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Abstract

The OASYS project aims to use Miniature Underwater Gliders (MUGs) to monitor the
environment under the ocean, and then use multi-rotor UAVs to pickup the MUGs and
bring them to autonomous surface vehicles where they can recharge. The goal of this
project is to develop the algorithms necessary to automatically land these UAVs on a
floating maritime platform, using the LSTS toolchain and ArduPilot.

Software is implemented in DUNE to execute the landing. A simple state machine, where
the UAV progresses through the states after certain conditions are met, but with a possi-
bility of entering manual control at any time, is created. The state machine will first take
off, and reach a specified height before completing a circle motion. Then the UAV will
use Constant Bearing Guidance to approach the platform, and then land with a constant
vertical speed, until it is stopped by the platform.

A simulation of a landing platform is implemented using wave mechanics and Euler’s
method. The UAV and the platform is simulated using ArduPilot Software-in-the-loop
simulation and DUNE. The simulation is successful, but ArduPilot does not simulate
physical contact between the platform and the drone, so it’s difficult to fully test landing
on a moving platform.

A flight test is conducted at Udduvoll airfield. The flight test is done with a static
target on the ground instead of the originally intended maritime platform, because of
time constraints. The testing allowed for fixing a few issues with the initial software, like
the drone tipping over on landing, and ultimately, successful landings where performed.

It is concluded that the project has been a success, and that the most immediate way
forward should be to test the project with a moving target. It is also suggested to test
with a smaller platform radius, to see how small of a platform it’s possible to land on.
Finally it is suggested to look into the possibility of simulating physical contact between
the UAV and the platform.
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Sammendrag

OASYS prosjektet forsøker å bruke Miniatyr Undervanns Glidere (MUGs) for å overv̊ake
miljøet under havet, og bruke multirotor UAV-er til å plukke opp MUG-ene og frakte
dem til autonome overflatefartøy hvor de kan lade. Målet med dette prosjekter er å
utvikle nødvendige algoritmer for å automatisk lande disse UAV-ene p̊a en flytende maritim
platform, ved å bruke LSTS toolchainen og ArduPilot.

Programvare er implementert i DUNE for å utføre landingen. En enkel tilstandsmaskin,
hvor dronen g̊ar gjennom tilstandene etter at visse vilk̊ar er oppfylt, med en mulighet for
å bytte til manuell kontroll, blir laget. Tilstandsmaskinen vil først ta av, og n̊a en gitt
høyde, før den gjennomfører en sirkelbevegelse. UAV-en vil s̊a nærme seg plattformen ved
å bruke Constant Bearing Guidance, og s̊a lande med konstant vertikal hastighet til den
blir stoppet av platformen.

En simulering av en landingsplatform blir implementert ved å bruke bølgemekanikk og
Eulers metode. UAV-en og platformen blir simulert ved å bruke ArduPilot Software-in-the-
loop simulering og DUNE. Simuleringen er vellykket, men ArduPilot simulerer ikke fysisk
kontakt mellom dronen og platformen, s̊a det er vanskelig å teste landing p̊a bevegende
platform fult ut.

En flygningstest blir gjennomført p̊a Udduvoll. Testen blir gjennomført med et statisk
m̊al p̊a bakken isteden for en flytende maritim platform som originalt tiltenkt p̊a grunn av
tidsbegrensninger. Testingen gjorde at noen problemer med den opprinnelige koden ble
oppdaget og fikset, som om at dronen tippet over under landing, og til slutt ble velykkete
landinger gjennomført.

Det blir konkludert med at prosjektet har vært vellykket, og at den første tingen som bør
gjøres videre er å teste prosjektet med et bevegende m̊al. Det blir ogs̊a foresl̊att å teste
med mindre paltform radius, for å se hvor liten platform det er mulig å lande p̊a. Til
slutt blir det foresl̊att å se p̊a muligheten for å simulere fysisk kontakt mellom UAV-en og
platformen.
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Chapter 1

Introduction

1.1 Motivation

Automatic landing of unmanned aircraft, including multi-rotors and fixed-wing UAVs, is
a necessary feature to make their use in the maritime industry widespread. The purpose
of this project is to implement the software architecture and control algorithms needed for
automatic landing of a multi-rotor UAV equipped with an autopilot running the ArduPilot
software. The software is implemented using the LSTS toolchain, using moving-base
Real-Time-Kinematic (RTK) Global Navigation Satellite System (GNSS) positioning for
navigation. The advantage of automatic landing is that it removes the need to have a
trained pilot on board in order to operate the drone. It also allows for UAVs to operate
from unmanned platforms. Another advantage is that it can be really difficult to manually
land a drone if the ship is moving a lot due to waves.

The OASYS project is a collaboration between NTNU, OsloMet, the Norwegian Polar
Institute and others, aiming to develop a fully automated Ocean-Air coordinated robotic
system for ocean observation and monitoring [1]. The idea of the project is to use Miniature
Underwater Gliders (MUGs) to monitor the environment under the ocean, and then use
drones to pickup the MUGs and bring them to autonomous surface vehicles where they
can recharge [2].

1.2 Specialization Project

This master’s thesis is a continuation of the specialization project completed in the fall of
2019 [3]. The specialization project built upon a master’s thesis from NTNU in 2019 [4],
which was about using a drone to pick up an object from the sea, using DUNE, ArduPilot
and computer vision. The specialization project focused on simulating a landing of a
drone on a static target using DUNE and ArduPilot. Most of the time spent on the
specialization project was used to understand DUNE and the code from [4], and since
the project was not using computer vision, removing the parts of the code using CV. In
the specialization project the UAV was simulated using DUNE and ArduPilot, where the
drone took off, flew in a circle generated by a DUNE task, then landed, however there
were not a proper system of landing detection, just that the drone was within a certain
distance of the landing point. This master’s project expands on the specialization project
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CHAPTER 1. INTRODUCTION

by creating a simulation of a moving landing platform, by implementing proper landing
detection, and by testing the project with hardware, which required a fair amount of
changes. The specialization project report suggest the following further work:

• Implement simulation of moving platform

• Automatic takeoff when guided mode is entered or at least ensure consistent heights

• Potentially look at different control algorithms

• Conduct a field test

With the exception of looking at different control algorithms, all these things are done in
this project.

1.3 Literature Review

There has been a fair amount of research into the topic of automatic landing of UAVs.
Many of the articles are looking at landing UAVs using computer vision. [5], uses com-
puter vision and Model Predictive Control. The article describes Hardware in the loop
simulations, but does not conduct a flight test. In [6], the Robot Operating System (ROS)
is used to combine computer vision and traditional navigation sensors, to land on a moving
vehicle. Landing tests are performed successfully on both static and moving targets. In
[7], GPS and IMU measurments are used along with computer vision to land a Miniature
Aerial Vehicle (MAV) on a moving ground vehicle. Landings are performed with speeds
of up to 50 km/h.

GPS/INS is used together with a radar altimeter for automatic takeoff and landing in [8].
A Kalman filter is used to integrate the altitude measurements from the radar altimeter
and successful tests are performed. In [9] a fixed-wing UAV is landed using only DGPS.
No computer vision or inertial sensors are used. The solution works quite well, but is
sensitive to wind effects.

There has also been some other work on landing UAVs using the LSTS toolchain. [4], which
is described more in Section 1.2, uses computer vision to land on small objects in the sea,
but no actual landing tests are performed, only tests in the air, with manual landing. The
master thesis [10] is about the use of DUNE for landing on a moving platform. RTKLIB
is used for RTK GNSS positioning, where the estimated position is used directly without
integration with inertial sensors. A PID controller is used to control the drone, which
seems to work fine in the simulations, but not as well in the field test, so it is suggested
to look into the use other control algorithms.
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CHAPTER 1. INTRODUCTION

1.4 Outline

Chapter 2 - Basic Theory: Outlining the software and hardware used in the project,
and explaining theoretical concepts used.

Chapter 3 - Implementation: Presenting the DUNE code used and created for this
project.

Chapter 4 - Simulation: Describing some simulations of the project and discussing the
results from the simulations.

Chapter 5 - Flight Test: Describing the flight test and going though the results.

Chapter 6 - Conclusion Concluding and suggesting further work.
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Chapter 2

Basic Theory

2.1 Software

The software section is mostly reused from the specialization project, but has some
additions and corrections.

The software described in this section, with the exception of ArduPilot, is developed by the
Laboratório de Sistemas e Tecnologia Subaquática (Underwater Systems and Technology
Laboratory) (LSTS), and is part of the LSTS toolchain. LSTS is a part of the University
of Porto, Portugal.

2.1.1 DUNE

DUNE is a runtime environment for unmanned on-board software. It is used to write
generic embedded software. DUNE can be used for interaction with sensors, actuators,
and also communication, navigation and control for a wide variety of autonomous vehicles.
DUNE is written in C++, and can be used with different CPU architectures and operating
systems [11]. DUNE is divided into tasks that are running concurrently, potentially in
different threads. There are two main types of DUNE tasks, Task and Periodic. A task
of the type Task will typically not do anything unless it receives a message that it is
subscribed to. A task of the type Periodic will run with a set frequency, regardless of
whether or not it receives a message.

2.1.2 Neptus

Neptus is a distributed command and control infrastructure for the operation of unmanned
vehicles. Neptus supports planning and execution of plans on site and analysis after the
mission [12]. Neptus has a Mission Review and Analysis (MRA) console which allows
plotting of various data from the mission, and it’s possible to watch a replay of the mission.
MRA also allows for the conversion of logs to different formats, including the .mat format
used by MATLAB. The specialization project [3] only used the Neptus Mission Review
and Analysis (MRA) console, to plot data from the simulation after it was over. In this
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CHAPTER 2. BASIC THEORY

project Neptus will also be used for testing, in order to look at the UAV and the target
on the same map at the same time, and Neptus also allows for the user to update the
configuration parameters of the vehicle while DUNE is running which is very practical
during testing, as it reduces the need to restart.

2.1.3 IMC

The Inter-Module Communication (IMC) protocol is a message oriented protocol for com-
munication between heterogeneous vehicles, sensors and human operators[13]. IMC is used
to send messages between different DUNE tasks, and also to send messages to and from
Neptus.

In DUNE, the function bind<IMC::[type]>(this); is used to subscribe to an IMC mes-
sage of the type [type]. Then consume(IMC::[type]) is used to program what is done
when a [type] message is received. An IMC message is sent to the IMC bus by using the
dispatch() function.

2.1.4 Glued

Glued is a lightweight Linux operating system, designed by LSTS to make it easy to cross
compile LSTS software to be used on an embedded system [14]. In this project DUNE
is cross compiled for Glued, and Glued is the operating system used for the BeagleBone
on-board computer.

2.1.5 ArduPilot

ArduPilot is an open source autopilot for autonomous, unmanned vehicles [15]. ArduPilot
can control airplanes, multi-rotors, helicopters, boats and submarines [16]. In this project
ArduPilot is used to simulate the multi-rotor drone using the ArduPilot software in the
loop simulator, shortened SITL. SITL uses a flight dynamics model in a flight simula-
tor to simulate sensor data for the UAV [17]. DUNE can then retrieve the estimates
via the DUNE task Control.UAV.Ardupilot, which sends data to ArduPilot through
MAVLink messages. MAVLink is a light weight message protocol for communication with
drones [18]. When using the ArduPilot SITL mode, the user can control the drone by
using MAVProxy, a CLI based GCS, which is included with ArduPilot. MAVProxy uses
MAVLink to communicate, and is developed by CanberraUAV [19]. ArduPilot is used
both for Simulations and for the field tests, so there doesn’t have to be significant changes
to DUNE between the two.

5
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Figure 2.1: DJI S1000+

2.2 Hardware

2.2.1 UAV

The UAV used for the flight test is a DJI S1000+, which is an octocopter designed for
aerial photography [20]. A picture of the drone is seen in Figure 2.1. The specific drone
that is used, however, should not matter, and the software used in this project should work
for any multi-rotor drone, provided that it has a flight controller that can run ArduPilot.

2.2.2 BeagleBone

BeagleBone Black is a single board computer produced by the non-profit corporation ”The
BeagleBoard.org Foundation” [21]. In this project the BeagleBone Black is used to run
DUNE on the UAV and on the ground station. The BeagleBone is also used to recieve
RTCM corrections data used for RTK, and sends this to the GNSS receiver using UART.

2.2.3 Landing Platform Instrumentation

NTNU-NET-02 is a landing case, created for an other project at NTNU, which acts as
the landing platform vehicle. Like the drone it runs DUNE on a Beagle Bone. Two GNSS
antennas are connected too the case, and computes the position in the middle of them. The
case will then use DUNE to send the GNSS data to the drone by an EstimatedLocalState
message which is explained in further detail in Chapter 3.
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Figure 2.2: Net-02 landing station
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2.2.4 PixHawk

The Pixhawk 1 is an open hardware flight controller, originally manufactured by 3DR [22].
The Pixhawk runs ArduPilot, and is used to control the UAV. The Pixhawk is connected
to the BeagleBone via UART, which allows DUNE and ArduPilot to communicate.

2.2.5 GNSS Receivers

uBlox ZED-F9P GNSS receivers are used both for the UAV and the landing platform.
The receivers have built in RTK functionality [23]. One of the receivers in the landing
case acts as the RTK base of the other receiver in the case and for the UAV, which makes
relative positioning very accurate. Two Harxon GPS1000 antennas are connected to the
landing case.
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Figure 2.3: Illustration of Constant Bearing guidance

2.3 Theoretical Concepts

This section is mostly new from the specialization project, but Section 2.3.1 on
Constant Bearing is reused.

2.3.1 Constant Bearing

In this project Constant Bearing (CB) guidance is used to control the movement of the
drone. The reason CB is used is that there already exist a task implementing CB in DUNE
from the master’s thesis [4].

Constant Bearing guidance is a two-point guidance scheme, where the interceptor is sup-
posed to align the interceptor target velocity vna along the Line Of Sight (LOS) vector
between the interceptor and the target. An illustration of CB guidance can be seen in
Figure 2.3.
The constant bearing desired velocity is given by:

vnd = vnt + vna (2.1)

vna = −κ p̃n

||p̃n||
(2.2)

Where vnt is the velocity of the target and vna = [Ṅa, Ėa]
> is the approach vector specified
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such that the desired approach speed Ua = ||vna || is tangential to the LOS vector and

p̃n := pn − pnt (2.3)

is the LOS vector between the interceptor and the target, ||p̃n|| ≥ 0 is the euclidean length
of this vector and

κ = Ua,max
||p̃||√

(p̃n)>p̃n + ∆2
p̃

(2.4)

where Ua,max is the maximum approach speed toward the target and ∆p̃ > 0 affects
the transient interceptor-target rendezvous behaviour. The CB guidance law computes
the velocity commands needed to track the target. The superscript n indicates that the
velocity is represented in the NED frame. Note that for the purposes of the specialization
project, the target is stationary, making CB guidance equal to Pure Pursuit Guidance
[24].

2.3.2 Waves

In order to simulate realistic movement of the moving platform, wave movements must
be simulated. A linear wave response approximation can be described as the following
transfer function: [25]

ηω,i(s) =
Kω,is

s2 + 2λωes+ ω2
e

ωi(s) (2.5)

Where ηω,i is the wave induced position, Kω,i, λ and ωe are wave parameters, and wi is
zero mean white noise. The i = (1, 2, ..., 6) indicates that this transfer function apply to
all six degrees of freedom. In this project this is simplified to only use three degrees of
freedom, x, y, and z.

This can be written in the state space form:

ẋω,i = Aω,ixω,i + Eω,i ωi (2.6)

ηω,i = Cω,ixω,i (2.7)

Which expands to:

ẋω,i =

[
0 1
−ω2

e −2λωe

]
xω,i +

[
0

Kω,i

]
ωi (2.8)

ηω,i =
[
0 1

]
xω,i (2.9)

The wave parameters Kω, λ and ωe depend on different sea states. Sea state codes are
defined in [25] from 0 to 9, where 0 is a quiet sea, and 9 has an observed wave height over
14m. The gain constant Kω is defined as:

Kω = 2λω0σ (2.10)
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Sea State Hs Kω

0 0 0
1 0.05 0.0057
2 0.3 0.0413
3 0.875 0.1205
4 1.875 0.2582
5 3.25 0.4475
6 5 0.6884
7 7.5 1.0326
8 11.5 1.5833
9 14 1.9275

Table 2.1: Sea states and corresponding Kω

where σ is a wave intensity constant, λ is a damping coefficient, and ω0 is the dominating
wave frequency. The encounter frequency is:

ωe = |ω0 −
ω0

2

g
U cosβ| (2.11)

In order to simplify things, it is assumed that the forward speed U = 0 making ωe = ω0.
[25] suggest that it is a good approximation to use ω0 = 0.8 and λ = 0.2573. Doing this
leaves only σ to be calculated. This is done using a modified version of the MATLAB
script on page 266-267 of [25] to calculate Kω for each sea state. The version used in this
project is shown in Listing 1. The results of the calculations can be seen in Table 2.1.
Note that the average value of Hs for each sea state is used, that is the lowest value plus
the highest value divided by two, except for sea state 9, where the minimum value is used,
since there is no maximum value.

1 clc

2 global sigma wo

3

4 wo = 0.8; To = 2*pi/wo;

5 Hs = 5;

6 wmax = 3;

7 w = (0.0001:0.01:wmax)';

8

9 % Modified PM

10 S = wavespec(3,[Hs,To],w,1); sigma = sqrt(max(S));

11

12 lambda = lsqcurvefit('Slin', 0.1, w, S)

13 Kw=2*lambda*wo*sigma

Listing 1: MATLAB script to calculate wave parameters based on [25]
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2.3.3 Euler’s Method

In order to simulate the wave movements, a simulation method must be used. In this
project, Euler’s method is used, because it is a relatively simple method to implement.

Euler’s method is a numerical integration scheme where the solution is computed from

yn+1 = yn + hf(yn, tn) (2.12)

Where yn is the value at time tn, h is the time step and f(yn, tn) is the derivative function
ẏ [26]. Applying this to the wave equation, Equations (2.8) and (2.9):

xω,1n+1 = xω,1n + hxω,2n (2.13)

xω,2n+1 = xω,2n − hω2
exω,1n − h2λωexω,2n + hKω,2ω2 (2.14)

2.3.4 WGS84

World Geodetic System 1984 (WGS84) is an Earth Centered Earth Fixed (ECEF) refer-
ence system defined by the U.S. Department of Defence. WGS84 is the reference system
used by GPS [27]. As the name suggests an ECEF frame has an origin in the center
of Earth, and is fixed relative to the Earth. WGS84 ha a z axis pointing towards the
International Earth Rotation Service (IERS) Pole and an x axis that points towards the
IERS Reference Meridian, i.e. the prime meridian. The y axis completes the right hand
frame. The WGS84 reference frame is shown in Figure 2.4 [28]. The reason that WGS84
is important in this project, is because the GPS receivers will send the position in WGS84
coordinates in the form of latitude, longitude and height. The latitude is an angle from
−π

2 to π
2 , from the South Pole to the North Pole. The longitude is an angle from −π to

π, where 0 is the Prime Meridian, and the negative angle are to the west, and positive
to the East. The height is the length of distance between the position and the WGS84
ellipsoidal model.
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Figure 2.4: WGS84 reference frame

2.3.5 Real Time Kinematic

Real-Time-Kinematic (RTK) is a technique used to enhance the accuracy of position
measurements of GNSS signals. RTK is a type of differential positioning, using data from
a base station with a known position to correct the measurements [29]. In this project
moving base RTK is used. Moving base RTK is a form of RTK where the base is moving,
causing less accuracy in absolute position, but retaining good accuracy in relative position,
which is what is relevant to this project. With RTK the rover receives raw data from the
base via the Radio Technical Commission for Maritime Services (RTCM) format. If there
is a long distance between the base station and the rover errors will become significant
[30]. An illustration of RTK can be seen in Figure 2.5 [30].

Figure 2.5: Illustration of RTK
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Chapter 3

Implementation

Since the core idea of the project remains unchanged from the specialization project,
this chapter will have some similarities with it’s counter point from there. However
none of the sections are entirely reused as there have been updates to every DUNE
task. The illustration of the statemachine in Figure 3.1 is reused.

The practical implementation of this project is a continuation of the specialization project
[3]. In the specialization project the landing was performed on a stationary target with
predefined coordinates. In this project the UAV gets the target position from a landing
platform, either simulated or real. In order to receive the position of the landing platform
in DUNE, the platform is made its own vehicle. This vehicle will get it’s position from
GNSS antennas, during the flight test, and for the simulation it will get it from ArduPilot.
The landing platform vehicle will then transfer it’s position to the UAV. This is done by
adding the estimated state of the landing platform to an EstimatedLocalState message
and sending it to the UAV. DUNE does not transfer IMC messages between vehicles by
default. In order to transfer EstimatedLocalState from one vehicle to another, three tasks
are needed. First is Transports.DiscoverVehicle is used for the two vehicles to discover
each other, second is Transports.UDP, which transfers messages to another vehicle using
UDP. The third task is called Transports.LocalStateTransport, and is a task developed
at NTNU which takes EstimatedState messages and adds the to an EstimatedLocalState
message that can be sent to another vehicle. It must be noted that vehicle IDs are not
persistent between vehicles, so it is not possible for the drone to know which vehicle the
message is received from, so the drone should only receive EstimatedLocalState from one
vehicle at a time.

In addition to the above the project consists of five DUNE task: ”Supervisors.Landing”,
”Supervisors.Platform”, ”Control.Path.ConstantBearing”, ”Simulators.TargetGenerator”
and ”Simulators.LandingPlatform”. The state machine, Supervisors.Landing, handles ac-
tivation of the other tasks, and controls the overarching logic. Supervisors.Platform does
the same for the simulated landing platform. Control.Path.ConstantBearing handles the
control of the UAV, and Simulators.TargetGenerator generates targets for the UAV to
fly in a circle. Simulators.LandingPlatform is similarly used to generate a path for the
simulated landing platform to follow. In addition the task Control.UAV.Ardupilot is used
to transmit data between DUNE and ArduPilot.

14



CHAPTER 3. IMPLEMENTATION

3.1 ArduPilot Communications Task

The DUNE task that handles communications between DUNE and ArduPilot is called
Control.UAV.ArduPilot, and is developed by LSTS and it is included in DUNE. It is a
very large task, so it will not be explained in it’s entirety, but only the parts that are
relevant to this project. One of the things the task does, is that it receives navigation data
from ArduPilot and dispatches it as an EstimatedState message. The EstimatedState
message contains the estimated position in latitude, longitude and height, in addition
to the estimated velocity in the NED frame. The estimates are sent from ArduPilot,
which uses an EKF, which takes measurements from the GNSS receivers and IMU. It also
contains more data that is not used in this project, like the rotation of the drone. The
task is also used to send velocity commands to ArduPilot, to move the drone, as described
in Section 3.4.

In the newest version of DUNE, this task has an automatic take off function. However this
project is based on an older branch that does not yet have this. This presented two choices,
upgrade to the newest version of this file, or change the old version to be able to take off.
Because an upgrade could lead to unintended consequences that could potentially take a
long time to fix, it was decided to modify the file already in use. Even though there is no
dedicated take off function, there is a take off function in the start of the function that
is activated by the task receiving a DesiredPath message, if the drone is on the ground.
since this function is not used for anything else in this project, it has been modified, so
that is only does this take off, and nothing else. The takeoff function will tell ArduPilot
to take off, and reach a specified altitude if the drone is on the ground. If it is not it will
do nothing. The MAVLink command that is sent is MAV CMD NAV TAKEOFF, which
takes in the altitude. This command is described in the MAVLink documentation [31].

3.2 Landing State Machine

The task that includes the state machine governing the landing process is called Su-
pervisors.Landing. The task is subscribed to five messages: IMC::EstimatedState,
IMC::AutopilotMode, IMC::VehicleCommand, IMC::CLI and IMC::EstimatedLocalState.
IMC::EstimatedState, is a message containing the estimated position, orientation and
velocity of the UAV, and is received from ArduPilot. Every time the task receives an esti-
mated state, the switch case structure of the state machine is entered. The state machine in
Supervisors.Landing has five states: MANUAL, TAKEOFF, TRACK TARGET, LAND
and LANDED. The initial state is MANUAL, which does not do anything with the mes-
sage, and the UAV is controlled manually by ArduPilot via the MAVLink console. The
AutopilotMode message is a message from ArduPilot saying that the autopilot mode has
been changed. If the autopilot mode is changed to manual, and the state is not MANUAL,
the state is changed to MANUAL. If the autopilot mode is changed to GUIDED, and the
state machine is in MANUAL, the state is changed to TAKEOFF.

When the statemachine first enters TAKEOFF, an arming command and then a takeoff
command will be sent to ArduPilot, which makes the UAV ascend until it reaches the
height specified in the configuration file. In addition the control loops for speed control
and the Constant Bearing (CB) task in Section 3.4 are activated, and a Constant Bearing
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Target message, with the position at the specified height is sent to the control task. If
the drone takes off from the ground, the target is unnecessary, but the take off command
doesn’t work in the air, so it is necessary when starting the program after takeoff. Once
the height is reached, the state TRACK TARGET is entered, which activates the target
generator. The target generator generates targets in a circle, and sends the targets via
a ConstantBearingTarget message. The state machine will remain in this state until it
receives a CLI message with the text ”start landing”, or the target generator sends a
VehicleCommand message with the flag VC SUCCESS, both of which will set the state to
LAND. In this project the CLI message has not been looked at, but instead a time limit
for the target generator is implemented, so that when the target generator has worked for
a set time, it will stop generating targets, and send the VC message to initiate the landing.

When entering the LAND state, the target is set as the position of the landing platform,
which is received in the form of an EstimatedLocalState message, plus an offset that can
be specified in the configuration file. This is described in more detail in Section 3.4. To
avoid the drone hitting the platform from the side, the landing is done in two phases.
In the first phase the target is set to be 1 m over the platform, i.e. 1 is subtracted from
the z-value of the target. This value was originally 0.5 m, but this was changed during
testing. When the UAV ”lands” in this phase, a Boolean variable, m approach, is set to
false, and phase two is entered, and the real target is used. In the second phase the drone
will also use a constant vertical speed, this is described in more detail in Section 3.4. The
drone is considered landed in the first phase if the error in the (x, y)-plane is less than
a specified radius r divided by 2, and the error in the z direction is less than 50 cm. If
the drone leaves the radius r during phase two, m approach is set to true, and the first
phase is reentered. To be considered landed in the second phase the error in the (x, y)-
plane needs to be within the radius r and the error in the z direction must be less than
50 cm. A third criterion must also be reached, which is that the vertical speed of the drone
must have an absolute value of less than 0.1 m/s. When the UAV lands in phase two, the
statemachine enters the state LANDED. When entering this state, the control loops of
the drone are deactivated, and an IdleManeuver message is sent to the ArduPilot task,
in order to change the autopilot mode to LOITER. When the mode changes to LOITER,
the throttle is disarmed, and the state machine is set to MANUAL again. The reason for
changing the autopilot mode to LOITER is that ArduPilot does not allow to disarm in
GUIDED mode. An illustration of the state machine can be seen in Figure 3.1.

While the task is running it will also dispatch data that will be used for plotting in
IMC::ControlParcel messages. ControlParcel messages have three fields of 32 bit floating
point numbers, and is not used for anything else in this project, making it convenient for
this purpose. The messages being sent contains the position error between the drone and
the landing platform, the latitude, longitude and height of the landing platform, the NED
position of the drone in relation to the starting point, and the same for the target. Using
32-bit for the latitude and longitude messages means they are not accurate enough to be
used for anything important, but they give a general idea of the position. Since the NED
positions require a starting point, they are not sent before GUIDED mode is entered. This
means that the NED data for the platform is not sent before the drone takes off.
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Figure 3.1: Simplified illustration of the state machine
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3.3 Platform State Machine

The Landing platform is simulated with its own ArduPilot simulation instance, and its own
instance of DUNE. For the purposes of simulation, a supervisor, with a similar structure to
Supervisors.Landing, called Supervisors.Landing, is made for the landing platform vehicle.
This supervisor has the same structure as the supervisor in Section 3.2, but when it enters
the target generation state, called PLATFORM SIM, it will instead activate the landing
platform simulator described in Section 3.6, and follow the target from that task. Once
in this state it will never leave, unless the autopilot mode is changed to something other
than GUIDED.

3.4 Constant Bearing Controller

The task called Control.Path.ConstantBearing is a periodic task which implements the
control law from Section 2.3.1. As long as the task has not been activated or there
is no target to follow, the task will not do anything. The task is activated by receiv-
ing a VehicleCommand message with the info set to ”cbg” and the command set to
VC EXEC MANEUVER. The target is received via a ConstanBearingTarget message, and
the state of the vehicle from an EstimatedState message. When the task is activated, it will
send the calculated velocities to Control.UAV.Ardupilot via a DesiredControl message.
The Ardupilot task sends the velocities to ArduPilot via a set positon target local ned
MAVLink message, with the mask need in order for the message to be interpreted as a
velocity. The mask is a set of bits that sets the velocities as active, and position and accel-
eration as inactive. More information about this can be found in the MAVLink message
documentation [31].

In the specialization project [3] this task was unchanged from the previous master’s the-
sis [4], but for this project it has some changes. First it was made to stop if the task
does not receive an Estimated State message for more than 2 seconds. However this
functionality is difficult to test in the simulator, and has not been sufficiently tested.
The second and biggest change is a change to the target message, so that it sends lon-
gitude, latitude and height instead of x, y and z coordinates in the NED frame. In an
EstimatedState message, the position is given by a coordinate in latitude, longitude and
height, and an offset in NED. This change was necessary because the target and the UAV
will not have the same NED frame. In addition the GPS hardware will typically output
longitude, latitude and height, and not give out NED coordinates. In order to do this
targets must first be converted to the WGS84 frame before being sent by using the func-
tion Coordinates::WGS84::displace, this function takes in latitude, longitude, height plus
an offset in NED and outputs the new latitude, longitude, height coordinate. This task
will use the same function on the received Estimated State, in order to ensure that the
target and the Estimated State is in the same reference frame. Then the function Coor-
dinates::WGS84::displacement can be used to calculate the difference in position between
the two points in NED coordinates.

Another change is that the task allows for keeping constant vertical speed during landing
as mentioned in Section 3.2. This is achieved by the task receiving an IMC::CLI message
with the text ”cbland” which sets a Boolean variable to true, that makes the z value of the
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desired velocity equal to the speed specified in the configuration file. If a CLI message with
the text ”cbmove” is received the computed desired velocity is used again. The reason
for why a CLI message is used, is because it is a message that doesn’t do anything else,
which has a text field, so it is convenient to use for communication between tasks, without
having to create a new IMC message. The task also has a configuration parameter that
can disable the constant speed functionality, making it always use the computed z velocity.
This is needed for the simulation, since the simulated moving target is generated in the
air, and there would be nothing making the UAV stop at the target if the constant speed
method was used. After testing, this was updated so that only the feed forward velocity is
used in the horizontal plane when landing, to avoid the drone tipping over on the ground
after landing.

3.5 Target Generator

The target generator is a periodic task, called Simulators.TargetGenerator, that gets acti-
vated by receiving a VehicleCommand message with info set to ”track”, and command set
to VC EXEC MANEUVER. When the task is activated it will initialise a time t0. The
task loop generates targets in a circle based on the time t = tclock − t0, until the task
is deactivated. The x value of the target is given by r(cosφ) and the y value is given
by r(sinφ). Here r is the radius of the circle, and φ is given by t

sr
where sr is the speed

reduction parameter. The velocities are given by vx = − sin (φ) rsr and vy = cos (φ) rsr . The
circle is generated in the xy-plane, so vz = 0. The targets have to be displaced in relation
to the starting position using Coordinates::WGS84::displace as described in Section 3.4.
The task is deactivated by receiving a VehicleCommand message with info = ”track” and
command = VC STOP MANEUVER. The task will send this message to itself, if the
time t becomes larger than a set parameter tstop. The motivation for including this task,
is to avoid having the drone only moving straight up and down, as that would not be very
exciting.

3.6 Landing Platform Simulation

This periodic task is used to simulate the movement of a landing platform. The task is
called Simulators.LandingPlatform. The position of the target is made up of the simulated
wave position from Equations (2.13) and (2.14) in addition to an optional current specified
in the configuration file. Since each simulation in this project will take a relatively small
time to complete, it is assumed that the current will not change during the simulation,
simplifying the current induced position to be just pc = vct, but if it should become
necessary to change the current during the simulation this would be a relatively simple
change to make. The target is also generated a couple of meters above ground, because
the simulated drone will crash if it reaches ground level. This height can be changed in
the configuration file.

The task is subscribed to two IMC messages, VehicleCommand and EstimatedState. Ve-
hicleCommand is used for activation and deactivation of the task, and EstimatedState is
used to check the difference in position of the simulated drone and the generated targets
for debug purposes. When the task first is activated, the state variables are initialized, and
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the time step is stored in a variable by dividing 1 by the task’s execution frequency. When
the task is initialized, the wave parameters are set, according to Table 2.1 in Section 2.3.2.
The wave parameters are also updated if the sea state parameter is changed. The main
loop starts with displacing and sending the target for the current time tn, then random
numbers for each of the three DOF are generated. After that the state space variables for
the next time tn+1 are calculated using Euler’s method. Finally the state space variables
for tn are set as the value computed for the next variables, and the loop starts over again.

3.7 Configuration

There are two important configuration files in this project. First and most important is
the configuration file for the UAV. A simplified version of this file is shown in Listing 2. At
the top, the main ArduPilot configuration file is included, which starts the communication
with ArduPilot. Data is sent from ArduPilot at the default rate, which is 10Hz. The next
line includes the tasks necessary to receive EstimatedLocalState from the landing platform.
After that the main supervisor task is started, with parameters for the initial ascent, the
radius of the landing platform, and an offset of the landing target. Next the Constant
Bearing Guidance controller is started. The task has two tuning parameters, max approach
speed and transient speed modifier. It also has one parameter for whether or not to use
constant landing speed, and one for the value of the constant landing speed. The last of
the tasks included is the target generator, which has parameters for reducing the speed of
the generated circle, the radius of the generated circle and for how long the targets should
be generated. Then some settings for the AP-SIL profile of Control.UAV.Ardupilot is
set. ”Convert MSL to WGS84 height” must be true, because ArduPilot outputs data in
Mean Sea Level height by default, and the data from the landing case comes in WGS84.
Lastly settings for TCP communications between the Beagle Bone and the Pixhawk is set
for the Hardware profile.

The second configuration file is for the simulated landing platform and is shown in List-
ing 3. This is very similar to the configuration file for the drone, but includes the landing
platform simulator instead of the target generator. The parameters for the platform sim-
ulator are the sea state, currents in x and y direction and randrange. Randrange is a
parameter which determines the range of possible values generated by the number gen-
erator. There is also a parameter for the base altitude of the generated path. Multiple
instances of ArduPilot can be run on the same machine, but for DUNE to connect to
the correct instance, the port must be changed so that the landing platform connects to
ArduPilot with instance 2 instead of the default instance 0.
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1 ## ntnu-hexa-Land config file.

2 # Main ardupilot file

3 [Require uav/arducopter.ini]

4 #Transfer of EstimatedLocalState

5 [Require uav/RCFormation/common.ini]

6 #================================================================

7 # Created DUNE tasks

8 [Supervisors.Landing]

9 Enabled = Always

10 Entity Label = Supervisor_Landing

11 Initial ascent = 20

12 Platform Radius = 2

13 Offset x = 0

14 Offset y = 0

15 Offset z = 0

16 Debug Level = Debug

17

18 [Control.Path.ConstantBearing]

19 Execution Frequency = 10

20 Enabled = Always

21 Entity Label = Constant_Bearing_Guidance

22 Max approach speed = 1

23 Transient speed modifier = 1

24 Landing Speed = 0.5

25 Use constant landing speed = True

26 Debug Level = Debug

27

28 [Simulators.TargetGenerator]

29 Execution Frequency = 10

30 Enabled = Always

31 Entity Label = CBG_Target_generator

32 Speed reduction = 5

33 Radius = 10

34 Stopping time = 30

35 Debug Level = Debug

36 # ===============================================================

37 # ArduPilot Options

38 [Control.UAV.Ardupilot/AP-SIL]

39 Enabled = AP-SIL

40 Ardupilot Tracker = False

41 Debug Level = Debug

42 Convert MSL to WGS84 height = True

43 TCP - Address = 127.0.0.1

44 TCP - Port = 5762 #Instance 0, ArduPilot default

45 [Transports.SerialOverTCP]

46 Enabled = Hardware

47 Serial Port - Device = /dev/uart/5

48 Serial Port - Baud Rate = 921600

Listing 2: Simplified version of configuration file for the drone
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1 ##ntnu-hexa-003 Config file

2 # Main ardupilot file.

3 [Require uav/arducopter.ini]

4 #Transfer of EstimatedLocalState

5 [Require uav/RCFormation/common.ini]

6 #================================================================

7 [Supervisors.Platform]

8 Enabled = AP-SIL

9 Entity Label = Supervisors_Platform

10 Initial ascent = 2

11 Debug Level = Debug

12

13 [Control.Path.ConstantBearing]

14 Execution Frequency = 10

15 Enabled = AP-SIL

16 Entity Label = Constant_Bearing_Guidance

17 Max approach speed = 2

18 Transient speed modifier = 5

19 Debug Level = Debug

20

21 [Simulators.LandingPlatform]

22 Execution Frequency = 100

23 Enabled = AP-SIL

24 Entity Label = Sim_LandingP

25 Seastate = 4

26 Current x = 1

27 Current y = 0.5

28 Randrange = 4

29 Altitude = 3

30 Debug Level = Debug

31 #==============================================================

32 [Control.UAV.Ardupilot/AP-SIL]

33 Enabled = AP-SIL

34 TCP - Port = 5782 # Instance 2

35 Ardupilot Tracker = False

36 Convert MSL to WGS84 height = True

Listing 3: Simplified version of configuration file for the simulated landing platform
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Simulation

4.1 Simulation execution

In order to start the simulation of the drone, two console windows are opened and DUNE
is run with the configuration file ntnu-hexa-Land.ini, and the profile AP-SIL in the first
window, like in Figure 4.1. In the second window, ArduPilot is run from the folder
ArduCopter like in Figure 4.2. The console and map arguments are optional. To start
the simulation of the landing platform, the same is done in two new console windows, but
dune is run with ntnu-hexa-003, and ArduPilot is run with the additional argument -I2,
so that the correct instances of DUNE and ArduPilot connects with each other.

Figure 4.1: Running DUNE

Figure 4.2: Running ArduPilot

The simulation starts at the default location, which is at a small runway outside of Can-
berra, Australia. At this location there is a hill southwest of the runway, so when simu-
lating here, either the current should be set to go north and/or east, or a high altitude
offset should be used. When both DUNE tasks have initialized, each DUNE console will
display a message that the other vehicle has been discovered. It takes some time for the
GPS measurements to converge. When APM: EKF IMU 0 is using GPS and APM: EKF

IMU 1 is using GPS shows up in both consoles, the UAV and the landing platform is
ready for takeoff. The next step is to start the landing platform by typing mode guided

into the MAVProxy console, which makes the platform arm the throttle and take off, and
then it starts the simulation, which will cause the platform to ”float” with the current
like in Figure 4.3. After that mode guided should be entered into the other MAVProxy
console, which will arm the UAV and cause it to take off. When the initial ascent height
is reached, the target generator is switched on, and the drone will fly in a circle, like in
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Figure 4.3: Screenshot of the ”landing platform” drifting with the current

Figure 4.4: Screenshot of the UAV flying in a circle

Figure 4.4. When the stopping time is reached, the UAV will start to follow the landing
platform, by EstimatedLocalState messages. When the target is reached, the LANDED
state is entered, however because the landing target has to be generated above ground,
the drone can’t be disarmed, so when simulating the drone will just stop in the air. A
screenshot of the console output of the drone’s DUNE console can be seen in Figure 4.5.
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Figure 4.5: Output of the DUNE console during simulation

In order to ensure that the program also works for the flight test, some simulations were
also performed with a simulated version of the ntnu-net-02 case. The net-02 simulation is
started using DUNE like the other simulations, but does not use ArduPilot. The ntnu-net-
02 simulation is developed at the NTNU UAVLab, and has not been changed in any way
for this project, except for the start location, which has been changed to Australia, like the
UAV simulation. The simulation replays real data recorded from the Motion Reference
Unit of a ship at sea. Since this simulator does not use ArduPilot, it does not crash when
it goes into the ground, meaning it can be simulated to travel roughly at ground level.
This means that the constant landing speed can be tested for the moving target, provided
that the terrain is more or less flat, which it happens to be northeast of the runway, and
the simulated log travels in the a northeast direction. The simulator also has an option
to simulate without horizontal movement, causing the platform to go up and down at the
starting position.
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Figure 4.6: 3D plot of the path of the drone and landing platform in the ENU frame

4.2 Simulation Results

The simulation results are reviewed by using the Neptus MRA console to convert the logs
to the .MAT file format, readable by MATLAB. Then a MATLAB script is used to plot
the data sent with the ControlParcel messages. Figure 4.6 shows a 3D plot of the path
of the UAV and the landing platform during the simulation in the East-North-Up (ENU)
frame. ENU is used so that the drone moving upwards shows as moving upwards in the
plot. In this particular simulation, the configuration had a generated circle radius of 5 m,
an initial ascent altitude of 15 m. The landing platform had an altitude of 3 m, a sea state
of 4 and a current of 1 m/s and 0.5 m/s in the x and y direction respectively. The plot
shows the drone taking off, flying in a nice circle, and then flying towards the landing
platform and ”landing” in the air when it reaches the platform.

In Figure 4.7 one can see the position error between the UAV and the landing platform
over time. The reason that the error in the z axis starts out at −1 m is the initial offset
to the target, which is in place as long as the drone is not close to landing. This causes
a jump in the z error when the true position of the platform is used, and a second jump,
back when the drone has ”landed”.

While simulating the UAV different tuning parameters where tried to see the effects. It
was noticed that circular motions with a velocity of larger than 2 m/s, that is r

sr
> 2 m/s,

would become unstable. Figure 4.8, shows the ENU path of UAV during a simulation with
r = 10 and sr = 2 giving a velocity of 5 m/s. The circle motion lasted for 30 s. The plot
shows that the drone spirals out of control, and is not able to perform the circle motion
properly. Fast circle motions are unlikely to be necessary for the task of picking up and
returning the MUGs however, so this shouldn’t be a big problem.
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Figure 4.7: Position error between drone and landing platform

Now the simulation of ntnu-net-02 will be looked at. Figure 4.9 shows the position error for
a simulation of ntnu-net-02 without horizontal movement. The plot shows that the sim-
ulation went well, and without problems, landing nicely on the ground before disarming.

Looking at the plot for the simulation with horizontal movement in Figure 4.10, it is seen
that the landing was not completed successfully, but there is instead a zigzag movement
at the end. The plot for the z axis shows that this zigzag movement takes place between
the landing platform and five meters below it. This happens because the ground at the
location the landing platform has reached when the drone is attempting to land is five
meters below the landing strip. This causes the drone to land on the ground five meters
below the platform, which means that the landing is not registered. When the UAV has
hit the ground and is stopped, the platform will quickly travel away, causing the drone
to leave the platform radius, which makes the drone go above the platform again. This
problem is difficult to do anything with, because of the varying ground height in the
simulator, however it is also a problem that only exists in the simulator, as in a real flight
the UAV would land on the platform instead of on the ground below it.
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Figure 4.8: ENU path of unstable simulation

Figure 4.9: Position error for horizontally static net-02 simulation

Figure 4.10: Position error for horizontally moving net-02 simulation
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Chapter 5

Flight Test

The flight test took place at Udduvoll airfield, in Melhus south of Trondheim. The ground
station PC was set up in a van, with a router, and an antenna to transfer data over the
network to the UAV. The van can be seen in Figure 5.1. The ntnu-net-02 case with it’s
GNSS antennas was laid out on the airfield as shown in Figure 5.2, where the target is
in the middle between the antennas. A laptop running Neptus was used to set necessary
configuration parameters, and to see that a connection had been established between net-
02 and the drone ntnu-hexa-Land. The test was executed by having the pilot take off
manually, and switching to guided mode when in the air. Once in guided mode, the drone
would reach the specified height, fly in a circle, and then attempt to land. All the tests
described in this thesis used a platform radius of 2 m, an initial ascent altitude of 20 m, a
circle radius of 10 m and a speed reduction of 5.

Figure 5.1: Picture of the van and the drone. Photo: Martin L. Sollie
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Figure 5.2: Illustration of NTNU-NET-02 laid out on the ground, viewed from above

5.1 Initial Testing

During the first few tests, the drone would tip over during landing. By looking at the
logs, it was discovered that this was due to the drone having a desired horizontal velocity.
Because of this the CB controller task was changed, so that it does only use the feed
forward velocity vnt , and not the proportional velocity vna , in the final landing phase.
Because of noise in the position estimates, and the fact that the landing legs on the drone
are relatively long, the constant landing phase would start a bit late, so the program was
changed to start the constant landing speed 1 m above the target, instead of the original
0.5 m. Figure 5.3, shows a plot of the desired velocities sent to ArduPilot by DUNE at
the end of a test before these changes were made. The plot shows that there is a desired
velocity in the x direction, for the entire constant velocity phase until the drone tips over,
and the pilot switches modes, and turns off the throttle, disabling the program, and setting
the desired velocity to 0. The plot also shows a spike in desired velocity near the end.
Figure 5.4 shows that this is due to a spike in the target velocity sent from the net-02
case.

Figure 5.3: Plot of Desired Velocity at the
end of a test

Figure 5.4: Spike in target velocities.
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5.2 Successful Tests

After the changes were implemented, three tests were performed. For all three tests the
UAV would land properly without tipping over, and then disarm properly. The results
from one of these tests will be discussed now. Figure 5.5 shows the actual velocity and
the desired velocity of the drone, during a successful test. First the sinusoidal velocity
of the circle movement is shown. During this simulation the circle movement lasted for
thirty seconds, which was roughly one revolution. After the circle motion, the drone moves
towards the point 1 m above the landing position. When this point is reached the x and
y velocities goes close to zero, and the z velocity goes to the constant 0.5 m/s, until it
is stopped by the ground. There are still some spikes in desired velocity from the target
velocity, but they didn’t affect the landing noticeably. This is probably because the spikes
last for a relatively short time, so they are corrected before they could cause any harm.

Figure 5.5: Velocity and desired velocity from a successful landing

Figure 5.6 shows the ENU path of the drone for this test. Guided mode was entered slightly
above the initial ascent altitude of 20 m, and since the zero position of the dispatched NED
frame is in the start position, most of the test takes place with a positive z value in NED,
which shows up as negative in the plot, since the z axis is flipped for ENU.

This particular test took place after another successful test, which means that the UAV
was standing in the landing point before the pilot took off. The plot of the position errors
in Figure 5.7 shows this since it also shows data from before take off. The configuration
for this test used a circle radius of 10 m, a speed reduction of 5, a stopping time of 30 s,
a max approach speed of 1 m/s, a transient speed modifier of 1 and a constant landing
speed of 0.5 m/s. The plot shows that guided mode was entered about 15 m north, 5 m east
and roughly 20 m above the landing point. Then the UAV completed the circle motion
for thirty seconds, before going in for landing. When the point 1 m above the landing
is reached, the constant speed phase is entered, and the drone lands on the ground and
disarms. A picture of the drone after landing is seen in Figure 5.8.
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Figure 5.6: UAV path from a successful landing, in ENU

Figure 5.7: Position errors for the successful landing
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Figure 5.8: Picture of the drone landed between the antennas. Photo: Martin L. Sollie
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Chapter 6

Conclusion

The thesis presents the implementation of algorithms for automatic landing of a multi-
rotor UAV, using the LSTS toolchain and ArduPilot. The algorithms are intended for
automatic landing on a floating maritime platform, but could also be used for landing on
other stationary or moving platforms.

A simulation of a floating platform is implemented in DUNE, and the landing algorithms
are tested with the simulation. The results show that the landing works satisfactorily, but
there are some inherent problems to using the ArduPilot simulator and DUNE to land at
a moving target, as there is no simulation of physical contact between the two simulations.

A flight test is performed using the hardware described in Section 2.2. Most of the time
used for testing was spent on fixing the problem of the drone tipping over during landing.
Once the problems were fixed the UAV was eventually able to land successfully and repeat-
ably. The tests were performed on a static target on the ground, instead of on a floating
maritime platform as originally intended. Without the access to a moving platform for
testing, certain aspects of problem could not be tested and evaluated, such as tracking
the horizontal position of a moving platform and landing with significant heave, roll, and
pitch motions from waves.

6.1 Further work

The most obvious thing that should be done is that a flight test should be conducted
using a moving target, as was originally intended to be done in this project. It should be
considered to test with a smaller platform radius, and test how small the radius can be
while the UAV is still able to land. This would be best tested with a moving platform. In
addition it could be useful to look into if it would be possible to simulate physical contact
between the UAV and the landing platform in the ArduPilot simulation, or find some
other way to simulate physical contact.
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