data, where each example
(descriptive feature) in the data set has an associated label (target feature). All examples
associated with the same label, belong to the same class. Other types of machine learn-
ing include unsupervised learning, reinforcement learning and semi-supervised learning.
However, in this thesis we focus exclusively on supervised machine learning and use the
term machine learning and supervised machine learning interchangeably.

Fig. 2.1 shows the concept of supervised machine learning with the purpose of classi-
fication, using a data set consisting of images as example. Labeled training data is given
to the machine learning algorithm. After the training process examples without a label
can be given to the trained model, and it will give a prediction of what class the example
belongs to. In order to evaluate the performance of the ML model, also called classifier, a

Figure 2.1: Classification process of supervised machine learning.

test data set is used. The test data set do not contain examples found in the training data
set in order to provide unbiased evaluation of the model. It is important to provide a test
set with exclusive data, as some ML algorithms has a tendency to overfit. Overfitting is
a problem that occurs when the model ”memorizes” the training data and is not able to
generalize. To the right in fig. 2.2 the concept of overfitting is shown. To the left in the
figure we see an other concept called underfitting. This occurs when the model has not
been able to extract some important information from the data set.

4



2.1 Machine Learning

Figure 2.2: Left: Concept of underfitting. Middle: Concept of well fitted model. Right: Concept of
overfitting.

Even though the concept of machine learning is an old one, it has been limited by
computational power. With technological innovation the interest and research devoted
to ML has increased accordingly. Especially the interest in Artificial Neural Networks
(ANN), which are a set of machine learning algorithms inspired by the human brain. An
example of ANN is the multi layered perceptron (MLP), however the two names ANN and
MLP are often used interchangeably. From its name suggests it consists of layers, more
specifically an input layer, minimum one hidden layer and an output layer. An example of
a MLP network is shown in fig 2.3. Each layer consists of neurons, which are connected

Figure 2.3: An example of a simple feed forward neural network.

to neurons in the next layer. These neurons are the building blocks of the MLP, and are
simple computational units. They have weighted input signals and and produce an output
using activation functions. The network architecture is represented by the weight matrix
W = [wij ], where wij denotes the weight from neuron i to j (Du and Swamy, 2013).
During the training of the network, these weights are updated and in this way the network
learns the features of the training data. With the rise of ANN in recent times, these models
are able to far exceed the performance of previous machine learning algorithms (O’Shea
and Nash, 2015)

5



Chapter 2. Theory

2.1.1 Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) are a subset of ANN, which are primarily used
to solve tasks of image-driven pattern recognition. CNNs are very similar to ANNs and
are compromised of neurons that self-optimize through learning, however, it is optimized
for pattern recognition within images. The main difference between the two, is that the
neurons in a CNN are organized in three dimensions, the spatial dimensionality of the
input (width and the height) and the depth. CNNs are comprised of three different type of

Figure 2.4: A simple CNN architecture, comprised of just five layers.

layers. These are convolutional layers, fully-connected layers and pooling layers (O’Shea
and Nash, 2015). When these different layers are stacked a CNN architecture has been
formed. A simplified CNN architecture for image classification is illustrated in fig. 2.4.
The input layer in a CNN hold pixel values of the given image. A convolutional layer
determines the output of neurons through calculation of the local input and its weight
using rectified linear unit (ReLU). The pooling layer performs downsampling, reducing
the number of parameters. The fully-connected layers attempts to produce class scores
from its given input.

2.1.2 Evaluation Metrics
The performance of a classification algorithm can be visualized by a confusion matrix.
When classifying a labeled test data set, the confusion matrix gives a summary of the pre-
diction results with the number of correct and incorrect predictions for each class. It gives
insight to the errors made by the classifier, the type of errors made and if the model is
confusing classes. The confusion matrix is a special kind of table with the two dimen-
sions actual and predicted, and the set of classes in both dimensions. Fig. 2.5 shows the
confusion matrix in abstract terms in the binary case, where the columns are the actual
labels and the rows are the predicted labels. From the confusion matrix one can calculate
number of evaluation metrics. The accuracy achieved by the classifier is the total fraction
of correctly labeled examples and is given by

Acc =

∑
(TP + TN)∑

(TP + FP + TN + FN)
. (2.1)

As the accuracy only counts the number of correctly labeled examples, it can be misleading
when evaluating performance. An example is the case where 95% of the data belong

6



2.1 Machine Learning

Figure 2.5: Concept of the confusion matrix in the binary case.

to class 1, while class 2 only consists of 5% of the data. If the classifier predicts all
of the examples to be class 1 then it would achieve an accuracy of 95% even though
it mislabeled every example from class 2. In order to get a better understanding of the
classifiers performance one could look at precision and recall. Precision is the fraction of
relevant examples among the retrieved examples and is given by

Pr =

∑
TP∑

(TP + FP)
, (2.2)

while recall is the fraction of the total amount of relevant examples retrieved and is given
by

Re =

∑
TP∑

(TP + FN)
. (2.3)

If the precision is low this can indicate a large number of false positives, while a low recall
can indicate many false negatives. As such these two metrics offer additional information
about the classifiers performance. F1 score is the harmonic mean of recall and precision
and is given by

F1 =
2

Re−1 + Pr−1
= 2

Pr ∗Re
Pr +Re

. (2.4)

It gives the balance between precision and recall and is a widely used evaluation metric
for comparing classifier performance.

In the case of a multi-class data the precision, recall and F1 score is calculated for each
class. There are different ways of doing so, where the simplest is taking the arithmetic
mean of the per-class scores. This is called the macro-average

Prmacro =
1

q

q∑
λ=1

Prλ, Remacro =
1

q

q∑
λ=1

Reλ, F1macro =
1

q

q∑
λ=1

F1λ (2.5)

where the λ is a label and L = {λj : j = 1...q} is the set of all labels. In this way of
calculating, all classes are given the same weight. If the classes are weighted, then we get
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the micro-average/weighted average

Prmicro =

∑q
λ=1 Prλnλ

N
Remicro =

∑q
λ=1Reλnλ

N
F1micro =

∑q
λ=1 F1λnλ

N
(2.6)

where nλ is the number of images that exists in class λ and
∑q
λ=1 nλ = N . This gives

that Remicro = Prmicro.
If the data is imbalanced, that is most data belong to one or a few classes, the micro-

and macro-average could give fairly different results (Van Asch, 2013). The micro-average
is biased towards the most populated ones while the macro-average is biased towards the
least populated ones. If the micro-average is significantly lower than the macro-average,
that would mean high misclassification rate in the most populated classes. If it is signifi-
cantly higher it would mean the smaller classes are poorly classified.
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2.1.3 Class Imbalance Problem
In the field of machine learning the Class Imbalance Problem is encountered when the
training data suffer class imbalance, which means you have some classes with high repre-
sentation (majority classes) while others have low representation (minority classes) (Jap-
kowicz, 2000). As data captured from the real-world often exhibit class imbalance, this
problem is of high significance for many domains such as diagnosis of medical conditions
(Grzymala-Busse et al., 2004; Mac Namee et al., 2002), fraud detection (Kaggle; Fawcett
and Provost, 1997) and plankton classification (Wang et al., 2017; Lee et al., 2016). Most
classical machine learning methods such as tree induction systems or multi-layered per-
ceptrons are not designed to consider the relative class distribution during the training
process (Jo and Japkowicz, 2004). These methods have the objective of maximizing over-
all accuracy, which seen from the previous section is not necessarily a good evaluation
metric for classification performance in the case of imbalanced learning. The methods
can easily be biased towards the majority classes as a high accuracy can be achieved by
simply neglecting the minority classes. If the training data suffer class imbalance this can
have significant unfavorable effect on performance, affecting both the model’s capability
of generalizing and convergence during training (Ling and Sheng, 2010; Japkowicz, 2000;
Buda et al., 2018). The topic has been heavily researched and documented for classical
machine learning methods. A systematic study of problem and mitigation methods was
done by (Japkowicz and Stephen, 2002), and they concluded that the it is a relative prob-
lem that depends on; the degree of imbalance, the complexity of the training data, the
size of the training set and the classifier involved. Deep Their study did not involve deep
learning models. A systematic study of the impact class imbalance has on classification
performance of CNNs were done by (Buda et al., 2018), and they concluded that CNNs
are greatly affected, and the effect could be detrimental on classification performance.
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2.2 Methods to Address Class Imbalance
There a numerous of different approaches to mitigate the impact of the class imbalance
problem. The methods can be divided into two main categories; algorithmic-level meth-
ods and data-level methods (He and Garcia, 2009). Methods that work at the data-level
attempts to balance the data set prior to the training process of the classifier. The methods
typically consists of strategies that resamples the training data on order to achieve bal-
anced class distributions. Algorithmic-level methods take on another approach to address
the class imbalance issue. The training data and class distributions are left unchanged, and
instead they consider how the classifier is handling the imbalanced data. These methods
involve strategies which forces the classifier to prioritize correctly classifying the minority
classes.

For presentation of the different class imbalance mitigation methods we have to estab-
lish some notations. With the training data set S with m examples (i.e. |S| = m), we
have: S = {(xi, y)}, i = 1, ...,m where xi ∈ X = {f1, f1, ..., fn} is an instance in the
feature space X and yi ∈ Y = {1, ..., C} is the class label associated with xi where C
is the number of classes in the training data. We also define the subsets Smaj ⊂ S and
Smin ⊂ S so that Smaj is the majority class instances of S and Smin is the minority class
instances of S. This gives Smin ∪ Smaj = {S} and Smin ∩ Smaj = {Ø}. Sets generated
from sampling of S are labeled E, where Emaj and Emin represent majority and minority
samples of E, respectively.

2.2.1 Data-level Methods

Random Oversampling and Undersampling

Random minority oversampling is a method that balances the dataset by adding a set E
sampled from the minority class to the dataset (He and Garcia, 2009). In an unsuper-
vised manner examples are randomly selected with replacement from Smin, replicated
and added to S. This increases the total number of examples in Smin by |E|, and adjusts
the class distribution of S accordingly. The number of examples to resample, |E|, can be
adjusted to achieve the desired degree of class distribution balance.

Random majority undersampling is similar, but instead of appending examples to the
training data this methods removes examples to achieve a more balanced class distribution
(Dal Pozzolo et al., 2015). The method is based on the idea that Smaj consists of many
redundant examples. Thus by removing examples from Smaj at random will not change its
distribution significantly. A setE is randomly selected from instances in Smaj and are then
removed from S so that the total number of examples left is |S| = |Smin|+ |Smaj | − |E|.
Again |E| can be adjusted, and thus this is a simple method to modify the class balance of
the training data S.

Fig. 2.6 shows the concept of random oversampling and -undersampling, where |E| is
chosen such that |Smin| = |Smaj | after the resampling. Random resampling are similar
methods, but each method introduces its own set of problematic consequences. The obvi-
ous drawback of undersampling is that discarding examples at random from the majority
class may cause the classifier to miss key concepts that could lead to poor performance.
Random oversampling has a big drawback not as obvious; the replication of minority
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Figure 2.6: Left: The process of fully oversampling a dataset. Right: the process of fully undersam-
pling a dataset.

examples can lead to overfitting for some machine learning algorithms. However, a sys-
tematic study of the impact of class imbalance on CNNs were done by (Buda et al., 2018),
which concluded that oversampling outperformed undersampling, and that the issue of
overfitting does not apply to CNNs in the case of oversampling.

Informed Undersampling

As random undersampling potentially could remove important examples, there has been
several attempts at methods that overcome this deficiency by undersampling in an in-
formed instead of random manner. Two such methods are EasyEnsemble and Balance-
Cascade by (Liu et al., 2008). Both strategies benefits from exploring the majority class
examples, more specifically those that would otherwise be ignored by random undersam-
pling that is Smaj ∩ Ē.

In contrast to random undersampling, EasyEnsemble samples several subsets Ei from
the majority class Smaj , where i = 1, 2, ..., T and T is the number of subsets and |Ei| =
|Smin|. Each sample is combined with the minority class examples Ei ∪ Smin and inde-
pendently used as training data for a classifierHi, developing an ensemble learning system
of multiple classifiers. All classifiers H1, H2, ...,HT are combined for the final decision.
In this way, EasyEnsemble explores the majority class in an unsupervised manner by using
random sampling with replacement.

BalanceCascade is similar to EasyEnsemble, but contrastingly takes on a supervised
approach in the exploration of the majority class, by selecting which majority class ex-
amples to sample. After Hi is trained, if the classifier correctly classifies an example
xi ∈ Smaj , this example is seen as redundant in Smaj given that Hi is already trained.
After the training ofHi all correctly classified majority examples are removed from Smaj ,
to avoid them from being sampled in another iteration. In this way, BalanceCascade is
able to explore the majority class in a higher degree than EasyEnsemble. The final clas-
sifier of BalanceCascade also differ from EasyEnsemble, as it is cascade classifier which
is the conjunction of all {Hi}i=1,...,T , which means the final classifier H(x) only gives a
positive prediction if and only if all Hi(x), i = 1, ..., T comes to the same conclusion.

Another attempt at informed undersampling are the NearMiss-methods proposed by
(Mani and Zhang, 2003), which uses a K-nearest neighbour (kNN) classifier for undersam-
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pling. They proposed four different methods, the NearMiss-1, NearMiss-2, NearMiss-3,
and the “most distant” method. The first method, NearMiss-1, selects majority examples
that are close to some of the minority examples. More specifically it selects majority
examples that have the smallest average distance to the three closest minority examples.
The NearMiss-2 selects majority examples that are close to all minority examples, by
selecting those that have the smallest distance to the three farthest minority examples.
For NearMiss-3 each minority example is considered and a given number of its closest
majority examples are selected. Lastly, the ”most distance” method selects the majority
examples who has the largest average distance to the three closest minority examples. In
their results the NearMiss-2 method was the most promising, outperforming the other three
methods as well as random undersampling.

Some other examples of informed examples are One-Sided Selection, neighbouring
cleaning rule, Relabel and Remove which are further explained in section 2.2.1.

Synthetic Sampling

There is a set of methods that generates synthetic examples rather than simply replicating
minority class examples. One such widely popular method is Synthetic Minority Over-
sampling Technique (SMOTE) by (Chawla et al., 2002), which was inspired by the fact
that random oversampling with replacement doesn’t necessarily improve minority class
recognition. They argue that by replicating minority class examples, in some cases the
decision boundary for the minority class does not change, which in return leads to the
same misclassification of minority examples as before oversampling. The SMOTE method
oversamples the minority class Smin by introducing a synthetic example for each minority
example xi ∈ Smin along the line-segment between all/some of the K minority class
nearest neighbours. The number of generated examples per minority class example is
optional. The synthetic example is generated by randomly selecting one of xi’s K nearest
neighbours x̂i, multiply the feature vector x̂i − xi with a random number between c ∈
[0, 1], and finally, add the result to xi.

xsynthetic = xi + c(x̂i − xi) (2.7)

(Chawla et al., 2002) argues that with their approach the decision boundary is forced

Figure 2.7: Figure illustrating how SMOTE could contribute to increase overlap between classes.
The red samples are samples that could be generated using by SMOTE.
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to be more general. However, the disadvantage of SMOTE is the possibility of over-
generalizing by increasing the overlap between Smaj and Smin, consequently shifting the
decision boundary of the minority class to a less desired state. The concept if SMOTE
introducing increased class-overlap is shown in fig. 2.7.

Adaptive synthetic sampling

As the traditional SMOTE algorithm has the disadvantage of over-generalizing, there has
been proposed various different adaptive sampling methods. One of them was proposed by
(Han et al., 2005) and is an improvement of the original SMOTE method called Borderline-
SMOTE. They attribute the limitation of SMOTE to the way it is indifferent to the place-
ment of neighbouring majority class examples when generating synthetic examples of a
minority example. They argue that examples far from the decision boundary between the
minority and majority class have little contribution to classification, and thus introduce
their improved SMOTE in which only borderline examples of the minority class are over-
sampled. The borderline examples are found as follows: For each xi ∈ Smin them nearest
neighbours from the whole training set S is calculated, where m′ ∈ [0,m] is the number
of majority examples among the neighbours. If m′ = m then xi is considered noise. If
less than half the neighbours are majority examples, [0 ≤ m′ < m/2], xi is considered
safe but if more than half of the neighbours are majority examples, [m/2 ≤ m′ < m],
xi is considered to be easily misclassified and put in a set called DANGER. The DAN-
GER set contains the minority borderline examples and is a subset of the minority class
DANGER ⊂ Smin. The examples in DANGER are denoted x′i which gives

DANGER = {x′1, x′2, ..., xd}, |DANGER| = d ∈ [0, |Smin|]

After the DANGER set has been established, Borderline-SMOTE runs the original SMOTE
algorithm on every example in the set. This generates s ∗ d synthetic examples based on
the examples in DANGER, where s is an integer between 1 and K.

Another approach for adaptive synthetic sampling is ADASYN proposed by (He et al.,
2008). Unlike Borderline-SMOTE which generates data for borderline minority examples,
ADASYN looks at the level of difficulty in learning for minority examples and generates
data for those that are harder to learn. This is done as follows: First the total number of
synthetic examples to generate is calculated

G = β(|Smaj | − |Smin|), (2.8)

where β ∈ (0, 1] specifies the desired level of imbalance after the resampling process i.e.
β = 1 will give a fully balanced dataset. Then, for each minority example xi ∈ Smin the
K nearest neighbours are found and the ratio ri is calculated by

ri =
δi
K
, i = 1, ..., |Smin|, (2.9)

where δi is the number of majority examples among the K nearest neighbours. ri then is
normalized according to

r̂i =
ri∑|Smin|

i=1 ri
, (2.10)

13



Chapter 2. Theory

to make r̂i a density function
∑
i r̂i = 1. The number of synthetic examples to generate

for each minority example xi is then given by

gi = r̂i ∗G, (2.11)

where G is defined by equation 2.8. ADASYN works as follows: for each minority ex-
ample xi the number of synthetic examples to generate gi is calculated. The generated
examples xsynthetic is calculated by the same equation as SMOTE uses given by eq. 2.7,
where x̂i is one of the K nearest neighbours of xi chosen at random. ADASYNs gen-
eration of synthetic examples helps reduce the bias introduced by the imbalanced class
distribution, and can also shift the decision boundary and make the classifier more focused
on the examples that are difficult to learn.

Sampling with Data Cleaning

Sampling methods can introduce data points which contribute to class-overlap in the re-
sampled data set. Data cleaning methods such as Tomek links (Tomek et al., 1976), can be
an efficient way to reduce this overlap. Tomek links can be defined as a pair minimally
distanced neighbours from two opposite classes. Given a pair (xi,xj), xi ∈ Smin and
xj ∈ Smaj with d((xi,xj)) as the distance between the two examples, then the pair is
considered a Tomek link if there exists no example xk, such that

d(xi,xk) < d(xi,xj) or d(xj ,xk) < d(xi,xj)

If two examples form a Tomek link then both examples are near the class border or one of
the examples are noise. By locating all Tomek links after synthetic oversampling one can
perform data cleaning by removing all Tomek links until all minimally distanced neigh-
bours are from the same class, and thus remove the unwanted class overlap. This way,
well-defined class clusters can be defined in the training set which could help during clas-
sification.

A method which uses Tomek links to perform informed undersampling is One-Sided
Selection (OSS) by (Kubat et al., 1997). The method identifies each example in the dataset
as either noise, borderline, redundant or safe, and only samples examples categorized as
safe. Borderline and noisy examples are found using Tomek links. There has also been
made a integration of SMOTE and Tomek links called SMOTE+Tomek by (Tomek et al.,
1976). A third method using data cleaning is the neighbouring cleaning rule (NCL) by
(Laurikkala, 2001). It is similar to OSS, however it uses Wilson’s edited nearest neighbor
rule (ENN) (Wilson and Martinez, 2000) to identify noisy/borderline examples instead of
Tomek links. ENN is a simple method that look at the three nearest neighbours of each
example and removes it if the class differs from its three nearest neighbours.

(Stefanowski and Wilk, 2006) proposed two filtering techniques called remove and
relabel using rough set theory (Pawlak, 1998). Both methods identify inconsistent border-
line examples from the majority class. The first method removes these examples, while
the other relabels them as minority class examples as a data cleaning technique.

14



2.2 Methods to Address Class Imbalance

Cluster-Based Sampling

In an imbalanced data set, the classes can also suffer from within-class imbalance. As such,
with random oversampling this imbalance is not considered. Cluster-Based Oversampling
(CBO) by (Jo and Japkowicz, 2004) is a strategy for reducing not only between-class im-
balance but also the within-class imbalance, by clustering the classes and perform random
oversampling cluster by cluster. CBO performs class clustering by the K-means algorithm
which works as follows: k examples are chosen at random to represent each of the k clus-
ters. The input vector for each example represents the mean of each cluster. For every
example in the class, the its distance to each of the k cluster means are calculated and the
example is put in the closest cluster. The cluster who received the example has its mean
updated by averaging the input vectors of its corresponding examples. After each class is
clustered the oversampling starts. In the majority class every cluster is randomly oversam-
pled expect from the largest cluster, to get the same number in every cluster as the largest
one given by maxclasssize. In the minority, class each cluster is randomly oversam-
pled until every minority cluster contains maxclasssize/Nsmallclass examples, where
Nsmallclass is the number of clusters in the minority class. As cluster based oversam-
pling is able to identify rare examples en re-sample them individually the method is able
to reduce both within- and between-class imbalance which can increase classification per-
formance (Jo and Japkowicz, 2004).

Integration of Sampling and Boosting

There has been many studies of integrating sampling strategies with ensemble learning,
also called boosting algorithms. Boosting is a general method which attempts to boost
the accuracy of any given learning algorithm. The first boosting algorithm that became
widely popular was AdaBoost by (Freund and Schapire, 1995). Adaboost is en ensemble
of t weak classifiers ht and the output of the final classifier is given by:

H(x) = sign(

T∑
t=1

αtht(x)) (2.12)

where αt is the weight given to ht by AdaBoost which is based on the error-rate et of ht:

αt =
1

2
ln(

1− et
et

) (2.13)

BalanceCascade and EasyEnsemble discussed in section 2.2.1 which combines their sam-
pling strategies with the boosting algorithm AdaBoost. Another example using with Ad-
aBoost is SMOTEBoost by (Chawla et al., 2003) in which SMOTE is integrated with the
boosting algorithm. Two other examples using AdaBoost is DataBoost-IM by (Guo and
Viktor, 2004) which combines its sampling of difficult-to-learn examples with the boost-
ing technique and RUSBoost (Seiffert et al., 2009) which is based on SMOTEBoost, but
has made modifications to the SMOTE algorithm. Boosting has proven to increase perfor-
mance in some cases, and good be a good addition to synthetic sampling strategies.
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2.2.2 Algorithmic-level Methods
While data-level methods attempt to balance the class distribution of the data set prior
to training the classifier, the is another set of methods that work at the algorithmic-level.
They leave the class distribution unchanged and targets the class imbalance problem by
altering the classifier directly. The algorithmic-level methods will not be elaborated in
the same extent as the data-level methods, as they will not be used in experiments in this
thesis. However, as algorithmic-level methods have proven for some imbalanced learning
domains to be a viable alternative to sampling methods, the key concepts will be intro-
duced.

Cost-Sensitive Learning

Most machine learning algorithms assume all misclassification errors cost equally and has
the objective of minimizing the total costs (Jo and Japkowicz, 2004). This is at the core
of the class imbalance problem, as the total cost of misclassified minority class examples
can be fairly low even though the misclassification rate is high. Cost-sensitive methods
tries to mitigate this issue by taking the misclassification costs for the different classes into
consideration by changing the classifiers cost matrix. The goal is to assign different costs
to examples from different classes in a way such that the classifier will not become biased
towards the majority class. The resulting cost matrix then describes the misclassification
cost of any specific example (Elkan, 2001).

During the training process of a classifier, it is penalized by assigning the wrong class
to an example. The cost matrix C contains the cost values (penalties) for misclassifying
an example, where the value C(i, j) is based on the examples label i and the classifiers
prediction j. We have that i, j ∈ Y = [1, . . . , q], where q is the total number of labels
in the data set. A typical cost matrix is shown in eq. (2.14), the cost associated with
predicting class j when the example belongs to class i. (Sheng and Ling, 2006).

C(1, 1) C(1, 2) · · · C(1, q)
C(2, 1) C(2, 2) · · · C(2, q)

...
...

. . .
...

C(q, 1) C(q, 2) · · · C(q, q)

 (2.14)

When all costs are equal we have a uniform cost matrix which is typically used by machine
learning methods before cost-sensitive methods are applied.

∀i, j : C(i, j) =

{
1, j = i

0, j 6= i
(2.15)

Cost-sensitive methods also assigns zero cost for correctly classified examples, C(i, j) =
0 if and only if i = j. However if we have that i ∈ qmin and j ∈ qmaj where {qmin ∪
qmaj} is the total set of labels and {qmin ∩ qmaj} = Ø, the costs are assigned such that
C(j, i) > C(i, j). This means that the cost of misclassifying a minority example as a
majority example has greater cost than misclassifying a majority example as a minority
example. Cost-sensitive methods objective is to minimize the overall cost, and this is
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typically done by considering the Bayes conditional risk (Sheng and Ling, 2006) which is
defined as

R(i|x) =
∑
j

p(j|x)C(i, j) (2.16)

where p(j|x) is the Bayesian a posteriori probability. This is the predicted probability of x
belonging to class j and is given by

p(j|x) =
p(x|j)
p(x)

p(j) (2.17)

Cost-sensitive learning can be implemented in a numerous of different ways. With respect
to neural networks is could be implemented by letting misclassified examples with a high
cost contribute more to the weight updates. Another method is to change the object of
the training process from minimizing the standard loss function to minimizing the total
misclassification cost (Kukar et al., 1998).

Thresholding

Threshold adjusting of simply thresholding takes on another approach. Instead of changing
the cost matrix, the strategy is to change the decision threshold of the classifier. In most
machine learning algorithms, when the classifier makes a prediction its output is simply
the label that had the highest probability. If the prediction is based on probability estimates
given by eq. (2.17), which is the case for most machine learning, then the threshold for
making a prediction can be shifted. Thresholding simply finds the best probability as the
new threshold T , and this new threshold is then applied to the process of predicting class
labels for test examples (Sheng and Ling, 2006). For a test example x with predicted
probability p(i|x) will be predicted as positive if p(i|x) ≥ T and will be predicted as
negative if p(i|x) ≤ T .

Without thresholding the theoretical threshold for optimal decision making is (Elkan,
2001):

T =
C(1, 0)

C(1, 0) + C(0, 1)
. (2.18)

However, thresholding finds the best threshold in the following manner: For a given thresh-
old, the the total misclassification cost MC for a set can be calculated. This is a function
of the threshold MC = f(T ), and its curve can be obtained after calculating MC for ev-
ery possible threshold. In order to find the best value of T , it is in reality only necessary
to calculate misclassification costs for each possible probability estimates on the training
examples. With this curve, the chosen value of T is the one that minimizes MC .

2.2.3 State-of-the-Art Methods
The data-level and algorithmic-level methods discussed in the previous sections are for the
mostly fairly old and only well documented and researched for classical machine learning
methods. There has not been nearly as much research on the impact of class imbalance
mitigation methods on Deep Neural Networks or more specifically CNNs (Buda et al.,
2018). In this section we will look at some new state-of-the-art methods that focus on
neural networks.
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GAN-Based Methods

Generative Adversarial Networks (GANs) are elaborated in section 2.3, however here is a
short overview in order to explain GAN based class mitigation methods. Generative Ad-
versarial Networks (GANs) is a recent innovation in machine learning proposed by (Good-
fellow et al., 2014), and has gained much attention since its innovation in 2014. GANs is
a framework for generative models that consists of two neural networks: a discriminative
model (D) and a generative model (G). During the training process of the GAN the G
model generates synthetic data examples while the D model evaluates given examples for
authenticity; i.e. the probability whether a given instance is generated or from the training
data. The objective of G is to maximize the probability of D misclassifying a generated
example as a real one, while D tries to maximize its accuracy. During this process the G
model learns to generate synthetic examples that are similar to examples from the training
data.

After a GAN has been trained on a data set it is potentially able to generate syn-
thetic data that resembles the data for which it was trained on, which makes it possible
to use GANs for the purpose of oversampling. GAN Based Oversampling are synthetic
sampling methods, that oversamples the training data by generating synthetic minority ex-
amples. GAN Based oversampling is similar to the previously described method SMOTE.
As SMOTE generates synthetic points along the line-segment between two examples, the
data generation is done in a simple manner that does not ensure meaningful new points to
be generated. In the use of GANs, the generator learns the data distribution of the training
data, and uses this to generate new examples. Results show that GAN-based oversampling
can synthesize helpful samples for the minority classes to assist the training the CNNs
(Wang et al., 2019). The technique has also shown to have great performance, outper-
forming SMOTE and other class imbalance methods (Lee and Park, 2019; Douzas and
Bacao, 2018; Lei et al., 2019; Mullick et al., 2019).

CGAN-Plankton by (Wang et al., 2017) is a method for solving the class-imbalance
problem for fine-grained classification tasks on images. In their method they used the
WHOI dataset (Orenstein et al., 2015) which consists of thousands of in-situ plankton
images. In their method they have the generative model (G) and discriminative model
(D) from a GAN as well as a classification model (C). The G and D model consists of
fully convolutional layers. The GAN is trained on the minority examples from the training
data, and during training G becomes able to generate similar synthetic images while D
learns effective discriminative parameters. Based on this idea the parameters of D are
extracted and C is implemented with the same weights, which forces the classifier to focus
on the minority classes in which the GAN was trained on. Their results showed that C
is a powerful classifier, and when used for the classification task of the whole data set
(both minority and majority classes), it outperformed popular CNN methods on overall
performance. They also tested their generator for GAN-based oversampling, and showed
that all CNNs used in their experiment achieved better performance when the training data
was oversampled using their G model. In conclusion they showed that CGAN-Plankton
creates a strong classifier as well as a sufficient generator for oversampling for imbalanced
fine-grained classification tasks. (Radford et al., 2015), which created an improvement
of the original GAN (further elaborated in section 2.3.2) also concluded that the trained
discriminator from a GAN can show competitive performance for image classification
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tasks.
Large Margin Local Embedding (LMLE)-kNN is a method proposed by (Huang et al.,

2016), which aims to mitigate the class imbalance issue by learning deep feature embed-
dings. Their solution is a form of resampling and classification done by a cluster-wise
kNN search with a local margin decision. The method perform the sampling by what they
call quintuplet sampling with triple-header loss. This way of sampling ensures locality
across clusters as well as discrimination between classes. Both within-class and within-
cluster margins are enforces, which effectively reduces class imbalance in the local data
neighbourhood. Their results showed that LMLE-kNN greatly improved classification
performance for CNNs compared to classical methods for class imbalance mitigation.
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2.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) is a framework for estimating generative models
that were invented by (Goodfellow et al., 2014), and have become increasingly popular.
The framework consists of two networks; a discriminative (D) net and a generative (G) net.
These two nets are trained simultaneously and play a minimax game during the training
process. The G net generates data while the D net estimates the probability that a given
data point comes from the generative net or the training data. The two nets play a minimax
game in the following manner; the D nets training procedure is to assign the correct label
to the given data point while the G nets training procedure is to maximize the probability
of the D model making a mistake. The relationship between D and G is during the training
process is shown in fig 2.8. As seen from the figure, the discriminator is given original
data from the training data and generated data from the generator, and then assigns label.
The decision made by the discriminator is fed back to the generator. (Goodfellow et al.,

Figure 2.8: Relationship between generator and discriminator in GAN training process.

2014) proposes multilayered perceptrons for both the G and D net. In that case the whole
system can be trained with backpropagation. Suppose the generator’s data distribution pg
over the data x we define a prior noise distribution pz(z) and represents the mapping to
the data space G(z; θg). The generator and the discriminator are given by G(z; θg) and
D(x; θd). D is trained to maximize the probability of correctly assigning correct labels
log(D(x)) while G is trained to minimize log(1 −D(G(z)). This results in the minimax
game with the following value function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z))] (2.19)

The minimizing of the value function V (D,G) amount to minimizing the Jensen-Shannon
distance between the distributions pdata and pg (Fuglede and Topsoe, 2004). The minimax
game results in the generators capability to generate synthetic data that is similar to the
training data.
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2.3.1 Conditional GAN
Short time after the introduction of GANs (Mirza and Osindero, 2014) introduced Con-
ditional GANs. While GANs are trained unsupervised meaning the training data do not
have class labels, while the conditional GANs are trained in a supervised manner where
class labels are a part of the training process. The conditional version of GANs can be
constructed by feeding the data we wish to condition on or the label data, y, to both the
discriminator and the generator. They showed that the generator then is able to generate
synthetic data conditioned by class label. The value function for the discriminator and
generator will for a conditional GAN be:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x|y))] + Ez∼pz(z)[log(1−D(G(z|y))] (2.20)

The structure of a simple Conditional GAN is showed in fig. 2.9. With the introduction of

Figure 2.9: Structure of a Conditional GAN.

conditional GANs the possibility of generating synthetic labeled data is now possible.

2.3.2 Deep Convolutional GAN (DCGAN)
Convolutional GANs are GANs that uses Convolutional Neural Networks (CNNs) for the
G and D model, in order to train the a GAN on a imagery dataset. The class of Deep
Convolutional Generative Adversarial Networks (DCGAN) were proposed by (Radford
et al., 2015), which is a class that contains a set of constrains on the architectural topol-
ogy of Convolutional GANs, to make them stable during training in most settings. They
introduced a set of guidelines for the CNNs G and D consists of;

• Replace any pooling layers with strided convolutions (discriminator) and fractional-
strided

• Replace any pooling layers with strided convolutions (discriminator) and fractional-
strided convolutions (generator).
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• Use batchnorm in both the generator and the discriminator.

• Remove fully connected hidden layers for deeper architectures.

• Use ReLU activation in generator for all layers except for the output, which uses
Tanh.

• Use LeakyReLU activation in the discriminator for all layers.

Their results showed that the networks learned good representations of images for super-
vised learning.

2.3.3 Wasserstein GAN (WGAN)
(Martin Arjovsky and Bottou, 2017) argues that the traditional GAN given by eg. 2.19 can
lead to training difficulties, as the divergences they minimize are potentially not continuous
with respect to G’s parameters. They introduced the Wasserstein GAN (WGAN), and
argue that WGANs cure the main training problem of GANs, by using the Wasserstein-1
distance, W (p, q) instead of the Jensen-Shannon distance. The Wasserstein-1 distance can
under mild assumptions be continuous everywhere and differentiable almost everywhere.
The WGAN value function is given by:

min
G

max
D∈D

V (D,G) = Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))] (2.21)

where D is the set of 1-Lipschitz functions and the distributions pdata and pz are the same
as in eq. 2.19. This amounts under an optimal discriminator to minimizing W (pdata, pz).
In order to ensure the Lipschitz constraint on D, (Martin Arjovsky and Bottou, 2017)
propose clipping of the weights of D to lie within a compact space. They argue that their
value function makes optimization of G easier and that the value function correlates with
sample quality which traditional GANs value function do not.

2.3.4 WGAN Gradient Penalty (WGAN-GP)
An improved version of the Wasserstein GAN (Martin Arjovsky and Bottou, 2017) was
proposed by (Gulrajani et al., 2017) called WGAN Gradient Penalty (WGAN-GP). Even
though WGAN was an improvement towards stable training of GANs, it can still fail to
converge or generate poor samples. They argue that WGAN-GP does not suffer from
the same problems as the WGAN framework and show stable training of varied GAN
architectures and high quality image generation. (Gulrajani et al., 2017) argue that the
weight clipping done in the WGAN framework is the reason for the issues the framework
suffer. They introduced an alternative way to ensure the Lipschitz constraint, which they
call gradient penalty. They directly constrain the gradient norm of the discriminators,
D, output with respect to its input. They add a penalty to the gradient norm for random
samples x̂ ∼ px̂, which gives the new objective:

L = Ez∼pz(z)[D(G(z))]− Ex∼pdata(x)[D(x)]︸ ︷︷ ︸
Original Discriminator loss

−λEx̂∼px̂ [(||∆x̂D(x̂)||2)2]︸ ︷︷ ︸
The Gradient Penalty

(2.22)

(Gulrajani et al., 2017) demonstrated that their model, WGAN-GP, outperformed WGAN
and a more stable algorithm for training GANs.
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2.3.5 Spectral Normalization GAN (SN-GAN)
The Spectral Normalization GAN (SN-GAN) is is a model proposed by (Miyato et al.,
2018) that uses their method called spectral normalization. This method is made with the
purpose of stabilizing the training of discriminator networks. Their work showed that in
some cases spectral normalization can improve the quality of the generated images better
than gradient penalty. They observed that a high learning rate can make the performance
of WGAN-GP unstable, while with the spectral normalization remains more stable and
does not easily destabilize. They also observed that SN-GAN has a lower computational
cost than WGAN-GP. To explain the spectral normalization we first need to look at the
architecture of the discriminator. We consider a discriminator D made made of a neural
network with the input x:

f(x, θ) = WL+1aL(WL(aL−1(WL−1(...a1(W 1x)))), (2.23)

where the learning parameters are given by θ := W 1, ...,WL,WL+1, W l ∈ Rdlxdl−1 ,
WL+1 ∈ R1xdL and al is an element-wise non-linear activation function. Then the output
of the discriminator will be given by

D(x, θ) = A({(x, θ)), (2.24)

where A is an activation function, that corresponds to the divergence of distance measure
chosen. The spectral normalization proposed by (Miyato et al., 2018) controls the Lipshitz
constant of the D function f by constraining the spectral norm of each layer: g : hin →
hout. The Lipshitz norm denoted ||g||Lip is equal to suphσ(∆g(h)), where σ(A) is the
spectral norm of matrix A:

σ(A) := max
h:h6=0

||Ah||2
||h||2

= max
||h||2≤1:

||Ah||2. (2.25)

The SN-GANs spectral normalization normalizes the weight matrixW s norm so it satisfies
the Lipshitz constraint σ(W ) = 1:

W̄SN (W ) :=
W

σ(W )
(2.26)

If every W l is normalized using eq. 2.26 then ||f ||Lip is bounded from above by 1 and the
Lipshitz constraint is enforced. (Miyato et al., 2018) achieves generated examples that are
more diverse using GAN-SN than other weight normalization methods.

2.3.6 Evaluation Metrics
When using generative models the choice of evaluation metric for the model’s performance
is an important aspect. In the case of GANs one could look at how well the generator
fools the discriminator, however this is not a good indicator of the quality or diversity of
the generated images. As GANs do not have an objective function, there is no objective
objective way of comparing different models or the generated output. As a result finding a
proper way to evaluate the performance of GANs proved to be a difficult task (Theis et al.,
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2015). The first evaluation metric that was widely used and correlated well with human
judgement was the Inception Score (IS) proposed by (Salimans et al., 2016). As the IS
did not take into consideration how well the generated images compare to the real ones,
the Fréchet Inception Distance (FID) score was introduced by (Heusel et al., 2017), which
proved to capture this similarity better. The FID score then became the standard evaluation
metric for the performance of GANs.

Inception Score (IS)

The Inception Score (IS) by (Salimans et al., 2016) is a score computed over a set of gener-
ated images by a GAN. During the computation the diversity of the images are considered
as well as the quality of each image. If the images are diverse and each image represent
something meaningful, this will result in a high score. This means the higher the score,
the better the generator is at generating distinct high-quality images. The lowest score
possible is zero, while the highest theoretical score is infinite.

In order to compute the IS the conditional label distribution p(y|x) for each generated
image is extracted using the Inception Model by (Szegedy et al., 2016). For images mean-
ingful objects, this distribution should have low entropy. As the generator is expected to
generate diverse images the marginal distribution

∫
p(y|x = G(z))dz should have high

entropy. The combination of these two metrics are the basis for the inception score; the
more these two entropies differ the higher the inception score. This is achieved by us-
ing the Kullback–Leibler divergence (Van Erven and Harremos, 2014), also called relative
entropy, given by

DKL(P ||Q) =

∫
pln

p

q
dµ, (2.27)

with the conventions that 0ln(0/q) = 0 and pln(p/0) = inf . The inception score is then
given by

IS(G) = exp(ExDKL(p(y|x)||p(y))). (2.28)

The inception score was widely used, and for example the makers of SN-GAN (Miyato
et al., 2018) used it in order to compare their method to others. However there are lim-
itations to using IS as the evaluation metric for GANs. For one, if the generator learns
to generate something that is meaningful but is not present as a class in the training data,
this will result is low IS even though the image is of high quality. Secondly, the IS does
not capture inter-class diversity, so the generator can generate one image per class repeat-
edly and still achieve a high IS. A third drawback is that if the generator simply learns to
replicate the training data, the IS will also be high.

Fréchet Inception Distance (FID) Score

Due to the drawbacks of the inception score, a new method for evaluating images generated
by GANs called Fréchet Inception Distance (FID) Score was proposed by (Heusel et al.,
2017). They argue that the FID score is more consistent and captures the similarity of
real and generated images better than the IS. The FID score is based on goal of training a
generative model that produces data that matches the training data. With this goal in mind
each distance between the the probability of generating model data p(.) and probability of
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observing real data pω(.) can be used as an evaluation metric for GANs. The FID score is
an improvement of the IS, by adding this element of comparing the generated data to the
training data.

The FID is computed by considering the Fréchet distance Fréchet (1957) between two
multivariate Gaussian distributions, representing the real and the generated data. We have
one Gaussian obtained from p(.) with mean and covariance (m,C), and the other obtained
from pω(.) with mean and covariance (mω,Cω). With the Fréchet distance as d(., .) the
FID is given by:

d2((m,C), (mω,Cω)) = ||m−mω||22 + Tr(C + Cω − 2(CCω)1/2) (2.29)

Low FID values means the two distributions p(.) and pω(.) are similar, and therefore means
high diversity and image quality among the generated images (Heusel et al., 2017). After
the invention of the FID, it replaced the IS as the standard as the GAN evaluation metric.
(Lucic et al., 2018) concluded that the FID was a reasonable evaluation metric for GANs
due to its robustness, and used it for their comprehensive comparison of state-of-the-art
GANS.

Fig. 2.10 shows some images generated by a SN-GAN using the open-sourced im-
plementation by (Lucic et al., 2018) available at https://github.com/google/
compare_gan. The SN-GAN is trained on the CIFAR-10 Krizhevsky et al. (2009)
dataset. The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. The images corre-
sponding FID score is shown in the figure, and we can see that there is a clear correlation
between FID and image quality.
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Figure 2.10: SN-GAN trained on Cifar-10 dataset generated images with corresponding FID score.
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Chapter 3
Experiment

This master thesis is a continuation of the specialization project with the same name. The
project is part of a larger project called AILARON in which several people are working
at. The objective of this thesis is described at the AILARON web-page https://www.
ntnu.edu/web/ailaron/msc-projects as: ”Existing planktonic datasets suffer
from class imbalance. Trained deep learning architectures tend to favor classification of
objects to higher weight classes. This can mislead the segmentation and classification
procedure. In this project, Oda is studying recent approaches to solve the class-imbalance
and evaluate their performance over datasets of planktonic organisms.” The AILARON
project has collected a set of images referenced as the SilCam data set, as well as developed
a network architecture called COAPNet. Both the dataset and the classifier will be used in
the experiments in this thesis.
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3.1 Dataset and Classification Model
SilCam is a data set which consists of RGB images of microscopic planktonic organisms
of different sizes. It consists of 7941 images and 8 classes. Its class distribution and the
number of images per class is shown in fig. 3.1. As seen from the figure the data set has
a form of linear imbalance. From the class labels we can see that the data set consists
of different species of planktonic organisms as well as some other classes such as oil and
bubble. In this experiment we are most interested in the classes that represent species,
which is: diatom chain, copepod, faecal pellets and fish egg. We can also see that the
majority of the data set consists of images that belong to the class bubble and other. For the
purpose of this thesis the class bubble will be referenced as the majority class and images
associated with this class belongs to the majority set Smaj . It then naturally follows that
the remaining seven classes are referenced as minority classes and their images belong to
the minority set Smin. More information and implementation of the data set is elaborated
in section 4.1.

Figure 3.1: Class distribution of the imbalanced dataset SilCam.

For the purpose of comparing different class mitigation methods, the data set is split
into the subsets train, test and validation which contains 70%, 15% and 15% of the total
set. The number of images in each set is shown in table 3.1. The split is done in such a
way that the class distribution in each set is the same as in the original data set.

Table 3.1: Number of images for training, testing and validation)

TRAIN TEST VALIDATION TOTAL

5556 1199 1186 7941

All experiments are tested using the COAPNet, which is a network architecture devel-
oped by the AILARON team. It has been specialized and optimized specifically for the
SilCam data set. Information about the implementation of the COAPNet is elaborated in
section 4.2.
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3.2 Methods of Addressing Imbalance Compared in This
Study

In this thesis we compare GAN-based oversampling with random minority oversampling
and random majority undersampling. Full oversampling is tested as well as minority over-
sampling with 50 images and 150 images which gives the tests:

1. Full Random Majority Undersampling

2. Full Random minority oversampling

3. 150 Random minority oversampling

4. 50 Random minority oversampling

5. Full GAN-based oversampling

6. 150 GAN-based oversampling

7. 50 GAN-based oversampling

For this thesis the classifier in use it the COAPNet. As this is a network under development
it was preferable to investigate the impact of data-level methods compared to algorithmic-
level methods. Ensemble methods require training of multiple classifiers. For deep neural
networks such as the COAPNet considerable time is needed for training, which makes the
training of multiple classifiers both impractical and in some cases even infeasible. LMLE-
Knn is a method with promising results, however the method can not be integrated with the
COAPNet. as elaborated in section 2.2.3 GAN-based oversampling has shown promising
results, often outperforming SMOTE. In the project thesis this master thesis is a continua-
tion of, GAN-based oversampling was tested on the WHOI data set Orenstein et al. (2015)
and showed promising results. However the method was not compared to other methods.
As this data set suffers from within-class imbalance as well as between-class imbalance,
cluster-based sampling should be investigated. However, due to the Covid-19 situation,
experiments had to be pushed back and cluster-based sampling experiments did not fit in
the timeline.

Random Resampling Method

For the sampling methods, only the training data is oversampled, while the test and vali-
dation data is left untouched. In the training data there are 8 classes. For the oversampling
methods the majority set Smaj consists of the largest class while the minority set Smin
consists of the 7 smallest of them, where Smin,i represents the set of each class, i = 1, ..., 7
is the class label. Ei is the set sampled from Smin,i and we have that ni = |Ei|. For the
method Full oversampling we have that

ni = |Smaj | − |Smin,i|, i = 1, ..., 7 (3.1)
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to get a fully balanced dataset. For 150 and 50 oversampling we have that ni = 150 and
ni = 50 respectively. The new oversampled dataset is then the sumset

S = Smaj +

7∑
i=1

Smin,i + Ei, |Ei| = ni (3.2)

For the undersampling method the minority set Smin consisted of images from the
smallest of the 8 classes. The remaining 7 classes made up the majority set Smaj . For the
undersampling approach the number of images to sample for each class Smaj,i was ni =

|Ei| = |Smin|. The new undersampled data set is then the sumset S = Smin +
∑7
i=1Ei.

For both sampling methods the test set is not changed to match artificially balanced
training sets. The reason for this is that the score achieved by the classifier when tested on
the same test set is more comparable.

GAN-Based Sampling

For the GAN-based oversampling, three different GAN architectures were considered;
DCGAN, WGAN-GP and SN-GAN. Implementation of the three are elaborated in section
4.3. The architectures were trained on the 7 smallest classes in training data from the Sil-
Cam data set. Different image resolutions for the data set were tested; 64x64x3, 64x64x1,
32x32x3, 32x32x1. For all of the architectures when trained on the SilCam dataset with
image resolution of 64x64x3 out of memory error occurred, which means no GAN were
able to finish training with this resolution. During the training the GAN saves checkpoints
and the corresponding score achieved by that checkpoint. For each checkpoint the GAN
generates three synthetic data sets and calculates the FID score for each of them. The GAN
that achieved the overall highest score were chosen as the GAN to use in the GAN-Based
oversampling methods. For this model, the checkpoint that scored the highest were used
for image generation. The dataset is oversampled the same way as in random minority
oversampling given by eq. 3.2, the only difference being Ei is the generated data and it is
not a subset of Smin.

30



3.3 Evaluation Metrics and Testing

3.3 Evaluation Metrics and Testing
When it comes to evaluating classifier performance in the context of multiclass classifi-
cation with CNNs, the metric most widely used is overall accuracy (Buda et al., 2018).
However, as discussed in section 2.1.2, accuracy can be misleading, particularly in the
context of imbalanced data sets. (Wang et al., 2017) did experiments of training GANs on
images of planktonic organisms. They argue that the F1 score (given by eq. 2.4) is the
best metric for evaluation performance of CNNs as it gives the balance between recall and
precision. In our thesis we will look at the F1 score as well as precision and accuracy.
These evaluation metrics are elaborated in section 2.1.2.

For the evaluation of the GANs, the FID score will be used. The FID score is discussed
in section 2.3.6. During the training the GANs, the GAN that achieves the highest FID
score will be considered the one that has the ability to generate images that will increase
classification performance the most.
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Chapter 4
Implementation

The majority of the work done in this thesis has been implementation related. As such,
the project has been limited by the available hardware. For testing two GPUs of ASUS
RTX2080Ti Turbo with available RAM of size 64 GB have been possible to access. How-
ever, multiple people related to the AILARON project have access to the GPUs, which
makes them occupied most of the time. With more computational power available, it
would have been possible to run more tests than what was done. In this chapter we will go
through the implementation related to the data set, the classifier used and the generative
adversarial networks tested.
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4.1 Dataset
The dataset used in this theses is called the SilCam dataset, and is collected by the AILARON
Project which is lead by Anette Stahl (AILARON). The images are captured in-situ by an
autonomous underwater vehicles (AUV). The dataset consists of almost 8000 images of
microscopic marine plankton and has 8 classes. The classes and the number of images per
class are shown in table 4.1, and the class distribution is shown in fig. 4.1. As seen from

Table 4.1: Number of images associated with each class in the SilCam data set.

LABEL NUMBER OF IMAGES

BUBBLE 2636
OTHER 1931
DIATOM CHAIN 850
OIL 671
COPEPOD 657
FAECAL PELLETS 504
OILY GAS 479
FISH EGG 213

TOTAL 7948

Figure 4.1: Class distribution for all classes from the SilCam dataset

both the table and the figure the dataset suffer from class imbalance, that is the number of
images in each class differ. The class bubble consists of 2636 images which is equivalent
to 33% of the dataset while the class fish egg only makes up 3% of the dataset with its 213
images. The images are very diverse when it comes to resolution and quality across classes
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Table 4.2: Average image resolution for each class

LABEL AVERAGE RESOLUTION IN PIXELS STANDARD DEVIATION

COPEPOD (101, 83) ± (39, 37)
FAECAL PELLETS (32, 37) ± (21, 19)
OTHER (38, 38) ± (42, 40)
FISH EGG (84, 91) ± (37, 33)
BUBBLE (26, 26) ± (10, 10)
DIATOM CHAIN (49, 49) ± (43, 44)
OIL (36, 35) ± (23, 23)
OILY GAS (28, 28) ± (15, 16)

as well as inter-class. Table 4.2 shows the average image resolution for each class and as
the standard deviation. The average image size across the whole dataset is (50, 48) pixels,
which means these are images that does not contain a high level of information. Some
example images from each class are shown in fig. 4.2, where the difference in resolution
and image quality is shown clearly.

4.1.1 Scaling
In order to use the dataset for our purpose, all images are required to have the same reso-
lution. Three different scaling techniques were considered; bilinear interpolation, bicubic
interpolation and the reflect method.

Bilinear Interpolation is a method that considers the weighted average of four neigh-
bouring pixel values when calculating the new value for the interpolated point (x, y) (Tez-
duyar et al., 1992). The computation works as follows; we want to know the value of the
unknown function f at the point of interest (x, y). The value of f is known at four points
Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1), and Q22 = (x2, y2). f(x, y) is then
given by:

f(x, y) =
1

(x2 − x1)(y2 − y1)

[
x2 − x x− x1

] [f(Q11) f(Q12)
f(Q21) f(Q22)

] [
y2 − y
y − y1

]
.

Bicubic Interpolation uses 16 neighbouring pixels for calculation of the interpolated point.
The method uses a bicubic polynomial surface (Tezduyar et al., 1992). The general func-
tion is given by:

Ixy =

3∑
i=0

3∑
j=0

aijx
iyj

Reflect is a method that uses the reflection of the vector mirrored as padding. For example,
if a vector

[
1 2 3

]
were to be padded by four values to the right, the results using the

reflect method would be
[
1 2 3 2 1 2

]
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Figure 4.2: Shows example images for each class. 1: Bubble, 2: Copepod, 3: Faecal Pellets, 4:
Diatom Chain, 5: Fish egg, 6: Oil, 7: Oily gas, 8: Other

Fig. 4.3 shows the result after using the three different rescaling techniques. The orig-
inal image to the left is originally 166x120 pixels. The image was rescaled to 194x194
pixels. All three techniques were applied to the whole dataset, and classification perfor-

Figure 4.3: Image rescaled using different rescaling techniques

mance considered. The results are shown in table 5.1. As seen from the table the choice
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of scaling technique has an impact on precision. The method that gave the best results
were bicubic interpolation, and this method was therefore implemented as the rescaling
method. Some example images are shown in fig. 4.4 after using bicubic interpolation for
64x64x3 pixels scaling. Each row contains images from the following classes: 1: bubble,
2: copepod, 3: diatom chain, 4: faecal pellets, 5: fish egg, 6: oil, 7: oily gas and 8: other

Figure 4.4: Example images of the SilCam after scaling is applied, where each row represents a
class.
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4.2 COAPNet
For the image classification task the small deep learning architecture COAPNet proposed
by (Saad et al., 2019) were used. This is a deep neural network architecture that is spe-
cialised and fine-tuned for the SilCam dataset. Their results have showed that the COAP-
Net outperforms other state of the art neural networks such as VGGNet, ResNet, AlexNet,
ZooplanktoNet and GoogleNet in the task of classifying and identifying in-situ plankton
imagery. The architecture of the COAPNet is as follows; there are five convolutional lay-
ers with ReLU as activation, that are intertwined with five max-pooling layers for dimen-
tionality reduction. Following these layers are three fully connected layers. This can be
summarized in the table 4.3. COAPNet uses a learning rate of 0.001, optimizer Adaptive
Moment Estimation and categorical crossentropy as loss function. The implementation of

Table 4.3: Network architecture for the COAPNet.

LAYER 1 CONVOLUTION LAYER WITH 64 FILTERS, EACH 3X3X3
MAX POOLING LAYER

LAYER 2 CONVOLUTION LAYER WITH 128 FILTERS, EACH 3X3X3
MAX POOLING LAYER

LAYER 3 CONVOLUTION LAYER WITH 256 FILTERS, EACH 3X3X3
MAX POOLING LAYER

LAYER 4 CONVOLUTION LAYER WITH 512 FILTERS, EACH 3X3X3
MAX POOLING LAYER

LAYER 5 FULLY-CONNECTED 512 NODE NEURAL NETWORK

LAYER 6 FULLY-CONNECTED 256 NODE NEURAL NETWORK

LAYER 7 FULLY-CONNECTED 256 NODE NEURAL NETWORK

LAYER 8 FULLY-CONNECTED SOFTMAX WITH OUTPUTS TO MAKE THE FINAL PREDICTION

the network is available at https://github.com/emlynjdavies/PySilCam/.
In order to use the implementation for the purpose of this thesis modifications were neces-
sary. It does not support functionality for specifying test and training data. As it is crucial
for this experiment for the test data to be kept consistent across different methods, this
functionality had to be implemented. Functionality for support of different image resolu-
tion were also implemented as well as a more absolute and informative result report. The
network architecture however were not changed from their implementation.
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4.3 GANs

4.3 GANs
Since the invention of Generative adversarial networks (GANs) there has been very high
research activity on the field which have led to a numerous of different algorithms and
network architectures. A comprehensive empirical study was done by (Lucic et al., 2018)
where state-of-the-art GANs and evaluation measures were compared. Their results showed
that most models can reach similar FID scores as long as high enough computational bud-
get is provided. Their model implementations and setup is open-sourced at goo.gl/
G8kf5J.

In this thesis this open-source implementation of GANs were used. However modifi-
cations had to be made for it to serve the purpose of this thesis. First of all the the setup
for the implementation is outdated. Some of the required installations are old versions that
are no longer available, and newer versions are not compatible with the rest of the setup.
This led to a lot of testing of different installation versions in order to find a combination
that was compatible. The implementation also had some bugs that had to be fixed in order
to run the standard configurations. Secondly the implementation is made for comparison
of GAN performance, and not for image generation. While images are generated during
the training process of the GAN, these images are of random labels and discarded during
training. As a result the functionality for image retrieval from trained models had to be
implemented and integrated. As the experiment requires labeled generated images further
modifications were made, to ensure that retrieved images were consistent with the label in
demand.

The implementation by Lucic et al. (2018) is made using TensorFlow (Abadi et al.,
2015), and all datasets that are used are included in the public list of TensorFlow Datasets
(TFDS). In order to use the implementation with datasets that are not in the TFDS list,
the dataset has to be modified and added to this library. This only has to be done locally,
the dataset does not have to appear on the public list of datasets. As a result the SilCam
dataset was made into a TFDS. Compatibility for the SilCam dataset was also integrated
in the implementation.

For this experiment three different GANs were evaluated; the DCGAN (Radford et al.,
2015), the SN-GAN (Miyato et al., 2018) and the WGAN-GP (Gulrajani et al., 2017)
which are further explained in section 2.3.2, 2.3.5 and 2.3.4. The architectures were im-
plemented with the parameters shown in table 4.5. None of these architectures were im-
plemented as conditional GANs by Lucic et al. (2018), so modifications were made for
the training process to be conditional in order to retrieve labeled images from the trained
model. No modifications were made to the network architecture. The implementation
were made compatible to run on GPUs, and all experiments related to the GANs were run
on the available GPU. However, even with the GPUs available, the training time for the
GANs, as seen in table 4.4, is fairly long. Evaluation is not included in the training time,
so overall time needed to train and evaluate the GANs is around doubled from what is seen
in the table. Image generation and retrieval from a trained model also took several hours.
This makes tuning of hyperparameters an extremely time consuming task, which proved
to not be possible in this thesis.

All experiments and GAN configurations are run with a batch size of 64. (Lucic et al.,
2018) stated that one of their biggest findings were the increase in performance as batch
size increase. With this finding it would be natural to test higher batch sizes in out experi-
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Chapter 4. Implementation

Table 4.4: Results from training different GAN architectures with different image resolution.

GAN DATA SET RESOLUTION TRAINING TIME

DCGAN 64X64X1 90 MIN

DCGAN 32X32X3 58 MIN

WGAN-GP 32X32X3 387 MIN

SN-GAN 32X32X3 243 MIN

SN-GAN 32X32X1 180 MIN

ments, however the batch size is limited by the hardware, as an increase batch size lead to
out of memory error.

Table 4.5: Network architecture for the COAPNet.

DCGAN WGAN-GP SN-GAN

BATCH SIZE 64 64 64
LAMBDA 1 10 1
TRAINING STEPS 100000 40000 40000
DISCRIMINATOR ITERATIONS 1 5 1
LEARNING RATE 0.0002 0.0001 0.0002
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Chapter 5
Analysis

In this chapter we will present the results from the experiments. First we will present
results from different image resolutions and preprocessing techniques. Then we will con-
tinue to discuss the imbalance found in the data set. Afterwards the results from the differ-
ent GANs will be presented and for the last section the different class mitigation methods
will be compared.
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Table 5.1: COAPNet classification results from different resizing methods, tested on the SilCam
dataset with image resolution 64x64x3.

METHOD ACCURACY PRECISION F1-SCORE

BICUBIC 92.4937 92.4807 92.4735
BILINEAR 91.4929 91.5344 91.4947
REFLECT 92.4937 92.5719 92.4688

Table 5.2: COAPNet classification results with different image resolutions.

IMAGE SIZE ACCURACY PRECISION MICRO F1 TRAINING TIME

64X64X3 92.4937 92.4807 92.4735 370 MIN

64X64X1 88.3236 88.2389 88.2190 200 MIN

32X32X3 90.8257 90.8121 90.7901 60 MIN

32X32X1 89.1576 89.1724 89.0341 55 MIN

5.1 Effect of Image Resolution and Preprocessing on Clas-
sification Performance

Results from the three different rescaling methods tested on the SilCam dataset are shown
in fig 5.1. For all three methods the images were resized to 64x64x3 pixels. From the
results we can see that bilinear interpolation was the methods that had the poorest results,
and bicubic interpolation and the reflect method achieved almost identical scores. As we
are interested in the F1 score, the bicubic method was chosen for the rest of the experi-
ments.

Results from different image resolutions are shown in figure 5.2. We can see from the
results that color images achieved the best classifier performance, where 64x64x3 had a
higher score than 32x32x3. However, it is interesting to see that it is the other way around
for the grayscale images: resolution size 32x32 gave better performance than resolution
size 64x64.
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5.2 Class Imbalance Impact Without Mitigation Methods

Table 5.3: Results without class-imbalance mitigation for image resolution 64x64x3.

PRECISION RECALL F1-SCORE VALIDATION IMAGES

CLASS 0 1.0000 1.0000 1.0000 33
CLASS 1 0.9596 0.9500 0.9548 100
CLASS 2 0.8485 0.8750 0.8615 128
CLASS 3 0.8759 0.8729 0.8744 291
CLASS 4 0.8400 0.8290 0.8344 76
CLASS 5 0.9801 0.9924 0.9862 396
CLASS 6 0.9105 0.8356 0.8714 73
CLASS 7 0.9608 0.9608 0.9608 102

ACCURACY 0.9250 1199
MACRO AVG 0.9219 0.9145 0.9179 1199
WEIGHTED AVG 0.9248 0.9249 0.9247 1199

Table 5.4: COAPNet classification results with different image resolutions.

IMAGE SIZE MACRO F1 MICRO F1

64X64X3 91.79 92.47
64X64X1 86.70 88.22
32X32X3 90.01 90.79
32X32X1 87.58 89.03

5.2 Class Imbalance Impact Without Mitigation Methods

Fig. 5.1 shows the confusion matrices for each of the four different image resolution sizes
where the horizontal axis represents the predicted class label and the vertical axis repre-
sents the true label. As mentioned, the classes that are the most important are fish egg,
copepod, diatom chain and faecal pellets which corresponds to class 0, 1, 2 and 4 re-
spectively. Table 5.3 shows more detailed output results from the classifier tested on the
64x64x3 image resolution. Equivalent tables for the other resolutions are shown in tables
6.1, 6.2, 6.3 in the appendix. We can see from the tables that the smallest class, class 0,
is the one that achieves the highest results. However, we see that the classifier has trouble
classifying one of the other small classes, class 4. From the confusion matrices we can see
that class 4 examples are often misclassified as class 3. This is also true for class 2.

Table 5.4 shows the micro- and macro F1 scores for each of the four tests. As men-
tioned in section 2.1.2 micro-average is biased towards the most populated classes while
the macro-average is biased towards the least populated ones. From the scores we see that
there is no highly significant difference in the micro- and macro F1 scores. However, it is
true for each test that the micro-F1 score is higher than the macro-F1 score, which implies
the smaller classes are poorly classified compared to the bigger ones. This corresponds
with what we see from the table 5.3.
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(a) Image resolution 64x64x3. (b) Image resolution 64x64x1.

(c) Image resolution 32x32x3. (d) Image resolution 32x32x1.

Figure 5.1: Confusion matrices after training COAPNet with the original imbalanced dataset, for
different image resolutions.

From the fig. 5.1 and table 5.4 the results in we see that in general the classification
performance is poorer for the grayscale data set. We see more examples misclassified as
label 3, and more example from class 6 being misclassified. What we see in the grayscale
data sets is an increase in class overlap. From the confusion matrices we also see that the
most common misclassification error is wrongly predicting an example of belonging to
class 3. This suggests a high level of within-class imbalance in this class. This corresponds
to the fact that class 3 is the class named other, which is a shared class for all images that
do not specifically belong to one of the othre 7 classes.
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5.3 Comparison of GAN performance for CGAN-Based Oversampling

Table 5.5: Results from training different GAN architectures with different image resolution.

GAN DATA SET RESOLUTION LOWEST MEAN FID TRAINING TIME

DCGAN 64X64X1 102.82 90 MIN

DCGAN 32X32X3 92.06 58 MIN

WGAN-GP 32X32X3 58.76 387 MIN

SN-GAN 32X32X3 30.85 243 MIN

SN-GAN 32X32X1 25.99 180 MIN

5.3 Comparison of GAN performance for CGAN-Based
Oversampling

Attempts of training a GAN with resolution 64x64x3, however, this proved not possi-
ble with the hardware and computational power available. This was unfortunate as the
64x64x3 dataset were the one that achieved the highest classification score.

5.3.1 DCGAN

The DCGAN was first trained the 64x64x1 data set. After the training, the checkpoint
which achieved the highest FID score was checkpoint 850000 with the FID score 102,82.
The FID scores achieved for each checkpoint are shown in fig. 5.2a and images generated
by that checkpoint are shown in fig. 5.3a. A FID score above 100 is extremely high, and
as seen from the generated images, they are not of high quality. The DCGAN was also
trained on the 32x32x3 data set. FID scores are shown in fig. 5.2b and generated images
shown in fig. 5.3b. The lowest FID score accomplished was of 92,06, which is slightly
better than for the 64x64x1 data set. However, this is still a high score, and also here we
can see that the generated images are not of high quality. As the DCGAN achieved such
high FID scores, it was not tested on the 32x32x1 dataset.

(a) Image resolution 64x64x1. (b) Image resolution 32x32x3.

Figure 5.2: FID score achieved for each checkpoint during training of DCGAN with different image
resolutions.

45



Chapter 5. Analysis

(a) Image resolution 64x64x1, FID = 102,82. (b) Image resolution 32x32x3, FID = 92,06.

Figure 5.3: Images generated by the DCGAN with the corresponding FID score achieved.

5.3.2 SN-GAN
The next GAN architecture tested was the SN-GAN. The implementation of SN-GANs by
(Lucic et al., 2018) is specialized for images with 32 pixel resolution, and do not support
images of a higher resolution. As a result, the SN-GAN was trained on the data sets with
resolution 32x32x3 and 32x32x1. The FID scores achieved for each checkpoint for both
tests are shown in fig5.4. The lowest FID achieved for 32x32x3 was 25,99 and for 32x32x1
it was 25,99. These are acceptable low FID score, and the SN-GAN clearly outperformed
the DCGAN. Example images from both tests are shown in fig 5.5. We can clearly see that
the image quality is improved compared to the images produced by the DCGAN.

(a) Image resolution 64x64x1. (b) Image resolution 32x32x3.

Figure 5.4: FID score achieved for each checkpoint during training of SN-GAN with different image
resolutions.

(a) Image resolution 32x32x1, FID = 25,99. (b) Image resolution 32x32x3, FID = 30,85.

Figure 5.5: Images generated by the SN-GAN with the corresponding FID score achieved.
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5.3.3 WGAN-GP
The last GAN architecture tested was the WGAN-GP. This GAN architecture was only
tested on the image resolution 32x32x3. The FID score achieved by each checkpoint is
shown in fig. 5.6a and images generated by the checkpoint which accomplished the highest
FID score is shown in fig. 5.6b. As the images only achieved a FID score of 58,76, which is
significantly higher than the SN-GAN achieved for the same data set, it was assumed that
the WGAN-GP would not achieve a lowed FID score on images with resolution 32x32x1
than the SN-GAN. We can clearly see that the images produced by the WGAN-GP is of
lower quality than SN-GAN generated images. It was also assumed that the FID score
achieved

(a) FID score achieved for each checkpoint. (b) Generated images, FID = 58,76.

Figure 5.6: Results from training the WGAN-GP on images with resolution 32x32x3.

5.3.4 Choice of GAN
Table 5.5 summarizes the results from each GAN test. We can see that the SN-GAN out-
performed the other GAN architectures. Due to hardware limitations, no GAN were able
to be trained on the 64x64x3 images. As the highest scored accomplished be the COAP-
Net after the 64x64x3 images were 32x32x3 and 32x32x1, we concluded that the results
from the SN-GAN were sufficient for GAN-based oversampling testing. Fig. 5.7b shows
example images for each class generated by the SN-GAN, while fig 5.7a shows exam-
ple images for each class from the SilCam training data set. Each row contains images
from the following classes: 1: bubble, 2: copepod, 3: diatom chain, 4: faecal pellets, 5:
fish egg, 6: oil, 7: oily gas and 8: other. As the SN-GAN is not trained on the largest class
in the SilCam dataset, it has one row less than the SilCam images. We can see from the
figure that the generated images looks very similar to the training set.

47



Chapter 5. Analysis

(a) SilCam images. (b) Generated images.

Figure 5.7: Example images with resolution 64x64x3, where each row represents a class from the
SilCam dataset.
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5.4 Comparison of Methods to Address Class Imbalance

Table 5.6: Results from different class-imbalance mitigation methods for 32x32x3.

METHOD ACCURACY PRECISION F1-SCORE

RANDOM 50 OVERSAMPLING 91.9933 92.0414 91.9876
RANDOM 150 OVERSAMPLING 91.9099 91.9250 91.9070
SN-GAN 50 OVERSAMPLING 91.4095 91.5358 91.4388
RANDOM FULL OVERSAMPLING 91.3261 91.4008 91.3250
ORIGINAL 90.8257 90.8121 90.7901
SN-GAN 150 OVERSAMPLING 90.3253 90.3543 90.3085
RANDOM FULL UNDERSAMPLING 86.3219 87.9693 86.2835
SN-GAN FULL OVERSAMPLING 86.1551 86.6990 86.2024

5.4 Comparison of Methods to Address Class Imbalance

5.4.1 Results from training data with resolution 32x32x3
The performance of difference methods for addressing class imbalance on training data
with image resolution 32x32x3 are shown in table 5.6. Regarding the overall performance
of different methods, random 50 oversampling emerged as the best method. We can see
from the table that only four methods increased the overall evaluation performance: all
three random oversampling methods and the GAN-Based 50 oversampling method. It is
interesting to see all random oversampling methods increasing evaluation performance,
while GAN-Based oversampling increased performance for 50-oversampling, while de-
creased performance for 150- and full-oversampling. In figure 5.8 the confusion matrices
for each of the oversampling methods are shown. We can see from the matrices that the
misclassification increases with the number of oversampled images for both random over-
sampling and GAN-based oversampling.

Table 5.7a and 5.7b shows the results for the four classes in which we are the most
interested, for the SN-GAN 50 oversampling method and the random 50 oversampling
method. As we can see, the difference in average F1 score for the four classes are almost
identical, especially for the micro-averaged F1 score. We see that the results for class 0
and 1 are better for 50 random oversampling, while the results for class 2 and 4 are better
for 50 GAN-based oversampling. Table 5.7c shows an equivalent table for the 150 random
oversampling method. As we can see from the results, 150 random oversampling actually
achieved a higher micro-F1 score than the 50 oversampling method for the four classes.
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(a) GAN-based full (b) GAN-based150 (c) GAN-based 50

(d) Random full (e) Random 150 (f) Random 50

Figure 5.8: Confusion matrices for for the different oversampling methods, for image resolution
32x32x3.

Table 5.7: Results for the four important classes, for image resolution 32x32x3.

CLASS PR RE F1

0 0.9706 1.0000 0.9851
1 0.9184 0.9000 0.9091
2 0.8720 0.8516 0.8617
4 0.8986 0.8158 0.8552

MACRO 0.9149 0.8919 0.9028
MICRO 0.9014 0.8724 0.8864

(a) 50 GAN-Based oversampled

CLASS PR RE F1

0 1.0000 1.0000 1.0000
1 0.9479 0.9100 0.9286
2 0.8409 0.8672 0.8539
4 0.8095 0.8947 0.8500

MACRO 0.8996 0.9180 0.9081
MICRO 0.8811 0.8991 0.8895

(b) 50 Random oversampled

CLASS PR RE F1

0 1.0000 1.0000 1.0000
1 0.9263 0.8800 0.9026
2 0.8760 0.8828 0.8794
4 0.8630 0.8290 0.8456

MACRO 0.9163 0.8980 0.9069
MICRO 0.9001 0.9913 0.8905

(c) 150 Random oversampled
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Table 5.8: Results from different class-imbalance mitigation methods for 32x32x1.

METHOD ACCURACY PRECISION F1-SCORE

RANDOM FULL OVERSAMPLING 89.6580 89.5735 89.5890
RANDOM 50 OVERSAMPLING 89.4078 89.4495 89.3652
ORIGINAL 89.1576 89.1724 89.0341
RANDOM 150 OVERSAMPLING 88.9908 89.0048 88.9796
SN-GAN 50 OVERSAMPLING 88.4070 88.6306 88.4387
SN-GAN 150 OVERSAMPLING 85.8215 86.0544 85.8346
RANDOM FULL UNDERSAMPLING 82.8190 85.6297 82.8445
SN-GAN FULL OVERSAMPLING 81.5680 82.2457 81.6112

5.4.2 Results from training data with resolution 32x32x1
Although overall classification performance for image resolution 32x32x1 were lower than
for 32x32x3, the same oversampling tests were done, and the results are shown in table
5.8. As we can see from the results, also here the random oversampling methods were
superior to the others, and undersampling shows poor performance. However, the impact
from the oversampling were not as effective as for 32x32x3, and for some cases it had a
negative effect. Here we can see that the GAN-based oversampling worsened the over-
all classification performance. Table 5.9 shows the results for the four important classes
for the random oversampling technique and the GAN-based oversampling technique with
the best overall performance. As we can see from the results, the random oversampling
method is superior to the GAN-based oversampling. Even though the FID score of the
32x32x1 images were lower than the 32x32x3 images, the GAN-based oversampling for
32x32x1 did not produce good results. The classification performance of the grayscale
images is in general poorer than the performance of the RGB images, which suggests that
the colors are important for distinguishing between the classes. Even though the GAN
achieved a low FID score for the grayscale images, it is safe to assume that the generated
images introduced increased class overlap in the oversampled dataset, which in return re-
sulted in poorer classification performance. An even lower FID score might might reduce
the class overlap in the generated images, and help during the classification process.
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Table 5.9: Results for the four important classes, for image resolution 32x32x1.

CLASS PR RE F1

0 1.0000 1.0000 1.0000
1 0.9663 0.8600 0.9101
2 0.8667 0.8125 0.8387
4 0.7826 0.7105 0.7448

MACRO 0.9039 0.8458 0.8734
MICRO 0.8903 0.8220 0.8545

(a) 50 GAN-Based oversampled

CLASS PR RE F1

0 1.0000 1.0000 1.0000
1 0.9307 0.9400 0.9353
2 0.8626 0.8828 0.8726
4 0.7692 0.7895 0.7792

MACRO 0.8906 0.9031 0.8968
MICRO 0.8752 0.8902 0.8826

(b) 50 Random oversampled

5.4.3 Results from training data with resolution 64x64x3
For the training data with image resolution 64x64x3, random full oversampling and ran-
dom undersampling were tested. Due to time limit and the long training time required for
the 64x64x3 data set, no further tests were done. Testing on 64x64x3 were also not prior-
itized as no it was not possible to perform GAN-based oversampling due to the hardware
limitations, and it was therefore not possible to use this dataset for compering GAN-based
oversampling to other methods. The results from full oversampling and undersampling
are shown in table 5.10, and the confusion matrices are shown in fig. 5.9. For the image
resolution 64x64x3 we see that both full undersampling and full oversampling has poor
performance. Classification reports such as table 5.3 for all tests are found in the appendix.

(a) No resampling (b) Full undersampling (c) Full oversampling

Figure 5.9: Confusion matrices for for the different oversampling methods, for image resolution
64x64x3.
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Table 5.10: Results from different class-imbalance mitigation methods for 64x64x3.

METHOD ACCURACY PRECISION F1-SCORE TRAINING TIME

ORIGINAL 92.4937 92.4807 92.4735 370 MIN

RANDOM OVERSAMPLING 91.6597 91.7357 91.6134 550 MIN

RANDOM UNDERSAMPLING 88.4904 89.7180 88.4780 73 MIN
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Chapter 6
Conclusion

In this thesis we have studied the impact of class imbalance on classification performance
of the data set SilCam, an in-situ imagery planktonic data set, and investigated the effec-
tiveness of different sampling methods for addressing the issue. Most notable, we have
investigated the use of generative adversarial networks (GANs) for synthetic image gen-
eration in a GAN-based sampling technique and compared the method to the traditional
sampling strategies random minority oversampling and random majority undersampling.
Our findings show that partial random oversampling outperforms the other methods with
respect to F1-score. However, in some cases, GAN-based partial oversampling achieves
equivalent results to random oversampling. With these findings we can conclude that
GAN-based oversampling could in some cases be a good alternative for mitigating class
imbalance.

In our experiments the generated images by the GAN achieved a fairly high FID score
of 30,85. It is likely that a higher F1 score would result in better classification performance
by the classifier, as the FID score represents the generated images quality and diversity.
This could be achieved by tuning hyperparameters or an increase in batch size during train-
ing of the GAN. Performance could also increase by testing different GAN architectures.

Another of our findings is the impact of image resolution on classification perfor-
mance. Grayscale images resulted in general in poor performance, and the class mitigation
methods did not have as good impact on the classification task as for the RGB images. This
is most likely due to an increased class overlap for the grayscale images.

For future work, methods which considers within-class imbalance such as cluster-
based oversampling should be investigated in order to compare performance. The GAN-
based oversampling method should also be improved by reducing the FID score. The
method could also be integrated with data cleaning techniques. Computational power
available would also need to be higher than that of this thesis, in order to get full the
potential of GANs.

55



56



Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
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Appendix
Classification results

Table 6.1: Results without class-imbalance mitigation for image resolution 64x64x1.

PRECISION RECALL F1-SCORE VALIDATION IMAGES

CLASS 0 0.9705 1.0000 0.9850 33
CLASS 1 0.9020 0.9200 0.9109 100
CLASS 2 0.8644 0.7969 0.8293 128
CLASS 3 0.8007 0.8419 0.8208 291
CLASS 4 0.7794 0.6974 0.7361 76
CLASS 5 0.9625 0.9722 0.9673 396
CLASS 6 0.8000 0.7123 0.7536 73
CLASS 7 0.9151 0.9510 0.9327 102

ACCURACY 0.8832 1199
MACRO AVG 0.8743 0.8615 0.8670 1199
WEIGHTED AVG 0.8824 0.8832 0.8822 1199

Table 6.2: Results without class-imbalance mitigation for image resolution 32x32x3.

PRECISION RECALL F1-SCORE VALIDATION IMAGES

CLASS 0 1.0000 1.0000 1.0000 33
CLASS 1 0.9293 0.9200 0.9246 100
CLASS 2 0.8271 0.8594 0.8429 128
CLASS 3 0.8622 0.8385 0.8502 291
CLASS 4 0.8026 0.8026 0.8026 76
CLASS 5 0.9774 0.9823 0.9799 396
CLASS 6 0.8955 0.8219 0.8571 73
CLASS 7 0.9091 0.9804 0.9434 102

ACCURACY 0.9083 1199
MACRO AVG 0.9004 0.9006 0.9001 1199
WEIGHTED AVG 0.9081 0.9083 0.9079 1199
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Table 6.3: Results without class-imbalance mitigation for image resolution 32x32x1.

PRECISION RECALL F1-SCORE VALIDATION IMAGES

CLASS 0 0.9706 1.0000 0.9851 33
CLASS 1 0.9462 0.8800 0.9119 100
CLASS 2 0.8462 0.8594 0.8527 128
CLASS 3 0.8495 0.8144 0.8316 291
CLASS 4 0.7356 0.8421 0.7853 76
CLASS 5 0.9538 0.9899 0.9715 396
CLASS 6 0.8597 0.6712 0.7539 73
CLASS 7 0.8889 0.9412 0.9143 102

ACCURACY 0.8916 1199
MACRO AVG 0.8813 0.8748 0.8758 1199
WEIGHTED AVG 0.8917 0.8916 0.8903 1199

Table 6.4: Results of full undersampling for 64x64x3.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.91667 1.00000 0.95652 33
1 0.85841 0.97000 0.91080 100
2 0.76774 0.92969 0.84099 128
3 0.91928 0.70447 0.79767 291
4 0.69072 0.88158 0.77457 76
5 0.97943 0.96212 0.97070 396
6 0.72043 0.91781 0.80723 73
7 0.98925 0.90196 0.94359 102

ACCURACY 0.88490 1199
MACRO AVG 0.85524 0.90845 0.87526 1199
WEIGHTED AVG 0.89718 0.88490 0.88478 1199
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Table 6.5: Results of full oversampling for 64x64x3.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.97059 1.00000 0.98507 33
1 0.92233 0.95000 0.93596 100
2 0.87302 0.85938 0.86614 128
3 0.85714 0.88660 0.87162 291
4 0.93333 0.73684 0.82353 76
5 0.97229 0.97475 0.97352 396
6 0.82895 0.86301 0.84564 73
7 0.96078 0.96078 0.96078 102

ACCURACY 0.91660 1199
MACRO AVG 0.91480 0.90392 0.90778 1199
WEIGHTED AVG 0.91736 0.91660 0.91613 1199

Table 6.6: Results of full oversampling for 32x32x3.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 1.00000 1.00000 1.00000 33
1 0.93069 0.94000 0.93532 100
2 0.86260 0.88281 0.87259 128
3 0.86022 0.82474 0.84211 291
4 0.76923 0.78947 0.77922 76
5 0.96030 0.97727 0.96871 396
6 0.80597 0.73973 0.77143 73
7 0.87850 0.92157 0.89952 102

ACCURACY 0.89658 1199
MACRO AVG 0.88344 0.88445 0.88361 1199
WEIGHTED AVG 0.89574 0.89658 0.89589 1199
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Table 6.7: Results of 150 oversampling for 32x32x3.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 1.00000 1.00000 1.00000 33
1 0.92632 0.88000 0.90256 100
2 0.87597 0.88281 0.87938 128
3 0.86689 0.87285 0.86986 291
4 0.86301 0.82895 0.84564 76
5 0.97980 0.97980 0.97980 396
6 0.84211 0.87671 0.85906 73
7 0.95192 0.97059 0.96117 102

ACCURACY 0.91910 1199
MACRO AVG 0.91325 0.91146 0.91218 1199
WEIGHTED AVG 0.91925 0.91910 0.91907 1199

Table 6.8: Results of 50 oversampling for 32x32x3.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 1.00000 1.00000 1.00000 33
1 0.94792 0.91000 0.92857 100
2 0.84091 0.86719 0.85385 128
3 0.88530 0.84880 0.86667 291
4 0.80952 0.89474 0.85000 76
5 0.97756 0.98990 0.98369 396
6 0.88889 0.87671 0.88276 73
7 0.95098 0.95098 0.95098 102

ACCURACY 0.91993 1199
MACRO AVG 0.91263 0.91729 0.91456 1199
WEIGHTED AVG 0.92041 0.91993 0.91988 1199
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Table 6.9: Results of full GAN-based oversampling for 32x32x3.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.73171 0.90909 0.81081 33
1 0.73109 0.87000 0.79452 100
2 0.88991 0.75781 0.81857 128
3 0.83083 0.75945 0.79354 291
4 0.77500 0.81579 0.79487 76
5 0.97990 0.98485 0.98237 396
6 0.67416 0.82192 0.74074 73
7 0.88660 0.84314 0.86432 102

ACCURACY 0.86155 1199
MACRO AVG 0.81240 0.84526 0.82497 1199
WEIGHTED AVG 0.86699 0.86155 0.86202 1199

Table 6.10: Results of 150 GAN-based oversampling for 32x32x3.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.94118 0.96970 0.95522 33
1 0.92708 0.89000 0.90816 100
2 0.82707 0.85938 0.84291 128
3 0.86007 0.86598 0.86301 291
4 0.86111 0.81579 0.83784 76
5 0.97970 0.97475 0.97722 396
6 0.83582 0.76712 0.80000 73
7 0.87273 0.94118 0.90566 102

ACCURACY 0.90325 1199
MACRO AVG 0.88809 0.88549 0.88625 1199
WEIGHTED AVG 0.90354 0.90325 0.90308 1199
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Table 6.11: Results of 50 GAN-based oversampling for 32x32x3.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.97059 1.00000 0.98507 33
1 0.91837 0.90000 0.90909 100
2 0.87200 0.85156 0.86166 128
3 0.86379 0.89347 0.87838 291
4 0.89855 0.81579 0.85517 76
5 0.98205 0.96717 0.97455 396
6 0.78750 0.86301 0.82353 73
7 0.94118 0.94118 0.94118 102

ACCURACY 0.91410 1199
MACRO AVG 0.90425 0.90402 0.90358 1199
WEIGHTED AVG 0.91536 0.91410 0.91439 1199

Table 6.12: Results of full undersampling for 32x32x3.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.89189 1.00000 0.94286 33
1 0.81356 0.96000 0.88073 100
2 0.78667 0.92188 0.84892 128
3 0.90431 0.64948 0.75600 291
4 0.68367 0.88158 0.77011 76
5 0.97895 0.93939 0.95876 396
6 0.60952 0.87671 0.71910 73
7 0.94118 0.94118 0.94118 102

ACCURACY 0.86322 1199
MACRO AVG 0.82622 0.89628 0.85221 1199
WEIGHTED AVG 0.87969 0.86322 0.86283 1199
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Table 6.13: Results of full oversampling for 32x32x1.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 1.00000 1.00000 1.00000 33
1 0.93069 0.94000 0.93532 100
2 0.86260 0.88281 0.87259 128
3 0.86022 0.82474 0.84211 291
4 0.76923 0.78947 0.77922 76
5 0.96030 0.97727 0.96871 396
6 0.80597 0.73973 0.77143 73
7 0.87850 0.92157 0.89952 102

ACCURACY 0.89658 1199
MACRO AVG 0.88344 0.88445 0.88361 1199
WEIGHTED AVG 0.89574 0.89658 0.89589 1199

Table 6.14: Results of 150 oversampling for 32x32x1.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.94286 1.00000 0.97059 33
1 0.91919 0.91000 0.91457 100
2 0.83871 0.81250 0.82540 128
3 0.81605 0.83849 0.82712 291
4 0.84507 0.78947 0.81633 76
5 0.96742 0.97475 0.97107 396
6 0.77027 0.78082 0.77551 73
7 0.93878 0.90196 0.92000 102

ACCURACY 0.88991 1199
MACRO AVG 0.87979 0.87600 0.87757 1199
WEIGHTED AVG 0.89005 0.88991 0.88980 1199
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Table 6.15: Results of 50 oversampling for 32x32x1.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.97059 1.00000 0.98507 33
1 0.89524 0.94000 0.91707 100
2 0.83077 0.84375 0.83721 128
3 0.86194 0.79381 0.82648 291
4 0.77647 0.86842 0.81988 76
5 0.96774 0.98485 0.97622 396
6 0.75000 0.78082 0.76510 73
7 0.94898 0.91176 0.93000 102

ACCURACY 0.89408 1199
MACRO AVG 0.87522 0.89043 0.88213 1199
WEIGHTED AVG 0.89450 0.89408 0.89365 1199

Table 6.16: Results of full GAN-based oversampling for 32x32x1.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.61111 1.00000 0.75862 33
1 0.76271 0.90000 0.82569 100
2 0.81061 0.83594 0.82308 128
3 0.79600 0.68385 0.73567 291
4 0.52381 0.57895 0.55000 76
5 0.97933 0.95707 0.96807 396
6 0.70423 0.68493 0.69444 73
7 0.73786 0.74510 0.74146 102

ACCURACY 0.81568 1199
MACRO AVG 0.74071 0.79823 0.76213 1199
WEIGHTED AVG 0.82246 0.81568 0.81611 1199
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Table 6.17: Results of 150 GAN-based oversampling for 32x32x1.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.73333 1.00000 0.84615 33
1 0.84762 0.89000 0.86829 100
2 0.86777 0.82031 0.84337 128
3 0.80212 0.78007 0.79094 291
4 0.76056 0.71053 0.73469 76
5 0.97222 0.97222 0.97222 396
6 0.65060 0.73973 0.69231 73
7 0.86316 0.80392 0.83249 102

ACCURACY 0.85822 1199
MACRO AVG 0.81217 0.83960 0.82256 1199
WEIGHTED AVG 0.86054 0.85822 0.85835 1199

Table 6.18: Results of 50 GAN-based oversampling for 32x32x1.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 1.00000 1.00000 1.00000 33
1 0.96629 0.86000 0.91005 100
2 0.86667 0.81250 0.83871 128
3 0.80000 0.86598 0.83168 291
4 0.78261 0.71053 0.74483 76
5 0.96701 0.96212 0.96456 396
6 0.72368 0.75342 0.73826 73
7 0.92233 0.93137 0.92683 102

ACCURACY 0.88407 1199
MACRO AVG 0.87857 0.86199 0.86936 1199
WEIGHTED AVG 0.88631 0.88407 0.88439 1199
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Table 6.19: Results of full undersampling for 32x32x1.

CLASS PRECISION RECALL F1-SCORE VALIDATION IMAGES

0 0.97059 1.00000 0.98507 33
1 0.79508 0.97000 0.87387 100
2 0.78289 0.92969 0.85000 128
3 0.88360 0.57388 0.69583 291
4 0.57983 0.90789 0.70769 76
5 0.96579 0.92677 0.94588 396
6 0.50893 0.78082 0.61622 73
7 0.92308 0.82353 0.87047 102

ACCURACY 0.82819 1199
MACRO AVG 0.80122 0.86407 0.81813 1199
WEIGHTED AVG 0.85630 0.82819 0.82844 1199
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