
A spatial branch-and-bound
method for ReLU network-
constrained problems

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Even Masdal

2020
Even M

asdal

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

A spatial branch-and-bound method for
ReLU network-constrained problems

Even Masdal

Cybernetics and Robotics
Submission date: June 2020
Supervisor: Lars Imsland
Co-supervisor: Bjarne Grimstad

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Preface

This thesis presents results of the masters degree course TTK4900 - Engineering
Cybernetics, Master’s Thesis at the Norwegian University of Science and Technology,
NTNU. The work was performed over the course of six months between January and
June of 2020.

All the work presented in the thesis was performed by me, with two exceptions.
The implementations for constructing and performing bound tightening on MILPs
representations of ReLU networks are closely derived from the implementations of
Bjarne Grimstad in [23]. The original implementations were discarded due to a
combination of low performance and issues stemming from a lack expandability.

I would like to thank both of my supervisors, Professor Lars Imsland and Bjarne
Grimstad, for their patience and for sticking with me through periods when I lacked
both motivation and progress. Not only helping providing guidance and discussion
related to the thesis but giving great advice for life in general. Their guidance and
encouragement having had a significant positive impact on the work presented.

I would also like to thank my friends and family, who helped me keep my spirits up
and helped me get some much needed fresh air during the corona virus pandemic and
subsequent closing of campus at NTNU. They are the the reason working, sleeping and
eating all in the same room was bearable for a large part the duration of the thesis
work.

Even Masdal
June 2020

Abstract

Motivated by the data-driven black-box modeling abilities of artificial neural networks
and the ability of spatial branch-and-bound (sBB) methods to solve nonlinear programs
(NLP), this thesis presents a method for incorporating ReLU network-constraints into an
sBB solver. Other authors have previously employed mixed-integer linear programming
(MILP) formulations of ReLU networks to embed ReLU network-constraints into larger
MILP problems. Considering these networks to be nonlinear functions of the input
variables instead of MILPs has the benefit of reducing the number of variables on
which the output of the networks depend. To examine if the sBB approach could have
performance benefits over the MILP approach an sBB solver was implemented and a
series of tests devised. The results compare the performance of the sBB solver to a
state of the art MILP solver, and show that the MILP solver has a performance well
ahead of the sBB solver with very few exceptions.

Sammendrag

Motivert av evnen kunstige nevrale nettverk har til data-dreven black-box model-
lering og bruken av spatial branch-and-bound (sBB) algoritmer til å løse ulineære
optimaliseringsproblemer presenterer denne opgaven en metode for å inkludere ReLU
nettverk-beskrankninger i en sBB løser. Andre forfattere har tidligere brukt mixed-
integer linear programming (MILP) formuleringer av slike nettverk for å bygge inn
ReLU nettverk-beskrankninger i større MILP problemer. Å anse disse nettverkene for
å være ulineære funksjoner av inngangsvariablene og ikke MILP formuleringer har den
fordelen at antallet variabler som påvirker utgangsverdien reduseres. For å teste om en
sBB-tilnærming kan være fordelaktig sammenlignet med en MILP-tilnærming ble en
sBB-løser implementert og en rekke tester blitt konstruert. Resultatene sammenligner
ytelsen til sBB-løseren med en toppmoderne MILP-løser og viser at MILP-løseren har
betraktelig bedre ytelse enn sBB-løseren med veldig få unntak.

Table of contents

List of figures xi

List of tables xiii

Nomenclature xv

1 Introduction 1
1.1 Background and Motivation . 1

1.1.1 Previous work . 2
1.2 Problem Formulation and objective . 3
1.3 Contributions . 3
1.4 Structure of report . 3

2 Theory 5
2.1 Artificial neural networks . 5

2.1.1 Supervised learning . 5
2.1.2 Multilayer perceptron . 6
2.1.3 Objective functions and optimizers 7
2.1.4 Generality, Regularization and Sparsity 9
2.1.5 The Rectified Linear Unit . 11
2.1.6 Properties of deep networks . 12

2.2 Mixed-Integer Programming . 12
2.2.1 Integer Programming . 12
2.2.2 Mixed-integer representation of ReLU 13
2.2.3 ReLU network as MILP . 15
2.2.4 The relaxation of an optimization problem 16

2.3 Branch-and-bound methods . 17
2.3.1 The branch-and-bound tree . 17

viii Table of contents

2.3.2 Branch-and-bound for mixed-integer linear programs 19
2.3.3 Spatial branch-and-bound . 19

2.4 Bound Tightening . 19
2.4.1 Feasibility-based bound tightening 21
2.4.2 Optimality-based bound tightening 22
2.4.3 Bounds for MILP representations of ReLU networks 23

3 Method 25
3.1 Hypothesis . 25
3.2 Problem class . 25
3.3 Obtaining a solution candidate, upper bound 26
3.4 Generating a convex relaxation, Lower bound 29
3.5 Bound Tightening . 29

3.5.1 Linear constraints . 30
3.5.2 ReLU network constraints . 30
3.5.3 Caveats of switching bound tightening methods 31

3.6 Solver implementation details . 32
3.6.1 Obtaining an upper bound . 32
3.6.2 Node selection strategy . 32
3.6.3 Branching Strategy . 33
3.6.4 Numerical precision . 33

3.7 Training and evaluating ANNs . 33

4 Test problems 35
4.1 Scaling with respect to input dimension 35

4.1.1 Rosenbrock function . 35
4.1.2 The Rosenbrock test . 36

4.2 Scaling with respect to the number of neurons 37
4.2.1 Test problem with quadratic network constraints 38
4.2.2 Multi constraint test . 39

4.3 Scaling for non-convex functions . 39
4.3.1 Rastrigin function . 40
4.3.2 The Rastrigin test . 40

4.4 Production optimization case . 41

5 Numerical Results 45
5.1 Rosenbrock test . 45

Table of contents ix

5.2 Multi constraint test . 49
5.2.1 Sparse multi constraint test . 49
5.2.2 Dense multi constraint test . 52

5.3 Rastrigin test . 54
5.4 Oil Production optimization case . 56

6 Discussion 59
6.1 Spatial Branch-and-bound performance 59

6.1.1 Rosenbrock test . 59
6.1.2 Multi constraint test . 60
6.1.3 Rastrigin test . 60
6.1.4 Oil Production optimization Test 60
6.1.5 Comparing wide and deep networks 61

6.2 Comparing bound tightening methods 61
6.2.1 SBB-FBBT . 61
6.2.2 SBB-OBBT . 62
6.2.3 SBB-Mixed . 62
6.2.4 Choosing a bound tightening strategy 63

6.3 MILP performance . 63
6.4 Effects of network sparsity . 64
6.5 Implementation related performance factors 64

6.5.1 Tunable parameters . 64
6.5.2 Branch-and-bound implementation 64
6.5.3 Choice of programming language 65

7 Conclusion 67
7.1 Hypothesis . 67
7.2 Viability of spatial branch-and-bound 68
7.3 Further work . 68

References 69

Appendix A Solver results 73
A.1 Rosenbrock test . 73
A.2 Multi constraint test . 75

A.2.1 Sparse networks . 75
A.2.2 Dense networks . 76

A.3 Rastrigin test . 77

x Table of contents

Appendix B Network training results 79
B.1 Multi constraint test . 79

B.1.1 Sparse networks . 79
B.1.2 Dense networks . 80

List of figures

2.1 The basic structure of a multilayer perceptron 6
2.2 An illustration of two ANNs that both fit the training data, but where

the orange network generalizes better. 9
2.3 Heatmap showing the absolute value of the weights of a network with a

dense structure . 10
2.4 Heatmap showing the absolute value of the weights of a network with a

sparse structure . 10
2.5 Branch-and-bound tree . 17

4.1 The 2d Rosenbrock test function on [−2.2, 2.2]× [−2.2, 2.2] 37
4.2 Rastrigin function on the domain . 41

5.1 Run times for the Rosenbrock test with a 2 × 40 network, 2 hidden
layers with 40 neurons. 47

5.2 Run times for the Rosenbrock test with a 2 × 60 network, 2 hidden
layers with 40 neurons.. 47

5.3 Run times for the Rosenbrock test with a 4 × 20 network, 2 hidden
layers with 40 neurons.. 48

5.4 Run times for the Rosenbrock test with a 6 × 20 network, 2 hidden
layers with 40 neurons.. 48

5.5 Run time as a function of the total number of neurons as the width of
the networks increase from two layers of 20 neurons to two layers of 80
neurons. 51

5.6 Run time as a function of the total number of neurons as the depth of
the networks increase from two layers of 20 neurons to eight layers of 20
neurons. 51

xii List of figures

5.7 Run time as a function of the total number of neurons as the width of
the networks increase from two layers of 20 neurons to two layers of 80
neurons. 53

5.8 Run time as a function of the total number of neurons as the depth of
the networks increase from two layers of 20 neurons to eight layers of 20
neurons. 53

5.9 Run times as a function of the total number of neurons in the problem
as the width of the networks increase. The layouts used are 2 × 40,
2× 50 and 2× 60. 55

5.10 Run times as a function of the total number of neurons in the problem
as the depth of the networks increase. The layouts used are 4 × 20,
5× 20 and 6× 20. 55

List of tables

4.1 The predefined routing used for the oil production optimization case . . 43

5.1 Hyperparameters used to train the networks in the Rosenbrock test. . . 46
5.2 Properties of the trained networks in the rosenbrock test. 46
5.3 Final bounds of the tests that did not find an optimal solution after 30

minutes. 49
5.4 Hyperparameters used to train the networks in the Multi constraint test. 49
5.5 Properties of the networks trained on the f1 function in the multi

constraint test. 50
5.6 Hyperparameters used to train the networks in the Multi constraint test. 52
5.7 Properties of the networks trained on the f1 function in the multi

constraint test. 52
5.8 Final bounds of the tests that did not find an optimal solution to the

dense multi constraint test after 30 minutes. 54
5.9 Hyperparameters used to train the networks in the Rastrigin test. . . . 54
5.10 Properties of the networks trained for the Rastrigin test. 54
5.11 Final bounds of the tests that did not find an optimal solution to the

Rastrigin test after 30 minutes. 56
5.12 Well network training results . 56
5.13 Flowline network training results . 57
5.14 Productioin optimisation results . 57

B.1 Properties of the networks trained on the f2 function in the sparse multi
constraint test. 79

B.2 Properties of the networks trained on the f3 function in the sparse multi
constraint test. 80

B.3 Properties of the networks trained on the f4 function in the sparse multi
constraint test. 80

xiv List of tables

B.4 Properties of the networks trained on the f2 function in the dense multi
constraint test. 80

B.5 Properties of the networks trained on the f3 function in the dense multi
constraint test. 81

B.6 Properties of the networks trained on the f4 function in the dense multi
constraint test. 81

Nomenclature

Greek Symbols

θ Parameter of a neural network

Acronyms / Abbreviations

ANN Artificial Neural Network

BT Bound tightening

FBBT Feasibility-Based Bound tightening

IP Integer Programming

LP Linear Programming

MILP Mixed-Integer Linear Programming

MIP Mixed-Integer Programming

MLP Multi-layer perceptron

NLP Non-Linear Programming

OBBT Optimality-Based Bound tightening

ReLU Rectified Linear Unit

sBB spatial branch-and-bound

Chapter 1

Introduction

1.1 Background and Motivation

The field of mathematical optimization is, in essence, the study of methods for finding
the best solution to a given problem. The desire to find the best, or optimal, solution
to a problem is innate in almost everything we do, be it save on grocery costs,
minimize commute times or finding the perfect air conditioning setting. Mathematical
programming as a tool has shown its benefits in many areas such as applied mathematics,
engineering, medicine and economics [51]. These problems can range from finding
optimal base station locations [2] to minimizing power generation cost given the
unpredictable nature of windmill power generation [31].

A crucial aspect in finding optimal solutions to problems like these is being able to
properly describe the problem at hand, a way of modeling it using mathematical
constructs. For complex processes that are hard to directly incorporate into the
optimization process, surrogate models are often used. Surrogate models can be
used as substitutes for computationally expensive simulations or for systems where
modeling the full behavior is not a feasible task. Another use of surrogate models is
for modeling systems defined only by their inputs and outputs, known as “black-box”
systems. The black-box construct can be a useful tool for abstraction, but also to
describe and categorize systems for which the internal dynamics of a system are simply
unknown.

A black-box system however, can often be sampled, generating a data set of correspond-
ing inputs and outputs. As a result having a way to generate a model of a black-box

2 Introduction

system from sampled data would be immensely useful for a variety of tasks, including
optimization. From simple interpolation of the data to utilizing classical methods from
the field of machine learning, many methods for creating models from data have been
explored, and been utilized in optimization [7].

With the increase in computational resources and data availability in recent times, the
study and applications of artificial neural networks has experienced a boom. Artificial
neural networks have shown to be diverse in their applications, from predicting electricity
demand [43] to object detection [11]. They are able to deal with highly nonlinear
phenomena and show robustness when trained on noisy and incomplete data [32].
This ability to learn complex behaviors only from data opens up possibilities for
constructing models of black-box systems that would previously have been too difficult
to model.

Using artificial neural networks as surrogate models is therefore an interesting area of
research. If optimization problems with ANN surrogate models can be solved efficiently,
that could mean easier optimization of complex and black box processes, with a limiting
factor being data availability rather than modeling ability.

1.1.1 Previous work

For a class of artificial neural networks, ReLU networks, mathematical programming
formulations, in the form of MILPs, have been constructed [17]. This formulation has
been successfully used to analyze the robustness of networks and finding “adversarial
examples”, inputs for where a small perturbation results in a large change in network
prediction [52]. This formulation was also utilized in [23] where it was used to embed
multiple ReLU networks into larger optimization problems. [23] also explored the
effects of different bound tightening procedures and their influence on solution times
for problems with ReLU networks embedded.

The output of a ReLU network is nonlinear with respect to the input. As a result
optimization problems containing ReLU networks can be considered to be a sub class
of nonlinear optimization. Nonlinear programs can be solved using spatial branch-
and-bound methods like demonstrated in [50], solving several problems with nonlinear
terms by reformulating them in to representations for which convex relaxations could
be constructed. Similarly the MILP formulation of ReLU networks presented in [17]
can be used to generate a convex relaxation of the ReLU networks.

1.2 Problem Formulation and objective 3

1.2 Problem Formulation and objective

Having a class of problems that can be considered both MILP and NLP raises some
interesting questions, since different approaches are used to solve MILPs and NLPs.
The most interesting one might be whether one formulation has an advantage over the
other, or gains an advantage as in certain conditions. In a broad sense this thesis aims
to examine how solving a problem as NLP, using spatial branch-and-bound, compares
to solving the equivalent MILP formulation and how each method scales with respect
to different network properties. Gaining an understanding of how both methods scale
could in turn give an indication of the viability of solving ReLU network-constrained
problems using spacial branch-and-bound.

A simple hypothesis is formulated asserting that when given a problem with ReLU
network-constraints, there should some ratio of total neurons to input neurons in the
ReLU network, that if exceeded, will lead to the spatial branch-and-bound approach
outperforming the MILP approach.

1.3 Contributions

In order to test the spatial branch-and-bound approach a solver capable of handling
ReLU network-constraints had to be implemented. This thesis presents the methods
used to implement such a solver together with a selection of test problems aimed at
testing the performance of the solver with respect to different properties of the ReLU
network-constraints.

1.4 Structure of report

This thesis begins with Chapter 2 introducing some theoretical background on the
topics of artificial neural networks, mixed-integer programming, branch-and-bound
algorithms and bound tightening. Also shown is how these topics combine to form
MILP representations and bound tightening procedures for ReLU networks. Chapter 3
starts off with presenting the hypothesis in more detail and defining a problem class
for the sBB solver implementation. Following that are details on the implementation
of a few selected steps of the branch-and-bound algorithm. Chapter 4 presents the
test problems used to gauge the performance of the solver as well as the reasoning
behind their inclusion. Chapter 5 presents both the results of the training of the
neural networks and the results of optimization, as the properties of the trained neural

4 Introduction

networks vary between tests. Chapter 6 contains a discussion into the performance of
the branch-and-bound solver, how bound tightening procedures and network properties
affect the performance and how the sBB approach compares to the MILP approach.
Chapter 7 concludes the report by examining the accuracy of the hypothesis and
discussing some of the directions further research could take.

Chapter 2

Theory

2.1 Artificial neural networks

Artificial neural networks, or ANNs, are computational graphs designed to loosely
resemble the structure of biological neural networks, like the ones found in brains [42].
ANNs are generally used in machine learning as a tool to learn patterns or structures
in a data set or environment. The training of neural networks typically involves a
feedback loop that makes small adjustments to the sturcture of the network over and
over. Depending on the type of network and the type of training this feedback loop
can be constructed in different ways to allow ANNs to excel in a multitude of areas.
A typical example of this feedback loop can be found in supervised learning, where
a network tries to learn the structure of a dataset by comparing the output of the
network to a true output value associated with a given input. Other examples of
feedback loops are reward based loops, typically used in reinforcement learning, where
the feedback is given depending on the success of an action chosen by the network [38]
or unsupervised learning, like in Generative Adversarial Networks, where two ANNs
compete with each other in a loop [22].

2.1.1 Supervised learning

Supervised learning is the process of training a machine learning algorithm to learn the
patterns or structure in some data, given a set of inputs and outputs. A set like this is
called the training set and consists of pairs of input and output data points. The basic
process of training an ANN involves iterating over the training set multiple times while
making small adjustments to the parameters of the network in a way that reduces the

6 Theory

difference between the ground truth and the network output. The ultimate goal being
to minimize the difference between the ground truth and the network outputs across
all data points in the training set. This enables the inference of an underlying function,
y = f (x), from which some training data, D = {(x1, y1), . . . , (xn, yn)} originated [16].
Assuming the process was successful the ANN could then be used to classify or predict
data not in the training set with high accuracy.

2.1.2 Multilayer perceptron

One form of artificial neural networks is the multilayer perceptron or MLP. An MLP is
a fully connected feedforward artificial neural network. The structure of a multilayer
perceptron is shown in Figure 2.1. An MLP consists of three types of layers, an input
layer, a number of intermediate layers, often called hidden layers, and an output layer.
The computation in the MLP follows the paths of the arrows that can be seen in Figure
2.1. For a fully connected network like an MLP the input of a neuron in one layer
consists of a combination of all the outputs of all the neurons in the previous layer.
A useful property of multilayer perceptrons is that they are universal approximators.
An MLP with one hidden layer and a sufficient number of neurons can approximate
any smooth function on a compact domain to an arbirtrary degree of accuracy [29],
meaning approximating a function to any degree of accuracy is a matter of having
enough neurons.

x1

x2

x3

h1,1

h1,2

h1,3

h1,4

h1,5

h2,1

h2,2

h2,3

h2,4

h2,5

y1

Input
layer

Output
layer

Hidden layers

Fig. 2.1 The basic structure of a multilayer perceptron

2.1 Artificial neural networks 7

While Figure 2.1 shows how the neurons in the network are structured in relation to
each other, it does not show the inner workings of each neurons. Each edge in the
network has an assigned weight which is multiplied with the value in the node the edge
originated from. This results in the input to a neuron being the weighted sum of the
values of the neurons in the previous layer. A bias parameter is then added to this
sum and the resulting value is the input to what is known as the activation function.
For a single neuron with activation function σ , the computation taking place can then
be written as,

y = σ

(
wT x + b

)
, (2.1)

where w and x are vectors of edge weights and neuron values in the preceding layer.
Typically the activation function in the output layer is linear so that the network can
represent negative values.

While the universal approximator property of an MLP was originally shown for contin-
uous, bounded and nonconstant activation functions [28], it has been shown that this
property holds for any non-polynomial activation function [37]. It is important to note
however that while this shows that an MLP can model arbitrary functions, it does not
mean that training such an MLP is an easy task.

2.1.3 Objective functions and optimizers

The process of training ANNs is a form of optimization with the goal of minimizing or
maximizing some objective. In ANN literature this objective is typically referred to as
loss and for supervised learning it is a measure of the error between the output of the
ANN and the true value for a given data point. The goal of the training is to minimize
the average loss over all training samples. The output of an ANN can be written as a
function,

ŷi = ANN(xi; θ), (2.2)

with inputs xi and θ . Here xi represents the input vector to the network and θ represents
the network parameters, the weights and biases of the network. Given a scalar function,
ℓ, that assigns some error value for a given prediction, ŷi, and ground truth, yi, the
optimization problem that is training an ANN with n training samples can be written
as,

8 Theory

min
θ

1
n

n∑
i=1

ℓ (yi,ANN(xi; θ)) . (2.3)

Typically ℓ will be a function like ℓ(yi, ŷi) = (yi − ŷi)2, meaning the resulting loss will
be the mean squared error.

The training process itself involves tweaking the parameters of the network, θ , in order
to minimize the loss. This is done in an iterative process by using information about
the gradient of the loss with respect to the network parameters. Through the process
of backpropagation, this gradient information can be used to adjust the parameters of
neurons in all layers [26]. Defining a function,

fi (θ) = ℓ (yi,ANN(xi; θ)) , (2.4)

the gradient of the loss function with respect to the parameters, over all training
samples, can be written as,

∇θ f (θ) = 1
n

n∑
i=1
∇θ fi(θ). (2.5)

The most fundamental approach to training the network is to use graident descent,
repeatedly taking small steps in the direction of the gradient. Gradient descent can be
formulated as,

θk+1 = θk − α∇θ f (θk), (2.6)

where α is a parameter called learning rate, which affects the magnitude of the steps
taken. A variation on gradient descent is Stochastic gradient descent, which uses the
assumption that the gradient of a randomly picked single sample, ∇θ fi(θ), in general
behaves like its expected value, the value of Equation 2.5, despite introducing noise
[10]. An approach combining the ideas of stochastic gradient descent and gradient
descent is mini-batch gradient descent, which uses the gradient of a randomly picked
subset, or mini-batch, of the training data. For large data sets using the gradient of
a subset of samples can improve training speed, as the number of samples evaluated
for each iteration is small. Parameters like the learning rate and mini-batch size are
commonly referred to as hyperparameters.

2.1 Artificial neural networks 9

The method for which parameters are updated is typically referred to as an opti-
mizer. As optimizers have matured new methods for achieving good convergence
has emerged, including adaptive optimizers. These are optimizers that in essence
modify the parameters of the optimizer during training. Adam, derived from Adaptive
Moment Estimation, is an optimizer that computes individual adaptive learning rates
for different parameters [34]. This can help ensure convergence for problems with large
differences in scaling between input dimensions. Adam also incorporates a decaying
average of past gradients, which acts like a sort of momentum, which can help the
optimizer avoid local minima.

2.1.4 Generality, Regularization and Sparsity

For ANNs the concept of generality can be seen as the ability of an ANN to classify
or predict unseen data with high accuracy [44]. Two ANNs that have the same
performance on a given training set, are not guaranteed to predict new samples with
same accuracy. The network that predicts new samples with the highest accuracy is
said to have generalized better, as illustrated in Figure 2.2.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0

1

2

3

4 Network with good generalization
Network with bad generalization
training data

Fig. 2.2 An illustration of two ANNs that both fit the training data, but where the
orange network generalizes better.

As ANNs train both the loss and the generality will improve initially, but as time goes
on the generality could start to decrease, this is called overfitting. This is mostly a

10 Theory

concern when the process from which the training data was sampled has some noise
component. In that case the ANN could be trained to learn irrelevant patterns that
are only a property of the chosen training data, like noise of the selected samples [16].
For ANNs that have more parameters than needed for a good representation of the
data, this is a concern, as the extra parameters could allow the network to take on
values that differ wildly from the underlying process between training samples. The
idea of sparsity is the idea that for an ANN with too many parameters, some of the
weights can be reduced to zero, essentially removing neurons from the network.

1 2 3 4 5 6 7 8 9 10
Layer

25
20

15
10

5
0

0.5

1.0

1.5

Fig. 2.3 Heatmap showing the absolute value of the weights of a network with a dense
structure

1 2 3 4 5 6 7 8 9 10
Layer

25
20

15
10

5
0 0.00

0.25

0.50

0.75

1.00

Fig. 2.4 Heatmap showing the absolute value of the weights of a network with a sparse
structure

Figure 2.4 and Figure 2.3 show the absolute values of the weights for two neural
networks trained on the same function. Both networks consist of 10 hidden layers, each
with 5 neurons. Each column represents the weights between two hidden layers, with
the weight matrix, W , being flattened into a vector. Figure 2.3 shows a dense network

2.1 Artificial neural networks 11

structure, while Figure 2.4 shows a comparatively sparse network structure. For the
sparse network many of the weights are close to 0 in value.

Regularization is the name given to techniques that alter the training of neural networks
with the goal of reducing overfitting and achieving better generality. One commonly
used approach to regularization is norm regularization, usually in the form of L1 or L2
regularization. Norm regularization works by adding a term to the loss function that
is dependent on the size of parameters of the network [40]. This term is then used to
punish the optimizer for using large weights, hopefully leading to both a good fit and
good generalization. The difference between L1 and L2 regularization is which norm is
used on the parameters in the loss function. Changing the loss calculation in Equation
2.3 to include L2 regularization results in the following loss function,

min
θ

1
n

n∑
i=1

ℓ (yi,ANN(xi; θ)) + λL2
∑

θ
2
j . (2.7)

2.1.5 The Rectified Linear Unit

A commonly used activation function is the Rectified Linear Unit or ReLU. ReLU
is a simple function, with the output being equal to the maximum of zero and the
input, as shown in Equation 2.8. The derivative of the function is also exceedingly
simple, simply being equal to 1 for positive inputs and 0 for negative inputs, shown in
Equation 2.9. The derivative of ReLU is not defined at x = 0, but will typically either
be implemented to be 0 or 1.

y = σ(x) = max (0, x). (2.8)

σ
′(x) =

0, for x < 0
1, for x > 0

(2.9)

A problem faced by many activation functions, is the problem of vanishing gradients
[27]. The issue boils down to the activation functions having very small gradients
for inputs with a large absolute value. As the networks use the gradient to update
parameters this leads to slow learning. This problem is not faced by ReLU, as it has a
constant gradient. Empirically ReLU has shown to work very well as an activation

12 Theory

function, not only not facing the problem of vanishing gradients, but promoting sparsity
[21].

Another property of the ReLU function is that while being a nonlinear function,
ReLU consists of two linear segments, making it piecewise linear. As all the other
computations in a neuron are linear, this leads to the output of a ReLU neuron being
piecewise linear with respect to the input vector x. As this holds for all the neurons in
a ReLU network this means that the output of an MLP with only ReLU activations is
piecewise linear with respect to the input [14].

2.1.6 Properties of deep networks

One of the benefits of neural networks is their ability to scale both to complex and
high dimensional functions, it is a matter of adding more neurons to the network. The
benefit of making neural networks deeper instead of wider is that they can require fewer
neurons to represent a given function to the same degree of accuracy [13] as a shallow
network. Another way to observe this benefit is to observe how the number of linear
regions in the output increases with the number of neurons in a ReLU ANN. An upper
bound on the number of linear regions for a ReLU network with an input dimension, m,
and n hidden layers of width k, is O(kmn) [47]. The number of hidden neurons in that
network would be n · k. By keeping n · k constant and varying the amount of layers, n,
the upper bound on the number of linear regions grows as n increases, meaning that,
in a sense, the "resolution" of the network increases.

2.2 Mixed-Integer Programming

2.2.1 Integer Programming

Integer programming is a class of optimization where the problem variables are con-
strained to only take integer values. Unlike continuous variables, integer variables can
model discrete states and as a result they can be used to model choices. An example
of how integer variables can be used to model choices can be seen in the Knapsack
problem, which can be formulated as,

2.2 Mixed-Integer Programming 13

max
N∑

i=1
ci · xi (2.10a)

s.t. aT x ≤ b (2.10b)
xi ∈ [0, 1]. (2.10c)

Mixed-integer programming, MIP, combines integer variables with continuous variables.
This allows MIPs to model conditional relationships, like a set of constraints where
only one constraint can be active at once. Mixed-integer linear programs, in turn, are
mixed-integer programs where the objective and constraints are linear.

One challenge with mixed-integer programming is that it is an NP-Hard problem class
[8]. An intuitive way to think of how the complexity of a mixed-integer program can
grow, is that for each value every integer variable can take, a separate optimization
problem can be constructed, where that variable is fixed. For 4 binary variables, that
means a total of 24 = 16 sub problems can be constructed. Depending on the problem
many such combinations can be quickly ruled out, but there is no guarantee that there
are simple ways to reduce the search space of a problem.

2.2.2 Mixed-integer representation of ReLU

The rectified linear unit is, as stated in Section 2.1.5, piecewise linear. As MILPs can
model piecewise linear functions, there should be a way to represent the behavior of
ReLU using mixed-integer programming. In fact a full representation of a network
with ReLU activation functions can be constructed, as shown in [17]. Starting with
the defenition of the ReLU function,

σ(x) =

0, for x < 0
x, for x ≥ 0,

(2.11)

it becomes apparent that x = 0 is the main point of interest. When x is below 0, the
output is 0, and when x is above 0, the output is the value of x. Following [17], a step
by step process of replicating this behaviour using mixed-integer linear programming

14 Theory

begins with defining two new positive variables x+ and x−, where the difference x+− x−

is defined to be equal to x. Representing this in equation form gives,

x+ − x− = x (2.12a)
x+, x− ≥ 0. (2.12b)

As there are an infinite amount of x+ and x− pairs with a difference of x, additional
constraints are needed to ensure x is uniquely represented by a single pair of x+ and
x−. Adding constraints that only allow either x+ or x− to be positive at any given
time ensures the existence of a unique pair, (x+, x−), for every x. This is done by
introducing a binary variable, z ∈ {0, 1}, and two new constraints. By defining the
constraints,

x+ ≤ U · z, (2.13a)
x− ≤ −L · (1− z) , (2.13b)

only either x+ or x− can be positive, depending on the value of z. U and L are upper
bounds on x+ and x− respectively and represent the upper and lower bound on the input
value, x ∈ (L,U). Equation 2.13a and 2.13b are what is known as big-M constraints.
The full formulation of the ReLU function then becomes,

x+ − x− = x (2.14a)
x+, x− ≥ 0 (2.14b)

x+ ≤ U · z (2.14c)
x− ≤ −L · (1− z) (2.14d)

z ∈ {0, 1} . (2.14e)

In this formulation the value of x+ is equal to the output of the ReLU function when
the input is equal to x+ − x−.

2.2 Mixed-Integer Programming 15

2.2.3 ReLU network as MILP

Expanding on this representation to model a ReLU neuron as a component in a larger
neural network formulation is a matter of changing the input value, previously referred
to as x. The input to a neuron in a feed forward neural network is,

w⊺xprev + b. (2.15)

Using the variable names presented in [17] and replacing the input with Equation 2.15
gives the following formulation for a single ReLU neuron,

x− s = w⊺xprev + b (2.16a)
x, s ≥ 0 (2.16b)

x ≤ U · z (2.16c)
s ≤ −L · (1− z) (2.16d)
z ∈ {0, 1} . (2.16e)

Modeling a whole network comes down to connecting the neurons in one layer to the
previous layer. For a network with K-1 hidden layers of nk neurons, this leads to the
following formulation,

Input layer, k = 0,
L0 ≤ x0 ≤ U0. (2.17)

Hidden layers, k = 1, . . . ,K − 1,

xk − sk = W kxk−1 + bk (2.18a)
xk, sk ≥ 0 (2.18b)

xk
j ∈ {0, 1} (2.18c)

xk
j ≤ U k

j · zk
j (2.18d)

sk
j ≤ −Lk

j ·
(
1− zk

j

)
(2.18e)

j ∈ 1, ..., nk. (2.18f)

16 Theory

Output layer, k = K,

wKxK−1 + bK = xK (2.19a)
LK ≤ xK ≤ UK. (2.19b)

2.2.4 The relaxation of an optimization problem

In mathematical programming an optimization problem can have what is called a
relaxation. A relaxation is, in a sense, a version of the original problem that is easier
to solve and is related to the original problem closely enough to where the solution to
the relaxation can give useful information about the original problem. For any given
problem many relaxations can exist and as such a definition of what makes a problem
a relaxation is useful. Using the term relaxation as used in [18], gives the following
definition of a relaxed problem. A relaxation of the problem,

z = min{ f (x) : x ∈ X ⊆ Rn}, (2.20)

is another problem,
zr = min{c(x) : x ∈ T ⊆ Rn} (2.21)

as long as the following conditions hold,

i) X ⊆ T (2.22a)
ii) c(x) ≤ f (x) for all x ∈ X . (2.22b)

This definition of a relaxation is quite broad and does not guarantee a useful relaxation.
As such the challenge of finding a relaxation is not as much finding a problem that fits
this definition, but finding a problem that is both easier to solve and closely related to
the original problem.

For a mixed-integer linear program a relaxation can be created by relaxing the integrality
constraints. Changing all integer variables to continuous variables in a MILP means
that any constraints containing integer variables become linear constraints. If the new
continuous variables keep the same bounds as the integer variables they replaced, the
original state space will be a subset of the relaxed state space. In addition, as the
initial problem contained only linear and integer constraints the relaxed problem will,

2.3 Branch-and-bound methods 17

as a result, contain only linear constraints, meaning the relaxation of a MILP is a
linear program.

For a minimization problem, a relaxation introduces a way to obtain a lower bound on
the optimal value of the problem, as the solution to the relaxation will always be equal
to, or lower, than the optimal value. For a linear program, a solution can be obtained
in polynomial time [33]. Mixed-integer programs on the other hand are NP-hard. An
LP relaxation of a MILP therefore allows a bound on the optimal value to be obtained
in polynomial time.

2.3 Branch-and-bound methods

Branch-and-bound methods are methods for global optimization that take a divide and
conquer approach to obtaining a solution. First presented in the 1960s [36], the idea
behind branch-and-bound strategies is to recursively partition the feasible domain of
an optimization problem into smaller regions, then calculating upper and lower bounds
on the objective value in each partitioned region. The information these bounds give
can then be used to discard partitions of the problem, if it can be shown that the
partition can not contain the optimal solution.

2.3.1 The branch-and-bound tree

In order to illustrate how branch-and-bound strategies use a combination of partitioning
and upper and lower bounds to find a global optima the branch-and-bound tree, as
illustrated in Figure 2.5, is a useful construct.

x3 ≥ 4 x3 ≤ 4

x1 ≤ 2 x1 ≥ 2

P1

P0

P2

P3 P4

Fig. 2.5 Branch-and-bound tree

18 Theory

Beginning with a minimization problem, P0, an upper and lower bound on the optimal
value of P0 is calculated, creating the root node of the branch-and-bound tree. Then
P0 is divided into two separate sub problems, P1 and P2, by constraining the feasible
set to where the branching variable, in this case x3, is restricted to be greater than and
less than the branching point, 4, for P1 and P2 respectively. In the branch-and-bound
tree the sub problems, P1 and P2, become the child nodes of P0.

Reducing problem bounds

For each of the sub problems an upper and a lower bound on the objective value can
be calculated. The upper bound on the objective is simply any feasible solution found.
In order to be useful the method used to calculate the lower bound has to satisfy two
properties. First the lower bound of a node has to be nondecreasing with respect to its
parents. Secondly the lower bound of a node should always be lower than the optimal
solution of the node [35]. If the new bounds satisfy these properties the bounds on
the root node, P0, can be updated. The lower bound on the original problem, P0, will
now be the minimum of the lower bounds of its child nodes. Similarly the best upper
bounds of the sub problems will now be the the new upper bound of P0. As new nodes
and sub problems are created, bounds will propagate up the tree, converging on the
optimal solution. The difference between the upper bound and the lower bound in the
branch-and-bound tree is referred to as the optimality gap. The absolute optimality
gap is simply the difference between the best known solution and the best lower bound,
while the relative optimality gap is the absolute optimality gap divided by the best
lower bound.

Cutting branches

In addition to shrinking the bounds of P0, the bounds of a child node can be used to
discard nodes in the branch-and-bound tree that can be guaranteed not to contain the
optimal solution. Any node with a lower bound greater than the current best upper
bound problem can be discarded, as there is no point in exploring a node where even
the best solution is greater than the current upper bound. This also holds for any
nodes that can be shown to not have any feasible solution. When a node is discarded
from the branch-and-bound tree it is said to be fathomed.

2.4 Bound Tightening 19

2.3.2 Branch-and-bound for mixed-integer linear programs

In order to create sub problems, new constraints are added to the original problem in
a way that reduces the feasible region. For mixed-integer linear programs a common
approach is first solving a linear relaxation of the original problem, then observing
which variables in the relaxed solution do not conform to the integrality constraints.
This accomplishes two things, generating a lower bound on the optimal solution and
providing candidates for branching variables [9]. By selecting an integer variable, xi,
that takes on a non-integer value, bi, in the relaxed solution, two sub problems can
be created by adding the constraints xi ≥ ⌈bi⌉ and xi ≤ ⌊bi⌋, where ⌈bi⌉ and ⌊bi⌋ are
the floor and ceil functions respectively. If any of the relaxed solutions happen to be
a feasible solution to the original problem it will represent an upper bound on the
optimal solution of the original problem.

2.3.3 Spatial branch-and-bound

Adapting the branch-and-bound method to allow for branching on non-integer variables
allows the method to be used to solve nonlinear [15] and mixed-integer nonlinear
programs. This results in what is commonly called a spatial branch-and-bound
algorithm. Algorithm 1 shows a spatial Branch-and-bound algorithm based on ones
described in [5] and [24]. It shows how the concepts described in Section 2.3.1 are used
in order to obtain an optimal solution z∗.

2.4 Bound Tightening

One part of Algorithm 1 not yet introduced is step 6, bound tightening. When a sub
problem is created, new and tighter variable bounds are imposed on the branching
variable. These new bounds could, through shared constraints, imply new and tighter
bounds on variables that did not have bounds explicitly tightened through branching.
Bound tightening can improve the lower bound in branch-and-bound sub problems
dramatically [3]. The process of bound tightening could prove a sub problem infeasible,
in the case that the upper bound on a variable is shown to be lower than the lower
bound. Illustrating how shared constraints can be used to propagate bounds can be
done by considering two variables, x1 and x2, and a simple linear constraint.

20 Theory

Algorithm 1: Spatial Branch-and-bound algorithm
Result: The optimal value z∗ of an optimization problem P

1 Define a set L: L← {P}
2 Define an upper bound on P: zu ←∞
3 while L ̸= ∅ do
4 select a subproblem Pk ∈ L
5 remove Pk from L: L← L \ {Pk}
6 tighten bounds of Pk

7 if bound tightening proved Pk infeasible then
8 continue
9 end

10 Generate a convex relaxation Rk of Pk

11 Solve Rk; let x̄k be an optimum and z̄k the corresponding objective value
12 if x̄k is a feasible solution to Rk then
13 Let zu ← min {zu, z̄u}
14 end
15 if z̄k ≥ zu or zu − z̄k ≤ ε or Rk is infeasible then
16 continue
17 else
18 Obtain solution candidate ẑk from Pk

19 Let zu ← min {zu, ẑu}
20 Choose a branching variable xi and branching point xb

i
21 Create subproblems:
22 Pk− ← Pk where (xi ≤ xb

i)
23 Pk+ ← Pk where (xi ≥ xb

i)
24 L← L ∪ {Pk−,Pk+}
25 end
26 end
27 Result z∗ = zu

2.4 Bound Tightening 21

2x1 ≤ x2 (2.23a)
x1 ∈ [3, 5] (2.23b)
x2 ∈ [2, 8] (2.23c)

From Equation 2.23a and Equation 2.23c, it can be concluded that x1 can, at most, be
equal to 4 by inserting the upper bound of x2 into the Equation 2.23a, 2x1 ≤ x2 ≤ xub

2 =
8→ x1 ≤ 4. Similarly from Equation 2.23a and Equation 2.23b, it can be concluded
that the value of x2 can be no less than 6. The results in new bounds, x1 ∈ [3, 4] and
x2 ∈ [6, 8].

2.4.1 Feasibility-based bound tightening

Feasibility-based bound tightening, FBBT, are bound tightening algorithms that use
primal feasibility arguments to remove parts of the domain in which no feasible solutions
are contained [19].

Consider a linear program with a set of constraints Ax ≤ b. These constraints can be
split into rows on the form, aT

i x ≤ bi, where ai is the ith row of A. This can then be
written as a sum,

n∑
j=0

ai jx j ≤ bi. (2.24)

Separating out ai0x0 and rearranging the inequality gives

ai0x0 +
n∑

j=1
ai jx j ≤ bi. (2.25a)

ai0x0 ≤ bi −
n∑

j=1
ai jx j (2.25b)

22 Theory

An upper bound on ai0x0 can then be obtained minimizing the value of ai jx j for each
variable in the sum.

ai0x0 ≤ bi −
n∑

j=1
ai jx j (2.26a)

≤ bi −
n∑

j=1
min(ai jxLB

j , ai jxUB
j) (2.26b)

Depending on the sign of ai j, feasibility-based bound tightening will generate one of
the following bounds on x j

x0 ≤
1

ai0

bi −
n∑

j=1
min

(
ai jxLB

j , ai jxUB
j

) , ai j > 0 (2.27a)

x0 ≥
1

ai0

bi −
n∑

j=1
max

(
ai jxLB

j , ai jxUB
j

) , ai j < 0 (2.27b)

Similarly the same argument can be used to infer bounds on x1, . . . , xn. This method
of computing bounds does not guarantee any or optimal bound tightening [39]. For
problems with multiple constraints FBBT can improve bounds iteratively by running
the bound tightening multiple times over all the constraints. This process could be
repeated until the bounds stop improving, and the method reaches a fixed point, but
it can not be guaranteed that the bounds will converge to such a point in finite time
[4].

2.4.2 Optimality-based bound tightening

Optimality-based bound tightening, OBBT, generates bounds not using feasibility
based arguments, but through, as the name implies, optimization. For a convex
relaxation of a MINLP, OBBT computes the tightest bounds valid for all relaxation
solutions by in turn minimizing and maximizing each variable [19]. For a problem
with n variables this involves solving 2n optimization problems in order to generate
bounds. While this can be much more computationally expensive than FBBT, OBBT

2.4 Bound Tightening 23

can produce better bounds as all constraints are considered when generating bounds.
Demonstrating this can be done with a simple set of two constraints,

x1 + x2 ≤ 1 (2.28a)
x1 + x2 ≥ y (2.28b)

x1, x2 ∈ [0, 1] (2.28c)
y ∈ [0, 2]. (2.28d)

For this problem using the FBBT approach shown in Section 2.4.1 to tighten the
bounds of variables of one constraint at a time will not lead to a reduction in variable
ranges. Using Equation 2.28a an upper bound on x1 is x1 ≤ 1− x2 ≤ 1− xLB

2 = 1, and
using Equation 2.28b a lower bound on, x1 is, x1 ≥ y− x2 ≥ yLB − xUB

2 = −1. As the
problem is symmetric the same calculations hold true for x2. Neither the upper or
lower bounds calculated by FBBT improve upon the initial bounds and as such an
upper bound on y, y ≤ x1 + x2 ≤ xUB

1 + xUB
2 = 2 yields no improvement.

If both constraints are considered simultaneously however, as is the case when using
OBBT, it becomes immediately clear that y ≤ x1 + x2 ≤ 1, leading to tighter bounds
on y.

2.4.3 Bounds for MILP representations of ReLU networks

The MILP representation of ReLU networks presented in Section 2.2.3 requires a set of
bounds for each neuron in the network in order for the big-M constraints in Equation
2.13a and 2.13b, to be valid. In [23] different methods for producing bounds for MILP
representations of ReLU networks were explored. Among those a feasibility based
approach used to generate initial neuron bounds.

Feasibility-based bound generation

The input to each neuron in an MLP is a linear combination of the values of the
neurons in the previous layer. For neuron j in layer k, this can be written as,

nk−1∑
i=1

wk
jix

k−1
i + bk

j, (2.29)

24 Theory

where wk
ji is the weight in the i-th entry of the j-th row of the weight matrix between

layer k-1 and k. U k
j and Lk

j will be used to represent the upper and lower bounds of this
sum. The value of the expression in Equation 2.29 can be maximized or minimized by
maximizing and minimizing the product wk

jix
k−1
i for each i. For the first hidden layer

the bounds on xk−1
i are xk−1

i ∈ (Lk−1
i ,U k−1

i), as layer k − 1 will be the input layer. This
leads to the following expressions for the bounds of the first hidden layer,

U k
j =

nk−1∑
i=1

max
{

wk
jiU

k−1
j ,wk

jiL
k−1
j

}
+ bk

j,

Lk
j =

nk−1∑
i=1

min
{

wk
jiU

k−1
j ,wk

jiL
k−1
j

}
+ bk

j.

(2.30)

For subsequent layers however, due to the ReLU activation, the bounds on xk−1
i are(

max
{

Lk−1
i , 0

}
,max

{
U k−1

i , 0
})

. Leading to the expressions,

U k
j =

nk−1∑
i=1

max
{

wk
ji max

{
U k−1

j , 0
}
,wk

ji max
{

Lk−1
j , 0

}}
+ bk

j,

Lk
j =

nk−1∑
i=1

min
{

wk
ji max

{
U k−1

j , 0
}
,wk

ji max
{

Lk−1
j , 0

}}
+ bk

j,

(2.31)

for the upper and lower bounds.

Chapter 3

Method

3.1 Hypothesis

The complexity of a MILP representation of a ReLU network is exponential with
respect to the number of neurons in the ReLU network being modeled. On the other
hand the complexity of a spatial branch-and-bound method branching on the input
variables of a ReLU network is exponential with respect to the number of inputs.
As the complexity of the MILP representation increases with the number of hidden
neurons in a network that should mean that for some ratio of hidden neurons to input
neurons the spatial branch-and-bound strategy should outperform the MILP strategy.
Assuming this scaling, given a problem with n inputs and m total neurons there should
be a constant, K, where if m

n > K, the branch and bound approach will be faster than
the MILP method.

3.2 Problem class

In order to test the performance of running spatial branch-and-bound on optimization
problems containing ReLU networks as constraints, a basic branch-and-bound solver
was implemented. The goal was a solver able to solve problems containing a mix of
linear constraints and ReLU network constraints. Formulating a problem class from
this goal results in the formulation,

26 Method

z = arg min
x

M∑
i=0

xi · ci, (3.1a)

Ax ≤ b, (3.1b)
f j(x; θ j) ≤ x j, j ∈ Cv, (3.1c)
fk(x; θk) ≤ dk, k ∈ Cc, (3.1d)

Set Description
Cv Set of ReLU network constraints constrained by optimization variables.
Cc Set of ReLU network constraints constrained by constants.

where M is the number of variables, ci is the cost of a variable xi and fn(x, θn) are ReLU
networks with input x, that are parameterized by θn. One note on this notation is that
while each network, f (x, θ) is written as if the input to the network is the full vector,
x, only select entries of x have to be used.

Using this formulation the problem class describes a nonlinear program. Being a NLP
it can be solved using the method described in Algorithm 1, assuming all the steps in
the algorithm can be implemented. While many of the steps are fairly trivial, there are
some tasks that, while being only a single step in the algorithm make up a large portion
of the work performed by the spatial branch-and-bound algorithm. The tasks that in
this case will be explained more in depth are, in the order they will be examined,

• Step 18: Obtaining a solution candidate,

• Step 10: Generating a convex relaxation,

• Step 6: Bound tightening.

3.3 Obtaining a solution candidate, upper bound

As the problem class described by Equation 3.1 is a minimization problem, any feasible
solution to the problem will be a valid upper bound on the optimal value. For the
upper bounding problem the NLP solver of choice was Ipopt, [53]. Ipopt is designed to
solve large scale nonlinear programs to local optimality. In addition to solving for local
optimality Ipopt will also report if a feasible solution to the problem was reached, even

3.3 Obtaining a solution candidate, upper bound 27

if the solution was not optimal. This allows upper bounds to be generated using Ipopt
even when given a limited number of iterations to find a solution.

Ipopt takes problems on the form,

min
x∈Rn

f (x) (3.2a)

s.t. gL ≤g(x) ≤ gU (3.2b)
xL ≤x ≤ xU , (3.2c)

where f (x) : Rn → R is the objective function and g(x) : Rn → Rm are the constraint
functions, for a problem with n variables and m constraints.

In order to adapt the formulation in Equation 3.1 to be on the form Ipopt uses some
adaptations need to be made. By splitting g(x) into separate functions, gLi ≤ gi(x) ≤ gUi

for i = 1, . . . ,m the two types of neural network constraints can be written as,

g j(x) = f j(x; θ j)− x j, j ∈ Cv (3.3a)
gk(x) = fk(x; θ j), k ∈ Cc. (3.3b)

with an upper bound of 0 and a lower bound of negative infinity. The linear constraints
are divided into one constraint per row, ai, of the constraint matrix, A.

gi(x) = ai · x ≤ bi (3.4)

where bi is the i-th element of b.

In order to work Ipopt requires the ability to evaluate the objective, f , and its gradient
∇ f , as well as the constraint function, g, and the corresponding Jacobian, Jg.

The objective function and its gradient are straightforward to compute, with the
objective being the dot product of a the x vector and a cost vector, c.

f (x) =
M∑

i=0
xi · ci = cT · x (3.5)

∇ f (x) = c (3.6)

28 Method

Evaluating g(x) should return a vector of length m, with each element being on the
form of either Equation 3.3 or Equation 3.4,

g0(x)
g1(x)

...
gm(x)

 . (3.7)

Evaluating the jacobian of g(x) will require computing the gradient of the ReLU
networks with respect to the inputs. As gradient computation is a large part of training
ANNs, methods for computing the gradient of a neural network should be included out
of the box for most neural network frameworks.

∇g0(x)
∇g1(x)

...
∇gm(x)

 . (3.8)

As not all constraints contain all variables it is important to ensure the ordering of
the variables in the Jacobian is correct. Considering a problem with the following
constraints

x0 − x1 ≤ b (3.9a)
f0(x1, x2) ≤ x0 (3.9b)
f1(x0, x2) ≤ d (3.9c)

Then g(x) becomes,

g(x) =

x0 − x1

f0(x1, x2)− x0

f1(x0, x2)

 (3.10)

And the Jacobian,

3.4 Generating a convex relaxation, Lower bound 29

Jg =

1 −1 0
−1 ∂x1 f0(x1, x2) ∂x2 f0(x1, x2)

∂x0 f1(x1, x2) 0 ∂x2 f1(x1, x2)

 (3.11)

3.4 Generating a convex relaxation, Lower bound

In order to obtain a lower bound Algorithm 1 includes a step for generating a convex
relaxation. Starting with the MILP formulation a relaxation can be generated by
relaxing binary variable in Equation 2.14 to a continuous variable between 0 and 1.
This leads to the LP relaxation,

x− s = x (3.12a)
x, s ≥ 0 (3.12b)

x ≤ U · z (3.12c)
s ≤ −L · (1− z) (3.12d)
z ∈ [0, 1] , (3.12e)

for a single ReLU neuron. As the problem class only has linear constraints and ReLU
network constraints, relaxing all the neurons in all ReLU network constraints leads
to a problem with only linear constraints, meaning the whole problem class can be
relaxed to an LP. Being a linear program this also means the relaxation is convex, as
any feasible set defined only by linear equalities and inequalities is a convex polytope
[41].

The solver chosen for solving the relaxed problem is Gurobi, [25], a solver designed
to solve linear, quadratic, mixed-integer linear and mixed-integer quadratic pro-
grams.

3.5 Bound Tightening

In the problem class presented there is, in a way, two different variable types, and it is
useful to create a distinction. The first type of variable are the variables that appear
both in the upper and lower bounding problems. These are the problem variables that
are referred to in the problem class formulation in Equation 3.1 as x. In addition there

30 Method

are the variables used to represent neurons in the ReLU networks that only appear in
the lower bounding problem. The latter will in this section be referred to as internal
variables, as they are an internal part of the ReLU constraints.

The way the solver has been implemented bound tightening is in essence performed in
two different steps of the spatial branch-and-bound algorithm. Bound tightening is
performed on the inner variables when the linear relaxations of the ReLU constraints
are constructed, and on the problem variables during the bound tightening step.

3.5.1 Linear constraints

Bound tightening on the linear constraints in the problem is only performed using
FBBT methods. Using the method demonstrated in Section 2.4.1 the solver iterates
over the linear constraints a set number of times when the bound tightening step is run
to ensure bounds can get propagated through multiple constraints. Bound tightening
on the linear constraints happens twice in each bound tightening step, once before
and once after bound tightening is performed on the ReLU constraints, in order to
propagate input bounds and output bounds respectively.

3.5.2 ReLU network constraints

During the bound tightening step the main concern of the bound tightening of the ReLU
networks is to propagate bounds set on the problem variables of the input through the
network and apply them to the problem variable of the output, thus allowing further
propagation of bounds. This means that bound tightening will have to be performed on
all the inner variables of each network for each node in the branch-and-bound tree. In
[23] the bound tightening procedures were run once at the root node of the branch-and-
bound tree, leaving further bound tightening up to the solver, due to the computational
cost of running some of the procedures. As the bound tightening procedures will be
performed at every node, only the two least computationally expensive methods will
be implemented, both using the LP relaxation of the ReLU constraints.

FBBT

The first approach to both generate bounds and perform bound tightening is the FBBT
method presented in Section 2.4.3. This method is fast but the speed comes at the
expense of weaker bound tightening.

3.5 Bound Tightening 31

OBBT

The second approach to tighten bounds in the ReLU networks uses OBBT. Among the
OBBT procedures presented in [23], this method is the least expensive and is referred
to as RR. The method uses the LP relaxation of the ReLU networks and computes
upper and lower bounds for each neuron in each layer, starting from the input layer.
While this approach to bound tightening allows bounds on the output of the network
to propagate backwards, this is not taken advantage of in the solver.

Mixed

A third approach to bound tightening involves a combination of the OBBT and FBBT
methods. By running OBBT for the first few levels of the branch-and-bound tree
then switching to FBBT the hope is that stronger bound tightening early on can lead
to fathoming sub problems early, thus reducing the number of nodes that have to
be explored to find an optimal solution. By then switching to FBBT deeper in the
branch-and-bound tree the idea is that the cheaper computation of the FBBT method
could allow the solver to explore the remaining branch-and-bound nodes quickly. In
the implementation of this bound tightening procedure the solver switches from OBBT
to FBBT at a depth of 10.

3.5.3 Caveats of switching bound tightening methods

When performing bound tightening it is important that internal bounds, the bounds
on the internal variables, of the ReLU network constraints do not get relaxed between
a parent and a child node, even if the bounds on the output problem variable are kept,
as this will weaken the relaxation of the ReLU network-constraint. This is mostly
evident when using the Mixed method as switching from OBBT to FBBT can result in
the relaxation of the ReLU networks being weakened quite a bit. Giving some intuition
to this can be done using a simple problem,

max x1 + x2 (3.13a)
s.t. x1 + x2 ≤ U (3.13b)

x1, x2 ∈ [0, 1], (3.13c)

32 Method

with a single constraint limited by an upper bound, U , representing the internal
dynamics and bounds of a ReLU network constraint. If the value of U increases
between a parent and a child in the branch-and-bound tree, say from U = 1 to U = 2
the optimal value will increase accordingly, even if the bounds on x1 and x2, representing
the problem variables, remain unchanged.

One approach to solving this is to separate the bound tightening used to tighten problem
variable bounds and the bound tightening used to generate the relaxed problem, then
only switching to FBBT for generating problem variable bounds. Another approach
is to store not only the problem variable bounds, but also the internal bounds of the
ReLU network constraints, for each node in the branch-and-bound tree. Of these the
latter was chosen for performance reasons, as the speed benefit of switching to FBBT
would be negated if OBBT would still have to be performed when generating the
network bounds.

3.6 Solver implementation details

3.6.1 Obtaining an upper bound

When using a branch-and-bound algorithm it is not necessary to attempt to find
a upper bound for every layer in the branch-and-bound tree. Only running upper
bound problem at certain depths can improve the speed of the solver, especially when
computing a lower bound is much less computationally expensive. In the solver the
upper bounding problem was run for sub problems in the first two layers and in every
fourth layer.

3.6.2 Node selection strategy

The node selection strategy implemented is a strategy of selecting the lowest bound
first, often called a best-first search. This means selecting the node from L with the
lowest lower bound, z̄k, on the optimal solution. While there are classes of problems
where other strategies will outperform a best first approach [12], there are benefits
to choosing best first. One benefit is that no node with a lower bound greater than
the optimal value will be explored. In addition, as the node with the lowest bound
is explored first, the optimality gap will increase for most iterations, which if the
algorithm terminates due to time constraints, could give good bounds on the optimal
solution and indicate how far the algorithm was from terminating.

3.7 Training and evaluating ANNs 33

3.6.3 Branching Strategy

When generating sub problems there are two choices that need to be made, which
variable to branch on, and which value of that variable to branch on. All the variables
in the problem class are continuous and as a result a simple variable selection strategy
of choosing the branching variable with the largest bound range was implemented. For
a branching variable, xi, the midpoint, xm

i = (1/2)(xub
i + xlb

i) is chosen as the branching
point.

3.6.4 Numerical precision

One challenge inherent to representing continous variables using computers is the issue
of numerical precision. The tolerances of both Gurobi and Ipopt have been set to 10−6,
when not already the default. To ensure the solver remains consistent, any weights
with an absolute value of less than 10−6 is set to 0 when the problem is constructed.
Because of this a node is considered to be fathomed if the difference between the lower
bound of the node and the upper bound is less than 10−6.

3.7 Training and evaluating ANNs

Two different neural network frameworks were used for the training and evaluating
of neural networks respectively. For training the ReLU networks TensorFlow [1] was
used and for evaluating the neural networks and their gradients PyTorch [45] was
used.

The ReLU networks were built with L2 regularization for both the weights and biases of
the networks. The weights of the networks were initialized using a method proposed in
[20], where samples are drawn from a normal distribution which is truncated depending
on the number of neurons in the current and subsequent layer. The networks were
all trained using the Adam optimizer. The parameters of the trained networks were
stored in files to allow networks to be reused between tests and to allow the weights to
be transferred to PyTorch.

When the optimization problems are constructed the weights and biases are loaded
from the stored files, and the networks are reconstructed in PyTorch, the layout being
inferred from the network parameters. To ensure the representation of the network
in PyTorch is the same as the one used to generate the LP relaxations, the weights
used to construct the LP are loaded from the PyTorch model. This means any weights

34 Method

smaller than 10−6 are set to 0 before being loaded into PyTorch. When Ipopt evaluates
a constraint, the constraint will then call PyTorch which will evaluate the network for
the given input, then return the output value as well as the gradient of the network at
that point.

Chapter 4

Test problems

This section introduces the test problems that will be used to quantify the performance
of the spatial branch-and-bound method for solving problems of the problem class
presented in Section 3.2. The tests aim to give insight into how the performance of the
branch-and-bound approach depends on and scales with network layout and depth, the
number of network input variables and the shape and the properties of the underlying
function generating the training data.

As the layouts of the neural networks will be changing between tests a shorthand
notation is used to describe the layout of neurons. The shorthand will be on the form
a× b where the first number in the shorthand, a, describes the number of hidden layers
and the second number, b, describes the number of hidden neurons in each of those
layers. For a network with 4 hidden layers with 20 neurons each the shorthand will
then be, 4× 20.

4.1 Scaling with respect to input dimension

The goal of this test is to give an idea of how the spatial branch-and-bound method
scales as the number of input variables, and thus branching variables, increases when
trying to optimize a problem with a single ReLU network constraint.

4.1.1 Rosenbrock function

The Rosenbrock function [48] is a non-convex function commonly used to test opti-
mization algorithms and is defined as,

36 Test problems

f (x, y) = (1− x)2 + 100(y− x2)2. (4.1)

With a minimum of 0 at (x, y) = (1, 1). There exist multiple higher dimensional
generatizations of the function, including,

fN (x1, ..., xN) =
N−1∑
i=1

[
100(xi+1 − x2

i)2 + (xi − 1)2
]
, (4.2)

which is defined for N ≥ 2 [30].

For the cases of, N = 2, 3, 4, the global minima are f (1, 1) = 0, f (1, 1, 1) = 0 and
f (1, 1, 1, 1) = 0 respecitvely. For the four dimensional case Equation 4.2 also has an
additional local minimum [49].

This will be the function selected as to generate test problems of increasing dimension-
ality. A formulation of a test problem of dimension n is

z = arg min
x,y

y (4.3a)

s.t. fN (x1, . . . , xN) = y, (4.3b)
(4.3c)

where f is the n-dimensional Rosenbrock function.

4.1.2 The Rosenbrock test

In order to keep the weights of the trained networks reasonably small some tweaks
were made to the function. The function that will be sampled is,

fN (x1, ..., xN) =
N−1∑
i=1

[
3(x2

i+1 − x2
i)2 + (x2

i − 1)2
]
, (4.4)

on the range x ∈ [−2.048, 2.048]N .

In addition to vary the number of inputs, the layout of the ReLU network will vary
to give an indication of how dependent solve times are on the depth and width of

4.2 Scaling with respect to the number of neurons 37

the networks. The number of inputs will vary from 2 to 4. The Rosenbrock function
will be sampled uniformly in the region xi ∈ [−2.2, 2.2], i ∈ 1, . . . ,N. The number of
samples will increase as input size increases, 2500 for N=2, 8000 for N=3 and 10000
for N=4. This results in 50, 20 and 10 sample points along each dimension respectively.
Figure 4.1 shows the function that will be sampled in the 2d test case.

0.000

-2.20

Z

150.

75.0

0.000

X

2.20

Y

2.20

0.000

-2.20

Fig. 4.1 The 2d Rosenbrock test function on [−2.2, 2.2]× [−2.2, 2.2]

For each input dimension, N, four network layouts will be tested. Using the shorthand
notation they are 4 × 20, 2 × 40, 6 × 20 and 2 × 60. These networks have enough
neurons to allow a good fit in the 4 dimensional case and pairwise share the same
number of neurons, but with one network being wide on one being deep.

4.2 Scaling with respect to the number of neurons

The problem class presented is not restricted in the amount of ReLU network-constraints
it can contain. A problem with multiple ReLU network-constraints that share the
same input variables could therefore be constructed. For a problem like this changing
the layout of all the networks allows for large variations in the number of neurons,

38 Test problems

without affecting the size of the search space for spatial branch-and-bound. Which
could benefit the spatial branch-and-bound approach.

Another property that has an impact on the amount of neurons in a problem is sparsity
of the networks used. As mentioned in Section 3.6.4, any weight with an absolute
value below 10−6 is set to zero to help numerical stability. If this happens with all
the weights going in and out of a neuron, it is essentially removed from the network.
The sparsity of a network could therefore have an impact on the effective number of
neurons in the problem.

4.2.1 Test problem with quadratic network constraints

The test consists of four quadratic functions, all in two dimensions. They will all be
dependent on the same variables x1 and x2. The functions will be numbered 1 to 4 and
be defined as follows,

f1 (x1, x2) = (x1 − 0.5)2 + x2
2 − 1, (4.5a)

f2 (x1, x2) = (x1 + 1)2 + x2
2, (4.5b)

f3 (x1, x2) = x2
1 + (x2 + 1)2 , (4.5c)

f4 (x1, x2) = (x1 − 0.5)2 + (x2 − 0.5)2 . (4.5d)

Defined on (x1, x2) ∈ [−2.5, 2.5]× [−2.5, 2.5]. The objective that will be minimized is
f1, while the other functions will be constrained by a constant, 1, giving the problem
formulation,

z = arg min
x,y

y (4.6a)

s.t. f1 (x1, x2) = y (4.6b)
f2 (x1, x2) ≤ 1, (4.6c)
f3 (x1, x2) ≤ 1, (4.6d)
f4 (x1, x2) ≤ 1. (4.6e)

4.3 Scaling for non-convex functions 39

For each of the constraints the feasible region is a circle with unit radius centered
at (−1, 0), (0,−1) and (0.5, 0.5) for f2, f3 and f4 respectively. These regions overlap
and all contain the point (0, 0), which is the optimal solution to the problem, with an
objective value of y = −0.75.

4.2.2 Multi constraint test

To gauge the effects of the number of neurons in a problem this test will come in
two variants, one using sparse networks and one using dense networks. The sparser
networks will be trained over a large number of epochs using a low learning rate and
the dense networks will be trained over a small number of epochs with a high learning
rate.

For each variant the layout of the networks will be varied, with the same network layout
being used for each constraint, fn. The layouts will again be scaled with increasing
network depth, following 2× 20, 4× 20, 6× 20 and 8× 20, as well as with increasing
network width, following 2× 20, 2× 40, 2× 60 and 2× 80. All of the functions will be
sampled from the same region of [−2.5, 2.5]× [−2.5, 2.5] using a grid of equally spaced
sample points in a 50× 50 grid.

z = arg min
x,y

y (4.7a)

s.t. f1 (x1, x2; θ1) ≤ y (4.7b)
f2 (x1, x2; θ2) ≤ 1, (4.7c)
f3 (x1, x2; θ3) ≤ 1, (4.7d)
f4 (x1, x2; θ4) ≤ 1, (4.7e)

where θn represents the parameters of the network trained on fn.

4.3 Scaling for non-convex functions

One property of the test problems introduced until now is that the functions being
sampled are invex, meaning a local minimum is also a global minimum [6]. The
exception being the Rosenbrock function in 4 dimensions, which also has a local

40 Test problems

minimum. This test aims to test how a function with many local minima affects the
performance of the spatial branch-and-bound methods. The idea being that for a
problem with many local minima relatively close together in objective value, it could
be difficult excluding the parts of the feasible region that contain minima through
bounding early in the branch-and-bound tree.

4.3.1 Rastrigin function

The Rastrigin function [46], is a function with many local minima. The function is
defined as,

f (x1, x2) = 10n +
n∑

i=1
(x2

i − 10 cos(2πxi)), (4.8)

and is usually evaluated in xi ∈ [−5.12, 5.12]. It has a global minimum in the origin as
well as several local minima periodically placed as you move away from the origin.

4.3.2 The Rastrigin test

The Rastrigin function, with its many local minima, is quite a bit more complex than
the previous functions. In order to ensure that the neural networks capture the shape
of the function. without having to resort to using huge networks, the input range of the
network is reduced to xi ∈ [−2.2, 2, 2]. In addition the function uses 5 as the coefficient
instead of 10 leading to the function,

f (x1, x2) = 5n +
n∑

i=1
(x2

i − 5 cos(2πxi)), (4.9)

with xi ∈ [−2.2, 2, 2]. The resulting surface is shown in Figure 4.2

4.4 Production optimization case 41

-1.25

0.000

1.25

2.50

Z

30.0

Y

-2.50

22.5

15.0

7.50

0.000

X

2.50

1.25

0.000

-1.25

-2.50

Fig. 4.2 Rastrigin function on the domain

The networks for this test are 4× 20, 5× 20 and 6× 20 for testing scaling as depths
increases, and 2 × 40, 2 × 50 and 2 × 60, for testing scaling as the network width
increases.

4.4 Production optimization case

In order to test the solver on a problem closer to a practical setting a simplification
of the Oil production optimization case presented in [23] is used. Using the utility
sets,

42 Test problems

Set Description
N Set of nodes in the network.
Nw Set of well (source) nodes in the network. Nw ⊂ N.
Nm Set of manifold nodes in the network. Nm ⊂ N.
Ns Set of separator (sink) nodes in the network. Ns ⊂ N.
E Set of edges in the network. An edge e = (i; j) connects node i to node j, where i, j ∈ N.
Ed Set of discrete edges that can be open or closed. Ed ⊂ E.
Er Set of riser edges. Er ⊂ E.
E in

i Set of edges entering node i, i.e. E in
i = {e : e = (j, i) ∈ E}.

Eout
i Set of edges leaving node i, i.e. E in

i = {e : e = (i, j) ∈ E}.
C C = {oil; gas; wat}, denoting the flow rate of oil, gas, and water, respectively.

the original problem proposed was presented as,

max
y,q,p

z =
∑
e∈Er

qe,oil (4.10a)

s.t.
∑

e∈E in
i

qe,c =
∑

e∈Eout
i

qe,c, ∀c ∈ C, i ∈ Nm (4.10b)

p j = ge (qe,oil, qe,gas, qe,wat , pi) , ∀e ∈ Er (4.10c)
(−pU

j + pL
i)(1− ye) ≤ pi − p j ≤ (pU

i + pL
j)(1− ye), ∀e ∈ Ed (4.10d)∑

e∈Eout
i

ye ≤ 1, ∀i ∈ Nw (4.10e)

yeqL
e,c ≤ qe,c ≤ yeqU

e,c, ∀c ∈ C, e ∈ Ed (4.10f)
pL

i ≤ pi ≤ pU
i , ∀i ∈ N (4.10g)∑

e∈Eout
i

qe,oil = fi (pi) , ∀i ∈ Nw (4.10h)

∑
e∈Eout

i

qe,gas = ce,gor
∑

e∈Eout
i

qe,oil, ∀i ∈ Nw (4.10i)

∑
e∈Eout

i

qe,wat = ce,wor
∑

e∈Eout
i

qe,oil, ∀i ∈ Nw (4.10j)

pi = ps
i , ∀i ∈ Ns (4.10k)

ye ∈ {0, 1} . ∀e ∈ Ed (4.10l)

4.4 Production optimization case 43

The functions fi in Equation 4.10h and ge in Equation 4.10c are modeled using ReLU
networks. This problem is a routing problem and includes binary variables. The binary
variables, ye, indicate whether or not flow is allowed through an edge.

As the problem class in Equation 3.1 does not include binary variables a simplified
version of the problem using fixed routing was constructed. This means the values of
ye will be predefined and fixed. The routing implemented for testing is shown in Table
4.1.

well 1 2 3 4 5 6 7 8
riser 9 10 9 9 9 10 10 10

Table 4.1 The predefined routing used for the oil production optimization case

This test will come in two variants, one using deep networks and one using shallow
networks. For flow line networks, ge, the shallow case and deep case use the network
shapes 2× 50 and 5× 20 respectively. For the well networks, fi, the network shapes
are 2× 20 and 4× 10.

Chapter 5

Numerical Results

For each test presented in Chapter 4, four different methods for solving the problem
were tested. Three of the approaches were variations of the spatial branch-and-bound
algorithm, each variation using one of the ReLU bound tightening methods presented
in Section 3.5.2. These will be referred to as SBB-FBBT, SBB-OBBT and SBB-Mixed.
As a point of comparison all the problems were also constructed as MILPs and solved
using Gurobi.

All the tests were given 1800 seconds, or 30 minutes, to complete. In the cases where
the the solver did not find an optimal solution within the 30 minute time frame the
absolute optimality gap was used as an indicator of how well the solver performed. For
cases when the solver is restricted by time, the true scaling for that problem is not
known. To distinguish these cases from true growth they are represented using dotted
lines when graphed.

The hyperparameters used to train the ReLU networks used in each test will be
presented along with resulting error measures. In addition a rudimentary measure of
sparsity is included, which will be referred to as sparsity percentage or SP. SP is the
percentage of trained network weights with an absolute value below 10−6, meaning the
percentage of weights ignored when the problems are constructed.

5.1 Rosenbrock test

The hyperparameters used to train the networks in the Rosenbrock test are shown
Table 5.1 and the resulting networks and their properties are shown in Table 5.2.

46 Numerical Results

Dimension Epochs batch size learning rate L2 regularization
2 1000 32 0.0001 1e-6
3 1000 32 0.0001 1e-6
4 1000 32 0.001 1e-6

Table 5.1 Hyperparameters used to train the networks in the Rosenbrock test.

Dimension, n Layout MSE MAE SP
2 4× 20 0.0357 0.1469 11.90
2 6× 20 0.0566 0.1982 29.27
2 2× 40 0.1238 0.2180 5.76
2 2× 60 0.0102 0.0789 17.22
3 4× 20 0.4049 0.4560 7.89
3 6× 20 0.2872 0.4149 20.96
3 2× 40 0.3888 0.4836 5.23
3 2× 60 0.1707 0.3086 1.59
4 4× 20 1.4888 0.9540 12.15
4 6× 20 0.8874 0.7308 14.81
4 2× 40 0.4678 0.5424 3.17
4 2× 60 0.2273 0.3718 1.92

Table 5.2 Properties of the trained networks in the rosenbrock test.

Figures 5.1 through 5.4 show how the run times change as the number of inputs increase
for each method, with each figure representing the scaling for one network layout. As
run times can vary quite drastically the y-axis is logarithmic.

5.1 Rosenbrock test 47

2 3 4
Input dimension [n]

10−1

100

101

102

103
So

lu
tio

n
tim

e
[s
]

SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.1 Run times for the Rosenbrock test with a 2× 40 network, 2 hidden layers with
40 neurons.

2 3 4
Input dimension [n]

10−1

100

101

102

103

So
lu
tio

n
tim

e
[s
]

SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.2 Run times for the Rosenbrock test with a 2× 60 network, 2 hidden layers with
40 neurons..

48 Numerical Results

2 3 4
Input dimension [n]

10−1

100

101

102

103

So
lu
tio

n
tim

e
[s
]

SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.3 Run times for the Rosenbrock test with a 4× 20 network, 2 hidden layers with
40 neurons..

2 3 4
Input dimension [n]

10−1

100

101

102

103

So
lu
tio

n
tim

e
[s
]

SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.4 Run times for the Rosenbrock test with a 6× 20 network, 2 hidden layers with
40 neurons..

5.2 Multi constraint test 49

For the tests that did not find an optimal solution withing the 30 minute time
limit, Table 5.3 shows the bounds of the branch-and-bound algorithm at the time of
termination, the optimality gap and the optimal solution to the problem.

Dim, n Method Layout Optimum Upper bound Lower bound Gap
3 fbbt 6× 20 0.3919 0.4749 -5.316 5.791
4 fbbt 4× 20 -0.8282 1.8321 -88.837 90.669
4 mixed 4× 20 -0.8282 -0.4354 -8.964 8.528
4 fbbt 6× 20 1.0398 1.3232 -176.182 177.505
4 obbt 6× 20 1.0398 1.1635 -1.795 2.958
4 mixed 6× 20 1.0398 1.3208 -9.982 11.303

Table 5.3 Final bounds of the tests that did not find an optimal solution after 30
minutes.

5.2 Multi constraint test

5.2.1 Sparse multi constraint test

For this test all the networks were trained using the same hyperparameters, shown in
Table 5.4. Table 5.5 shows the resulting MSE, MAE and sparsity percentage for the
networks trained on the objective function, f1. The corresponding properties for the
variable constrained functions, f2, f3 and f4 are available in Table B.1, Table B.2 and
Table B.3 respectively.

Epochs batch size learning rate L2 regularization
1000 32 0.001 1e-6

Table 5.4 Hyperparameters used to train the networks in the Multi constraint test.

50 Numerical Results

Function Layout MSE MAE SP
f1 2× 20 0.00098 0.02482 12.17
f1 4× 20 0.00147 0.02961 28.97
f1 6× 20 0.00100 0.02259 48.88
f1 2× 40 0.00048 0.01692 32.91
f1 2× 60 0.00071 0.02107 38.81
f1 8× 20 0.00149 0.03010 54.65
f1 2× 80 0.00058 0.01894 55.29

Table 5.5 Properties of the networks trained on the f1 function in the multi constraint
test.

Figures 5.5 and 5.6 show the solution times for each method as the number of neurons
in the the ReLU networks increase, with the x-axis being the number of neurons per
network. As the problem has four ReLU network-constraints, the total number of
neurons in the problem is four times this number. Figure 5.5 shows how the run times
change for the network layouts, 2× 20, 2× 40, 2× 60 and 2× 80, where the width of
each layer increases by 20 neurons for each test. Similarly Figure 5.6 shows how run
times change for the network layouts, 2 × 20, 4 × 20, 6 × 20 and 8 × 20, where two
additional layers of 20 neurons are added for each test.

5.2 Multi constraint test 51

40 80 120 160
Neurons pe ReLU netwo k

10−2

10−1

100

101

102

103
So

lu
tio

n
tim

e
[s

]
SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.5 Run time as a function of the total number of neurons as the width of the
networks increase from two layers of 20 neurons to two layers of 80 neurons.

40 80 120 160
Neurons pe ReLU netwo k

10−2

10−1

100

101

102

103

So
lu

tio
n

tim
e

[s
]

SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.6 Run time as a function of the total number of neurons as the depth of the
networks increase from two layers of 20 neurons to eight layers of 20 neurons.

52 Numerical Results

5.2.2 Dense multi constraint test

All the networks in this test were again trained using the same hyperparameters, but
with a higher learning rate over fewer epochs when compared to the sparse test. The
hyperparameters are shown in Table 5.6.

Epochs batch size learning rate L2 regularization
50 32 0.01 1e-6

Table 5.6 Hyperparameters used to train the networks in the Multi constraint test.

The resulting network properties for the function f1 are shown in Table 5.7. The
corresponding tables for the other networks, f2, f3 and f4 are shown in Table B.4,
Table B.5 and Table B.6 respectively.

Function Layout MSE MAE SP
f1 2× 20 0.02612 0.12881 0.00
f1 4× 20 0.00211 0.03619 1.35
f1 6× 20 0.00438 0.05054 10.19
f1 2× 40 0.00246 0.03762 2.56
f1 2× 60 0.00105 0.02278 0.50
f1 8× 20 0.00462 0.05398 11.47
f1 2× 80 0.00187 0.03174 2.97

Table 5.7 Properties of the networks trained on the f1 function in the multi constraint
test.

5.2 Multi constraint test 53

40 80 120 160
Neurons pe ReLU netwo k

10−2

10−1

100

101

102

103
So

lu
tio

n
tim

e
[s

]
SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.7 Run time as a function of the total number of neurons as the width of the
networks increase from two layers of 20 neurons to two layers of 80 neurons.

40 80 120 160
Neurons pe ReLU netwo k

10−2

10−1

100

101

102

103

So
lu

tio
n

tim
e

[s
]

SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.8 Run time as a function of the total number of neurons as the depth of the
networks increase from two layers of 20 neurons to eight layers of 20 neurons.

54 Numerical Results

For the tests that did not find an optimal solution given 30 minutes Table 5.8 shows the
bounds of the branch-and-bound algorithm at the time of termination, the optimality
gap and the optimal solution to the problem.

Method Layout Time Gap UB LB
MILP 6× 20 1800.106 inf inf -0.94213
SBB-FBBT 8× 20 1801.984 0.00306 -0.68182 -0.68488
MILP 8× 20 1800.046 inf inf -1.96273

Table 5.8 Final bounds of the tests that did not find an optimal solution to the dense
multi constraint test after 30 minutes.

5.3 Rastrigin test

The hyperparameters used to train the networks for the Rastrigin test are shown
in Table 5.9. Table 5.10 show the resulting mean squared error and mean absolute
error.

Epochs batch size learning rate L2 regularization
1000 32 0.001 1e-10

Table 5.9 Hyperparameters used to train the networks in the Rastrigin test.

Figure 5.9 shows the methods scale as the width of the network increases, following
2× 40, 2× 50 and 2× 60. Figure 5.10 shows the methods scale as the depth of the
network increases, following the layouts 4× 20, 5× 20 and 6× 20. The bounds of the
tests that did not reach an optimal value in 1800 seconds are shown in Table 5.11.

Layout MSE MAE SP
4× 20 0.54204 0.58967 0.00
5× 20 0.37771 0.48860 33.25
6× 20 0.19595 0.34428 37.28
2× 40 0.28014 0.41932 30.81
2× 50 0.39417 0.49741 35.28
2× 60 0.28412 0.42420 37.43

Table 5.10 Properties of the networks trained for the Rastrigin test.

5.3 Rastrigin test 55

80 100 120
Number of neurons

10−1

100

101

102

103
So

lu
tio

n
tim

e
[s
]

SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.9 Run times as a function of the total number of neurons in the problem as the
width of the networks increase. The layouts used are 2× 40, 2× 50 and 2× 60.

80 100 120
Number of neurons

10−1

100

101

102

103

So
lu
tio

n
tim

e
[s
]

SBB-FBBT
SBB-OBBT
SBB-Mixed
MILP

Fig. 5.10 Run times as a function of the total number of neurons in the problem as the
depth of the networks increase. The layouts used are 4× 20, 5× 20 and 6× 20.

56 Numerical Results

Method Layout Optimum Upper bound Lower bound Gap
SBB-FBBT 2× 60 0.154958 0.26300 -12.7918 13.055

Table 5.11 Final bounds of the tests that did not find an optimal solution to the
Rastrigin test after 30 minutes.

5.4 Oil Production optimization case

The training data for the well networks, fi, consists of around 20 data points per well.
The well networks were trained over 10000 epochs with a batch size of 10. The training
results are shown in Table 5.12.

Well number Network type MSE MAE SP
1 deep 4.7755e-07 5.6862e-04 0.00
2 deep 7.8293e-07 7.2136e-04 0.00
3 deep 4.9021e-06 1.4810e-03 0.00
4 deep 4.3038e-07 5.2477e-04 0.00
5 deep 9.7869e-07 7.5680e-04 0.00
6 deep 5.4099e-06 1.6059e-03 0.00
7 deep 3.7397e-06 1.5525e-03 0.00
8 deep 4.7427e-07 5.4746e-04 0.00
1 shallow 1.4991e-06 8.7823e-04 0.00
2 shallow 6.9680e-06 1.8215e-03 0.00
3 shallow 3.1112e-06 1.3694e-03 0.00
4 shallow 6.6996e-08 2.2250e-04 0.00
5 shallow 4.0347e-07 5.1624e-04 0.00
6 shallow 5.2044e-06 1.4153e-03 0.00
7 shallow 2.7713e-06 1.4667e-03 0.00
8 shallow 2.5244e-05 3.5042e-03 0.00

Table 5.12 Well network training results

The training data for the flow line networks, ge, consisted of around 3700 data points.
While there are two instances of ge in the problem, they use the same model. The
flow line network was trained over 2000 epochs with a batch size of 32, the resulting
network losses are shown in Table 5.13.

5.4 Oil Production optimization case 57

Network type MSE MAE SP
deep 7.7698e-06 2.0833e-03 0.00

shallow 7.6071e-06 2.1268e-03 0.00
Table 5.13 Flowline network training results

Table 5.14 shows the resulting run times for the different methods for the shallow and
deep test case.

Network type Method Time GAP Lower Bound Upper bound
shallow SBB-FBBT 396.306 2.088e-05 -1.294258 -1.294237
shallow SBB-OBBT 13.191 1.748e-05 -1.294255 -1.294237
shallow SBB-Mixed 13.362 1.748e-05 -1.294255 -1.294237
shallow MILP 0.710 0.000e+00 -1.294237 -1.294237
deep SBB-FBBT 1800.503 3.369e-01 -1.618563 -1.281682
deep SBB-OBBT 48.429 5.840e-06 -1.281688 -1.281682
deep SBB-Mixed 52.852 3.099e-06 -1.281685 -1.281682
deep MILP 33.575 0.000e+00 -1.281682 -1.281682

Table 5.14 Productioin optimisation results

Chapter 6

Discussion

6.1 Spatial Branch-and-bound performance

6.1.1 Rosenbrock test

The Rosenbrock test was constructed to give an indication of how the spatial branch-
and-bound methods scale as the number of inputs to the ReLU network-constraints
increase. An increase in the amount of inputs means an increase in the number of
branching variables for spatial branch-and-bound. As a result the expected increase is
solution times should be exponential, which in a log plot should look like linear growth.
For the wide networks tested in Figure 5.1 and Figure 5.2 show that this seems to be
the case. The same conclusion can not really reached be for the deep networks from
Figure 5.3 and Figure 5.4 however, as a many of the tests did not find an optimal
solution in time. SBB-OBBT being the only method to reach an optimum for the 4
dimensional case for the deep network methods.

The order of the bound tightening methods is the same for all tests and network layouts.
SBB-OBBT is the fastest, followed by SBB-Mixed with SBB-FBBT being the slowest.
For the wide tests all BT procedures seem to scale at close to the same rate. For the
deep network it is again difficult to reach a clear conclusion, but it does seem like
SBB-FBBT scales worse than SBB-OBBT when considering Figure 5.3 and Figure
5.4 in combination with the results in Table 5.3, where the bounds of SBB-FBBT are
much weaker than those of SBB-OBBT and SBB-Mixed.

60 Discussion

6.1.2 Multi constraint test

Moving on to the multiple constraint test an interesting observation is that the order
in which the methods finish is reversed for quite a few test cases with SBB-FBBT
performing better than both SBB-OBBT and SBB-Mixed. This is the case for all the
tests in both Figure 5.6 and Figure 5.7.

In the multiple constraint test the performance of SBB-OBBT and SBB-Mixed is
close to identical for all tests, the methods following each other much more closely
than in the Rosenbrock test. The scaling of these two methods also seem to be fairly
predictable, with more neurons giving longer run times. The performance and scaling
of SBB-FBBT is a bit more unpredictable with solution times not following clear
trends.

6.1.3 Rastrigin test

The results in the Rastrigin test show quite a bit of variation both between width and
depth scaling and between the performance of the methods. For the width scaling case
in Figure 5.9 all the methods reach a solution in about the same time, independent
of the number of neurons, with the order of the methods switching and SBB-FBBT
beating out the other methods for the 120 neuron case.

In Figure 5.10, when the depth of the networks increase, these similarities dissappear.
In contrast to the wide network case SBB-FBBT is almost an order of magnitude
slower than the other methods for the 80 neuron case. For the 100 neuron case the
relative performance is even worse and the method does not obtain a solution in the
120 neuron case. In the 80 and 100 neuron case SBB-OBBT and SBB-Mixed scale
at about the same rate with comparable performance, but in the 120 neuron case
SBB-OBBT is faster by a large margin.

6.1.4 Oil Production optimization Test

The oil production optimization test differs from the other test problems in a few ways,
among those having many more problem variables and including linear constraints.
Another large difference is that the inputs to the riser networks, ge, are not all branching
variables. Some of the variables are instead the outputs of the well networks, fi. For
this test all problem variables were also given an initial set of bounds.

6.2 Comparing bound tightening methods 61

Looking at Table 5.14 the performance of the SBB-FBBT method is the most interesting
aspect. It performs much worse in the shallow network case and does not finish in
the deep network case. The suspected reason for this is the combination of weak
bound tightening and the inputs to the riser networks being dependent on the outputs
of the well networks. With weak bound tightening the output bounds of the well
networks are weak. If they are weaker than the initial bounds of the output variable no
bound tightening takes place, meaning some of the input bounds to the riser networks
staying unchanged. As a result SBB-FBBT has to reduce the input bounds on the well
networks significantly before seeing any major bound tightening in the riser networks,
leading to slow convergence.

6.1.5 Comparing wide and deep networks

One factor present in all the tests is that they were run with a variety of neural network
layouts, typically starting with one base case then scaling the networks either in depth
or in width. This results in pairs of tests that have the same number of neurons, but
where one network is wide and the other is deep. In general it seems that across all
tests and bound tightening methods the spatial branch-and-bound approach scales
better if networks increase in width rather than depth.

6.2 Comparing bound tightening methods

This section aims to discuss the performance of each bound tightening method across
the different tests and gain some insight what would make one method preferrable over
another.

6.2.1 SBB-FBBT

Of the spatial branch-and-bound methods tested SBB-FBBT has the most inconsistent
performance, being much faster for some tests than others. Despite by far being the
fastest bound tightening procedure to compute, the bounds produced are usually quite
weak. The one exception to this being the bounds produced by FBBT on the network
approximations of the quadratic functions in the multiple constraint test. The lower
bounds FBBT generates for these functions are quite tight from the first iteration and
comparable to those of OBBT, leading to branch-and-bound nodes being fathomed
much earlier for this test than is usually seen for SBB-FBBT.

62 Discussion

For many of the other test problems however FBBT does not produce tight enough
bounds to allow nodes to be fathomed early on, leading to large branch-and-bound
trees. Ipopt will, as a result of weak bounding, run on sub problems that would have
been fathomed using stronger bound tightening. The combination of FBBT being so
fast and few nodes being fathomed means that a large portion of the run time is taken
up by Ipopt and the upper bound problem.

SBB-FBBT seems to scale pretty similarly to SBB-OBBT and SBB-Mixed with respect
to network width increase, but worse with respect to network depth. This might be
most evident in the Rastrigin test when comparing Figure 5.9 and Figure 5.10. In
addition SBB-FBBT does not scale that well for higher dimensional inputs, Figure 5.2
showing that SBB-FBBT was the only method unable to solve the 3 dimensional case
of the Rosenbrock problem for a network size of 6× 20.

6.2.2 SBB-OBBT

SBB-OBBT was the best performing method in the Rosenbrock tests and seems to
be the method with the most consistent scaling with respect to both network width
and depth. Between the Rosenbrock tests and the oil production optimization test
it also looks to be the preferred bound tightening method for networks with higher
dimensional inputs, SBB-OBBT being the only spatial branch-and-bound method to
solve the four dimensional case for the 4 network in Figure 5.3.

6.2.3 SBB-Mixed

In general SBB-Mixed seems to perform in between the SBB-FBBT and SBB-OBBT
methods, which does make some sense intuitively. For problems where SBB-OBBT is
faster, switching bound tightening to the FBBT leads to an increase in run times over
OBBT. Similarly for the case where FBBT is faster, switching will increase the speed
at which the method converges compared to pure OBBT. This method was introduced
with the hope that it could benefit from OBBT cutting nodes early, then the speed
of FBBT could quickly find the solution among the remaining nodes. However it
seems that when switching is beneficial the benefit of SBB-Mixed over SBB-OBBT is
small. On the other hand, when SBB-FBBT is the slower method and switching is not
beneficial, the mixed approach can be quite a lot slower than SBB-OBBT. Figure 5.4
and Figure 5.10 being examples of this.

6.3 MILP performance 63

6.2.4 Choosing a bound tightening strategy

For most cases it seems like SBB-OBBT would be the preferred spatial branch-and-
bound method, mostly as a result of being the method with the most predictable scaling.
While it is slower than SBB-FBBT in select cases, SBB-FBBT sees comparatively large
increases in run times for select problems, especially for deeper networks with higher
dimensional inputs. While SBB-Mixed is generally close to SBB-OBBT in the tests
presented, it does to some extent experience the same scaling issues that SBB-FBBT
faces.

In addition, in the tests where SBB-FBBT performed comparatively well, it had both
the benefit of networks for which it could produce strong bounds and of the problems
having a comparatively high number of neurons. The run time of a single SBB-FBBT
iteration is much lower than that of than an SBB-OBBT iteration, with the difference
only increasing as the number of neurons increases.

6.3 MILP performance

For almost every test problem the MILP approach to solving beat the spatial branch-
and-bound methods by a large margin, in some cases up to 3 orders of magnitude.
There are only four cases where the MILP approach was not the fastest and only one
where it can be determined to be the slowest. In the hypothesis presented in Section
3.1, the predicted behavior of the MILP approach was that it would scale exponentially
with the number of neurons in an optimization problem. This prediction however did
not capture the true performance of the method for all tests.

In both the sparse and dense variants of the multiple constraint test, and for both
width and depth increase, the MILP method seems to approximate a line quite closely.
This does lend some credibility to the prediction of exponential growth with respect
to the number of neurons. At the same time however, the scaling in the Rastrigin
test shows another story entirely. The width scaling in Figure 5.9 shows the MILP
method stay fast for all network sizes, but the depth scaling in Figure 5.10 shows a
huge increase in run time for the same number of neurons.

Like with the spatial branch-and-bound methods, the MILP methods seems to scale
better with increased width than increased depth. This can be seen both in the multiple
constraint test and the Rastrigin test.

64 Discussion

6.4 Effects of network sparsity

One network property that seems to impact performance of the different methods is
how sparse the network is. The assumption being that as the number of weights in
a network with a value of 0 increases, the number of neurons that have an effect on
the output of the network is reduced and, in essence, reduce the size and number of
neurons in the network.

Comparing the sparse and dense versions of the multiple constraint test indicate that all
the methods are affected by network sparsity to some extent, but that sparsity has the
biggest impact on the MILP method. This could indicate sparsity being a significant
factor in determining the speed of the MILP method. Looking at the results of other
tests however indicates that sparsity does not adequately describe the performance
of the MILP method by itself. The 6 × 20 Rastrigin test has a sparsity percentage
of 37.28% and takes just under 700 seconds to complete. The 2 dimensional 6 × 20
Rosenbrock test has the same network layout and despite having a lower sparsity
percentage of 29.27% only takes around a second to solve.

6.5 Implementation related performance factors

6.5.1 Tunable parameters

In addition to the performance effects different types of network introduce, there are
also tunable factors in the spatial branch-and-bound solver that could have an impact
on both the absolute and relative performance of the different methods. One example
is the depth at which SBB-Mixed switches from OBBT to FBBT. As mentioned a
relatively large part of the run time of SBB-FBBT is taken up by Ipopt. It could be
that reducing the frequency of which Ipopt is run could be beneficial in for SBB-FBBT
as more of the runtime would be spent tightening the lower bounds, which could lead
to more nodes being fathomed between the layers at which Ipopt is run.

6.5.2 Branch-and-bound implementation

The node and branching point selection implemented in the solver are quite rudimentary.
It could be that more advanced strategies for node and branching point selection, like
the ones presented in [5], could lead to increased performance.

6.5 Implementation related performance factors 65

6.5.3 Choice of programming language

The main purpose of the tests performed was to get an indication of how the spatial
branch-and-bound approach scales with respect to different factors, not necessarily
achieving the best possible performance. That however does not mean that a more
performant implementation of the methods presented could have benefits. As a starting
point the current solver was implemented Python, which is an interpreted language
and as a result includes some overhead. Using a compiled language, like C++, could
therefore prove beneficial.

A more sophisticated implementation could probably also take better advantage of the
computer resources available, while Gurobi is able to take full advantage of the CPU
and parallel processing, most of the time spent in the spatial branch-and-bound solver
is either in Ipopt or constructing sub problems in Python.

Chapter 7

Conclusion

7.1 Hypothesis

The main takeaway from the results presented in Chapter 5 is that the hypothesis,
as formulated in Section 3.1, might be too simple to describe the relative scaling of a
sBB approach and a MILP approach. The hypothesis stated that for a problem with n
inputs and m neurons, a constant, K, should exist such that when m

n > K, sBB will
outperform MILP.

The scaling however is not as straight forward as more neurons resulting in longer
solution times. For starters there are multiple ways in which more neurons can be
added to a network and both MILP and sBB seems to scale differently depending on
whether networks are made wider or deeper. When adding more neurons both sBB
and MILP seems to scale better with wider rather than deeper networks. For the tests
where sBB was beat MILP the intersection points did not stay consistent, meaning a
different value would be obtained for K if one were to calculate it for each intersection
point.

The tests performed also show that there are other factors that can play a significant
role in the run times. Depending on the underlying function from which the neural
networks were trained the run times can vary significantly, even for problems with the
same number of variables and neurons. The sparsity of the networks used can also
have a significant impact on performance, however sparsity alone does not necessarily
predict performance of either method.

68 Conclusion

It seems that the performance of either the sBB or MILP approaches is difficult to
predict sufficiently from only a single factor that the issue of scaling is more complex
than relying just on the ratio of neurons to inputs. There could however still be factors
not considered in this thesis that are good indicators of performance.

7.2 Viability of spatial branch-and-bound

From the results presented it is difficult to conclude that the sBB approach is a viable
option compared to the MILP approach. Out of only four tests where MILP was not
the fastest methods, three were the result of networks being deliberately trained to
not achieve sparseness, a property that is usually sought after when training neural
networks.

7.3 Further work

While it will not necessarily give better insights into scaling, one exciting direction
to take further research would be to expand upon the solver and problem class to
include binary variables. This would allow the solver to handle a subset of MINLPs,
allowing the solver to work on a larger set of problems with more complex dynamics.
One example being the full oil production optimization case instead of the simplified
case with fixed routing.

It could also be interesting to implement more advanced branching techniques to see
if any large benefits can be gained from more intelligent partitioning of the feasible
domain. Similarly exploring different node and branching variable selection strategies
could yield interesting results.

This thesis presented a variety of tests for designed to look for scaling with respect to
a variety of factors. A more focused study looking at fewer scaling factors might find
stronger correlations between certain factors and scaling than found in this thesis.

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J.,
Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,
X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org.

[2] Amaldi, E., Capone, A., and Malucelli, F. (2003). Planning umts base station
location: Optimization models with power control and algorithms. IEEE Transactions
on wireless Communications, 2(5):939–952.

[3] Belotti, P. (2013). Bound reduction using pairs of linear inequalities. Journal of
Global Optimization, 56(3):787–819.

[4] Belotti, P., Cafieri, S., Lee, J., and Liberti, L. (2010). Feasibility-based bounds tight-
ening via fixed points. In International Conference on Combinatorial Optimization
and Applications, pages 65–76. Springer.

[5] Belotti, P., Lee, J., Liberti, L., Margot, F., and Wächter, A. (2009). Branching
and bounds tighteningtechniques for non-convex minlp. Optimization Methods &
Software, 24(4-5):597–634.

[6] Ben-Israel, A. and Mond, B. (1986). What is invexity? The Journal of the
Australian Mathematical Society. Series B. Applied Mathematics, 28(1):1–9.

[7] Bhosekar, A. and Ierapetritou, M. (2018). Advances in surrogate based modeling,
feasibility analysis, and optimization: A review. Computers & Chemical Engineering,
108:250 – 267.

[8] Bonami, P., Kilinç, M., and Linderoth, J. (2012). Algorithms and software for
convex mixed integer nonlinear programs. In Lee, J. and Leyffer, S., editors, Mixed
Integer Nonlinear Programming, pages 1–39, New York, NY. Springer New York.

[9] Borchers, B. and Mitchell, J. E. (1994). An improved branch and bound algorithm
for mixed integer nonlinear programs. Computers & Operations Research, 21(4):359–
367.

70 References

[10] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer.

[11] Cai, Z., Fan, Q., Feris, R. S., and Vasconcelos, N. (2016). A unified multi-scale
deep convolutional neural network for fast object detection. In European conference
on computer vision, pages 354–370. Springer.

[12] Clausen, J. and Perregaard, M. (1999). On the best search strategy in paral-
lel branch-and-bound: Best-first search versus lazy depth-first search. Annals of
Operations Research, 90:1–17.

[13] Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep sum-product networks. In
Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems 24, pages 666–674.
Curran Associates, Inc.

[14] Eckle, K. and Schmidt-Hieber, J. (2019). A comparison of deep networks with relu
activation function and linear spline-type methods. Neural Networks, 110:232–242.

[15] Falk, J. E. and Soland, R. M. (1969). An algorithm for separable nonconvex
programming problems. Management science, 15(9):550–569.

[16] Figueiredo, M. A. (2003). Adaptive sparseness for supervised learning. IEEE
transactions on pattern analysis and machine intelligence, 25(9):1150–1159.

[17] Fischetti, M. and Jo, J. (2017). Deep neural networks as 0-1 mixed integer linear
programs: A feasibility study. arXiv preprint arXiv:1712.06174.

[18] Geoffrion, A. M. (1974). Lagrangean relaxation for integer programming. In
Approaches to integer programming, pages 82–114. Springer.

[19] Gleixner, A. M., Berthold, T., Müller, B., and Weltge, S. (2017). Three enhance-
ments for optimization-based bound tightening. Journal of Global Optimization,
67(4):731–757.

[20] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256.

[21] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 315–323.

[22] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates,
Inc.

[23] Grimstad, B. and Andersson, H. (2019). Relu networks as surrogate models in
mixed-integer linear programs. Computers & Chemical Engineering, 131:106580.

References 71

[24] Grimstad, B. and Sandnes, A. (2016). Global optimization with spline constraints:
a new branch-and-bound method based on b-splines. Journal of Global Optimization,
65(3):401–439.

[25] Gurobi Optimization, L. (2020). Gurobi optimizer reference manual.

[26] Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In
Neural networks for perception, pages 65–93. Elsevier.

[27] Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(02):107–116.

[28] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2):251 – 257.

[29] Hornik, K., Stinchcombe, M., White, H., et al. (1989). Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366.

[30] Jamil, M. and Yang, X.-S. (2013). A literature survey of benchmark functions for
global optimization problems. arXiv preprint arXiv:1308.4008.

[31] Jiang, R., Zhang, M., Li, G., and Guan, Y. (2010). Two-stage robust power grid
optimization problem. submitted to Journal of Operations Research, pages 1–34.

[32] Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy
systems. Applied energy, 67(1-2):17–35.

[33] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming.
In Proceedings of the sixteenth annual ACM symposium on Theory of computing,
pages 302–311.

[34] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[35] Lai, T.-H. and Sprague, A. (1985). Performance of parallel branch-and-bound
algorithms. IEEE Transactions on Computers, 100(10):962–964.

[36] Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520.

[37] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function.
Neural networks, 6(6):861–867.

[38] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. A. (2013). Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602.

[39] Neumaier, A. (2004). Complete search in continuous global optimization and
constraint satisfaction. Acta numerica, 13:271–369.

72 References

[40] Ng, A. Y. (2004). Feature selection, l 1 vs. l 2 regularization, and rotational
invariance. In Proceedings of the twenty-first international conference on Machine
learning, page 78.

[41] Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New
York, NY, USA, second edition.

[42] Pal, S. K. and Mitra, S. (1992). Multilayer perceptron, fuzzy sets, and classification.
IEEE Transactions on Neural Networks, 3(5):683–697.

[43] Park, D. C., El-Sharkawi, M. A., Marks, R. J., Atlas, L. E., and Damborg, M. J.
(1991). Electric load forecasting using an artificial neural network. IEEE Transactions
on Power Systems, 6(2):442–449.

[44] Partridge, D. (1996). Network generalization differences quantified. Neural
Networks, 9(2):263–271.

[45] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning
library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
and Garnett, R., editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc.

[46] Pohlheim, H. (2007). Examples of objective functions. Retrieved, 4(10):2012.

[47] Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Dickstein, J. S. (2017). On
the expressive power of deep neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2847–2854. JMLR. org.

[48] Rosenbrock, H. (1960). An automatic method for finding the greatest or least
value of a function. The Computer Journal, 3(3):175–184.

[49] Shang, Y.-W. and Qiu, Y.-H. (2006). A note on the extended rosenbrock function.
Evolutionary Computation, 14(1):119–126.

[50] Smith, E. and Pantelides, C. (1999). A symbolic reformulation/spatial branch-
and-bound algorithm for the global optimisation of nonconvex minlps. Computers &
Chemical Engineering, 23(4):457 – 478.

[51] Snyman, J. A. (2005). Practical mathematical optimization. Springer.

[52] Tjeng, V., Xiao, K., and Tedrake, R. (2017). Evaluating robustness of neural
networks with mixed integer programming. arXiv preprint arXiv:1711.07356.

[53] Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math. Program.,
106(1):25–57.

Appendix A

Solver results

A.1 Rosenbrock test

Dimension Method Layout Time Gap UB LB
2 SBB-FBBT 4× 20 92.094 0.00000 -0.17321 -0.17321
2 SBB-OBBT 4× 20 26.775 0.00000 -0.17321 -0.17321
2 SBB-Mixed 4× 20 46.908 0.00000 -0.17321 -0.17321
2 MILP 4× 20 0.295 0.00000 -0.17321 -0.17321
2 SBB-FBBT 6× 20 380.274 0.00000 0.00600 0.00599
2 SBB-OBBT 6× 20 60.137 0.00000 0.00599 0.00599
2 SBB-Mixed 6× 20 59.722 0.00000 0.00599 0.00599
2 MILP 6× 20 1.260 0.00000 0.00599 0.00599
2 SBB-FBBT 2× 40 23.074 0.00000 -0.05936 -0.05936
2 SBB-OBBT 2× 40 9.918 0.00000 -0.05936 -0.05936
2 SBB-Mixed 2× 40 9.933 0.00000 -0.05936 -0.05936
2 MILP 2× 40 0.136 0.00000 -0.05936 -0.05936
2 SBB-FBBT 2× 60 55.446 0.00000 -0.09512 -0.09512
2 SBB-OBBT 2× 60 36.029 0.00000 -0.09512 -0.09512
2 SBB-Mixed 2× 60 51.200 0.00000 -0.09512 -0.09512
2 MILP 2× 60 0.288 0.00000 -0.09512 -0.09512

74 Solver results

Dimension Method Layout Time Gap UB LB
3 SBB-FBBT 4× 20 876.003 0.00000 0.20296 0.20296
3 SBB-OBBT 4× 20 101.266 0.00000 0.20296 0.20296
3 SBB-Mixed 4× 20 136.682 0.00000 0.20296 0.20296
3 MILP 4× 20 0.247 0.00000 0.20296 0.20296
3 SBB-FBBT 6× 20 1800.025 5.79105 0.47496 -5.31609
3 SBB-OBBT 6× 20 247.903 0.00000 0.39194 0.39194
3 SBB-Mixed 6× 20 804.016 0.00000 0.39194 0.39194
3 MILP 6× 20 1.445 0.00000 0.39194 0.39194
3 SBB-FBBT 2× 40 205.878 0.00000 -0.83282 -0.83282
3 SBB-OBBT 2× 40 60.602 0.00000 -0.83281 -0.83281
3 SBB-Mixed 2× 40 119.770 0.00000 -0.83282 -0.83282
3 MILP 2× 40 0.163 0.00000 -0.83281 -0.83281
3 SBB-FBBT 2× 60 170.006 0.00000 -0.71651 -0.71651
3 SBB-OBBT 2× 60 74.259 0.00000 -0.71651 -0.71651
3 SBB-Mixed 2× 60 133.985 0.00000 -0.71651 -0.71651
3 MILP 2× 60 0.183 0.00000 -0.71651 -0.71651

Dimension Method Layout Time Gap UB LB
4 SBB-FBBT 4× 20 1800.020 90.66903 1.83214 -88.83689
4 SBB-OBBT 4× 20 954.261 0.00000 -0.82823 -0.82823
4 SBB-Mixed 4× 20 1800.525 8.52840 -0.43549 -8.96390
4 MILP 4× 20 0.682 0.00000 -0.82823 -0.82823
4 SBB-FBBT 6× 20 1800.222 177.50545 1.32322 -176.18224
4 SBB-OBBT 6× 20 1800.068 2.95823 1.16354 -1.79469
4 SBB-Mixed 6× 20 1800.267 11.30325 1.32086 -9.98239
4 MILP 6× 20 3.483 0.00000 1.03983 1.03983
4 SBB-FBBT 2× 40 561.306 0.00000 -3.90748 -3.90748
4 SBB-OBBT 2× 40 184.790 0.00000 -3.90748 -3.90748
4 SBB-Mixed 2× 40 267.736 0.00000 -3.90748 -3.90748
4 MILP 2× 40 0.232 0.00000 -3.90748 -3.90748
4 SBB-FBBT 2× 60 668.375 0.00001 -1.40353 -1.40354
4 SBB-OBBT 2× 60 270.138 0.00000 -1.40354 -1.40354
4 SBB-Mixed 2× 60 409.581 0.00001 -1.40353 -1.40354
4 MILP 2× 60 1.125 0.00000 -1.40354 -1.40354

A.2 Multi constraint test 75

A.2 Multi constraint test

A.2.1 Sparse networks

Method Layout Time Gap UB LB
SBB-FBBT 2× 20 17.326 0.00000 -0.84450 -0.84450
SBB-OBBT 2× 20 19.671 0.00000 -0.84450 -0.84450
SBB-Mixed 2× 20 19.080 0.00000 -0.84450 -0.84450
MILP 2× 20 0.045 0.00000 -0.84450 -0.84450
SBB-FBBT 2× 40 23.506 0.00000 -0.74951 -0.74951
SBB-OBBT 2× 40 31.383 0.00000 -0.74951 -0.74951
SBB-Mixed 2× 40 28.454 0.00000 -0.74951 -0.74951
MILP 2× 40 0.166 0.00000 -0.74951 -0.74951
SBB-FBBT 2× 60 24.875 0.00000 -0.73884 -0.73884
SBB-OBBT 2× 60 24.685 0.00000 -0.73884 -0.73884
SBB-Mixed 2× 60 21.889 0.00000 -0.73884 -0.73884
MILP 2× 60 0.148 0.00000 -0.73884 -0.73884
SBB-FBBT 2× 80 29.589 0.00000 -0.72206 -0.72206
SBB-OBBT 2× 80 81.546 0.00000 -0.72206 -0.72206
SBB-Mixed 2× 80 65.767 0.00000 -0.72206 -0.72206
MILP 2× 80 0.250 0.00000 -0.72206 -0.72206
SBB-FBBT 4× 20 3.246 0.00025 -0.78115 -0.78140
SBB-OBBT 4× 20 24.546 0.00025 -0.78115 -0.78140
SBB-Mixed 4× 20 23.350 0.00025 -0.78115 -0.78140
MILP 4× 20 0.208 0.00000 -0.78115 -0.78115
SBB-FBBT 6× 20 5.113 0.00000 -0.79080 -0.79080
SBB-OBBT 6× 20 52.633 0.00022 -0.79080 -0.79101
SBB-Mixed 6× 20 50.047 0.00000 -0.79080 -0.79080
MILP 6× 20 0.806 0.00000 -0.79080 -0.79080
SBB-FBBT 8× 20 62.959 0.00000 -0.83866 -0.83866
SBB-OBBT 8× 20 169.853 0.00000 -0.83866 -0.83866
SBB-Mixed 8× 20 147.507 0.00000 -0.83866 -0.83866
MILP 8× 20 1.978 0.00000 -0.83866 -0.83866

76 Solver results

A.2.2 Dense networks

Method Layout Time Gap UB LB
SBB-FBBT 2× 20 1.268 0.00006 -0.81472 -0.81478
SBB-OBBT 2× 20 3.440 0.00013 -0.81472 -0.81485
SBB-Mixed 2× 20 3.265 0.00003 -0.81472 -0.81475
MILP 2× 20 0.193 0.00000 -0.81472 -0.81472
SBB-FBBT 2× 40 31.216 0.00000 -0.79019 -0.79019
SBB-OBBT 2× 40 60.133 0.00000 -0.79019 -0.79019
SBB-Mixed 2× 40 50.736 0.00000 -0.79019 -0.79019
MILP 2× 40 1.660 0.00000 -0.79019 -0.79019
SBB-FBBT 2× 60 26.264 0.00000 -0.86351 -0.86351
SBB-OBBT 2× 60 92.871 0.00000 -0.86351 -0.86351
SBB-Mixed 2× 60 76.434 0.00000 -0.86351 -0.86351
MILP 2× 60 11.026 0.00000 -0.86351 -0.86351
SBB-FBBT 2× 80 41.305 0.00000 -0.81623 -0.81623
SBB-OBBT 2× 80 171.422 0.00000 -0.81623 -0.81623
SBB-Mixed 2× 80 139.158 0.00000 -0.81623 -0.81623
MILP 2× 80 43.074 0.00000 -0.81623 -0.81623
SBB-FBBT 4× 20 28.570 0.00000 -0.76896 -0.76896
SBB-OBBT 4× 20 42.163 0.00001 -0.76896 -0.76896
SBB-Mixed 4× 20 38.764 0.00000 -0.76896 -0.76896
MILP 4× 20 19.001 0.00000 -0.76896 -0.76896
SBB-FBBT 6× 20 668.753 0.00000 -0.79920 -0.79920
SBB-OBBT 6× 20 178.374 0.00000 -0.79920 -0.79920
SBB-Mixed 6× 20 252.031 0.00000 -0.79920 -0.79920
MILP 6× 20 1800.106 inf inf -0.94213
SBB-FBBT 8× 20 1801.984 0.00306 -0.68182 -0.68488
SBB-OBBT 8× 20 360.324 0.00000 -0.68187 -0.68187
SBB-Mixed 8× 20 366.730 0.00000 -0.68187 -0.68187
MILP 8× 20 1800.046 inf inf -1.96273

A.3 Rastrigin test 77

A.3 Rastrigin test

Method Layout Time Gap UB LB
SBB-FBBT 2× 40 54.733 0.00000 -0.34515 -0.34515
SBB-OBBT 2× 40 23.869 0.00000 -0.34515 -0.34515
SBB-Mixed 2× 40 23.674 0.00000 -0.34515 -0.34515
MILP 2× 40 0.178 0.00000 -0.34515 -0.34515
SBB-FBBT 2× 50 82.519 0.00000 -0.72492 -0.72492
SBB-OBBT 2× 50 36.089 0.00000 -0.72492 -0.72492
SBB-Mixed 2× 50 51.684 0.00000 -0.72492 -0.72492
MILP 2× 50 0.564 0.00000 -0.72492 -0.72492
SBB-FBBT 2× 60 27.898 0.00000 -1.60732 -1.60732
SBB-OBBT 2× 60 37.376 0.00000 -1.60732 -1.60732
SBB-Mixed 2× 60 43.767 0.00000 -1.60732 -1.60732
MILP 2× 60 0.175 0.00000 -1.60732 -1.60732
SBB-FBBT 4× 20 379.406 0.00000 -1.44406 -1.44406
SBB-OBBT 4× 20 30.904 0.00000 -1.44406 -1.44406
SBB-Mixed 4× 20 48.347 0.00000 -1.44406 -1.44406
MILP 4× 20 2.152 0.00000 -1.44406 -1.44406
SBB-FBBT 5× 20 1455.043 0.00000 -0.52882 -0.52882
SBB-OBBT 5× 20 74.692 0.00000 -0.52882 -0.52882
SBB-Mixed 5× 20 94.245 0.00000 -0.52882 -0.52882
MILP 5× 20 16.473 0.00000 -0.52882 -0.52882
SBB-FBBT 6× 20 1800.030 13.05482 0.26300 -12.79182
SBB-OBBT 6× 20 110.406 0.00000 0.15496 0.15496
SBB-Mixed 6× 20 550.976 0.00000 0.15496 0.15496
MILP 6× 20 671.834 0.00000 0.15496 0.15496

Appendix B

Network training results

B.1 Multi constraint test

B.1.1 Sparse networks

Table B.1 Properties of the networks trained on the f2 function in the sparse multi
constraint test.

Function Layout MSE MAE SP
f2 2× 20 0.00164 0.03195 34.35
f2 4× 20 0.00190 0.03609 37.06
f2 6× 20 0.00510 0.05193 47.52
f2 8× 20 0.00201 0.03695 55.03
f2 2× 40 0.00049 0.01728 30.99
f2 2× 60 0.00146 0.02995 37.38
f2 2× 80 0.00054 0.01583 55.15

80 Network training results

Table B.2 Properties of the networks trained on the f3 function in the sparse multi
constraint test.

Function Layout MSE MAE SP
f3 2× 20 0.00226 0.03701 24.35
f3 4× 20 0.00184 0.03219 39.84
f3 6× 20 0.00408 0.05037 47.14
f3 8× 20 0.00079 0.01989 57.48
f3 2× 40 0.00080 0.02290 32.73
f3 2× 60 0.00072 0.01877 44.31
f3 2× 80 0.00040 0.01520 47.38

Table B.3 Properties of the networks trained on the f4 function in the sparse multi
constraint test.

Function Layout MSE MAE SP
f4 2× 20 0.00260 0.04243 19.35
f4 4× 20 0.00148 0.02821 38.65
f4 6× 20 0.00051 0.01762 53.98
f4 8× 20 0.00142 0.03013 55.84
f4 2× 40 0.00057 0.01842 28.72
f4 2× 60 0.00052 0.01785 49.42
f4 2× 80 0.00112 0.02613 53.96

B.1.2 Dense networks

Table B.4 Properties of the networks trained on the f2 function in the dense multi
constraint test.

Function Layout MSE MAE SP
f2 2× 20 0.03587 0.13680 0.43
f2 4× 20 0.00272 0.04045 4.44
f2 6× 20 0.01285 0.08711 3.98
f2 8× 20 0.00327 0.04657 7.27
f2 2× 40 0.00614 0.06140 2.50
f2 2× 60 0.00427 0.05299 4.02
f2 2× 80 0.00623 0.06735 2.80

B.1 Multi constraint test 81

Table B.5 Properties of the networks trained on the f3 function in the dense multi
constraint test.

Function Layout MSE MAE SP
f3 2× 20 0.01093 0.08372 0.00
f3 4× 20 0.00346 0.04473 5.48
f3 6× 20 0.00415 0.04664 9.61
f3 8× 20 0.00175 0.03232 12.34
f3 2× 40 0.00481 0.05313 0.29
f3 2× 60 0.00453 0.04851 1.93
f3 2× 80 0.00167 0.03126 0.21

Table B.6 Properties of the networks trained on the f4 function in the dense multi
constraint test.

Function Layout MSE MAE SP
f4 2× 20 0.00525 0.05455 0.00
f4 4× 20 0.00259 0.04036 4.60
f4 6× 20 0.00193 0.03399 8.69
f4 8× 20 0.00250 0.03842 16.71
f4 2× 40 0.00490 0.05384 0.70
f4 2× 60 0.00200 0.03519 1.40
f4 2× 80 0.00299 0.04298 3.51

