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Summary

One of the primary concerns for an NMPC is the evaluation of the controller’s performance
in varying environments, more specifically the robustness of the controller. Robustness can
be defined as a byproduct of controller-stability and the ability to handle unknown model
disturbances experienced in real-time flights. NMPC is a nonlinear control method that
systematically evaluates model constraints and a user defined cost function, ultimately
finding an optimal input sequence that exploits the fast manoeuvrability of a UAV. The
predictive capabilities of the controller, are a direct function of the model constraints and
the references. If the plant-model is insufficient, the real-time performance will suffer.
Some of the largest model disturbances affecting a typical UAV might be: 1) random tur-
bulence, 2) wear and tear of plant, and 3) icing accretion. All these factors are random,
not possible to implement in the controller plant-model. A full offset correction NMPC
algorithm is proposed in this Thesis, showing promising theoretical robustness regarding
ambient disturbances. Two attitude controllers are tested with this controller architecture,
further strengthening the robustness analysis. Finally, the OCP simulation times of several
control methods are evaluated, further investigating the possibility of a real-flight imple-
mentation.
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Chapter 1
Introduction

Fixed-wing unmanned aerial vehicles have a broad range of industrial applications. Over
the years, the use of UAV technology has increased rapidly (Insider (2020)), partly due
to its broad spectre of manoeuvres and low cost applications. UAVs are most often used
in target specific tasks that ease the use of manned operations such as surveillance and
monitoring. This makes the UAV technology attractive in commerce. Its high manoeuvra-
bility and light weight give it the unique position of accessing areas that otherwise would
be difficult and risky for manned operations. Ultimately, it can mitigate cost and lower
the risk in situations such as: search and rescue, offshore monitoring, geographical data
collections, wild-life monitoring among others. The complex nonlinear dynamic structure
of a fixed-wing UAV has attracted many researches around the world, giving rise to a set
of complex and well designed controllers available today.

1.1 Motivation
A fixed-wing Unmanned Aerial Vehicle is commonly considered to be a complicated sys-
tem due to its nonlinear coupled dynamics. Nonlinear control techniques hinge on math-
ematical models that prove to be difficult to model sufficiently due to the ambient distur-
bances and process noises. The literature review is motivated by the results obtained in the
Project Thesis (Stadheim, 2019). Figure 1.1 is based on a longitudinal model simplifica-
tion of the algorithm proposed in (Reinhardt and Johansen, 2019). The interval t ∈ [5, 25]
is affected by reduced aerodynamic coefficients (CD(α), CL(α)). By observing Figure
1.1, a clear offset of pitch and airspeed relative to the references can be seen. This off-
set motivates further investigation of the complete 6-DOF NMPC algorithm’s robustness
towards ambient disturbances.

Designing a controller that exploits the system’s limitations while satisfying actuator- and
physical constraints is a challenging task, for which a nonlinear model predictive con-
troller is well-suited. An NMPC systematically solves nonlinear optimal control problems

3



Figure 1.1: Simulation with reduced drag and lift coefficients from Project Thesis (Stadheim, 2019)

(OCP) at each time step, obtaining an optimal input sequence. Thereby, applying the first
control input back to the plant, closing the loop. Nonlinear programming (NLP) problems
are often nonconvex and can cause difficulties related to multiple local optima, making
it difficult to find a global optimum. Therefore, nonlinear optimization problems tend to
demand a larger number of computations relative to the linear programming problems.
NMPC algorithms are therefore more common in multi-constrained systems with slower
dynamics. The NMPC controller proposed in (Reinhardt and Johansen, 2019), is a well
designed attitude NMPC that uses a mathematical model of a UAV to predict futuristic
model patterns, allowing exploitation of the UAV’s fast manoeuvrability. This sets de-
manding computer processing requirements to the microcontroller of the UAV, due to the
fast dynamics. An NMPC’s performance is greatly affected by the accuracy of the model
predictions, and thus also the mathematical model itself.

This Master Thesis proposes a robust offset correction NMPC architecture based on (Morari
and Maeder, 2012),(Maeder et al., 2009),(Borrelli and Morari, 2007) and (Ruscio, 2013).
This controller is then tested on the wind formulated pitch-yaw attitude NMPC in (Rein-
hardt and Johansen, 2019), and a similar lower level roll-pitch controller in (Reinhardt
et al., 2020). The ability of handling unknown random disturbances is thoroughly con-
sidered through a series of simulation cases. Performance is then compared to other con-
trol techniques, ensuring optimal tuning and controller set-up. Well known reference-
offset mitigation methods such as integral action and offset-free control as in (Morari and
Maeder, 2012) are implemented in the NMPC. Furthermore, we will test the controllers
under varying wind conditions, center of mass offsets, altering of control weight matrices,
icing on wings, and reduction of lift and drag coefficients. The objective of these simu-
lations is to determine the robustness of the controller, more specifically, the controller’s
ability to withstand uncertainties in the event of a real-time implementation.

This Thesis is based on an ongoing project undertaken with the Supervisor and Cosuper-
visor. Furthermore, this Master Thesis is also a continuation of the project thesis. It is

4



structured with a literature review in the beginning, considering controlling methods for
mitigating plant-model mismatch and ambient disturbances. Chapter 3 gives an overview
of the system equations combined with key terms and other relevant theories used for sim-
ulations and discussion in Chapter 5. Some of this theory is taken from the Project Thesis.
A simulation time study is also presented, evaluating the NMPC’s ability of real-time im-
plementation. Finally, future work will give a framework for the current situation of the
project, combined with the remaining work that is yet to be done.
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Chapter 2
Literature Review

This section discusses integral action and offset-free control methods, and how they can be
used to mitigate the effect of model uncertainties in Nonlinear Model Predictive Control
Theory.

An NMPC algorithm uses a mathematical model of the plant to predict the future evolu-
tion of the system. The mathematical model tends to be a result of several simplifications
and assumptions. Dynamical environment such as air-turbulence is not possible to model
perfectly because of its random nature. The small mass of a UAV makes it more affected
by small ambient disturbances. It is therefore necessary to accommodate these differences
in the algorithm. Large plant-model uncertainties might lead to deviations and instabilities
in the the physical system. Implementing offset-free control in the NMPC is an effective
method mitigates this challenge. The goal is to achieve zero steady state tracking error:
y(t)−yref (t) −→ 0 as t −→∞, with unknown process disturbance and noise inputs. The
offset-free Model Predictive Controllers presented in (Morari and Maeder, 2012),(Maeder
et al., 2009) and (Borrelli and Morari, 2007) obtain offset-free control by augmenting the
states with a disturbance model. This model is used to estimate a potential mismatch
between the measured output (ym) and the model output (y), with asymptotic constant
references. The plant-model constraint is then persistently changed towards a more accu-
rate model, increasing model estimation accuracy. Finally, the improved estimations are
used to initialise the MPC algorithm. We now consider the nonlinear discrete plant-model:

xk+1 = f(xk,uk) (2.1a)
yk,m = g(xk). (2.1b)

Where x,u and y are the state, input and output vector respectively. The dynamical
model in 2.1 is nonlinear and is given by f . Both (Maeder et al., 2009) and (Borrelli
and Morari, 2007) consider linear plants, while (Morari and Maeder, 2012) considers a
nonlinear plant. Even if this paper evaluates a nonlinear MPC, the linear cases still apply,
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due to the technique similarities. We can now consider the model augmented with the
disturbance vector d:

xk+1 = faug(xk,uk,dk) (2.2a)
dk+1 = dk (2.2b)
yk = gaug(xk,dk). (2.2c)

From the disturbance term in 2.2b, it can be seen that the augmented model assumes the
disturbance to be constant over the prediction horizon in the MPC. The goal is to find an
approximately constant disturbance d, based on the error in the state dynamic, such that
the state model f can be corrected to a more accurate estimate. The placement of the
disturbance terms in the nonlinear model is important, and may result in a poor controller
if wrongfully placed. An observer can now be employed, and is obtained from (Morari
and Maeder, 2012),

x̂k+1 = faug(x̂k,uk, d̂k) + `x(yk,m − gaug(x̂k, d̂k)) (2.3a)

d̂k+1 = d̂k + `d(yk,m − gaug(x̂k, d̂k)) (2.3b)

yk,m = gaug(x̂k, d̂k). (2.3c)

For simplicity, we assume noise free output from the measurements. The estimator in
Equation 2.3a, will converge towards the original model if the estimates are close to the
real values. The two terms followed by the gains `x, `d, are the correction terms, correcting
the estimates closer to the measured values. In (Morari and Maeder, 2012), the following
NMPC is proposed:

min
x̄,ū,u0,1,..,N−1

F (xN − x̄) +

N−1∑
t=0

l(xt − x̄,ut − ū) (2.4a)

s.t.

x0 = x̂k (2.4b)

d0 = d̂k (2.4c)
x̄ = faug(x̄,d0, ū) (2.4d)
rk = gaug(x̄,d0) (2.4e)
x̄ ∈ X, ū ∈ U (2.4f)

xt+1 = faug(xt,d0,ut) ∀ t = 1, . . . , N − 1, (2.4g)

where l(.) is a positive definite function that penalises model deviation from the target
equilibrium x̄, ū. Target equilibrium is the solution to x̄ = faug(x̄, ū, d̂k) for any given
reference and disturbance. The NMPC is initialised by the state and disturbance estimate
models, solving the optimal control problem (OCP) with a constant disturbance over the
prediction horizon N . At the next time step the disturbance is corrected by the dynamics
given in 2.3b. Good estimations lead to more accurate solutions over the prediction hori-
zon, and the NMPC’s predictive abilities become stronger; ultimately, leading to a faster
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and more predictive controller. The optimal input sequence from the NMPC will there-
fore be based on the real dynamics of the system. This controller will strive towards a
predefined constant reference, using model correction. Offset-free control with model cor-
rection is an effective way of coupling feedback from measurements to the actual model,
thus achieving an overall more accurate model estimation. This can increase performance
and robustness towards unmodelled dynamics for a real-time implementation. Offset-free
control techniques will be tested with two control architectures in Chapter 5.

There are multiple methods of mitigating the extent of unknown disturbances in UAV
applications. The most common is implementation of integral action. A controller with
integral action integrate past control variables, obtaining values corresponding to the total
deviation at the given timeframe. Usually, integral action is used in PI or PID controllers.
A standard PI controller has the following Control Law:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ. (2.5)

The PI control input is defined by the standard notation of a proportional gain term am-
plified by Kp, and the integrating term given by the gain Ki. If the error (e(t)) of the
given state increases, the proportional term will increase in a proportional manner with
respect to the error. The integrator term however, is assigned a value corresponding to
the total historical error over the given time-frame. Controller input is therefore a func-
tion of present and historic state and reference error. Integral action is thus often used in
control theory to account for unknown disturbances and eliminating of variable offsets.
Compared to the model correction offset-free control method, that uses the error dynamic
to account for plant-model offsets, integral action integrates over the horizon and assigns
input obtained from historical state-error. A major concern of using integral action is the
integral-windups. The integral value may reach values that become dominating in the
control scheme, forcing the system to deviate from the reference in the other direction,
changing the sign of e(t) in order to cancel out the large values. This undesirable effect
is mitigated by assigning limits for the integral variables. However, it may be difficult
to tune the controller in a way that integral windup is eliminated. Integral action can be
seen in MPC algorithms, most common on the control inputs; Typically, to mitigate total
energy consumption of the plant. In (Ruscio, 2013) an MPC controller with integral action
is proposed. The state model is defined as:

xk+1 = Axk +BuK + v (2.6a)
yk = Dxk + w, (2.6b)

where the integral action is obtained as a result of augmenting the regular model in 2.6 with
∆xk. The perturbation term is defined as: ∆xk = xk − xk−1, and v, w are model distur-
bance and measurement noise. The resulting augmented system can thus be described by:
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[
∆xk+1

yk

]
︸ ︷︷ ︸

x̃k+1

=

[
A 0
D I

]
︸ ︷︷ ︸

Ã

[
∆xk
yk−1

]
︸ ︷︷ ︸

x̃k

+

[
B
0

]
︸︷︷︸
B̃

∆uk (2.7a)

yk =
[
D I

]︸ ︷︷ ︸
D̃

[
∆xk
yk−1

]
︸ ︷︷ ︸

x̃k

. (2.7b)

Where I,0 are appropriate sized identity and zero vectors and matrices respectively. The
augmented state vector x̃k is implemented in the quadratic MPC cost function, achieving
integral action for the state vector in the cost function. Another way of implementing
integral action is to augment the model with a set of new integral states. An example of
this setup is presented in the linear quadratic regulator scheme given in (Malkapure and
Chidambaram, 2014). The new augmented model can be considered:

ẋ(t) = f(x(t),u(t)) (2.8a)
y(t) = g(x(t)) (2.8b)

ζ̇(t) = D1y(t)−D2r(t), (2.8c)

where u(t) ∈ Rnu ,y(t) ∈ Rny ,x(t) ∈ Rnx , ζ(t) ∈ Rnζ are the continuous input,
output, state and integral vectors respectively. The integral vector ζ is assigned values
representing the integrated total deviation of certain defined states. Purposely, it should be
implemented integral action on states that the user finds important to reach convergence.
For the controller in this Thesis, it can be the attitudes and airspeed respectively. We
implement integral action to the nonlinear system via the ODE in 2.8c, augmenting the
error-state vector to form a new vector x̃(t) = [x(t) ζ(t)]>. The standard quadratic cost
function formulation ensures integral action for the MPC algorithm:

J = min
x,u

∫ T+t

t

x̃(τ)>Qx̃(τ)dτ. (2.9)

The magnitude of integral action state will differ by deviation from reference. Also, the
tuning of the integral action can be altered in Q. This control method is implemented and
tested in chapter 5.
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Chapter 3
Preliminaries

This chapter outlines a fundamental view of the theory applied to the analysis and simu-
lations in this thesis. Some of the theory is directly from the project thesis. It begins with
an overview of the used system as well as the control layout. Secondly, coordinate frames
and conventions are discussed. We also consider the attitude representation: Euler Angle
Representation, followed by the vehicle model. Lastly, some important key theoretical
terms are explained.

3.1 Skywalker X8

The Fixed Wing UAV considered for simulations in this paper is the Skywalker X8 pro-
duced by the company Skywalker Technology Co. Ltd (Ltd, 2020). It is popular in re-
search communities, due to its low price, modularity and large payload for its small size.
(Ryan et al., 2014) and (Fortuna et al., 2013) both use customised Skywalker X8s to inves-
tigate glacier behaviour on Greenland, and shark activity in the Portuguese island Faial.
As seen in Figure 3.1, the X8 does not have a rudder, and all rudder values will therefore
remain zero in this Thesis. Instead, to achieve a yaw angle-rate, it excites both roll and
pitch. The X8 is also easy to customise, for target specific missions, making it an ideal
candidate to test the algorithms purposed in this thesis. All parameter values for the Sky-
walker X8 are presented in Appendix B, and are from experimental tests in (Gryte et al.,
2018).
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Figure 3.1: Skywalker X8, (Ltd, 2020)

3.1.1 Control layout

The UAV’s control system consists of a path-following and an attitude controller. The path-
following controller regulates the UAV’s ability of staying on the trajectory, feeding a ref-
erence to the attitude controller. This reference consists originally of: r′0 = [Vr,d, θd, ψd].
Given these references, an optimal attitude can be calculated based on trim conditions of
the UAV. Throughout this Project it becomes relevant to investigate a second lower level at-
titude controller. An attitude controller that focuses more on the attitude of the aircraft and
not the heading. This controller uses r′1 = [Vr,d, φd, θd] as a reference. Given a desired
roll-angle instead of desired yaw-angle makes the controller focusing purely on roll-pitch
attitudes. The attitude controller then computes an optimal input sequence based on these
references in order to satisfy the reference input according to the OCP. The first control
input of the control input sequence is thereby applied to the plant. Measurements are then
sent to an estimator evaluating the current state, feeding this approximation back to the
high and low level controllers, thus closing the feedback loop. The two controllers are
tested in Chapter 5.

3.2 UAV Coordinate Frames

This section provides a quick overview of the conventions and definitions of the different
frames used in this thesis. The conventions are adopted by (Beard and McLain, 2012).
Frames are described using the convention Fz , where F tells the reader which frame is in
question, and z describes which frame in question.

3.2.1 The Inertial Frame (F i)
Because a UAV has a limitation of range and operational-height, it is sufficient to assume
that the inertial frame and NED frame are aligned. In this Thesis we therefore assume
the inertial coordinate system to be the earth-fixed coordinate system. It will therefore be
denoted as the north-east-down (NED) reference frame Fn. North is aligned with in, east
with jn, and down with kn. The origin is fixed at the user defined reference point, often
the control point.
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3.2.2 The Vehicle Frame (Fv)

The origin of the vehicle frame is fixed in the center of mass of the UAV, while the frames
iv, jv,kv are aligned with the inertial frame.

3.2.3 The Vehicle-1 and Vehicle-2 Frame (Fv1, Fv2)

Both the vehicle-1 and vehicle-2 frame have identical origins as the vehicle frame. Fv1 is
rotated in a positive right hand rule direction about kv . This rotation is defined as the Yaw
Angle (ψ). The vehicle-2 frame is rotated in a similar fashion, only it is rotated about jv1.
This angle of rotation is defined as the Pitch Angle (θ).

3.2.4 The Body Frame (F b)

The body frame is obtained rotating the the vehicle-2 frame about iv2 in a right hand rule
direction. This angle is defines as the Roll Angle (φ).

3.2.5 The Stability and Wind Frame (F s, Fw)

The lift force of the UAV is a function of the angle of attack (AoA). The AoA is defined
as the angle between ib and is, and is denoted as α ∈ R. Rotating the body frame about
jb with a magnitude of α, forms the stability frame. The wind frame is defined by rotating
the stability frame by a right-handed rotation about ks. This angle of rotation is defined
as the Side-Slip Angle (SSA), and denoted as β ∈ R. It can thus be concluded that the iw

axis is always aligned with the airspeed vector (vr ∈ R3).

3.3 Euler Angle Representation

The Euler Angle Representation is commonly known and used in applications such as
aircraft, marine vessels and robotics. The convention of Roll, Pitch and Yaw is denoted
as Θ = [φ, θ, ψ]> ∈ R3. Figure 3.2 from (Beard and McLain, 2012) displays the
body frame (Fb) of the UAV, and the roll-, pitch- and yaw rates measured in Fb. These
rates are denoted as p, q, r, while u, v, w are the frame velocities measured in Fb respec-
tively.
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Figure 3.2: Axis of motion on a small UAV. (Beard and McLain, 2012)

3.3.1 Rotaion Matrices

Rotation matrices of order three are defined by the Special orthogonal group (SO(3)), and
are used to rotate one frame to a new orientation.

SO(3) = {R ∈ R3×3|R>R = RR> = I3×3, |R| = 1} (3.1)

The attitude transformation matrices with the roll, pitch yaw convention from Fv to Fb
are given by:

Rv1
v (ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (3.2a)

Rv2
v1(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (3.2b)

Rb
v2(φ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 (3.2c)

Rb
v(Θ) = Rb

v2(φ)Rv2
v1(θ)Rv1

v (ψ). (3.2d)
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Similarly, The attitude transformation matrices from Fb to Fw are given by:

Rs
b(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 (3.3a)

Rw
s (β) =

 cosβ sinβ 0
− sinβ cosβ 0

0 0 1

 (3.3b)

Rw
b (α, β) = Rw

s (β)Rs
b(α). (3.3c)

3.4 Vehicle Model
The vehicle model is formulated in the body frame, with exception of the position vector
that is given in Fn. The state and input vectors are thus given as:

x =
[
pnnb
> vbnb

>
Θ> ωbnb

>
δ>
]>

(3.4a)

u =
[
δ̇t δ̇a δ̇e δ̇r

]>
= δ̇, (3.4b)

where pnnb,v
b
nb ∈ R3 are the position and velocity vectors of Fb relative to Fn eval-

uated in Fn and Fb respectively. The angular velocity ωbnb ∈ R3 is given in Fb rel-
ative to Fn evaluated in Fb, and is denoted as ωbnb = [p, q, r]>. The input vector
u = [δ̇t, δ̇a, δ̇e, δ̇r]

> ∈ U consists of the inputs which correspond to aileron, elevator,
rudder and throttle rates respectively. The state deflections and input limits are given as
δ ∈ D. Input spaces U and D are given in 3.5a. Corresponding values are given in Table
4.1.

U = {u ∈ R4|δ̇mint,a,e,r ≤ δ̇t,a,e,r ≤ δ̇maxt,a,e,r} (3.5a)

D = {δ ∈ R4|δmint,a,e,r ≤ δt,a,e,r ≤ δmaxt,a,e,r} (3.5b)

Now consider the arbitrarily vector w = [w0, w1, w2]>. The skew symmetric matrix is
then defined as:

S(w) =

 0 −w2 w1

w2 0 −w0

−w1 w0 0

 . (3.6)

From Newton’s second law, the forces acting on the body are defined by:

F b = m
d

dti
vbnb, (3.7)

where F b ∈ R3 is the sum of all acting forces on the body of the UAV and d
dti

is the
time derivative in F i. The rule of differentiation between frames yields the following
expression:

d

dti
vbnb =

d

dtb
vbnb + S(ωbnb)v

b
nb. (3.8)
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Inserting equation 3.8 in Newtons expression in 3.7 yields the following total force term:

d

dtb
vbnb =

1

m
F b − S(ωbnb)v

b
nb. (3.9)

The body-frame angular rates can be defined by roll, pitch, yaw and their corresponding
dynamics. The relationship between the angular-rates and the Euler angles is given by the
following equation:

ωbnb = φ̇ib + θ̇Rb
v2(φ)jv2 + ψ̇Rb

v2(φ)Rv2
v1(θ)kv1. (3.10)

Rearranging equation 3.10 yields the equation:

Θ̇ = TΘ(Θ)ωbnb, (3.11)

where TΘ is given as:

TΘ(Θ) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 . (3.12)

Considering Newton’s second law of rotation, the following expression is obtained assum-
ing a rigid body:

Mb =
d

dti
τ b, (3.13)

where τ b ∈ R3 is the angular momentum vector. Using the same differentiation rule as in
3.8 yields the following moment vector in Fb:

Mb = Jbω̇bnb + S(ωbnb)J
bωbnb (3.14)

ω̇bnb = (Jb)−1(Mb − S(ωbnb)J
bωbnb). (3.15)

Assuming NED to be the inertial frame gives the following kinematic and dynamic equa-
tions:

ṗnnb = Rb
v(Θ)>vbnb (3.16a)

v̇bnb =
1

m
F b − S(ωbnb)v

b
nb (3.16b)

Θ̇ = RΘ(Θ)ωsnb (3.16c)

ω̇bnb = (Jb)−1(Mb − S(ωbnb)J
bωbnb) (3.16d)

δ̇ = u, (3.16e)

where m ∈ R is the mass of the UAV and the moment of inertia in Fb is given as
Jb ∈ R3×3. The mathematical model assumes the UAV to be symmetrical about the
ibkb- plane. The forces acting on the body are stated as F b = F bA + F bT + F bg , and rep-
resent the force contribution from aerodynamic, thrust and gravity forces. Let the gravity

16



acceleration vector gn ∈ R3 be defined as gn = [0, 0, g]>, and the trust be obtained from
the Fitzpatrick model of the X8, in (Gryte et al., 2018). The force components are then
given as:

F bA =
1

2
ρV 2

r S Rw
b (α, β)>

 Cx(Vr, α, β, p, δe)
Cy(Vr, β, p, r, δa, δr)
Cz(Vr, α, p, δe)

 (3.17a)

F bT =
[
T (Vr, δt) 0 0

]>
(3.17b)

F bg = mRb
v(Θ)gn, (3.17c)

where ρ, S ∈ R are the air density and the wing surface area. The aerodynamic coefficients
are obtained by a first-order Taylor expansion and obtained as:

Cx(Vr, α, β, p, δe) = CD,0 + CD,αα︸ ︷︷ ︸
CD(α)

+CDq
c

2Vr
q + CDδeδe (3.18a)

Cy(Vr, β, p, r, δa, δr) = CY,0 + CY,ββ + CY,δaδa + CY,δrδr +
b(CY,pp+ CY,rr)

2Vr
(3.18b)

Cz(Vr, α, p, δe) = CL,0 + CL,αα︸ ︷︷ ︸
CL(α)

+CLq
c

2Vr
q + CLδeδe. (3.18c)

Parameters c, b ∈ R are the span and chord of the UAV. The aerodynamic coefficients are
highly influenced by the state and condition of the MAV, simultaneously as being volatile
to the flow condition over the wings. Due to the nonlinear and random dynamics of the
airflow combined with rarely exact parameter values for small UAVs, these functions are
common to linearise with a first-order Taylor approximation. The lift coefficient has an
approximately linear behaviour at AoAs under stall condition, and the approximation tends
to be good at these values. Taylor approximation parameter values in Equation 3.18 are
found in (Gryte et al., 2018) by experimental tests of the X8, and given in the Appendix B.
The Fitzpatrick model in (Fitzpatrick, 2013) creates the following thrust force component:

T (Vr, δt) =
1

2
ρSpCpVdis(Vdis − Vr) (3.19a)

Vdis = Vr + δt(kmotor − Vr). (3.19b)

The total wind vector wn = wn
s +wn

t ∈ R3 is the wind from the static wind component
and the turbulence contribution in Fn. This is further elaborated in Chapter 3.8. The
modeled relative velocity Vr ∈ R and the wind-defined angles AoA and SSA, are defined
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in equation 3.21 - 3.23.

vbr =
[
ur vr wr

]>
= vbnb −Rb

v(Θ)wn
s (3.20)

Vr = ‖vr‖ =
√
u2
r + v2

r + w2
r (3.21)

α = arctan

(
wr
ur

)
(3.22)

β = arcsin

(
vr
Vr

)
(3.23)

Let Mb : (δ,ωbnb, Vr, β, α)→ R3 in Equation 3.16d be the total moment vector inFb. We
assume the thrust-force F bT to be aligned with the center of mass, and the small lateral mo-
ment caused from the propeller torque to be so small it can be neglected. This assumption
is described in Appendix A. The total moment vector is then defined by the wind-moment
contributions Mb = Mb

A. This gives the following expression forM b:

Mb =
1

2
ρV 2

r S


b
(
Cl,0 + Cl,ββ + Cl,δaδa + Cl,δrδr +

b(Cl,pp+Cl,rr)
2Vr

)
c
(
Cm,0 + Cm,αα+ Cm,δeδe + Cm,q

c
2Vr

q
)

b
(
Cn,0 + Cn,ββ + Cn,δaδa + Cn,δrδr +

b(Cn,pp+Cn,rr)
2Vr

)
 . (3.24)

The moment-components in Equation 3.24 are linearised with a first-order Taylor approx-
imation. All values of parameters are given in Appendix B.

3.4.1 Vehicle Model in F s and Fw

When forming the OCP, it is not necessary to have the position in the state vector since it
is not needed in the attitude or speed controller. We therefore, represent the velocity with
airspeed, SSA and AoA dynamics. The new state and input vector xs,∈ R13,u ∈ R4 are
now expressed in the stability and wind frame:

xs =
[
Vr β α Θ> ωsnb

> δ>
]>

(3.25)

u = δ̇, (3.26)

where ωsnb ∈ R3 is the angular velocity of Fb with respect to Fn expressed in Fs.
The angular velocity in the stability frame is obtained by the following rotation: ωsnb =
Rs
b(α)ωbnb = [ps, qs, rs]

>. In order to derive the dynamical expressions for Vr, β, α,
we consider the dynamical expression for linear velocity in Equation 3.16b and relative
velocity in Equation 3.20. From (Stevens et al., 2016), the dynamical relation of airspeed,
SSA and AoA is obtained in Equation C.1 respectively. The state equality constraint is
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then obtained as:

V̇r =
T (Vr, δt) cosβ cosα−D +mg1

m
(3.27a)

β̇ =
T (Vr, δt) sinβ cosα+ Y +mg2

mVr
− rs (3.27b)

α̇ =
−T (Vr, δt) sinα− L+mg3

m cosβVr
− ps tanβ + qs (3.27c)

Θ̇ = TΘ(Θ)Rs
b(α)>ωsnb (3.27d)

ω̇snb = (Js)−1
(
Rs
b(α)Mb − S(ωsnb)J

sωsnb
)
− S(ωsbs)ω

s
nb. (3.27e)

We formulate the system in 3.27 as ẋs = f(xs(t),u(t)) ∈ R13. Considering that gn =
[0, 0, g] is the gravity vector in the wind frame, and is obtained by the rotation:

gw = Rw
b (α, β)Rb

v(Θ)gn =
[
g1 g2 g3

]>
. (3.28)

The inertia matrix in the stability frame is denoted as: Js = Rs
b(α)Jb

>
Rb
s(α). If we

consider the UAV to be a rigid body and having symmetry about ibkb-plane, the body
inertia matrix has the form presented in 3.29. The impact of this assumption is elaborated
in the appendix section A.3. Numerical values in J, are obtained in Appendix B.

Jb =

Jxx 0 Jxz
0 Jyy 0
Jxz 0 Jzz

 (3.29)

3.5 Nonlinear Model Predictive Control

The model predictive control (MPC) method is widely used in process technology. A
big reason being that it is an effective way of handling multi-variable constrained control
problems (Bemporad and Morari, 2007). (Foss and Heirung, 2016) is an article describing
the MPC scheme using the illustration in Figure 3.3. MPC uses a receding horizon that
changes from one time step to the next. The optimal trajectory is calculated at each time
step over the horizon N , acquiring an optimal input sequence based on the model con-
straints and the cost function. The first input of the optimal input sequence is then applied
to the plant.
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Figure 3.3: Illustration of the MPC architecture. (Foss and Heirung, 2016)

The nonlinear MPC (NMPC) works very similar to a the linear MPC scheme with the
main difference being that the model constraints are nonlinear instead of linear. There
are some numerical methods described in (Nocedal and Wright, 2006) specifying how to
solve these types of optimization problems. The most relevant is the sequential quadratic
programming (SQP) method and Interior Point Methods for Nonlinear Programming. This
project uses the CASADI framework (Andersson et al., 2019) to formulate the OCP and
solve the nonlinear optimization problems at each step k using the ACADOS optimization
toolbox (Verschueren et al., 2019)(Verschueren et al., 2018). The OCP is non-convex and
can therefore be computationally heavy to solve. This often makes it difficult to guarantee
whether the solution is the global minimum or a local minimum. These challenges make
the implementation of a nonlinear model predictive controller difficult in a fast dynamical
system.

3.6 Nonlinear Optimisation
Numerical Optimisation is the method of locating the minimum of an objective function
with a range of constraints. The complexity of the optimisation problem tends to increase
with an increase in number of decision variables. There are several ways of solving NLPs.
Typically, the most common methods are active set, interior-point and gradient projection
methods. Interior point methods are currently considered to be an effective optimising
method when evaluating large scaled nonlinear problems. Originally, this Thesis uses
the interior point optimisation algorithm IPOPT (Wächter and Biegler, 2006), with the
linear solver ma97 from the HSL package (HSL). The robust setup of the IPOPT algo-
rithm makes the simulations robust regarding varying simulation cases. Due to the shorter
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computation time, the project changes to use the faster ACADOS framework. We use a
sequential quadratic programming solver in the ACADOS toolbox. Further information of
solver and ACADOS settings are given in Table 4.2.

3.6.1 CasADI

CasADI is an open-source tool for nonlinear optimization and algorithm differentiation
(Andersson et al., 2019). It is a general-purpose tool for gradient-based numerical op-
timization with focus on optimal control. A CasADI based syntax in a Python based
algorithm is used to find the optimal solutions of the OCP.

3.7 Stall

The lift force of a Fixed Wing Aerial Vehicle is generated by the pressure difference caused
by the relative flow-velocity around the foil. Stall is a phenomenon the system undergoes
above stall angle values for the AoA. The stall condition occurs differently as UAVs tend
to have different designs. If a MAV undergoes stall condition, the airflow over the wing
is separated from the foil, changing the separation point, resulting in a sudden drop of lift.
This is graphically displayed in 3.4a after approximately 20◦.

(a) Lift coefficient as a function of α (b) Drag coefficient as a function of α. Both the
quadratic and linear case are presented.

Figure 3.4: Displayed trend of lift- and drag coefficient from (Beard and McLain, 2012)[p.47-48]

The lift coefficient is an approximate linear function of the AoA as long as the magnitude
of AoA is kept below stall values. A linear approximation of the lift coefficient may there-
fore be sufficient, due to the constrained values of AoA (see αmax, αmin, Table 4.1). A
linear approximation of the drag coefficient may be less accurate, due to its real quadratic
growth with respect to the AoA (Figure 3.4b).
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3.8 Turbulence

Disturbances such as turbulence, rain, pressure drops and other ambient factors may in-
fluence the stable flight conditions of the UAV. The low mass makes it more susceptible
to ambient disturbances than larger aviation vessels. Turbulence is considered one of the
most influential factors because it can change the AoA to a critical state value. Turbu-
lence is random and thereby difficult to simulate accurately. Most often, the UAV will
fly in stable and low weather conditions, but in some applications it is important to use
the UAV regardless of weather conditions (search and rescue, arctic exploration etc). The
turbulence profile in the simulations will therefore also represent a worst case scenario for
reasonable flight conditions.

Turbulence tends to vary with altitude. It is often more intense and volatile at low alti-
tudes. Because UAVs operate in low altitudes, they often experience turbulence even with
low wind conditions. Several methods of creating turbulence profiles for simulations are
developed. Some of these can be seen in (Róbert, 2009a) and (Róbert, 2009b). The most
known stochastic turbulence methods are the Dryden Method and the Kármán Method.
We use the Dryden Method approximation model in our simulations. This model hinges
on the concept of filtering white noise, creating a turbulence component which is added
to the static wind components. The transfer functions used are from (Beard and McLain,
2012) and given as:

Hu(s) = σu

√
2Va
Lu

1

s+ Va
Lu

(3.30)

Hv(s) = σv

√
3Va
Lv

(s+ Va√
3Lv

)

(s+ Va
Lv

)2
(3.31)

Hv(s) = σw

√
3Va
Lw

(s+ Va√
3Lw

)

(s+ Va
Lw

)2
. (3.32)

Parameters Lu, Lv, Lw ∈ R are defined in the Parameters in the Appendix B. The values
are obtained from (Beard and McLain, 2012)[56]. These values vary with height and
class of turbulence. The parameters: σu, σv, σw ∈ R are the intensities of the turbulence.
If we consider the transfer-function vector to be H(s) = [Hu(s) Hw(s) Hv(s)]

> and
the white noise as σ ∼ N (0, 1), the resulting wind turbulence component is defined as
H(s) : σ → wb

t . The total wind-gust profile used in this thesis is simulated for 30
seconds and is given in Figure 3.5.
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Figure 3.5: Wind gust profile with the three gust components: longitudinal (blue), lateral (green)
and z-axis (red).
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Chapter 4
Simulation Setup

In this chapter, we formulate the OCP based on the wind-formulation in Equations 3.27a-
3.27e. We utilise two controllers: a yaw-pitch-controller from (Reinhardt and Johansen,
2019) and a lower level roll-pitch controller based on (Reinhardt et al., 2020). For com-
parisons in Chapter 5, a PID controller from (Reinhardt and Johansen, 2019) is also
given.

4.1 The OCP Formulation
The cost function is one of the main parts of the NLP. It is the expression to be minimised
with respect to the constraints. It is therefore the part of the NLP that defines the desired
behaviour of the system. When formulating a cost function, it is important to evaluate
which variable to penalise. The cost function needs to be formulated in a way that allows
fast convergence, concurrently providing good in-air flight dynamics.

To descritise the model, a Direct Multiple Shooting Method is used. The time horizon Tf
is divided into N control intervals. The result is a uniform timegrid t ∈ {t0, t1, ... , tN}
with piecewise constant control inputs u ∈ {u0, u1, ... , uN−1}. Furthermore, we define
an optimization variable χ ∈ Rnχ as:

χ =
[
x>0 u>0 ... x>N−1 u>N−1 x>N

]>
, (4.1)

where nχ = N(nx + nu) + nx.

4.1.1 Reference
The pitch-yaw attitude NMPC receives a reference from the path-following controller with
desired relative velocity, pitch and yaw. These three states are enough to define an attitude
that complies with the path. For the roll-pitch attitude controller this reference will be
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the airspeed and the Reduced Attitude Vector Γ(φ, θ) ∈ R3. The reduced attitude vector
is a function of roll and pitch angles respectively. It is therefore effectively using only
airspeed, roll and pitch as references. The reference vector is then based on the initial
conditions and the desired states from the path-following controller. Assuming stable trim
conditions, the full reference vector for the two controllers has the form:

xψd =
[
Vr,d βd αd Θ>d ωss,d

> δ>d

]>
(4.2)

xφd =
[
Vr,d Γ>d

]>
. (4.3)

4.1.2 Pitch-Yaw Attitude Controller
An error state vector is commonly used giving a magnitude of state deviation to be pe-
nalised relative to the reference vector xd in order to define a cost function. For the pitch-
yaw controller, this vector is denoted as x̃ψ ∈ R13.

x̃ψk = xs,k − xd,k (4.4)

The cost function for the pitch-yaw attitude controller is then obtained from (Reinhardt
and Johansen, 2019):

Ωψ(χ) =

N−1∑
k=0

(
x̃ψk
>
Qψ
x x̃

ψ
k + u>kQ

ψ
uuk

)
+ x̃ψN

>
Qψ
N x̃

ψ
N , (4.5)

where the weighting matrices Qψ
x = Qψ

N ∈ R13×13,Qψ
u ∈ R4×4 are used to weight

perturbation of states and inputs respectively.

4.1.3 Roll-Pitch Attitude Controller
We formulate the controller based on a lower level objective formulation. Purposely, this
controller will only consider roll, pitch angles as well as airspeed. We obtain the new
state-error vector in Equation 4.6.

x̃φ =

[
Vr − Vr,d
Γ− Γd

]
(4.6)

Where Γ ∈ S2 is the reduced attitude representation given by the n-sphere-space Sn.

Γ = Rb
v(φ, θ, ψ)kn (4.7)

Sn = {x ∈ Rn+1|
√
x>x = 1}. (4.8)

The kn-axis defined in NED-frame is constant and given as kn = [0, 0, 1]>. If we consider
φ ∈ [−π, π] and θ ∈ [−π2 ,

π
2 ], the reduced attitude representation is parameterised to

be:

Γ =
[
− sin θ cos θ sinφ cos θ cosφ

]>
(4.9)

The cost function can now be obtained as:

Ωφ(χ) =

N−1∑
k=0

(
x̃φk
>
Qφ
xx̃

φ
k + u>kQ

φ
uuk

)
+ x̃φN

>
Qφ
N x̃

φ
N . (4.10)
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4.1.4 NLP Formulation
Considering the pitch-yaw NMPC’s cost function in Equation 4.5, we obtain the following
NLP.

min
χ

Ωψ,φ(χ) (4.11a)

s.t. (4.11b)
x0 = ym(t0) (4.11c)
u0 = u(t0) (4.11d)
xk+1 = f (xk,uk) (4.11e)
xmin ≤ xk ≤ xmax (4.11f)
umin ≤ uk ≤ umax (4.11g)

Constraint 4.11e is the plant-model constraint which defines the system behaviour. The
constraint does not include ambient disturbances such as wind, varying payloads, wear
or icing. NMPC is a method that relies on the plant-model and is therefore susceptible
to poor performance if the plant-model deviates from the physical system. The quadratic
form of the cost function ensures that the cost function value is positive and strictly in-
creasing.

The diagonal matrices Qψ
x = Qψ

N ∈ R13×13, Qφ
x = Qφ

N ∈ R4×4 and Qψ
u ,Q

φ
u ∈ R4×4

are actively used to penalise the deviation of simulation state error and input deviation
respectively. High values in the weighting matrices correspond to a large increase in the
cost function, dependent on the magnitude of a variable increase. These matrices are thus
used actively to tune the NMPC to an overall desirable response. If the system is in a
position that violates the constraints, the OCP solver returns an infeasible solution making
the algorithm crash. This effect can be eliminated using slack variables to soften up the
constraints. Constraints 4.11c - 4.11d are the initial conditions based on the observer
model and previous prediction horizon optimization. Finally, the inequality constraints in
4.11f - 4.11g are the state and input limits. They are constant through all simulations and
are given in Table 4.1.

4.1.5 Integrator and Optimizer setup
Constraint 4.11e is integrated using an explicit fourth order Runge-Kutta method. The
NLP is implemented using a multiple shooting algorithm in Python 3.6.8 (Foundation
(2018)). ACADOS is used as the optimisation tool solving the NLP with the SQP-solver
SQP RTI. The underlying optimisation and integrating options are presented in Table 4.2.

4.2 PID Controller
For comparisons, we implement a PID controller to the simulations. The PID controller is
based on the pitch-yaw configuration and therefore creates a desired roll behaviour to form
inputs controlling pitch and yaw. A PI controller is therefore created making the desired
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Table 4.1: State and input simulation constraint values.

Parameter Value [Si-unit]
Vr,min, Vr,max {10, 30} [m/s]
βmin, βmax {-90, 90} [deg]
αmin, αmax {0, 27} [deg]
δt,min, δt,max {0, 1} []
δ̇t,min, δ̇t,max {-100, 100} [1/s]
Θ>min -[180, 90, 180] [deg]
Θ>max [180, 90, 180] [deg]
ωsnb,min

> -[180, 180, 180] [deg/s]
ωsnb,max

> [180, 180, 180] [deg/s]
δa,e,r,min {-35, -35, -35} [deg]
δa,e,r,max {35, 35, 35} [deg]
u>min -[100(%/s), 100, 100, 100] [deg/s]
u>max [100(%/s), 100, 100, 100] [deg/s]

Table 4.2: ACADOS solver settings.

QP-solver PARTIAL CONDENSING HPIPM
NLP-solver SQP RTI
Hessian approximation method GAUSS NEWTON
Integrator type ERK4

roll angle which seeks to reduce the error in the yaw angle. The PID controller deflection
and throttle scheme is given as:

δt = kpV (Vr,d − Vr) + kiV

∫ t

0

(Vr,d − Vr)dτ (4.12a)

δa = kpφ(φd − φ) + kiφ

∫ t

0

(φd − φ)dτ + kdφp (4.12b)

φd = kpψ(ψd − ψ) + kiψ

∫ t

0

(ψd − ψ)dτ (4.12c)

δe = kpθ(θd − θ) + kiθ

∫ t

0

(θd − θ)dτ + kdθq. (4.12d)

All gain parameters are given in Table 4.3. See (Reinhardt and Johansen, 2019) for more
information. A simple anti-windup strategy is used, limiting the integral values when the
values defy the interval given by [Imin, Imax]. The update rate of the PID controller is
100 Hertz. Actuator constraints in the PID controller are not implemented, meaning the
input rate does not have a limit. However, the input is filtered through a low-pass filter.
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Table 4.3: PID gain parameters.

Gain Value
kpV , kpφ, kpψ, kpθ {0.69, 0.78, 1.08,−0.78}
kiV , kiφ, kiψ, kiθ {0.01, 0.01, 0.01,−0.30}
kdV , kdφ, kdψ, kdθ {0.1,−0.11, 0.1,−0.16}
Imax = −Imin [1.00, 0.09, 0.09, 0.09]>

We therefore expect this controller to have fast inputs.

u′k = δk−1 + ∆tsim(uk−1) (4.13)

uk = uk−1 +
∆tsim

RC + ∆tsim
(u′k − uk−1) (4.14)

The simulation parameters RC,∆tsim ∈ R are the time filter constant and simulation
time-step respectively.
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Chapter 5
Simulations and Discussion

In this chapter we will present and discuss a series of simulation cases representing real-
time flight situations for the UAV. The pitch-yaw and roll-pitch controllers are tested to-
wards model uncertainties and ambient disturbances, in order to evaluate controller algo-
rithm robustness. Typical model disturbance methods such as integral action and offset
free control are implemented and compared towards the original NMPC controllers in
(Reinhardt and Johansen, 2019) and (Reinhardt et al., 2020). Furthermore, the perfor-
mance of the pitch-yaw controller is compared to a PID controller. The simulations are
implicating situations where stable flight can be challenging to maintain, thus highlighting
the controller’s ability to exploit fast manoeuvrability and being robust towards distur-
bances. The objective of this chapter is to determine the proposed NMPCs abilities of
real-time performance in severe conditions.

The general definition of a ”robust controller” can be difficult to quantify, using a numer-
ical approach. Since there are many characteristics underlying this definition, an error
parameter that helps implicate deviation relative to the reference is made. Much of the
controller’s performance can be outlined as the ability of following the reference under
the influence of numerous ambient disturbances. As a way of indicating total deviation,
as well as easier comparisons foundation, the experimental error parameter (EP) (∆x) is
developed:

∆x =

Tsim/∆tsim∑
t=t0

x>∆I
6×6x∆. (5.1)

Where Tsim = 30s,∆tsim = 0.01s are the total simulated time and simulation time step
size. The simplified deviation vector x∆ ∈ R6 is defined in Equation 5.2, perpetrating
most important state deviations respectively.

x∆ =
[
(Θ−Θd)

> 1
100 (Vr − Vr,d) β − βd α− αd

]>
(5.2)
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Table 5.1: NMPC and PID simulation parameters.

Parameter Value Description
N 30 Number of discretization steps in the NMPC.
Nsim 3000 Number of discretization steps in the integrator.
Tf 3[s] Prediction horizon.
Tsim 30[s] Total simulation time.
fnmpc 20[Hz] Update rate of the NMPC.
fsim 100[Hz] Update rate of the integrator, integrating Equation 5.6.
fPID 100[Hz] Update rate of PID controller.
∆tmpc 0.1[s] NMPC time-step. Given by ∆tmpc = Tf/N .
∆tsim 0.01[s] Integrator time-step. Given by ∆tsim = Tsim/Nsim.

The error parameter ∆x ∈ R will then be a representation of some ”important” state
deviations for each simulation. In Equation 5.2, we reduce the impact of the airspeed due
to the high values relative to the other states in the deviation vector. In order to survey the
input dynamics, a similar parameter is made, only representing total energy and wear on
actuators:

∆u =

Tsim/∆tsim∑
t=t0

u>∆I
5×5u∆, (5.3)

where u∆ ∈ R5 is the energy-usage vector. This vector includes both throttle input and
the total input-rate.

u∆ =
[
δt (ut − ut−1)>

]>
(5.4)

The NMPC controller parameters are given in Table 5.1.

5.1 Sensors and Measurements
The ability for a UAV to maintain stable flight under rough conditions is highly influenced
by the amount and quality of data from the on-board sensors. For simplicity of filtering
noise, measurement-output is assumed to be noise-free in this Thesis. We also assume the
UAV to have a set of sensors, feeding the controller with real-time measurements:

• An IMU, containing a gyroscope and an accelerometer, feeding the controller with
ωb, v̇b.

• Global Positioning System (GPS) ensuring position of UAV in NED-frame. (not
crucial for the attitude controller).

• Pitot-static tubes (differential pressure sensor), obtaining the relative velocity, as
well as estimations of AoA and SSA.

The differential pressure sensor tends to be costly (Wenz et al., 2016), and is thus less com-
mon in low-cost UAVs. It is assumed that the UAV tested in this paper has a set of pressure
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sensors, ensuring the output signal transformed to the wind-frame to be fully defined. Fi-
nally, we also assumed that all actuators on the UAV are equipped with positioning-sensors
fully defining δ. The measured output is then given as:

ym = xm. (5.5)

In order to simulate scenarios that may come close to the real behaviour of the UAV, we
have designed a model for the measured states xm with the following dynamical equa-
tion:

ẋm = fm(xm,u), (5.6)

where fm : (xm,u) → R13 is a dynamical system based on the system equations in
3.27, but with implemented turbulence and other disturbances. This will purposely design
a simulation case towards a real-life test scenario. Varying disturbances are tested in the
simulation cases later discussed, and alterations made will be emphasised. The NMPC
schemes are tuned in Section 5.3.1, where the offset correction algorithms (model correc-
tion NMPC, input correction NMPC and NMPC with integral action) are tuned with a less
severely altered measurement model. This makes them less tuned for the more severe case
tested later.

5.1.1 Measurement Model
The controller proposed in this Thesis has to be highly robust towards varying weather
conditions, as well as being able to handle different UAV platforms. Working conditions
of the UAV might differ due to the varying use-purposes it may experience. Our incentive
is to broaden the use of our algorithm; we consider the harshest environment this UAV
might encounter. In this manner, We will then be able to conclude whether the NMPC
algorithm is robust. For scientists, a popular use-case for UAVs, are glacier and wildlife
monitoring in arctic conditions. From an industrial point of view, UAVs are also known to
be used mapping glacier dynamics for the oil industry. To ensure robustness, we examine
some features this might entail, implementing this in the measurement model in Equation
5.6.

Initially, we want to investigate the scenario of a changed center of mass. This is math-
ematically done by defining an offset-vector rbb/cm ∈ R3, stating the distance from the
body-frame origin to the real physical center of mass. The new moment of inertia matrix
is then given from the Parallel Axis Theorem:

Jbm = Jb −mS(rbb/cm)S(rbb/cm). (5.7)

The fact that X8s tend to be used by researchers, implicate that we can assume it to have
mounted varying research devices on the UAV. Cameras, sensors, and strong, heavy on-
board micro-controllers are common components that all have the potential of increasing
the mass, as well as shifting the mass center. The measurement model will as a result
add a mass component to the actual mass of the UAV, mm = muav + mc = 3.36kg +
0.84kg = 4.2kg. This is listed as the maximum take-off weight for the Skywalker X8 in
(Airelectronics). The total wind component in Fb is now implemented with the Dryden-
gust profile given in Figure 3.5.
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Figure 5.1: Effect of Icing given in the aerodynamic coefficients. The reduced coefficients are
denoted with ′ (blue).

Icing on Wings

Remote arctic conditions increase the cost and risk of retrieving-operations if the UAV
fails. We therefore consider a worst-case scenario with atmospheric icing on air-foils.
This is implemented in the measurement model by the following equations:

C ′D(α) =
(
CD,0 + αCD,α1 + α2CD,α2

)
SD (5.8)

C ′L(α) = (CL,0SL1) + (CL,αSL2)α. (5.9)

The effect of iced airfoils for UAVs are found in (Hann et al., 2017),(Dalmau, 2018) and
(Winter, 2019). They all conclude with a decrease in the lift coefficient, and an increase in
the drag coefficient, with iced airfoils. To replicate an icing scenario, the drag coefficient is
increased by a factor SD ∈ R and is now a quadratic function of AoA. The lift coefficient
still has close to linear tendencies even with an icing case. We therefore implement a small
stagnation of growth given by SL2 ∈ R, and an offset defined by SL1 ∈ R. The aerody-
namic coefficients are illustrated in Figure 5.1. The parameters SD, SL1, SL2 are assigned
the values (2, 0.4, 0.6). These are based on a visual inspection of the aerodynamic coef-
ficients in (Winter, 2019). Because of the unpredictable icing accretions and placement
of research components, the mass center is changed 7 cm in ib-direction. Throughout the
simulations presented in this thesis, we use rbb/c = [0.07, 0.02, 0.02]>. It will then repre-
sent a UAV with research components added (camera, sensors, etc.) on the front, slightly
lower than the ib-axis. Finally, we also have an asymmetric offset along jb. This offset
can be explained due to the wear and tear of the UAV and not perfectly balanced mounted
research components.

5.2 Pitch-Yaw NMPC Modified For Extreme Conditions
There are many methods of mitigating random unforeseen disturbances in Nonlinear Con-
trol Theory. Typically, integral action and model correction offset-free control are most
common. We design two modifications of Offset-free Nonlinear Model Predictive Con-
trollers and an NMPC with integral action to investigate a potential performance enhance-
ment under severe plant-model mismatches. This will potentially contribute to making a
final NMPC algorithm robust against unforeseen cases, ultimately creating a robust con-
troller for a wide range of application areas within the UAV community. The controllers
are based on the controller schemes given in the Literature review in Chapter 2.
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5.2.1 Model Correction NMPC

Offset-free control can be implemented in various ways. If we consider the observer equa-
tions in 2.3, the disturbance term can be implemented where we expect errors from the
plant-model. We will form two different offset-free controller formulations. The first
modification uses measurements from the IMU (ωm) and pressure sensors to change the
moment vector M b and the relative velocity to more accurate estimations. Ultimately,
this will lead to a more accurate plant-model. We consider the same system equations in
3.27a - 3.27e, the only difference being an added disturbance term to the moment vector
and relative velocity in Equation 3.24 and 3.21 respectively. The new discretised moment
and relative airspeed are thus given by the Equations in 5.10. If we consider the concate-
nated disturbance vector dk = [d>M,k dv,k]> ∈ R4, we formulate the following model
corrections:

M̆
b

k = M b
k + dM,k (5.10a)

V̆r =
√
u2
r + v2

r + w2
r + dv,k (5.10b)

ek =
[
(ωm,k − ωk)> (Vr,m,k − Vr,k)

]>
. (5.10c)

Where the corrected moment vector M̆
b

k : (M b
k,dM,k) → R3, and the relative airspeed

V̆r,k : (Vr,k, dv,k) ∈ R are used in the OCP to form more accurate model estimations
respectively. The measured angular-rate vector and relative velocity ωm,k, Vr,m,k are
obtained from the simulation model with implemented ambient disturbances in Section
5.1.1. To form a discretised model, we consider the uniformly distributed NMPC-time-grid
z ∈ {0, 1, ...

fnmpc
fsim

Nsim}. The grid is representing the number of total performed OCP
solvings. We finally state the new disturbance corrected plant-model as follows:

dz+1 = fd,z(dz:z−p,xz,ym,z) =


1
p+1

(
dz + `dez +

∑p
i=z−(p−1) di

)
∀p ≤ z

dz + `dez ∀0 < z < p
04×1 ∀z = 0s

(5.11)

where p is the low pass filter parameter. The diagonal gain matrix `d ∈ R4×4 is used
to tune the model correction input dk+1. Tuned values for this matrix can be found in
Appendix 5.3.2. From equation 5.11, it can be seen that good estimations from the NMPC
leads to small values of the disturbance change ek → 0 : dk+1 − dk → 0, ultimately
making the disturbance converging to a constant: dk+1 = dk. Because of the proportional
modeling of the disturbance, it can be expected to be rather large oscillations in disturbance
values. To reduce this, we use a moving average technique, taking the average of the last
p−1 disturbances to model the next. This is purposely working as a simple low-pass filter.
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In this Thesis it is used p = 4. We now obtain the given NLP:

min
χ

N−1∑
k=0

(
x̃ψk
>
Qψ
x x̃

φ
k + u>kQ

ψ
uuk

)
+ x̃ψN

>
Qψ
N x̃

ψ
N (5.12a)

s.t. (5.12b)
x0 = ym(t0) (5.12c)
u0 = u(t0) (5.12d)
d0 = fd(dz:z−3,xz,ym,z) (5.12e)

xk+1 = f (xk,uk,dk) (5.12f)
dk+1 = dk (5.12g)
xmin ≤ xk ≤ xmax (5.12h)
umin ≤ uk ≤ umax. (5.12i)

5.2.2 Input Correction NMPC
Implementing offset-free control in the NMPC is also presented in this thesis by directly
changing the input vector applied to the plant. This method can resemble a standard P-
controlling scheme on the output of the NMPC. The previous method of implementing
disturbance directly in the state equations is dependent of knowing where a possible bad
estimation is to acquire good results. For a UAV, we can assume some simplifications of
input meaning. Elevator can be directly linked to the pitch dynamic of the UAV. Likewise,
we assume aileron, rudder and throttle to be linked to roll, yaw and airspeed respectively.
The input law is given in Equation 5.13, and depicted by a block diagram in Figure 5.2.

ŭk = uk + ∆uk (5.13a)
∆uk = `uC(xd,k − ym,k) (5.13b)

Where the vector ∆uk ∈ R4 is the input correction matrix, and C ∈ R4×13 is defined
as:

C =

[
1 01×2 01×3 01×7

03×1 02×2 I3×3 03×7

]
. (5.14)

Similar to the offset-free control method on the moment vector, the diagonal gain matrix
`u ∈ R4×4 is a corresponding tuning parameter. This parameter controls the magnitude of
input correction given by the attitude and relative velocity error with respect to the mea-
surements. If the gain matrix is large, the prediction of the NMPC will be less accurate,
meaning much of the desirable attributes of the NMPC can go lost. Also, large values can
cause the inputs to oscillate, creating an unstable controller. There will also be manoeuvres
this control scheme simply will counteract. This offset-free method is thus more suscep-
tible to tuning-errors and the input should therefore only be corrected for small errors at
each sample instance. The NMPC will then be able to keep its attributes, and concurrently
keeping input correction to eliminate steady state perturbations. We therefore assign the
diagonal of `u with small numbers given in Section 5.3.3.
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Figure 5.2: Schematically illustration of model correction with a block diagram.

5.2.3 NMPC with Integral Action
We now consider another method of handling unknown disturbances and model errors.
Integral action is a well known method of handling offsets in Control Theory. Usu-
ally, integral action is used in PID controllers and LQRs. Integral action is implemented
adding the total historical state-errors. The OCP solution is therefore changing the in-
puts to achieve a smaller state deviation respectively. In order to implement integral ac-
tion in the NMPC, the cost function error state vector is augmented with integral states
as discussed in the literature review in Chapter 2. The state-error vector x̃ψ is con-
catenated with the integral state vector ζ ∈ R4, forming the new augmented vector
x̃ψa = [x̃ψ ζ]> ∈ Rnx̃+ni . The weighting matrices are also concatenated as a result:
Qψ
x,a,Q

ψ
N,a = diag([qv qβ qα q

>
Θ q
>
ω q
>
δ q
>
ζ ]). Where qζ is the weighting vector of the

integrator states respectively. The continuous integral action dynamic in the OCP estima-
tion model in 3.27, is defined as:

ζ̇ = C(xnmpc − xd) (5.15)

ζ =

∫ t

0

C(xnmpc − xd)dt (5.16)

=
[
ζv ζφ ζθ ζψ

]>
, (5.17)

whereC is given in Equation 5.14, and the initial time step t0 is given as the initial staring
time for the OCP. The integral states are iteratively updated by feedback from the mea-
surements. The initial integral state starting the OCP is given by:

ζ0 =

∫ t

0

C(ym(t)− xd(t))dt. (5.18)

In order to mitigate the integral action becoming dominating in the NMPC scheme, we
utilise a simple integrator-windup strategy. The magnitude-limit of the corresponding in-
tegral states is set to Imax = −Imin = [9, 3, 3, 3]>. We thus obtain the following NLP
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scheme:

min
χ

N−1∑
k=0

(
x̃ψa,k

>
Qψ
a,xx̃

ψ
a,k + u>kQ

ψ
uuk

)
+ x̃ψa,N

>
Qψ
a,N x̃

ψ
a,N (5.19a)

s.t. (5.19b)
x0 = ym(t0) (5.19c)

ζ0 = fφζ (x̃φa(t0)) (5.19d)

u0 = u(t0) (5.19e)
xk+1 = f (xk,uk) (5.19f)
xmin ≤ xk ≤ xmax (5.19g)
umin ≤ uk ≤ umax. (5.19h)
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5.3 Pitch-Yaw Attitude NMPC Tuning
This part of the analysis presents the tuning of the disturbance controllers used in this
thesis. The original controller is also tuned due to the implemented AoA in the cost
function relative to the original controller in (Reinhardt and Johansen, 2019). We con-
sider the tuning- matrices in the given cost functions to obtain a satisfactory tuning. The
original controller is only tuned under the influence of a static wind component wn

s =
[−5,−3, 0]>, due to the uncertainties of the ambient disturbances. Tuning obtained from
this isaslo then used throughout the Thesis on all pitch-yaw controllers. The disturbance
mitigating controllers are tuned to a less severe ambient condition case than the one pre-
sented in Section 5.1.1. We then find appropriate values for the integral weighting matrix,
and the model correction behaviour. We can thereby conclude whether the disturbance
controllers are effectively increasing robustness of the NMPC framework. All tuning cases
are based on the same Bank to Turn benchmark manoeuvre. It adequately excites all states
commanding both lateral and longitudinal motion simultaneously. The same number of
discretisasloation steps and prediction horizon in all tuning cases, N = 30, Tf = 3s, are
used. Finally, the update-rate of the NMPC remains at fnmpc = 20Hz throughout the
entire Thesis.

5.3.1 Pitch-Yaw NMPC
When tuning the pitch-yaw NMPC (original controller), it is important to evaluate which
states that are desirable to keep at references. The reference vector is based on trim con-
ditions without ambient disturbances. It will therefore create cases where perfect con-
vergence on all states are impossible. We therefore tune the original controller under the
influence of a static wind component only. Considering the cost function in 4.5, Qψ

x ,Q
ψ
u

are assigned values creating an optimal response.

Qψ
x = diag

([
qv qβ qα qφ qθ qψ qω qδ

])
(5.20)

Qψ
u = diag

([
qδ̇t qδ̇a qδ̇e qδ̇r

])
(5.21)

Where the subscript of q describes which variable it weights in the OCP. The tuning pro-
cess is presented in Table 5.2 and 5.3. It is also graphically displayed in Figure 5.3, where
the most relevant simulated cases are compared.

∆x
sim2 = 109 ∆x

sim3 = 112 ∆x
sim4 = 112 (5.22a)

∆u
sim2 = 481 ∆u

sim3 = 462 ∆u
sim4 = 470 (5.22b)

Figure 5.3 shows the responses of sim2, sim3 and sim4 respectively. Table 5.2 reveals
a significant increase in qθ, from sim3 to sim4. From previous experience in the Project
Thesis, it can be expected that the pitch struggles to converge under rough conditions.
Also, the magnitude of pitch-deviations tend to be less than the roll and yaw respectively.
Finally, the throttle input deviations are also reduced to prepare the controller for a possible
higher drag, making it less costly to apply more throttle. By observing the error-parameters
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in Equation 5.22, we can see that the difference between sim3 and sim4 is small. All
simulations in this Thesis therefore use the weighting matrices presented for sim4.
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Figure 5.3: Three responses of different tuning matrices for the original NMPC, with a bank to turn
manoeuvre, under static wind conditions.
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Table 5.2: Pitch-yaw tuning parameters.

Sim qv qβ qα qφ qθ qψ q>ω
1. 10−3 10−1 10−1 10−1 10−1 10−1 [10−3, 10−3, 10−3]
2. 10−3 10−1 10−1 10−1 10−1 10−1 [10−3, 10−3, 10−3]
3. 10−3 10−1 10−1 10−1 4 1 [10−3, 10−3, 10−3]
4. 10−3 10−1 10−1 10−1 20 1 [10−3, 10−3, 10−3]

Table 5.3: Pitch-yaw tuning parameters.

Sim qδa qδe qδr qδt qδ̇a qδ̇e qδ̇r qδ̇t
1. 10−3 10−3 0 10−3 10−3 10−3 0 10−3

2. 10−3 10−3 0 10−3 10−1 10−1 0 10−1

3. 10−3 10−3 0 10−3 0.4 0.4 0 0.4
4. 10−3 10−3 0 10−4 0.4 0.4 0 0.4

5.3.2 Model Correction NMPC

We use the same weighting matrices as concluded in Section 5.3.1. In order to tune the
estimation model, we only consider the diagonal gain matrix `d in Equation 5.11. Tuning
of `d = diag(`l, `m, `n, `vr ) is done by implementing plant-model errors, thus evaluating
the estimator’s ability of correct plant-model regarding these changes. We create a less
severe measurement model fm than the one presented in 5.1.1.

• Mass is changed to 4.2 kg (from the original 3.36 kg).

• Change of mass-center rbb/cm = [0.01, 0.0, 0.005]>

• Changed lift- and drag coefficients where we change CinclineL , CoffsetL , CfactorD to
{0.6, 0.9, 1.5} respectively. This is further elaborated in Section 5.1.1.

The disturbance model is tuned to account for offsets, constantly updating the plant-model
with disturbance input. Tuning values of `d are given in Table 5.4. They are obtained by
focusing on finding values of `d resulting in dk+1−dk ≈ 0. We therefore seek a relatively
constant behaviour. If the values in the observer tuning mattix are too small, it may never
converge. This can be seen for dv in simulation sim1, in Figure 5.4. However, if it have
large values, the disturbance might oscillate heavily. Figure 5.4 illustrates the individual
disturbance components over the entire simulation, performing the same manoeuvre as
in Section 5.3.1. Initially all disturbances are noisy. This is because the moving average
method starts being effective at t = 4∆tnmpc = 0.4s. Even if the value of dv is decreasing
over the simulation, it can be seen that the large increase we did from sim2 to sim3 only
resulted in slightly more oscillations arount dsim2

v . This implicates that the dynamics of
V̇r tends to need more disturbance input over the simulation. Nevertheless, it seems to
stabilise at dv ≈ −2. Based on this, we choose sim2 for our tuned disturbance model.
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Sim Comment
1. Too fast and oscillating deflections of δa, δe, δt. Need higherQψ

u .

2.
Still too fast input dynamics. The pitch and yaw convergences are significantly
slower. Need higher qψ, qθ,Qψ

u .

3.
To prepare the controller of throttle deviations, we chose qδt lower.
Also, the pitch tends to create offset under the influence of rough conditions.
We therefore choose qθ significantly higher.

4. This simulation shows fast convergence with acceptable deflection-rates.

Table 5.4: Model correction NMPC tuning parameters.

Sim `l `m `n `vr ∆x ∆u

1. 0.1 0.1 0.1 0.1 147 665
2. 0.1 0.5 0.07 1 143 753
3. 0.05 0.5 0.05 3 142 775
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Figure 5.4: Individual disturbance components with varying values of `d.
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Table 5.5: Input correction NMPC tuning values of `u.

Sim `δ̇a `δ̇e `δ̇r `δ̇t ∆x ∆u

1. 0.01 −0.01 0 0.05 147 690
2. 0.01 −0.03 0 0.1 146 712
3. 0.01 −0.5 0 0.2 145 754
4. 0.01 −2 0 0.1 144 750
5. 0.01 −5 0 0.1 144 919
6. 0.01 −10 0 0.1 146 1100

Sim Comment

1.
Slow input correction for throttle and elevator, resulting in small offset mitigation.
Need increasing of `δ̇e , `δ̇t .

2.
Better offset mitigation. However, the throttle starting to oscillate. The airspeed
and pitch are still with offsets, we therefore try increasing `δ̇e , `δ̇t even further.

3.
Response of both airspeed and pitch is better. Throttle oscillates more heavily. We
therefore set `δ̇t back to 0.1. Also, further increasing `δ̇t to mitigate pitch-offset.

5.
By increasing `δ̇e , we also introduce elevator oscillations. However, there is still
a small pitch-offset.

5.3.3 Input Correction NMPC
We will now tune the following input correction NMPC in 5.2.2. The tuning process is
done by evaluating the overall response of the inputs, relative to the ambient disturbances.
The input correction works as a P-regulator outside the NMPC, and is therefore expected
to struggle correcting large state-offsets. Considering the gain matrix `u, we assign values
relative to desired input corrections. The system is tested under the same eased ambient
disturbances presented in Section 5.3.2. From the tuning process of the input correction
NMPC, it can be observed in Figures 5.5 and 5.6 that total offset-elimination is not possible
without oscillations on δa, δe, δt respectively. The tuning of this controller is chosen from
Table 5.5, for simulation sim4.
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Figure 5.5: Three responses of different tuning configurations of `u for the input correction NMPC.
A Bank to Turn manoeuvre under moderate turbulence is displayed with reduced aerodynamic coef-
ficients.
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Table 5.6: Tuning of integral action.

Sim qζv qζφ qζθ qζψ ∆x ∆u

1. 10−6 10−5 10−4 10−5 150 601
2. 10−4 10−4 10−2 10−5 147 553
3. 10−4 10−4 1 10−4 148 645
4. 10−4 10−4 10 10−2 166 637
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Figure 5.6: Inputs of the input correction NMPCs with varying tuning values of `u.

5.3.4 NMPC with Integral Action

Finally, we tune the integral action NMPC by considering the vector qζ = [qζv , qζφ , qζθ , qζψ ]>,
in Section 5.2.3. The offset of the integral defined states is investigated, to determine a
good response for the attitude NMPC with augmented integral states. In Table 5.6 and
Figure 5.7, we observe the fact that only with large values of qζθ , the pitch-offset is elim-
inated. The integral state weighting component qζθ has to be large enough to dominate
elevator behaviour forcing it to have a bigger offset than previously. We have also cho-
sen the weighting of pitch such that the pitch decreases before the climb to build speed,
thus finding an optimal solution forcing pitch convergence. It is then able to keep a rela-
tive large airspeed without throttle-rate input throughout the climb. Because of this strong
convergence, we choose the weighting corresponding to sim4.
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Figure 5.7: Three tuning configurations of qζ for the attitude NMPC with integral action. A bank to
turn manoeuvre is performed, under moderate turbulence, with reduced aerodynamic coefficients.
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5.4 Pitch-Yaw NMPC Compared to a PID Controller
To inspect the effect of the severe icing conditions in Section 5.1.1, we test the original
pitch-yaw attitude NMPC towards the PID controller in Section 4.2. The weighting matri-
cesQψ

x ,Q
ψ
u are obtained from the tuning process in 5.3. We use these matrices throughout

this thesis for all the pitch-yaw NMPC configurations. Optimally, we want to design a
controller that can be used in multiple designs in varying environments, also under rough
conditions. The tuning of the controller is therefore constant, given all UAV applications.
The weighting matrices are then obtained to be:

Qψ
x = diag

([
qv qβ qα q>Θ q>ω q>δ

])
(5.23a)

Qψ
u = diag

([
0.4 0.4 0.4 0

])
(5.23b)

qv, qβ , qα = {10−3, 10−1, 10−1} (5.23c)

qΘ =
[
10−1 2 · 101 100

]>
(5.23d)

qω =
[
10−1 10−1 10−1

]>
(5.23e)

qδ =
[
10−4 10−3 10−3 0

]>
(5.23f)

Where diag(x) denotes the diagonal square matrix with vector x as a diagonal. The
vector qΘ, weights roll, pitch and yaw related to the importance of each state conver-
gence. The NMPC therefore strives to find solutions with low errors on these states re-
spectively.

Initially, we want to evaluate the pitch-yaw NMPC against a PID controller. PID con-
trollers are often the common choice when it comes to small unmanned aerial vehicles. In
order to test the controllers, we define a benchmark manoeuvre; The Bank to Turn manoeu-
vre. It excites all states creating an ideal case-study regarding performance under rough
conditions. A Bank to Turn is when an aerial vehicle turns by exciting roll and pitch at the
same time, leading to a turning manoeuvre. After the Bank to Turn manoeuvre is finished,
the UAV will continue to climb relative to a positive pitch-value. The initial conditions are
the same for all simulations in this thesis, and are obtained from initial trim conditions.

wn
s =

[
−5 −3 0

]>
(m/s) (5.24a)

Vr,0 = 17.24 (m/s) (5.24b)
β0 = 9.98 (Deg) (5.24c)
α0 = 6.43 (Deg) (5.24d)

Θ0 =
[
−0.03 6.31 −0.02

]>
(Deg) (5.24e)

ωsnb,0 =
[
−5.24 −2.17 −3.52

]>
(Deg/s) (5.24f)

δ0 =
[
9(%) 0.83 −2.05 0

]>
(Deg) (5.24g)
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The references creating the benchmark manoeuvre are a step function activated at 15 sec-
onds:

xd,k =

{
xd,0: ∀ t < 15s
xd,15: ∀ t ≥ 15s

. (5.25)

Where the reference steps are obtained from trim conditions as:

xd,0: ≈ [19.4, 8.0, 1.1, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.5, 0.0, 0.14]> (5.26a)

xd,15: ≈ [20.0, 0.0, 0.0, 30.1, −49.3, 0.0, 0.0, 0.0, 0.0, 0.0, 4.3, 0.0, 0.31]>.
(5.26b)

The NLP for the pitch-yaw NMPC (original NMPC) is formulated in Equation 4.11. Fig-
ure 5.8 graphically illustrates the pitch-yaw NMPC and the PID controller under icing
conditions, with increased mass, under moderate turbulence. First, we consider the PID
controller’s response on the first time interval t < 15s. From Figure 5.8, the pitch angle
can be observed to have an offset similar to the NMPC. This offset comes from the dras-
tically changed parameters in the model due to icing. The implemented integral action
accumulates as a result of a persistent pitch error. The integral action in the PID controller
forces it to add more inputs, leading to the slow approach to the pitch reference. The PID
controller’s update-rate is 100 Hz compared to the NMPC’s 20 Hz, giving it a five times
faster update-rate. This makes the output from the PID more noisy. As previously dis-
cussed in Section 4.2, the actuator limitations are not implemented other than a simple low
pass filter giving it unrealistically high and fast inputs. As can be seen in Figure 5.9. This
effect can be mitigated by reducing the proportional gains of the PID. It is therefore able
to follow the airspeed reference exceptionally well.

To summarise, the PID controller’s performance, reaches the desired references, yet slowly,
and under the process of applying very fast and varying inputs respectively. Due to the fast
actuator responses we expect that the PID needs more tuning before it is ready for real-time
implementation.
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Figure 5.8: Pitch-yaw NMPC and PID controller states with severe case of icing accretions, under
moderate turbulence, performing a Bank to Turn manoeuvre.
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Figure 5.9: Throttle rate of the NMPC and PID controller.

We will now consider the performance of the pitch-yaw NMPC under these extreme con-
ditions in Figure 5.8. The airspeed of the NMPC never reaches the desired value due
to the increased drag and mass. From the throttle plot, we see that even if the throttle
is persistently above the desired vales, it is not enough to counteract the harsh environ-
ment, and bring the airspeed to the desired reference. The OCP is formulated based on the
plant-model in Equations 3.27a-3.27e, thus not with the ambient disturbances. It therefore
finds input sequences based on these equations, resulting in a convergence of values sub-
stantially off the desired pitch and airspeed. The OCP is not tuned to account for these
ambient unknown disturbances. This can be verified by considering the cost function,
where its moving average can be seen to stabilise at approximately 80, indicating it has
reached its objective. The OCP persistently predicts with a less accurate model, finding
input sequences that are too low to meet the real unmodeled ambient disturbances. It there-
fore finds the lowest cost scenario of all the presented states relative to the trim conditions;
finally settling on a compromise. The pitch-yaw NMPC shows a rather poor performance
under these extreme conditions due to the inaccurate plant-model, and incorrect tuning
for this case. We cannot tune the controller to tolerate ambient disturbances due to their
random nature. Instead, we introduce model correction, input correction or integral action
to account for the disturbances. These scenarios are simulated in Section 5.2.
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5.5 Comparisons of Ambient Disturbance Mitigation Con-
trollers

Figure 5.11 graphically displays the performance of the model correction NMPC, the input
correction NMPC and the NMPC with integral action under the same extreme conditions
as in Figure 5.8. The responses of each method are systematically discussed in this section.
Simulation parameters are presented in 5.27a-5.27c.

`d = diag(
[
0.1 0.5 0.1 1

]
) (5.27a)

`u = diag(
[
−0.3 0.1 10 0

]
) (5.27b)

qζ =
[
10−3 10−3 10 10−1

]>
(5.27c)
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Figure 5.10: Input comparison for model correction NMPC, input correction NMPC and the NMPC
with integral action respectively.
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Figure 5.11: Pitch-yaw NMPC comparing the three presented offset-mitigation controller tech-
niques: model correction NMPC (blue), input correction NMPC (orange) and NMPC with integral
action (green). The states are plotted under the severe case of icing accretions, in moderate turbu-
lence, performing a Bank to Burn manoeuvre.

The model correction NMPC systematically corrects the plant-model mismatch in the
NMPC. This unique property takes advantage of the predictability of the NMPC, simulta-
neously as not affecting the estimations if they are accurate. The in-loop model correction
changes the system constraints in the NLP via feedback. When designing the disturbance
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model in 5.11, we base the framework on the one presented in (Morari and Maeder, 2012).
In order to correct purely attitude estimations, we use the angular rate vector. The angular
rates are easily accessible from measurements in real-time applications, concurrently as
being dynamically coupled to the attitude by an integrator manoeuvre. To form an optimal
accurate estimation model, we also corrects the airspeed with a disturbance term. From
this, it can be assumed that both the attitude and the velocity models improve in-flight.
The remaining untampered states β̇, α̇, Θ̇, will implicitly be corrected through these dis-
turbances. This creates a fully defined corrected plant-model that is more accurate towards
the actual system behaviour. Predictions of the NMPC will as a result become more ac-
curate, and the overall performance will improve. We now observe the throttle, pitch and
airspeed dynamics in Figure 5.11. First, we see that the throttle starts increasing together
with the other controller modifications at t ≈ 12s. The predictive capabilities of the
NMPC make it violating current references, building speed for the upcoming pitch and
airspeed climb. Due to the disturbance input in the model corrected NMPC, its mathemat-
ical predictions resolve that it needs more throttle than the two other modifications. The
airspeed enlargement is considerable higher as a result. The outcome is that the model
corrected NMPC has an impressively fast convergence to the pitch reference. The previ-
ous large pitch-offset seen in the regular NMPC in Figure 5.9 is now entirely gone. The
disturbance vector has corrected the model so that it can evaluate the ambient dynamic
disturbances in the model, thus counteracting them in the predictions of the NMPC. This
represents an elegant and simple solution of handling plant-model mismatch and ambient
disturbances.

25.0 25.5 26.0 26.5 27.0 27.5 28.0

28
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offset_moment NMPC prediction
measuremets
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Figure 5.12: Prediction of the NMPC with model correction and the original NMPC at t = 25s,
compared to the actual behaviour of the UAV (measurements).

However, there are problems with this method. We assumed the disturbance model to
converge to a mean value after a period of flight. In the same set of assumptions we also
assume it to be sufficient to add a linear disturbance term to the moment and airspeed
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over the entire prediction horizon Tf . Assuming moment and relative airspeed represent a
good place to insert model correction, there are still issues solely related to the disturbance
model in 5.11. Due to the nonlinear dynamics of both the moment and airspeed, the
disturbance term might not be an actual constant, but rather a variable defined by the
system states. The predictions deteriorate over the horizon as a result. This can be seen in
Figure 5.12.
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Figure 5.13: Individual disturbance values of the components in dk, over the simulation.

We apply a worst case scenario based on the icing case in 5.1.1, that implements dras-
tic dynamical changes to the simulations. If the lift curve for instance changes in flight,
the disturbance term will not find a constant value. Also, the model dynamics tends to
behave differently relative to the attitude of the aircraft. Figure 5.12 illustrates this ef-
fect by comparing the predictions of the NMPC in both the regular case (Figure 5.8), and
the plant-model corrected NPMC. It can clearly be seen that the overall estimation of the
model correction NMPC is better. Nevertheless, its accuracy deteriorates over the predic-
tion horizon. Therefore, it could be argued the prediction horizon could be shorter, still
achieving a similar performance. Considering the disturbance vector dk = [dp dq dr dv]

>,
we can observe the individual disturbance values in Figure 5.13. A moving average method
is applied to the disturbance vector in Equation 5.11 working as a low-pass filter. This is to
prevent oscillations, and help the disturbances converge towards an approximately small
constant area. By observing Figure 5.13, we draw the conclusion that all the presented
disturbance values remain within a bounded area and are relatively stable. The tuning pro-
cess in Appendix 5.3.2, specifically investigated whether the disturbance-rate stagnated
or increased. Small values of `d result in slow or no convergence of these disturbances

54



respectively. It is necessary to find a compromise, since large values create oscillations.
Disturbance component dr ∈ R in Figure 5.13 drops from 0 to approximately −0.029.
It thereby proceeds to increase and to find a relatively constant operating range. This is
typical P-controller behaviour. A stable operating range at approximate t = 2.5s can also
be observed. Further tuning of the disturbance model might increase performance even
more. There are more complex model estimation methods that create estimation mod-
els on a sophisticated scale; A Kalman Filter makes a covariance matrix, representing
the disturbance-change relative to state values. This is iteratively improved by a stochas-
tic model giving disturbance terms based on historical state-errors at state values. This
method might be relevant when real-flight disturbance and process noise are implemented
in the model.
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Figure 5.14: Angular velocity of the model correction NMPC, input correction NMPC, and the
NMPC with integral action.

The input correction NMPC directly uses the feedback from the sensors (ym) to mod-
ify the input applied to the plant. Its input correction therefore bypasses the NMPC. If the
model in the NMPC deviates significantly from the real system dynamics, the input correc-
tion might have to be large to dominate the predicted behaviour of the NMPC; constantly
counteracting the calculated response from the NMPC. This can cause several issues. It is
therefore important to find a compromise. In figure 5.11, we can see that the pitch-offset
is slightly smaller than in the original NMPC’s response (Figure 5.8). The altered eleva-
tor input is not corrected enough to converge to the reference. With higher weighting on
the elevator the controller becomes unstable, due to the coupled pitch climb and reduction
of airspeed. The throttle is also oscillating, to keep the airspeed close to the reference.
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Optimal input sequence from the NMPC is therefore constantly corrected, resulting in an
non-cooperative behaviour. It is not possible to choose `u in such a way that references are
reached. Now consider the input correction vector ∆u in Equation 5.13. Figure 5.15 illus-
trates the individual input correction components. The input corrections are a P-controller,
only assigning values as a function of the error and the proportional gain matrix `u. Os-
cillations of the throttle are therefore due to the oscillating behaviour of ∆uv in Figure
5.15. The values of ∆uθ are as predicted, close to constant, as a function of the pitch-
offset in Figure 5.11. To entirely eliminate this offset an integrating behaviour in the input
correction could be utilised, making it a PI-controller. Performance might also improve
with a thorough tuning process (further increase `δ̇e ). Nevertheless the non-cooperative
behaviour makes this controller less relevant. The main purpose of this contribution is to
create a robust controller scheme. It is therefore difficult to keep this controller and guar-
antee robustness in a wide application range. We therefore disregard this controller for
further analysis.

0 5 10 15 20 25 30
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0.0
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u v

0 5 10 15 20 25 30
0.00

0.02u
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Time [s]
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Figure 5.15: Individual input correction propagation ∆uk, for the input correction NMPC.

Integral action is implemented in the OCP, augmenting the state error vector with an in-
tegral state vector in Equation 5.15. It is added an extra cost based on the total predicted
airspeed and the Euler Angle state deviation respectively. It can be seen in Figure 5.11,
that the NMPC with integral action starts the simulation (0.5s ≤ t ≤ 3s) with a consider-
able pitch offset. When the integral state representing pitch deviation qθ has accumulated
a large enough value, it slowly eliminates the offset. The pitch convergence to the new
step reference, is also slow compared to the other two control methods. This is partly
because the OCP has to be dominated by the integral states in order to converge. Because
of the airspeed accumulated integral value, it is not able to find a solution of increasing
the airspeed before the climb. This forces it to do the pitch step slower, mitigating total
deviation as much as possible. Observing the cost function of the NMPC with integral
action reveals its ongoing increase. This can implicate that the integral states are weighted
to heavily. Differently from the model correction method, the NMPC with integral action
do not have model correction and therefore predicts with a poor plant-model. The integral
action predictions in the OCP are based on the presumed accumulation of integral states.
These accumulated values forces the OCP to find solutions violating other state references,
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in order to achieve convergence of the cost function. The UAV will as a result, have an
enforced convergence of the states affected by the integral action (Vr,Θ). It serves as a
kind of guarantee of convergence. This introduces the problem of completely overshadow-
ing the other desired cost related states. By observing Figure 5.11, we can see that AoA,
elevator, and throttle all experience large deviations as a result of converging to the inte-
gral defined states. Some of these deviations might be necessary, but in some cases it can
introduce the problem of getting too big deviations on important states (i.e AoA). It can be
difficult to tune the integral effect to an extent that is functional for all cases. For example,
a small oscillation on the throttle can be observed, due to the constant desire of reaching
the constant airspeed reference. It is constantly striving towards an impossible task due
to the big ambient disturbances. The cost function of the NMPC with integral action will
therefore continue to grow to a large value where the integral states overshadow the other
states. The OCP struggles to find a value that satisfies the constraints, at the same time as
the rapidly increasing integral state vector. This is partly the tendency we see in the cost
function plot in Figure 5.11. Magnitudes of integral states weighted in the cost function
are a direct function of the weighting vector qζ ∈ R4, prediction horizon Tf , model-
mismatch, reference error and the integrator limits we define in Section 5.2.3. However,
performance of this controller might improve with a proper tuning sequence.

5.6 Optimal Robust Broad-Spectre Pitch-Yaw Attitude NMPC

Based on the controller performances in Section 5.5, we can see that both the model cor-
rection NMPC and the NMPC with integral action have their separate advantages. An
optimal controller should have the model correction from the model correction NMPC,
and the integral action from the integral action controller. This controller will thus have
more accurate predictions, concurrently keeping the convergence guarantee of the integral
action. Such a controller could possibly tolerate an even broader range of applications.
In this section, we implement such a controller and compare it to the model correction
NMPC and the NMPC with integral action.

qNMPC
ζ =

[
10−6 10−3 1 10−2

]>
(5.28)

In Figure 5.16, we compare the controllers with model correction and integral action to-
wards a ”full offset NMPC” with integral action and model correction. As discussed in
Section 5.2, both the model correction and integral action alone can have separate prob-
lems. The integral states could in some cases accumulate large values, becoming dominat-
ing in the OCP scheme. Because a model correction method is implemented, we reduce
the weighting of the integral actions in the full offset correction NMPC. The new values are
given in Equation 5.28. Considering the full offset NMPC’s cost function, it can be seen
that its value-increase stagnates. The OCP is then finding trim-flight input sequences that
is stable and constant. The improved model of the full offset NMPC, allows the predic-
tions with the integral actions to become more accurate. This makes the pitch convergence
of the full offset NMPC to be slower than the model correction NMPC. For comparisons
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we consider the error-parameters:

∆x
offset moment = 144 ∆x

offset NMPC = 159 ∆x
integral = 201 (5.29a)

∆u
offset moment = 928 ∆u

offset NMPC = 906 ∆u
integral = 760. (5.29b)
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Figure 5.16: Pitch-yaw NMPC comparing: model correction NMPC (blue), full offset NMPC with
integral action and model correction (orange), and NMPC with integral action (green). The states
are plotted under the severe case of icing accretions, under moderate turbulence, performing a Bank
to Turn manoeuvre.
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Equation 5.29 shows that the model correction NMPC has a lower error-parameter. The
implemented integral action slows down the dynamics, leading to a slower response to
the step pitch reference. Arguably, the integral action slows the controller, but ensures
convergence in severe cases. This further strengthens the controller’s ability of handling a
broad range of harsh conditions. It can also be seen that the model correction NMPC has a
higher energy usage, respectively. Additional plots of the angular-rate and input are given
in Appendix D.1, in Figure D.1-D.2. The full offset correction NMPC proves to be stable
and reliable in theoretical severe, icing conditions.

5.7 Optimal Offset Correction NMPC With a Roll-Pitch
NMPC Formulation

To extend the robustness analysis of the full offset correction NMPC proposed in Section
5.6, we now evaluate a lower level attitude controller with a different objective function
and reference vector, towards the severe icing case. This controller is based on the con-
troller proposed in (Reinhardt et al., 2020). To achieve higher level control objectives
(path-controller), autopilots tend to rely on a lower level control of climb and turn rates. A
roll-pitch controller will purposely be a lower level attitude controller than the pitch-yaw
controller. The pitch-yaw controller is penalising all Euler Angles so that both attitude
and heading (ψ) are ensured. The pitch-yaw controller also penalises state deviation from
the trim states, making the controller obtaining solutions relative to the trim conditions.
To formulate the lower level roll-pitch controller, it is fascinating to investigate the per-
formance weighting the roll-pitch attitude as well as airspeed. This controller will then
purposely have references that all can be satisfied. The OCP therefore do not have to find
a compromise in between. We try the same algorithm architecture proposed in Section
5.6, for the new lower level roll-pitch attitude controller. The controller therefore finds
solutions complying with the same constraints, but with a different objective.

By closer inspecting the reduced error vector in Equation 4.9, we conclude that it is in-
variant to rotation about kn and thus independent of yaw-angles. For the roll-pitch NMPC
with integral action, we define the integral states with the same architecture as in Equation
5.15. We want to implement the integral action on the reference attitudes and airspeed
respectively (φ, θ, Vr). Integral dynamic is then obtained as:

ζ̇
φ

= x̃φ (5.30)

ζφ = fφζ (x̃φ(t)) =

∫ t

0

x̃φdt, (5.31)

where the OCP initialising integrator state is defined by:

ζφ0 = fφζ (x̃φ(t0)). (5.32)

The following NLPs for the original roll-pitch controller, and the roll-pitch controller with
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the full offset correction are then obtained as:

min
χ

N−1∑
k=0

(
x̃φk
>
Qφ
xx̃

φ
k + u>kQ

φ
uuk

)
+ x̃φN

>
Qφ
N x̃

φ
N (5.33a)

s.t. (5.33b)
x0 = ym(t0) (5.33c)
u0 = u(t0) (5.33d)
xk+1 = f (xk,uk) (5.33e)
xmin ≤ xk ≤ xmax (5.33f)
umin ≤ uk ≤ umax, (5.33g)

min
χ

N−1∑
k=0

(
x̃φa,k

>
Qφ
a,xx̃

φ
a,k + u>kQ

φ
uuk

)
+ x̃φa,N

>
Qφ
a,N x̃

φ
a,N (5.34a)

s.t. (5.34b)
x0 = ym(t0) (5.34c)

ζ0 = fφζ (x̃φa(t0)) (5.34d)

u0 = u(t0) (5.34e)
d0 = fd(dz:z−3,xz,ym,z) (5.34f)

xk+1 = f (xk,uk,dk) (5.34g)
dk+1 = dk (5.34h)
xmin ≤ xk ≤ xmax (5.34i)
umin ≤ uk ≤ umax. (5.34j)

Where the augmented error-state vector x̃φa,k = [x̃φk
>

ζφ
>

]> ∈ R8 is with the imple-
mented integral action on the parameterised attitude and airspeed respectively. The cor-
rected model estimation is implemented identically as in the pitch-yaw controller in Sec-
tion 5.2.1. The full offset correction roll-pitch NMPC therefore has the same model correc-
tion as previously, with new integral action dynamics. Finally, the augmented weighting
matrices Qφ

a,x = Qφ
a,N ∈ R8×8, and the original weighting matrices Qφ

x = Qφ
N ∈ R4×4,

are thus obtained from tuning.

5.7.1 Tuning of Roll-Pitch NMPC
We tune the roll-pitch NMPC in a similar methodical way as in Section 5.3. It is desired
to obtain roll, pitch and airspeed convergence with realistically fast inputs. Consider-
ing the weighting matrices of the roll-pitch NMPC to have the following form: Qφ

x =
diag([qv, q

>
Γ ]), Qφ

u = diag([qδ̇t , qδ̇a , qδ̇e , qδ̇r ]), Table 5.7 gives the corresponding tuned
values. As earlier, we expect the pitch to deviate at severe icing conditions. It can therefore
be seen that sim3 has a higher weighting of pitch deviation.
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Figure 5.17: Two roll-pitch controller versions with (orange) and without (blue) offset correction.
Also, includes the original controller without icing conditions (green) in moderate turbulence.

In Figure 5.17, we observe that the increase of pitch-weighting in the cost function leads to
a faster pitch and elevator response respectively. We therefore settle with the performance
of sim3, and choose the following weighting matrices.

61



Table 5.7: Roll-pitch NMPC tuning parameters.

Sim qv q>Γ qδ̇
1. 10−1 [10−1 10−1 10−1] [10−1 10−1 10−1]
2. 10−1 [100 100 100] [10−1 10−1 10−1]
3. 10−1 [101 100 100] [10−1 10−1 10−1]

Qφ
x = diag

([
10−1 10−1 10−1 10−1

])
(5.35a)

Qφ
u = diag

([
10−1 10−1 10−1 10−1

])
(5.35b)

5.7.2 Tuning of Offset Correction Roll-Pitch NMPC
When tuning the integrator action for the roll-pitch NMPC, we consider the input dynamics
of the UAV and offset-elimination capabilities. The estimator remains unchanged from
Section 5.3.2, due to the same model constraints. Finally, we implement integral action in
the new cost function in 5.34a, thus obtaining the values for qφζ ∈ R4 with a similar process
as in Section 5.3.4. We therefore take the liberty of not plotting this tuning process. This
gives the following integral action weighting:

qφζ =
[
10−5 102 100 100

]>
(5.36)

`d =
[
0.1 0.5 0.1 1

]
(5.37)

5.7.3 Offset Correction NMPC tested in a Roll-Pitch NMPC Scheme
We are now ready to compare the new controller with the proposed offset correction archi-
tecture from 5.6 to the roll-pitch controller without integral action and model correction.
The new reference is constant and will lead the UAV to going in circles.
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Vr,d = 20[m/s] (5.38a)
φd = 41.76[Deg] (5.38b)
θd = 8.5[Deg] (5.38c)

Γd(φd, θd) =
[
−0.1478 0.6585 0.7379

]>
(5.38d)

Vr,0 = 12.0[m/s] (5.38e)
θ0 = 4.22[Deg] (5.38f)
β0 = 6.55[Deg] (5.38g)
δt,0 = 44.3[%] (5.38h)

ωsnb =
[
6.31 −174 0.63

]>
(Deg/s) (5.38i)

δa,0 = 1.9[Deg] (5.38j)
δe,0 = 0.1[Deg] (5.38k)
δr,0 = 0[Deg] (5.38l)

Figure 5.18 graphically illustrates the states for the original roll-pitch NMPC given by
NLP 5.33 and the roll-pitch offset correction NMPC with the NLP 5.34, under icing con-
ditions. By observing the yaw angle in Figure 5.18, an approximately linear increase as
a result of excited roll and pitch angles can be observed. The lower level controller is
not considering the yaw-dynamics in the objective function, and will therefore be able to
increase freely. The original roll-pitch NMPC can still be observed to experience severe
pitch-offsets. Even with significantly less states weighted in the cost function, extreme
conditions create pitch-offsets under large plant-model mismatches. The OCP finds the
optimal input sequence and that is too small to overcome the severe conditions. By using
the same framework for the full offset correction NMPC as presented in Section 5.6, we
can clearly observe the offset to be severely mitigated. The disturbance input to the plant-
model aids the OCP to find a solution that it is beneficial to excite more input to achieve the
desired state values. The cost function of the full offset correction NMPC is also observed
to be converging. This monotone behaviour proves that even with integral weighting, the
controller is stable. In fact, the cost function for the offset correction NMPC is seen to
render lower values than the original. This further implicates that the poor plant-model for
the original NMPC scheme deviates significantly from the measured output.

Finally, we observe the elevator dynamic of the full correction NMPC. It is slightly more
noisy than the original NMPC, due to the weighted integral states. In real flight, we must
expect slow actuator exciting, due to the real delay between applied voltage and applied
force on the UAV. Aileron, elevator and throttle are assumed to give instant forces in
this model. This can possibly affect the performance of the algorithm. Nevertheless,
the disturbance input constantly correcting the model, might help mitigating some of this
effect. It can therefore be argued that the integral action is too heavy weighted in this
particular case. It could be expedient to rely more on the model correction, relative to the
integral action.

From the robustness analyses performed in Section 5.6 and 5.7, we conclude the combi-
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nation of model correction and integral action prove to be an effective way of handling
unknown plant-model mismatches and ambient disturbances. We perform a time-study in
Section 5.8 to further investigate the possibility of real-time implementation.
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Figure 5.18: Roll-pitch NMPC (blue) compared towards a full offset correction roll-pitch NMPC
(orange). The states are plotted under the severe case of icing accretions, in moderate turbulence,
performing a turning manoeuvre.

64



Name Dell Optiplex 7070 Micro
Platform Ubuntu 18.04.4 LTS
Memory 32 GB
Processor Intelr CoreTM i7-8700 CPU 3.20 GHz × 12
Graphics Intelr UHD Graphics 630 (Coffeelake 3x8 GT2)
GNOME 3.28.2
OS type 64-bit
Disk 469,4 GB

Table 5.8: Dell Optiplex specifications.

5.8 Computational Time-Study
In order to ensure realisation of the controllers presented in Section 5.2, we perform a
time-study. This time study is to determine whether the controllers can be implemented in
a real-time system. Purposely, it could validate the proposed controller’s ability of finding
solutions efficiently. Their stability and performance with varying number of discretization
steps are also considered. As previously mentioned in Section 3.5, the fast coupled dynam-
ics of the UAV introduces high demands of computational power. The UAV presented in
this paper (Skywalker X8) will be mounted with the on-board micro-controller Odroid XU-
4 (Figure 5.19). The Odrioid XU-4 is considered to be a strong micro controller with a
low weight. It is therefore an ideal candidate to test this algorithm on. Because of limited
access to an Odroid XU-4, the time-study is performed using a Dell Optiplex 7070. The
specifications of the computer are given in Table 5.8. We will then be able to present a
controller that is both robust towards disturbances and real-time realisable on a theoretical
level.

Figure 5.19: Odroid-XU4 micro controller (UK, 2020)
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Table 5.9: Time-study of the three proposed offset correction NMPCs with varying number of
discretization steps, under constant update rate and horison step size.

Controller N Tf [s] tpeak[ms] ∆x ∆u

Original NMPC

15 1.5 6.79 227 583
30 3.0 19.8 193 702
50 5.0 21.7 187 829
70 7.0 30.4 184 945

Model correction NMPC

15 1.5 7.14 184 999
30 3.0 14.7 160 893
50 5.0 26.3 167 875
70 7.0 35.8 172 879

NMPC with integral action

15 1.5 8.30 210 691
30 3.0 14.5 201 760
50 5.0 25.7 202 825
70 7.0 33.1 202 888

Full offset correction NMPC

15 1.5 7.85 190 918
30 3.0 13.80 162.9 906
40 4.0 19.4 161.0 913
50 5.0 25.9 165 923
70 7.0 31.5 164.0 943

We include a solver-time requirement tmax = 1
fnmpc

, representing the maximum allowed
OCP-solver time. This is thus a function of the update-rate of the NMPC. It is crucial
that the solver finds a solution to the OCP with a substantial margin before next optimi-
sation starts. In a real-time application, the NMPC will have several time-delays between
components. There will be a time delay from the sensors feeding real-time data to the
micro-controller. Also, it can safely be assumed that the actuators will have a delay of
power output relative to the signal input. For simplicity, we simply consider the OCP
solving time. Based on the knowledge that the controller needs a safety margin, we can
make a rough estimate whether the controller is able to be implemented for real-time ap-
plications.

OCP solver times tend to vary for nonlinear optimisation problems, due to the constraints
having multiple solutions. In theory, only the first input of the calculated input sequence
is applied to the plant, while the rest is discarded. Often times, the presumed discarded
predicted input values are used in the solving algorithm. They are used as initialisers
for the NLP making it locate a feasible initial point, starting the optimisation problem.
Situations where several local minimas are present, the OCP also tends to have a slower
solver time testing local minimas to find the global optimum.

The process of choosing an adequate number of discretization steps that ensures stability
and computational efficiency can be a rather complex endeavour. To simplify this pro-
cess, we consider only significant values of discretization steps N ≥ 15. However, this
topic is thoroughly considered in (Grüne and Pannek, 2016). We start the time-study by
investigating the controllers stability and simulation time at a constant NMPC time-step

66



(∆tnmpc = 0.1s) and update-rate (fnmpc = 20Hz). A desirable prediction horizon based
on the presented simulation setup, can be found. Controller stability is affected by its up-
date rate, as well as the number of discretization steps. Too few discretization steps, give
a piece-wise grid of constant inputs with a coarse sampling rate based on a plant-model.
Fast UAV dynamics with ambient disturbances can accumulate large errors based on this
coarse input grid. The controller becomes more reliant of the plant-model predictions if a
small number of discretisation is used. However, OCP solving time tends to be quicker.
At the same time, large N gives more predictability, and allows the UAV to positioning
it self before acting. It is therefore important to choose N adequately so that the NMPC
algorithm yields stability and computational efficiency. In Table 5.9 all three controllers
experience higher computational peaks (tpeak) relative to the increasing number of control
discretization steps respectively. Considering the relation between OCP-solver time and
error parameter values, it seems that N = 30 is the optimal choice based on Table 5.9.
We therefore investigate the OCP-solver times as a grid over the entire 30s simulation in
Figure 5.20.
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Figure 5.20: OCP-solving time over the entire simulation for the Pitch-yaw attitude NMPCs pre-
sented in Section 5.5.

Since the entire solving scheme is based on a computer dependent on heat accumulation,
air flow, available sources etc; these might be sources of error. As expected, all controllers
have the highest solving-times at the starting point of the simulation (t = 0). We also see,
all OCP solver times are clustered along a thick line throughout the simulation after the
initialisation. The integral action NMPC has a broader clustering-line than the two other
controllers. This can be traced to an inaccurate model, giving poor predictions, meaning
the OCP initialisation is further off the optimal solution. It can clearly be seen that we have
a solid margin to the maximum simulation time tmax = 50ms. The individual expected
component delay (fundamental theory) is considered in (Grüne and Pannek, 2016)[p.313-
316]. Because we do not have the ability to test the real system, it is sufficient to base our
analysis initially on a solid solver-time margin.

We now implement the full offset correction algorithm proposed in this thesis on the
Odroid XU4. We can further strengthen our time-study ensuring real-time implementa-
tion of the controller.
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5.9 Chapter Summary
This Chapter explores several methods of implementing features in attitude NMPCs to
guarantee a robust controller. The pitch-yaw model correction NMPC under icing condi-
tions prove to start the simulations (t < 2s) with a similar offset as the NMPC without
model correction. It takes approximately 2.5s before the disturbance corrected model
is efficiently employed in the NMPC scheme. The model correction NMPC therefore
converges to the attitude and airspeed references, exploiting the NMPC framework with
more accurate predictions due to the disturbance modelling in Equation 5.11. The pre-
diction accuracy of the pitch dynamic is depicted in Figure 5.12. The predictions of the
model corrected NMPC are clearly enhanced, but over a longer horizon span, deterio-
rate quickly. Nevertheless, the model correction NMPC has the quickest convergence
rate of all presented controllers in this Thesis, and proves that a simple model correction
method increases robustness towards plant-model mismatch and unknown ambient distur-
bances.

The attitude NMPC with implemented integral action also converges to the desired atti-
tude references. However, it struggles to converge to the airspeed as a result. It has a
generally slow convergence as well as problems stabilising the cost function. Because of
the large plant-mismatches in the plant-model, the integral states keep increasing. The
integral action NMPC shows the ability of ”forcing” the OCP finding solution that makes
the user-defined attitude references converge. Integral action in the NMPC is therefore a
convergence-enforcement method on the integral defined states. This allows the user to
strengthen the UAV’s ability of converging to certain states, also enforcing the robustness
towards plant-model mismatches and unknown ambient disturbances.

The input correction NMPC alters the optimal input from the OCP based on reference
offset of certain states directly correlated to the inputs. This method therefore does not
cooperate with the NMPC scheme, and quickly gives oscillating inputs. Also, it does not
converge to the pitch-reference under the severe icing conditions. We therefore discard the
controller due to low performance and an overall bad cooperative framework.

We then propose a broad-range full correction offset NMPC algorithm that uses the de-
sired attributes of model correction and integral action to account for plant-model mis-
match and unknown ambient disturbances. This model has a slightly slower convergence
than the model correction NMPC, due to the implemented integral action. The cost func-
tion of this controller stabilises and all defined states converge to the desired references.
This controller proves to be robust towards a theoretical icing case. Under the same icing-
condition, the same controller algorithm architecture is tested using a different lower level
attitude controller. This is to determine whether it could be used in several controller ar-
chitectures. We compare the lower level attitude controller towards a similar lower level
attitude controller based on our full offset correction framework. It is found that the full
correction algorithm ensures convergence in a similar method as in the pitch-yaw con-
troller framework. The attitude NMPC without offset correction struggles to converge and
ended up with a large pitch offset and a small airspeed offset.

The time-study reveals that the integral action tends to increase the OCP solver time, due
to the increased state-vector dimension and a generally larger OCP. Nevertheless, with the
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optimal number of discretization steps (N=30), the solver-time of the full offset correction
proves to have a significant margin towards the maximum solver time. Therefore, We
conclude the controller to be ready for real-time implementation.

69



70



Chapter 6
Conclusion

This Master Thesis has conducted a robustness analysis of a pitch-yaw attitude NMPC and
a roll-pitch attitude NMPC, based on the controllers in (Reinhardt and Johansen, 2019) and
(Reinhardt et al., 2020) respectively. Nonlinear Model Predictive Controllers hinge on a
mathematical model and use optimisation-techniques to find an optimal input sequence
based on the model constraints. In cases where this plant-model is deviating significantly
due to ambient factors, the performance might be considerably affected. UAVs are often
used in arctic conditions where turbulence and added research equipment affect the physi-
cal plant, and thereby possibly the plant-model. A severe icing test scenario is made, based
on the effect of iced air-foils discussed in (Hann et al., 2017)(Dalmau, 2018) and (Winter,
2019). Some disturbance mitigating methods are then tested through a benchmark ma-
noeuvre, under these icing conditions, investigating the effect of plant-model mismatch.
We then propose a full offset correction attitude NMPC algorithm that methodically uses
model correction and integral action to account for ambient disturbances. Both reference
convergence and OCP-simulation time are discussed, bringing this algorithm ready to be
implemented on the Odroid XU-4 and in the Skywalker X8. The full correction offset
NMPC shows promising results, and as a next step, needs to be evaluated in-flight to
demonstrate its capabilities in experiments.

71



72



Chapter 7
Future Work

This Master Thesis has conducted robustness analysis of several attitude NMPCs, and
proposed a robust NMPC framework towards ambient disturbances and plant-model mis-
matches. This Chapter highlights remaining work of the project and interesting topics to
consider in the future.

7.1 Adaptive Tuning
Throughout this thesis it has been discussed how plant-model mismatch and ambient dis-
turbances can affect an NMPC’s robustness. Large plant-model mismatch and severe con-
ditions, can lead to significant state to reference offsets. We have also discussed that tuning
for such unknown environmental impacts are not possible, due to the random and varying
attributes of these disturbances. A UAV will have a broad spectre of manoeuvres that may
need different tuning parameters to perform optimally. For future developing of the pro-
posed algorithm in this Thesis, it can be interesting to investigate an adaptive tuning full
offset correction NMPC framework. An adaptive tuning NMPC will be able to choose
varying tunings for certain flight situations. Ultimately, this might lead to a lower energy
consumption as well as better performance in pre-defined flight paths. We can for example
consider a simple steady state trim flight. The UAV’s objective is to find a stable low en-
ergy attitude and airspeed complying with the references. It is then able to perform better
in certain situations. An adaptive tuning method allows a more aggressive NMPC tuning
for certain in-flight manoeuvres. The controller will recognise manoeuvres based on the
references and thus change tuning parameters more appropriately. There are several ways
of implementing adaptive tuning in an NMPC framework. Commonly, it is often consid-
ered varying number of discretisation steps (N ) and objective functions. In (Turki et al.,
2018), it is considered a single-input-single-output (SISO) MPC with adaptive tuning of
the number of discretization steps (N ). This method ensures stability and can further opti-
mise prediction horizon for the UAV control algorithm. However, for our control design it
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can be more relevant to consider adaptive weighting matrices as in (Bagheri et al., 2011).
Ultimately an adaptive offset correction NMPC will be able to account for unknown am-
bient disturbances as well as plant-model mismatches. Also, because of tuning attributes
that are pin pointed to an exact manoeuvre, it will handle these better.

7.2 More Sophisticated Disturbance Dynamic
We have in this Thesis proved that the disturbance term in Equation 5.11 gave better pre-
diction for the NMPC under the influence of unpredictable environmental disturbances.
However, it was also found that due to the constant disturbance term over the prediction
horizon, the prediction accuracy quickly deteriorated. For future work, it could be inter-
esting to evaluate a more sophisticated disturbance modelling. There are several methods
to be considered. One could be giving it stochastic predictability. It will then map dis-
turbance behaviour based on state values and previous measuring errors corresponding to
these. This is not far from how a Kalman Filter works. Finally, the disturbance can be al-
tered throughout the prediction horizon also based on a stochastic model. Ultimately, this
might lead to even more accurate predictions, and further increase the UAV controller’s
robustness and performance.

7.3 Experimental Testing
We have tested several NMPC architectures in this Thesis. In order to determine whether
the full correction offset NMPC is able to handle real-time flight, experimental flights
should be considered. This will increase knowledge of real-time delays, tuning of con-
troller, and potential real-time plant-model mismatches.
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Appendix A
Assumptions

The assumptions made creating the mathematical model and performing robustness anal-
ysis are presented in this Appendix.

A.1 General Assumptions

• Sensors feeding the controller with real-time data are noise free.

• Actuator voltages to applied forces are instant.

A.2 Propeller Torque

The toque from the actuator applied on the propeller for thrust will have an opposite com-
ponent reacting on the UAV. This effect will, by the assumption that the propeller is placed
in the ibkb-plane, generate a small amount of torque in the lateral direction. It is easily
compensated by applying a small aileron deflection. In (Beard and McLain, 2012) this
effect is considered by adding a moment component to the total moment vector:

Mp =
[
−kTp(kΩδt)

2) 0 0
]>
, (A.1)

where Ω = kΩδt ∈ R is the propeller speed, and kTp ∈ R is a constant determined by
experiments.
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A.3 Rigid body and UAV symmetry
The mathematical model uses the moment of inertia matrix assuming the form:

Jb =

Ixx 0 Ixz
0 Iyy 0
Ixz 0 Izz

 . (A.2)

By definition in (Egeland and Gravdahl, 2002), the moment of inertia matrix is defined by
the equation:

Jb =

∫
b

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 dm (A.3)

Where dm is defining the position of mass elements relative to the center of mass. The
coordinates is defined in the body-frame coordinate system x, y, b = xb, yb, zb. If we
assume the MAV to have a rigid body and symmetry about the ibkb-plane, A.3 takes the
form in A.2. Where a rigid body is defined having a constant moment of inertia matrix in
body d

dtb
J = 0.
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Simulation Parameter Values

Parameter Value Description
m 3.364 kg Mass of X8.

Jxx, Jyy, Jzz, Jxz {1.229, 0.1702, 0.8808, 0.9343} Inertia matrix components
in body.

g,c,b 9.81m/s2, 0.3571, 2.1
Gravitational acceleration,
span and chord.

ρ 1.225kg/m3 Air density.
S 0.75m2 UAV wing surface area.

CD,0, CD,α, CL,0, CL,α {0.0197, 0.079, 0.0867, 4.0203} Drag and lift linearised
air coefficients.

CDq, CDδe , CY δa , CY,δr {0.0, 0.0633, 0.0433, 0} Taylor force linearised
parameters.

CY,0, CY,β , CY,p, CY,r {0.0,−0.2239,−0.1379, 0.0839} Taylor force linearised
parameters.

CLq, CLδe {3.87, 0.2781} Taylor force linearised
parameters.

Sp, Cp, kmotor {0.1018, 1.0, 40.0} Fitzpatrick parameters.

Cl,0, Cl,β , Cl,δa , Cl,δr {0.0,−0.0849, 0.1202, 0} Taylor moment linearised
parameters.

Cl,p, Cl,r, Cm,0, Cm,α {−0.4042, 0.0555, 0.0227,−0.4629} Taylor moment linearised
parameters.

Cm,δe , Cm,q, Cn,0, Cn,β {−0.2292,−1.3012, 0.0, 0.0283} Taylor moment linearised
parameters.

Cn,δa , Cn,δr , Cn,p, Cn,r {−0.0034, 0.0, 0.0044,−0.0720} Taylor moment linearised
parameters.

σu, σv, σw {2.12, 2.12, 1.4}(m/s) Dryden turbulence
parameters.

Lu, Lv, Lw {200, 200, 50}(m)
Dryden turbulence
parameters.
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Appendix C
Kinematic Relations

vbr = vbnb −Rb
v(Θ)wn

s (C.1)
d

dtb
vbr =

d

dtb
vbnb −

d

dtb
Rb
v(Θ)wn

s (C.2)

d

dtb
vbr =

1

m
Fb − S(ωbnb)v

b
r (C.3)

d

dtw
vbr =

1

m
Fb − S(ωbnb)v

b
r − S(ωbbw)vbr (C.4)

v̇wr =
1

m
Rw
b (α, β)Fb −

(
Rw
b (α, β)(S(ωbnb) + S(ωbbw)

)
vwr (C.5)

Where ωwbw = Rw
b (α, β)ωbbw ∈ R3 is the angular-rate of the wind-frame relative to the

body-frame. Knowing from the frame definitions in 3.2.5, that this is defined by α̇, β̇ leads
to the following expression.

ωwbw = β̇kw − α̇Rw
s (β)js (C.6)

Combining the terms in Equations C.5 and C.6 yield the following dynamical equation:

v̇wr + S(ωwbw)vwr =
[
V̇r β̇Vr α̇Vr cosβ

]>
(C.7)

Equations 3.27a - 3.27c, are then obtained.
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Additional Plots From
Simulations

D.1 Disturbance mitigating method comparisons
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Figure D.1: Three responses of different tuning configurations of `u for the offset-free NMPC with
input correction. There are displayed a bank to turn manoeuvre under moderate turbulence with
reduced aerodynamic coefficients.
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Figure D.2: Three responses of different tuning configurations of `u for the offset-free NMPC with
input correction. There are displayed a bank to turn manoeuvre under moderate turbulence with
reduced aerodynamic coefficients.
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