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Abstract

The aim of this project was to study the different state-of-the-art estimation
techniques for estimating force-torque in robotic manipulators and to discuss
platforms available at the department of Engineering Cybernetics for further
experimentation. Historically, industrial manipulators used in manufacturing
have been large, heavy machinery. The development of lightweight collaborative
robots led to higher safety demands, because of their interaction with, and
close proximity to humans. Because of this, the robots need to be able to
sense their surroundings. Force sensors, though gradually becoming cheaper,
are still expensive tools. Therefore, this project has looked at different sensorless
force/torque estimation methods.

Four methods of estimating forces and torques in robots without using ex-
ternal force sensors were discussed: observer-based, least-squares, inverse dy-
namics and learning-based. Three robot programming middlewares and their
applicability to the force estimation situation were considered: ROS, ROS 2 and
Orocos. The various robot manipulators considered for use in experiments were
UR5, UR3, KUKA’s KR16-2 and LBR iiwa, and Franka Emika Panda.

The result of this study shows that several of the estimation methods rely
on the availability of an accurate model of the dynamics of the robots. These
models can be hard to figure out, and they might be sensitive to deviations and
changes.

It was found that by using learning-based estimation techniques it is possible
to estimate forces and torques without having to rely on having a correct ana-
lytical model, and that it is possible to use such methods to adaptively tune the
parameters of the model dynamics. ROS was found to be the robot middleware
most suited for this application. All four lightweight robots, that is UR5, UR3,
KUKA LBR iiwa and Franka Emika Panda, are applicable.
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Sammendrag

Denne avhandlingen skal studere ulike moderne estimeringsmetoder for å es-
timere kraft og dreiemoment i robotmanipulatorer, samt å diskutere hvilke
plattformer som er tilgjengelig for bruk og videre eksperiment ved Institutt
for teknisk kybernetikk. Industrielle roboter brukt i produksjon har tidligere
bestått av store, tunge maskiner. Utviklingen av lettere roboter designet for
å samarbeide med, og jobbe i nærheten av, mennesker har ført til strengere
sikkerhetskrav, noe som gjør at de er nødt til å kunne oppfatte sine omgivelser.
Ettersom sensorer for å måle kraft fortsatt er kostlige, vil det her bli sett på ulike
metoder for å estimere kraft og dreiemoment som ikke baserer seg på eksterne
kraftsensorer.

Fire estimeringsmetoder ble diskutert: observerbasert, minste kvadraters
metode, invers dynamikk og læringbasert. Videre ble tre ulike middelvarer for
robotikk og deres anvendbarhet for kraftestimering evaluert: ROS, ROS 2 og
Orocos. De ulike robotmanipulatorene vurdert for bruk var UR5, UR3, KUKA
sine KR16-2 og LBR iiwa, samt Franka Emika Panda.

Det viste seg at flere av estimeringsmetodene er avhengige av å ha korrekte
modeller av dynamikken til robotene, hvilket kan være vanskelig å finne, samt
at de kan være sårbare for avvik og endringer.

Det ble funnet at ved å bruke læringsbaserte metoder er det mulig å estimere
kraft og dreiemoment uten å ha en korrekt analytisk modell, og at det er mulig
å bruke disse metodene for å adaptivt stille inn parametrene til dynamikken til
modellen. ROS viste seg å være middelvaren best egnet for denne applikasjonen,
mens alle de fire lettvektrobotene, UR5, UR3, KUKA LBR iiwa og Franka Emika
Panda, kan anvendes.
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Chapter 1

Introduction

This thesis is an extension of the specialization project completed at the depart-
ment of Engineering Cybernetics at NTNU, autumn 2019 by the author. Parts
of this work are directly taken from the specialization project. The original
intent was to perform experiments on robots, but COVID-19 made it difficult
to perform experiments, and the project had to be changed accordingly.

1.1 Background

Historically robotic manipulators are large, heavy machinery capable of re-
peatedly manipulating products and tools at a high positional precision. The
strength and precision stems from high mechanical stiffness and little to no
backdrivability. In 2008 the first collaborative robots were launched, with the
KUKA LBR4 and the Universal Robots, UR5. Because of their interaction and
close proximity to humans, safety has become an important issue. Minimizing
the risk they pose to humans involves minimizing their kinetic energy, and min-
imizing the interaction forces they can exert on their environment. Therefore,
in addition to the robots being made of lighter construction material and hav-
ing speed limitations, they also need to be able to sense their surroundings by
considering external forces acting on the robot. Thus, it is important to be able
to estimate forces and torques at the end-effector, and the torques at the joints.

One way to estimate forces and torques at the end-effector of a robot ma-
nipulator is by using external force/torque sensors. These are sensors that are
able to feel the forces that are acting on the robot on all three geometric axes

1



2 CHAPTER 1. INTRODUCTION

(X-Y-Z), as well as the torques acting on these axes (yaw, pitch and roll). Wrist
force sensors and joint torque sensors usually consists of strain gauges, which
measure the strain on an object [1]. These gauges are sensitive to changes in
temperature, making changes in ambient temperature a common cause of error
in the strain measurement. The strain gauge must therefore be able to com-
pensate for this sensitivity, which also requires a lot of calibration. The sensor
has a designed rating of forces that it can take, as heavy payloads may lead to
permanent deflections and degraded performance. Having a large range of al-
lowable payloads with high noise sensitivity requires advanced material science.
Because of these issues force sensors are generally expensive. In addition to this,
external sensors contribute to the dynamical model of the system, and must be
taken into account. For accurate force control it is also important to note that
the sensor’s reference frame is not the same as the frame in which the forces
occur.

Another way of estimating the forces and torques is using the motor current,
and translating this to the joint torques. This method relies on having a math-
ematical model of the robot and motor dynamics. Figuring out this model, and
using this to get the torque at the end-effector is not a simple task. In addi-
tion, these models assume that the robot links and joints behave as rigid bodies,
which will cause the model to be incorrect as modern robotics systems are highly
non-linear, due to variable joint friction as the ball-bearing heats up, potential
flexibility in the gearing, and other factors. In the case of lightweight robots,
deviations in dynamic parameters, such as link masses, will cause a large per-
centage of error for model accuracy [2]. This also means that even small changes
in the system will have to be taken into consideration when modeling.

1.2 Desired Properties

The goal of this thesis is to lay the groundwork for a possible application for
force/torque estimation of the end-effector of robot manipulators. It is desirable
for the application to be general in such a way that it will work on different robot
platforms, and that it does not rely on having an accurate model of the robot
available.

The application should be applicable to collaborative robots, as the moti-
vation for this work stems from the increased safety requirements for robots
working in close proximity with humans. In order to be able to estimate forces
and torques, some sensor signals are required from the robots. Therefore, robots
with internal sensors are preferred.



1.3. REPORT STRUCTURE 3

1.3 Report Structure
This project looks at sensorless force/torque estimation methods with light-
weight robotic manipulators. The project gives an overview of state-of-the-art
estimation techniques, and discusses platforms available at the department of
Engineering Cybernetics for further experimentation. The report is structured
as follows: In Chapter 2 a mathematical model for robot dynamics is presented,
which is extended upon in order to take flexibility into consideration. Chap-
ter 3 presents the different types of robots. The robots manipulators that were
considered for this application are given in Chapter 4, with necessary informa-
tion regarding them. In Chapter 5 information is given about different robot
middleware solutions, and their relevance for this project. The different esti-
mation methods are discussed in Chapter 6, and a table with an overview of
the different methods are presented at the end of the chapter. The viability of
the different state-of-the-art techniques, with a focus on the robots available at
the department, as well as the usefulness of the different robots and middleware
solutions are given in Chapter 7. In Chapter 8 further work is presented, and a
conclusion is given in Chapter 9.



Chapter 2

Robot Dynamics

This chapter gives a brief introduction to robot kinematics before delving into
describing the dynamics of a serially linked manipulator. The purpose of this
chapter is to give a common notation when discussing the research on force
estimation, and introduce some important core concepts.

2.1 Kinematics

Kinematics is about the motion of a robot manipulator without considering
the forces and torques which are the causes of said motion [3]. Kinematics is
fundamental for robotics in order to be able to design, analyse, control and sim-
ulate. Two of the most important aspects of kinematics are forward and inverse
kinematics. Forward kinematics is used in order to determine the position and
orientation of the end-effector by using the values of the joint variables, often
relative to the base. Inverse kinematics is the inverse of this, namely to use the
end-effectors position and orientation to get the values of the joint variables [1].

Coordinate frames are attached to each link in such a way that the coordi-
nate frame 0ixiyizi is attached to link i. These coordinate frames are necessary
for forward kinematics. In Figure 2.1 an elbow manipulator, which is made up
of three revolute joints, is shown with coordinate frames attached. The coordi-
nate frame o0x0y0z0 is the inertial frame, and is connected to the base of the
robot. In Figure 2.1 coordinate frame o3x3y3z3 is where the end-effector of the
robot is, and where a tool can be installed. Coordinate frames are often rep-
resented by homogeneous transformation matrices, but can also be expressed

4



2.1. KINEMATICS 5

by a Cartesian vector and Quaternion [4], as well as other representations. In
forward kinematics, the transformation matrix expresses the position and orien-
tation of a coordinate frame with respect to a reference frame. The position and
orientation of the end-effector frame, n, relative to the inertial frame is given
by the homogeneous transformation matrix

T 0
n =

[
R0
n o0n

0T 1

]
, (2.1)

where R0
n is the rotation matrix, and o0n is the coordinate vector from the origin

of the inertia frame to the origin of frame n. The position and orientation of
the end-effector frame is thus given by

T 0
n = A1(q1) · · ·An(qn), (2.2)

with each homogeneous transformation Ai being on the form

Ai =

[
Ri−1
i oi−1

i

0T 1

]
(2.3)

xo

yo

zo

θ1

x1

y1

z1

x2

y2

z2

x3

y3

z3

θ2 θ3

Figure 2.1: Elbow manipulator with coordinate frames attached

As mentioned, the problem of inverse kinematics is to find the values of the
joint variables given the position and orientation of the end-effector. In other
words, finding the pose of the robot, or how it should move in order to be in
the correct pose, by knowing where the end-effector is, or should be. However,
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inverse kinematics is not always as straightforward to define, as the problem
requires the solution of sets of nonlinear equations. Because of this, it is possible
that multiple solutions exists, as well as no solutions [3]. One example where
multiple solutions are possible is the elbow manipulator. As seen in Figure 2.2
the manipulator can be in an elbow up configuration as in Figure 2.2a, or in
an elbow down configuration as in Figure 2.2b. In both cases, the position and
orientation of the end-effector is the same. Thus, both are valid solutions for
the inverse kinematics problem of the given end-effector. The case where no
solution exists occur when the pose is outside the robot’s workspace, where the
workspace is defined as the reachable area for the end-effector, and is determined
by the geometry of the manipulator and the limits of the joint motions.

(xn, yn, zn)

(a) Elbow up configuration

(xn, yn, zn)

(b) Elbow down configuration

Figure 2.2: Elbow up and elbow down configurations

2.2 Dynamics

In contrast to kinematics, dynamics focuses on the forces acting on the robot
and explains the relationship between force and motion. Equations of motion
are an important part of dynamics, and can be used to simulate the motion of
a robot, as well as to design controllers, and forms a basis for several computa-
tional algorithms. These algorithms are used for four important computations
in dynamics: forward dynamics, inverse dynamics, the joint-space inertia matrix
and the operational-space inertia matrix [3].
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Forward dynamics is used to determine the joint accelerations by applying
joint actuator forces and torques, which is necessary for simulation. Given joint
positions, velocities and accelerations, inverse dynamics is used to compute the
required joint actuator forces and torques to achieve the desired joint positions,
velocities and accelerations. This is used when controlling a robot using a feed-
forward controller, and for trajectory planning. The joint-space inertia matrix
maps the joint accelerations to the forces and torques, and is used to linearize the
dynamics in feedback control, as well as for analysis and forward dynamics. The
operational space inertia matrix, which is used in control for the end-effector,
maps the accelerations to task forces.

As mentioned, an integral part of dynamics is the equations of motion for a
robot. The Euler-Lagrange equation of motion is one such equation, and it is
given by

H(q)q̈ +C(q, q̇)q̇ +G(q) = τ (2.4)

where q, q̇ and q̈ are n-dimensional vectors representing respectively the joint
position, speed, and acceleration, where n denotes the degrees of freedom for
the system. If the robot is modelled as a series of rigid bodies, the q is the gen-
eralized coordinates of the mechanical system. H is the inertia matrix, which
is an n × n symmetric positive-definite matrix. C is an n × n matrix such
that C(q, q̇)q̇ represents the Coriolis and centrifugal forces, while the vector
G is the gravitational forces and τ is an n-dimensional vector representing the
joint torques. If the robot is not experiencing any external forces then with
appropriate system identification, and estimation of joint speed and joint accel-
eration, the joint torques can be calculated by (2.4). A simple robot example
experiencing an external force f is shown in Figure 2.3.

2.2.1 End-Effector Forces
The manipulator Jacobian, J is used to relate the linear and angular velocity
of the end effector and the joint velocities, as well as between the joint torques
and the force at the end-effector. The following derivations for the relationship
between wrenches and torques is from page 121 in [5] by Murray et al.

Given Ft as the wrench and letting g0(θ(t)) represent the motion of the end-
effector, the net work performed by the wrench over an integral of time from t1
to t2 is

W =

∫ t2

t1

vn0 · Ftdt, (2.5)
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τ1

τ2

q1

q2

f

Figure 2.3: Two-link manipulator with two revolute joints. The robot experi-
ences an external force f which results in torques τi on the joints.

where vn0 is the body velocity of the end-effector. As we assume a friction-
less system, this work will be the same as the work performed by the joints.
Therefore, we get ∫ t2

t1

θ̇ · τdt =W =

∫ t2

t1

vn0 · Ftdt. (2.6)

This is true for any time interval, and therefore the integrands are equal. The
manipulator Jacobian can then be used to relate vn0 to θ̇, we have

θ̇Tτ = θ̇T(Jn0 )
TFt. (2.7)

Since θ̇ is free, it follows that

τ = JTF (2.8)
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2.2.2 Flexible Joints Mapping
The model presented in Figure 2.3 assumes that the robot can be modelled
as a set of rigid bodies, and that the motor exerts torques directly on the
rigid bodies through the joints. This does not take into account flexibility
of the links of the robot or in the gears from motor to the links. Flexible
elements introduces challenges with dynamic modeling, trajectory planning, and
feedback control. This flexibility can either be in the joints or along the links.
In both cases it is necessary to introduce additional generalized coordinates.
The following derivation of the robot dynamics of flexible joints is as described
in [3] by Siciliano and Khatib. When looking at joint flexibility of a robot with
n joints, the generalized coordinates can be given by

Θ =

[
q
θ

]
∈ R2n, (2.9)

where q and θ are n-dimensional vectors of respectively link and motor positions.
The dynamic model of the system can be found by using the Lagrangian

L = K − P, where K is the kinetic energy of the robot and P is the potential
energy. The potential energy of the system comes from the elasticity of the
joints and from gravity. The joint elasticity is assumed to be linear, and is given
by

Pe =
1

2
(q − θ)TK(q − θ), (2.10)

K = diag(K1, ...,KN ), (2.11)

with Ki(θi − qi) as the torque τi that is transmitted to the ith joint.
It is also normal to choose generalized coordinates such that

Ḣ(q) = C(q, q̇) +CT(q, q̇), (2.12)

which fits well with serially linked manipulators.
By assuming that the center of mass of the actuator’s rotors are on the rota-

tion axis and that they are uniformly distributed around the axis, the potential
energy caused by gravity will only be dependent on the link positions q. Thus,
the potential energy caused by gravity is given by

Pg = Pg,link(q) + Pg,motor(q). (2.13)

The total potential energy is thus

P(Θ) = Pe(q − θ) + Pg(q). (2.14)
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The kinetic energy for the robot is given by the kinetic energy from the links
and from the rotors. For the links the energy is

Klink =
1

2
q̇TML(q)q̇, (2.15)

where ML is the link inertia matrix. For the rotors, we have

Krotor =
N∑
i=1

Krotori (2.16)

=

N∑
i=1

(
1

2
mriv

T
rivri +

1

2
RiωT

ri
RiIri

Riωri). (2.17)

Here, the linear velocity of the center of mass and the angular velocity of the i-th
rotor and rotor body are given by vri and ωri . Ri denotes the local rotational
frame. The rotor inertia is RiIri = diag(Irixx

, Iriyy
, Irizz ) with Irixx

= Iriyy
. By

using the following expression for the angular velocity

Riωri =

i−1∑
j=i

Jri,j(q)q̇j +

 0
0

θ̇m,i

 , (2.18)

with Jri,j(q) as the j-th column of the Jacobian, the kinetic energy of the rotor
can be found as

Krotor =
1

2
q̇T[MR(q) + S(q)B

−1ST(q)]q̇ + q̇TS(q)θ̇ +
1

2
θ̇TBθ̇, (2.19)

where MR(q) is the rotor masses, S(q) is a square matrix representing the
inertial couplings between the links and the rotors, and B represents the rotor’s
inertial components Irizz , and is a constant diagonal matrix.

The total kinetic energy is then

K =
1

2
Θ̇TM(Θ)Θ̇ (2.20)

=
1

2

[
q̇T θ̇T

] [M(q) S(q)
ST(q) B

] [
q̇

θ̇

]
, (2.21)

with M(q) =ML(q) +MR(q) + S(q)B
−1ST(q).
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Now that the kinetic and potential energy of the system is found, the dy-
namics can be found using the Lagrangian.

[
M(q) S(q)
ST(q) B

] [
q̈

θ̈

]
+

[
c(q, q̇) + c1(q, q̇, θ̈)

c2(q, q̇)

]
+

[
g(q) +K(q − θ)

K(θ − q)

]
=

[
0

τmotor

]
(2.22)

It is possible to simplify this by assuming that the angular velocity of the
rotors are only due to their own spinning, which reduces the angular velocity
from (2.18) to simply

Riωri =
[
0 0 θ̇mi

]T
, i = 1, ..., N. (2.23)

Using this, we get S ≡ 0, which means that the total angular kinetic energy
of the rotors is reduced to 1

2 θ̇
TBθ̇.

Thus, the dynamics becomes

M(q)q̈ + c(q, q̇) + g(q) +K(q − θ) = 0 (2.24)

Bθ̈ +K(θ − q) = τmotor, (2.25)

withM(q) =ML(q)+MR(q). Note that we now have a coupled mechanical
system between the motor dynamics and the rigid body dynamics.

2.3 Environment forces
Robot manipulators often perform tasks where they are in contact with the
environment. In these cases, it is necessary to take the environmental forces
acting on the manipulator into account when modelling. Therefore, (2.4) must
be changed in order to account for these forces. This gives

H(q)q̈ +C(q, q̇)q̇ +G(q) = τ + Jfext
(q)Tfext, (2.26)

where Jfext is the Jacobian to the point of interaction of the external force,
and fext is the external force acting on the robot. Perfectly rigid models of
the environment can be used, but it is also possible to model the environment
as a mass-spring-damper (MSD) system coupled with the rigid-body dynamics
model. By using a MSD system the equation of the environment model is given
by

fext =Ke(q − qe) +Beq̇, (2.27)
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where Ke is the environment stiffness matrix, Be is the damping matrix, and
qe corresponds to the environment position [6].

The robot can also be affected by frictional forces that may occur in the
robot joints or in the motor gears. This can affect the dynamics of the system,
and thus the accuracy. It it possible to view friction as an external disturbance,
which can be reduced by enhancing the robustness of the robot controller. This
does, however, not take into account the nonlinear characteristics of the friction,
such as hysteresis [7].



Chapter 3

Robots and Sensing

This chapter describes robots in terms of their general categories, and some of
the often encountered hardware on them.

3.1 Industrial Robots

Industrial robots are robots used in manufacturing and can perform a number
of tasks, such as welding, cutting, handling and more. In order to perform these
tasks, the manipulators need to have high positional accuracy, which relies on
sensing positioning errors. As there is often no direct measurement of the end-
effector from sensors outside the robot, the position of the end-effector must
be calculated using position measurements in the joints. This method relies on
the geometry of the robot and encoders placed either after the motor, before
the gearing mechanism, or at the link side. Because of this, robots are often
designed with very high rigidity, in order to minimize errors in accuracy caused
by things like computational errors and flexibility [1]. These robots have a high
mechanical stiffness, which is important for position-controlled systems, as it
maximizes bandwidth [8].

The payload of industrial robots is typically high, and it can be up to several
hundred kilogram, such as the KUKA KR 500 FORTEC, which has a payload
of 340 - 500 kg [9]. In industrial robots, the motors are usually not positioned
at the joint, but they go through gears. As there are more components between
the motor and link of an industrial robot, it may be harder to model friction
than it is in a lightweight robot. In addition to this the higher gearing ratios
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makes it more difficult to notice forces acting on the end-effector as changes in
the current applied to the motors. An industrial robot can be seen in Figure 3.1.

Figure 3.1: Industrial robot

3.2 Lightweight Robots

In 1993, the need for smaller and lighter robots arose, during the ROTEX space
shuttle mission [10]. The robot arm was to be used in space, but in order for
the astronauts to train for the mission they needed a robot arm on Earth. This
robot arm was to have a payload to weight ratio of 1:1, which was not possible
with the heavy pre-existing robots. Thus, one saw the need for a lightweight
robot.

This led to the development of the DLR LWR at German Aerospace Center
(DLR). Because of the desired payload-to-weight ratio, it was decided that the
weight of the robot should not exceed 15 kg [11]. The DLR LWR was equipped
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with a lightweight harmonic drive in the joints, and motors capable of high power
at low speeds, which made it possible to achieve high performance despite the
low weight of the robot.

Following the development of the DLR LWR, the first collaborative robots
were developed, with both the 7 degrees of freedom (DOF) KUKA LBR4 and
the 6 DOF Universal Robots UR5. While traditional industrial robots required
workspaces with large safety zones to operate in, collaborative robots are de-
signed to work alongside and interact with humans. This is made possible
because of their reduced weight and inertia, as well as speed limitations. By
making use of force/torque estimation and control, as well as backdrivability, it
is possible to move the robot with physical touch, making it easy to control, and
program by physically moving the robot to desired poses. This is not possible
with traditional industrial manipulators, as they have a large gearbox which is
not backdrivable. A lightweight robot can be seen in Figure 3.2.

Figure 3.2: Lightweight robot

When it comes to forces and torques in robotic manipulators there are many
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different solutions available. Consider for example the direct-drive robot and
the SCARA robot. The first direct-drive robot was developed at Carnegie-
Mellon University in 1981 [1]. While conventional robot arms consists of gears
and gearboxes, such as the harmonic drive, the shafts of the articulated joints
in direct-drive robots are directly coupled to the motor rotors [12]. The lack
of gears causes direct-drive robots to have no backlash and low friction, as
well as high stiffness which in turn leads to higher precision. In addition to
this, direct-drive robots are backdrivable [13]. Even so, direct-drive robots are
not as popular is conventional robots. The primary reason for this is that
designing motors that are both strong enough and small enough is a challenge.
In order to get powerful enough robots, the motors need to be rather big, as a
reduction in size will make the torque density drop. In addition to this, there
is a requirement for a cooling system, such as either fans or water-cooling, as
direct drives generate a lot of heat [14].

In 1978 the first prototype of the SCARA (Selective Compliant Articulated
Robot for Assembly), a 4 DOF manipulator, was developed by Professor Makino
[15]. The SCARA manipulators are designed with three revolute joints and one
prismatic, with the z-axes of the joints being mutually parallel [16][1]. The
revolute joints are generally actuated with a motor situated in the base of the
robot whose power is transmitted using flexible toothed belt, giving it selective
compliance in the X-Y directions. This makes them well suited for assembly
operations, such as pick and place, as their movements consists of translation
along three directions and rotation about a vertical axis. In addition to this,
they have a low footprint to workspace area. However, they do not possess the
flexibility of 6, or more, DOF serially linked manipulators, which are able to
handle objects in arbitrary poses.

3.3 Harmonic Drive

Harmonic drive is a strain wave gear, or harmonic gear, by the Harmonic Drive
company, which is commonly used in robotic manipulators [17].

The gear is made up of a wave generator, an actuator shaft, a circular spline
and a flex spline. The wave generator is connected to the actuator shaft and
produces a torque Twg.

The flex spline is located inside the circular spline and encompasses the wave
generator, which has an elliptical disk. It is shaped like a cup [18]. The walls
of the flex spline, as well as the open end, are flexible due to how thin the walls
are, while the bottom is rigid. The outer wall consists of several teeth. The
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flex spline produces the torque Tfs about each link. This torque is due to the
movement of the wave generator, which pushes on the flex spline and causes a
deformation of the flex spline such that it becomes elliptical.

Situated about the flex spline is the circular spline, which is a rigid circle
with teeth on the inside. When the flex spline is pushed outwards by the wave
generator, its teeth connects with the teeth of the circular spline.



Chapter 4

Robot Manipulators
Considered

This chapter describes some of the robot manipulators available at the depart-
ment of engineering cybernetics, and their specification with regards to their
applicability for force estimation. In order to gauge the amount of times differ-
ent robots presented in this chapter has been used in earlier research, a database
search was performed using Scopus, and the number of document results will
be presented. This will not give a complete picture of their usage, nor how well
they perform in regards to force-torque estimation problems, but it will help to
give an overview.

4.1 Universal Robots

Universal Robots was created in 2005 and is an industrial robot manufacturer
that specializes in lightweight collaborative robots [19]. The product line con-
sists of seven different robots: UR5, UR5e, UR10, UR10e, UR3, UR3e, and
UR16e. Here, the focus will be on the UR5 and the UR3 as they are available
at the department.

Both the UR5 and UR3 manipulators have a wide range of sensors available,
which are available through the real-time data interface. This makes it possible
to get output data from the manipulator over a standard TCP/IP connection.

The UR robots can be controlled by using a teach pendant, which is a panel
equipped with a touch screen as well as a power button and an emergency
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stop button. The screen runs Polyscope, which is UR’s proprietary robot user
interface. This makes it possible for users to easily program the robot by using
the teach pendant itself, and to run existing programs.

The Universal Robot’s UR5 was the first in line of robots that UR launched,
and was available on the market in 2008. It is a general purpose robot built
for medium-duty applications, with a payload of up to 5kg. It is categorized
as a lightweight robot, weighing 18.4 kg. The manipulator has a reach of 850
mm [20]. The range of motion and maximum speed for the joints of the UR5 is
given in Table 4.1.

Joint Range of motion Maximum speed
All 6 joints ±360◦ 180 ◦/s

Table 4.1: Range of motion and maximum speed for UR5

The UR3 is the smallest of the UR robots, with a weight of 11kg and a
payload of 3kg. Its reach is also shorter than that of the UR5, at 500mm. The
range of motion and maximum speed for the joints is given in Table 4.2.

Joint Range of motion Maximum speed
Base ±360◦ 180 ◦/s
Shoulder ±360◦ 180 ◦/s
Elbow ±360◦ 180 ◦/s
Wrist 1 ±360◦ 360 ◦/s
Wrist 2 ±360◦ 360 ◦/s
Wrist 3 Unlimited 360 ◦/s

Table 4.2: Range of motion and maximum speed for UR3

4.1.1 Real-Time Data Interface

Using the real-time data interface of the UR robots, it is possible to control
and monitor the robots remotely through a TCP/IP connection. This provides
the user with data that describes the state of the robot. Thus, it is possible
to create a program that reads the data transmitted over this connection. The
frequency of the system is 125Hz.

There are several different categories of data, such as robot mode, joint data,
tool data, Cartesian info, kinematics info, configuration data and more. For



20 CHAPTER 4. ROBOT MANIPULATORS CONSIDERED

this project, information about the joints is of relevance, and thus the package
containing joint data is of high importance. The different data available for each
joint through this interface is listed in Table 4.3.

Name Datatype Description
q_actual double Actual joint positions
q_target double Target joint positions
qd_actual double Actual joint velocities
I_actual float Actual current
V_actual float Actual voltage

Table 4.3: Relevant joint data available from RTDI of UR robots

4.1.2 Applicability

According to the search performed using Scopus, both UR3 and UR5 has been
used multiple times in previous research, but the UR5 is the one that stands
out, with 153 document results when using the keyword “UR5”, compared to
“UR3”, which gave 55 results. Considering the fact that UR5 was released in
2008, and that it was, together with KUKA LBR 4, one of the first commercially
available collaborative robots it makes sense to have a higher amount of usage
in previous research than UR3, which was released in 2015. Due to the high
number of research using UR5, it is a viable option for future research, as there is
much existing work to build from. The UR5 has been used in previous research
in [21] by Berger et al. for a learning-based method of force/torque estimation,
which will be discussed in Chapter 6.

Both robots from Universal Robots are backdrivable. This makes them
well suited for human-robot collaboration, as they can be moved by a human
through physical interaction. In addition to this, force/torque estimation is a
highly relevant problem, as the robot has to know the amount of force exerted
on it in order to know whether the force is above the threshold and therefore it
should move, as well as knowing how far and in what direction to move.

From Table 4.3 one can see that information about both actual joint positions
and actual joint velocities can be collected from UR3 and UR5 in real-time. As
will be shown in Chapter 6, several techniques for estimating forces and torques
rely on positions and velocity data from the joints. Therefore, the fact that both
robots have internal sensors for this data, as well that it can be obtained and
used in real-time with RTDI makes them good candidates for use in force/torque
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estimation research.

4.2 KUKA

4.2.1 KUKA KR16-2
The KUKA KR16-2 is a 6 DOF industrial manipulator used to process and
transfer components or products, and to handle tools. It has a rated payload
of 16 kg, while weighing approximately 245 kg, and a maximum reach of 1612
mm. The arm consists of six components: hollow-shaft wrist, arm, electrical
installations, base frame, rotating column and link arm.

The axis data is given in Table 4.4.

Axis Range of motion, software limited Speed with rated payload
1 ±180◦ 200 ◦/s
2 +35◦ to -155◦ 200 ◦/s
3 +154◦ to -120◦ 195 ◦/s
4 ±165◦ 370 ◦/s
5 ±130◦ 310 ◦/s
6 Infinitely rotating 610 ◦/s

Table 4.4: Axis data of KUKA KR16

The robot is controlled using a Kuka Robot Controller (KRC), with KRC4
being the latest iteration and KRC2 being the one available at the department.
The KRC includes robot controller, PLC, motion and safety control systems.
The KRC4 has a control rate of 250 Hz, whereas the KRC2 has a control rate
of approximately 83 Hz.

4.2.2 Robot Sensor Interface
This section is based on information found in [22]. The Robot Sensor Inter-
face (RSI) is an add-on package for KUKA System Software (KSS), which is
the OS of the KRC. It can be used for real-time communication between the
robot controller and an external system via Ethernet by using the RSI object
ST_ETHERNET. If signal processing is activated with ST_ETHERNET, the
KRC connects to the external system as a client. The robot controller transfers
KRC data to the external system using a cyclical data exchange in the interpo-
lation cycle of 12 ms for the KRC2, and 4 ms for the KRC4. By activating the
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internal read function of ST_ETHERNET large data sets can be structured.
The function is activated using the keywords in Table 4.5.

Keyword Description
DEF_RIst Send the Cartesian actual position
DEF_RSol Send the Cartesian command position
DEF_AIPos Send the axis-specific actual position of axes A1 to A6
DEF_ASPos Send the axis-specific command position of axes A1 to A6
DEF_EIPos Send the axis-specific actual position of axes E1 to E6
DEF_ESPos Send the axis-specific command position of axes E1 to E6
DEF_MACur Send the motor currents of robot axes A1 to A6
DEF_MECur Send the motor currents of external axes E1 to E6
DEF_Delay Send the number of late data packets

Table 4.5: Pre-existing RSI objects

4.2.3 Applicability

Firstly, the KUKA KR16-2 is one of the robots with fewest document results
on Scopus, with only 21 results for the keyword “KUKA KR16” and 36 results
when simply using “KR16”. This means there is not as much existing work to
build on as some of the other robots, which can prove to be a challenge.

Secondly, unlike the other robots, this one is a heavy-duty industrial robot,
and not a lightweight collaborative robot. Because of this, the robot is designed
for other requirements. As it is not designed to work in proximity of a human,
the need for force/torque estimation is not the same as in the other cases dis-
cussed. In addition to this, as explained in Section 3.2, industrial manipulators
are not backdrivable, and thus moving the robot by touching it is not possible.

Because of this, KR16-2 is not as suited to the problem of estimating forces
and torques when the focus is on robots that are to collaborate with humans.
However, it can be interesting to use the robot as a way of evaluating whether
the methods created are robust enough to work on an industrial manipulator,
and to compare the industrial and lightweight manipulators’ viability for force
estimation.
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4.2.4 KUKA LBR iiwa

The KUKA LBR iiwa is a lightweight robot with 7 DOF, and is designed for
human-robot collaboration. Two versions of the robot is available, the LBR
iiwa 7 R800 and the LBR iiwa 14 R820. The former has a payload of 7 kg and
weighs 23.9 kg, while the latter has a payload of 14 kg and weighs 29.9 kg. The
maximum reach of the robots are 800 mm and 820 mm respectively, as denoted
by their names [23].

The axis data of the two robots is given in Table 4.6.

Axis Range of motion Speed with rated payload
LBR iiwa 7 R800
1 ±170◦ 98 ◦/s
2 ±120◦ 98 ◦/s
3 ±170◦ 100 ◦/s
4 ±120◦ 130 ◦/s
5 ±170◦ 140 ◦/s
6 ±120◦ 180 ◦/s
7 ±175◦ 180 ◦/s
LBR iiwa 14 R820
1 ±170◦ 85 ◦/s
2 ±120◦ 85 ◦/s
3 ±170◦ 100 ◦/s
4 ±120◦ 75 ◦/s
5 ±170◦ 130 ◦/s
6 ±120◦ 135 ◦/s
7 ±175◦ 135 ◦/s

Table 4.6: Axis data of KUKA LBR iiwa 7 R800 and KUKA LBR iiwa 14 R820

The controller for LBR iiwa is KUKA Sunrise Cabinet which uses the KUKA
smartPAD as a user interface for operation. The smartPAD can be used to
program the robot to perform a variety of tasks. This can be done using KUKA
Robot Language (KRL).

4.2.5 Fast Research Interface

The Fast Research Interface is the interface for remote control of LBR iiwa.
The following description of the interface is based on information from [24].
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FRI gives access to the KRC at control rates of up to 1 kHz. By using UDP
socket communication as communication protocol, the user does not have to
use one specific operating system for their application. There are three control
modes available for use: joint position control, joint impedance control, and
Cartesian impedance control. Some of the data signals transmitted from KRC
to remote computer are: measured position, current commanded position, mea-
sured torque, estimated external force/torque at the tool center point, current
Jacobian, current mass matrix.

4.2.6 Applicability

KUKA LBR iiwa was the robot with the second highest amount of document
results, after UR5. Both “KUKA LBR iiwa” and “LBR iiwa” was used as key-
words, with the former giving 59 results, and the latter 67. It has previously
been used by Bargsten et al. in [25] for a learning-based approach.

As the robot has 7 DOF, as opposed to 6 DOF like UR3 and UR5, it has
a greater flexibility with regards to movements and positions. As such, it is
able to handle more complicated tasks than one with 6 DOF. One drawback
however, is that with an increase in the number of DOF, it becomes what is
known as a redundant manipulator (having more than 6 DOF), and techniques
for handling the extra degree of freedom must be used.

As signals such as position, torque, and Jacobian is available through the
FRI, the LBR iiwa is well suited for the task of estimating force/torque. In addi-
tion, the estimated external force/torque from KRC can be used for comparison
in experiments regarding the different estimation techniques.

4.3 Franka Emika Panda

Franka Emika Panda is a 7 DOF lightweight robot designed and developed by
the German company Franka Emika. The robot weighs 18 kg, with a payload of
3 kg and maximum reach of 855 mm [26]. The axis data of the Panda is given
in Table 4.7.

Panda is equipped with more than a hundred sensors, and it has link-side
torque sensors in all 7 axes. Thus, it is able to sense its surroundings with high
accuracy.
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Axis Range of motion Speed with rated payload
1 ±166◦ 150 ◦/s
2 ±101◦ 150 ◦/s
3 ±166◦ 150 ◦/s
4 -176◦ to -4◦ 150 ◦/s
5 ±166◦ 180 ◦/s
6 -1◦ to 215◦ 180 ◦/s
7 ±166◦ 180 ◦/s

Table 4.7: Axis data of Franka Emika Panda

4.3.1 Franka Control Interface
There are two components by which the Franka Control Interface (FCI) can be
accessed, which are libfranka and franka_ros [27]:

• libfranka is a C++ library for the client side of the FCI. It provides
interfaces for non-realtime commands, realtime commands, robot state
and the model library, as well as taking care of network communication
with Control. It has a control rate of 1 kHz.

• franka_ros is a ROS package which integrates the libranka library into
ROS. It contains a description of the robot, based on the URDF format.
It has support for both ROS Control and MoveIt!.

Data signals available through the FCI consist of, among others, measured
joint position and velocity, torque at link side, estimation of external force/torque.

4.3.2 Applicability
Franka Emika Panda was the robot with the fewest amount of document results,
with only 7. As it is the newest robot of the ones discussed, being launched in
2017, it makes sense that it has not been used in as much earlier research as the
others. Although UR3 and KUKA LBR iiwa were launched only 2 and 3 years
earlier, the fact that both Universal Robots and KUKA already had robots on
the market and people familiar with their products might lower the threshold
of using their newer robots in research. The fact that the Panda has not been
as widely used in research as the other robots may make it more challenging to
use, as there is not much work to use as groundwork. However, it means that
there might be a lot of unrealized potential.
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As the KUKA LBR iiwa, the Panda is a 7 DOF manipulator, and therefore
it has the same advantages and disadvantages which that entails, and which is
mentioned in Section 4.2.6. Both robots also give access to estimated external
force/torque, which can be used in experiments to compare and evaluate the
performance of estimators.



Chapter 5

Robot Middleware

This chapter describes some of the most common robot programming middle-
wares and argues which ones are most applicable to the force estimation situa-
tion considered.

Middleware is a software layer between the operating system (OS) and ap-
plications running on the OS. It is called a meta-operating system as it is not a
real operating system, but is based on one, and thus provides services such as
hardware abstraction, low-level device control, package management and more
[28].

5.1 No Middleware

Most robots can be controlled from an external computer with a TCP/IP or
UDP/IP connection. The Real-Time Data Interface for Universal Robots, as
mentioned in Section 4.1.1, is an example of this. There are often existing
libraries for communication and control of robot manipulators which are made
by researchers or by the robot manufacturers themselves, as is the case with the
libfranka library for Franka Control Interface [29] and Stanford’s Fast Research
Interface Library for the KUKA Robot Controller [30].

These sort of libraries creates dedicated software for one particular experi-
ment or robot. This might make it more approachable and easier to program
as no prior, nor new, knowledge of a middleware system is required for the
programmer in order to use the libraries. The only knowledge necessary is
the programming language they are developing in, as well as ensuring that the
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network connections can be established.

5.2 ROS

ROS, or the Robot Operating System, is a popular middleware solution for con-
trol and communication with robot manipulators. Software in ROS is organized
into loosely connected packages. The goal of these packages is to provide soft-
ware in a way that is reusable, and they follow the principle that they should
contain enough functionality to be useful, but not so much that it becomes
heavyweight. A ROS package is simply a library located in the ROS path which
can consist of nodes, libraries, and message definitions.

• Nodes in ROS are each responsible for some part of the control of the robot.
A system commonly consists of many nodes, which are all programmed to
perform one specific task each. The different nodes can communicate peer-
to-peer over channels called topics, which the nodes subscribe and publish
to. A graph showing what the relationship between nodes and topics is
shown in Figure 5.1, where the turtlesim tutorial package is running. The
ROS nodes are shown as ellipses.

• Topics are used in order for the nodes to communicate, which utilizes
publish and subscribe semantics. A node can publish data to a topic,
and all nodes subscribing to said topic will receive the information that
was published. In Figure 5.1 the topic, /turtle1/cmd_vel, is shown as
a rectangle. Here, /teleop_turtle is functioning as the publisher, and is
publishing linear and angular velocity to the topic. Both remaining nodes
subscribe to this topic, and are thus receiving messages from the first node.
However, those two nodes do not communicate with each other, but only
with /teleop_turtle as that is the only node that is publishing to the topic.
However, the nodes are unaware of which nodes they communicate with,
and focus rather on the data published or received [31].

• Services are another way for the nodes to communicate, which is a request
based form of communication. They consist of a service and a client, and
the client sends a request message to the service and awaits the reply. This
is commonly used in distributed systems [32].

As ROS is organized in such a way that packages should be reusable, there
are several existing packages available for use with regards to robot kinematics
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Figure 5.1: ROS nodes and topics

and dynamics. One such package is the Kinematics and Dynamics Library
(KDL), which is distributed by the Orocos Project. The KDL package provides
functionality for creating kinematic chains, as well as forward kinematics, inverse
kinematics and inertia matrix. Using KDL parser, a KDL Tree object can be
created from an Unified Robot Description Format (URDF) XML description.
URDF is an XML file format that is used to describe a robot by specifying its
kinematic and dynamic properties. It consists of links connected through joints,
and several types of joints are supported, such as prismatic and revolute, among
others. A diagram for visual representation of the URDF description for the
UR3 manipulator was created using the graph visualization software rqt_graph,
and can be seen in Figure 5.2. It shows a tree of how the links and joints of the
robot are connected.

Another package that is available is the ur_modern_driver, which is a driver
for Universal Robot’s UR3, UR5 and UR10 with controllers CB2 and CB3. It
provides nodes for communication with the controllers, which makes it possible
to use with the real-time data interface as mentioned in Section 4.1.1. The
user is therefore able to get much of the same information as when using the
real-time data interface in Section 4.1.1, such as joint data, wrench in the base
frame of the robot, and joint temperatures. The information from the robot is
published on several topics and can be recorded as a rosbag for later use and
replay.

However, as of November 24th 2019 the driver was deprecated in favour of
Universal_Robots_ROS_Driver, which was developed in collaboration between
Universal Robots and the FZI Research Center for Information Technology [33].
It uses the Real-Time Data Exchange (RTDE) for communication, instead of
the earlier realtime data interface.
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5.3 ROS 2

In 2007 work started on developing ROS 2 [34]. When ROS 1 was developed,
real-time constraints were not considered, and as such it does not support writ-
ing real-time code, but instead relies on external frameworks [35]. Because of
this ROS 1 has real-time limitations, while ROS 2 was developed with real-time
systems in mind, and thus supports real-time control directly. However, this
project looks at the viability of techniques for estimating forces, and thus final
integration questions such as real-time viability of middleware system involved
is not as big of a problem.

Some of the more important differences between ROS and ROS 2 are shown
in Table 5.1, which is based on information from [36] and [37].

5.4 Orocos

OROCOS is another middleware solution that has been widely employed in real-
time dependent control situations. The idea of Orocos (Open RObot Control
Software) came from Herman Bruyninckx in late 2000, after being disappointed
by the commercial robot control software available, and the lack of access to the
deepest layers of the hardware control. Thus, an idea for a more open control
software for robotics was presented, and in 2001 the project started [38]. Modern
Orocos includes the Orocos Toolchain which can be integrated with ROS.

• The Orocos Toolchain consists of libraries and programs used to create
real-time applications. Two important componants of it are the Real-Time
Toolkit and the Orocos Component Library.

• The Real-Time Toolkit is a component framework for real-time soft-
ware and communication [39].

• The Orocos Component Library is used for developing interchange-
able software components that can be controlled with a lifecycle based on
a finite state machine, and deterministically updated [40].

• Orocos Kinematics and Dynamics Library (KDL) is a library for
computation and modelling of kinematic chains. It provides support for
geometric primitives, such as frame, point and twist, as well as kinematic
and dynamic solvers, which includes forward and inverse kinematics [41].
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Features ROS ROS 2
Platforms Tested on Ubuntu and main-

tained on other Linux distribu-
tions and OS X

Currently tested and supported
on Ubuntu Xenial, Windows 10
and OS X El Capitan

C++ C++03 C++11 and parts of C++14
Python Python 2 Requires at least Python 3.5
Middleware Custom serialization format and

transport protocol
Based on the DDS standard,
which uses UDP, and provides
several Quality of Service (QoS)
policies

Unify du-
ration and
time types

Duration and time types are in
C++ and Python, and are de-
fined in the client library

Defined as messages, therefore
consistent across languages

Components
with life
cycle

Every node has its own main
function

Tools such as roslaunch may be
used to start a system composed
of many components in a deter-
ministic way

Threading
model

Can only choose between single-
threaded or multi-threaded exe-
cution

More granular execution models
available

Multiple
nodes

Not possible to create more than
one node in a process

Possible to create multiple nodes
in a process

Real-time
support

Does not support writing real-
time code

Possible to write real-time nodes

Table 5.1: Features differences of ROS and ROS 2

• Orocos Bayesian Filtering Library (BFL) is a framework for infer-
ence in Dynamic Bayesian Networks, and it includes estimation algorithms
such as Kalman Filters and Particle Filters [42].

5.5 Comparison of middleware solutions

This section will be used to compare the different middleware solutions and to
conclude which is most appropriate for this application, and why that should
be pursued.

As discussed in Section 5.1, using no middleware is a possibility. However,
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as stated, these libraries are very specific and also lack reusability. If the goal is
to create an application which only works on one robot, and one does not want
to spend time learning a new middleware, this might be a feasible solution, but
for this application it is not.

Three different middlewares were described in the sections above: ROS, ROS
2 and Orocos.

One major advantage of ROS is that it is the most commonly available
middleware of the ones presented. ROS has a worldwide user base with over
11 000 unique packages downloaded in July 2019 and more than 100 000 wiki
pages [43]. Because one of the defining factors of ROS is that packages should be
reusable, this means that there already exists a lot of packages readily available
to use, as well as documentation and multiple examples of how to use them.
In addition to this, there are ROS packages for all of the robots presented in
Chapter 4,

However, the introduction of ROS 2 opens several new possibilities which
were not possible with ROS. One of the most important aspects is the support of
real-time computing. Another is that it introduces the ability to do composition
of nodes, meaning that you can publish and subscribe via shared memory. In
regards of this application, this will make a force estimation - force control loop
run faster. Another aspect is the Python support. As mentioned in Table 5.1,
while ROS 2 requires at least Python 3.5, ROS is still targeting Python 2.
However, as of the beginning of 2020, Python 2 is no longer supported by the
Python Software Foundation, which means there will be no new changes nor
bug fixes. This, combined with the new key features of ROS 2 makes it a more
future proof option. Even so, ROS 2 is still in development, and there is still a
lack of compatible packages and software stability.

Orocos is primarily used at Katholieke Universiteit Leuven, and does not
have the large userbase and the amount of packages ROS does. In addition to
this, documentation is sparse, which makes it more difficult to figure out how
to use.

In conclusion, the best options are ROS and ROS 2. As ROS 2 is still in
the works, ROS is best suited for this application as of now. However, in the
future when ROS 2 is more stable and more packages are available, it will be
the better option because of the multiple key features which ROS is lacking.



Chapter 6

Estimating Force and Torque

In this chapter, different state-of-the-art estimation techniques for estimating
forces and torques in the end-effector are presented, and at the end a table is
provided which gives an overview of the different articles and the techniques
used.

6.1 State-of-the-Art Estimation Techniques

There is a lot of previous research on how to estimate forces and torques in robot
manipulators. A majority of these use sensors for position or motor current as
input to the estimator. However, this presents difficulties, such as how to handle
large disturbances caused by things like friction. There are several methods to
overcome this challenge, such as modeling the disturbance, using an observer,
or using adaptive methods. In this section, earlier research on how to estimate
forces and torques will be presented, several of which take into consideration
how to handle disturbances.

In order to determine which methods and what research to review, a system-
atic literature review was performed using two different databases and several
keywords. The databases used were Scopus and Web of Science. Scopus is an
abstract and citation database of peer-reviewed literature for Elsevier, while
Web of Science provides access to multiple databases. Both can be used to get
comprehensive data about articles and citations, as well as analyses of search
results.

The purpose of this review is to evaluate what is existing literature on the

34
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topic, and create an overview of what methods have been used. Particularly if
force estimation is to be applied on a variety of robot platforms, it is important
to note whether a particular technique, such as observer-based estimation, has
been demonstrated by researchers on different robot platforms. Another growing
field is machine learning, and as such, another point to evaluate was whether
there has been much work on learning-based approaches to force estimation.

Several searches using different keywords were performed. The keyword
“force estimation” was included in all of the searches. This was combined with
either “robotics” or “robots”, where the former resulted in 151 document results
while the latter gave 177 document results when using Scopus. Web of Science
gave more results overall, but less results when the word “robotics” was used
than Scopus did. In total, Web of Science gave 391 document results when
using the keyword “force estimation” combined with either “robots” or “robotics”,
where the former gave 245 results, and the latter gave 146. This shows that the
keyword “robots” is more widely used than “robotics”, and thus it will be the
keyword used for further analysis. The databases also gives an overview of the
number of documents published each year, which can be seen in Figure 6.1,
where this development is shown for both Scopus and Web of Science, as well as
the differences between number of documents containing “robots” or “robotics”.
From these graphs it can be seen that force estimation for robots is a relatively
new research area, with the first result from Scopus being from 1989, while
the first document in Web of Sciences databases is from 1996. In addition to
this, the figure shows this is a growing area of research with an approximately
exponential growth the last few years, which goes to show that this is a highly
relevant area for further research.

The analysis of state-of-the art estimation techniques from the specializa-
tion project focused on four methods of force estimation: observer-based, least-
squares, inverse dynamics and learning-based. Thus, searches with these key-
words were also performed. As the keyword “robots” gave more results than
“robotics” in previous searches, this was chosen as the keyword to use together
with “force estimation” as before, as well as the methods mentioned. By looking
at the results from this, one can conclude that observer-based and learning-
based are the most commonly used methods, as the former gave 36 results and
the latter 9 results when using Scopus, while least-squares and inverse dynam-
ics gave 5 and 3 results respectively. As with the searches where the methods
were omitted, Web of Science gave more results than Scopus when including the
keywords “observer” and “learning”, with 73 results for the first and the latter
giving 16 results. In Figures 6.2 and 6.3 the number of documents are shown
for each keyword per year for Scopus and Web of Science respectively.
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Figure 6.1: Document results by year with the keywords “force estimation”,
“robots” and “robotics” for Scopus and Web of Science
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Figure 6.3: Document results of keywords “force estimation” and “robots” com-
bined with either “observer” or “learning”, Web of Science

By looking at relevant keywords and number of citations 16 articles were cho-
sen for further review. The number of citations each article has will be presented
when their results are discussed. As Figures 6.2 and 6.3 shows observer-based
force estimation is more commonly used than learning-based. However, this
might be due to the novelty of machine learning and learning-based methods
rather than relevance and quality in regards to force estimation. In order to
get an overview of how different techniques are applied and their performances
all four methods mentioned previously will be discussed. The focus will be on
observer-based and learning-based approaches, as the former is the most com-
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monly used of the four, and the latter because machine-learning is a growing
research field and shows promising results when used in force estimation.

Hacksel and Salcudean proposed to use observers in order to estimate the
environment forces and rigid-body velocities of a robot in [44] (67 citations in
Scopus and 48 in Web of Science). This was done by thinking of the environ-
ment force, or torque, as if it was controlling a damped mass-spring system,
which represented the observer error dynamics. One can then measure the dis-
placement of the spring from its equilibrium as if it acts as a stiff spring, which
in turn can give an estimate of the environment forces and torques. Starting
with a simple state observer for a rigid body, the authors presented the following
linear force estimator for the environment forces

fenv = kpx̃, (6.1)

where kp is a positive constant, and x̃ = x − x̂ with x̂ as the observer values
for the position x. Hacksel and Salcudean used the velocity observer presented
in [45] with modification to account for the force observer. Rotations were
parametrized by Euler parameters. In order to estimate environment torque
the difference in orientation between the actual body and observed body was
used. This resulted in the following error equations

µ̇ = τenv −
1

2
kpI−1esgn(e0) (6.2)

ė0 = −1

2
eTI−1(µ− kvesgn(eo))

ė =
1

2
[e0I − (ex)]I−1(µ− kvesgn(e0)),

where µ = I(ω−ω̂), I and ω are respectively the inertia matrix and the angular
velocity of the body, and e0 and e are the scalar and vector part of the Euler
parameter representation of the attitude error between the actual body and the
observed body frames, and kv is a positive constant. From this, the estimate of
the environment torque becomes

τenv =
kp
2
I−1e, (6.3)

which was shown to be a good estimation at low frequencies, but deteriorates
at larger torques.

This was extended to serial mechanisms, in order to handle a general robot
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model as in (2.4). The observer used is given by

˙̂x1 = x̂2 + kvx̃1 (6.4)
˙̂x2 =H−1(q)(−C(q, ˙̂x1) ˙̂x1 −G(q) +Kpx̃1 + τ

x̃1 = q − x1,

with the error dynamics

H(q)¨̃x1 +C(q, q̇) ˙̃x1 + C(q, ˙̂x1) ˙̃x1 = −Kpx̃1 − kvH(q) ˙̃x1 + τenv, (6.5)

where τenv is an environment input added to the motor torques τ .
The experiments were performed on a UBC maglev wrist with 6 DOF. In

order to compare between actual torques and the observer-based torque esti-
mates, a JR3 force/torque sensor was used. This showed only a small deviation
between the actual and estimated forces and torques, thus it was shown that
it is possible to very closely estimate forces and torques using their proposed
observer without the need of external sensors.

In [46] (41 citations in Scopus and 34 in Web of Science), Van Damme et al.
presented two ways of estimating the force at the end-effector. The first uses
a filtered dynamic model and applies a recursive least-squares estimation with
exponential forgetting. The second approach uses a generalized momentum-
based disturbance observer. The reason for using a filtered dynamic model is to
not be dependent on the acceleration q̈, as the acceleration will be very noisy
since it is acquired by taking the derivative of the position twice. A first order
filter was used to filter each side of the dynamics equations of a serial robot

H(q)q̈ +C(q, q̇)q̇ +G(q) + τf (q̇) =K(q, q̇, q̈)θ = τ , (6.6)

where K is the inverse dynamics separated from the system parameters and θ
is the vector of the system parameters in vector form.

The filter had the following transfer function and impulse response

F (s) =
1

s
ω + 1

(6.7)

f(t) = L−1{F (s)} = ωe−ωt. (6.8)

Applying the filter to (6.6) results in

Kf (q, q̇)θ = 〈τ 〉F (s), (6.9)
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where Kf (q, q̇) has replaced K(q, q̇, q̈), and thus it is no longer dependent on
the acceleration q̈. Introducing an external force to the system leads to the
dynamics as given in (2.26). The filtered equation is given as

〈JT(q)〉F (s)fe =Kf (q, q̇)θ − 〈τ 〉F (s) (6.10)

where JT(q) is the Jacobian to the end-effector, while fe is the 6 × 1 end-
effector wrench vector of external forces and torques. Using weighted least-
squares estimation one can estimate the external wrench as

f̂e = argminfe

N∑
k=1

β(N, k) · (yf [k]−Af [k]fe)
2, (6.11)

with N measurements, and with Af = 〈JT(q)〉F (s) and yf = Kf (q, q̇)θ −
〈τ 〉F (s).

The momentum-based observer introduces a disturbance torque τd in the
joints. The dynamic equation then becomes

H(q)q̈ +C(q, q̇)q̇ +G(q) + τf (q̇) = τ + τd. (6.12)

Using this, the authors arrived at the following estimator for the external wrench
fe

fe = (JT(q))−1r, (6.13)

with r =KIe, and where KI is a diagonal gain matrix with positive gains.
Both methods were tested on a pneumatic manipulator arm, which has 2

DOF. An external force sensor was used to measure the force exerted by the
actuators. First, simulations were performed. The pneumatic muscle actuators
were kept at a constant pressure. The result showed that there was almost
no noticeable deviation between applied force and estimated force, both using
least-squares and observer. Subsequently, a sensorless admittance controller
was implemented. Weights were attached to the end-effector in order to test
the accuracy of the force estimation, which showed good results. The result
showed that both approaches worked well in order to estimate force, and that
they did not differ much, though the observer-based estimator was noisier than
the recursive least-squares approach.

A learning-based approach was presented by Colome et al. in [2] (40 citations
in Scopus and 27 in Web of Science), used in combination with a disturbance
state observer. This eliminates the need for an analytical model of the robot
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dynamics. Using inverse kinematics gives

τT = τc − τe (6.14)
τc =Kθ(q, q̇, q̈), (6.15)

where τT is the vector of total input forces to the joints, τc is the applied torque
commands and τe is the external torque. In order to obtain the function Kθ,
meaning to approximate the inverse dynamics of the robot, the authors used the
method Locally Weighted Projection Regression (LWPR) [47] and the LWPR
open access library [48] for model learning. Using this, one can assume that
Kθ is learned, which follows that τc is known. As acceleration is only available
as a second derivative of the joint positions, it is highly susceptible to noise.
Thus, when learning a task, they used the desired trajectory and its resultant
accelerations instead of the joint position measurements.

In [49] (36 citations in Scopus and 31 in Web of Science) by Zhang et al.,
a harmonic drive compliance model based on position measurements was pre-
sented and used to estimate torque in robotic joints. The wave generator of the
harmonic drive was driven using a DC motor which has the ability to measure
the angular displacement of the rotor. In order to measure the output angle of
the joint, an absolute position encoder was connected to the harmonic drive on
the link-side.

In order to test the estimation scheme, an experimental setup with three
joints was used. The first joint was the test-joint, that is, the joint with a
harmonic drive and link-side encoder. Four experiments were performed: the
first one with gradually changing load torque, the second with rapidly changing
torque, the third with a sudden payload change, and in the final experiment
external static torques were applied. The results were compared to the torque
measurements from a force/torque sensor. The maximum differences between
the estimated torque and the torque sensor never exceeded 1.9 Nm, and the root
mean square error (RMSE) levels of the differences were below 0.5 Nm for all
experiments. In order to demonstrate the effectiveness of the joint torque esti-
mation, it was used for motion control. The RMSE values of the tracking showed
a 75% improvement when using joint torque feedback with the torque estimate.
The torque sensor still proved to perform better, with an 80% improvement.

In [50] (28 citations in Scopus and 18 in Web of Science), Wahrburg et al.
used a combination of generalized momentum observer and disturbance observer
in order to estimate external wrench. The generalized momentum disturbance
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observer is given by

˙̂p = τ̄ +L(p− p̂) (6.16)

f̂ = −(JT)+ ·L(p− p̂), (6.17)

with τ̄ = τmotor +C
Tq̇ −G− τfric, and a positive definite matrix L.

Generalized momentum does not depend on acceleration q̈, which reduces
errors resulting from differentiating position and velocity. It does, however, have
its drawbacks, such as assuming ideal friction estimation. In addition, τmotor
must be known, and a good model for C is needed. Therefore, using a Kalman
filter approach based on the generalized momentum was suggested, in order to
take into account both model uncertainties and disturbances, by combining the
aforementioned method with a disturbance observer.

The estimation scheme was tested on a simulated ABB YuMi manipula-
tor, and compared with a generalized momentum observer. The result showed
that the proposed scheme had improved accuracy over the standard generalized
momentum observer reference because of inaccuracies when estimating joint
friction.

Two methods to estimate force was presented by Stolt in [51] (64 citations in
Scopus and 49 in Web of Science for [52], which is included in his PhD Thesis),
by using the joint position control errors and the joint motor torques. In some
industrial robots, the joints are controlled by individual PID controllers with a
feed forward based on the robot dynamics. These controllers have an integral
action which can be disabled in order for the controllers to act as virtual springs
when under static loads. An external force acting on the joints will cause a
deviation of the joint angle from its reference point. This deviation will then
correspond to the torque of that joint by the virtual spring equations. Thus,
one can use the same methods as if each joint had its own torque sensor in order
to find the external force that acted upon the manipulator. The joint torques
are then given by

τ = J(q)TF + e, (6.18)

where J(q) is the Jacobian to the point that the external force wrench acts
on the robot, q are the joint positions, F is the end-effector wrench, and e
are the disturbance joint torques. The minimum variance estimate of the force
is given by F̂ = (JR−1

e J
T)−1JR−1

e τ . This may be a poor estimate at large
disturbances according to Stolt. A solution to this is to use a priori knowledge
about the particular assembly operation and adopting a Bayesian approach.
Using this, the minimum variance unbiased estimate of F is given by
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F̂ = (JR−1
e J

T +R−1
F )−1(JR−1

e τ +R−1
F F̄ ), (6.19)

where prior knowledge of F is described as E[F ] = F̄ and E[F − F̄ (F − F̄ )T] =
RF , where E denotes the expected value. The integral part of the controllers
highly affected the performance of the estimator. If it was removed completely,
problems with the offset caused by gravity and friction arose, while keeping it
made it impossible to estimate constant force, because the controller would need
to have a stationary error.

In order to test the estimation scheme, the robot performed an assembly
task, with a ATI Mini40 force/torque sensor used to get validation data. The
force was estimated both with and without apriori information about the low
contact torques.

Berger et al. presented a machine learning approach to estimate torque in
robot manipulators in [21] (6 citations in Scopus and 5 in Web of Science, cho-
sen because it had “machine learning approaches” as a keyword). This opens
the possibility of estimating without any prior knowledge of the kinematics or
mass distribution of the robots. All 105 sensors of the UR5, which are provided
by the robot’s realtime interface, were used in order to identify which sensors
were most important for the estimation scheme. In addition to the information
from the sensors, the relative time and the preconfigured torque were recorded.
10 different configurations of the torque were used to record training data, as
well as virtual training sets that were interpolated by using Dynamic Mode De-
composition (DMD) [53]. After data acquisition, the authors generated a model
consisting of the Phase-Feature Space (P-FS) and the Torque-Feature Space (T-
FS) that are low-dimensional embeddings of the original high-dimensional data.
To do this, and to find which sensors were most important, they looked at how
much the preconfigured torque and the relative time influenced the sensors. It
was found that the angle sensors were influenced greatly by the preconfigured
torque, while current sensors were affected by the relative time. Sensors not
influenced by the relative time were not relevant, and thus ignored for phase es-
timation, while for torque estimation the sensors not influenced by preconfigured
torque were ignored.

In [54] (67 citations in Scopus and 57 in Web of Science) by Su et al. the
goal was to estimate tactile properties and to detect manipulation events of a
robot arm by using contact-based techniques, as well as classifying slip events.
While most of the other articles focused on the arm itself, and thus its end-
effector, this article focused on the finger forces of the robot, and therefore also
introduced a grip force controller, in order to pick up objects without using too
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much force on the object itself. BioTac sensors were used as biomimetic sensors
in order to estimate forces, and to detect and classify slip events.

In order to estimate finger forces it is important to have a reliable estimation
of tri-axial forces (Fx, Fy, Fz). Su et al. used the readings from the BioTac sensor
to employ and evaluate four different methods of force estimation, all of which
can be characterized as learning-based estimation techniques.

The robot used is a Barrett arm/and system with three fingers, all equipped
with BioTac sensors. Each of these sensors consist of an array of 19 electrodes,
which can be used to characterize tri-axial forces by looking at their changes of
impedance.

The first approach used a weighted sum of the normal vectors of the elec-
trodes, given by (Nx,i, Ny,i, Nz,i). By using the impedance changes Ei, and the
scaling factors (Sx, Sy, Sz) which convert calculated contact forces into Newtons
and are learned by using linear regression and ground truth data, the weights
are given by FxFy

Fz

 =

19∑
i=1

SxEi, Nx,iSyEi, Ny,i
SzEi, Nz,i

 . (6.20)

Locally Weighted Projection Regression (LWPR), which was also used by
Colomé et al. in [2], and regression with neural networks were introduced in
order to further improve the quality of the force estimation. The second ap-
proach used LWPR, where N local linear models ψk(x) were used to compute a
weighted mean of the values of all local models in order to estimate the function
value, given by

f(x) =

∑N
k=1 wk(x)ψk(x)∑N

k=1 wk(x)
, (6.21)

where wk(x) represents the weights which, based on the distance between the
estimation point and the function value, are used to determine the influence each
local model ψk(x) has on the function value. These weights are often modelled
using a Gaussian distribution with ck as the centers of the Gaussians and D as
the distance metric, such that

wk(x) = exp(−1

2
(x− ck)D(x− ck)). (6.22)

The weights and the parameters of each local model were learned using
locally weighted partial least squares regression.
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Neural networks (NN) were used for the third approach, by using a single-
hidden-layer consisting of 38 neurons. In the fourth approach a multi-layer NN,
which consisted of three hidden layers in addition to input and output, was
used in order to learn the mapping from BioTac electrode values to the finger
forces. In this NN, each layer consisted of 10 neurons each. For both the single-
hidden-layer and multi-layer NN approaches the function for the neurons were
the hyperbolic tangent sigmoid transfer function given by

a =
2

1 + exp(−2n)
− 1. (6.23)

A linear transfer function was used for the activation of the output layer,
and the NNs were trained with the error back-propagation and Levenberg-
Marquardt optimization technique.

A grip controller was designed for testing the force estimation, where the
robot arm was to grip and lift an object. Initially, the fingers of the robot are
position controlled by using the estimated normal force Fz in order to close
on an object until the force went above a certain threshold. Following this,
the position controller was stopped and the grip force controller was employed,
where the minimal required grip force was estimated using Ft =

√
F 2
x + F 2

y for
the force tangential to the BioTac sensor, and the grip force Fz was controlled
by Fz = Ft

µ + safety margin, where µ was the current estimation of the friction
coefficient.

A data set consisting of raw signals of the 19 electrodes was collected and
divided into several data sets containing 30 seconds intervals of readings, which
were used for the training and test sets for the NNs in order to evaluate the
different force estimation methods, in addition to a validation set to prevent
overfitting. Root Mean Squared Error (RMSE) of the force N and Standard-
ized Mean Squared Error (SMSE) was used to evaluate the methods. The three
learning-based methods all outperformed the analytical method. Even though
a validation set was used, both the LWPR and single-hidden-layer approach
overfitted the data, which means that they performed well on the full set con-
taining data they had already been exposed to, but was lacking in performance
on sets they had not been exposed to already. However, the 3-layer NN was
able to avoid overfitting, as well as performing well on the test set. The best
RMSE values for the 3-layer NN on the test set in x, y and z-direction were
0.43N , 0.53N and 0.85N respectively, while the SMSE values were 0.08, 0.03
and 0.02. Thus, it can be concluded that the 3-layer NN approach achieved the
best performance.
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Gupta et al. used a nonlinear disturbance-observer based force estimation in
order to estimate contact forces during haptic interactions in [55] (41 citations
in Scopus and 28 in Web of Science). Initially, they started with the model
of an n-link robot manipulator with external disturbance as in (2.26) with the
disturbance given as d. Then they defined an auxiliary variable vector

z = d̂− p(q, q̇), (6.24)

with d̂ as the disturbance estimates. The nonlinear function, L(q, q̇) was defined
as

L(q, q̇)H(q)q̈ =
dp(q, q̇)

dt
, (6.25)

and ˙̂
d was defined as

˙̂
d = −L(q, q̇)(d̂− d). (6.26)

By differentiating (6.24), the error is found to be given by

e = d− d̂. (6.27)

By assuming that ḋ = 0 and differentiating (6.27), the authors got the
following

ė = ḋ− ˙̂
d (6.28)

= −L(q, q̇)e, (6.29)

which was proven to be exponentially stable with the choice of p(q, q̇) = cq̇,
where c is a positive scalar. By defining a Lyapunov function candidate and
differentiating it, it was shown that the rate of convergence is proportional to c.

A custom single degree of freedom haptic interface was used in order to
test the disturbance-observer. Two tests were performed: one during free space
interaction, and one during virtual wall interaction, which was simulated as
a simple spring. Results showed that there was a slight time delay with the
disturbance-observers tracking of contact forces, and there is a slight deviation
between measured and estimated forces, with maximum near the peaks. The
tests done using a virtual wall resulted in larger errors than during free space
interaction. The disturbance-observer was then used for a disturbance-observer
closed-loop controller, and results indicated that it performed well and could be
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used in place of a force sensor. However, the observer was designed for constant
disturbances, which may not translate to the real world, such that exponential
stability would not necessarily be possible, and issues regarding stability might
occur.
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Chapter 7

Discussion

As shown in Chapter 6 and Table 6.1 there are several different state-of-the-art
methods of estimating forces and torques in robot manipulators.

Several of these methods rely on the availability of an accurate analyti-
cal model of the robot, such as model-based observers, and when using motor
current measurements and translating this to the joint torques. This requires
information about the robot and motor dynamics of the specific robot used,
which might not be easily available. In addition to this, the model will need to
be changed, or calibrated, when used with different robots, or when changes are
made to the robot, such as attaching different tools at the end-effector. In the
case of lightweight robots, such as UR3 or Panda, even small deviations might
cause a large percentage of error, and the model might need to be calibrated
often.

As mentioned in Section 2.3 the robot will be affected by other forces acting
upon it, such as forces caused by contact with the environment and frictional
forces that appear in the joints and motor gears of the robot. Some estimation
methods rely on having the values of the friction available. These methods can
be well-suited for direct-drive mechanisms, as they have low friction because
of the lack of gears. However, they are not as well-suited for industrial and
lightweight manipulators which have gears and/or gearboxes.

Force and torque signals are widely used for force control of robots. Because
of this, the estimation method must be able to estimate forces and torques when
the robot is moving. Some of the methods presented assume almost-stationary
situations, and experiments are performed on stationary robots. This results in
the estimation not being available when the robot moves, which in turn makes
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it unusable for force control during operations such as assembly.
Some of the more recent work on estimating forces and torques in robots

have used learning-based methods. With these methods, the parameters of the
modeled dynamics can be tuned by using adaption, or it can be used to avoid
the need of analytical model of joint’s friction. If applied to robots with internal
sensors, such as the UR3, the method can be used to learn which sensors are
relevant for the estimation, and the model can be used to accurately estimate
forces and torques at runtime. However, some limitations might appear when
using learning-based methods, such as that the configuration of the robot might
have to be exactly the same way for the offline training and realtime estimation.

A comparison between an analytical approach and some learning-based meth-
ods, which was performed by Su et al. in [54] was discussed in Chapter 6. This
showed that all three learning-based methods outperformed the analytical ap-
proach. One of the learning-based methods used in earlier research is Locally
Weighted Projection Regression, which was used by Colome et al. in [2], as well
as by Su et al. However, in both articles, neural networks were introduced in
order to improve the quality of the estimators. With machine learning being
a growing field of research, and the quality in performance of learning-based
estimation techniques shown in the mentioned articles, approaches which make
use of learning, and especially neural networks, would be promising methods to
pursue.

In Chapter 4 the different robots currently available for the project was
presented: Universal Robot’s UR3 and UR5, and KUKA’s KR16 and LBR
iiwa, and Franka Emika Panda.

The KUKA Robot Sensor Interface (RSI) for the KR16 makes it possible
to read the forces and torques at the end-effector using a force/torque sensor,
and to read the currents supplied to the motors. However, it is unlikely that
the forces exerted on the link side will be noticeable at the motor current side
for any reasonable amount of external force. In addition to this, because of the
12ms interpolation cycle the update frequency of the interface is limited to 83Hz
[62]. This limits the usefulness of the robot in force estimation experiments.

The UR3, UR5, KUKA LBR iiwa and Franka Emika Panda are all lightweight
collaborative robots, which makes them more suited for force estimation exper-
iments than the KR16. The UR3 provides a signal of the force exerted at the
end-effector in terms of a wrench defined with respect to the base of the robot.
The UR3 also provides joint torque measurements. In addition to this it is
backdrivable, making it easy to control simply by moving the robot arm itself,
as mentioned in Section 3.2. This also applies to LBR iiwa and Panda.

Using ur_modern_driver, or the new Universal_Robots_ROS_Driver, with
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ROS makes it is possible to collect internal sensor data for the UR3 and UR5.
Thus, it is possible to collect a large amount of training data to be used for a
learning-based estimation method.

As both LBR iiwa and Panda have 7 DOF, they are more flexible compared
to the other manipulators. Thus, they can be used for more complicated tasks.
However, as discussed in Section 4.2.6 this extra DOF introduce the need for
techniques to handle it. Therefore, using a 7 DOF manipulator will be a more
complicated task than a traditional 6 DOF manipulator. A dexterity analysis
was performed in [63] by Kuhlemann using KUKA’s LBR iiwa and KR10 R900,
where the latter is a 6 DOF manipulator. The purpose was to compare kine-
matics for 6 and 7 DOF, and to analyze the effects of the additional joint. LBR
iiwa was simulated as a 6 DOF manipulator for direct comparison. The results
showed that the additional DOF enhanced the dexterity by 16.8%, which was
lower than what the authors expected. When comparing the highest average
dexterity of the manipulators, KR10 R900 outperformed LBR iiwa by 7.6%, due
to larger joint ranges.

As with the UR3, the Panda has a significant amount of internal sensors,
with more than 100. Because of this, it is well suited for learning-based methods,
where the amount of data is important. One of the methods in Chapter 6 used
learning in order to figure out which sensor signals were most important for use
in force/torque estimation. This was done on UR3, but with the amount of
sensors the Panda offers, the manipulator would be a good choice for such an
approach.

As for robot middleware, four alternatives have been discussed: no middle-
ware, ROS, ROS 2 and Orocos.

Because the application should be designed to be general and work on several
robot platforms, no middleware would not be a viable solution, as these libraries
are usually designed for one specific robot.

One of the main issues with Orocos is the lack of documentation. Because
of this, using Orocos as a middleware might be more challenging than some of
the other options. In addition, the userbase is not nearly as large as it is for
ROS.

The modular design of ROS makes it well suited for the application. Using
this as middleware, it would be possible to design a package for the estimator
which would work with several different robots. Packages for support of the
different robots discussed in Chapter 4 already exists in ROS, and therefore
this does not need to be created in order to make it possible to use the robots.
In addition to this, packages for robot kinematics and dynamics, among other
things, have already been developed, and as such, can be used to simplify the
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work significantly.
As of now, ROS 2 is still under development, and is lacking in regards to

packages and stability. Therefore, it would not be recommended to use as
middleware as of yet. However, when ROS 2 has reached a stage where the
software is more stable and it there are more packages available, it would be
a possible middleware to use. The feature differences given in Table 5.1 in
Section 5.3 make the ROS 2 a more future proof middleware than ROS.



Chapter 8

Further Work

The original plan for this thesis was to implement the different estimation tech-
niques and experiment with them on a robot. Therefore, this will be a natural
area to research for further work.

Of the robots discussed, all of the lightweight robots are viable options to use
in experiments. However, due to the additional DOF of LBR iiwa and Panda,
the best place to start might be with UR5 or UR3.

As for middleware, ROS, and subsequently ROS 2 when it is more developed,
are the best solutions for the task. The multiple packages available make it a
lot easier, as a lot of the groundwork is already done.
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Conclusion

In this report, several different state-of-the-art methods of estimating forces
and torques were presented and discussed. Four robot manipulators were con-
sidered, and their applicability was examined. Some of the most common robot
programming middlewares were discussed.

It was shown that two promising estimation techniques were observer-based
and learning-based methods. Observer-based has been successfully used multi-
ple times in previous research. Learning-based is a rather new approach, but it
was shown to give promising results, and the fact that accurate models of the
robots are not necessary makes it applicability for an application described as
in Section 1.2.

Further, it was shown that the four lightweight robot manipulators, UR5,
UR3, KUKA LBR iiwa, and Franka Emika Panda, are all possible to use. UR3,
UR5 and Panda are well suited for a learning-based approach, where the amount
of data is important, as they provide over 100 different sensors. However, both
LBR iiwa and Panda are redundant manipulators, and techniques for handling
their additional DOF must be used. Therefore, the UR3 would be the manipu-
lator best suited for the application.
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