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Abstract

This thesis investigates how energy can be harvested from the wake of a bluff body
to achieve energy autonomy for an articulated intervention autonomous underwater
vehicle (AIAUV) by using undulatory motions.

The relevant literature concerning energy harvesting, simulation models of
objects downstream from a cylinder and control methods regarding the motion of
underwater snake robots (USR) is reviewed. Then, the necessary fluid mechanics
theory is presented.

The equations of motion for four submerged bodies are then derived. The first
model is a double pendulum, consisting of two rectangular links connected by a
rotational spring and damper, where the first link is connected to a cylinder. The
second model is a square with smoothed edges constrained by springs and dampers
connected to a cylinder and the lower end wall. The third model is an elliptical three
link pendulum where the links are connected by rotation springs and dampers, the
first link is immovable to constrain the horizontal motion of system. The final model
is an elliptical three link pendulum where the links are connected with linear springs
and the first link is connected to a cylinder with a spring.

The first three models are then implemented in COMSOL Multiphysics, while
the last model is implemented in a simulator that has been computationally verified
in related work and is used to assess the reliability of the models developed. The
simulations show that all the models are capable of harvesting energy from the
dampers, and the horizontal and vertical displacements observed for all models are
similar, indicating that the results are reliable. However, the angular velocity varies
between the models, implying that assessing the reliability of these results has to be
investigated in future work.

Finally, a controller for holding a desired position in the presence of constant
disturbances, while maintaining an undulatory gait is proposed. The performance of
the controller is investigated through three simulation studies, where the position
error approaches zero as it oscillates with a negligible amplitude.
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Sammendrag

Denne oppgaven utforsker mulighetene for bruk av bølgebevegelser til energisam-
ling. Ved å utnytte virvlene som oppstår bak en sylinder er målet å oppnå energiau-
tonomitet i artikulerte intervensjons-autonome undervannsfarkoster (AIAUV-er).

Den relevante litteratur relatert til energisamling, simuleringsmodeller og po-
sisjonskontroll av undervannsslangeroboter (USR-er) er gjennomgått. Deretter blir
nødvendig teori vedrørende fluiddynamikk presentert.

Videre er bevegelsesligningene for fire nedsenkede objekter beregnet. Den første
modellen består av en dobbel pendel med ledd formet som rektangler. Disse er
festet til en sylinder med en fjær og demper. Den andre modellen er et kvadrat med
avrundede hjørner. Bevegelser blir her begrenset ved å koble kvadratet til en vegg
og i tillegg en sylinder ved bruk av horisontale og vertikale fjærer og dempere. Den
tredje modellen er en elliptisk pendel med tre ledd. Disse leddene er forbundet med
roterende fjærer og dempere. For å begrense horisontal bevegelse er det første leddet
gjort ubevegelig. Den siste modellen er også en elliptisk pendel bestående av tre ledd.
Leddene er her koblet med fjærer. Det første leddet er i tillegg koblet til en sylinder
med en fjær.

De tre første modellene blir deretter implementert i COMSOL Multiphysics. For
å vurdere om resultatene er troverdige, ble den siste modellen implementert i en
simulator som har blitt verifisert i relaterte studier. Resultatene viser at alle model-
lene med dempere kan samle energi fra omgivelsene. Den horisontale og vertikale
bevegelsen er lignende for begge simuleringsmetoder, og disse resultatene er derfor
troverdige. Vinkelhastighetene varierer mye for de ulike modellene og impliserer at
videre studier kreves for å vurdere troverdigheten av de målte vinkelhastighetene.

Til slutt blir det foreslått en type kontroller som kan holde en bestemt posisjon
i omgivelsene på tross av konstante forstyrrelser. Dette ved å bruke bølgebeveg-
elser for fremdrift. Kontrollen blir så vurdert gjennom tre simuleringsstudier der
posisjonsfeilen går mot null og oscillerer med en neglisjerbar amplitude.

iii



Preface

This thesis is submitted as a partial fullfilment of the requirements for the degree
of Master of Science in Cybernetics at the Norwegian University of Science and
Technology (NTNU). The work presented in this thesis has been carried out under the
supervision of Professor Jan Tommy Gravdahl and co-supervisor Professor Kristin Y.
Pettersen, at the department of Engineering Cybernetics, NTNU.

The models simulated in this thesis were developed by the use of COMSOL
Multiphysics, which is a general-purpose simulation software for modeling designs,
devices and processes in all fields of engineering.

A simulator developed by Assistant Professor Mattia Gazzola and his team at
the Univerisity of Illinois Urbana-Champaign, was also used to simulate a model for
comparison with the COMSOL models developed.

The MATLAB simulator used to simulate the motions of a USR with the proposed
position hold controller, were developed by Dr. Anna Kohl and Dr. Eleni Kelasidi,
during their time as PhD Candidates at NTNU.

Unless otherwise stated, all figures and illustrations have been created by the
auther of this thesis.

iv



Acknowledgements

I would like to thankmy supervisor, Professor Jan TommyGravdahl and co-supervisor
Professor Kristin Y. Pettersen for giving me their invaluable advice and guidance.

A special thanks Mattia Gazzola for sharing the simulator he has developed
together with his team, which has been of great help when developing simulations
of submerged bodies in the wake of bluff objects.

I would also like to thank PhD candidates Haakon Robinson, Henrik Schmidt-
Didlaukies and Carina Norvik for their help with this work.

A big thanks to my wonderful girlfriend for believing in me and always pushing
me in the right direction.

Finally I would like to thank my family and friends for always supporting me
and giving me valuable advice.

Amer Orucevic
Drammen, June 2020

v



Contents

Abstract ii

Sammendrag iii

Preface iv

Acknowledgements v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature review 7
2.1 Energy harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Simulations and fluid dynamics 13
3.1 The Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Kàrmàn vortex street . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Fluid-structure interaction . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Brinkman penalization and the no-slip condition . . . . . . 16
3.3.2 Forces and moments on submerged rigid bodies . . . . . . . 17

3.4 Discretization method . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Simulation models 21
4.1 Deriving the equations of motion . . . . . . . . . . . . . . . . . . . 21

vi



4.1.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Spring and damper force, energy and moment . . . . . . . . 22
4.1.3 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4 Forward kinematics . . . . . . . . . . . . . . . . . . . . . . 23
4.1.5 Lagrange’s equation of motion . . . . . . . . . . . . . . . . 24

4.2 Model for double pendulum with spring . . . . . . . . . . . . . . . . 24
4.2.1 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Model for block with two springs and dampers . . . . . . . . . . . . 29
4.3.1 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Spring and damper forces and potential energy . . . . . . . 30
4.3.3 Equations of motion . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Model for three link swimmer . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Modified three link swimmer . . . . . . . . . . . . . . . . . . . . . . 35
4.5.1 Overview of model . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . 36

5 Building the simulation models 39
5.1 COMSOL models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Building fluid domain and cylinder . . . . . . . . . . . . . . 39
5.1.2 Double pendulum with spring and damper . . . . . . . . . . 40
5.1.3 Block with two springs and two dampers . . . . . . . . . . 41
5.1.4 Three link swimmer . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Dimensionless simulation of the modified three link swimmer . . . 43

6 Position control for underwater snake robots 47
6.1 Control-oriented model . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Integral line of sight . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4 Position hold control . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.5 Integrator windup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Simulation study 53
7.1 Double Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Square block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



7.3 Three linked swimmer . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.4 Simulation times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5 Interaction between immersed bodies and wakes . . . . . . . . . . . 60
7.6 Modified Three link swimmer results . . . . . . . . . . . . . . . . . 61
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.7.1 Computational time . . . . . . . . . . . . . . . . . . . . . . 65
7.7.2 Fluid interaction . . . . . . . . . . . . . . . . . . . . . . . . 66
7.7.3 Energy harvested . . . . . . . . . . . . . . . . . . . . . . . . 67
7.7.4 Limitations of the simulations . . . . . . . . . . . . . . . . . 68
7.7.5 Comparison the simulation methods . . . . . . . . . . . . . 68

8 Position hold simulation study 71
8.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Case 1 - Horizontal current . . . . . . . . . . . . . . . . . . . . . . . 72
8.3 Case 2 - Constant current . . . . . . . . . . . . . . . . . . . . . . . . 75
8.4 Case 3 - Reaching horizontal position first . . . . . . . . . . . . . . 77
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.5.1 Differences between the cases and convergence to desired path 79
8.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Conclusion and future work 81
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Appendix A - Simulation models 85
A.1 Jacobians of MTLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

References 87

viii



Abbreviations

AIAUV articulated intervention autonomous underwater vehicle

AUV Automated underwater vehicle

BSD Block with double springs and dampers

CFD Computational fluid dynamics

CG Centre of Gravity

DP Double pendulum with spring and damper

FEM Finite element method

FSI Fluid-structure interaction

FVM Finite volume method

ILOS Integral Line-Of-Sight

LOS Line-Of-Sight

MBS Multi-Body System

MTLS Modified three linked swimmer

ROV Remotely operated vehicles

TLS Three linked swimmer

USR underwater snake robot

ix



List of Tables

5.1 Parameters for DP in COMSOL . . . . . . . . . . . . . . . . . . . . . 41
5.2 Parameters for block with two springs and two dampers in COMSOL 42
5.3 Parameters for three linked swimmer in COMSOL . . . . . . . . . . 43

7.1 Simulation time and computational time for COMSOL models . . . 60

8.1 Parameters for the control system. . . . . . . . . . . . . . . . . . . . 71
8.2 Parameters for ILOS guidance law and position hold controller . . . 72

x



List of Figures

3.1 Von Kàrmàn vortex street behind a cylinder . . . . . . . . . . . . . 15

4.1 Overview of double pendulum with spring and damper . . . . . . . 25
4.2 Overview of block with two springs and dampers . . . . . . . . . . 29
4.3 Global coordinates of block with springs and dampers . . . . . . . . 30
4.4 Overview of three link swimmer . . . . . . . . . . . . . . . . . . . . 33
4.5 Overview of MTLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Overview of fluid domain with cylinder . . . . . . . . . . . . . . . . 40
5.2 Overview of double pendulum COMSOL simulation . . . . . . . . . 41
5.3 Overview of block with two springs and two dampers COMSOL

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Overview of a three linked swimmer in COMSOL . . . . . . . . . . 43

6.1 Integral Line-Of-Sight . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1 Positions and rotations of the DP . . . . . . . . . . . . . . . . . . . 54
7.2 Energy dissipated in rotational damper . . . . . . . . . . . . . . . . 55
7.3 Positions and velocities of the BSD . . . . . . . . . . . . . . . . . . 56
7.4 Energy dissipated in vertical damper . . . . . . . . . . . . . . . . . 57
7.5 Positions of the TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.6 Relative rotation and angular velocities of the TLS . . . . . . . . . . 59
7.7 Energy dissipated in the first and second damper . . . . . . . . . . . 60
7.8 Interaction between swimmers and cylinder wake in COMSOL Mul-

tiphysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.9 Positions and velocities of the MTLS . . . . . . . . . . . . . . . . . . 63
7.10 Rotations and angular velocities of the MTLS . . . . . . . . . . . . . 64
7.11 Relative rotations and relative angular velocities of the MTLS . . . 65

8.1 Positions of the snake robot in case 1. . . . . . . . . . . . . . . . . . 73

xi



8.2 Heading of snake robot in case 1. . . . . . . . . . . . . . . . . . . . 74
8.3 Relative forward velocity of snake robot in case 1. . . . . . . . . . . 74
8.4 Positions of the snake robot in case 2. . . . . . . . . . . . . . . . . . 75
8.5 Heading of snake robot in case 2. . . . . . . . . . . . . . . . . . . . 76
8.6 Forward velocity of snake robot in case 2. . . . . . . . . . . . . . . . 76
8.7 Positions of the snake robot in case 3. . . . . . . . . . . . . . . . . . 77
8.8 Heading of snake robot in case 3. . . . . . . . . . . . . . . . . . . . 78
8.9 Forward velocity of snake robot in case 3. . . . . . . . . . . . . . . . 78

xii



Chapter 1

Introduction

This introductory chapter will present the motivation behind the thesis and a de-
scription of the problems to be solved. Then the contributions of this thesis are
presented.

1.1 Motivation

Many global challenges, such as global warming, food and water security, renewable
energy, transport, understanding the ecosystem, accessing raw materials or biodiver-
sity are all dependent on our understanding of the ocean. Through the evolution of
remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs)
new possibilities for exploring the seas have emerged and the need for direct human
interaction is decreasing. However, many tasks still require precision and mobility to
traverse unyielding areas. The articulated intervention underwater vehicle (AIAUV)
is an advancement of the underwater snake robots (USR), with longitudinal and
tunnel thrusters along the body. The AIAUV has the ability to operate as a vehicle
and manipulator, while maintaining the flexibility of an USR. Some AIAUVs have
been developed to permanently operate underwater, but it still requires charging
stations and charging infrastructure. The battery capacities of these devices is a
limiting factor for the area of operation. Therefore a robotic system with extreme
endurance in both time and space, with the ability to traverse long distances while
accessing narrow spaces and interacting with the environment, would be a major
step forward in our attempts to learn from the sea.

To achieve a larger operational area, it is necessary to develop methods for the
AIAUV to extract energy from the oceans. The Kàrmàn vortex street that forms
when bluff bodies are placed in a stream might be a possible solution for achieving

1



2 CHAPTER 1. INTRODUCTION

hyper-effective propulsion for USRs and AIAUVs.
This requires the development of a simulation model that captures the fluid-

structure interaction (FSI) between a submerged object and the vortex street. In this
thesis four models are developed to study how such a simulation might be achieved
for more complex swimmers such as the AIAUV.

1.2 Problem description

The AIAUV has the unique property that it can operate similarly to an USR. By
inducing a sinusoidal undulation in the AIAUV a forward propulsion can be achieved
as shown by Kohl et al. (2015b). The Kàrmàn vortex street consists of vortices that
are shed from a bluff body in an asymmetric pattern, which might be used to create
these undulations in the AIAUV, and generate forward propulsion by using less
energy, and potentially without using any energy.

To study how this might be done, it is necessary to extend simulation models
of the AIAUV to simulate a vortex wake, while capturing how the AIAUV interacts
with the fluid and how this might change the environment. However, this requires
the use of computational fluid dynamics (CFD) solvers, which are time consuming
and very computationally heavy to run.

The goal of this thesis is to investigate how such a model can be implemented,
by developing and studying simplified models of passive submerged objects in the
wakes of cylinders in a two-dimensional environment. The study includes observa-
tions of how the different swimmers and shapes affect the simulation results and
computational time, while also investigating if energy from the vortex wake can
be harvested at some capacity. To evaluate if the results are reliable, a model is
implemented and numerically studied with the simulator developed and verified
through extensive simulation studies in Gazzola et al. (2011).

To achieve hyper-effective propulsion it is also necessary for the AIAUV to be
capable of tracking bluff bodies while keeping a desired distance with an sinusoidal
gate. In this thesis a controller for position holding for USRs is implemented and
studied through simulations. This control algorithm might be extended in future
work to attain the desired tracking for AIAUVs in the wake of moving bluff bodies.

1.3 Contributions

The main contributions of the works presented in this thesis are:
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• A literature review of previous works concerning energy harvesting, simula-
tion of Von Kàrmàn vortex streets with submerged bodies downstream and
position control of USRs

• Implementing a simulation environment in COMSOL Multiphysics with a
vortex wake behind a cylinder.

• Deriving the equations of motion for four passive swimmers, and implementing
three of these in COMSOL Multiphysics, and the fourth model in the simulator
presented and verified with extensive simulations studies in Gazzola et al.
(2011).

• A simulation study where the models implemented in COMSOL Multiphysics
are studied to investigate how energy can be harvested and how the different
structures interact with the vortex street.

• A comparison between the models implemented in COMSOL Multiphysics
and the model implemented in the simulator developed in Gazzola et al. (2011).

• By using the Integral line-of-sight (ILOS) guidance law presented in Kohl et al.
(2016) and the simplifiedmodel for USRs as developed in Kelasidi, Pettersen and
Gravdahl (2014), later extended by Kohl et al. (2015b) and Kohl et al. (2015a), a
controller for holding a constant position in the presence of currents by using
lateral undulation for forward propulsion is suggested.

• A simulation study for evaluating the performance and limitations of the pro-
posed position hold controller with the following scenarios: (1) only constant
currents in the horizontal direction, (2) constant currents in both horizontal
and vertical direction and (3) when the horizontal position is reached before
the vertical position with constant disturbances in both directions.

1.4 Outline

This thesis is divided into nine chapters and one appendix as described below:

Chapter 2 Presents some of the relevant literature covering topics in energy har-
vesting, simulation modelling of Von Kàrmàn vortex streets with submerged
bodies downstream and position control for USRs.

Chapter 3 An overview of the relevant fluid mechanics theory is presented. First
the Navier-Stokes equations are presented, then the Von Kàrman vortex wake
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is discussed. Then the method of simulating the fluid-structure interaction as
presented in Coquerelle and Cottet (2008), Gazzola et al. (2011) and Bernier
et al. (2018) is presented. Finally the finite element method (FEM) is discussed.

Chapter 4 The equations of motion for four models are derived using the Euler-
Lagrange equations. First the relevant theory is presented, then the equations
of motion for the following models are derived:

• A double pendulum connected to a cylinder with a spring and damper.

• A block connected to a cylinder and to the lower-end wall with springs
and dampers.

• A three link swimmer, where the first link is immovable.

• A three link swimmer connected to the cylinder with a spring, where the
links are separated and connected with springs to each other.

Chapter 5 The implementation if the COMSOL Multiphysics simulations are pre-
sented, then the implementation details using the simulator presented in
Gazzola et al. (2011) are discussed.

Chapter 6 The relevant theory and method for developing a controller to achieve a
desired position with a USR is presented. First a simplified control oriented
model of a USR is shown, then the ILOS guidance law developed in Kohl et al.
(2016) is discussed. Finally the ILOS guidance law with minor modifications
is combined with a PID controller for position hold by lateral undulations is
presented.

Chapter 7 The results from the simulation studies are presented, then the results
are discussed. First the results for the COMSOL models are presented and
discussed. Then the results for the fourth model simulated with the simulator
developed in Gazzola et al. (2011) are presented and compared to the COMSOL
models.

Chapter 8 The position hold controller developed in Chapter 6 is studied through
a simulation study. First the simulation details are presented, then the results
for each case study is shown. Finally the results are discussed and compared.

Chapter 9 A conclusion is drawn from the results and discussions in previous
chapters, then a suggestion for future work is given.



1.4. OUTLINE 5

Appendix A Equations used for deriving the equations of motion that are not
included in the main body for better readability are presented.
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Chapter 2

Literature review

This chapter reviews some of the relevant work on energy harvesting, simulation
models for objects in the wake of bluff bodies and controllers for USRs.

2.1 Energy harvesting

Wave energy conversion (WEC) from ocean waves has been investigated with several
approaches as mentioned in Ozkop and Altas (2017). Although the potential for
WEC is huge, large-scale deployment has not happened due to challenges such as
mechatronic complexity and wear and tear on mechanisms due to large forces in the
wave zone. Floating surface attenuators, which are investigated in Henderson (2006),
are promising devices, but they are exposed to large forces, resulting in deterioration
and damage over time.

Energy harvesting for snake-like structures in vortex wakes behind bluff bodies
has been studied with promising results. In Allen and Smits (2001) four piezoelectric
membranes were placed in the wakes of a bluff bodies, where two different configu-
rations of bluff bodies were used. it was observed that the snake-like structures were
able to exhibit lock-in behavior to the bluff body shedding, which is a requirement
for achieving optimal coupling. Lock-in behavior means that the frequency of cross-
flow oscillations and vortex shedding coincide, at a frequency close to the cylinders
natural frequency. This results in a resonance condition where the membrane has a
minimal damping effect on the vortex street. The study continues by investigating
how different Reynolds numbers Re affect the membranes behavior. The Reynolds
numbers investigated are in the range 5000 − 40000. For low Re the membrane
oscillates infrequently with small amplitudes, and acts similarly to a rigid splitter
plate, by suppressing the vortex wake. By increasing Re to an order of 10000, the

7
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membrane oscillates with a fairly constant frequency, however the membrane is not
well coupled with the flow and exhibits a damping effect on the vortex street. As
the Reynolds number increases further the amplitude in the oscillations increase,
while the effective length of the membrane decreases. Furthermore, as the membrane
wavelength shortens, the flow downstream of the cylinder begins to resemble the
wake without a membrane being present. The amplitude of the wave propagating
through the membrane reaches a maximum, whilst its frequency continues to in-
crease linearly with Re . The membranes used are in the weight range 7 − 53 grams,
which is much lighter than an AIAUV. The observations made might not apply to
bigger and heavier objects, and the vortex wake behavior might change drastically.
The membrane is also more flexible than an AIAUV, and inducing an undulatory
motion in a more rigid structure might require a larger bluff body or higher fluid
velocities.

The behavior of a passive snake-like swimmer in the wake of bluff bodies was
also studied computationally in Eldredge and Pisani (2008), and the results indicate
that a steady-state distance to the bluff body can be achieved through leading-edge
suction and upstream-oriented skin friction on the forebody of the swimmer. These
observations were investigated in greater detail by locking the hinges between each
body, which resulted in a straight swimmer similar to a fin. The swimmer achieved
equilibrium with the stiff configuration as well suggesting that undulatory motion is
not necessary to attain a forward thrust. However, due to the short simulation time
in Eldredge and Pisani (2008), it is not possible to assess the stability of the vertical
position of the snake-like structure, which oscillates with an increasing amplitude.
This suggests that developing methods for stabilizing these oscillations might be
necessary. Furthermore, the simulations studied are limited to Re = 100, and as
seen in Allen and Smits (2001), the behavior of a swimmer changes with increasing
Re . The size of the AIAUV and the operational environment will most likely result
in Re of order 10000. Developing methods for achieving forward thrust by using
the upstream-oriented skin friction might yield good results for achieving energy
efficient propulsion. However, further investigation for higher Re is required before
assessing if this is viable for the AIAUV.

Both Allen and Smits (2001) and Eldredge and Pisani (2008) present a study of
how snake-like structures behave when placed in the wake of bluff bodies, however,
the energy harvesting capabilities are only mentioned and not investigated in detail.
Furthermore these structures are passive, which is a major difference from the
AIAUV.
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The energy harvesting capabilities of an articulated three-body swimmer were in-
vestigated computationally in Bernier et al. (2019). The bodies are given as separated
elliptical shapes and they are connected through rotational dampers. The energy
dissipated in the dampers is compared to the total energy needed to tow the cylinder
and swimmer at stream velocity. Several different damping coefficients were studied,
and an harvesting efficiency of 29.14% was achieved. The results indicate that there is
an optimal damping coefficient which can be found. The lowest damping coefficient
gave a harvesting efficiency of 0.54%, increasing the damping coefficient results in
better harvesting efficiency until 29.14%. Increasing the damping coefficient past
this decreases the harvesting efficiency, and the largest damping coefficient gives
a harvesting efficiency of 5.26%. However, nine different damping coefficients are
tested and only two of these are higher than the damping coefficient with the highest
harvesting efficiency. Furthermore, changing other parameters, such as distance to
the cylinder and body shapes, might yield better harvesting efficiency.

A computational study of efficient propulsion for articulated swimmers was
performed in Bernier et al. (2018). A four-body swimmer is placed in the wake of a
stationary cylinder and a moving cylinder, and compared to a swimmer in an uniform
flow. The results show that the power consumed to stabilize the swimmer is 14% and
7% for the stationary and moving cylinder respectively. The study was performed
with only one configuration for the swimmer, testing with different parameters might
yield better efficiency. Furthermore, the methods used to track the cylinder only
consider the distance and vorticity surrounding the cylinder. The efficiency might
be improved if methods for tracking bluff bodies also considered the optimal path
and configuration to generate energy while propagating towards the bluff body.

Both the studies Bernier et al. (2018) and Bernier et al. (2019) were performed at
low Re = 100, and as mentioned earlier, this is very small compared to what can be
expected for the AIAUV. Assessing the viability of these studies for larger swimmers
in more turbulent environments requires more research.

2.2 Simulation models

A method for simulating the interaction between two-dimensional rigid bodies and
a fluid flow is presented in Eldredge (2006a). The simulation is developed through
the use of the vortex particle mesh method, where the fluid domain is divided into
particles and the velocity field is found by evaluating the creation, diffusion and
convection of vorticity in the particles. This simulation model is extended in Eldredge
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(2006b) to allow the study of free swimming. This is done by exploiting the physical
connection between vorticity and body motion. The motion of the body and the
dynamics of the fluid are calculated simultaneously. While the actuation of the
hinges between the bodies in the swimmer are predetermined, the changes in the
position of the swimmer are not.

A simulation algorithm for a two-way coupling of an incompressible flow with
single or multiple swimmers in the wake of bluff bodies is presented in Gazzola et al.
(2011). The fluid domain is extended inside the solid body, and a penalization term is
added to the governing Navier-Stokes equations. The algorithm handles deforming
bodies and non-divergence free deformation in the velocity fields. The geometry
of the swimmers is represented by a mollified characteristic function built upon a
level set function to specify the interface between the boundary of the body and
the fluid. However, this algorithm assumes that the kinematics of the swimmers are
known a priori, and then the fluid-structure interaction (FSI) coupling is applied to
the entire swimmer as a whole. Generally very few numerical works consider the
internal dynamics of the swimmer.

This issue was addressed in Bernier et al. (2019), were the algorithm presented in
Gazzola et al. (2011) is altered to include a multi-body system (MBS) solver to handle
the hydrodynamic forces computed through the penalization term, and apply these
to each individual body of the swimmer together with other internal forces inside
the MBS. This allows for treatment of articulated systems with embedded actuation.
The algorithm is verified through several well-documented simulation cases, and the
results are reproduced with good accuracy.

2.3 Control system

For the past few years the path following and guidance algorithms for snake robots
have been in focus. In Liljeback et al. (2012) the Line-of-sight (LOS) guidance law
is proven to κ-exponentially stabilize a ground snake robot to any desired path,
assuming that the forward velocity is non-zero and positive. However, this does not
apply for USRs where disturbances such as the ocean currents are present. This issue
is addressed in Kohl et al. (2016) where the integral line-of-sight (ILOS) guidance
law was proposed for USRs. The method is then proven to exponentially stabilize
the heading of the USR and allows it to converge to a deisred straight path in the
presence of constant irrotational currents. However, placing the USR downstream in
the wake of a bluff body will result in disturbances that are rotational and varying
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with time.
A articulated swimmer that tracks the wake of a moving cylinder is implemented

and studied in Bernier et al. (2018). This is achieved by using the simulation method
presented in Bernier et al. (2019), which is discussed in the previous section. The
controller implemented is separated in three parts, a propulsion controller, a position
controller and a steering controller. Forward propulsion is attained by the use of
a sinusoidal gate, where kinematic tracking is achieved through a proportional
controller. The distance to the cylinder is adjusted by using a PI controller to regulate
the amplitude of the sinusoidal gate. To steer the snake robot in direction of the
moving bluff body, two antennas are used to sense the vorticity on both sides of
the swimmer. The difference between the sensed vorticities is then added to the
sinusoidal gate as a turning term. The results indicate that the articulated swimmer
does achieve tracking, but it does oscillate about the desired position with a large
amplitude, and there is a significant phase offset in the vertical position. This is
probably a result of the simple controller used for the kinematic tracking, proportional
controllers are not robust enough for the disturbances present in a vortex street, and
will result in substantial deviations from the desired values.
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Chapter 3

Simulations and fluid dynamics

In this chapter a brief overview of the relevant fluid mechanics theory for the
simulations in this thesis are presented.

The simulations in this thesis study the vortices that form in the wake of bluff
bodies and how submerged bodies downstream interact with the wake of the bluff
body. A bluff body is defined as a body that, as a result of its shape, has separated flow
over a substantial part of its surface. Simulations which can capture the (FSI) between
submerged swimmers and bluff body wakes are necessary. There are several different
approaches to this problem. First, the Navier-Stokes equations are presented, before
the vortex shedding phenomenon is discussed. Then, the approach taken by Gazzola
et al. (2011) and Bernier et al. (2019) to maintain the boundary between solid and
fluid, and the calculation of hydrodynamic efforts on submerged bodies is presented.
Finally, the finite element method FEM is briefly discussed.

3.1 The Navier-Stokes equations

The Navier-Stokes equation governs the motion of viscous fluids and is often used
to model the fluid flow through pipes and around objects. The compressible Navier-
Stokes equation as presented in Newman (2018) is given by

ρ

(
∂u

∂t
+u · ∇u

)
= −∇p + ∇ · (µ(∇u + (∇u)T ) −

2
3
µ(∇ · u)I ) + F , (3.1)

whereu is the fluid velocity, p is the fluid pressure, ρ is the fluid density, µ is the fluid
dynamic viscosity and F are the external forces applied to the fluid. The identity
matrix is given as I . Furthermore, the Navier-Stokes equation is always solved

13
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together with the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0 (3.2)

The Navier-Stokes equation can be further simplified for incompressible fluids, which
is usually done for Mach numbers under 0.3. Where the mach number is defined as
the ratio of fluid flow past a boundary to the speed of sound in the medium. Because
low Mach numbers are generally found in liquids, the simplified Navier-Stokes
equation gives a good approximation in this case. The incompressible Navier-Stokes
equation is given by

ρ

(
∂u

∂t
+u · ∇u

)
= −∇p + µ∇2u + F , (3.3)

while the continuity equation simplifies to

∇ · u = 0. (3.4)

Furthermore, by taking the curl of the Navier-stokes equation, the vorticity equation
can be derived, which describes the evolution of vorticity ω of a particle in a fluid.
The transformation from velocity to vorticity is given as the curl of the velocity

ω = ∇ ×u . (3.5)

Inserting this into eq. (3.3), yields the vorticity equation

Dω

Dt
= (ω · ∇)u + µ∇2ω, (3.6)

where
D

Dt
denotes the material derivative.

3.2 Kàrmàn vortex street

The theory presented in this section is based on Sumer et al. (2006), and further
elaboration of the fluid dynamics surrounding cylinders can be found there.

Vortex shedding is a phenomenon that occurs when a fluid flows past a bluff
body at certain Reynolds numbers and mass ratios. The flow creates alternating
vortices that shed off of the bluff body forming a Von Kàrmàn vortex street as seen
in fig. 3.1 below.
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Figure 3.1: Von Kàrmàn vortex street behind a cylinder

Vortex shedding is characterized by a nondimensional parameter known as the
Strouhal number defined as

St =
fvD

U∞

, (3.7)

where fv is the vortex shedding frequency, U∞ is the free stream velocity and D is
the diameter of the cylinder. Furthermore, the shape of the vortices shed and the
size of the Kàrmàn vortex street is dependent on the shape and surface of the bluff
body, but in this thesis the study is limited to cylinders.

The non-dimensional quantities describing the flow around a cylinder depend
on the cylinder Reynolds number given by

Re =
DU∞

ν
, (3.8)

where ν is the kinematic viscosity. Flow separation does not occur for very small
Reynolds numbers Re < 5, hence there are very small disturbances in the flow. For
the range of Reynolds numbers 5 < Re < 40, a fixed pair of vortices form a wake
behind the cylinder. For higher Reynolds numbers, the wake destabilizes, eventually
resulting in vortex shedding with a frequency given by eq. (3.7). When the Reynolds
number is in the range 40 < Re < 200, the Kàrmàn vortex street is laminar, which
means it is essentially two dimensional because it does not vary along the height of
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the cylinder. Increasing the Reynolds number further results in a gradual transition
to a turbulent wake, and the two dimensional property of the Kàrman vortex street
is lost. The vortices are then shed in cells along the height of the cylinder and the
vortex street becomes three-dimensional.

In this thesis it is assumed that the vortex shedding is laminar, therefore two-
dimensional. The evolution of the Kàrmàn vortex street with increasing Reynolds
numbers past Re = 200 will not be considered.

3.3 Fluid-structure interaction

The theory presented in this section is based on the simulator developed in Gazzola
et al. (2011) and Coquerelle and Cottet (2008), and later extended by Bernier et al.
(2018).

3.3.1 Brinkman penalization and the no-slip condition

To simulate flows around solid objects several immersed boundarymethods have been
developed. The Brinkman penalization method was first proposed for incompressible
viscous flows. The no-slip conditions at the surface of the submerged object are
enforced by adding a penalty term to the Navier-Stokes equation. The immersed
objects geometry is represented by a mollified characteristic function χs , given by

χs =


0 if d < −η

1
2

(
1 +

d

η
+

1
π

sinπ
d

η

)
if |d | ≤ η

1 if d > η,

(3.9)

where d is the distance to the surface of the body and η is the mollification length.
The fluid domain is extended to include the rigid bodies, combining the solid and
fluid domains to one continuous domain. The Navier-Stokes equations are then
extended with a term that drives the fluid velocity u inside the solid region to a
prescribed rigid body velocity us . This gives the modified Navier-Stokes equation

ρ

(
∂u

∂t
+u · ∇u

)
= −∇p + µ∇2u + λχs (us −u) + F , (3.10)

where λ is the penalization factor where larger values enforce the no-slip condition
more strictly, but also make the system dynamics stiffer. The Navier-stokes equations
can also be written in the vorticity formulation eq. (3.6) with the added penalization
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term
Dω

Dt
= (ω · ∇)u + µ∇2ω + λ∇ × (χs (us −u)). (3.11)

Where the Baroclinic generation of vorticity is left out because of the assumption
that the fluid and solid regions are uniform across the respective bodies.

3.3.2 Forces and moments on submerged rigid bodies

The hydrodynamic forces exerted on the submerged objects have to be calculated. In
Bernier et al. (2019) the forces and moments exerted by the vortices and fluid flow
are derived by integrating over the boundary between the fluid and volume Ωj

Fhydj =

∫
δΩj

σ · ndS, (3.12)

Mhydj =

∫
δΩj

x × (σ · n)dS . (3.13)

Where the volume Ωi is the area of each link, σ is the Cauchy stress tensor and δΩi

is the boundary between each link and the fluid. By using Green’s Theorem and the
conservative form of the Navier-Stokes equations, given by

ρf
Du

Dt
= ∇ · σ + ρf λ(us −u) (3.14)

the following expressions are derived in Bernier et al. (2019)

Fhydj =
d

dt

∫
Ωj

(ρf u)dV +

∫
Ωj

ρf λ(u −us )dV , (3.15)

Mhydj =
d

dt

∫
Ωj

x × (ρf u)dV +

∫
Ωj

x × (ρf λ(u −us ))dV . (3.16)

In this thesis it is assumed that the hydrodynamic forces and moments are
extracted by using the approach presented in this section. However, other com-
putational fluid dynamics (CFD) solvers may solve this problem with a different
approach.

3.4 Discretization method

The mathematical equations that represent the simulation have to be approximated
through the use of a discretization method, which is a method of approximating
the differential equations with a set of algebraic equations. The most common
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discretization methods are the finite difference method (FEM), the finite volume
method (FVM) and the finite element method (FEM). In COMSOL Multiphysics both
the FVM and the FEM can be used. For the simulations developed in this thesis the
FEM is selected therefore it will be presented in this section. The theory presented
in this section is based on Pepper and Heinrich (2017) and Ferziger and Perić (1999).

The finite element method is a numerical technique that can be used to find
approximate solutions of differential equations, and is typically used for problems in
hydrodynamics, aerodynamics and structural dynamics. The FEM reduces problems
defined on a domain to finding solutions in a finite number of points by dividing the
domain into smaller geometrical regions, for two-dimensional simulations triangles
and squares are often used. This creates a mesh over the geometrical domain, and
adjusting the density of the mesh allows for more accurate approximations at the
cost of computational time. The usual approach is to begin with a coarse mesh,
and increase the density slowly until the desired trade off between accuracy and
computational time has been reached.

The FVM and FEM are similar, but a distinguishing factor of the FEM is that the
equations are multiplied with a weight function, before they are integrated over the
entire domain. The simplest form of the FEM approximates solutions by linear shape
functions within each element in a way that guarantees continuity of the solution
across element boundaries. This function is constructed from its values at the corners
of each element, and the weight function is usually of the same form.

The size of elements in the mesh might also vary. To reduce computational
time, while ensuring accurate solutions, more elements can be placed in the regions
where functions are expected to change more rapidly. For example to study the
Kàrmàn vortex street behind a cylinder, the majority of changes are happening at
the boundary between the cylinder and the fluid, hence smaller elements should be
used close to the cylinder. As the distance to the cylinder increases, there are less
changes in the fluid flow, hence the size of each element can be increased without
losing much accuracy.

The process of finding a suitable mesh for the physical domain might require
several iterations, and small changes to the cells of the mesh might affect the results
severely. In this thesis the simulations studied are two-dimensional, hence only
two-dimensional meshing will be considered.

The mathematics behind the FEM are handled by COMSOL Multiphyics, and
will therefore not be stated in this thesis, for further reading the reader is referred to
Pepper and Heinrich (2017) or the COMSOLMultipysics Reference Manual, COMSOL
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(2019).
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Chapter 4

Simulation models

In this chapter the mathematical models describing the equations of motion of
four passive systems are presented. The first model describes a double pendulum
connected to a cylinder by a spring and damper. The second model describes a
quadratic box connected to a cylinder and the ground with two springs and dampers.
The third model describes a three link swimmer, where the first link is constrained
to not move or rotate. The fourth model is a three link swimmer, where the links
are separated, allowing fluid to flow betwwen the links. The links are connected by
linear springs, and the first link is connected to a cylinder via a linear spring.

These four simulationmodels were developed and studied in order to better under-
stand the energy harvesting capabilities of an articulated intervention autonomous
underwater vehicle (AIAUV), and how a simulation model with FSI between the
swimmer and fluid can be developed.

4.1 Deriving the equations of motion

In this section the theory for deriving the Euler-Lagrange equations of motion are
presented. All of the systems are composed of links connected by linear and rotational
springs. The kinetic and potential energies of the systems can therefore be expressed
in a modular fashion.

4.1.1 Reference frames

In order to describe the dynamics of the systems, two coordinate systems are needed,
the inertial frame [i] and the body frame [b].

The inertial frame is usually defined as the tangent plane on the surface of the
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earth, and the origin can be placed arbitrarily. In this work, the unit vector ki is
chosen to point upwards

The body frame is attached to the submerged object and the origin is placed at
a arbitrary point on the body. The axis ib usually points in the forward direction,
while jb points to the left. The axis kb points upwards.

4.1.2 Spring and damper force, energy and moment

The potential energy of the system is the energy stored in the linear and rotational
springs, which can be written as

V (φ) ≜
N∑
i=1

Kli r
2
i +

M∑
j=1

Kr jϕ
2
j . (4.1)

Where ri is the displacement from nominal position of the linear spring, and N

is the number of linear springs in the system. The relative rotation between the
links is given by ϕ j and the number of rotational springs is given byM . The linear
and rotational spring stiffness coefficients are given by Kl and Kr . The generalized
coordinates of the system are given by φ.

The linear damping forces exerted on the system are given by the time derivative
of the displacement ri , this can be defined as

F damper ≜ −

N∑
i=1

Bli Ûri u, (4.2)

whereu = [cosα, sinα]T is the unit velocity vector relating the force components to
the inertial frame, and Bl is the damping coefficient. The rotational dampers induce
a moment in the system given by

Mdamper ≜ −

M∑
j=1

Br j
Ûϕ j , (4.3)

where the rotational damping coefficient is given by Br .

The energy dissipated by the damper can be derived by integrating the power of
the damper, which gives the following equation for the rotational dampers

Edi =

∫ t

t0

Bri
Ûϕi (τ )

2dτ . (4.4)
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4.1.3 Kinetic energy

The rigid body kinetic energy of the systems is defined as

T (φ, Ûφ) ≜
N∑
j=1

1
2
vT
j M jv j , (4.5)

where v is the body frame velocity andM is the rigid body mass matrix of the sub-
merged object. The body frame velocity can be related to the generalized coordinates
by the following equation

vi ≜ J i (φ) Ûφ, (4.6)

where J (φ) is the Jacobian of the submerged object. By following the approach
presented in Fossen (2011) the following rigid body matrix is defined

MRB ≜


m 0 −myд

0 m mxд

−myд mxд I


, (4.7)

where [xд, yд]
T is the vector from the origin of the body frame to the centre of

gravity (CG), and I is the moment of inertia about the unit z-axis.

4.1.4 Forward kinematics

The forward kinematics of a submerged object given in the inertial frame is defined
as P i , and this can be differentiated with respect to time to find the velocity of the
submerged object V i = Ûpi . The body frame velocityvi can be related to the inertial
body velocity by

vi ≜ R(βi )
TVi , (4.8)

where the rotational matrix R is given as a rotation about the ki unit vector

R(β) =


cos βi − sin βi 0

sin βi cos βi 0

0 0 1


. (4.9)
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4.1.5 Lagrange’s equation of motion

Lagrange’s equation of motion are derived by using the Lagrangian:

L(φ, Ûφ) = T (φ, Ûφ) −V (φ). (4.10)

The equations describing the dynamics of the system are then given by the Euler-
Lagrange equation

d

dt

∂L

∂ Ûφ
−
∂L

∂φ
= f (φ), (4.11)

where f (φ) are the generalized forces acting on the system. For the systems presented
in this thesis, the generalized forces are the damping forces and hydrodynamic forces.
The damping forces can be written as a Rayleigh dissipation function

D(φ, Ûφ) =
1
2
ÛφTB(φ) Ûφ. (4.12)

Furthermore the hydrodynamic forces and moments can be calculated as presented in
section 3.3.2, the reader is referred to COMSOL (2019) for more details. The following
assumption is made

Assumption 4.1 The calculation of hydrodynamic forces and moments is handled by

the CFD software.

For the three models presented in this chapter, the calculations are performed through
COMSOL Multiphysics.

The rewritten Euler-Lagrange equations are given by

d

dt

∂L

∂ Ûφ
−
∂L

∂φ
= −
∂D

∂ Ûφ
+ ξ (φ), (4.13)

where the hydrodynamic forces and moments are given by ξ (φ).

4.2 Model for double pendulum with spring

The model presented in this section describes a double pendulum (DP) connected to
a cylinder with a spring and damper. First an overview of the system is presented,
and then The equations of motion are derived using the Euler-Lagrange equations.
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4.2.1 Model overview

The system is illustrated in fig. 4.1. In order for the passive DP to hold a steady
distance to the cylinder without being dragged by the flow, a spring and damper are
connected between the first link and the cylinder. The spring and damper are both
connected to the centre of the cylinder and to the front of the first link.

Figure 4.1: Overview of double pendulum with spring and damper

Furthermore the spring and damper can rotate about the centre of the cylinder.
The following assumption is made,

Assumption 4.2 The spring and damper are massless and do not interact with the

fluid directly.

A rotational spring and damper are also added to the joint between the links in the
double pendulum. The distance from the centre of the cylinder to the first link is
given by x1 and y1, and the rotation of each joint is given by θ1 and θ2. The global
coordinates are then

ϑ1 =
[
x1, y1, θ1

]T
, (4.14)

ϑ2 =
[
x2, y2, θ2

]T
. (4.15)

The relative joint angle is also defined

ϕ1 = θ2 − θ1. (4.16)

The energy dissipated in the rotational damper between the links will be consid-
ered when assessing the energy harvesting capabilities of the system.
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4.2.2 Equations of motion

To derive the equations of motion for the system, first the generalized coordinates
for the system are chosen according to the illustration in fig. 4.1 as

φ =
[
x1, y1, θ1, ϕ1

]T
. (4.17)

First the forward kinematics of the DP are derived. The position of the first and
second links are

P1 =
[
x1, y1, θ1

]T
, (4.18)

P2 =
[
x1 + l1 cosθ1, y1 + l1 sinθ1, θ1 + ϕ1

]T
. (4.19)

Where l1 and l2 are the lengths of the first and second link. Furthermore, the velocity
of each link in the inertial frame can be obtained by calculating the time derivative
of eqs. (4.18)–(4.19)

V 1 =
[
Ûx1, Ûy1, Ûθ1

]T
, (4.20)

V 2 =
[
Ûx1 − l1 Ûθ1 sinθ1, Ûy1 + l1 Ûθ1 cosθ1, Ûθ1 + Ûϕ1

]T
. (4.21)

By using eq. (4.8) and eq. (4.6), and the angles β1 = θ1 and β2 = θ1 +ϕ1, the Jacobians
for the first and second links can be derived

J 1(φ) =


cosθ1 sinθ1 0 0

− sinθ1 cosθ1 0 0

0 0 1 0


, (4.22)

J 2(φ) =


cosθ1 + ϕ1 sinθ1 + ϕ1 l1 sinθ1 0

− sinθ1 + ϕ1 cosθ1 + ϕ1 l1 cosθ1 0

0 0 1 1


. (4.23)

The rigid body kinetic energy of the system is given by eq. (4.5), yielding

T (φ, Ûφ) =
1
2
vT

1 M1v1 +
1
2
vT

2 M2v2. (4.24)
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WhereM1 andM2 are the rigid body mass matrices for each link, given by

M1 =


m1 0 0

0 m1 m1
1
2
l1

0 m1
1
2
l1 I


, (4.25)

M2 =


m2 0 0

0 m2 m2
1
2
l2

0 m2
1
2
l2 I


. (4.26)

The potential energy of the system can be found by using eq. (4.1). The model has
one linear spring and damper, and one rotational spring and damper, which gives

V (φ) =
1
2
Kl1(x

2
1 + y

2
1) +

1
2
Kr1ϕ

2
1, (4.27)

when assuming that the linear spring has a resting position at x = y = 0. The
damping forces can be calculated by using eq. (4.1) and the angle

α = arctan
(
y1

x1

)
, (4.28)

which gives

Fd1 = Bd1

x1 Ûx1 + y1 Ûy1√
x2

1 + y
2
1


x1√

x2
1 + y

2
1

y1√
x2

1 + y
2
1


. (4.29)

The Rayleigh dissipation function eq. (4.12) for the system is derived, where B(φ) is
given by

B(φ) =



Bl1
x2

1

x2
1 + y

2
1

Bl1
x1y1

x2
1 + y

2
1

0 0

Bl1
x1y1

x2
1 + y

2
1

Bl1
y2

1

x2
1 + y

2
1

0 0

0 0 0 0

0 0 0 Br1


. (4.30)

The Euler-Lagrange equations of motion for the system as given in eq. (4.13)
are calculated. After performing some simplifications with MATLAB the following
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equations of motion are found

0 = (m1 +m2) Üx1 −
1
2
l2m2 sin(ϕ1 + θ1)( Üϕ1 + Üθ1) −

1
2
l2m2 cos(ϕ1 + θ1)( Ûϕ1 + Ûθ1)

2

− l1m2 Üθ1 sinϕ1 − l1m2 Ûϕ1 Ûθ1 cosθ1 −
1
2
l1m1 Üθ1 sinθ1 −

1
2
l1m1 Ûθ

2
1 cosθ1 − Kl1x1

+ Bl1
x1(x1 Ûx1 + y1 Ûy1)

x2
1 + y

2
1

− ξx

(4.31)

0 = (m1 +m2) Üy1 +
1
2
l2m2 cos(ϕ1 + θ1)( Üϕ1 + Üθ1) −

1
2
l2m2 sin(ϕ1 + θ1)( Ûϕ1 + Ûθ1)

2

+ l1m2 Üθ1 cos(ϕ1) − l1m2 Ûθ1 Ûϕ − 1 sinϕ1 +
1
2
l1m1 Üθ1 cosθ1 −

1
2
l1m1 Ûθ

2
1 sinθ1

+ Kl1y1 + Bl1
y1(x1 Ûx1 + y1 Ûy1)

x2
1 + y

2
1

− ξy

(4.32)

0 = I Üϕ1 + I Üθ1 +
1
2
l2m2 Üy1 cos(ϕ1 + θ1) −

1
2
l2m2 Ûy1 sin(ϕ1 + θ1)( Ûϕ1 + Ûθ1)

−
1
2
l2m2 Üx1 sin(ϕ1 + θ1) −

1
2
l2m2 Ûx1 cos(ϕ1 + θ1)( Ûϕ1 + Ûθ1) +

1
2
l1l2m2 Üθ1 cosθ1

−
1
2
l1l2m2 Ûθ

2
1 sinθ1 − Kr1

Ûϕ1 + l1m2 Ûθ1 Ûy1 sinϕ1 +
1
2
l2m2 Ûϕ1 Ûx1 cos(ϕ1 + θ1)

+
1
2
l2m2 Ûθ1 Ûx1 cos(ϕ1 + θ1) +

1
2
l2m2 Ûϕ1 Ûy1 sin(ϕ1 + θ1) +

1
2
l2m2 Ûθ1 Ûy1 sin(ϕ1 + θ1)

+ l1m2 Ûθ1 Ûx1 cosϕ1 + Br1
Ûϕ1 − ξϕ1

(4.33)

0 = I Üϕ1 + 2I Üθ1 + l
2
1m2 Üθ1 +

1
2
l2m2 Üy1 cos(ϕ1 + θ1) −

1
2
l2m2 Ûy1 sin(ϕ + θ )( Ûϕ1 + Ûθ1)

−
1
2
l2m2 Üx1 sin(ϕ1 + θ1) −

1
2
l2m2 Ûx1 cos(ϕ1 + θ1)( Ûϕ1 + Ûθ1) + l1m2 Üy1 cosθ1

− l1m2 Ûy1 Ûϕ1 sinϕ1 +
1
2
l1m1 Üy1 cosθ1 −

1
2
l1m1 Ûy1 Ûθ cosθ1 − l1m2 Üx1 sinϕ1

− l1m2 Ûx1 Ûϕ1 cosϕ −
1
2
l1m1 Üx1 sinθ1 −

1
2
l1m1 Ûx1 Ûθ1 cosθ1 +

1
2
l1l2m2 Üϕ1 cosθ1

−
1
2
l1l2m2 Ûϕ1 Ûθ1 sinθ1 + l1l2m2 Üθ1 cosθ1 − l1l2m2 Ûθ

2
1 sinθ1 +

1
2
l1m1 Ûθ1 Ûy1 sinθ1

+
1
2
l1l2m2 Ûθ

2
1 sinθ1 +

1
2
l2m2 Ûϕ1 Ûx1 cos(ϕ1 + θ1) +

1
2
l2m2 Ûθ1 Ûx1 cos(ϕ1 + θ1)

+
1
2
l2m2 Ûϕ1 Ûy1 sin(ϕ1 + θ1) +

1
2
l2m2 Ûθ1 Ûy1 sin(ϕ1 + θ1) +

1
2
l1m1 Ûθ1 Ûx1 cosθ1

+
1
2
l1l2m2 Ûϕ1 Ûθ1 sinθ − ξθ1

(4.34)
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4.3 Model for block with two springs and dampers

The model presented in the section describes a square block suspended by one
horizontal and one vertical spring and damper, which will be denoted as BSD. First
an overview is presented, then the equations of motion are derived.

4.3.1 Model overview

The system is illustrated in fig. 4.2. The model has simpler dynamics than the DP in
section 4.2, which reduces the simulation time and allows for a less time consuming
analysis when parameters are altered in the simulation environment.

The BSD is connected to the cylinder through a spring and damper to constrain
the horizontal motion. The vortices shed from the cylinder induce a vertical motion
in the block, to harvest this energy a vertical spring and damper is connected between
the block and the lower wall. Both the horizontal and vertical springs and dampers
are connected to the middle of the block.

Figure 4.2: Overview of block with two springs and dampers
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Figure 4.3: Global coordinates of block with springs and dampers

The springs and dampers can rotate about the connection points at the lower
wall and cylinder, but not about the block, as is illustrated in fig. 4.3. For this model,
assumption 4.2 still holds. The distance from the centre of the cylinder to the centre
of the block is given by x1 and y1, furthermore the rotation of the block is given by
θ1. The global coordinates are then given by

ϑ =
[
x1,y1, θ1

]T
. (4.35)

The energy dissipated in the vertical damper will be considered when assessing
the energy harvesting capabilities of the system.

4.3.2 Spring and damper forces and potential energy

The forces exerted by the springs are calculated using a similar approach to sec-
tion 4.2.2, the force exerted by the horizontal spring is

F sH = KsH (r0 −

√
x2

1 + (r1 − y1)2)


x1√

x2
1 + (r1 − y1)2

r1 − y1√
x2

1 + (r1 − y1)2


, (4.36)

and for the vertical spring

F sV = KsV (r1 −

√
(r0 − x1)2 + y

2
1)


y1√

(r0 − x1)2 + y
2
1

r0 − x1√
(r0 − x1)2 + y

2
1


. (4.37)
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Where r0 and r1 are the resting configurations of the horizontal and vertical springs
respectively. The resting configuration as shown in fig. 4.2. Furthermore the damping
forces are found to be

FdH = BdH
(r1 − y1)(− Ûy1) + x1 Ûx1√

x2
1 + (r1 − y1)2


x1√

x2
1 + (r1 − y1)2

r1 − y1√
x2

1 + (r1 − y1)2


, (4.38)

FdV = BdV
y1 Ûy1 + (r0 − x1)(− Ûx1)√

(r0 − x1)2 + y
2
1


y1√

(r0 − x1)2 + y
2
1

r0 − x1√
(r0 − x1)2 + y

2
1


. (4.39)

The potential energy of the springs is given by

V (φ) =
1
2
KsH (x

2
1 + (r1 − y1)

2) +
1
2
KsV ((r0 − x1)

2 + y2
1). (4.40)

4.3.3 Equations of motion

The forward kinematics are the same as for the first link in the DP presented in
section 4.2.2. As shown in fig. 4.3 the generalized coordinates are chosen to be

φ =
[
x1, y1, θ1

]T
. (4.41)

The equations of motion are derived by following the approach presented in sec-
tion 4.2.2. The Jacobian is the same as for the first link in the DP, given by eq. (4.22).
The rigid body mass is different due to the origin being in the centre of mass, and is
given by

M1 =


m 0 0

0 m 0

0 0 I


. (4.42)

Furthermore the damping is described by eq. (4.12), where B(φ) is given by

B(φ) =


d11 d12 0

d21 d22 0

0 0 0


, (4.43)
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and the coefficients of the matrix are given by

d11 =
BdHx

2
1

x2
1 + (r1 − y1)2

−
BdV (r0 − x1)y1

(r0 − x1)2 + y
2
1
, (4.44)

d12 =
BdVy

2
1

(r0 − x1)2 + y
2
1
−
BdH (r1 − y1)x1

x2
1 + (r1 − y1)2

, (4.45)

d21 =
BdH (r1 − y1)x1

x2
1 + (r1 − y1)2

−
BdV (r0 − x1)

2

(r0 − x1)2 + y
2
1
, (4.46)

and

d22 =
BdV (r0 − x1)y1

(r0 − x1)2 + y
2
1
−

BdH (r1 − y1)
2

x2
1 + (r1 − y1)2

. (4.47)

The equations of motion are now derived by using the Euler-Lagrange equations
given in eq. (4.13). After performing the calculations and simplifying, the following
equations of motion are derived

0 =m Üx1 − KsV (r0 − x1) + KsHx1 +
1
2
Ûy1

(
BdV ((r0 − x1)

2 − y2
1)

(r0 − x1)2 + y
2
1)

)
− Ûx1

(
BdHx

2
1

(r1 − y1)2 + x
2
1
−
BdVy1(r0 − x1)

(r0 − x1)2 + y
2
1

)
− ξx

(4.48)

0 =m Üy1 + KsVy1 − KsH (r1 − y1) +
1
2
Ûx1

(
BdV ((r0 − x1)

2 − y2
1)

(r0 − x1)2 + y
2
1

)
+ Ûy1

(
BdH (r1 − y1)

2

(r1 − y1)2 + x
2
1
−
BdVy1(r0 − x1)

(r0 − x1)2 + y
2
1

)
− ξy

(4.49)

0 = I Üθ1 − ξθ (4.50)

4.4 Model for three link swimmer

The model presented in this section describes a three-link swimmer (TLS), with
rotation springs and dampers between the links. First a overview of the model is
presented, then the Lagrangian equations of motion are derived.

4.4.1 Model overview

The system is presented in fig. 4.4. As seen in section section 4.2, the spring con-
necting the first link to the cylinder yields complicated dynamics. To mitigate this
when adding a third link, the first link is assumed to remain fixed in place. The first
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link does interact with the fluid, but because it cant be moved, the forces that are
exerted on the link will not be considered when deriving the equations of motion.
Furthermore this allows for analysis of the two energy harvesting dampers in the
swimmer. The links are connected through rotational springs and dampers, as before.

Figure 4.4: Overview of three link swimmer

The distance from the inertial frame to the tip of the first link is given by x1 and
y1. Furthermore the rotation of the second and third link is given by θ1 and θ2. This
gives the following global coordinates for each link

ϑ1 =
[
x1, y1, 0

]
, (4.51)

ϑ2 =
[
x2, y2, θ1

]
, (4.52)

ϑ3 =
[
x3, y3, θ2

]
. (4.53)

The relative joint angle is defined as

ϕ1 = θ2 − θ1 (4.54)

The energy dissipated in the two rotational dampers is considered when assessing
the energy harvesting capabilities of the system.

4.4.2 Equations of motion

The forward kinematics for the global coordinates for the second and third links are
given by

P2 =
[
x1 + l1, y1, θ1

]T
, (4.55)
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P3 =


x1 + l1 + l2 cosθ1

y1 + l2 sinθ1

θ1 + ϕ1


. (4.56)

Where l1, l2 and l3 are the lengths of each link respectively. Furthermore the velocity
of the second and third link is found by calculating the time derivative of the position
in the inertial frame

V 2 =
[
0, 0, Ûθ1

]T
, (4.57)

V 3 =


−l2 Ûθ1 sinθ1

l2 Ûθ1 cosθ1

Ûθ1 + Ûϕ1


. (4.58)

The forward kinematics are not derived for the immovable first link. The generalized
coordinates are selected as shown in fig. 4.4, which gives

φ =
[
θ1, ϕ1

]T
. (4.59)

The equations of motion are derived by following the approach in section 4.2.2. First
the potential energy of the system is given by the rotational springs between the
joints

V (φ) =
1
2
Kr1θ

2
1 +

1
2
Kr2ϕ

2
1 . (4.60)

While the damping forces are given by eq. (4.12), where the B(φ) matrix is given by

B(φ) =


Br1 0

0 Br2

 (4.61)

Furthermore the Jacobians for the second and third link are given by

J 1(φ) =


0 0

0 0

1 0


, (4.62)

J 2(φ) =


l2 sinφ1 0

l2 cosφ1 0

1 1


. (4.63)
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While the rigid body mass matrices are given by

M1 =


m2 0 0

0 m2 m2
1
2
l2

0 m2
1
2
l2 I


, (4.64)

M2 =


m3 0 0

0 m3 m3
1
3
l3

0 m3
1
2
l3 I


. (4.65)

The equations of motion are then derived by using the Euler-Lagrange formulation
as presented in eq. (4.13). After performing the calculations and simplifications the
following equations of motion are derived

0 = I Üϕ1 + 2I Üθ1 + l
2
2m3 Üθ1 +

1
2
l2l3m3 Üϕ1 cosϕ1 −

1
2
l2l3m3 Ûϕ

2
1 sinϕ1

+ l2l3m3 Üθ1 cosϕ1 − l2l3m3 Ûθ1 Ûϕ1 sinϕ1 + Kr1θ1 + Br1
Ûθ1 − ξθ1

(4.66)

0 = I Üϕ1 + I Üθ1 +
1
2
l2l3m3 Üθ1 cosϕ1 −

1
2
l2l3m3 Ûθ1 Ûϕ1 sinϕ1 + Kr1ϕ1

+
1
2
l2l3m3 Ûθ1 sinθ1 +

1
2
l2l3m3 Ûϕ1 Ûθ1 sinϕ1 + Br2

Ûϕ1 − ξϕ1

(4.67)

4.5 Modified three link swimmer

The three link swimmer is also implemented with the simulator presented in Gazzola
et al. (2011) and Bernier et al. (2019), and will be referred to as the modified three link
swimmer (MTLS). The main differences in this model is that the links are separated
from each other and connected with linear springs. A model overview will be
presented and then the equations of motion will be derived.

4.5.1 Overview of model

The model is shown in fig. 4.5: the links are separated such that the fluid can flow
between them. Furthermore, the linear and rotational dampers are removed from the
model while linear springs are added between the links. The first link is movable, but
it is constrained with a spring connected to the centre of the cylinder. The springs
between the links are connected to the front of each link, as shown in the illustration.
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Figure 4.5: Overview of MTLS

The position of the front of each link is given by [xi ,yi ]
T and the rotations are

given by θi . The global coordinates are then given by

ϑ1 =
[
x1, y1, θ1

]
, (4.68)

ϑ2 =
[
x2, y2, θ2

]
, (4.69)

ϑ3 =
[
x3, y3, θ3

]
. (4.70)

The energy harvesting capability of the model is not measured. This model is
compared to the models developed in COMSOL to investigate and highlight problems
which might arise with the simulations.

4.5.2 Equations of motion

The links are not relatively constrained, hence the forward kinematics can be ex-
pressed as the global coordinates

P1 =
[
x1, y1, θ1

]T
, (4.71)

P2 =
[
x2, y2, θ2

]T
, (4.72)

P1 =
[
x3, y3, θ3

]T
, (4.73)
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Furthermore, the velocity of the links can be found by calculating the time derivative
of the position in the inertial frame

V 1 =
[
Ûx1, Ûy1, Ûθ1

]T
, (4.74)

V 2 =
[
Ûx2, Ûy2, Ûθ2

]T
, (4.75)

V 3 =
[
Ûx3, Ûy3, Ûθ3

]T
, (4.76)

The generalized coordinates are then chosen as

φ =
[
x1, y1, θ1, x2, y2, θ2, x3, y3, θ3

]T
. (4.77)

The length of the springs can then be expressed with the generalized coordinates on
the form

χ1(φ) =
√
x2

1 + y
2
1, (4.78)

χ2(φ) =
√
x2

2 + y
2
2 −

(√
(l1 cosθ1 + x1)2 + (l1 sinθ1 + y1)2

)
, (4.79)

χ3(φ) =
√
x2

3 + y
2
3 −

(√
(l2 cosθ2 + x2)2 + (l2 sinθ1 + y2)2

)
, (4.80)

where l1 and l2 are the lengths of the links. By using eq. (4.8) and eq. (4.6) the
Jacobians and body frame velocities can be derived. Due to the size of these matrices
they are given in appendix A. Furthermore, the mass matrices are given by

M i =


mi 0 0

0 mi mi
1
2
li

0 mi
1
2
li I


. (4.81)

While the potential energy of the system is given by

V (φ) =
1
2
Ks1 (r0 − χ1(φ))

2 +
1
2
Ks2(r1 − χ2(φ))

2 +
1
2
Ks3(r2 − χ3(φ))

2 (4.82)

where ri are the resting configurations of the linear springs. The kinetic energy is
given by eq. (4.5). Combining these yields the Lagrangian shown in eq. (4.10). The
equations of motion can now be derived by using the Euler-Lagrange equation given
in eq. (4.13). It is seen from the Jacobians in appendix A that the bodies are not
relatively constrained, therefore the equations of motion are three sets of equations
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with the springs acting as forces, that can be solved independently for each rigid
body. These equations are solved online during the simulations, and will not be
stated in this thesis.



Chapter 5

Building the simulation models

In this chapter the methods used to build the models presented in chapter 4 are
discussed. The first three models are built in COMSOL Multiphysics and the required
modules are the CFD module with the single-phase flow interface (spf), Multibody
Dynamics module with the multibody modelling inteferface (mbd). The fourth
model is implemented in the simulator presented in Gazzola et al. (2011), where the
parameters were adjusted and the number of links were customized for the purposes
of this thesis.

5.1 COMSOL models

The models built in COMSOL share a common environment with a cylinder in a
constant fluid flow. In this section the methods for implementing the environment
and submerged objects in COMSOL are presented.

5.1.1 Building fluid domain and cylinder

The whole fluid domain, the two-dimensional view of the cylinder, and the small
region behind the cylinder are represented using a large rectangle, a circle and a
smaller rectangle respectively, as shown in figure fig. 5.1. The circle is modeled as a
hole in the two-dimensional domain given by the largest rectangle. The submerged
objects are placed close to the circle inside the smaller rectangle. The mesh used for
the FEM is divided two separate sub-meshes. The first is a coarser rectangular mesh
for the large rectangle where the mesh becomes coarser the further away from the
cylinder it is, while the second is a finer triangular mesh covering the small rectangle
containing the models.

39
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The wake behind the cylinder is expected to induce large movements in the sub-
merged objects, hence the mesh in the smaller rectangle is selected to be deforming,
which allows it to adapt as the models move. The rest of the mesh is rigid.

The inlet lies to the the left side of the fluid domain, where the inflow has a
mean velocity of 2 m/s and has a fully developed velocity profile. The right side is
selected as the outlet. A slip condition is imposed on the upper and lower edges of
the domain, acting as friction-less walls. The boundary between the circle and the
fluid domain is selected to have a no-slip condition, which is necessary for the vortex
street to form.

Figure 5.1: Overview of fluid domain with cylinder

5.1.2 Double pendulum with spring and damper

The DP is implemented as shown in fig. 5.2. The geometrical shapes are given
by two overlapping rectangles which represent the links of the DP. By using the
Multibody dynamics module, a rotational hinge with a spring and damper is added
in the overlapping region to connect the two links. Furthermore a linear spring
and damper are added between the circle and the first link, but these are not visible
because they don’t interact with the fluid. The material of the links is selected to be
stainless steel, which is denser than water, but the forces from the passing vortices
are expected to be much higher than the buoyancy forces. The parameters for the
simulation are selected as shown in table 5.1. The spring constant Ks1 is selected
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to be very large, compared to the other parameters. This is done to constrain the
position of the DP in the horizontal direction.

Parameter Value Unit

Kl1 50000 N/m

Bl1 2 Ns/m

Kr1 10 Nm/rad

Br1 1 Nms/rad

Table 5.1: Parameters for DP in COMSOL

Figure 5.2: Overview of double pendulum COMSOL simulation

5.1.3 Block with two springs and two dampers

The COMSOL model of the BSD is shown in fig. 5.3. The geometrical shape of
the BSD is given as a square, where the edges are smoothed. Using the Multibody
dynamics module, a horizontal spring and damper are attached from the centre of
the block to the centre of the circle, and a vertical spring and damper are coupled
between the centre of the BSD and the lower wall. The material for the block is
selected to be the same as the DP in section 5.1.2. The parameters for the springs
and dampers are selected as shown in table 5.2.
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Parameter Value Unit

KsH 1000 N/m

BdH 50 Ns/m

KsV 10 N/m

BdV 2 Ns/m

Table 5.2: Parameters for block with two springs and two dampers in COMSOL

Figure 5.3: Overview of block with two springs and two dampers COMSOL simula-
tion

5.1.4 Three link swimmer

The three link swimmer in COMSOL is shown in fig. 5.4. The links are modelled
as overlapping ellipses. The Multibody-dynamics module allows the first link to be
constrained, which enables FSI but the link is immovable. Furthermore rotational
springs and dampers are added at the overlapping area between each link. The
material for the links is selected to be the same as in section 5.1.2. Finally the
parameters for the TLS are given in table 5.3.
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Parameter Value Unit

Kr1 15 Nm/rad

Br1 5 Nms/rad

Kr2 15 Nm/rad

Br2 5 Nms/rad

Table 5.3: Parameters for three linked swimmer in COMSOL

Figure 5.4: Overview of a three linked swimmer in COMSOL

5.2 Dimensionless simulation of themodified three link
swimmer

In this section the simulation of the dimensionless simulation of the MTLS is pre-
sented and the relevant equations are shown.

The dimensionless Reynolds number is often used to characterize a fluid flow
in a simulation. By the use of dimensional analysis, the number of variables that
describe the system can be reduced. Some parameters can then be adjusted while the
Reynolds number remains constant by altering other variables such as fluid velocity
and cylinder diameter, thereby preserving the properties of the fluid, which allows
for analysis of how the model behaves at certain Reynolds numbers without having
to consider the size of the model. The simulator developed in Gazzola et al. (2011),
was set to preserve Re = 200 for the model studied in this thesis. By using eq. (3.8)



44 CHAPTER 5. BUILDING THE SIMULATION MODELS

the following relation is found

200 =
DU∞

ν
., (5.1)

where the kinematic viscosity is selected to be 0.0004 m2/s . This is much higher
than for water, which is approximately 0.89 · 10−6 m2/s . By using the value for
water, the vortex shedding occurs very slowly, and the vortices are shed with a very
small frequency. To maintain Re = 200 this would imply a very long simulation to
get valuable information and access to much more computational power would be
needed. Therefore the kinematic viscosity is increased, allowing for faster shedding
frequencies, which results in data being generated faster.

The simulations is a one by one dimensionless environment, where the sizes of
the cylinder and submerged bodies are altered by adjusting a parameter r , which is
the characteristic length to environment ratio. The characteristic length of a cylinder
is the diameter, while for an ellipse it is the longest distance between two points.
To simulate the model presented in this thesis r = 0.04 is selected for both the
cylinder and swimmer links. While the links are separated by 0.045 and the resting
configuration of the linear springs is selected to be 0.02. The solid bodies are by
default neutrally buoyant.

After running the simulation it is necessary to scale the system to a desired
size. The cylinders developed in COMSOL have a diameter of 0.1 m. The following
dimensionless variables are introduced, based on the theory presented in Gazzola
et al. (2011) and Bernier et al. (2019)

t∗ =
tU∞

D
, (5.2)

x∗ = x/rd , (5.3)

y∗ = y/rd , (5.4)

(5.5)

k∗li =
2kli
ρU 2

∞

, (5.6)

where t∗ is the non-dimensional time, [x∗, y∗]T are the dimensionless position
coordinates, k∗li is the non-dimensional spring stiffness coefficient of link i , and rd is
the ratio of cylinder size to desired cylinder size. Furthermore, by using eq. (5.1), the
fluid velocity is found to be 0.8 m/s. The spring stiffness is selected to be k∗li = 30,
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and when scaled to our desired values, it is kli = 9571 N/m.
For a more detailed overview of the simulator used in this thesis the reader is

referred to Gazzola et al. (2011).
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Chapter 6

Position control for underwater
snake robots

In this chapter the theory and method for developing a controller for a snake robot
to hold a determined position is presented. First, a simplified model of a snake robot
is shown, then the integral line of sight guidance law presented in Kohl et al. (2016)
is combined with a PID controller for forward velocity to achieve a position hold
controller.

6.1 Control-oriented model

A detailed model that considers the full kinematics and dynamics of a planar snake
robot with revolute joints is presented in Kelasidi, Pettersen, Gravdahl and Liljeback
(2014). However, the complexity of this model makes it inappropriate for the design
of control systems and motion planning. A simplified model of the planar snake
robot locomotion is developed in Liljebäck et al. (2013), and is further extended to
underwater snake robots without ocean currents in Kelasidi, Pettersen and Gravdahl
(2014). Currents where included in the control-oriented model presented in Kohl
et al. (2015b), with the following assumptions

Assumption 6.1 ((Kohl et al.; 2015b, Assumption 1)) The drag coefficient in the

normal direction is larger than in the tangential direction, cn > ct .

Assumption 6.2 ((Kohl et al.; 2015b, Assumption 2)) The underwater snake robot

is moving slowly by using lateral undulations for forward propulsion and limited link

angles.
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The model is further simplified and validated through extensive simulation studies
in Kohl et al. (2015a). The control-oriented model derived in these papers is given by

Ûϕ = vϕ (6.1)
Ûθ = vθ (6.2)

Ûpx = vt sinθ −vn sinθ (6.3)

Ûpy = vt sinθ +vn cosθ (6.4)

vϕ = ū (6.5)

Ûvθ = −λ1vθ +
λ2

N − 1
vt ,relē

Tϕ (6.6)

Ûvt = −
ct
m
vt ,rel +

2cp
Nm

ēTϕvn,rel −
cp

Nm
ϕTAD̄vϕ (6.7)

Ûvn =
2cp
Nm

ēTϕvt ,rel −
cn
m
vn,rel. (6.8)

Where ϕ contains all the relative N − 1 joint angles ϕi for all joints except the first,
while λi are constants that characterize the rotational dynamics. Furthermore the
heading of the snake robot is denoted by θ . The tangential and normal velocities
are given by vt and vn respectively, while the relative velocities are given as vt ,rel
and vn,rel. The ct , cn coefficients represent the drag in the tangential and normal
directions respectively, while cp is the propulsion coefficient. The summation vector
is denoted as ē = [1, ... 1]T ∈ RN−1, and the matrix D̄ = DT (DDT )−1. The A and D

are given by

D =


1 −1
. . .

. . .

1 −1


, (6.9)

A =


1 1
. . .

. . .

1 1


. (6.10)

6.2 Control system

To achieve a forward motion, the gait controller presented in Kohl et al. (2015a) is
used:

ū = Üϕref + kvϕ (
Ûϕref −

Ûϕ) + kϕ (ϕref − ϕ). (6.11)
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Where kvϕ ,kϕ > 0 are the control gains. Inserting eq. (6.11) into eq. (6.5) gives the
following dynamics

Ü̃ϕ + kvϕ
Û̃ϕ + kϕϕ̃ = 0. (6.12)

Which is uniformly globally exponentially stable as stated in Kohl et al. (2016).
Forward propulsion is attained by using the sinusoidal gate given by

ϕi , ref = αд(i) sin(ωt + (i − 1)δ ) + ϕ0, (6.13)

where α is the amplitude, д(i) is a scaling constant that scales the amplitude of each
joint, ω is the frequency of the sinusoidal motion and ϕ0 is a constant offset that
induces turning. By modifying the turning offset a desired heading can be attained
as shown in Liljeback et al. (2012). The new turning offset is given by

ϕ0 =
1

λ2vt ,rel

[
Üθref + λ1 Ûθref − kθ θ̃

]
−

λ2

N − 1
vt ,rel

N−1∑
i=1

αд(i) sin(ωt + (i − 1)δ ). (6.14)

by inserting ϕ = ϕ̃ + ϕref into eq. (6.6) gives the following error dynamics for the
heading angle

Ü̃
θ + λ1

Û̃
θ + kθ θ̃ =

λ2

N − 1
vt ,relē

T ϕ̃ . (6.15)

From eq. (6.12) it is apparent that that ϕ̃ goes to zero, implying that θ̃ also goes to
zero.

6.3 Integral line of sight

For traditional Line-of-Sight (LOS) guidance, the desired heading angle, θref, is given
by

θref = − tan−1
(y
∆

)
, ∆ > 0. (6.16)

Where y is the distance from the snake robot to the desired path along y = 0 and ∆ is
the distance to a point on the path that coincides with the heading of the robot, called
the look-ahead distance. If the snake robot is able to track the heading angle given by
the LOS guidance law, it can be shown that the snake robot converges to and follows
the desired path, under the assumption that there are no external disturbances. For
the purposes of this thesis, the snake robot has to operate in conditions where
external disturbances are present in the form of ocean currents. This issue was first
addressed with Integral Line-Of-Sight (ILOS) guidance for marine surface vessels in
Borhaug et al. (2008) and later implemented for underwater snake robots in Kohl



50 CHAPTER 6. POSITION CONTROL FOR UNDERWATER SNAKE ROBOTS

et al. (2016). This is achieved by extending the traditional LOS guidance law, by
adding integral action. The new desired heading angle is given by

θref = − tan−1
(
y + δyint

∆

)
, ∆ > 0, (6.17)

Ûyint =
∆y

(y + δyint)2 + ∆2 . (6.18)

From eq. (6.16) it is apparent that the desired heading goes to zero as the snake robot
reaches the desired trajectory. This is not desirable when there are external distur-
bances present. The ILOS guidance law in eq. (6.19) allows the desired heading to be
nonzero at the desired path and sustain it in the presence of constant disturbances.
The ILOS gudance law for the underwater snake robot is illustrated in fig. 6.1. The

Figure 6.1: Integral Line-Of-Sight

convergence to the desired path for underwater snake robots is proven in Kohl et al.
(2016), under the following assumptions

Assumption 6.3 ((Kohl et al.; 2016, Assumption 1)) The ocean current [Vx ,Vy ]

is constant and irrotional in the inertial frame, furthermore it is bounded by Vc, max ≥√
V 2
x +V

2
y .

Assumption 6.4 ((Kohl et al.; 2016, Assumption 2)) The relative forward veloc-

ity vr , rel is upper and lower bounded by Vmax and Vmin such that Vmax ≥ Vmin > 0.

Assumption 6.5 ((Kohl et al.; 2016, Assumption 3)) The forward velocity is large

enough to compensate for the current, Vmin > Vc , max.
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6.4 Position hold control

To hold a constant position, the ILOS guidance law presented in section 6.3 has to be
modified to track a desired y position. The following modification is suggested

θref = − tan−1
(
ỹ + δỹint

∆

)
, ∆ > 0, (6.19)

Û̃yint =
∆ỹ

(ỹ + δỹint)2 + ∆2 . (6.20)

Where ỹ = y −yref. Setting yref = 0 gives the original ILOS guidance law in eq. (6.19).
The proof of convergence presented in Kohl et al. (2016) is still valid with this minor
modification, because it only affects the distance to the desired path.

To attain a desired position in the horizontal direction, a controller for the gait
given by eq. (6.13) can be used. This problem is addressed in Bernier et al. (2019) by
using a PI controller with an anti-windup loop for the amplitude α . It is shown by
Kohl et al. (2015a), that the averaged velocity vav converges to

vav = α2ωkδ



Ncncp

2(cnctN 2 − 4(N − 1)2c2
pϕ

2
0)

c2
pϕ0(N − 1)

cnctN 2 − 4(N − 1)2c2
pϕ

2
0

Ncncpλ2ϕ0

2λ1(cnctN 2 − 4(N − 1)2c2
pϕ

2
0)


+


Vt

Vn

0


. (6.21)

Where kδ is the proportional dependence on δ , and Vt ,Vn are the tangential and
normal body frame components of the current. The average velocity is quadratic
with the amplitude. By using the frequency ω rather than the amplitude for position
control, a linear relationship between the average velocity and PID controller can
be achieved. Therefore the horizontal position of the underwater snake robot may
be controlled by adjusting the frequency of the gait given in eq. (6.13). The position
controller implemented in this thesis is given by

ω = Kpω x̃ + Kdω
Û̃x + Kiω

∫ t

0
x̃dτ . (6.22)

Where x̃ = xref−x and the tuning parameters are given byKpω > 0,Kdω > 0,Kiω > 0.
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6.5 Integrator windup

The limits of the physical actuators are modeled as a saturation. This might lead to
integral windup, which severely affects the performance of the PID controller in the
case of disturbances and nonlinear dynamics. To avoid this, eq. (6.22) is extended to

ω = Kpω x̃ + Kdω
Û̃x + Kiω

∫ t

0
x̃dτ −

1
Tt

∫ t

0
(ω − ωunsat)dτ . (6.23)

Where ωunsat is the unsaturated value of ω, and Tt is the time constant of the anti-
windup chosen according to the method presented in Markaroglu et al. (2006), given
by

Tt =
√
Ti ·Td , (6.24)

where Ti is the integral time constant and Td is the derivative time constant of
eq. (6.23).



Chapter 7

Simulation study

The results from the simulation of the four models derived in chapter 4 are presented
in this chapter. First the DP, BSD and TLS were implemented in COMSOL Multi-
physics, and these results are presented first. Then the results of the MTLS which
was simulated with the simulator presented in Gazzola et al. (2011) are presented.
The results are then discussed, where the COMSOL models are compared and the
energy harvesting is investigated, finally the COMSOL models are compared to the
MTLS. Then the results for the two simulation methods are compared.

7.1 Double Pendulum

The horizontal and vertical displacement for the first and second link in the inertial
frame, are shown in fig. 7.1. Furthermore, the relative angle ϕ1 and the angular
velocity are given in fig. 7.1e and fig. 7.1f. Finally, the energy dissipated in the
rotational damper is given by fig. 7.2.

The first link has a slightly larger horizontal displacement then the second link,
however the vertical displacement is substantially larger for the second link. The
relative angle is in the range [−30◦, 30◦], but the angular velocity is very high with a
maximal value of approximately 1200 deg/s, which suggests a fast whipping motion.
The dissipated energy is constant for approximately the first 2 seconds, then it
increases steadily for the rest of the simulation time.
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(a) Horizontal position first link.
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(b) Vertical position first link.
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(c) Horizontal position second link.
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(d) Vertical position second link.
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Figure 7.1: Positions and rotations of the DP
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Figure 7.2: Energy dissipated in rotational damper

7.2 Square block

The horizontal and vertical displacements and velocities of the block given in the
inertial frame are shown in fig. 7.3. Furthermore the energy dissipated in the vertical
damper is given in fig. 7.4.

There is a large horizontal displacement during the initial formation of the wake,
but then the displacement stabilizes at about −0.05 m for the rest of the simulation
time. The vertical displacement oscillates about 0 with an amplitude of approximately
0.01 m. The velocity plot reflects what is observed for the displacement, and the
velocity is significantly higher in vertical direction, which is expected due to the less
stiff spring. The dissipated energy increases continuously after the wake has formed
at about 2 s.
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(b) Vertical position first link.
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(c) Horizontal velocity second link.
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(d) Vertical velocity second link.

Figure 7.3: Positions and velocities of the BSD
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Figure 7.4: Energy dissipated in vertical damper

7.3 Three linked swimmer

The horizontal and vertical displacements of the first, second and third link, given
in the inertial frame, are shown in fig. 7.5. The relative rotations ϕ1 and ϕ2 and
their respective derivatives are given by fig. 7.6. Finally the energy dissipated in the
dampers is shown in fig. 7.7.

It is observed that the constraints implemented on the first link are working
as expected, and there is no horizontal or vertical displacement. The vertical dis-
placements of the second and third links are both oscillating about x = 0 m. Due
to the physical connection between the links, the motion of the second link also
propagates to the third link. Therefore the third link has a significantly larger ver-
tical displacement. The relative rotations are similar, however the second link has
a significantly larger amplitude. The energy dissipated in the rotational dampers
is steadily increasing after the wake has formed, but the energy dissipated by the
damper between the first and second links is larger by a factor 10.
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(a) Horizontal position first link.
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(b) Vertical position first link.
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(c) Horizontal position second link.
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(d) Vertical position second link.
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(e) Horizontal position third link.
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(f) Vertical position third link.

Figure 7.5: Positions of the TLS



7.3. THREE LINKED SWIMMER 59

0 5 10 15 20 25
Time [s]

-30

-20

-10

0

10

20

30
A

ng
le

[°
]

Angle

(a) Relative rotation of first and second link.
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(c) Relative rotation of first and second link.
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(d) Relative angular velocity of second and third link.

Figure 7.6: Relative rotation and angular velocities of the TLS
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Figure 7.7: Energy dissipated in the first and second damper

7.4 Simulation times

The computation time for the three models in COMSOL Multiphysics are given
in table 7.1. It is noted that the computational time of the double pendulum is
substantially longer than for both the other models.

Model Time simulated Computational time

Double Pendulum 20 seconds 9 hours 57 minutes 7 seconds

Block with double springs and dampers 25 seconds 2 hours 34 minutes 2 seconds

Three linked swimmer 25 seconds 2 hours 12 minutes 14 seconds

Table 7.1: Simulation time and computational time for COMSOL models

7.5 Interaction between immersed bodies and wakes

The figures in this section were generated directly from COMSOL Multiphysics.
The figures show the magnitude of the velocity of the fluid around the cylinder and
submerged structures, and how the vortices are propagated past the object.
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(a) FSI of DP 1 (b) FSI of DP 2

(c) FSI of BSD 1 (d) FSI of BSD 2

(e) FSI of TLS 1 (f) FSI of TLS 2

Figure 7.8: Interaction between swimmers and cylinder wake in COMSOL Multi-
physics

7.6 Modified Three link swimmer results

The modified three link swimmer was simulated with the simulator presented in
Gazzola et al. (2011). The results were then scaled by using the equations presented
in section 5.2.

The positions of the three links are given in fig. 7.9, where it is seen that the
second and third links are pulled forward before the vortex street is fully formed, then
they are dragged with the fluid flow as the vortex street forms, before the springs
pulls them back and they begin oscillating at about 0.03 m and 0.05 m displacements
respectively. The links all oscillate about approximately 0 m, and it is observed that
the amplitude is bigger the further away from the cylinder the links are. This is
expected as the vortices shed increase in size as they propagate downstream. This
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is also observed in the velocity and angular velocity plots in fig. 7.10, where the
amplitude increases with the distance to the cylinder. It is observed that the angles
of the first and second link have a large spike at 4 s in opposite directions. This is
reflected in the plot of the relative angles in fig. 7.11. This happens approximately at
the same time as the second and third link are dragged downstream. As the first and
second links are pulled apart, a vortex is shed between them, resulting in the end of
the first link being dragged upwards, while the front of the second link is pushed
downwards.
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(a) Horizontal position first link.

0 5 10 15 20 25
Time [s]

-0.1

-0.05

0

0.05

0.1

D
is

pl
ac

em
en

t [
m

]

Position y

(b) Vertical position first link.
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(c) Horizontal position second link.
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(d) Vertical position second link.
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(e) Horizontal position third link.
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(f) Vertical position third link.

Figure 7.9: Positions and velocities of the MTLS
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(b) Angular velocity of first link
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(d) Angular velocity of second link
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(e) Rotation of third link
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(f) Angular velocity of third link

Figure 7.10: Rotations and angular velocities of the MTLS
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(a) Relative rotations between first and second link.
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(b) Relative angular velocities between first and second
link.
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(c) Relative rotations between second and third link.
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Figure 7.11: Relative rotations and relative angular velocities of the MTLS

7.7 Discussion

This section discusses the results of the work. First the differences between the
computational times are evaluated, then the differences in how the models interact
with the fluid are assessed. Then the energy harvesting differences are studied.
Finally the limitations of the simulations are discussed.

7.7.1 Computational time

The spring used to constrain the horizontal motion of the DP was given a high spring
constant. This allowed the horizontal motion to oscillate about zero with a relatively
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small amplitude when compared to the vertical motion. However, this resulted in
stiff dynamics, which typically leads to long computational times. This might be why
the simulation time of the DP is much longer than the other simulations, as seen in
table 7.1. The sharp edges of the links in the DP resulted in very high velocities at
the boundary between the corner and the fluid, which often resulted in the solver
not converging. To mitigate this, smoother links could be used, as was done in the
BSD and TLS.

The BSD also has a very stiff spring attached to constrain the horizontal motion,
however the computational times are much shorter. This might be a result of the
rounded corners of the square block, which allows for a smoother transition along
the boundary between fluid and solid, and allows for the use of a coarser mesh, which
reduces the computational time. The BSD is constrained in the vertical direction,
with the spring and damper that are attached to harvest energy. Comparing the
vertical displacement of the DP in fig. 7.1 with the BSD in fig. 7.3, it is observed that
the DP moves much more than the BSD. The DP has more surface area than the BSD,
resulting in more interaction between the DP and the fluid as seen in figs. 7.8a–7.8d.
This might also be a reason for the simulation time being much longer.

The TLS also has a short simulation time when compared to the DP, and is
similar to BSD. The simulation is simplified by removing the spring and damper
connection to the cylinder, which removes some of the stiff dynamics from this
system. However, the TLS has a larger surface area than the BSD, and two additional
rotational springs and dampers, which is why the mesh cant be coarser. By using
ellipses instead of rectangles for the links, there are no sharp points where the fluid
velocity approaches infinity. It is also observed that the vertical displacements of
the second and third links in fig. 7.5 are significantly smaller than for the DP which
results in less disruption of the wake, this can also be seen by inspecting fig. 7.8.

7.7.2 Fluid interaction

In fig. 7.8 it can be seen how the wake shape changes with the different submerged
objects. The development of vortices happens closest to the cylinder for the DP,
most likely this is a result of the instabilities which are induced when the DP moves
through the fluid. The fast movement and large vertical displacements change where
the vortex shedding occurs. There are less disruptions in the wake for the BSD, this is
probably because of the more limited vertical motion. However, small local changes
in the velocity field can be seen close to the boundary between the solid and fluid,
indicating that the submerged object geometry affects how the fluid propagates close
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to the boundary layer.
In contrast to the DP, the TLS extends the distance beween the cylinder and the

vortices shed. The vortices are shed at about x = 0.6 m, while for the DP and BSD
the shedding happens at approximately x = 0.3 m and x = 0.4 m. The constrained
motion of the TLS results in less disruption of the wake, which affects how early the
vortices are shed. Due to the small displacements of the TLS it acts as a splitter plate
and suppresses the vortex shedding. Splitter plates are a form of passive control used
to extend the wake region behind a bluff body, and reduce the pressure drag forces
in the wake. This is used in the oil industry to reduce vortex induced vibrations on
vertical pipes and consequently fatigue of the pipes due to the vibrations. Different
thicknesses of plitter plates and distances between the bluff body and splitter plate
are tested in Akilli et al. (2005). The results indicate that when the distance is larger
than 2D, where D is the diameter of the cylinder, no suppression of the vortex wake
was observed. Placing the TLS further away from the cylinder might have resulted in
more motion in the joints and more energy dissipation. The suppression effect might
also be used to reduce the drag forces affecting the swimmer, to avoid damage on the
mechanical system if this becomes a problem. However, it is not known if the AIAUV
will be able to suppress the wake when it operates in a turbulent three-dimensional
environment.

7.7.3 Energy harvested

By inspection of fig. 7.2, fig. 7.4, and fig. 7.7 it is apparent that the energy dissipated
in the dampers in all the systems is increasing steadily. However, there are big differ-
ences in the amount for each system. The total energy dissipated in the rotational
damper of the DP is approximately 10000 times larger than the linear damper of the
BSD. This might be a result of the larger surface area that interacts with the fluid
and leads to bigger vertical oscillations for the DP as seen in fig. 7.1b and fig. 7.1d
when compared to the BSD in fig. 7.3b. The angular velocity of the DP in fig. 7.1e is
also much higher than the vertical velocity of the fig. 7.3d. Comparing the linear and
rotational dampers might not be practical either, due to the differences in how they
work and interact with the solid. For the purposes of this thesis, investigating the
energy harvesting capability of the rotational dampers is of more interest.

The TLS also has much higher energy dissipated in both dampers when compared
to the BSD as seen in fig. 7.7. However, it is lower than the DP. By inspecting the
angular velocity plots for the DP and TLS given in fig. 7.1f, fig. 7.6b and fig. 7.6d, it
is apparent that the DP moves much faster. The maximal relative angular velocity
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of the first damper and second damper in the TLS are approximately 200 deg/s and
80 deg/s, while the DP has a upper limit of 1200 deg/s. This difference in rotational
velocity is likely a result of the constrained first link, which reduces how freely the
TLS can move, and the reduced drag due to the vortex suppression as discussed in
section 7.7.2.

The difference in the amount of energy harvested by the two dampers in the TLS
is reflected in the angular velocities, where ϕ1 is approximately twice the size of ϕ2.
The increase in energy harvested is substantially higher than the increase in velocity,
which agrees with the relationship between angular velocity and energy dissipation
in dampers in eq. (4.4).

7.7.4 Limitations of the simulations

An important limitation in the simulations studied is that they are all in two-
dimensions. As a consequence it is possible that the AIAUV interacts with the
fluid differently than in the simulations. The Reynolds number for the simulations
shown is approximately 55000 which is far above the threshold for a turbulent wake,
and because only the laminar modules were used for these simulations there will
most likely be changes in how the wake evolves. Furthermore the AIAUV consists of
different materials, unlike the submerged objects in these simulations which are made
of uniform stainless steel. Furthermore the AIAUV is not necessarily constrained
with an anchor, and actuators have to be used to maintain a desired distance to the
cylinder, which also changes how the AIAUV interacts with the fluid when compared
to the passive systems in this simulation study.

The size of themodels implemented are also significantly smaller than the AIAUV,
and increasing the size of the system will likely also require a larger wake and higher
fluid velocities.

The energy harvesting capabilities of the AIAUV will be affected by the size dif-
ference, where larger hydrodynamic forces will be required to achieve an oscillating
motion. Furthermore it is not realistic that the AIAUV will be able to move as fast as
the models simulated, especially the DP has angular velocities which exceed what
would be possible with the AIAUV.

7.7.5 Comparison the simulation methods

By observing the plots of all the swimmers, it is evident that the frequency of
the vortex shedding is much higher for the COMSOL models. It was observed by
Strouhal (1878), that the frequency of vortex shedding increases as the fluid velocity
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is increased. This applies for the simulations presented, where the COMSOL models
useU∞ = 2 m/s and the second simulator usesU∞ = 0.8 m/s.

There are similarities in the horizontal displacement for the DP, BSD and MTLS
as seen in fig. 7.9, fig. 7.3 and fig. 7.1, where all the models oscillate about a value
close to 0 m, after the wake has formed. However, there are large displacements
observed for both the BSD and the MTLS that are not present for the DP. This might
be due to the pendulum being much larger than the BSD, and the MTLS consists
of three bodies that are not physically attached with a hinge, making it easier to
move each individual body. Furthermore, the MTLS is neutrally buoyant, meaning
that it weighs the same as the surrounding fluid, while the DP is made of stainless
steel, which is much heavier, and therefore more force is required to move the DP.
The constrained horizontal motion of the TLS is very different from all the other
models, and is therefore disregarded when comparing horizontal displacement. It is
also observed that the vertical displacements for all the models are similar. The most
distinct plot is that of the BSD, where the vertical displacement oscillates faster when
compared to the other COMSOL models as expected, due to the vertical spring and
damper. The similarities observed for both the horizontal and vertical displacement
suggest that the results are reliable.

The relative angles of the MTLS in fig. 7.11 are significantly larger than both the
TLS and DP, which is mostly likely a result of the rotational springs used for the
COMSOL models. The modular design and weight of the MTLS also means that less
force is required to move the bodies around. However, the relative angular velocity
of the MTLS is much smaller, especially when compared to the DP. This might be a
result of the much slower shedding frequency, resulting in the DP experiencing a
force that varies much faster than for theMTLS. However, the DP also has a rotational
damper, that should have resulted in a lower angular velocity. This together with the
previously stated convergence problems for the DP, suggests that further studies have
to be conducted to investigate whether this is due to a bug in the implementation.
The TLS has relative angular velocity that is significantly lower that that of the
DP, however, it is not properly placed in the wake, due to the suppression effect
discussed earlier. It is believed that placing the TLS further downstream from the
cylinder would result in much higher angular, which would imply that the difference
in shedding frequency is the reason for the contrast in angular velocity.

The cases studied in this thesis are limited in scope, and to properly investigate
the reliability of the COMSOL simulation models, a more thorough investigation
would have to be performed. Implementing the same model in both COMSOL and a
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second simulator would allow for a better evaluation of the results.



Chapter 8

Position hold simulation study

In this chapter the position hold algorithm developed in chapter 6 is studied through
three case studies. First the setup of the model is presented, then the cases studied
are described and the results from the simulations are presented. Finally the results
are discussed.

8.1 Simulation setup

The simulation is very sensitive to the choice of parameters. In this thesis the
controller was tuned by changing the values and inspecting how the simulation
responds until a satisfactory performance was obtained. The parameters for the
control system presented in section 6.2 are chosen as shown in table 8.1.

Parameter Value

kϕ 20

kvϕ 5

α 30◦

δϕ0 50◦

λ1 5.26 · 10−8

λ2 0.0120

kθ 0.07

Table 8.1: Parameters for the control system.

The parameters for the horizontal position hold controller presented in section 6.4
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and the ILOS guidance law presented in section 6.3 are chosen as shown in table 8.2,
wheren is the number of links and l is the length of each link. To constrain the relative
angle between the links and uphold assumption 6.2, a saturation of ϕmax = 20◦ is
added to the links. Furthermore, the initial position for all cases was chosen to be
P0 = [−2, 1]T and all link angles are chosen to be 0.

Parameter Value

∆ 2 n l

δ 0.012

Kpω 2.5

Kdω 0.9

Kiω 1.5

Table 8.2: Parameters for ILOS guidance law and position hold controller

In order to test the controller, each case study has a different disturbance and/or
target position. Each case will be described before the results are presented in the
next sections.

8.2 Case 1 - Horizontal current

The position hold controller is intended to hold a desired position in the wake of a
bluff body. In the first case it is investigated how the controller handles constant
disturbances in the horizontal direction. In practice this would be similar to a
symmetric wake without vortex shedding, which implies Re < 40. The initial state
of the system is given in section 8.1, the disturbance is selected to be Vx = −0.3 m/s
and the desired position is given by P1 = [35, 3]T .

The horizontal and vertical positions given in figs. 8.1a–8.1b shows that the
trajectory converges to the desired position. The vertical position has a overshoot of
approximately 0.2 m, and oscillates with an amplitude of approximately 0.01 m. Due
to the undulating motion of the snake some oscillations are expected. The horizontal
position overshoots by approximately 0.003 m, which is very small and might be
neglected due to numerical inaccuracies when simulating. The horizontal position
slowly converges to the desired position over approximately 1000s as seen in fig. 8.1a.
The overshoots in horizontal position can also be seen on the zoomed in trajectory
plot fig. 8.1d, where the USR goes past the desired position, but then slows down as
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seen when inspecting the relative forward velocity plot in fig. 8.3, which allows the
current to push it back to the desired position. It is also observed that the desired
heading is achieved in fig. 8.2, by inspecting a close up of the heading, it is seen that
there is a very small offset between the measured and desired headings. However, the
controller is developed with a simplified model, and some inaccuracies are expected.
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Figure 8.1: Positions of the snake robot in case 1.
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Figure 8.2: Heading of snake robot in case 1.
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Figure 8.3: Relative forward velocity of snake robot in case 1.
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8.3 Case 2 - Constant current

The forces in the wake of a bluff body will be both horizontal and vertical. In this
section the results of a simulation with constant horizontal and vertical currents are
presented. The currents are selected to be Vx = −0.3 m/s and Vy = −0.2 m/s, while
the desired position is the same as in section 8.2.

The horizontal position in fig. 8.4a converges to the desired value, with an
overshoot of approximately 0.003m. In contrast, the vertical position drops suddenly
at 500 s, and converges to a similar value to the previous case study, albeit with some
small osciallations. This drop in vertical position can also be seen in the trajectory
plots figs. 8.4c–8.4d and the velocity plot fig. 8.6. Similarly to the results presented
in section 8.2, the trajectory passes the desired horizontal position and slows down,
while simultaneously dropping 0.4 m, after which it slowly approaches the desired
position.
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Figure 8.4: Positions of the snake robot in case 2.
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Figure 8.5: Heading of snake robot in case 2.
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Figure 8.6: Forward velocity of snake robot in case 2.
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8.4 Case 3 - Reaching horizontal position first

In the previous case it was observed that the forward velocity starts decreasing rapidly
as the USR reaches the desired horizontal position. In this case, it is investigated if
the USR can reach the desired vertical position, if first reaches the desired horizontal
position. The disturbances are the same as presented in section 8.3, and the desired
position is chosen to be P3 = [3, 3]T .

Similarly to the previous cases, the horizontal position converges with a small
overshoot of approximately 0.003 m. Unlike the results in section 8.3 however,
the desired vertical position is not reached before the velocity decreases as seen
in fig. 8.7b and fig. 8.9, but slowly approaches the desired values afterwards, and
oscillates with an amplitude of 0.01 m about this. The trajectory is similar to that
presented in section 8.3, where the desired position is reached, but the climb of the
USR in vertical direction is longer.
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Figure 8.7: Positions of the snake robot in case 3.
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Figure 8.8: Heading of snake robot in case 3.
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Figure 8.9: Forward velocity of snake robot in case 3.

8.5 Discussion

In this section the results are compared and the limitations of the work are discussed.
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8.5.1 Differences between the cases and convergence to desired path

As presented in the case studies, control objectives were fulfilled in all cases. However,
large differences in the USR’s behavior could still be observed in the different cases.
There was a small overshoot in horizontal position for all the cases, which is believed
to be a result of numerical inaccuracies or poor tuning. However, the overshoot is
very small and poses no issues. Most of the differences can be seen in the vertical
trajectory of the robot. The studies with disturbances in vertical direction show a
sharp drop in vertical position as the USR arrives at the desired horizontal position.
This is most likely due to the PID controller as described in section 6.4, which results
in decreasing forward velocity as the USR approaches the desired horizontal position.
When the speed falls, the ILOS guidance law has to readjust to the changing forward
velocity, while the current drags the USR with it. This sudden decrease in velocity
also leads to differences in how quickly the trajectory converges. For the first case,
the vertical position is achieved in less than 600 s, while the second and third case
in fig. 8.4b and fig. 8.7b seem to almost converge in about 300 s, but as the velocity
drops and the controller adjusts, it slowly converges over the next 700 s. This can
lead to big problems when to controller operates in the wake of a bluff body, where
there are sudden changes happening to the vertical disturbances as vortices pass.
It is possible that if the controller’s convergence time to counteract these sudden
changes is too slow, the USR could fall out of the wake, and a lot of energy would be
lost as it gets back to the desired position.

A possible solution to this problem is to increase δ in eq. (6.18), which increases
the integral effect of the ILOS guidance law. This would result in the controller
adapting faster to changes. However, it is limited how quickly the USR can respond
due to physical limitations. Changing the tuning of the PID controller can also be a
good approach, so changes in forward velocity happen less abruptly. This can be
done by increasing the damping coefficient and lower the integral and proportional
coefficients. However, the controller does adjust to the changes slowly and the
desired position is achieved. This is true for the third case as well, where the robot
reached the desired horizontal position long before the vertical position was achieved.
However, increasing the vertical current too much will result in large θref values,
which violates assumption 6.2 and it is uncertain how the system will behave under
such circumstances. Furthermore, studying how the controller handles changes in
the reference values after reaching the desired position, might also be interesting
due to the abrupt changes in velocity.
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8.5.2 Limitations

During the development of the simplified model and controller some assumptions
were made, in particular assumption 6.3, where it was assumed that the currents
were irrotational and constant. This is very different from the wake of a bluff body
were the disturbances are highly rotational and varying. Testing the robustness of
this controller with a simulation that also captures the FSI coupling and vortex street
effects is necessary to evaluate if it is robust enough, and it is possible that further
development is needed to achieve a satisfactory performance. The results presented
in this chapter indicate that the controller will work under certain conditions, with
constant disturbances that are not too big for the forward motion of the USR to
overcome. However, the forces in the wake might be too large for forward propulsion
by using just the undulation and small link angles, implying that thrusters available
on the AIAUV would necessary to properly take advantage of the energy in a vortex
street.

To evaluate if the controller presented in this study also applies to a AIAUV in the
wake of bluff bodies, a larger case study has to be performed, with more varied cases
and simulators that can capture the FSI between the AIAUV and vortex street. The
three cases investigated in this chapter only consider three specific cases with certain
currents. Performance in other situations can‘t be properly assessed without a more
thorough study and theoretical evaluation. In this thesis no theoretical proof for this
method has been derived, which also increases the need for a proper extensive case
study.



Chapter 9

Conclusion and future work

In this chapter a conclusion based on the work in this thesis is presented, then future
work is suggested.

9.1 Conclusion

The equations of motion for 4 models are derived and presented: a double pendulum
connected to a cylinder with a spring and damper, a square connected to a cylinder
and the lower end wall with springs and dampers, a three link swimmer where the
first link is immovable, and a three link swimmer where the links are connected
by springs and the first link is connected to a cylinder. The first three models were
implemented in COMSOL Multiphysics and the fourth model was implemented in
the simulator presented by Gazzola et al. (2011). The simulations showed that all the
models harvested energy, but the total energy harvested varied from 2.5 J in 25 s for
the BSD to 32000 J in 20 s for the DP. Furthermore, the DP and first link of TLS had
angular velocities that far exceeded what would be physically possible with an USR
or AIAUV, which suggests that further investigation is needed to assess how well
energy can be harvested for more realistic swimmers. The FSI for the models also
seemed to vary, where the large displacements and high angular velocities of the DP
created more disruptions in the wake, while the constrained motion of the TLS led
to small displacements which resulted in an elongated distance between the cylinder
and the vortices being shed, suggesting that it acts similarly to a splitter plate.

The use of rectangles when modelling the DP led to sharp angles where the fluid
velocity goes to infinity, which resulted in long computational times and converging
issues. This was improved in the BSD and TLS by using rectangles with smoothed
edges and ellipses, which allowed for faster simulations, and fewer crashes.
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The fourth model was implemented with a different solver than the other models.
This simulator was developed in Gazzola et al. (2011) and verified through well
known simulation studies. The results from both simulation methods were compared
to assess how reliable the results are. The horizontal and vertical displacements
are similar for all models, suggesting that they are reliable. However, the angular
velocities are very different for the models. This might be a result of the difference in
shedding frequency for the two simulation methods, but further studies are required
before the reliability of these results can be evaluated.

Furthermore, a position hold controller was developed by using the simplified
control oriented model for USRs developed in Kelasidi, Pettersen and Gravdahl (2014),
later extended to include currents in Kohl et al. (2015b) and Kohl et al. (2015a), and
the ILOS guidance law implemented in Kohl et al. (2016). The performance of the
controller was assessed through three simulation studies, which suggested that in
the presence of constant disturbances, the controller achieved the desired position.
However, only three cases were investigated, and the controller is intended for
usage downstream in the wake of a cylinder in the presence of a vortex shedding
where disturbances are rotational and varying with time. To investigate whether
the controller can be used in such an environment, further studies are needed. The
controller was also shown to perform badly in the presence of vertical disturbances,
due to the structure of the controller the forward velocity would decrease quickly
as the desired position was approached. While the ILOS guidance law managed to
adapt to the changes, it was slow which resulted in the USR drifting away from the
desired position before moving back.

9.2 Future work

In this section future work is suggested.

• Study energy harvesting of articulated swimmers: To further investigate
the energy harvesting capacities of USRs and AIAUVs, simulations with FSI
and articulated swimmers have to be developed and studied, this might be
done by following a similar approach to Bernier et al. (2018).

• Extend simulations to three dimensions and turbulent environments:
By extending the simulations to a turbulent three-dimensional environment
more realistic cases can be studied, which allows for a better view of how the
AIAUV can harvest energy and how it will interact with the wake of a bluff
body.
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• Theoretical analysis of position hold controller: The position hold con-
troller developed in this thesis has not been theoretically assessed and the
stability of the method has not been proven. By performing a proper analysis
the limits of the controller might be easier to evaluate, and improvements can
be made to make a more robust controller.

• Further simulation studies of the position hold controller: By perform-
ing several more diverse simulation studies of the controller, new insight might
be gathered for how the controller can be improved. Furthermore, case studies
with time-varying rotational disturbances is necessary before the usability of
the controller in presence of vortex shedding can be evaluated.

• Testing different parameters for the position hold controller: Different
parameters might yield a better performance for the position hold controller.
By increasing the integral effect of the ILOS guidance law controller, a faster
response to the falling velocity might be achieved, and the overshoot present
in the results might be reduced.
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Appendix A

Appendix A - Simulation models

A.1 Jacobians of MTLS

The jacobians are given by the following matrices:

J 1(φ) =


cosθ1 sinθ1 0 0 0 0 0 0 0

− sinθ1 cosθ1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0


, (A.1)

J 2(φ) =


0 0 0 cosθ2 sinθ2 0 0 0 0

0 0 0 − sinθ2 cosθ2 0 0 0 0

0 0 0 0 0 1 0 0 0


, (A.2)

J 3(φ) =


0 0 0 0 0 0 cosθ3 sinθ3 0

0 0 0 0 0 0 − sinθ3 cosθ3 0

0 0 0 0 0 0 0 0 1


, (A.3)

where c1 = cos (θ1 + ϕ1), s1 = sin (θ1 + ϕ1), c2 = cos (θ1 + ϕ1 + ϕ2) and s2 = sin (θ1 + ϕ1 + ϕ2).
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