
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Lina Charlotte Kristoffersen Theimann
Trine Ødegård Olsen

Stereo vision for autonomous ferry

Master’s thesis in Cybernetics and Robotics

Supervisor: Edmund Førland Brekke,

Co-supervisor: Annette Stahl, Øystein K. Helgesen.

June 2020

Lina Charlotte Kristoffersen Theimann
Trine Ødegård Olsen

Stereo vision for autonomous ferry

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke,
Co-supervisor: Annette Stahl, Øystein K. Helgesen.
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

The thesis discusses far-range object detection for stereo, calibration, and system imple-
mentation for unmanned surface vehicles. The stereo system record with a baseline of 1.80
meters, with a fixation point at 50 meters. For far range distance estimation, a procedure
for extrinsic stereo calibration is introduced. Testing the procedure at different distances,
show that the selected scene is of higher importance than calibrating at the operating range.
The calibration at 20 meters achieves the best overall distance estimates.

The stereo system is designed for the autonomous ferry milliAmpere, and tested in a mar-
itime environment. The system processes raw sensor data and output world coordinates
of the detected objects. The disparity map created using Sum of Absolute Difference
(SAD) and a Fast Global Image Smoothing based on Weighted Least Square (WLS) filter,
is robust and has low computational cost. For object detection purposes, two clustering
techniques are implemented. A convolution neural network is applied for classification,
and used in combination with the disparity map to extract 3D positions of objects. The
method is robust against noise in the disparity map, but appear to be partially inconsistent
in the estimates. An alternative detection method based on hierarchical clustering using
Euclidean distance yields more reliable detections, but is more prone to noise. The imple-
mented system shows potential for vessel detection in a range of 10 to 200 meters, but it is
still not clear that the detection performance is good enough to rely on in an autonomous
collision avoidance system.

i

Sammendrag

Denne oppgaven diskuterer stereosyn for å detetktere objekter på lange distanser, kali-
brering og system implementasjon for et førerløst fartøy. Oppsettet innehar en interaksiell
avstand på 1.80 meter mellom kameraene for å optimalt detektere objekter på 50 meters
avstand. En metode for å kalibrere på lengre avstander er foreslått. Metoden er testet og
resultatene viser at valg av kalibrerings scene er viktigere enn avstanden til kalibrering-
sobjektet. Kalibreringen utført på 20 meter viste å gi mest nøyaktige dybdeestimat.

Systemet er designet for fergen milliAmpere og er testet i et marint miljø. Systemet pros-
esserer rå sensordata og gir ut verdenskoordinater til detekterte objekter. Dybdekartet er
implementert ved bruk av algoritmene Sum of Absolute Differences og Fast Global Image
Smoothing filter basert på minste kvadraters metode viser seg å være robust. To metoder
er implementert for å detektere objekter i dybdekartet. Ett konvolusjonelt nevralt nettverk
(CNN) for klassifisering gir i kombinasjon med dybdekartet verdensposisjonen til objekter
av interesse. Metoden viser seg å være robust mot støy, men har noe inkonsekvente esti-
mater. En alernativ metode deteksjonsmetode basert på hierarkisk grupperingsalgoritme
som bruker Euklidsk avstand gir mer pålitelige deteksjoner, men er mer utsatt for støy i
dybdekartet. Det implementerte systemet viser potensiale for å detektere objekter i avs-
tander mellom 10 og 200 meter, men ytterligere testing må utføres for å kunne integrere
sensoren i ett helhetlig system for navigasjon av et autonomt fartøy.

ii

Preface

This is the concluding part of a 5-year Masters’s degree in Cybernetics and Robotics at
the Norwegian University of Science and Technology (NTNU). We want to thank our su-
pervisor Edmund Førland Brekke for valuable feedback, guidance, and support during this
thesis. Also, we would like to thank our two co-supervisors Annette Stahl and Øystein
Kaarstad Helgesen, for their input and advice. The choice of the thesis was highly moti-
vated by working with a Unmanned Surface Vehicle (USV) during a summer-internship1.
The goal was to rebuild a watercraft into a USV, allowing it to be remotely controlled and
to execute missions on its own. Even though both the watercraft and the ferry milliAmpere
still have some miles to swim before being fully autonomous, we would like to join the
journey.

The original plan for this thesis was to cooperate with the Autoferry project, directly imple-
menting the stereo system on the autonomous ferry milliAmpere. Due to circumstances
around the COVID-19 pandemic, there was little to no time testing the implementation
properly. The only time for testing was the 21st of May, with help from the Department. A
huge thank you to Egil Eide, Tobias Rye Torben, and Daniel Andrè Svendsen for helping
us test on a public holiday.

Johann Alexander Dirdal and Simen Viken Grini also deserve to be mentioned for lending
us the LiDAR and providing weights for YOLO, respectively. For the calibration, we
would be nowhere without the technical staff at ITK. Thanks to Glenn Angel and Terje
Haugen for magically creating two checkerboards of size 1.5 times 3 meters. Furthermore,
Stefano Brevik Bertelli deserves to mentioned for being helpful in times of need. A thank
you to the janitor for letting us borrow equipment and helping us with access to NTNU
during COVID-19. As well as Erik Wilthil and Bjørn-Olav Holtung Eriksen for explaining
the system on the ferry milliAmpere, networking-help, and letting us borrow a handheld
GPS.

1https://coastalshark.no/

iii

https://coastalshark.no/

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents viii

Abbreviations ix

Nomenclature x

1 Introduction 1
1.1 Background . 2
1.2 Problem description . 3
1.3 Report Outline . 4

I Stereo vision and calibration 5

2 Stereo vision 7
2.1 Monocular camera . 7

2.1.1 Pinhole model . 7
2.1.2 Camera parameters . 8
2.1.3 Blackfly S GigE . 10

2.2 Stereo setup . 12
2.2.1 The chosen stereo setup . 13

2.3 Epipolar geometry . 15
2.4 Correspondence problem . 16

2.4.1 Disparity map . 18
2.4.2 Semi-Global Matching . 19

v

3 Ground truth 21
3.1 Light Detection and Ranging - LiDAR 21
3.2 LiDAR - stereo camera calibration . 23

3.2.1 Normal-distributions transform 24
3.3 The ground truth . 25

4 Stereo calibration 29
4.1 Monocular camera calibration . 29

4.1.1 Zhang’s method . 30
4.1.2 Intrinsic parameters . 30

4.2 Preliminary extrinsic stereo calibration 31
4.2.1 Discussion . 34

4.3 Extrinsic stereo calibration method . 35
4.3.1 Geometric error . 36
4.3.2 Pixel correspondences . 37
4.3.3 Estimation of the relative extrinsic parameters 38
4.3.4 Absolute extrinsic parameters 41

5 Calibration results 45
5.1 Resulting parameters . 45

5.1.1 Evaluation . 47
5.2 Test scenes . 48

5.2.1 Results . 49
5.2.2 Evaluation . 51

5.3 Discussion . 53

II Application in marine environment 55

6 System overview 57
6.1 The operating environment . 58
6.2 Processing pipeline . 58

6.2.1 Software . 59
6.2.2 Stereo driver . 61
6.2.3 3D reconstruction . 62
6.2.4 Point cloud clustering . 62
6.2.5 2D Object detection . 63
6.2.6 CNN clustering . 63

6.3 Communication with milliAmpere . 63
6.3.1 Common world frame . 63

7 Object detection 67
7.1 Uncertainty in the stereo system . 67

7.1.1 Reprojection error . 67
7.1.2 Stereo setup . 69

7.2 The disparity map algorithm . 71

vi

7.2.1 Sum of Absolute Difference . 71
7.2.2 Filtering . 72
7.2.3 Fast Global Image Smoothing Based on Weighted Least Squares . 72
7.2.4 Implementation . 74
7.2.5 Disparity Tuning . 75

7.3 2D Object Detection with YOLO . 76
7.3.1 YOLOv3 . 78
7.3.2 Precision recall curve . 79
7.3.3 Using CNN for clustering . 87

7.4 Point Cloud Clustering . 88
7.4.1 Hierarchical clustering . 88
7.4.2 Implementation of Euclidean clustering 89

8 Test results in marine environment 93
8.1 Ground truth . 94
8.2 Results . 96

8.2.1 Scenario 2 . 97
8.2.2 Scenario 3 . 99
8.2.3 Scenario 4 . 100
8.2.4 Scenario 5 . 102
8.2.5 Scenario 6 . 104
8.2.6 Application inside harbour . 105
8.2.7 Comparing detection techniques 108

8.3 Discussion . 108
8.3.1 Clustering techniques . 108
8.3.2 Disparity map . 109
8.3.3 Error of the estimated distances 111
8.3.4 Reprojection error . 112
8.3.5 Uncertainty in the stereo system 114
8.3.6 Limitations of the stereo system 114
8.3.7 Overall performance . 115

9 Conclusion and future work 117
9.1 Conclusion . 117
9.2 Future Work . 118

Bibliography 121

A Reconstructed point clouds of calibration scenes 125

B Reconstructed point clouds of test scenes 127

C Github repository, Readme 133

D Labeling ground truth dataset for YOLOv3 evaluation 139

E Result of different YOLO-thresholds 141

vii

F The Milliampere system 145

G Ground truth accuracy plots 147

H Result Plots 151
H.1 CNN-clustering . 151
H.2 Ptcloud-clustering . 157

viii

Abbreviations

CCD = Charged-coupled device
CNN = Convolutional Neural Networks
CPU = Central Processing Unit
CT = Census Transform
DLT = Direct Linear Transformation
FOV = Field of view
FP = False Positive
GPIO = General-purpose input/output
IoU = Intersect over Union
LiDAR = Light Detection and Ranging
MI = Mutual Information
MLE = maximum likelihood estimation
MSAC = M-estimater SAmple Consensus
NDT = Normal-distributions transform
NED = North-East-Down
NNS = Nearest Neighbor Search
OpenCV = Open Source Computer Vision Library
PCL = Point Cloud Library
PoE = Power over Ethernet
PRC = Precision Recall Curve
ptCloud = point cloud
RANSAC = Random Sample Consensus
RMSE = Root Mean Square Error
ROS = Robot Operating System
RTK = Real Time Kinetic
SAD = Sum of Absolute Differences
SDK = Software Development Kit
SVD = Singular Value Decomposition
TP = True Positive
USV = Unmanned Surface Vehicle
WLS = Weighted Least Squares
YOLO = You Only Look Once

ix

Nomenclature

E Essential matrix
F Fundamental matrix
H Homography matrix
K Intrinsic matrix
T Transformation matrix
R Rotation matrix
t translation vector
P Camera matrix
bx Baseline
x Pixel position
xL Pixel position, left image
xR Pixel position, right image
uL Pixel in u-direction, left image
uR Pixel in u-direction, right image
vL Pixel in v-direction, left image
vR Pixel in v-direction, right image
xW World point
X World position in x-direction
Y World position in y-direction
Z World position in z-direction
x′ World point projected to the image plane
x′R True pixel position of projected world point, right image
uj
′ True reprojected pixel position in u-direction

vj
′ True reprojected pixel position in v-direction

xC Point in camera frame
f Focal length in millimeters
αu Focal length in u-direction in pixel units
αv Focal length in v-direction in pixel units
u0 Principal point in u-direction in pixel units
v0 Principal point in v-direction in pixel units
I(u, v) Image pixel intensity at location u,v
IL Intensity of left image
IR Intensity of right image

x

d Disparity measured in pixels
d Displacement vector
∆u change in disparity u-dir
∆v change in disparity v-dir
I(u, v) Image pixel intensity at location u,v
Wm Matching window
erf Error function
ω Weighting function
Pn Precision in PRC
Rn Recall in PRC
Σ Covariance
µ Mean
p Pose

xi

xii

Chapter 1
Introduction

Situational awareness for an unmanned vessel requires detection and classification of the
surroundings. By mounting sensors on a moving vehicle, the ownship has adequate data
to sense, process, and understand its surroundings. For collision avoidance, the sensors
must perceive obstacles and require their world positioning to track and predict motion.
Today, most unmanned surface vehicles (USVs) make use of IMUs, Radar, LiDARs, and
cameras to operate in a dynamic 3-dimensional environment. Radar systems are widely
used and efficient for detecting moving objects at very far range, i.e., above 500 meters.
However, weaknesses such as relatively long processing time and lack of precision makes
it unsuitable for object detection at a closer range (Shin et al., 2018). Stereo cameras and
LiDARs are, in principle, able to cover the shorter range and navigate in port areas.

The primary goal of this project is to explore the possibility of using stereo vision for
visual vessel detection. While a LiDAR can acquire reliable depth information with object
accuracy of centimeters, it is expensive and has no opportunity to classify the specific type
of object (Templeton, 2013). A stereo camera has the ability to simultaneously retrieve
both the type of object present and its 3D localization in the world. Stereo camera inherent
limitations to sensing from stereo matching algorithms and small baselines. The sparse
3D LiDAR and dense stereo camera have complementary characteristics which several re-
searchers use to estimate high-precision depth based on a fusion of the sensors (Park et al.,
2018). Leveraging complementary properties by sensor fusion is an extensive research
area, but is it possible to achieve centimeter precision with a stereo camera? How can
stereo-vision improve visual vessel detection?

The overall motivation behind this work is to design and construct a stereo system suit-
able to integrate on the autonomous ferry milliAmpere. The project is affiliated with the
Autoferry project1, which aims to develop new concepts and methods which will enable
the development of autonomous passenger ferries for urban water transport. milliAmpere
is equipped with several sensors for situational awareness, where a LiDAR and a radar
are utilized for 3D object detection. As the ferry will operate in a confined environment

1https://www.ntnu.edu/autoferry

1

Chapter 1. Introduction

Figure 1.1: Autonomous ferry milliAmpere

a stereo system may be a suitable choice for redundancy. This describes the development
and implementation of a stereo system for proof of concept.

1.1 Background
Passive optical sensors are expected to become indispensable for advanced driver assis-
tance systems (Templeton, 2013). A major reason why several developers often choose
LiDARs is the high level of accuracy compared to stereo camera. However, Wang et al.
(2019) at Cornell University presented in June 2019 a method for improving the accuracy
of visualizing surroundings by stereo cameras. This is only one among others who recently
have diminished the gap in accuracy between stereo cameras and LiDARs. With increasing
pixel resolution, improved methods, and applications running on GPU, low-price cameras
are put more on pair with LiDAR solutions.

Precise stereo depth estimates depend on an accurate calibration. The internal and ex-
ternal calibration parameters together establish the relationship between 2D image content
and 3D object data (Schiller et al., 2012). Considering wide baseline and far-range detec-
tion, Warren et al. (2013) state that the calibrated rigid body transformation between two
cameras impact 3D scene triangulation the most, and affect long-term autonomy object
detection. Error in external calibration and external factors directly affecting the setup,
such as temperature expansion of steel, will affect the position accuracy the most. As the
external camera parameters directly influence the reconstructed 3D points, these will be
the main focus when calibrating. This is also supported by both Stretcha et al., (2008) and
Marita et al., (2006).

2

1.2 Problem description

However, the literature diverge in how to best calibrate the rigid body transformation
between two cameras. Stretcha et al. (2008) showed that when using a stereo camera, the
variance from the ground truth decrease with decreasing distance to the calibration scene.
However, Marita et al. (2006) state that calibration minimizing the projection error on
near distances is unsuited for far range stereo-vision. They further mention that the most
reliable solution is using a calibration scene on distances comparable with the working
range of the stereo reconstruction application. Regardless of the chosen calibration dis-
tance, Abdullah et al., (2019) confirms this hypothesis by stating that independent of the
distance the calibration is performed, the further the objects from the camera, the higher
percentage of errors will be recorded.

Stereo depth estimation require the generation of accurate disparity maps in real-time
(Wang et al., 2019). Nevertheless, a disparity map includes noise, and post-processing
with a clustering technique is therefore preferred to extract the resulting world position of
3D objects. This can be achieved using both classical clustering techniques or convolu-
tional neural networks for object detection and classification. Clustering points into groups
to segment the point cloud is a standard step in processing a captured scene (Nguyen and
Le, 2013). Graph-based methods such as hierarchical clustering are robust in dealing with
complex scenes (Pendleton et al., 2017). Such methods extracts a dynamical number of
clusters and are not dependent on seed points. However, recent advances in computing
power has made deep learning based methods the standard approach for object detection
(Li et al., 2019). Deep learning with convolutional neural networks tends to outperform
classical detection methods by recognizing shapes, edges and colors. YOLO is one of the
pioneer real-time CNN models, which has demonstrated detection performance improve-
ments over R-CNN (Zhao et al., 2019). YOLOv3 outperforms the state of the art detection
algorithm Faster R-CNN in both sensitivity and computation time (Benjdira et al., 2019).
The stereo system will be tested using both YOLOv3 and classical clustering techniques.

1.2 Problem description

The situational awareness of USVs depends on sensors that can perceive the surrounding
environment. The purpose of this project is to implement an object detection system using
a stereo camera for the autonomous ferry milliAmpere. The project builds on the 5th year
specialization projects of the two authors (Theimann, 2020)(Ødegård Olsen, 2020) where
a stereo system was set up and tested for shorter distances. While Olsen looked into Stereo
vision using local methods for autonomous ferry, Theimann complemented by focusing on
LiDARs with the project Comparison of depth information from stereo camera and LiDAR.
The projects calibrated a stereo setup, and tested the system inside with a controlled static
scene. This thesis incorporate the two projects and continues the research for a far range
stereo system. This thesis addresses the following tasks:

1. Design and implement a stereo system.

2. Perform a LiDAR - stereo camera calibration. Use the LiDAR as ground truth to the
depth measurements.

3

Chapter 1. Introduction

3. Propose a far range calibration procedure and evaluate the obtained parameters.
Look at important factors when calibrating at far range.

4. Implement a real-time system for object detection. Make a framework compatible
with the system running on milliAmpere.

5. Choose a stereo correspondence algorithm suitable for a marine environment. Per-
form clustering, isolating the object of interest in the scene.

6. Implement an object recognition procedure using CNN and evaluate the reliability
of the network.

7. Integrate the system on the autonomous ferry milliAmpere and test it in the oper-
ational environment of the vessel. Record relevant data to be used for testing of
detectors.

8. Analyze the performance of the proposed system.

1.3 Report Outline
The thesis is divided into two parts. Part I is about stereo vision and the calibration of a
stereo camera. The part begins with Chapter 2 which describes the theoretical background
of stereo vision. The chosen stereo setup is described along with the cameras in use. Chap-
ter 3 presents the LiDAR which serves as a ground truth for distance estimates. Chapter 4
propose an extrinsic calibration procedure for far range stereo vision. Finally in Chapter
5, the resulting parameters are presented, and evaluated based on their performance on
scenes of different depths.

Part II is about the application on the ferry in the marine environment. An overview
of the system implemented on milliAmpere is given in Chapter 6. Chapter 7 describes
the techniques used for object detection. The implemented algorithms for depth-maps
and clustering are presented and an evaluation of the reliability is given. In Chapter 8,
the results of testing in coastal and harbour environments is presented and discussed. A
conclusion for both parts is given in Chapter 9, along with suggestions for future work.

4

Part I

Stereo vision and calibration

5

Chapter 2
Stereo vision

Stereo vision is a computer vision technique used to perceive depth in a scene by combin-
ing two or more sensors. With two cameras of known relative position, the 3D position
of points projected on the camera plane can be estimated through triangulation. Working
with binocular cameras requires an understanding of the calculations and setup, which
both influence the 3D points probability distribution. As well, the application area and
the choice of algorithms used for computing and solving the correspondence problem will
affect the resulting depth-map and the associated point cloud. The chapter rephrases from
the two specialization projects written by Theimann (2020) and Olsen (2020).

2.1 Monocular camera

2.1.1 Pinhole model

The pinhole model is one of the most widely used geometric camera models (Hartley and
Zisserman, 2004). The mathematical model describes the correspondence between real-
world 3D points and their projection onto the image plane. Figure 2.1 demonstrates the
concept, where the box represents the camera body. The rear inside of the camera body
places the image plane. The light travels from the top of the scene, straight through the
aperture, and projects to the bottom of the camera film. The aperture lets only light rays
from one direction through at a time. Thus light rays from conflicting directions are filtered
out. The camera film, therefore, holds an inverted image of the world.

As there is no lens, the whole image will be in focus. The focus requires an infinity
long exposure time to avoid blur and absence of moving objects. In practice, one equips the
camera with a lens to produce useful images. The pinhole is mathematically convenient,
and the geometry of the model is an adequate approximation of the imaging process.

7

Chapter 2. Stereo vision

Figure 2.1: Pinhole model

2.1.2 Camera parameters

The camera parameters describe the relationship between the camera coordinate system
and real-world coordinates. In image transformations, homogeneous coordinates are con-
venient for representing geometric transformations. Projective geometry has an extra di-
mension to describe Cartesian coordinates in Euclidean space. They allow affine trans-
formations and can represent numbers at infinity. Mapping a homogeneous vector to a
Cartesian space and Cartesian to homogeneous is given by (2.2) and (2.1) respectively
(Hartley and Zisserman, 2004).

x =

[
u
v

]
−→ x̃ =

uv
1

 (2.1)

Figure 2.2: Intrinsic and extrinsic geometry

8

2.1 Monocular camera

x̃ =

uv
w

 −→ x =

[
u/w
v/w

]
(2.2)

The camera parameters are divisible into two groups - internal and external parameters.

Internal parameters

The internal camera parameters comprehend both the intrinsic- and distortion parameters.
The intrinsic matrix transforms 3D camera coordinates to 2D homogeneous image coordi-
nates. In Figure 2.2, the image plane is parallel to the camera plane at a fixed distance from
the pinhole. The distance is named the focal length, f . The gray line in the figure repre-
sents the principal axis. The principal axis intercepts the image plane in a point called the
principal point. The perspective projection models the ideal pinhole camera, where each
intrinsic parameter describes a geometric property of the camera

The pinhole model assumes pixels to be square, which may not apply for alternative
camera models. Commonly, cameras are not exact pinhole cameras, and CCD (Charged-
coupled device) is the model generally used in digital cameras. Nevertheless, by a few
adjustments, the pinhole model can fit in the CCD model. CCD cameras may have non-
square pixels, which can cause an unequal scale factor in each direction. Thus, two addi-
tional constants are added, mu and mv . The constants defines the number of pixels per
unit distance in image coordinates, u and v direction, respectively.

K =

αu s u0
0 αv v0
0 0 1

 αu = muf
αv = mvf
u0 = mupu
v0 = mvpv

(2.3)

The adaptive intrinsic matrix is given in (2.3). The parameters αu and αv represents the
focal length in pixel units, and u0 and v0 symbolize the principal point in pixel units (Hart-
ley and Zisserman, 2004). The s is named the skew parameter. It is non-zero in cameras
where the image axes are not perpendicular, usually not the case for today’s cameras.

Image distortion makes straight lines in a scene appear bent in the image. The optical
distortion is derived in the lens and occurs when lens elements are used to reduce aberra-
tions. An ideal pinhole camera does not have a lens, and thus it is not accounted for in the
intrinsic matrix. Radial distortion occurs when light rays are bent more near the edges of
the lens than in the center. Figure 2.3 shows how radial distortion can affect an image. Let
(u, v) be the ideal points and (ud, vd), the radial distortion expressed in (2.4).

ud = u+ u
[
k1(u2 + v2) + k2(u2 + v2)2 + k3(u2 + v2)3...

]
vd = v + v

[
k1(u2 + v2) + k2(u2 + v2)2 + k3(u2 + v2)3...

] (2.4)

The radial distortion coefficients kn = nth express the type of radial distortion (Zhang,
2000).

9

Chapter 2. Stereo vision

(a) Negative radial distortion (b) No distortion (c) Positive radial distortion

Figure 2.3: Radial distortion

Extrinsic parameters

The extrinsic parameters relate the camera plane with the world reference frame, see Fig-
ure 2.2. The two coordinate frames are related by the homogeneous transformation matrix
T. The matrix consist of a translation matrix and a rotation vector combined.

When describing the intrinsic parameters, the world coordinates were assumed to be
given in the camera frame. To describe the extrinsic parameters, the scene points are
expressed in the world coordinate frame (X,Y, Z). A point, xW in the world frame can be
expressed as a point, xC, in the camera frame by

xC = RxW + t ⇐⇒ xC = TxW

Combining R and t is thus the extrinsic parameters of the camera.
The camera matrix is a result of combining the intrinsic parameters K (2.3) with the

extrinsic [R, t]T . It relates world coordinates with pixel coordinates and is notaded with
P (2.5).

P =

[
R
t

]
K (2.5)

2.1.3 Blackfly S GigE

The thesis utilizes two identical cameras in the stereo setup. They are delivered by FLIR,
and the camera model is Blackfly S GigE. The selected lens was bought from Edmund

10

2.1 Monocular camera

Optics and is in the C Series. Relevant specifications are written in Table 2.1, for further
reading, see the suppliers’ website1 2.

Camera specification
Frame rate 24 FPS (min. 1 FPS)
Resolution 2448 x 2048
Pixel Size 3.45µm
Sensor Sony IMX264, CMOS, 2/3”
Readout Method Global shutter
Interface GigE
Operating Temperature 0◦C to 50◦C
Exposure Range 13µs to 30s
Dimensions (W x H x L) 29mm x 29mm x 30mm

Power Requirements Power over Ethernet (PoE); or via
GPIO

Lens specification
Focal Length 8.5mm
Type Fixed Focal Length Lens

Table 2.1: Camera and Lens spesicifation

Reading from Table 2.1, the sensor uses the Gigabit Ethernet or ”GigE” interface,
which is known to combine multiple cameras easily. It is the most common interface
for industrial image processing, and offer the possibility for receiving power through the
GPIO pins or with Power over Ethernet. The sensor type is CMOS, and it utilizes a global
shutter to capture an entire frame all at once. Since the cameras are to be deployed on
a moving vessel, this enables capturing all of the motion simultaneously, resulting in no
rendering of slanted lines which should have been straight.

The sensor format, combined with the lens specification determines the field of view.
From the specifications, each camera calculates to have a field of view of 59.1 degrees.
The wide field of view, together with the high resolution, allows the cameras to detect
and recognize objects at great distances. The disadvantage is that the number of pixels
is tremendous and, therefore, the computational burden when iterating through the pixels
in stereo processing. Moreover, the pixel size is microscopic, which gives rise to noisier
images in case of little light. Considering that the image processing will have a notable
higher runtime than 1

24 seconds, the frame rate is acceptable even if one decides to lessen
the image resolution.

The focus and ”iris” of the sensor are manually adjusted by the lens, and can later be
tuned in software. The camera supports color images, but considering the stereo matching
algorithms is intensity-based, the camera is set to capture greyscale images to maximize
the frame rate. Greyscale images are the same as intensity-based images. A color image

1https://www.flir.com/products/blackfly-s-gige/?model=BFS-PGE-50S5C-C
2https://www.edmundoptics.com/p/85mm-c-series-fixed-focal-length-lens/

14947/

11

https://www.flir.com/products/blackfly-s-gige/?model=BFS-PGE-50S5C-C
https://www.edmundoptics.com/p/85mm-c-series-fixed-focal-length-lens/14947/
https://www.edmundoptics.com/p/85mm-c-series-fixed-focal-length-lens/14947/

Chapter 2. Stereo vision

transforms into greyscale by summing all the colored layers, R+G+B
3 .

The cameras are not waterproof, and together with the high operating temperature, it
will be necessary to make a waterproof and isolating case for protecting the cameras in the
operating environment.

It is preferred to set the manual exposure and focus of the cameras approximately equal
to ease the stereo matching. Similar camera parameters will reduce noise when comparing
corresponding pixels in the image processing part. Similar, it is essential to synchronize
the capturing of the two cameras, so images will appear in the correct order when post-
processing.

2.2 Stereo setup

Large Baseline

Width of a pixel

Small Baseline

Uncertainty region

Figure 2.5: Illustrating uncertainty depending on the baseline

Representing the 3D world with a discrete camera plane give rise to uncertainty in the
depth estimate. In Figure 2.5 the uncertainty with different baselines is demonstrated. In
general, the uncertainty will decrease with expanding baseline. In addition to the baseline,
the vergence angle of the cameras will affect the shape of the uncertainty region. Changing
the angle between the cameras will result in parallel rays give less precise localization of
3D points. The accuracy of reconstructed 3D points is thus dependent on both the baseline
and the angle, where the width of the probability distribution will decrease with increasing
baseline and vergence angle.

As the accuracy increase with increasing baseline and vergence angle, the search prob-
lem becomes more difficult, and the field of view shrinks. The cameras’ angling and
baseline directly influence the field of view (McCabe, 2016). Depth estimation is possible
only for the overlapping field of view between the two camera views, and in practice, a
minimum of 2

3 of each image should overlap. Three different setups are demonstrated in
Figure 2.6. Illustrated in green is the field of view. The overlapping field of view will
diminish with a more substantial baseline and concurrently increase the blind spot. The
rightmost figure titled Angled demonstrates a solution when using a wide baseline for
far-range detection. When cameras angle inward, the field of view increases and withal
decreases the blind spot.

12

2.2 Stereo setup

Large baseline Small baseline Angled

Figure 2.6: Illustrating field of view in a stereo setup

Another benefit of angling the cameras is that the vergence angle determines a partic-
ular fixation point in the scene. When the fixation point is near a target object, it can help
in separating the target objects from distracting surroundings. The working distance, i.e.,
how far the setup is from a given object or fixation point, can be calculated depending on
the camera optics.

FOVh = horizontal field of view

h = horizontal sensor size

WD =
f ∗ FOVh

h
, WD = working distance

f = focal length in metric units of length

The baseline is directly proportional to the horizontal distance from the mounting to the
object. Thus stereo systems with smaller baseline achieve better results when detecting
objects on average distances, whereas broader baseline is preferred with greater distances.
As a general rule, the fraction 1

30 is used to estimate the dimension of the baseline (Curtin,
2011). For a working distance on 30 meters, the baseline would be about one meter,
depending on the cameras’ angling.

Eventually, the setup is a matter of the distance one wants to detect, the width and
blind spots, which are all correlated. The factors all define what level of depth-accuracy
the system will achieve.

2.2.1 The chosen stereo setup
The stereo setup is designed for the ferry milliAmpere. Considering restrictions and a
user-friendly design, the maximum baseline possible is approximately 1.80 meters. This
corresponds to a preferred operating distance at 54 meters when cameras are not angled.
As presented in Section 2.2 angling the cameras will minimize the error due to the un-
certainty region of a pixel. Thus, the cameras were angled, giving a fixation point at 50
meters. With a baseline of 1.80 meters, the vergence angle of each camera is calculated by
Pythagoras to be 1.00 degrees.

Figure 2.7 shows an illustration of the field of view of the stereo camera. This setup

13

Chapter 2. Stereo vision

Figure 2.7: Field of view of stereo setup

Figure 2.8: Stereo setup

14

2.3 Epipolar geometry

gives a blind spot of approximately 1.6 meters in front of the cameras. At 50 meters, a
horizontal FOV of approximately 50 meters is visible.

An attempt of manual measuring the actual baseline was made to get pre-knowledge
about the resulting calibration parameters. The baseline was measured to be 1800.25 mil-
limeters. In addition, the cameras are manually angled 1 degree towards each other. Thus
the expected rotation in Euler angles and translation of the right camera according to the
left would be:

R =
[
x : 0 y : −2 z : 0

]
t =

[
−1800 0 0

] (2.6)

As the measurements are done by hand, there are uncertainties in the numbers. However,
they give a pointer towards the intended extrinsic calibration parameters

2.3 Epipolar geometry

x1
x2

x3

OL OR

xw

Baseline, bx

Left camera view Right camera view

eL

xL xR

eR

Figure 2.9: Epipolar geometry of two cameras

Observing the same world point xW from two relative views gives a strong geometric
constraint on the observed point called the epipolar constraint. By the geometric pinhole
model, triangulation retrieves 3D world coordinates. Figure 2.9 gives an illustration of the
epipolar geometry between two cameras. Blue illustrates the image planes, and the point
xW is the world coordinate desired to reconstruct the depth.

The green triangular in Figure 2.9 connects the two optical centers, OL and OR, and
the point xW; it is called the epipolar plane. The baseline, a fixed-length depending on the
stereo setup, is the line connecting the two optical centers. The epipolar plane intersects
through the two blue image planes forming the red epipolar line in each plane. The epipolar
line in the left camera-view intersects the epipole eL and the point xL = (uL, vL).

15

Chapter 2. Stereo vision

The epipolar constraint uses the epipolar line to find pixel correspondences. Capturing
a point in one of the cameras, the pixel point in the image generates the epipolar line
in the second image. The corresponding pixel must lie on the line. Thus, search for
correspondences is reduced from a region to a line. The constraint arises by the reason
that when two cameras capture the same world object, the pixel points, the world point,
and the optical centers are all coplanar. The depth is thus directly proportional to the
baseline and the distance between the two pixels capturing the world object.

The epipolar constraint can be represented mathematically by the essential matrix, E,
and the fundamental matrix, F. Both the matrices describe the geometric relationship
entirely (Hartley and Zisserman, 2004). The essential matrix depends only on the extrinsic
parameters, while the fundamental use image coordinates. In other words, the essential
matrix represents the constraint in normalized image coordinates, while the fundamental
matrix represents parameters in pixel coordinates. It is convenient to describe a normalized
image plane as it represents an idealized camera. Setting z = 1 in front of the projective
center, in Figure 2.2, implies a focal length of 1. This lets us describe the imaging process
independently of the camera-specific focal length parameter.

Correspondence between the two homogeneous represented points xL and xR can
mathematically be presented in normalized image coordinates (2.7).

xLExR = 0, where E = [tL
LR]×RLR (2.7)

The essential matrix is related to the pose between the left and right image planes in Figure
2.9. The corresponding rigid body transformation T is defined as

TLR =

[
RLR tL

LR
0 1

]
The fundamental matrix represent the same epipolar constraint in the image plane. It is

the algebraic mapping between a pixel in one image and the epipolar line. Corresponding
pixels in the left and right image is again established under the epipolar constraint, though
via the intrinsic calibration matrices KL and KR of each camera.

FLR = K−>L ELRK−1R (2.8)

The theory is illustrated in Figure 2.9, where the pixel xL in the left view is mapped to all
the pixels on the epipolar line of the right camera. In practice, every pixel on the epipolar
line in the right camera view capturing the world points xW, x1, x2, or x3 can correspond
to the one pixel xL in the left view. The problem of selecting the correct matching pixel in
the right view is termed the correspondence problem.

2.4 Correspondence problem
In stereo images, depth is inversely proportional to the disparity between pixels. The
proposition implies that calculating depth is a single trivial equation. However, in order to
do the calculation, one must determine for each pixel in one image which pixel in the sec-
ond originated from the same 3D world point. This issue is known as the correspondence
problem and is a central part of binocular vision.

16

2.4 Correspondence problem

Before stereo matching and solving the correspondence problem, the images should
be undistorted and rectified to ease the computation of finding corresponding pixels. The
flow chart below illustrates the pipeline for retrieving depth from a stereo camera.

Stereo
Setup Calibrate

Undistort
& rectify

Stereo
Matching

Disparity
Map

Point
cloud

The stereo calibration obtains the rigid body transformation between the two cameras and
can be used to undistort and rectify the images. Rectification is the process of transforming
the two images onto a common image plane, aligning the red epipolar lines in Figure 2.9.
It ensures that the corresponding pixels in the image pair are on the same row.

Figure 2.10: Ideal Stereo Geometry

The concept is shown in Figure 2.10. By defining new camera matrices (2.5), the cor-
respondence problem is mapped to ideal stereo geometry. The mapping is accomplished
by setting the rotation matrix equal to the identity matrix and expressing the translation
along the x-axis. The ideal stereo geometry is a special case of the epipolar geometry
where the epipoles are at infinity, meaning x∞L = xR. The cameras will thus have identi-
cal orientation, and baseline bx along the x-axis. Ideal stereo geometry gives the following
pixel correspondence;

xL = xR +

 f∗bxd0
0

 (2.9)

The pixel correspondence implies that the epipolar lines become horizontal. Looking for
corresponding pixels in the two images boils down to a one-dimensional search.

Various stereo matching algorithms can perform the matching of corresponding pixels.
Stereo matching is the task of establishing correspondences between two images of the

17

Chapter 2. Stereo vision

same scene. The pixel distance between matching points is used to create a disparity map.
Disparity maps are applicable in various applications with a broad range of input data. The
depth estimate from the disparity can thus vary remarkably depending upon the properties
of the data (Praveen, 2019). Therefore, a broad range of algorithms has been developed for
acquisition corresponding points and subsequent for matching the points to estimate depth.
In general, the methods are classified into local and global approaches. The local methods
consider pixels in a local neighborhood, while the global methods use the information
presented in the entire image. Global algorithms are primarily based on the optimization
of a well-behaved-energy function created from the hole image (Liu and Aggarwal, 2005).
Because the energy function is defined on all the pixels of the image, global methods are
less sensitive to local ambiguities than local methods (Liu and Aggarwal, 2005). In short,
the global methods may achieve more accurate disparity maps, while the local methods
yield a less computational cost.

2.4.1 Disparity map
After matching corresponding pixels, a disparity map expresses the disparities. Disparity
map, also commonly named range- or depth-map, is a representation of the displacement
between conjugate pixels in the stereo pair image. It represents the motion between the

Figure 2.11: Example of scene with corresponding grey-scale disparity map and Point cloud

two views. An example of a disparity map is illustrated in Figure 2.11. The smaller the
disparities, the darker the pixels, therefore less motion and longer distance.

X =
uL − uR

f
Z, Y =

vL − vR
f

Z, Z =
f ∗ bx
d

(2.10)

After extracting the disparity map, the 3D world position of a given object only depends
on straightforward mathematics. The triangulation between pixels in the left- (uL, vL) and
right-image (uR, vR) is given in (2.10). The position is given in the cameras coordinate
frame, where bx is the baseline of the stereo camera, f , the focal length, and d corresponds
to the disparity between the two images.

The 3D world coordinates calculated can further be plotted together, creating a point
cloud (Rusu and Cousins, 2011). Point clouds are a means of collating a large number of
single spatial measurements into a dataset that can then represent a whole. One can say

18

2.4 Correspondence problem

that the point cloud displays the back-projection of the stereo image pair; an example is
displayed in Figure 2.11.

2.4.2 Semi-Global Matching
Semi-Global Matching is a method that takes advantage of both local and global properties.
The idea is to have a method that is more accurate than local methods and faster than
global methods. A Semi-Global Matching approach introduced by Hirchmüller (2005)
matches each pixel based on Mutual Information (MI) and the approximation of a global
smoothness constraint.

The idea is to perform a line optimization by considering pairs of images with known
epipolar geometry. As radiometric differences often occur in stereo image pairs, the dis-
similarity of corresponding pixels is modeled using MI. The entropy of the two images
defines Mutual Information. It is calculated from the probability distributions of the inten-
sities. The model performs a joint histogram of corresponding intensities over the corre-
sponding parts based on the epipolar geometry. The resulting definition of MI is defined
in (2.11).

MIL,R =
∑
xL

miL,R((uL, vL), (uR, vR)) (2.11)

miL,R = hL(i) + hR(k)− hL,R(i, k) (2.12)

The probability distributions, hL, hR, and hL,R are summed over the corresponding rows
and columns in the corresponding parts. The last expression hL,R in (2.12) serves as cost
for matching the intensities IL(xL) and IR(xR). In stereo images, some pixels may not
have any correspondences, thus the two first expressions in (2.12).

The pixel-wise cost calculation is calculated based on pixel intensity (2.13). The pixel-
wise MI matching determines the absolute minimum difference of intensity at xL and xR.

CMI(xL, d) = −miL,R(IL(xL), IR(xR)), xR = xL + d (2.13)

Calculating the cost pixel-wise can often lead to wrong matches, due to, e.g., noise. For
this reason, a penalization of changes of neighboring disparities is added (2.14). The
implementation is a smoothness constraint, or energy function.

E(D) =
∑
xL

C(xL, DxL) +
∑

xR∈NxL

P1T (|DxL −DxR | = 1) +
∑

xR∈NxL

P2T (|DxL −DxR | > 1)

(2.14)

The equation defines the energy function of the disparity imageD. The first term sums the
pixel-wise matching cost. The two following terms add a penalty cost for all pixels in the
right image, which are in the neighborhood NxL of the pixel xL in the right image. The
constant penalty is multiplied for unique matching, i.e., to penalize discontinuities. The
operator T is defined as the probability distribution of corresponding intensities.

The energy function approximates a global smoothness constraint, and the disparity
map D can be found by minimizing the energy (2.14). However, as this global minimiza-
tion (2D) is computational an NP-complete problem for a frequent number of disparity

19

Chapter 2. Stereo vision

maps, the MATLAB implementation uses a slightly modified version. By matching the
smoothed cost in only one dimension, all directions are weighting equally (Hirschmüller,
2005). The matching costs are connected by calculating cost paths. Thus the cost of each
pixel is calculated by the sum of all 1D minimum cost paths leading to that pixel. The
matching pixels are the ones that correspond to the minimum cost. The method uses a
median filter with a small window to remove outliers.

Overall, Semi-global matching is calculated for each pixel and is insensitive to illu-
mination changes. It is a semi-global method, which is shown to combine global- and
local-concepts successfully (Hirschmüller, 2011).

20

Chapter 3
Ground truth

Ground truth refers to the accuracy of the data collected. In distance estimation, the ground
truth is the real measure and tells how accurate the distance estimation is. When using
stereo vision to acquire depth information, a good ground truth can be obtained from a
3D Light Detection and Ranging, LiDAR, sensor. The LiDAR is considered as a highly
accurate sensor and is adequate as ground truth for long distances. Comparing the points
obtained by the stereo camera with the ones obtained by the LiDAR gives a reasonable
estimate of how exact the stereo depth estimates are.

3.1 Light Detection and Ranging - LiDAR
Light Detection and Ranging (LiDAR) is a Time of Flight distance sensor. The LiDAR
emits a laser pulse, and the reflected light energy is returned and recorded by the sensor.
The sensor measures the time it takes for the emitted pulse to be reflected to the sensor. The
travel time is used to calculate the distance to the object that reflects the light. (Velodyne,
2019)

Distance =
Speed of light · time of flight

2

A 3D LiDAR measures azimuth, elevation and range of the reflection. This gives us
a 3D point in spherical coordinates, see illustration in Figure 3.1. In the figure, ϕ is the
azimuth angle, θ is the elevation angle and r the distance from the point to the LiDAR.
Equation (3.1), expresses a spherical point in Cartesian coordinates in.

X = r cos(θ) sin(ϕ)

Y = r cos(θ) cos(ϕ)

Z = r sin(θ)

(3.1)

The LiDAR outputs a point cloud, and it contains the recorded 3D points given in spherical
coordinates.

21

Chapter 3. Ground truth

Figure 3.1: Spherical coordinates

Velodyne LiDAR VLP-16

Figure 3.2: Velodyne LiDAR Puck 16

The LiDAR used in this project is the Velodyne LiDAR Puck, VLP 16, see Figure 3.2. Its
specifications are given in (Velodyne, 2019). It is a compact LiDAR that has a range up
to 100 meters, and it has a 360◦ horizontal and 30◦ vertical field of view. It has an range
accuracy of ±3 cm making it very accurate. The VLP 16 has 16 laser and detector pairs
mounted 2 degrees apart in the vertical direction, starting at -15◦ and ending at 15◦. In the
horizontal direction, the VLP 16 has a resolution between 0.1◦ and 0.4◦, depending on the
rotation rate. The rotation rate can be chosen as a value between 300 and 1200 RPM.

It is desirable to represent the spherical points given by the sensor in a Cartesian coor-
dinate system. This is achieved by creating a coordinate frame centered in the LiDAR, see
Figure 3.3. Here ϕ represents the azimuth angle and θ the elevation angle. As described

22

3.2 LiDAR - stereo camera calibration

(a) Side view (b) Top view

Figure 3.3: The LiDAR coordinate frame

in (3.1) a 3D point p from the LiDAR can be represented in the LiDAR frame as:

p =

rcos(θ)sin(ϕ)
rcos(θ)cos(ϕ)

rsin(θ)

 where p =
[
X Y Z

]>
(3.2)

3.2 LiDAR - stereo camera calibration

Both the LiDAR and the stereo camera outputs a point cloud relative to the sensor. To
get a ground truth from the LiDAR, a direct comparison of the point clouds is necessary.
Thus, the rigid body transformation between the sensors needs to be obtained. To obtain
a point cloud from the stereo camera a calibration must be performed. The calibration
is performed by utilizing MATLAB’s stereo calibration app. Wang et al. (2019), among
others, justifies MATLAB’s stereo calibration method as a high precision calibration method
and uses it as ground truth to their research. Thus, the app is used to calibrate the stereo
camera.

MATLAB’s calibration app requires a checkerboard as a calibration target and states
that the optimal checkerboard covers approximately twenty percent of the field of view of
the camera. A checkerboard of the size 1.5×3 meters was constructed to obtain an optimal
calibration. This is the largest size feasible to make, seeing as it needs to be transportable,
and the surface needs to be smooth, flat, and rigid. Placing the checkerboard at a depth of
approximately 7.6 meters, it is visible in both cameras, and a proper stereo calibration can
be performed.

To find the rigid body transformation between the stereo camera and the LiDAR a
comparison of the point clouds is made. First, the LiDAR coordinate frame must be trans-
formed into the camera frame. Comparing the LiDAR coordinate system in Section 3.3
with the camera frame, all the axes must be rotated, and the positive direction of the height
must be switched. Now, the rigid body transformation is found by a point cloud registra-
tion. Point cloud registration is the process of finding the transformation that aligns two
point clouds of the same scene. The technique used, is the Normal-distribution transform.

23

Chapter 3. Ground truth

Figure 3.4: Checkerboard for stereo calibration

3.2.1 Normal-distributions transform
The normal-distributions transform, NDT, was first introduced as a 2D scan registration
method by Biber and Strasser (Biber and Straßer, 2003). Magnusson presented a method
for registration a point cloud with a reference point cloud using NDT in (2009). NDT uses
a probability representation for describing the shape of a surface. Given a set of points of
a surface the points are divided into cells of the same size. The probability of a point p
belonging to a cell is given by the normal distribution (3.3).

f(p) =
1

c0
e−

(p−µ)>Σ−1(p−µ)
2 (3.3)

The mean of a cell is given by µ = 1
n

∑n
i=1 pref i and the covariance by Σ = 1

n

∑n
i=1(pref i−

µ)(pref i − µ)>, where pref i is the points of the reference point cloud within the cell.
The constant c0 is used to scale the function so that its integral is equal to one. Each prob-
ability density function is an approximation of the local surface and thus NDT represents
the point cloud in a piecewise smooth manner.

The objective for registration is to find the transformation of a point cloud. The solution
is the registration that maximises the likelihood function (3.4) of the points lying on the
surface of the reference point cloud.

Ψ =

n∏
k=1

f(T(pk)) (3.4)

An equivalence to maximizing the likelihood function would be to minimize the log-
likelihood of Ψ. Outliers, points far from the mean, cause the negative log-likelihood of a
normal distribution to grow boundlessly. To reduce their influence on the result, a uniform

24

3.3 The ground truth

distribution is used to represent outliers. The probability of a point p belonging to a cell
can now be rewritten (3.5).

f̄(p) = c1e
− (p−µ)>Σ−1(p−µ)

2 + c2fo (3.5)

The fo is the expected ratio of outliers. By demanding that within a cell, the probability
mass of f̄(p) has to be equal to one the constants c1 and c2, can be determined. Thus,
given a point cloud and a transformation T(p), a cost function is created (3.6).

C(T(p)) = −
n∑
k=1

f̃(T(pk)) (3.6)

Where f̃(p) is the Gaussian approximation of f̄(p). When p is transformed by T, the cost
function corresponds to the likelihood of the point lying on the surface of the reference
point cloud. By solving the equation H∆T(p) = −g, Newton’s method is used to find
the optimal T(p). H is the Hessian and g the gradient of (3.6).

3.3 The ground truth
Finding the rigid body transformation between the LiDAR and the stereo camera, makes
the LiDAR applicable as ground truth of the accuracy of the stereo camera. The checker-

(a) Object for LiDAR-stereo camera calibration (b) Stereo point cloud of calibration scene

Figure 3.5: Calibration target and resulting point cloud from the stereo camera

board is suitable as a calibration target in the LiDAR - stereo camera calibration. Due to its
size, it is fully visible in both cameras. Covering it with a variable pattern, makes it ideal

25

Chapter 3. Ground truth

for the stereo camera to estimate the most exact depth as possible. The target is placed in
the same distance as used for the stereo calibration, to obtain a point cloud that is as exact
as possible. The resulting point cloud from the stereo camera and the calibration target is
given in Figure 3.5. The result coincides with the measured distance from the camera to
the calibration target.

The angling of the laser beams of the LiDAR, causes it to miss parts of the top and
the bottom of the object. By angling the object horizontally, the registration of the point
clouds is less prone to errors in depth. This helps to make sure that the correct corre-
sponding points between the point clouds are found and used to calculate the rigid body
transformation. NDT performs well in the registration of point clouds of different densi-
ties. This due to NDTs probability representation of the point cloud. The distance to the
target causes the LiDAR point cloud to be sparser, thus making NDT the preferred method
for point cloud registration.

R =
[
x : 0.430 y : 0.025 z : 0.103

]
t =

[
−0.940 0.132 0.067

] (3.7)

The registered rotation and translation is given in (3.7). The rotation is given in Euler
angles. This is the transformation between the LiDAR coordinate frame and the stereo
camera coordinate frame. The camera frame is in the left view, and the LiDAR is placed
approximately in the middle of the two cameras. The obtained translation in x-direction
places the LiDAR approximately 0.94 meters from the left camera. This seems appropriate
due to the cameras being placed approximately 1.80 meters apart. The translation in y-
direction corresponds to the height difference between the sensors.

Figure 3.6: Point clouds after transforming the stereo point cloud using the obtained parameters

Figure 3.6 shows the result after the stereo point cloud is transformed using the transforma-
tion in (3.7). The LiDAR point cloud is plotted in blue and the stereo point cloud in green.
In order to better illustrate the LiDAR point cloud, it is plotted using MATLABS’s function
Scatter3(), using a circle size of 6. The figure shows that the two point clouds aligns.

The root means square error of the point cloud registration is calculated to be

RMSE = 0.0796

26

3.3 The ground truth

This means that the Euclidean distance between the two point clouds after they are aligned
is approximately 0.08 meters, i.e. 80 millimeters. A stereo system is expected to have
meter precision at far distances, making the error negligible. The alignment of the point
clouds and the low RMSE show that a valid calibration is made. The LiDAR is used as
ground truth by utilizing the obtained parameters throughout the following chapters. It is
used to evaluate the accuracy of the stereo camera calibrations.

27

Chapter 3. Ground truth

28

Chapter 4
Stereo calibration

Calibrating a stereo camera minimizes the measurement uncertainty. It allows for the
extraction of precise distance estimations. This chapter presents the theory behind the
method utilized for calibrating a stereo system. The intrinsic and extrinsic parameters are
estimated in two separate calibration sessions. Before performing the extrinsic calibrations
for far range distances, a preliminary work is performed. This is done to give an impression
of the influence of the calibration distance, as discussed in Section 1.1. Based on the
findings, an extrinsic calibration procedure is proposed.

4.1 Monocular camera calibration

Monocular calibration is the process where intrinsic and extrinsic camera parameters are
estimated. As well, lens distortion is modeled and corrected. The intrinsic and extrinsic
parameters relate the camera coordinate system to the world coordinate frame. Using
these parameters the size of world objects and the location of the camera in the scene
can be determined. There exist different techniques, but the two main ones, according to
Zhang (2000) are:

• Photogrammetric calibration: calibration is performed by using an object with
known 3D world points. The correspondences between the real world points and
the corresponding 2D image points can be found by having multiple images of a
known calibration object. The most commonly used object is the checkerboard,
where the number of squares and their size is known.

• Self-calibration: no calibration object is used. The camera is moving while the
scene remains static. The correspondence between the images is used to estimate
the intrinsic and extrinsic parameters.

29

Chapter 4. Stereo calibration

4.1.1 Zhang’s method
Zhang’s method is a calibration technique developed by Zhengyou Zhang at Microsoft Re-
search (Zhang, 2000). This method lies between the two main techniques described above,
exploiting the advantages of both methods. The only requirement is that the camera has
to observe a planar pattern, typically a checkerboard, in at least two different orientations.
The algorithm then detects feature points in the images. Since the plane z = 0 is given by
the pattern itself only 2D metric information is used.

A real-world point and its image point is related by a linear transformation between
planes, a homography. For every image, an estimation of the homography can be made.
Each image imposes two constraints on the intrinsic and extrinsic parameters. Using more
than three images a unique solution of the parameters can be computed using Singular
Value Decomposition. The parameters are refined by minimizing the reprojection error
using Levenberg-Marquardt Algorithm. An estimation of the radial distortion parameters
is calculated by comparing the real pixel values and the ideal ones given by the pinhole
model.

4.1.2 Intrinsic parameters
The internal parameters for each camera were calibrated indoors in a controlled environ-
ment. The parameters were estimated using MATLAB’s calibration toolbox. By Zhang’s
method, the app calibrates and provides tools for evaluating and improving the accuracy.
The app outputs an estimation of the intrinsic matrices and the distortion coefficients.

Figure 4.1: Image before and after intrinsic calibration

The resulting intrinsic and distortion parameters are given in (4.1) and (4.2), for each
camera respectively.

KL =

1233.00 0 615.64
0 1232.45 540.21
0 0 1

KR =

1233.86 0 636.00
0 1233.37 536.00
0 0 1

 (4.1)

30

4.2 Preliminary extrinsic stereo calibration

Left cam: k1 = −0.3934, k2 = 0.1816

Right cam: k1 = −0.3910, k2 = 0.1757
(4.2)

The two matrices are sufficiently equal and the undistorted images, e.g, Figure 4.1, shows
that the parameters are reasonable. In theory, the intrinsic- and radial distortion parameters
for the two cameras are equal. In practice, this is not feasible due to physical differences,
such as manually setting the screw-lenses. The parameters for the focal length are almost
identical, but for the principal point on the x-axis, the values are noticeable divergent.
Bear in mind that the principal point is defined to be the image position where the optical
axis intersects the image plane. Thus, the principal point changes if the camera setting
changes, e.g., changing the focus or zoom. Hence, a small distinction in the rotation of the
two lenses yields different results for the principal point’s parameters.

Both the skew parameters are set to 0 in MATLAB before calibrating. It is possible
to allow for a non-zero skew, but with newer cameras, the skew-parameters is usually
negligible. An extra free parameter to calibrate in most cases only give rise to more noise
in the calibration. Performing the calibration using a non-zero skew did not give any
noticeable enhancement to the result.

As the thesis focus on far-range depth estimation, the extrinsic stereo parameters are
the most significant and challenging to calibrate (Ødegård Olsen, 2020). The internal
parameters will thus remain fixed throughout the rest of the thesis. The internal parameters
are easier to re-calibrate in a later stage. The fixed internal parameters makes it easier to
compare the different stereo calibrations.

4.2 Preliminary extrinsic stereo calibration
The literature diverges regarding extrinsic camera calibration. In preparation of proposing
a method, a preliminary stereo calibration is performed to evaluate the research by Marita
et al., (2006), and Stretcha et al. (2008). Stretcha et al. suggests that a higher accuracy is
obtained with a decreasing distance to the calibration scene. While Marita et al. found it
advantageous to calibrate at the systems operating distance.

As a starting point, an experiment was set up to evaluate the literature regarding far-
range stereo calibration. The stereo setup and test scene from the specialization projects
were used (Theimann, 2020)(Ødegård Olsen, 2020). Calibrating only the external param-
eters will give an impression of how the external parameters influences the calibration on
different distances. The test scene includes objects placed at a distance of approximately
2, 4, and 6 meters. The fixation point of the stereo camera is 4 meters. Thus, the exter-
nal parameters are re-calibrated at four distances, 1, 2, 3 and 4 meters respectively. The
LiDAR is used as ground truth for the comparison of the distance estimations.

The new external parameters are used to rectify the images before creating a disparity
map of the test scene. The disparity algorithm used, Census Transform, is implemented in
Olsen (Ødegård Olsen, 2020), and the resulting disparity maps of the four different cali-
brations are illustrated in Figure 4.3. For each disparity map, a point cloud is reconstructed
by triangulation, and compared with the point cloud obtained by the LiDAR. Figure 4.4
presents the four point-clouds, were each subfigure is a result of the different external pa-
rameters. Each stereo point cloud, outlined in green, is presented together with the ground

31

Chapter 4. Stereo calibration

Figure 4.2: Image stereo pair of the test scene

(a) 1m calibration (b) 2m calibration (c) 3m calibration (d) 4m calibration

Figure 4.3: Resulting disparity map from the four calibrations

truth illustrated with purple points. As neither of the calibrations is performed at the hind-
most object’s distance, this is the most applicable object for comparison. The object is
placed at approximately 6 meters distance. While the point clouds obtained from the cali-
bration at 2, 3, and 4 meters overall seems rather similar, the calibration at 1 meter diverges
the most from the ground truth. As expected, one can observe that the depth estimates for
the farthest object deviate the most.

Average error
Calibration Object 2m Object 4m Object 6m

1m 0.015 m 0.085 m 0.333 m
2m 0.021 m 0.025 m 0.109 m
3m 0.014 m 0.028 m 0.134 m
4m 0.038 m 0.015 m 0.071 m

Table 4.1: Distance in meters between selected points from LiDAR and points obtained from Semi-
Global Matching

For each stereo calibration, the average distance in depth is calculated. A set of points
is selected from the LiDAR point cloud, see Figure 4.5, and the corresponding stereo
estimates are found. In Table 4.1, the average error between the stereo point clouds and
the ground truth is presented for each of the three objects. Observe that all the depth errors

32

4.2 Preliminary extrinsic stereo calibration

(a) Stereo calibration at 1m (b) Stereo calibration at 2m

(c) Stereo calibration at 3m (d) Stereo calibration at 4m

Figure 4.4: Resulting point cloud with LiDAR in purple and stereo camera in green

are positive, indicating that the stereo camera overestimates the depth. This applies to all
the objects and the four calibrations.

From the table, the depth errors are relatively small. With the calibration at 1 meter,
the object at 6 meters yields an error of 5.6%. At farther distances, an error of 5.6 per-
cent is considered reasonable given the projects operating environment on marine water.
However, the calibrations at 1, 2, and 4 meters perform the best on the given calibration
distance. Also, calibration 3 and 4 indicate that shorter distances than the calibration dis-
tance are easier to estimate than farther distances.

The depth error for each selected point, on the object placed at 6meters, is displayed
in Figure 4.6. The four calibrations are given on the x-axis, and the points present the
variation in the data. Considering both variation and mean, the calibration performed at 4

33

Chapter 4. Stereo calibration

Figure 4.5: Points selected from the LiDAR point cloud.

Figure 4.6: The error of the third object plotted

meters undoubtedly perform better than the other in the given scene.

4.2.1 Discussion

The results present that the closer the calibration scene is to the target object, the better
depth estimates. Also, more accurate depth estimates are made for targets at shorter dis-
tances than the calibrating distances, rather than objects at farther distances. The result
seems to confirm what is stated by Marita et al. (2006). The accuracy of the depth esti-
mates is dependent on the distance the calibration is performed at. Thus, it appears that the
calibration should be performed at the operating distance of the stereo system. Consider-
ing that the stereo camera overestimated the depth of all the objects, it may be beneficial
to overestimate the operating distance while calibrating.

The sections gives an overview of considerations taken into account when calibrating

34

4.3 Extrinsic stereo calibration method

a far range stereo system. It seems that the best result is obtained when performing the
calibration at the operating distance. However, the far-range extrinsic calibration should
be conducted at various distances to discard or strengthen the hypothesis further.

4.3 Extrinsic stereo calibration method
The precision of the external stereo parameters influence the accuracy of the reconstructed
world points (Fooladgar et al., 2013). Wrong estimations of the essential matrix can lead
to false correlations or shortcomings of correlated points. This will influence the stereo
reconstruction process. Since the objective is to use the stereo setup on an autonomous
ferry, which requires far range object detection, the main focus is on estimating the external
parameters.

Extract pixel
correspondences

Select corre-
spondences

Estimate
relative extrinsic

parameters

Rectify stereo
images

Evaluate
rectified images

Recalibrate?

Retrieve scale

Recalibrate?

Generate stereo
parameters

no

yes

no

yes

Figure 4.7: Calibration procedure

Calibrating a far range stereo setup using existing programs, such as MATLAB’s Stereo
Camera Calibration App and Kalibr, requires a predetermined planar calibration target.
From the discussion in Section 4.2.1 it was suggested that performing the calibration at
operating distance yields the best result. Following MATLABs recommendations, a op-
erating distance at 50 meters requires a checkerboard of size 10 × 10 meters. It is next

35

Chapter 4. Stereo calibration

to impossible to create a checkerboard of the preferred size. For this reason, this section
proposes a method for calibrating a stereo camera using arbitrary scenes. The following
sections presents the theoretical background of the proposed method. A summary of the
steps is given in Figure 4.7.

4.3.1 Geometric error
The overall goal of the calibration is to minimize the geometric error. The geometric
error, often referred to as the reprojection error, measures the difference between detected
and reprojected points. If the world point xW is known and detected at position xL in
the left camera view, the predicted pixel position xR in the right camera view can be
calculated based on the calibration parameters. Mathematically the extrinsic parameters
for a calibrated stereo camera are defined in the essential matrix E.

xLExR = 0 (4.3)

The disparity between the predicted pixel position xR and the actual true 2D world point
x′R in the right view is termed the geometric error, displayed in red in Figure 4.8. It is
commonly measured in Euclidean distance and given in sub-pixel accuracy.

OL OR

xW

Baseline, b

Left camera view Right camera view

xL
x′R

xR

Figure 4.8: Epipolar geometry of two cameras

In an ideal situation, the geometric error is zero, which is desirable to achieve in the
calibration. However, in a real stereo camera system, there is no one-to-one correspon-
dence between the points in a world coordinate system and the ones in a camera plane
(Fooladgar et al., 2013). Due to constraints in the image resolution and the quantization
of world points, the determination of a 3D point is not unique. To deterministic determine
the coefficients in the essential matrix two known constrains, (4.4) and (4.5), are used in
addition to (4.3) (Kukelova et al., 2008). Hence, the calibration is a compromise between
minimizing the geometric error and maintain the constraints.

36

4.3 Extrinsic stereo calibration method

det(E) = 0 (4.4)

2EET − trace(EET)E = 0 (4.5)

4.3.2 Pixel correspondences

Each corresponding pixel pair defines a 3D world point. Pixel correspondences from a
stereo setup usually are extracted by a featured based method, like the Shi-Tomasi Corner
Detector. The Shi-Tomasi Corner Detector (Shi and Tomasi, 1994) is based entirely on the
Harris corner detector (G. and Stephens, 1988), with an improvement in the last step.

Shi-Tomasi Corner Detector

Harris Corner Detector or Harris Operator is one of the earliest detectors proposed in 1988
by Harris and Stephens (G. and Stephens, 1988). It is an intensity-based mathematical
operator finding features using corner descriptors in the extraction of features. A corner is
the intersection of two edges, a point where the directions of the two edges change. Hence,
a corner can be detected by high variations in the intensity gradient (in both directions). To
detect corners and edges, both the Harris corner detection and Shi-Tomasi Corner Detector
uses a combination of partial derivatives, Gaussian weighting function, and eigenvalues
from the matrix representation of the following equation:

erf(∆u,∆v) =
∑

(u,v)∈Wm

ω(u, v)[IL(u+ ∆u, v + ∆v)− IR(u, v)]2 (4.6)

The equation (4.6) is indirectly searching for corners. By sweeping a window Wm at
position (u, v) the variation of intensity is calculated for each pixel between the left image,
IL(u, v), and the displacement pixel IR(u+∆u, v+∆v). The window function ω(u, v) is
either a rectangular window or Gaussian window, giving weights to pixels underneath. The
rectangle window function gives weight 1 to pixels inside the window and 0 otherwise. In
practice, one can get a noisy response with a binary window function.

The objective is to determine the positions which maximize (4.6). By representing the
Taylor expansion as a matrix, subsequently calculating the eigenvalues, weak and robust
corners are detected with a threshold value. Deriving the mathematical expressions step

37

Chapter 4. Stereo calibration

by step:

erf(∆u,∆v) ≈
∑

(u,v)∈Wm

ω(u, v)[IL(u, v) + ∆uILu + ∆vILv − IR(u, v)]2

=
∑

(u,v)∈Wm

ω(u, v)
[
∆u2IL

2
u + 2∆u∆vILuILv + ∆v2ILv

]

=
[
∆u ∆v

] ∑
(u,v)∈Wm

ω(u, v)

[
IL

2
u ILuILv

ILuILv v2ILv

][∆u
∆v

]

=
[
∆u ∆v

]
M

[
∆u
∆v

]

For each window a scoreR is calculated for determining if a window is containing a corner
or not;

R = min(λ1, λ2) (4.7)

Based on (4.7) the algorithm decide whether a region is a corner, edge or flat. If R is
greater than a predefined threshold, the region is marked as a corner-point. The maximum
error of the corner detection process is ±1 pixel (Sasiadek and Walker, 2019). Figure 4.9

(a) Left camera view (b) Right camera view

Figure 4.9: Corners extracted by Shi-Tomasi Corner Detector

shows an example of the resulting output of the Shi-Tomasi Corner detector. The algorithm
marks the extracted features as green crosses.

4.3.3 Estimation of the relative extrinsic parameters
Estimating model parameters requires finding the best pixel correspondences and elimi-
nate outliers. Given a set of correspondences, the most favorable result of the essential

38

4.3 Extrinsic stereo calibration method

matrix E minimizes the geometric error. Hence, it minimizes the sum of squares of dis-
tances, orthogonal to the variety from each point (Torr and Zisserman, 2000). Estimating
the essential matrix often gives rise to nonlinear constraints between parameters, making
optimization a difficult task. Choosing the best correspondences is usually done with esti-
mators like Random Sample Consensus (RANSAC) or the modified version M-estimator
SAmple Consensus (MSAC) algorithm. While RANSAC tends to give poor estimates
when the threshold for inliers is set too high, MSAC is remedied with a new cost func-
tion. MSAC was published in 2000 and can robustly estimate the essential matrix from
point correspondences, providing a 5-10% improvement compared to RANSAC (Torr and
Zisserman, 2000).

Pixel pairs are chosen based on proximity and similarity; hence mismatches can occur.
In theory, all the best matches obey the epipolar geometry, and MSAC aims to remove
putative pixel pairs inconsistent with the epipolar geometry, i.e., outliers.

f(D,E) =
∏

i=1,...,n

(
1√
2πσ

)n
e−(

∑
j=L,R(uj

′
i−uji)

2+(vj
′
i−vji)

2)/(2σ′2) (4.8)

−
∑
i=1...n

log
(
f(x(L,R)i

,E, σ)
)

=
∑
i=1...n

∑
j=L,R

(
(uj
′
i − uji)

2 + (vj
′
i − vji)

2
)

(4.9)

e2i =
∑
j=L,R

(ûji − uji)
2 + (v̂ji − vji)

2 (4.10)

For N number of times, a randomly chosen set Sm of pixel pairs are chosen to create the
essential matrix E. The support for each essential matrix, E, is determined by the inliers
in the set Sm.

The images are assumed to include Gaussian distributed noise with zero mean and
a uniform standard deviation. The probability density function is given by (4.8), where
n is the number of matches and D the set of matches. For all the corresponding pixels
x(L,R)i

the negative logarithmic likelihood function is (4.9). The true relationship of the
stereo camera minimizes the likelihood function (4.9), and thus, the support for each pixel
correspondence is determined based on finding the maximum likelihood estimation error
(4.10). This is termed the MLE error ei, and the estimate x̂(L,R)i

of the true position
x(L,R)

′
i

is minimized for each point i as well as it must satisfy the constraint (4.3).

C =
∑
i

ρ(e2i), ρ(e2i) =

{
e2, if e2 < T.

T 2, otherwise.
(4.11)

In the end, the support for each essential matrix E is determined by the cost function
(4.11). The cost is calculated by summing the MLE error for each inlier in the set Sm, i.e.,
correspondences with error an ei below a given threshold T.

The MSAC algorithm for estimating the relative essential matrix can be comprised into
the following steps:

1. Repeat n number of times

39

Chapter 4. Stereo calibration

(a) Select a random sample subset containing the minimum number of correspon-
dences Sm = {x(L,R)i

}
(b) Estimate the image relation, the essential matrix E

(c) Calculate the error ei for each datum
(d) Calculate the cost function C

2. Select the best solution of the samples, i.e., the one with the lowest C. Store the set
of correspondences Sm that gave this solution.

3. Use the solution provided in the last step as the parameterization. Test all corre-
spondences against the parameterization, and add correspondences that fit the con-
strained optimization.

Summarized, MSAC makes use of a simple redescending M-estimator (Huber, 1985)
where inliers are scored on how well they fit the data. The cost function is shown in
(4.11), where T is the threshold for considering inliers. The error term ei is a Sampson
distance. Sampson distance is a first-order approximation of a geometric distance, here
the squared distance between a point and the epipolar line. MSAC is a nonlinear iterative
optimization algorithm, and because the output is an initial estimate of the relation with
a corresponding likelihood, the result can not always guarantee the optimal solution (Yu
et al., 2018).

Figure 4.10: Example of calibration points

Due to the inbuilt randomness of the algorithm, it is necessary to select corresponding
pixels beneficial for calibration. The estimation of the essential matrix may vary with the

40

4.3 Extrinsic stereo calibration method

same calibration scene and chosen pixel correspondences. The differences may be large.
Thus, it is necessary to select the most suitable points of the ones distributed in Figure 4.9.
(Yu et al., 2018). Figure 4.10 shows an example of preferred points sent as input to the
MSAC algorithm. Some features may be rejected. The algorithm outputs the estimated
relative essential matrix of the system, which may vary depending on which features are
rejected and which are not. Comparing and evaluating the relative essential matrices is
based on the obtained rectified images. Figure 4.11 shows an example of the resulting

Figure 4.11: Example of rectified images

rectification of a scene. The rectification is obtained by running the MSAC algorithm with
the points given in Figure 4.10 as input.

4.3.4 Absolute extrinsic parameters
From the estimated essential matrix a relative transformation between the two cameras can
be extracted. The parameters are relative, i.e., not given in scale. The angles are absolute,
but the translation lacks scale. The absolute extrinsic parameters link the position of the
reconstructed 3D points to the real-world coordinate system. To reconstruct the 3D points,
matching features in the two images must be found. The images is rectified using the
rotation between the cameras, and extracted features using Shi-Tomasi Corner Detector
from the left image can be tracked into to the right using the Kanade-Lucas-Tomasi feature
tracker.

Kanade-Lucas-Tomasi feature tracker

The Kanade-Lucas-Tomasi (KLT) feature tracker is a method for tracking extracted fea-
tures presented by Tomasi and Kanade in (1991). Images referring to the same scene
at different viewpoints are strongly related to one another. Thus, it allows for tracking
a feature extracted from an image into another image taken at a different angle or time.
Consequently, an image sequence obeys the following property

IR(u, v) = IL(u−∆u, v −∆v) (4.12)

41

Chapter 4. Stereo calibration

When two cameras capture a scene from two different viewpoints, moving every point in
the left image makes it possible to obtain the image captured to the right. The displacement
d = (∆u,∆v) of a point xR = (u, v), represents the amount of motion between the two
frames. Factors such as occlusion, illumination changes, and the disappearance of point
make images violate the constraint (4.12). These factors can make the tracking difficult,
but at surface markings and non-occluded areas, the property remains invariant.

When tracking a feature from one image to another, a window Wm of pixels is tracked
and not a single pixel. Tracking a single pixel is a difficult task due to noise, changes in
brightness, and it can be confused with adjacent pixels. Thus, using windows containing
sufficient textures is preferable. By discarding windows where the appearance has changed
too much, and by modeling the changes as an affine map and not just a single translation,
it is possible to make sure that the correct window is tracked. The displacement vector, d,
is estimated for small windows. As the images are rectified and taken in the same distance
of the target, any discrepancy not due to translation is considered as an error. The local
image model is given as

IR(xR) = IL(xR − d) + n(xR),

where n is the noise. The displacement vector is chosen to minimize the residue error over
a given window Wm. The residue error is given by

erf =

∫
Wm

[IL(xR − d)− IR(xR)]2ωdxR,

where, ω is a weighting function.
Approximating the intensity function using Taylor series and shortening it to the linear

term yields the following expression.

IL(xR − d) = IL(xR)− g · d

The image gradient is given by g = (∂I∂u ,
∂I
∂v). Using the new representation of the in-

tensity function the residue function can be rewritten to a quadratic function. Thus, the
minimization can be done in closed form. After some rearranging, the following equation
is obtained.

d

∫
Wm

gg>ωdA =

∫
Wm

(IL − IR)gωdA

Gd = e (4.13)

For every corresponding image pairs, the matrix G can be computed by estimating gra-
dients and computing their second-order moments of one frame. The two dimensional
vector e can be calculated from the difference between the two images along with the gra-
dient. Thus, the displacement d is the solution of (4.13), and feature point can be tracked
between frames.

Linear triangulation

After extracting corresponding features, their 3D position can be reconstructed using linear
triangulation. Linear triangulation is the process of finding a 3D world point given the

42

4.3 Extrinsic stereo calibration method

pixel coordinates of the point in two different views (Hartley and Zisserman, 2004). The
solution can be found by utilizing Direct Linear Transformation (DLT). Given a set of
2D correspondences, xLi ↔ xRi, the DLT algorithm determines the relation between the
corresponding points.

When using a stereo camera, the corresponding points must satisfy the epipolar con-
straint presented in (4.3). The points are captured by two cameras which puts a geometric
constraint on the points given by

xL = PLxW, xR = PRxW

where xL = (uL, vL, wL), P is the camera matrix and xW represents the 3D world coor-
dinates. These equations can be combined in order to represent them on the linear form
AxW = 0. Using a cross-product, xL × (PLxW) = 0, the homogeneous scale factor
can be eliminated and three equations for each image point can be given. This gives the
following

uL(p3>
L xW)− (p1>

L) = 0

vL(p3>
L xW)− (p2>

L) = 0

uL(p2>
L xW)− vL(p1>

L) = 0

where pi>L are the rows in the matrix PL. Thus, an equation on the form AxW = 0 can be
constructed by

A =

uLp3>

L − p1>
L

vLp3>
L − p2>

L
uRp3>

R − p1>
R

vRp3>
R − p2>

R

 (4.14)

Using the Shi-Tomasi Corner Detector and Kanade-Lucas-Tomasi feature tracker, more
than four pixel correspondences are extracted. This results in the equations extracted from
AxW = 0 being over-determined. Due to the discrete camera frame, noise will always be
present in image coordinates. Hence, there is no exact solution to the system. An approx-
imate solution is found by applying a cost function. Minimizing the norm ‖AxW‖ subject
to the constraint ‖xW‖ = 1 the solution is the eigenvector with least eigenvalue of A>A.

From relative to scale

Performing linear triangulation on the corresponding feature points in the two images,
allows for a point cloud reconstruction of the scene. Figure 4.12 shows the corresponding
features found in a scene captured by the stereo camera. The features are extracted in the
left frame by the Shi-Tomasi Corner Detector, and tracked into the right frame using the
Kanade-Lucas-Tomasi feature tracker. The resulting point cloud is relative and not given
in scale. To obtain the scale a measurement from the real-world is required.

Using the LiDAR as ground truth, it provides a real-world measurement of the scene.
The calibration of the LiDAR-stereo camera in Section 3.2 provides the transformation
necessary to transform the LiDAR into the stereo cameras reference frame. Thus, the Li-
DAR measures the actual depth of the scene. NDT presented in Section 3.2.1 calculates

43

Chapter 4. Stereo calibration

Figure 4.12: Matched features and corresponding point cloud without scale

the rigid body transformation between two point clouds. Finding the transformation be-
tween the relative point cloud and the real world LiDAR point cloud provides the actual
depth of the points. Thus, the scale is retrieved by dividing the actual depth of a point
with the relative one. Multiplying the relative translation with the scale factor provides
the absolute stereo parameters. When the scale is retrieved, the rigid body transformation
between the two cameras is estimated.

To evaluate the parameters an up to scale point cloud of the calibration scene is re-
constructed using a disparity map algorithm. Semi-Global Matching from Section 2.4.2
is used due to its accuracy and tolerance against radiometric changes. The ground truth is
used to evaluate if the obtained parameters should be rejected or not.

The calibration method utilized can be summarized in the following steps The steps

Algorithm 1 Extrinsic calibration

1: Undistort the image pair using the pre-computed intrinsic parameters
2: while no good parameters do
3: Extract pixel correspondences based on Shi-Thomas Corner Detector
4: Estimate the relative extrinsic parameters by the MSAC algorithm
5: Evaluate rectified images
6: for each promising calibration do
7: Create pixel correspondences by Shi-Thomas Corner Detector and Kanade-Lucas-

Tomasi feature tracker
8: Create the stereo point cloud by Direct Linear Transformation
9: Find the actual depth of the scene using the LiDAR point cloud

10: Use NDT to transform the relative point cloud to the actual depth
11: Extract scale from the relative and actual depth
12: Estimate absolute extrinsic parameters
13: Choose the best calibration based on reprojection errors, rectified images and compar-

ing the stereo point cloud against the ground truth obtained from the LiDAR

are implemented using functions made available by MATLAB’s Computer Vision Toolbox.

44

Chapter 5
Calibration results

The far range calibration method described in Chapter 4 is tested on different distances.
Considering the operating distance of the stereo camera, it appears that the calibration
should be performed at 50 meters. However, to test if the accuracy of the depth estimates
is dependent on the distance the calibration is performed at, the calibrations are performed
at 10, 20, 30, 40, 50, 60, and 70 meters. To evaluate the resulting parameters, they are
tested on scenes of various depths. The LiDAR serves as a ground truth.

5.1 Resulting parameters

(a) Scene 10m (b) Scene 20m (c) Scene 30m (d) Scene 40m

(e) Scene 50m (f) Scene 60m (g) Scene 70m

Figure 5.1: Calibration scene

45

Chapter 5. Calibration results

The camera’s field of view and the required depth of the calibration scene, imposes con-
straints to the calibration scene. The scene should contain strong edges, and cover most of
the cameras field of view. Due to the chosen calibration distances, the calibration is done
outside. This gives rise to challenging light conditions. A building including strong edges
is selected as the calibration scene. To ensure feature points are present in the outer edges
two checkerboards are placed in front of the target.

Transformation
at distance

Rotation right camera
[Euler angles, deg]

Translation right camera
[mm]

X (pitch) Y (yaw) Z (roll) X(baseline) Y(height) Z(depth)
10m 0.0857 -1.2060 0.0198 -1740.9420 -22.5655 -52.0053
20m -0.0439 -1.7265 0.0261 -1859.7417 9.5043 -25.2390
30m -0.0806 -1.6488 0.0147 -1826.3048 23.4460 -20.3536
40m -0.0443 -1.6558 0.0237 -1876.7839 44.8674 49.8614
50m 0.0012 -1.6058 0.0124 -1789.4666 -7.7865 -40.9851
60m 0.0191 -1.4662 0.0238 -1685.2528 -11.8655 -29.6606
70m -0.0656 -1.7437 0.0436 -2001.4234 101.9670 50.3563

Average -0.0183 -1.5790 0.0235 -1825.7022 19.6525 -9.7180

Table 5.1: Stereo parameters

The chosen calibration scene at the selected distances can be seen in Figure 5.1, where
the calibration distance is measured to the first wall of the building. The resulting extrinsic
parameters are given in Table 5.1. Based one Marita et al. (2006) it is expected that the
parameters calibrated at a certain distance give the most accurate depth estimate of that
distance. For this reason, an average calibration is made of all the parameters.

Mean reprojection error on all calibrations
Calibration distance Reprojection Error [pixel]

10 0.3142
20 0.3091
30 0.1113
40 0.1378
50 0.1276
60 0.1026
70 0.1056

Table 5.2: Mean reprojection error

The mean reprojection error of each calibration is given in Table 5.2. The error is
calculated based on all the corresponding points selected for the calibration. Because
of the randomness of the calibration algorithm, not all points are used to estimate the
essential matrix. Thus the extra points are used to ensure the mean reprojection error is
still acceptable when it is calculated based on points equally distributed over the image
plane. The reconstructed point clouds of each calibration scene are given in Appendix
A. Each calibration at the distinct distances is evaluated based on reprojection errors, the

46

5.1 Resulting parameters

rectified images, and the constructed point cloud of the calibration scene compared to the
LiDAR

5.1.1 Evaluation
At 10 meters, the calibration scene is challenging, see Figure 5.1a. There are not enough
strong corners to get useful feature points evenly distributed in the scene. Extracting pixel
correspondences is only possible around the checkerboard, which is too small of a region
of the image frame. Thus, the parameters are expected to deviate some from the others.
The same goes for the calibration at 60 and 70 meters. The two scenes contain too much
of the sky and the ground, which both are impractical for extracting satisfactory corner
points.

Based on the stereo setup described in Section 2.2.1 the parameters are expected to be
in the range of

R =
[
x : 0 y : −2 z : 0

]
t =

[
−1800 0 0

]
Most of the calibrations are within the range of the expected result, with the 10, 40, and 70
meters calibration showing the most divergence. Considering (2.10) in Section 2.4.1 the
baseline i.e., the translation in x-direction directly influences the estimated depth. With
this in mind, the 40, 60, and 70 meters calibrations are expected to have a lower depth
accuracy than the other parameters.

To inspect the extrinsic parameters, all the calibration parameters are plotted together
in Figure 5.2. For each disparity on the x-axis, the corresponding depth is calculated.
Figure 5.2a shows the entire graph, where 5.2b and 5.2c is zoomed in on the smallest and
greatest disparities, respectively. The parameters estimates different depths of the same
disparity. The biggest divergence is in the smallest disparities. The disparity is calculated
based on the rectified images of a scene, which is dependent on the extrinsic parameters.
In a real-world scenario, the same 3D-object corresponds to different disparities depending
on the calibration parameters. I.e., the calibrations may give the same depth result even if
the disparity is different, see the formula for depth (2.10) in Section 2.4.1.

The corresponding pixels used to estimate the essential matrix are extracted using the
Shi-Tomasi Corner Detector, which has a maximum error of ±1 pixel. In the plot, the gra-
dient decreases with increasing disparity. Hence, at farther distances an error of one pixel
corresponds to a higher inaccuracy. When calibrating at farther distances, an error of one
pixel is far more critical than for shorter distances. Thus, making calibration on far range
targets more sensitive to errors. The graph stabilizes at around 10 pixels, corresponding
to 250 meters. To minimize inaccuracies of the depth, it is reasonable to set the minimum
disparity around 10 pixels. Given by the plot, the minimum distance is 2 meters. This is
due to the wide baseline giving rise to a blind spot in front of the cameras.

The mean reprojection errors in Table 5.2 are all reasonable low. The reprojection error
and the value of the parameters alone do not say much of the quality of the calibrations.
Of course, the reprojection error needs to be reasonably low, and the parameters within a
given range, but it does not directly express how exact the depth estimates are. From a
visual inspection of the point clouds in Appendix A, they all seem to estimate the depth
of the calibration scene quite satisfyingly. The stereo parameters at 40 and 20 meters

47

Chapter 5. Calibration results

0 200 400 600 800 1000 1200 1400

Disparity (pixel)

0

500

1000

1500

2000

2500

E
s
ti
m

a
te

d
 D

e
p

th
 (

m
)

Depth from Essential matrix

10m

20m

30m

40m

50m

60m

70m

(a) The graph in total

1 2 3 4 5 6 7 8

Disparity (pixel)

500

1000

1500

2000

E
s
ti
m

a
te

d
 D

e
p
th

 (
m

)

Depth from Essential matrix

10m

20m

30m

40m

50m

60m

70m

(b) Smaller disparities

400 500 600 700 800 900 1000 1100 1200

Disparity (pixel)

0

1

2

3

4

5

6

7

E
s
ti
m

a
te

d
 D

e
p
th

 (
m

)

Depth from Essential matrix

10m

20m

30m

40m

50m

60m

70m

(c) Greater disparities

Figure 5.2: Estimated depth from given disparity

may seem especially promising. But it is next to impossible to predict which parameters
perform the best in general. All the parameters are expected to be optimal at the distance
they are calibrated on, i.e., their performance must be evaluated at different distances.

5.2 Test scenes

To evaluate the calibrations performance, the stereo parameters are tested on scenes of
different distances. The chosen scene is presented in Figure 5.3. The scene is captured
approximately 30, 40, 50, 70, and 90 meters from the sensors. The LiDAR point cloud
serves as the ground truth. A point cloud of each scene is reconstructed, using the Semi-
Global Matching algorithm in Section 2.4.2. It is worth noticing that the scene at 40 meters
is captured at a different time and under different weather conditions.

48

5.2 Test scenes

Figure 5.3: Test scene

In addition to a visual inspection, the translation in z-direction between the point cloud
and ground truth is registered. To measure the error, the stereo point cloud is mapped onto
the LiDAR point cloud. The transformation is registered by NDT. Noise is cut out of the
point clouds to calculating the error transformation. The translations in the z-direction are
used to evaluate the calibration accuracy in depth.

5.2.1 Results

The stereo and LiDAR point clouds of the scenes are plotted together and given in Ap-
pendix B. The error in depth of each calibration on the different test scenes is given in

Average depth error
Calibration Scene 30m Scene 40m Scene 50m Scene 70m Scene 90m

7.6 m 3.54 m 2.46 m 8.75 m 15.79 m 26.49 m
10 m 5.56 m 4.60 m 16.91 m 35.56 m 65.86 m
20 m 1.23 m 0.94 m 1.65 m 1.32 m 1.25 m
30 m 1.43 m 0.50 m 2.86 m 4.09 m 6.59 m
40 m 2.40 m 0.60 m 4.13 m 5.51 m 8.30 m
50 m 1.22 m 0.71 m 3.11 m 5.15 m 8.71 m
60 m 0.94 m 0.78 m 4.28 m 9.21 m 17.81 m
70 m 3.45 m 1.97 m 5.21 m 5.56 m 6.87 m
Avg 2.27 m 0.65 m 5.37 m 8.36 m 12.64 m

Table 5.3: Distance in meters between stereo point cloud and ground truth

Table 5.3. The calibration obtained using MATLAB’s stereo camera calibration app is in-
cluded to illustrate the far range accuracy of a pre-existing calibration method. It should
be noted that all the parameters overestimate the distance to the target. Figure 5.4 shows
the resulting plot of the error in the depth of each calibration. Two apparent outliers are

49

Chapter 5. Calibration results

30 40 50 60 70 80 90

Depth of scene (m)

0

2

4

6

8

10

12

14

16

18

20
D

e
p

th
 e

rr
o

r
(m

)

7.6m

10m

20m

30m

40m

50m

60m

70m

Avg

(a) Depth error of scenes

30 40 50 60 70 80 90

Depth of scene (m)

20

40

60

80

100

120

140

160

E
s
ti
m

a
te

d
 d

e
p
th

 (
m

)

7.6m

10m

20m

30m

40m

50m

60m

70m

Avg

Ground truth

(b) Estimated depth of scenes

30 40 50 60 70 80 90

Depth of scene (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e

p
th

 e
rr

o
r

p
e

rc
e

n
ta

g
e

7.6m

10m

20m

30m

40m

50m

60m

70m

Avg

(c) Depth error percentage

Figure 5.4: Error plots of test scenes

the calibrations obtained at 10 meters and by MATLAB’s Calibration App. With a higher
error than 25 percent, both calibrations are rejected.

The scene at 40 meters presents an irregularity in the plots. It was captured a month be-
fore the others, under different weather conditions at a different angle. In the other scenes,
the stereo system was placed perpendicular to the target building. The different conditions
may have caused a scene where disparities in the images are simpler to calculate. Also,
due to the time difference, there is no guarantee that external forces has not influenced the
stereo setup. For this reason, it is not representative together with the other scenes. To
summarize, the 30, 50, 70 and 90 meters scenes are captured under identical conditions.

Figure 5.5 shows the depth error in percentage, where the 40 meters scene is excluded.
The plot shows that the errors of the different calibrations are approximately linear. Nev-
ertheless, the 20 meters calibration has a noticeable higher accuracy than the others.

50

5.2 Test scenes

30 40 50 60 70 80 90

Depth of scene (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e

p
th

 e
rr

o
r

p
e

rc
e

n
ta

g
e

7.6m

10m

20m

30m

40m

50m

60m

70m

Avg

Figure 5.5: Depth error percentage

5.2.2 Evaluation
From Table 5.3 and Figure 5.5, the parameters diverge in their depth estimates. The cal-
ibration at 10 meters presents with the lowest accuracy, followed by MATLAB and the 60
meters parameters. Both 10 and 60 meters have a challenging calibration scene. The cal-
ibration at 7.6 meters seems to be over-fitted at its calibration distance. As for the rest of
the calibrations, from Figure 5.4b an increasing gap between the estimated depth and the
ground truth can be observed. However, the 20 meters calibration clearly outperforms the
others.

Apart from the 20 meters parameters, the calibration error increase with increasing
distance. This is expected as the error of one pixel have a greater impact as the disparities
decreases. From Figure 5.4a, the calibrations perform better at shorter distances indepen-
dent of the calibration distance. The calibrations performed at 20, 30, 40, and 70 meters
gives no significant increase in error in percentage. The scenes at 20 and 30 meters are
more favourable, as it is easier to extract points evenly distributed in the camera frame.
Thus, it seems like the chosen scene influence the results more than the distance. The 20
m calibration is arguably the best. The calibration target covers the entire scene making
it easier to extract features evenly distributed in the scene. Despite being calibrated at a
shorter distance, the calibration only has an error of 1.4 percent at 90 meters, and an overall
error of 2.6 percent.

R20 =
[
−0.0439 −1.7265 0.0261

]
, t20 =

[
−1.860 0.0095 −0.025

]
(5.1)

The variations of the results shows that calibrating a stereo camera is a sensitive pro-
cedure. To give a sense of how much changes in the parameters influence the accuracy,

51

Chapter 5. Calibration results

small deviations in the parameters a simulated. This is done using the 20 m parameters
(5.1) at the scene of 50 meters. The simulated errors is given as changes from the original
translation from the ground truth in (5.2).

t =
[
−2.821 −0.291 −1.653

]
(5.2)

The translation (5.2) indicates a significant error in the x-direction. Inspecting the point
cloud in Appendix B, it seems as the registration overestimates the translation in x due to
some warpings on the left side of the stereo point cloud. The error in x-direction is included
to give an estimate of how changes in parameters influence the 3D reconstruction.

∆ Translation [m] ∆Xerr [m] ∆Yerr [m] ∆Zerr [m]

tx

-0.010 -0.007 -0.012 -0.286
-0.005 -0.001 -0.003 -0.143
-0.001 -0.003 -0.002 -0.026
+0.001 0.003 0.001 -0.029
+0.005 0.010 0.008 0.143
+0.010 -0.009 0.017 0.283

ty

-0.010 0.189 -0.081 -0.016
-0.005 0.094 -0.056 -0.008
-0.001 -0.025 -0.010 -0.007
+0.001 -0.028 0.015 -0.001
+0.005 -0.082 0.040 0.005
+0.010 -0.137 0.080 0.005

tz

-0.010 -0.352 -0.028 -0.008
-0.005 -0.202 -0.009 -0.008
-0.001 -0.044 0.002 -0.010
+0.001 0.014 0.009 -0.005
+0.005 0.156 0.014 0.002
+0.010 0.303 0.032 0.004

Table 5.4: Difference in error in reconstructed points when translation between the cameras changes

Table 5.4 and 5.5 shows how the simulated error is affected when the stereo parameters
changes. The rotation of the point cloud is a somewhat inconsistent, as NDT struggles to
match the point clouds due the warping in the left side of the stereo point cloud. However,
they are presented to give a sense of what parameters influence the 3D reconstruction
the most. The parameters that influence 3D reconstruction the most are summarized in
Table 5.6. Only the changes in rotation causing a consistent error is included. The table
shows how sensitive the resulting accuracy is to wrong estimates of the stereo parameters.
Calibration is a delicate procedure; small errors in the parameter estimate can lead to a
severe loss of accuracy in 3D reconstruction. It also illustrates how sensitive the system
is to external forces, a change of 0.1 degree in yaw yields a difference of 2.5 meters in
depth. A robust setup is crucial. The findings show that for depth estimations, accuracy in
rotation of y and tx is crucial.

52

5.3 Discussion

∆ Rotation [deg] ∆Xerr[m] ∆Yerr [m] ∆Zerr [m]

X (Pitch)

+0.3 0.285 -1.170 0.113
+0.2 0.455 -0.734 0.038
+0.1 -0.067 -0.185 -0.009
-0.1 0.066 -0.384 -0.087
-0.2 -0.452 -1.090 -0.039
-0.3 -0.629 -1,173 -0.045

Y (Yaw)

+0.3 -1.241 -0.595 -9.730
+0.2 0.068 -0.194 -6.188
+0.1 -3.235 -1.931 -2.422
-0.1 -0.000 0.136 2.611
-0.2 -0.005 0.156 5.000
-0.3 -0.141 0.152 7.185

Z (Roll)

+0.3 3.224 0.535 -0.088
+0.2 3.228 0.606 -0.132
+0.1 1.855 0.359 -0.059
-0.1 -1.093 -0.222 -0.020
-0.2 -2.495 -0.242 -0.095
-0.3 -3.242 -0.102 -0.181

Table 5.5: Difference in error in reconstructed points when orientation between the cameras changes

Extrinsic
Parameter Error

Error of the reconstructed 3D coordinate
X (lateral offset) Y (height) Z (depth)

tx small error small error critical
ty error small error ≈ 0
tz error small error ≈ 0

X (Pitch) - - ≈ 0
Y (Yaw) - - critical
Z (Roll) critical small error ≈ 0

Table 5.6: Extrinsic parameters errors’ effect on 3D reconstruction

5.3 Discussion

Calibration is a sensitive procedure. Overall, the depth errors were higher than expected.
Most parameters has an error that stabilizes around 10 percent when the distance is in-
creasing. However, there are some significant outliers. The accuracy of 3D reconstruction
was shown to be sensitive to wrong estimations of rotation of y and tx.

The calibration procedure is based on a set of assumptions and approximations. First
the Shi-Tomasi corner detector has a maximum error of ±1 pixels. An error of one pixel
has a high impact of the accuracy as the distance increases. The extraction of feature points
at distances as high as 70 meters makes it challenging to accurately estimate the parame-
ters. In addition, the feature points used are manually extracted. Thus, the result is reliant
on how careful the user is in selecting the points. A very careful selection of the used

53

Chapter 5. Calibration results

calibration images and a different placing of the calibration board may also contribute to
keep this error smaller. For the extraction of scale, no normalization was performed on the
parameters used in the linear triangulation procedure. Due to the numerical estimation in
DLT, the entries of A (4.14) should preserve to have similar magnitude. Thus, in retrospect
the results of the triangulation may benefit from a normalization of the camera matrix. As
the intrinsic parameters obtained from the MATLAB calibration are given in millimeters,
they are of a higher magnitude than the other parameters; the homogeneous coordinate w
and the relative extrinsic estimated matrix given in the range of 0-1.

The calibration at 50 and 60 meters was expected to give the best result for the test
scene at the operating distance of the stereo camera, i.e. 50 meters. However, the highest
accuracy on the operating distance was obtained from the 20 and 30 meters calibration.
Overall, of all the different parameters the ones obtained at 20 and 30 meters gave the
highest accuracy. The 20 meters calibration resulted in an average error of only 2.6 percent.
Which is noticeable better compared to Wang et al., (2019), which achieved an accuracy of
74% at 30 meters putting their approach on par with LiDAR. The calibration scenes at 20
and 30 meters has the most favorable distribution of feature points for calibration. Thus,
the results indicates that using an appropriate calibration scene is of higher importance
than the depth of the scene. A scene covering the entire FOV, makes it possible to extract
corresponding pixels distributed in the whole frame.

The errors are expected to be higher if testing in the operational environment. In a
marine environment, there is less strong corners to match and reflection from the water
makes the stereo matching burdensome. Another reason is that the test scenes used, may
be too similar to the calibration scene. All the parameters should therefore have been tested
in a marine environment to see the actual performance in the operational environment.
Due to COVID-19 it was not possible to access the equipment necessary to acquire a more
suitable test scene.

From the change of accuracy between the 40 meter test scene and the others scenes,
there may have been some external factors influencing the stereo setup. The 40 meter
scene was captured in early February, and the other test scenes were captured in late April.
In the time between, the physical stereo system has been subjected to wear and tear due
to transportation. The camera had to be moved around more than preferable. This may
have caused changes to the configurations, including the angling of the cameras and the
manually set exposure and zoom. Changes like this will directly influence the uncertainty
of the depth estimates.

54

Part II

Application in marine
environment

55

Chapter 6
System overview

The intended use of the stereo camera is visual vessel detection for the autonomous ferry
milliAmpere. This chapter introduces a stereo system for object detection in a marine
environment. Two clustering techniques are implemented; hierarchical clustering using
Euclidean distance and a convolution neural network (CNN). The network is used for
classification, and its bounding boxes is combined with the disparity map to extract 3D
positions of objects. The Euclidean clustering processes the raw point cloud reconstructed
from the disparity map. This chapter gives an overview of the complete system while the
following chapter goes into detail of the implementation of the techniques. Furthermore,
the stereo system is combined with the system running on milliAmpere to output the de-
tected objects in a common world frame. The system is implemented for testing the stereo
cameras performance in milliAmperes operating environment.

Figure 6.1: Example of scene captured by the stereo camera

57

Chapter 6. System overview

6.1 The operating environment
The performance of the system is evaluated by testing outside the port of Brattøra in Trond-
heim. The intention is to mount the real physical system on milliAmpere. Due to COVID-
19 this was not possible. Instead, the stereo camera was temporarily placed on the ferry
using duck tape, see Figure 6.2a. The goal of the system is to detect and estimate the
position of boats. For this reason, a Merry Fisher 733 with a length of 7.5 meters was used
as the target, see Figure 6.2b. Data is recorded where the target is the main focus in the
scene. The scenery was set to the fjord with the coast line and the island Munkholmen
present in the background.

(a) The stereo camera set up on milliAmpere (b) Target boat

Figure 6.2: Stere camera mounted on milliAmpere, and the target boat

6.2 Processing pipeline
This section present the processing pipeline of the system. Figure 6.3 illustrates a simpli-

Stereo
Driver

3D recon-
struction

2D Object
detection

Ptcloud
clustering

CNN
clustering

Milliampere
\left
\image rect

\images \ptcloud \NEDcoordinates for
detected objecs

\bounding boxes
\NEDcoordinates for
detected objecs

\disparity

\gps coord

\gps coord

Figure 6.3: System overview

58

6.2 Processing pipeline

fied version of the overall stereo system. In the following sections the software, the most
vital processes and the message distributions are elucidated. The code is stored using the
version-control system GitHub. The complementary Readme file is given in Appendix C.

6.2.1 Software
The existing control system on milliAmpere runs the Robot Operating System (ROS)-
Kinetic, making Ubuntu 16.04 LTS and ROS a natural choice for the stereo implementation
and data acquisition. For processing images and point clouds the libraries Open Source
Computer Vision (OpenCV) and Point Cloud Library (PCL) is used. The CUDA toolkit is
utilized to speed up the process

Robot Operating System - ROS

The sophisticated robotic middleware used in this thesis is ROS, an open-source frame-
work with collections of tools and libraries. It is defined as a meta-operating system, in-
cluding low-level device control, hardware abstractions, package management, and message-
passing between processes. One of ROS’s philosophies is distribution, programs can be
run on multiple computers and communicate over the network, making it a suitable choice
for peer-to-peer network communication. ROS communication infrastructure provides a
layer above the host operating system and is therefore dependent on an underlying oper-
ating system (Quigley et al., 2009). ROS Kinetic is primarily targeted at Ubuntu 16.04
(Xenial) release, and thus the chosen operating system for the hosting computer.

ROS is a distributed framework of nodes, i.e., processes, which enable easy communi-
cation between multiple machines. Hence, a stereo system can run on a separate machine,
talking with the Master (milliAmpere) when necessary. The executables are therefore in-
dividually designed and loosely coupled at runtime. The communication is independent of
programming language, advantageous as milliAmpere is written in Python, and the stereo
system is primarily written in C++.

ROS
Master

Node1
Publisher

Node2
Subscriber

\topic

Registration

Publish

Subscribe

(a) ROS Topics

ROS
Master

Node1 Node2

setParam(”name”,1)

getParam(”name”)

name: 1

(b) ROS Parameter Server

Figure 6.4: ROS architecture

ROS follows a concurrent computing paradigm, asynchronous communication, where

59

Chapter 6. System overview

the main concepts are nodes, messages, services, Master, Parameter Server, and bags.
The nodes symbolize processes performing computations, and message passing between
nodes is published and subscribed via topics. The messages are routed via topics, which is
a namespace specifying the content of a message. It implements a concurrent computing
paradigm, a many-to-many relationship, where a node, in general, is not aware of whom
it is communicating with. ROS also includes a one-to-one connection, services, where
a node sends a message and waits for a response. This is synchronous communication,
opposite of using topics.

The ROS Master manages the communication between nodes. It also provides name
registration, registering every node at startup. Thus the Master can reanimate nodes. Inside
the ROS master, the ROS Parameter Server is running. The server is a multi-variate dic-
tionary that is accessible via network APIs. Best performance using static data, thus only
used for tuning parameters in the nodes. Finally, ROS provides the package Rosbag. A
rosbag records and plays published messages, making it possible to store data from exper-
iments. With the package, the output of a sensor can be simulated without sensors being
present. Tuning of parameters and plotting results therefore utilized bagfiles subsequent
of the final-experiment.

In the flow chart, in Figure 6.3, each box represents a ROS package, which each con-
tains nodes, nodelets, and topics for a given purpose.

OpenCV

Open Source Computer Vision (OpenCV) is a software library for computer vision and
machine learning. The library has an interface for C++, and provides more than 2500 algo-
rithms for processing images. Implementations of both classic and state of the art computer
vision and machine learning algorithms are made available by the library. Throughout the
system, the nodes include the library for reading and processing images. Especially, cre-
ation of the disparity map inherits from their stereo matching objects.

Point Cloud Library

Point Cloud Library (PCL) (Rusu and Cousins, 2011) is an open-source library providing
tools for processing point clouds and 3D geometry. The library implements algorithms
for three-dimensional computer vision, and it contains functions for among others filter-
ing, feature extraction, and segmentation. It is written in C++. In the stereo system, the
clustering package heavily depends on this library.

CUDA

Compute Unified Device Architecture, CUDA1 is a parallel computing platform and pro-
gramming model. The NVIDIA CUDA Toolkit lets the developer create high-performance
applications by use of GPU-accelerated libraries. The GPU-acceleration is used for high-
performance computing and optimized for parallel computing and multi-threading. The

0https://opencv.org/
1https://developer.nvidia.com/cuda-zone

60

https://opencv.org/
https://developer.nvidia.com/cuda-zone

6.2 Processing pipeline

convolutional neural network is utilizing the toolkit, as well as the stereo matching algo-
rithm is to be accelerated using CUDA.

6.2.2 Stereo driver
The stereo package acquisition images and processes the raw data into a digitally en-
coded representation of the scene. The driver spinnaker_sdk_camera_driver is
provided in ROS and is downloaded from (robotics). The cameras are supported by Spin-

cam0

cam1

Camera
driver

Camera
driver

Stereo
driver

\left
\camera info
\image raw

\right
\camera info
\image raw

\left
\camera info
\image raw

\right
\camera info
\image raw

Figure 6.5: Overview of the stereo driver

naker SDK, an API built for machine vision developers. Each camera driver runs the
camera using the Spinnaker SDK. The camera driver collects the data sent through the
Gigabit Ethernet port and publishes the raw image data on the topic \image raw. For two
cameras to work as a stereo camera, the captured images need to be synchronized. This
is achieved by using a master-slave setup. The master camera and each of the camera IDs
need to be specified in the code. The master camera is software triggered, and it externally
triggers the slave through the GPIO connector.

Figure 6.6: GPIO connections between master and slave

Figure 6.6 shows the wire soldering between the GPIO pins of the master- and slave.
The GPIO pins are configured using the demo program SpinView made available with the

61

Chapter 6. System overview

Spinnaker SDK. The camera driver labels each image with a frame ID and a timestamp
according to ROS’s built-in clock ROS::Time. The timestamp and camera ID are passed
to the stereo driver together with the calibration parameters on the topic \camera info.
In the stereo driver node, two images are combined into a stereo pair. By synchronizing
the timestamps with a new identical timestamp, the stereo driver passes the images on for
further processing.

6.2.3 3D reconstruction

While the stereo driver mainly acquisition images and set the stereo time stamp, the
3D reconstruction package creates three-dimensional models from the image pair. The
package directly utilizes the theory in Chapter 2. The node Rectify is continuously run-

\left
\camera info
\image raw

\right
\camera info
\image raw

\stereo
\points2

Rectify

Rectify

Disparity
map Point cloud

\left
\camera info
\image rect

\right
\camera info
\image rect

\stereo
\disparity

\left
\camera info

Figure 6.7: Overview of 3D Reconstruction

ning, concurrently subscribing to the topic image raw from the left and right camera,
respectively. The node uses the metadata assigned on the topic camera info to remove
distortion and for rectifying the co-calibrated cameras. Both the processes continuously
publish rectified images, and the disparity nodelet subscribes to the topics. The disparity
nodelet explicitly uses the timestamps from the stereo driver to correctly synchronize the
image pairs. The stereo matching algorithm produces a depth map that further is mapped
to a point cloud. The nodelet Point Cloud combines the disparity map with the calibration
parameters to produce the point cloud.

6.2.4 Point cloud clustering

The package ptcloud clustering contains only one node, namely the PCL obstacle detec-
tor. With the name-twin class, it filters and clusters the raw point cloud published from
the 3D reconstruction package. For the ease of implementation, recording bagfiles, and
testing, it is included in a separate package. However, the node can advantageously be
included in 3D reconstruction as a nodelet (inherit from the nodelet class). A nodelet will
minimize memory usage, running multiple algorithms in the same process with zero-copy
transport between algorithms.

62

6.3 Communication with milliAmpere

6.2.5 2D Object detection
A convolutional neural network recognizes and locates objects on the image plane. The
node receives the left rectified image, and processes it to locates the 2D position of objects.
The objects position in the image, the network’s confidence, and the type of object is
published for acquiring the world position. The package utilizes CUDA for speeding up
the detection process.

6.2.6 CNN clustering
CNN-Clustering clusters the disparity map using the output from the 2D object detection
package. The disparity map is created from the left view of the stereo camera, which
is the same image fed to the convolutional neural network. The bounding box position
in the image extracts the area of interest in the disparity map. Message filter in ROS
ensures time synchronization between the disparity map and the bounding box predictions.
By reconstruction, the world coordinates are extracted and published together with the
prediction of the object type. The package publishes a message for each disparity map
containing a list of objects.

6.3 Communication with milliAmpere
The system in use on milliAmpere can be compiled in a graph, giving an overview of
the code. The system overview is presented in Appendix F. The tree consists of nodes,
topics, hardware, python modules, services, and namespaces used, and the communica-
tion is illustrated with edges. This is the code currently running on the ferry, where for
this project the navigation data is the most pertinent. Due to the processing power, and
memory usage, the stereo system is running on a separate computer communicating with
the master on milliAmpere. The stereo system is connected through a Ethernet cable, for
stable communication through topics.

6.3.1 Common world frame
The navigation data provided by milliAmpere is used to determine the world position of
objects detected by the stereo camera. The system subscribes to the navigation data of
the ferry, which provides the data needed to transform the detected object into the set
world frame. This places the vessel and the detected object in the same reference frame.
The navigation data from milliAmpere and the detected objects by the stereo camera are
synchronized by their ROS-timestamps. Subsequently, the clustering packages transforms
the detected objects position into a North-East-Down (NED) reference frame. The stereo
camera thus places objects in the local reference frame used by milliAmpere. The data
flow is illustrated in Figure 6.3.

As mentioned, the stereo camera was temporary placed on the ferry for testing pur-
poses, making a calibrating of the stereo camera and the BODY frame unachievable. In-
stead, the translation was measured by hand to the GPS sensors position on the ferry. The
measured translation is tGPSc = [−1.86 0 0.29]>, given in meters. The translation of

63

Chapter 6. System overview

the GPS to BODY frame is already known; tbGPS = [0 − 0.975 2.33]. Due to the in-
tended use of the system, meter precision of the stereo camera measurement is sufficient.
The error due to hand measurement can be thus neglected. The axes of the coordinate
frame of the stereo camera is defined differently, but is approximately aligned. Thus the
rotation of the stereo camera into the ferrys BODY frame is set to.

Rb
c =

0 0 1
1 0 0
0 1 0

The transformation of the stereo cameras measurements is given by the matrices above,

and can further be rotated into the NED frame. This is done by the rotation Rn
b . The

rotation is given bycosψcosθ − sinψ cosφ+ cosψ sin θ sinφ sinψ sinφ+ cosψ sin θ cosφ
sinψ cos θ cosψ cosφ+ sinψ sin θ sinφ − cosψ sin θ + sinψ sin θ cosφ
− sin θ cos θ sinφ cos θ cosφ

where φ, θ and ψ is the roll, pitch, and yaw of the vessel, respectively (Fossen, 2011). As
testing on milliAmpere is performed under calm sea, three DOF is assumed, i.e., pitch and
roll is negligible. The rotation is thus simplified to

Rn
b =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

where ψ is the heading. The heading is provided by the navigation system on milliAmpere.
The detected objects position is know given in NED coordinates in the ferrys BODY frame.

To give the detected objects in a world frame, the geodetic coordinates of milliAmpere
are transformed into the NED frame set in the operational area. The world position of
milliAmpere is given in geodetic coordinates using latitude as the World Geodetic System
84 reference ellipsoid (WGS-84). The coordinates is thus given in latitude µ, longitude
l and elevation h. Before transforming to NED coordinates a transformation to Earth-
Centered, Earth-Fixed (ECEF) coordinates is performed byxeye

ze

 =

(N + h) cosµ cos l
(N + h) cosµ sin l

(
r2p
r2e
N + h) sinµ

where re and rp is the equatorial and polar axis radius of the ellipsoid (Fossen, 2011).
Their values are given by WGS-84. N is the radius of the curvature in the prime vertical
of the ellipsoid and can be calculated by

N =
r2e√

r2e cos2 µ+ r2e sin2 µ

64

6.3 Communication with milliAmpere

The NED frame can now be found byxnyn
zn

 =

− sinµ0 cos l0 − sinµ0 sin l0 cosµ0

− sin l0 cos l0 0
− cosµ0 cos l0 − cosµ0 sin l0 − sinµ0

xe,b − xe,0ye,b − ye,0
ze,b − ze,0

where xe,0, ye,0 and ze,0 and l0 and µ0 are the ECEF and geodetic coordinates of the origin
of the NED frame. xe,b, ye,b and ze,b are the ECEF coordinates of the origin of the BODY
frame. Points in the body frame can now be transformed to NED frame by Rn

b and tnb .
The translation tnb is the world position of milliAmpere in the NED frame.

65

Chapter 6. System overview

66

Chapter 7
Object detection

Object detection and localization are essential parts of a tracking system. The classification
of objects is also helpful, especially for a ship that needs to follow legislation at sea. For
a stereo camera, this means that the captured images need to be post-processed to obtain
world coordinates of objects in the scene. In this chapter, the methods and algorithms
used in the proposed system are presented. As well as an overview of some uncertainties
present in the stereo system.

7.1 Uncertainty in the stereo system
For the system to perform a correct localization of objects, it has to rely on an accurate
calibration. The most accurate calibration in Chapter 5 is the 20meters calibration. The pa-
rameters performed overall with the highest accuracy. However, as they were determined
on solid ground, with large scale buildings, a re-estimate of the accuracy for use at sea is
desirable. By analyzing the obtained parameters, an estimate of the expected accuracy is
given based on the operating environment. The extrinsic parameters of the calibration at
20 meters are given in equation (7.1).

R20 =
[
−0.0439 −1.7265 0.0261

]
, t20 =

[
−1.860 0.0095 −0.025

]
(7.1)

7.1.1 Reprojection error
The obtained calibration parameters (7.1) had an average reprojection error of 0.3091 pix-
els in the calibration process. This is the mean accuracy; hence the error can be higher at
some parts of the image. The erroneousness means the 3D reconstruction will be slightly
biased, but typically one assumes that these small errors do not cause problems for stereo
matching (Hirschmüller and Gehrig, 2009). However, most literature uses and evaluate
stereo accuracy on shorter distances. Figure 7.1a illustrate the relationship of the disparity
and its corresponding depth estimate for the 20 meter-graph, extracted from Figure 5.2.

67

Chapter 7. Object detection

The depth error one expects from an error of one pixel in the disparity is shown in figure
7.1b. Table 7.1 summarizes the depth error on different distances from a given pixel-error.
The pixel error is determined by computing in the slope of one pixel.

10 20 30 40 50 60 70 80 90 100

Disparity (pixels)

0

50

100

150

200

250

E
s
ti
m

a
te

d
 D

e
p

th
 (

m
)

Estimated Depth from given pixel disparity

(a) Depth on given pixel disparity

10 20 30 40 50 60 70 80 90 100

Disparity (pixels)

-25

-20

-15

-10

-5

0

D
e
p

th
 e

rr
o

r
(m

)

Depth error resulting from a deviation of one pixel in the disparity

(b) Depth uncertainty on given pixel disparity

Figure 7.1: Depth estimate for a given disparity and the error estimate for a one pixel deviation in
the disparity (Baseline = 1.860m)

Real world-
depth Disparity Depth error

[1 pixel error]
10 m 229.3 ± 0.044m
20 m 114.7 ± 0.175m
30 m 76,5 ± 0.392m
40 m 57.3 ± 0.699m
50 m 45.9 ± 1.091m
60 m 38.2 ± 1.572m
70 m 32.8 ± 2.138m
80 m 28.7 ± 2.794m
90 m 25.5 ± 3.541m

100 m 22.9 ± 4.373m
110 m 20.9 ± 5.275m
120 m 19.1 ± 6.287m
130 m 17.7 ± 7.362m
140 m 16.4 ± 8.527m
150 m 15.3 ± 9.797m

Table 7.1: Expected error based on pixels and baseline

68

7.1 Uncertainty in the stereo system

The shown depth error indicates the expected reprojection error under the assumption
that the disparity error is ±1 pixel. Based on the challenging operating environment some
higher inaccuracies can be expected. There are challenges in the lighting conditions, and
usually some parts of boats are in general texture-less. This makes the stereo matching
burdensome. Combining the mean reprojection error with sub-pixel accuracy in the stereo
matching, expecting an error of around one pixel appears reasonable for us.

7.1.2 Stereo setup
In addition to the theoretical reprojection error, the stereo setup directly influences the
accuracy of the reconstructed 3D points. An evaluation of what to expect in the operating
environment is conducted by looking at the thesis’s real physical stereo camera. For the
discussed setup, the baseline measures 1.860 meters, and the symmetric vergence angles
measures ψ = 90 − 1.7265/2. With these parameters the determined fixation point is
around 61 meters (7.3).

Z =
bx
2

tanψ (7.2)

61.0145 =
1.860

2
tan(90− 1.7265

2
) (7.3)

The fixation point diverges 10 meters from the original or intended fixation point on 50
meters.

left rightbx

ψ ψ

Figure 7.2: Symmetric vergence angle

The best possible accuracy for vergence stereo is obtained with symmetric camera
vergence angles (Christensen et al., 1993). The thesis’ stereo system utilizes symmetric
vergence angles; however, the angles are of significant size. The accuracy of the rotation
matrix, rotation around the y-axis, highly depends on the size of the angles. Consider the
partial derivative of equation (7.2):

∂Z

∂ψ
=
bx
2

(1 + tan2 ψ) (7.4)

As a result of the tangent-function, the vergence angle sensitivity approaches infinity near
90 degrees (parallel cameras). Hence, smaller angles are preferred considering the ac-
curacy of the resulting parameters from a calibration. In theory, a wider baseline with

69

Chapter 7. Object detection

a smaller vergence angle would enhance the calibration accuracy on the given fixation
point. However, the baseline in use is the largest baseline available to implement on the
ferry, thus an additional source of error.

88.6 88.7 88.8 88.9 89 89.1 89.2 89.3 89.4

Vergence angle (deg)

40

50

60

70

80

90

D
e

p
th

 (
m

)

Depth versus vergence angle (Baseline = 1.860m)

(a) Depth estimate on given vergence angle

80 82 84 86 88 90

Vergence angle (deg)

0

50

100

150

200

250

300

350

C
h

a
n

g
e
 i
n

 d
e

p
th

 (
m

)

Change in depth versus vergence angle (Baseline = 1.860m)

(b) Depth uncertainty given a change in vergence angle of 0.01 degrees

Figure 7.3: Depth estimate for a given vergence angle, and the error estimate for a deviation of 0.01
degrees in vergence angle

From the plots in Figure 7.3, one can see how sensitive the setup is to changes in
angling. Error in angling can arise either from wrong calibration estimates or from external
sources that reluctantly change the angling during the system’s lifetime.

Irrespective of the angling, the baseline and focal length directly influence the uncer-
tainty of the depth estimates. From equation 2.10, the uncertainty of the baseline and focal
length will introduce approximately the same amount of uncertainty in the depth estimates.
The translation in x-direction diverges 6 centimeters from the expected value, while no va-
lidity exists for the focal length. Therefore the average error from Chapter 5 is used as a
foundation for uncertainty. The depth error from the test scenes yields to be approximately
constant for the 20m calibration. Subtracting the expected one pixel error from Table 7.1
can be interpreted as an estimate of the overall uncertainties of the real stereo setup.

Distance Actual
test-scene error

Expected
reprojection error

30 m 1.23 m 0.392 m
40 m 0.94 m 0.699 m
50 m 1.65 m 1.091 m
70 m 1.32 m 2.138 m
90 m 1.25 m 3.541 m

Table 7.2: Error from the real physical stereo camera, with the expected theoretical error

70

7.2 The disparity map algorithm

In Table 7.2, the reprojection errors are shown that were extracted from the test sce-
narios. By comparing the measured errors with the expected theoretical error, the experi-
mental error turned out to be higher than in our theoretical consideration. The theoretical
assumptions were more optimistic about the possible setup and measurement deviations. It
can be caused by several reasons which finally accumulate to a higher error. This includes
higher errors in the estimation of the baseline and the relative orientation of the cameras,
but also higher errors in the estimation of the matching position of corresponding points.

The uncertainty of the physical stereo camera is expected to yield an even higher error
for testing in the operating environment than in Table 7.2. The test scene is a bit un-
reliable as it contains an enormous building similar to the calibration scene. Besides, it
utilizes semi-global matching which is shown to be more precise than our chosen real-
time disparity-algorithm (described in the subsequent section). Thus, assuming an error of
about 2-3 pixels seems to be more appropriate for the real physical stereo camera.

The finding from this subsection estimates the reprojection error to be highly depen-
dent on the operating distance. As well, uncertainties in estimating the stereo setup have a
negative impact on the overall accuracy. Therefore, higher uncertainty is to be expected. A
more precise estimation of the error is to be determined by trial and error in the operating
environment.

7.2 The disparity map algorithm
When processing images from a stereo camera, the corresponding pixels in the two images
need to be matched to obtain depth information. Based on the evaluation of matching
algorithms presented in the specialization project by Olsen (2020), a simple correlation-
based method is preferred. Due to real-time computation, the chosen algorithm categorizes
as a local method with a low computational cost.

7.2.1 Sum of Absolute Difference
Sum of Absolute Difference (SAD) is known for its simplicity and low execution time. It
is one of the simplest methods for matching corresponding pixels but still has an advantage
due to few memory requirements. (Thaher and Hussein, 2014)

The main idea is to find matching pixels by exploiting the neighborhood around a
pixel. The neighborhood is a predefined block, and when used on rectified images, a
suitable match is found on the same horizontal axis in the second image. The search starts
in the same location as the reference block and moves along the horizontal line. A match
is defined as the block with the most similarity. Similarity is computed by a cost function,
measuring the absolute intensity difference between two selected neighborhoods.

CSAD(d) =
∑

(u,v)∈Wm

|IL(u, v)− IR(u− d, v)| (7.5)

The cost function (7.5) measures absolute similarity, and the block with the minimum
cost is considered a match. The intensity of pixel (u − d, v) in the right image IR is
subtracted from the reference intensity in the left image IL. The cost is summed over the

71

Chapter 7. Object detection

neighborhood Wm. For each pixel in the reference image, the cost function is calculated
on the horizontal line to find the most suitable match. The cost function outputs a disparity
for a given reference pixel, which is directly placed in the resulting disparity map. An
example of a simple disparity map using default values is shown in Figure 7.5d.

The algorithm calculates the absolute differences between two selected window sizes
Wm. The execution time and precision are dependent on the size of the window. A
smaller window implies shorter execution time and is more prone to noise. Vice versa, a
large window gives a smoother disparity map, but takes time to compute and may remove
essential information. The preferred window size is dependent on the scene, the size of
objects to be detected, and the computational constraints (Thaher and Hussein, 2014).

7.2.2 Filtering
SAD is mathematically a simple matcher, which is proven to be prone to errors. It is
highly vulnerable to errors in the rectification parameters, also changes in illumination
between the two stereo images (Nguyen and Ahn, 2019). A more robust algorithm can be
implemented using filters. A filter can improve the resulting disparity map significantly
with a relatively small computational cost.

(a) Left stereo image (b) Right stereo image

Figure 7.4: Stereo image pair

In Figure 7.4, an example of a left and right stereo image is shown. The scene is chal-
lenging due to noise in the sea, and lack of texture above the horizon. Besides, the stereo
images have different lighting, which makes it challenging for SAD to find corresponding
matches. However, there are strong edges in both the pictures which a filter can preserve.
Thus when filtering a disparity map from the two example images, an edge-preserving
filter is desirable.

7.2.3 Fast Global Image Smoothing Based on Weighted Least Squares
Fast Global Image Smoothing Based on Weighted Least Squares is a method combining
efficient edge-preserving filters and optimization-based smoothing (Min et al., 2014). Min

72

7.2 The disparity map algorithm

(a) Left (b) Right (c) Left disp (d) Right disp

(e) Resulting disparity map, small filtering values (f) Resulting disparity map, larger filtering values

Figure 7.5: FGS-WLS filtering using the Disparity Tuner

et al. proposed the algorithm in 2014 to enhance the quality of depth maps. The filter
implements spatially inhomogeneous edge-preserving smoothing, commonly referred to
as Fast Global Smoother (FGS). The proposed algorithm uses two disparity maps and the
corresponding rectified grey-scale images for filter guidance and consistency. The first
disparity map is created using the left image as a reference, and the second disparity map
is computed with the right image as a reference.

E(Dout) =
∑
xL

(
(Dout(xL)−D(xL))2+λ

∑
xL2∈N (xL)

wxL,xL2
(L)(Dout(xL)−Dout(xL2))2

)
(7.6)

In a Weighted Least Square smoothing, the output Dout is obtained by minimizing
the energy function (7.6). The input disparity map D uses the left reference image L
as guidance. The pixel xL2 is contained from the pixel neighborhood of N (xL). The
varying weighting function wxL,xL2

(L) represent similarities in the two pixels and enforce
the smoothness constraint. The energy function can be written in matrix form, and as it is
strictly convex, the output Dout is solved by setting the gradient to zero. The solution can
thus be computed by solving the linear system (7.7) (Li et al., 2016).

(I + λA)Dout = L (7.7)

The matrix A is a large sparse matrix, usually referred to as a Laplacian matrix. In the
linear system, the input disparity mapD and reference image L is written in vector format.

73

Chapter 7. Object detection

For efficiently solving the equation (7.7), one-dimensional Fast Global Smoothing is
utilized. The key idea is that the matrix A is a tridiagonal matrix in a one-dimensional
system. For images in grey-scale, one dimension means horizontal or vertical inputs. By
solving a series of multiple linear equations over the total image, the exact solution of
equation (7.6) can be solved. The one-dimensional linear equations are solved by the
Gaussian elimination algorithm (Golub and Van Loan, 2013) in a recursive manner. By
repeating the linear equation over horizontal lines in the image, the result is the minimum
solution of (7.6).

In Figure 7.5, the two guidance images are displayed together with the two disparity
images by SAD. Figure 7.5e and 7.5f shows the resulting disparity map from executing
the Fast Global Smoothing based on WLS filtering.

7.2.4 Implementation

1 //Creating a disparity map from two rectified images
2 void DisparityNodelet::imageCallBack(left_rectified_image,

right_rectified_image, calibration_params)
3

4 convert images to opencv lib
5 downscale images //speed up the execution, optional
6

7 compute left disparity map
8 compute right disparity map
9 WLSfilter(left image, left disparitymap, right image,

right disparity map)
10

11 upscale image //optional
12

13 Adjust offset in principal point
14

15 Convert to ros msg
16 publish(disparityMap)

Listing 7.1: Create disparity map

The algorithm is notated in pseudo-code in Listing 7.1. The image callback is a ROS-
function which is executed every time a new image is published to a rectification-topic. It
listens to camera calibration parameters and the left- and right rectified images. Whenever
two images are published, the function is called, and it checks that the timestamp of the
images is equal. The stereo image pairs are further converted to use the OpenCV image
library. The first disparity map is computed using SAD with the left image as the reference.
The second disparity map uses the right image as a reference. Both matching pixels with
the fast and efficient stereo matching algorithm based on Konolige (Konolige, 1998). Fast
Global Smoothing combines the two disparity maps with both the rectified images for
preserving edges and smoothing the result. The resulting disparity map is subsequently
published to a topic for later creating the world position for regions of interest.

74

7.2 The disparity map algorithm

The disparity map is calculated using standard stereo vision techniques. However, a
tricky part of creating a depth map is tuning all the parameters. For an easier tuning of the
disparity map, a GUI for dynamically tuning rectified images is implemented.

7.2.5 Disparity Tuning

Figure 7.6: The stereo tuner application

For the overall system to perform, it is dependent on a sufficiently tuned disparity
map. Tuning parameters is demanding, especially finding parameters suitable for different
depths and lighting conditions. A GTK application is created to tune parameters on the
stereo matching algorithm implemented. It is written in C++ using openCV, and is a
combination and modified version of the stereo-tuner1 and the opencv contrib2 repository,
both can be found on Github.

1https://github.com/guimeira/stereo-tuner
2https://github.com/opencv/opencv_contrib/blob/master/modules/ximgproc/

samples/disparity_filtering.cpp

75

https://github.com/guimeira/stereo-tuner
https://github.com/opencv/opencv_contrib/blob/master/modules/ximgproc/samples/disparity_filtering.cpp
https://github.com/opencv/opencv_contrib/blob/master/modules/ximgproc/samples/disparity_filtering.cpp

Chapter 7. Object detection

The application has a graphical interface where parameters can be changed dynami-
cally. A screenshot of the application is displayed in Figure 7.6. The two upper images
are the rectified stereo images from the left and right camera, respectively, while the lower
right image is the resulting disparity map. Only the parameters influencing the disparity
map is chosen in the application. This is the block size for SAD and the disparity range for
searching for matches on the horizontal line. For the filter, sigma and lambda are included
for tuning. Lambda, λ in (7.6), defines the amount of regularization during filtering. Large
values will adhere to the disparity map edges closer to the guidance image. Sigma defines
the sensitivity of the filtering. Larger values smooth the resulting image but may miss
some of the corners.

7.3 2D Object Detection with YOLO
The detection of objects in an image is twofold. It consists of locating the exact position
of objects in an image, and subsequently classify each object. YOLOv3 (Redmon and
Farhadi, 2018) is a fast and accurate real-time detection system. In the overall system,
YOLOv3 is implemented to locate objects of interest in the left stereo image. By combin-
ing the disparity map found in Section 7.2 with a trained network, it can output positions
of detected objects in world coordinates.

YOLO is a single convolutional neural network, engineered to detect patterns in im-
ages. It is a type of neural network, a special kind of computer algorithms.

Neural Networks

A neural network is inspired by the knowledge of the inner workings of the human brain.
It consists of perceptrons, which is a mathematical model of a biological neuron. The
nodes are connected to one another to model pattern recognition capabilities. A network is
made up of layers, and they can be trained to perform specific tasks like image recognition,
image classification, and image captioning.

A neural network comprises one input layer, one output layer, and at least one hidden
layer. Figure 7.7 illustrates a simple three-layer neural network consisting of only one
hidden layer. Each input of a neuron is multiplied with a weight wi. The weighted sum, a,
of a neuron is given in (7.8).

a =

n∑
i=1

wix+ b (7.8)

The signal or value xj represents the input, and b is applied to allow for a constant bias to
the neuron. The neuron generates an output when the weighted sum exceeds an activation
threshold set by an activation function. The parameters of the weights and biases are set
during training. When training a neural network, the parameters are tuned to find the
desired output. (Krenker et al., 2011)

Convolutional Neural Networks

Convolutional neural networks, CNN, is a special case of neural networks. CNN’s are
made of mostly convolutional layers, which are designed for having images as inputs. The

76

7.3 2D Object Detection with YOLO

Input 1

Input 2

Input 3

Input 4

Output

Hidden
layer

Input
layer

Output
layer

Figure 7.7: Neural netwrok with three layers

dimensions of a color image consist of the width W, height H, and three channels. Inputs
of such a high dimension would require a large number of neurons when using neural
networks. CNN takes advantage of the assumption that the input is an image and uses this
to process the input.

2 2 2

2 3 2

2 2 2

Image

×

0 -1 0

-1 5 -1

0 -1 0

Kernel

= 7

Output

Figure 7.8: Caption

CNN consists of three types of layers; convolutional, pooling, and fully-connected
layers (O’Shea and Nash, 2015). The input layer holds the pixel values of the input image.
The convolutional layers consist of a kernel that is slid over the image. Every time the
kernel is moved, matrix multiplications are performed over the image region. Figure 7.8
illustrates the operation. The objective of the operation is to extract features such as edges
or corners. The features extracted depends on the value of the kernel. The pooling layers
performs a downsampling of the input. The dimension of the input is reduced in order
to decrease the computational power necessary to process it. Convolutional layers and
pooling layers are similar, and usually placed after one another. Fully-connected layers
perform the same operations as in neural networks and are used for classification.

77

Chapter 7. Object detection

7.3.1 YOLOv3
YOLO - You Only Look once is one among other open-source neural networks. It is
written in C, and a CUDA interface is available for GPU computation, making it suitable
for real-time detection. The main idea is that the system only looks at an image once,
framing object detection to a single regression problem (Redmon et al., 2015). A single
convolutional neural network is applied to the full image. Thus, from looking at an image
once, the system can predict what objects are present and their location in the image. An

Figure 7.9: Output from YOLO

example of the output given by a pre-trained YOLO network is presented in Figure 7.9.
The bounding boxes tell what objects are present. The presented image is run through
a pre-trained network for classification and object recognition. It is a pre-trained model,
made available in the download of the YOLOv3 system.

By using two fully connected layers, YOLO performs a linear regression to make
boundary box predictions. The logistic regression calculates a probability, which is re-
turned as a binary value given a predefined threshold. Thus, YOLO keeps predictions with
a high box confidence score. To measure the confidence in both the classification and the
objects positioning the class confidence score is computed as:

Class confidence score = Box confidence score× Conditional class probability

The networks confidence and quality varies with the chosen threshold, and is further eval-
uated in the next subsection.

The network of neurons can be trained on custom datasets. The pre-trained weights,
which are made available online, is only an appreciated starting point for creating a net-
work suitable for more specific tasks of own interest. Using a custom dataset allows the
user to specify the detection classes and to improve the classification in a specific operat-
ing environment. YOLOv3 is a network of 106 layers, and it allows for each layer to be
customized. The chosen network was used due to the availability of pre-trained weights

78

7.3 2D Object Detection with YOLO

developed during a Master thesis project by Grini (2019) at NTNU. The framework is
trained for detecting boats in images. The dataset consists of images captured in and
around the fjords in Trondheim, combined with some online datasets.

The network is implemented using a pre-exisiting ros-package3, and combined with the
new weighs. To accelerate the execution the package is utilized by installing the Nvidia
CUDA Toolkit 10.2. This boosts the network to use parallel computing for real-time per-
formance. A pre-trained network requires a threshold in percentage for classifying ob-
jects. The training dataset in its whole and the confidence threshold of the application is
unknown. For this reason, an analysis of the quality is conducted before taking it to use.

7.3.2 Precision recall curve
Precision-Recall metric is a useful measure to evaluate the classifiers output quality. By
using different probability thresholds, the curve summarizes the trade-off between the true
positive rate and the positive predictive value for the network. Precision Pn (7.9) defines
the true positive rate for the threshold n, and recall Rn (7.10) the positive predicted value
for the threshold n. With the given weights in the thesis, the classifier is binary, i.e., boat
or not boat.

Pn =
TP

TP + FP
(7.9)

Rn =
TP

TP + FN
(7.10)

Both the functions consist of the abbreviations in (7.11).

TP = True positive: boats correctly classified

FP = False positive: miss-classifications (7.11)
FN = False negative: boats not classified

High precision shows that the classifier is accurate and does not label wrong objects
as boats. The recall score is the ability of the classifier to find all the boats in the picture.
Lowering the threshold of the neural network may increase the precision’s denominator by
increasing the number of results returned. The denominator of the recall does not depend
on the classifiers threshold, implying that lowering the threshold will mostly increase the
recall. If the recall leaves unchanged while changing the threshold, the precision may
fluctuate.

The values are usually comprised in a confusion matrix, defined in Table 7.3 The last

Predicted
Positive Negative

Actual Positive TP FN
Negative FP TN

Table 7.3: Confusion matrix

3https://github.com/leggedrobotics/darknet_ros

79

https://github.com/leggedrobotics/darknet_ros

Chapter 7. Object detection

value, TN, is defined as no boats present nor detected. When detecting and classifying
objects in a picture, it makes no to little sense using TN, because a negative class does not
exist. The negative class is defined as parts of the image not including boats.

Computing the curve

To evaluate the accuracy of the network a ground truth dataset was labeled. The images
are taken in the test area outside the port of Brattøra. The dataset and the graphical user
interface are presented in Appendix D. The labeled images are the ground truth, implying a
squared PRC with both precision and recall equal to zero. It is the same boat, just captured
at various distances and with different headings. In theory, a perfectly trained network
should be able to detect the same boat with about the same confidence and similar sized
boxes.

Predicted
Positive Negative

Actual Positive 483 0
Negative 0 -

Table 7.4: Ground-truth Confusion matrix

IoU =
Area of Overlap

Area of Union
=

The ground truth bounding boxes are compared with the bounding boxes predicted
by YOLO. To get a comparison, the Intersect over Union, IoU, is calculated. The pre-
dicted bounding box is a match if it shares the same label as the ground-truth and has
confidence- and IoU- value above the given thresholds. Only one predicted bounding box
can be assigned to the ground truth to avoid multiple detections of the same object. The
pseudocode of the implementation is given in Listing 7.2. The implementation is given in
the GitHub-repository explained in Appendix C. The PRC is calculated for each IoU- and
YOLO-threshold, of all the images in the dataset.

1 for each IoU-threshold
2 for each YOLO-threshold

80

7.3 2D Object Detection with YOLO

3

4 sort detection-results by decreasing confidence
5 for each detection confidence >= YOLO-threshold
6 for each class
7 assign detected box to ground-truth object
8 if IoU >= IoU-threshold
9 TP ++

10 else
11 FP ++
12

13 Precision = TP/(TP+FP)
14 Recall = TP/ (number of ground truth objects)
15 Plot curve

Listing 7.2: Pseudocode plot PRC

Figure 7.10: Precision Recall Curve

The resulting plot is presented in Figure 7.10. Each colored line represents the given
IoU-threshold used for counting the True Positive detections. The dots represent a given
threshold for the YOLO-network. The YOLO-threshold is plotted from 0 to 1 with a step
size of 0.05. The YOLO-threshold of 0.95 and 0.005 of each curve are given in the top
left and lower right corners, respectively. The graph with the largest area under the curve
has IoU= 0.10%. The node giving the largest possible area is computed with a YOLO-
threshold of 0.45. The associated confusion matrix is given below and corresponds to a

81

Chapter 7. Object detection

precision of 0.78 and a recall at 0.89.

Predicted
Positive Negative

Actual Positive 432 51
Negative 124 -

Table 7.5: Confusion matrix. IoU-threshold: 0.10, YOLO-threshold: 0.45

However, what IoU is acceptable to evaluate the network depends on the intended use. The
less area of overlap acceptable, the better the resulting curve. To get a visual overview of
what IoU-threshold is acceptable, some examples are given in Figure 7.11. The blue boxes
are the ground truth boxes manually labeled, and red is YOLOs predictions. The intersect
over union is given in the caption.

In theory, the area of overlap should be as high as possible, but from the figure, it is
observed that 80% overlap is close to perfect. With an IoU-threshold of 0.80, the YOLO-
threshold with the best results is 0.94. This corresponds to the precision of 0.5, recall
of 0.03, and an area of 0.016. The results are given in the following confusion matrix:
A precision of only 0.5 means that if an object is detected, there is only a 50% chance

Predicted
Positive Negative

Actual
Positive 15 468
Negative 15 -

(a) YOLO-threshold: 0.94

Predicted
Positive Negative

Positive 50 433
Negative 687 -

(b) YOLO-threshold: 0.32

Table 7.6: Confusion matrix. IoU-threshold: 0.80

that it is a boat. Likewise, a recall of only 0.03 entails that 3.0% of all the boats are
detected. Reducing the YOLO-threshold will result in a higher recall but do not give any
considerable improvements, as seen in Table 7.6b. Setting the threshold closer to zero
results only in small improvements in TPs, which indicates that most of the predicted
boxes are too small compared with the ground truth.

82

7.3 2D Object Detection with YOLO

(a) IoU=9% (b) IoU=14% (c) IoU=14% (d) IoU=18%

(e) IoU=20% (f) IoU=23% (g) IoU=25% (h) IoU=29%

(i) IoU=35% (j) IoU=35% (k) IoU=38% (l) IoU=41%

(m) IoU=62% (n) IoU=67% (o) IoU=70% (p) IoU=73%

(q) IoU=80% (r) IoU=86% (s) IoU=90% (t) IoU=91%

Figure 7.11: Example of the IoU with ground truth in blue and YOLO predictions in red

83

Chapter 7. Object detection

Looking at the pictures in Figure 7.11, one can estimate the preferred IoU-threshold
for the application. With IoU less than 0.2, the predicted bounding boxes seem to detect
too much of the surroundings. However, increasing the threshold above 0.2, most of the
predicted bounding boxes primarily detect the boat. The bounding boxes are too small
compared to the ground truth, but parts of the boat are detected. The network is imple-
mented together with the disparity map to get depth estimates. By using a disparity with
some smoothing, the same depth values will yield for every pixel where the boat is present.
Thus, YOLO only needs to detect a small part of the boat for the system to extract it from
the disparity map and reconstruct its 3D position.

(a) 1 (b) 2 (c) 3 (d) 4

(e) 5 (f) 6 (g) 7 (h) 8

(i) 9 (j) 10 (k) 11 (l) 12

Figure 7.12: Example of predictions in a time sequence, images in chronological order. YOLO-
threshold: 0.44

For IoU-threshold of 0.2, the results from differing the YOLO-thresholds is written
in the table in Appendix E. From the table, the YOLO-threshold giving the largest area
is 0.44. The confusion matrix is given in Table 7.7. With a recall of 89%, the network
still misses out on 52 out of 483 boats in the images. Not detecting 11% of the boats can
be critical for an autonomous navigation system, increasing the likelihood of a collision.
However, if the probability for detecting a boat is independent and 89%, setting the frame
rate to about 10 will ensure enough TPs to establish the presents of a boat. Looking at
the dataset in Figure 7.12 and 7.13 comparing two time-sequences of images, one can

84

7.3 2D Object Detection with YOLO

observe that the probability of detecting a boat is indeed dependent on the scene. In the
first time-sequence, YOLO detects 25% of the boats, while in the second it detects 100%
of the boats. Thus, as the system is meant for collision avoidance, the YOLO-threshold

Predicted
Positive Negative

Actual Positive 431 52
Negative 146 -

Table 7.7: Confusion matrix. IoU-threshold: 0.20. YOLO-threshold: 0.44

is decreased to increase the recall. Even though this implies decreasing the precision,
detecting all boats is of higher importance. From the table in Appendix E, a recall of 1 can
be obtained with a threshold of 0.2. The confusion matrix is given in Table 7.8, with three
additional thresholds of interest.

Predicted
Positive Negative

483 0
525 -

(a) YOLO-threshold: 0.20

Predicted
Positive Negative

482 1
368 -

(b) YOLO-threshold: 0.26

Predicted
Positive Negative

480 3
350 -

(c) YOLO-threshold: 0.27

Predicted
Positive Negative

471 12
256 -

(d) YOLO-threshold: 0.33

Table 7.8: Confusion matrix. IoU-threshold: 0.20

The optimal threshold is a matter of the intended use of the system. In the case of
object detection, to be able to trust the output, a well-trained network would be preferred.
As the available YOLO-weights struggle with detecting the same boat, a higher recall is
preferred to detect as many boats as possible. A higher recall will increase the number of
FPs. A miss-classification of 525 images is not that bad considering the wrong match in
Figure 7.13. In the case of multiple matches, the one with the lowest confidence score is
chosen as the TP, the other as FP. In total, around half of the FPs are because of multiple
matches on the same boat. However, YOLO tends to miss-classify the same buildings as
boats, which implies that the probabilities are not independent. Therefore FPs should be
minimized. Regardless, the thresholds of 0.26, 0.27, and 0.33 are added to see the change
in FPs and FNs. Increasing the threshold from 0.20 to 0.26 shows quite an improvement.
The FP is decreased with 157 boats, and the network only misses one boat.

85

Chapter 7. Object detection

(a) 1 (b) 2 (c) 3 (d) 4

(e) 5 (f) 6 (g) 7 (h) 8

(i) 9 (j) 10 (k) 11 (l) 12

(m) 13 (n) 14 (o) 15 (p) 16

(q) 17 (r) 18 (s) 19 (t) 20

Figure 7.13: Example of predictions in a time sequence, images in chronological order. YOLO-
threshold 0.20

The threshold chosen in the thesis is 0.26. In the ground truth dataset, the network only

86

7.3 2D Object Detection with YOLO

misses one boat, but keep in mind that on a different scene more FP and FN can occur.
This can be considered as acceptable with a higher frame rate and a well-tuned disparity
map. As the network can process about ten images per second, depending on the GPU, a
missing boat in one image can be resolve by combining several images.

7.3.3 Using CNN for clustering
Figure 7.14 illustrates the achievement of the world position by combining YOLO 2D ob-
ject detection with the corresponding disparity map. Each bounding box in Image 7.14c

(a) Result from YOLO (b) Corresponding disparity map (c) Combining the two

Figure 7.14: Require 3D position of detected objects

extracts the median disparity value for depth estimates. The bounding box’s center posi-
tion, x = (uL, vL), with the depth is extracted to calculate the world positioning of each
object. The characteristics of the clustering technique makes a denser disparity map more
optimal as the bounding boxes in some cases overestimates the targets size. Thus a large
matching window, with more smoothing is chosen. The advantage of using a neural net-
work for clustering is clearly that a lot of the noise in the disparity map is easily filtered out.
As well, the values in the disparity map can remove falsely detected boats. Figure 7.15
illustrates this. Grey color defines infinity or invalid, and hence the four miss-classified
boxes will not be considered valid objects. Deep learning is shown to be efficient, and
YOLO is running concurrently with the creation of the depth map, making it time-efficient.

Figure 7.15: Example of dispairty map improving YOLO

87

Chapter 7. Object detection

7.4 Point Cloud Clustering
The images captured by a stereo camera are rectified and utilized in the creation of a
disparity map. A disparity map contains depth information needed to reconstruct the cap-
tured scene in 3D. In both the disparity map and the reconstructed point cloud, objects
in the scene appear as a tight bundle of points. This makes clustering a suitable method
for object detection and localization. As the point cloud is a direct product of the disparity
map, it is important to preserve edges for acquiring the correct localization of objects. This
is achieved by the disparity map, by using a smaller matching window with larger lambda
values. This makes the point cloud more vulnerable to noise, making filtering procedures
important before the clustering.

Clustering categorizes data points such that similar points belong to the same category,
and unalike points belong to other categories. Various algorithms can achieve this. The
algorithms have different definitions of what a cluster is and how to find points belonging
to them. The number of categories can be both defined and unknown, depending on the
algorithm. The appropriate algorithm must be chosen depending on the intended use of
the result.

7.4.1 Hierarchical clustering

a b c d e f g

si
m

ila
ri

ty

Figure 7.16: Dendrogram from single-link algorithm

Hierarchical clustering creates a dynamical number of clusters making it suitable for the
variable environment the stereo camera operates in. Hierarchical clustering produces a
final set of clusters by successively merging or splitting clusters based on similarity. Hi-
erarchical clustering can thus be divided into two types; agglomerative and divisive. Ag-
glomerative clustering uses a bottom-up approach, while divisive clustering uses a top-
down approach. Agglomerative clustering starts by specifying each data point as separate
clusters. The goal is to meet a similarity measure by merging clusters. Divisive cluster-

88

7.4 Point Cloud Clustering

ing begins by defining all data points as one cluster and splits them until the similarity
threshold is met.

Hierarchical clustering algorithms can further be divided by their similarity calcula-
tions. The three algorithms are the single-link, the complete-link, and the average-link
algorithm. Single-link uses the minimum distance between two clusters, while complete-
link uses the maximum distance. In average-link, the similarity is a measure of the average
distance between the members of the clusters. There are drawbacks and advantages of each
method.

The hierarchical clustering methods produce a dendrogram. In a dendrogram, the cat-
egorization of the points and the similarity levels where the categories change are repre-
sented. Figure 7.16 shows a dendrogram obtained from a single-link algorithm.

7.4.2 Implementation of Euclidean clustering
The system implements a Euclidean clustering extraction for segmenting point clouds into
clusters. The method is a single-link hierarchical clustering procedure and extracts clusters
based on Euclidean distance as similarity measurement. The code is implemented with the
Point Cloud Library and uses a simple data clustering approach summarized in Listing 7.3.
The code makes use of nearest neighbors approach.

1 //segmentation class for cluster extraction in an Euclidean
sense

2 PointCloud::Ptr PclObstacleDetector::cluster_cloud(const
PointCloud::ConstPtr &cloud_input)

3 Create a Kd-tree for //search method
4 Create empty list of clusters, and an empty queue
5

6 for every point in cloud_input
7 add point to queue
8

9 for point in queue
10 search for neighbors within threshold
11 if not in queue
12 add to queue
13 add queue to clusters, set queue to empty
14

15 create empty centroid_cloud
16 for each cluster
17 add centroid to centroid_cloud
18 publish(centroid_cloud)
19

20 void cluster_callback(centroid_cloud, position milliAmpere)
21 for each centroid
22 calculate NED coordinates
23 publish(detected objects)

Listing 7.3: Create disparity map

89

Chapter 7. Object detection

The algorithm falls under the category agglomerative clustering. All points start in separate
clusters, and based on the Euclidean distance points are merged into the same cluster.

The raw stereo point cloud is too dense and noisy for segmenting out objects of inter-
est. Thus, the unorganized point cloud is pre-processed using several filtering techniques.
The written class PclObstacleDetector implements both the clustering and filtering, and is
comprised in the cloud callback in Listing 7.4. Figure 7.17 illustrates the output from each
function.

1 /***
2 ** Point cloud callback
3 ** - PassThrough filter
4 ** - Statistical Outlier Removal
5 ** - Voxel Grid filter
6 ** - Combine point clouds
7 ** - Euclidean clustering
8 ***/
9 void PclObstacleDetector::cloudcb(const PointCloud::

ConstPtr &cloud_input){}
10 &cloud_cut = cut_cloud(cloud_input);
11 &cloud_sor = sor_cloud(cloud_cut);
12 &cloud_vg = vg_cloud(cloud_sor);
13 &cloud_acc = accumulate_cloud(cloud_vg);
14 &cloud_clustered = cluster_cloud(cloud_acc);
15

16 pub_cluster.publish(cloud_clustered);
17 }

Listing 7.4: Clustering callback

The function in line 10, cut cloud, utilizes a pass-through filter. It is in all simple
manners just cutting of the point cloud for values over a given threshold in the z-dimension.
The threshold is obtained from the calibration chapter concluding that the stereo setup is
nowhere capable of acquiring accurate depth estimates above 250 meters. The threshold
will also remove the numbers at infinity, making it easier to visualize and post-process.

Subsequently, sor cloud is removing noisy measurements using statistical analysis
techniques. The algorithm takes the mean distance from a query point to each point in
a neighborhood. The points whose distance is larger than a standard deviation multiplier
is considered as outliers and removed from the point cloud. Figure 7.17e displays an ex-
ample output from the function. As one can observe, the point cloud is, in theory, ready
for clustering. Directly clustering the output with Euclidean clustering, a computationally
efficient computer takes about 130 milliseconds to output the clustered centroids.

90

7.4 Point Cloud Clustering

(a) Left image (b) Corresponding disparity map

(c) Raw point cloud from disparity map (d) Point cloud after cropping

(e) Point cloud after Statistical Outlier Removal (f) Point cloud after Voxel grid

(g) Point cloud accumulated 6 times

/ptcloud/cluster

0

10

20

30

X

-20

-10

0

10

Y

0

20

40

60

80

Z

(h) Point cloud after clustering

Figure 7.17: Point cloud processing
91

Chapter 7. Object detection

The implementation of the voxel grid filter is for real-time considerations. The voxel
grid downsamples the point cloud, approximating a neighborhood of points to the cen-
troid. Using the filter enhances the computational time more than ten times! The last
preprocessing function in line 13 accumulates the point clouds. It assembles subsequent
point clouds for redundancy, increasing the reliability of the system. The function antic-
ipates shortcomings in the stereo matching or filtering. If the stereo matching algorithm
fails to match the objects of interest in one image, the accumulate function will include
the missing parts from the already processed point clouds. Also, objects of interest will be
denser, while noisier parts like sea waves remain sparse. The complete callback in Listing
7.4 takes about ten milliseconds to compute accumulating 6 point clouds, by all means
depending on the computer.

Both of the presented clustering techniques are used for object detection on milliAmpere.
They are tested in the operational environment, and their performance is evaluated and
compared.

92

Chapter 8
Test results in marine environment

The experiment and data collection took place outside the port of Brattøra. A handheld
Global Positioning System (GPS), placed on the target boat, serves as the ground truth.
The test area and the GPS route are shown in Figure 8.1. The origin of the NED coordinate
frame is set inside the harbour. The performance of the stereo parameters obtained at 20

Figure 8.1: Test area and route of the target

meters, and the algorithms described in Chapter 7 are tested and evaluated.
The experiment is divided into seven different scenarios, capturing the target boat at

different distances. The scenarios are numbered in chronological order by the time they
were recorded. The distance to the target varies between 10 and 160 meters. Scenario
two, three, four, five and six are captured along the coast. The target is the main focus in

93

Chapter 8. Test results in marine environment

the scene, with the coast line and the island Munkholmen present in the background. In
scenario one and seven milliAmpere is following the target in and out of the harbour. This
is to give an impression how the disparity map and the two clustering algorithms perform
in a confined environment. The parameters are not tuned for such an environment.

8.1 Ground truth
A Garmin eTrex 10 GPS is placed right in front of the wheelhouse of the target boat,
recording its positioning once per second. The GPS device has an accuracy of about 10
meters (Luoto et al., 2010). Figure 8.2 shows the recorded GPS data during the experiment.

07:40:48 07:55:12 08:09:36 08:24:00 08:38:24 08:52:48 09:07:12

time- hours:minutes:seconds

63.4365

63.437

63.4375

63.438

63.4385

63.439

63.4395

63.44

63.4405

L
a
t

Lat Plot

21-May-2020

(a) GPS latitude

07:40:48 07:55:12 08:09:36 08:24:00 08:38:24 08:52:48 09:07:12

time- hours:minutes:seconds

10.388

10.39

10.392

10.394

10.396

10.398

10.4

L
o
n
g

Long Plot

21-May-2020

(b) GPS longitude

07:40:48 07:55:12 08:09:36 08:24:00 08:38:24 08:52:48 09:07:12

time- hours:minutes:seconds

1

2

3

4

5

6

7

8

9

10

E
le

v

Elev Plot

21-May-2020

(c) GPS elevation

Figure 8.2: GPS plots

The test scenarios are all captured along the coast, thus no signal-blocking from buildings
is expected. During the data collection, there was little to no wind and a smooth sea. The
elevation plot in Figure 8.2c shows that the elevation varies between 1 and 10 meters.
The varying elevation signal indicates that the GPS signal strength varies throughout the
experiment. In Figure G.2 in Appendix G the longitude, latitude and elevation plots are
divided into the different scenarios. Inspecting the plots, the GPS has smooth curves for

94

8.1 Ground truth

most of the scenarios. For scenario three, the longitude curve is mostly smooth but is
somewhat noisy towards the end. In scenario five and six, more noise is present. This
may indicate a weaker GPS signal. For this reason, the GPS accuracy is evaluated by the
LiDAR.

The LiDAR’s precision compared to the stereo camera makes it suitable to evaluate
the GPS. The LiDAR has a range of 100 meters, but due to its sparse output it struggles
to consistently detect the target. This is due to the angling of the laser beams. However,
when the object is present, the precision is still in centimeters (Kidd, 2017). The GPS’s
position in the boat does not in general coincide with the reflecting points seen by the
LiDAR. Thus, an uncertainty of approximately±1 meters in distance is expected from the
extracted points of the LiDAR. Due to the uncertainty in the stereo system, discussed in
Section 7.1, only meter precision is reasonable to expect.

The LiDAR and the GPS are transformed to the same coordinate system to correlate the
depth measurements. The resulting plots for the different scenarios are given in Appendix
G. LiDAR data was not recorded for scenario one, thus scenario two to seven are used
to evaluate the GPS. Figure 8.3 shows the depth error between the LiDAR and the GPS.

0 500 1000 1500 2000
Time

−4

−2

0

2

4

6

8

Di
st
an

ce
 e
rro

r

Depth error GPS - LiDAR
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6
Scenario 7

Figure 8.3: Depth error in GPS according to LiDAR

Scenario two, three, four, and seven show small deviations between the LiDAR and the
GPS. Based on these four scenarios, the GPS has an average error of ±0.689 meters. For
scenarios five and six, there is a more significant error. On average, the GPS overestimates
the depth with 5.537 meters compared with the LiDAR. Together with the noise in the
corresponding figures in Appendix G, this indicates a weaker GPS signal during scenario
five and six. The accuracy of the LiDAR point cloud is approximately equal in scenario
three, five and six. The positioning of the target is similar, thus it is fair to assume that
there is a difference in GPS accuracy between the different scenarios.

95

Chapter 8. Test results in marine environment

The average error of scenario five is 6.551 meters while for six it is 4.625. Trusting
the LiDAR’s high accuracy, the mean error of scenario five and six is subtracted from the
GPS. The resulting errors are illustrated in Figure 8.4. The GPS measures are assumed

0 500 1000 1500 2000
Time

−4

−3

−2

−1

0

1

2

3

4

Di
st
an

ce
 e
rro

r

Depth error GPS - LiDAR
std
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6
Scenario 7

Figure 8.4: Depth error in GPS adjusted according to LiDAR measurements

to include Gaussian distributed noise with mean ē = 0.064, and a standard deviation of
σ = 0.865. The variance is therefore σ2 = 0.748. This seems reasonable as the LiDAR is
expected to have a standard deviation of around 1. Finally, it should be noted that the error
of the last point in scenario four deviates more than the other points in the same scenario.
This may indicate that the GPS has a offset from the true position in the end of scenario
four.

Both the measurements by the GPS and the LiDAR are transformed into the NED
reference frame providing as the ground truth for evaluating the measurements of the stereo
camera.

8.2 Results
This section presents the five test scenarios along the coast of Trondheim. The target is
captured in a range of different distances to determine the stereo systems accuracy. The
targets position is given in NED coordinates, and the distance to the target is calculated
relative to milliAmpere. The resulting plots of the two clustering techniques; point cloud

96

8.2 Results

clustering and CNN clustering, are presented for each of the test scenarios. The estimated
distance to the target, the resulting error, and the NED position of the targets is given. The
position in north and east direction depends on the time, and the plots of the directions
are given in Appendix H together with the corresponding errors. In each plot, the ground
truth is given in black, and the stereo systems estimates in blue. For all plots, distances are
given in meters and time in seconds.

As already mentioned in Chapter 5, there may have been added a constant error to
the stereo setup. This will have a high influence on the overall results. However, the
comparison between the algorithms, and distance estimates is still valid. From Section
7.1, the stereo system is expected to have a theoretical reprojection error of more than one
pixel. For this reason, the theoretical reprojection error of one pixel is given in purple
and plotted together with the distance error of the stereo cameras. The expected distance
based on the theoretical error is included to illustrate what one pixel error corresponds to
in distance for each scenario. The value of the reprojection error is given in Table 7.1, and
plotted with the same sign as the error of the depth estimates.

8.2.1 Scenario 2

(a) Start of scenario 2 (b) End of scenario 2

Figure 8.5: Scenario 2

In the beginning of scenario 2, the stereo camera observes the aft of the target. In the mid-
dle of the scenario the target makes a turn and places itself perpendicular to Milliamepre,
see Figure 8.5. As the GPS is placed in front of the wheelhouse, a larger error is expected
in the first half of the scenario.

From the distance estimations in Figure 8.6, both clustering seems quite accurate. The
distance is the optimal depth for the stereo system, and the result are therefore expected
to be the most satisfactory of all the scenes. However, Figure 8.8 show some deviations
from the theoretical error. As expected, the estimates are more accurate in the second half
of the scenario.

97

Chapter 8. Test results in marine environment

0 20 40 60 80 100 120 140 160
Time

0

10

20

30

40

50

60

70

80
Di
st
an
ce

CNN-clustering
ground truth
expected stereo [1 pixel error]
stereo

(a) Estimated distance

0 20 40 60 80 100 120 140 160
Time

0

10

20

30

40

50

60

70

80

Di
st
an

ce

ptCloud-clustering
ground truth
expected stereo [1 pixel error]
stereo

(b) Estimated distance

Figure 8.6: Distance estimate of scenario 2

−440 −430 −420 −410 −400 −390 −380 −370
East

40

60

80

100

120

140

No
rth

CNN-clustering

(a) Position in North-East

−440 −430 −420 −410 −400 −390 −380 −370
East

40

60

80

100

120

140

No
rth

ptCloud-clustering

(b) Position in North-East

Figure 8.7: Position estimate of scenario 2

0 20 40 60 80 100 120 140 160
Time

−7

−6

−5

−4

−3

−2

−1

0

1

2

Di
st
an

ce
 e
rro

r

CNN-clustering
expected stereo [1 pixel error]
error

(a) Error of estimated distance

0 20 40 60 80 100 120 140 160
Time

−7

−6

−5

−4

−3

−2

−1

0

1

2

Di
st
an
ce

 e
rro

r

ptCloud-clustering
expected stereo [1 pixel error]
error

(b) Error of estimated distance

Figure 8.8: Error of distance estimate of scenario 2

98

8.2 Results

8.2.2 Scenario 3

Figure 8.9: Scenario 3

0 50 100 150 200
Time

0

25

50

75

100

125

150

175

Di
st
an

ce

CNN-clustering
ground truth
expected stereo [1 pixel error]
stereo

(a) Estimated distance

0 50 100 150 200
Time

0

25

50

75

100

125

150

175

Di
st
an

ce

ptCloud-clustering
ground truth
expected stereo [1 pixel error]
stereo

(b) Estimated distance

Figure 8.10: Distance estimate of scenario 3

In scenario 3, milliAmpere is moving away from the target, see Figure 8.9. The estimated
position in north-east, Figure 8.11, shows clear deviations from the ground truth. The
distance to the target is increasing throughout the scenario.

In the early stages of the scene, the stereo estimates follows the theoretically expected
error. The deviation increases more than expected as the depth increases, see Figure 8.12.
At 100 meters the magnitude of the actual distance error is around twice the theoretical
one pixel error. The graph in Figure 8.10 is smoother for ptCloud-clustering than CNN-
clustering. The discrete result from CNN-clustering points to a network that struggles to
detect the boat consistently in similar scenes.

99

Chapter 8. Test results in marine environment

−465 −460 −455 −450 −445 −440 −435 −430 −425 −420
East

−60

−40

−20

0

20

40
No

rth

CNN-clustering

(a) Position in North-East

−465 −460 −455 −450 −445 −440 −435 −430 −425 −420
East

−60

−40

−20

0

20

40

No
rth

ptCloud-clustering

(b) Position in North-East

Figure 8.11: Position estimate of scenario 3

0 50 100 150 200
Time

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

Di
st
an

ce
 e
rro

r

CNN-clustering
expected stereo [1 pixel error]
error

(a) Error of estimated distance

0 50 100 150 200
Time

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0
Di
st
an

ce
 e
rro

r
ptCloud-clustering

expected stereo [1 pixel error]
error

(b) Error of estimated distance

Figure 8.12: Error of distance estimate of scenario 3

8.2.3 Scenario 4

Figure 8.13: Scenario 4

In scenario 4, the target is moving away from milliAmpere making only the rear end
visible for the stereo camera, see Figure 8.13. The stereo camera will therefore have an

100

8.2 Results

0 20 40 60 80 100 120
Time

0

20

40

60

80

100

120

140

160
Di
st
an

ce

CNN-clustering

ground truth
expected stereo [1 pixel error]
stereo

(a) Estimated distance

0 20 40 60 80 100 120
Time

0

20

40

60

80

100

120

140

160

Di
st
an

ce

ptCloud-clustering

ground truth
expected stereo [1 pixel error]
stereo

(b) Estimated distance

Figure 8.14: Distance estimate of scenario 4

offset from ground truth. The distance to the target is increasing but continues to a distance
of 150 meters.

Similar to scenario 3, for distances below 80 meters the estimates are within an ac-
ceptable range, see Figure 8.14. At farther distances stronger deviations are present, and
the error exceeds 20 meters. During the last twenty second both algorithms fails to extract
clusters, which implies the clusters from the disparity map are too small and considered as
noise for the algorithms. The estimates follows the shape of the curve, but with an increas-
ing error. From Figure 8.15 CNN-clustering has a lower error, but point cloud clustering
has a more consistent detection of the target throughout the scenario. The noise from the
point cloud clustering originates from a noisy disparity map. In the last part of the scene
there is a significant large error. As mentioned in 8.1, the GPS might have an offset in the
measurement towards the end of scene 4.

−440 −420 −400 −380 −360 −340 −320 −300
East

−150

−100

−50

0

50

100

No
rth

CNN-clustering

(a) Position in North-East

−440 −420 −400 −380 −360 −340 −320 −300
East

−150

−100

−50

0

50

100

No
rth

ptCloud-clustering

(b) Position in North-East

Figure 8.15: Position estimate of scenario 4

For clarification, for a couple of seconds the target moves out of the stereo cameras
field of view. This occurs at position -50 North, -380 east in Figure 8.15, which correspond
to time 40 (seconds).

101

Chapter 8. Test results in marine environment

0 20 40 60 80 100 120
Time

−25

−20

−15

−10

−5

0

5

10

15

20
Di
st
an

ce
 e
rro

r

CNN-clustering
expected stereo [1 pixel error]
error

(a) Error of estimated distance

0 20 40 60 80 100 120
Time

−25

−20

−15

−10

−5

0

5

10

15

20

Di
st
an

ce
 e
rro

r

ptCloud-clustering
expected stereo [1 pixel error]
error

(b) Error of estimated distance

Figure 8.16: Error of distance estimate of scenario 4

8.2.4 Scenario 5

(a) Start of scenario 5 (b) End of scenario 5

Figure 8.17: Scenario 5

In scenario 5, milliAmpere is moving towards the target. Figure 8.17, shows the target
captured at the beginning of the scene with a distance of 157 meters. At this distance
CNN-clustering fails to detect the target, while the point cloud clustering actually manages
to cluster the boat, see Figure 8.18. Again, the distance estimates follows the shape of the
curve. However, the error of the estimated distance is large, from Figure 8.20 it measures
up to 25 meters. At distances lower than 90 meters, the system performs better than the
estimated theoretical error.

The resulting north-east plots, in Figure 8.19, looks quite odd, but seeing each of the
coordinates plotted against time it makes more sense. Referring to Figure H.4 and H.9 in
Appendix.

102

8.2 Results

0 20 40 60 80 100
Time

0

20

40

60

80

100

120

140

160
Di
st
an

ce

CNN-clustering
ground truth
expected stereo [1 pixel error]
stereo

(a) Estimated distance

0 20 40 60 80 100
Time

0

20

40

60

80

100

120

140

160

Di
st
an

ce

ptCloud-clustering
ground truth
expected stereo [1 pixel error]
stereo

(b) Estimated distance

Figure 8.18: Distance estimate of scenario 5

−328 −326 −324 −322 −320 −318
East

10

15

20

25

30

35

40

45

50

No
rth

CNN-clustering

(a) Position in North-East

−328 −326 −324 −322 −320 −318
East

10

15

20

25

30

35

40

45

50

No
rth

ptCloud-clustering

(b) Position in North-East

Figure 8.19: Position estimate of scenario 5

0 20 40 60 80 100
Time

−35

−30

−25

−20

−15

−10

−5

0

5

10

Di
st
an
ce

 e
rro

r

CNN-clustering
expected stereo [1 pixel error]
error

(a) Error of estimated distance

0 20 40 60 80 100
Time

−35

−30

−25

−20

−15

−10

−5

0

5

10

Di
st
an

ce
 e
rro

r

ptCloud-clustering
expected stereo [1 pixel error]
error

(b) Error of estimated distance

Figure 8.20: Error of distance estimate of scenario 5

103

Chapter 8. Test results in marine environment

Figure 8.21: Scenario 6

8.2.5 Scenario 6
In scenario 6, milliAmpere is moving away from the target. The estimated distances are
given in Figure 8.22, and the world coordinates in Figure 8.23. The scenario has similar
distances as scenario 2. From Figure 8.24 it appears that the error increases with increasing
distance, but with a larger magnitude than in scenario 2. At the end of the scene, the dis-
tance error actually decreases, this yields for distances above 60 meters. Overall, the point
cloud algorithm serves a smooth and more dense error graph than the CNN-clustering.

0 10 20 30 40 50 60 70 80
Time

0

10

20

30

40

50

60

70

80

90

Di
st

an
ce

CNN-clustering
ground truth
expected stereo [1 pixel error]
stereo

(a) Estimated distance

0 10 20 30 40 50 60 70 80
Time

0

10

20

30

40

50

60

70

80

90

Di
st
an
ce

ptCloud-clustering
ground truth
expected stereo [1 pixel error]
stereo

(b) Estimated distance

Figure 8.22: Distance estimate of scenario 6

104

8.2 Results

−332 −330 −328 −326 −324 −322 −320 −318
East

−25

−20

−15

−10

−5

0

5

10
No

rth

CNN-clustering

(a) Position in North-East

−332 −330 −328 −326 −324 −322 −320 −318
East

−25

−20

−15

−10

−5

0

5

10

No
rth

ptCloud-clustering

(b) Position in North-East

Figure 8.23: Position estimate of scenario 6

0 10 20 30 40 50 60 70 80
Time

−8

−6

−4

−2

0

2

Di
st
an

ce
 e
rro

r

CNN-clustering
expected stereo [1 pixel error]
error

(a) Error of estimated distance

0 10 20 30 40 50 60 70 80
Time

−8

−6

−4

−2

0

2
Di
st
an
ce

 e
rro

r
ptCloud-clustering

expected stereo [1 pixel error]
error

(b) Error of estimated distance

Figure 8.24: Error of distance estimate of scenario 6

8.2.6 Application inside harbour
Scenario 1 and 7 are recorded while driving out of and into the harbour, respectively. The
ground truth is thereby not the only true detection to be clustered. The estimated position
of the detected objects is shown in Figure 8.26, in NED coordinate. The positions are
plotted on a map of the test area to show where the detection originates from. There is
a significant difference between the detections of the two clustering approaches. Due to
YOLO being trained to detect only boats, CNN based clustering detects far less objects
than point cloud clustering.

When navigating in an confined environment, it is important that all objects are de-
tected to avoid collisions and getting stranded. Training the network on objects present in
a harbour would make CNN based clustering more suitable for an environment like this.
However, a segmentation-based method might be preferred in an environment like this.
Neither the clustering or the disparity map is not tuned for a confined environment. The
intended use of the algorithms are at open sea, but the harbour scenarios are included to
show how they perform in a different environment. This shows that the system is sensitive
to the chosen operational environment.

105

Chapter 8. Test results in marine environment

(a) Start of scenario 1 (b) End of scenario 1

(c) Start of scenario 7 (d) End of scenario 7

Figure 8.25: Recorded data from harbour

106

8.2 Results

(a) CNN-clustering scenario 1 (b) ptCloud clustering scenario 1

(c) CNN -clustering scenario 7 (d) ptCloud-clustering scenario 7

Figure 8.26: Estimated position of detected objects in harbour

107

Chapter 8. Test results in marine environment

8.2.7 Comparing detection techniques
The five scenarios are plotted together, with the result of point cloud clustering and CNN-
clustering in the same plot in Figure 8.27. The most noticeable is the sparse result of CNN-

0 200 400 600 800 1000 1200 1400 1600 1800
Time

0

25

50

75

100

125

150

175

200

225

Di
st
an

ce

ptCloud- and CNN-clustering
ptCloud
CNN

Figure 8.27: Depths of ptCloud and CNN clustering

clustering compared to point cloud clustering. This is especially seen in scene three, four
and five as the distances increases in a shorter period of time. The estimated depth of the
two approaches are approximately equal. This is expected as they are both implemented
using the same disparity map algorithm and stereo parameters. Overall, the point cloud
clustering has a denser distance estimate with more noise present. At great distances
the stereo cameras estimations has a higher error. Significant deviations are present at
distances greater than 75 meters. This is expected as the reprojection error of the stereo
camera has a larger influence at greater distances.

8.3 Discussion
This section discusses the results found in the previous section, and assesses the overall
performance of the stereo system. The experimental error in the distance estimates turned
out to be higher than expected. It can be caused by several reasons; the parameters of the
clustering, the disparity map or the calibration.

8.3.1 Clustering techniques
The detection of the target and its estimated depth is highly dependent on the algorithms
and parameters used in the stereo system. For CNN based clustering the reliability of
the network is of high importance. The threshold was set to avoid miss-classifications of

108

8.3 Discussion

the same object in consecutive frames. The resulting plots shows few false positives, but
increased the number of false negatives. This caused a sparser output compared to point
cloud clustering. As a result of this, it seems like an even lower YOLO-threshold may be
favourable.

Decreasing the precision further will results in more detections. However, with the
given weights, the network tends to have FPs even for an YOLO-threshold approximately
equal to 0. From the confusion matrix (7.8), a decrease in precision for the given weights
gives no noticeable increase in TP. This can also be seen from Figure 7.10 in Section
7.3.2. The technique is limited to the quality of the network, and based on the results the
networks performance can benefit from further training.

For the localization based on the YOLO-bounding boxes, the centroid and median
value gave a satisfying result. The distance estimates even seems to be more correct than
the distances directly extracted from the point cloud. The inequalities in the depth es-
timates between the two algorithms is most likely due to the network’s tendency to only
detect parts of the boat. For the given test scenarios, the wrong positioning of the bounding
boxes does not have any noticeable impact on the results. However, this should be noted
as it may cause errors in different scenarios.

Point cloud clustering produces a dense output, but more false detections are present.
This is a direct consequence of the chosen parameters. The wide range of distances in
the scenarios impose challenges for the selection of parameters. Setting a higher value for
the minimum number of points in a cluster would remove a lot of the noise. On the other
hand, for distances above 110 meters the target will be discarded as noise. Alternatively, an
increase in the number of accumulations or decreasing the value of the standard deviation
multiplier in the filtering, will discard some more noise. However, the noise is randomly
distributed and can thus be accounted for by standard Markovian models in a tracking
algorithm.

8.3.2 Disparity map
The results are directly dependent on the parameter values of the disparity map. The
chosen parameter of the disparity map are optimal at approximately 50 meters, while the
distance to the target varies between 10 and 160 meters. Figure 8.28 shows examples of
the resulting disparity maps at short, medium and far range distances. Figure 8.28b, 8.28e
and 8.28g illustrated the original parameters set for point cloud clustering. At 140 meters
noise from the sea produces bigger clusters than the target. This causes the noise and lack
of detection towards the end of scenario 4 in Figure 8.14. In the re-tuned disparity map in
Figure 8.28h noise is removed by reducing the maximum disparity. This will segment out
points at short distances. The minimum required points in a cluster can thus be decreased,
making object detection optimal for far distances.

At 10 meters the resulting disparity map divides the boat into different segments. This
is shown in Figure 8.26d, where both the target and the pier is segmented into several
parts, creating multiple detections of the same object. This also causes problems for CNN
clustering, as it takes the median value of the disparities within a bounding box. When the
object appears sparse, the depth is estimated to infinity, e.g. no target is localized.

Considering the range of operating distances, it was hard to find optimal values. From
the results, the chosen disparity parameters performed better than expected considering

109

Chapter 8. Test results in marine environment

(a) Target at 10 m (b) Resulting disparity map at 10 m (c) Re-tuned disparity map optimal at 10 m

(d) Target at 50 m (e) Resulting disparity map at 50 m

(f) Target at 140 meters (g) Resulting disparity map at 140 m (h) Re-tuned disparity map optimal at 140 m

Figure 8.28: Disparity map for targets at different distances

the variations in the scenes. However, as shown throughout this section more favourable
parameters exist for the different operating ranges. Having a disparity map that is optimal
for the distance it is used on improves the result of both the detection techniques. A
solution could be to dynamically set the disparity map parameters depending on the speed
of the vessel. Another option, is running parallel disparity maps optimal for short, medium
and far range distances.

110

8.3 Discussion

8.3.3 Error of the estimated distances

The mean percentage error of the two clustering techniques is plotted in Figure 8.29. The
error is calculated from the ground truth. The CNN-clustering yields an average absolute
error percentage of 0.069, and the point cloud clustering 0.076. These calculations are
based on a adjusted ground truth, combining the GPS measurements with the LiDAR. In
addition, 2 meters are removed from scenario 4 and the beginning of scenario 2 to account
for the GPS’s position in the boat. From the Figure 8.29, the magnitude of the error varies

0 100 200 300 400 500 600 700
Time

−0.2

−0.1

0.0

0.1

0.2

Di
st
an
ce

 e
rro

r [
%
]

CNN-clustering
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6

(a) Percentage error of estimated distance from CNN-clustering

0 100 200 300 400 500 600 700
Time

−0.2

−0.1

0.0

0.1

0.2

Di
st
an
ce
 e
rro

r [
%
]

ptClo d-clustering
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6

(b) Percentage error of estimated distance from ptCloud-clustering

Figure 8.29: Percentage error of estimated distance from the ground truth for all scenarios

between the scenarios. The percentage error is three times as high as the error from the
test scenes in Chapter 5.

It is worth noticing that there seems to be a constant offset, a bias. This is probably due
to errors in the estimation of the focal length or the baseline. Both directly influences the
depth estimates (2.10). A constant error can also have occurred due to the transformation
between the camera and the GPS on milliAmpere being measured by hand.

111

Chapter 8. Test results in marine environment

8.3.4 Reprojection error

0 100 200 300 400 500 600 700
Time

−25

−20

−15

−10

−5

0

5

10

Di
st
an

ce
 e
rro

r

CNN-clustering

Expected stereo [1 pixel error]
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6

(a) CNN-clustering

0 100 200 300 400 500 600 700
Time

−25

−20

−15

−10

−5

0

5

10

Di
st
an

ce
 e
rro

r

ptCloud-clustering

Expected stereo [1 pixel error]
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6

(b) ptCloud-clustering

Figure 8.30: Error of all scenario and expected value when there is a pixel error of 1

In Figure 8.30, the error of all scenarios are given with the expected value when one
pixel error is present. This confirms that the theoretical reprojection error is too optimistic.
To find the true reprojection error for the system, equation (8.1) is minimized.

µ(e(dist)) =
1

N

∑
(diststereo − (distGT + e(dist))) (8.1)

diststereo is the estimated distance from the stereo camera, distGT is the ground truth dis-
tance, and e(dist) is the reprojection error given in pixels. This gave the CNN-clustering
a reprojection error of 1.588 pixels, and the point cloud clustering 1.988 pixels. One may
argue that the expected value should be zero, however this confirms that there is a constant
offset in the stereo system.

Figure 8.31a and 8.31b shows how the estimated distance from the stereo camera devi-
ates from the given reprojection error. Point cloud clustering yields a higher reprojection

112

8.3 Discussion

0 100 200 300 400 500 600 700
Time

−25

−20

−15

−10

−5

0

5

10

Di
st
an

ce
 e
rro

r

CNN-clustering

(a) Difference between estimated distance from CNN-clustering and expected
distance when reprojection error is of 1.583 pixels

0 100 200 300 400 500 600 700
Time

−25

−20

−15

−10

−5

0

5

10

Di
st
an

ce
 e
rro

r

ptCloud-clustering

(b) Difference between estimated distance from ptCloud-clustering and ex-
pected distance when reprojection error is of 1.988 pixels

Figure 8.31: Difference between estimated distance and expected distance for all scenarios

error. This is due to detections of noise present in the disparity map. This is not caused by
wrong detections of the target, and could thus be removed. However, it is problematic to
separate noise from wrong estimations.

It should also be noted how much Scenario 5 and 6 differs from the other. Considering
the distance to the target, a better performance in scenario 6 was expected. Especially, as
the error is low for scenario two, which includes the same range of distances. In Scenario 5
the error in Figure 8.31 is positive, which deviates from all other results. As the GPS most
likely has a weaker signal at these scenarios, the adjusted ground truth using the LiDAR
might not be as accurate as desired.

113

Chapter 8. Test results in marine environment

8.3.5 Uncertainty in the stereo system
The standard deviation of the Figures 8.31a and 8.31b, measures the expected uncertainties
of the system. With a mean of 1.583 pixels, the standard deviation of CNN-clustering is
calculated to 3.882 meters. For the ptCloud-clustering the standard deviation is 6.921
meters calculated from a mean value of 1.988 pixels.

The standard deviation of ptCloud-clustering is of significant size. By removing sce-
nario 5 and 6, the standard deviation is reduced to 2.668 meters. The distribution of points
may indicate a Gaussian distribution. Assuming this, ptCloud-clustering has a variance of
1.633 meters. Removing scenario 5 and 6 impose no significant changes to the measured
standard deviation of CNN-clustering. The depth error, shown in Table 8.1, indicates the

Real world-
depth Disparity Depth error

CNN-clustering
Depth error

ptCloud-clustering
10 m 229.3 ±0.070m ±0.087 m
20 m 114.7 ±0.277m -±.348 m
30 m 76.5 ±0.621m ±0.779 m
40 m 57.3 ±1.107m ±1.390 m
50 m 45.9 ±1.727m ±2.169 m
60 m 38.2 ±2.488m ±3.125 m
70 m 32.8 ±3.384m ±4.250 m
80 m 28.7 ±4.423m ±5.554 m
90 m 25.5 ±5.605m ±7.040 m

100 m 22.9 ±6.922m ±8.694 m
110 m 20.9 ±8.350m ±10.487 m
120 m 19.1 ±9.952m ±12.499 m
130 m 17.7 ±11.654m ±14.636 m
140 m 16.4 ±13.498m ±16.952 m
150 m 15.3 ±15.509m ±19.476 m

Table 8.1: Expected depth error for CNN-clustering (1.583 pixels) and ptCloud-clustering (1.988)

expected reprojection error under the assumption that the disparity error is 1.583 and 1.988
pixel.

8.3.6 Limitations of the stereo system
The experimental measured error and standard deviation turned out to be higher than in
the theoretical consideration where more optimistic estimations about the possible setup
and measurement deviations was made. It can be caused by several reasons which finally
accumulate to a higher error. This includes higher errors in the estimation of the baseline
and the relative orientation of the cameras but also higher errors in the estimation of the
matching position of corresponding points.

There is a constant offset in the distance estimates. The constant offset indicates errors
in the estimates of the stereo parameters. This will influence both the reconstruction of
world points and the rectification which directly affects the stereo matching.

114

8.3 Discussion

The results indicates range limitations. In general, the disparity map of objects at
far distances produces a sparse cluster of points. Figure 8.28h shows that even for an
optimal disparity map at 140 meters, the target appears in relatively few pixels. At 140
meters an object will have a displacement of 16.4 pixels. Due to uncertainties in the stereo
matching, the stereo system is likely to have range limit of approximately 200 meters. This
corresponds to a displacement of only 11 pixels. To have an operational system at such
great distances, a tuning of the disparity map and the point cloud clustering algorithm is
imperative. With the stereo systems calculated reprojection error an object at 200 meters
yields a depth error of almost 80 meters. Therefore, the baseline must be widened to
reduce the slope of the depth error, based on the reprojection error and baseline (Figure
7.1b).

8.3.7 Overall performance
Some error in the estimated distance to the target is tolerable when the uncertainty of the
system is known. From the ground truth, the reprojection error was calculated to 1.583
and 1.988 pixels for CNN-clustering and ptCloud-clustering, respectively. With additional
testing, the uncertainty of the system can be determined more accurately.

Two operational clustering algorithms has been implemented, as well as a stereo match-
ing procedure. The range of distances imposes challenges for setting optimal parameters
for all scenarios. The result of point cloud clustering is influenced by noise present in the
disparity map. While, for CNN-clustering the result is dependent on the quality of the
network. Even though miss-classifications and lack of detections occurred, the target was
detected and localized for all scenarios. The CNN based clustering procedure is robust
against noise in the disparity map. Point cloud clustering is more prone to noise in the
disparity map, but gave a more dense and consistent result.

Scenario 1 and 7 show how sensitive the behavior of the system is to changes in the
environment. For the system to produce beneficial results in these scenarios, an adjust-
ment of the parameters is necessary. The performance of the system is dependent on set
parameters and the operational environment. Using different parameters of the algorithms
at different distances, could also help improve the overall result. However, the utilized
parameters provided a reasonable result considering the wide range of distances in the
scenarios. Overall, the parameters extracts the target and estimates the distance with a
offset. With further testing of the system using a more reliable ground truth a lower uncer-
tainty is expected.

115

Chapter 8. Test results in marine environment

116

Chapter 9
Conclusion and future work

9.1 Conclusion

A stereo setup for an autonomous ferry was introduced, calibrated, implemented and
tested. A far range extrinsic calibration procedure was proposed, and tested on scenes
of different depths. The LiDAR was used as the ground truth to confirm that extrinsic
calibration highly influence the accuracy of the reconstructed world points. The findings
showed that a careful selection of the scene is of higher importance than calibrating at the
operating distance. A scene where salient points are available in the cameras entire field
of view will improve the calibration accuracy.

A ROS-based software architecture for object detection was implemented and tested in
a marine environment. The disparity map was implemented using a correlation based
correspondence algorithm, and Fast Global Image Smoothing Based on Weighted Least
Squares. This provided a robust foundation for clustering. Two different techniques were
utilized for object detection. A convolution neural network was applied for classification,
and used in combination with the disparity map to extract 3D positions of objects. The
method is robust against noise in the disparity map, but appeared to be partially incon-
sistent in the estimates. However, the technique is limited to the quality of the network.
The alternative detection method based on hierarchical clustering using Euclidean distance
made consistent detections, but was more prone to noise in the disparity map. The noise
can be accounted for by standard Markovian models in a tracking algorithm.

The system was tested on the autonomous ferry milliAmpere, and the targets was detected
and its localization given in the common world frame. With a stereo configuration optimal
for 50 meters, the stereo system was found to have a reprojection error of 1.583 and 1.988
pixels, for CNN- and ptCloud-clustering respectively. The average absolute error for the
systems distance estimates is 7%. With additional testing, the uncertainty of the system
can be determined more accurately. Based on the constant bias, the error is expected to be
adjusted to a more acceptable range. While the implemented system shows potential, it is

117

Chapter 9. Conclusion and future work

still not clear that the detection performance is good enough to rely on these methods in
an autonomous collision avoidance system.

9.2 Future Work
The thesis has experimented with a stereo configuration for use on an autonomous ferry.
The work has laid the foundation for using stereo camera for visual vessel detection on
an unmanned surface vehicles in general. The system was tested in the operation envi-
ronment, in and close to Trondheim Harbor, but there are still several issues to be solved
before the proposed stereo vision solution can be used as a part of a sensor fusion system.
Therefore, the following tasks are suggested to continue the work of this thesis.

• Due to COVID-19 and bad weather conditions opportunities for testing was limited.
More tests of the system needs to be performed to find a more exact estimate of the
uncertainty. In the test scenarios presented, the ground truth originates from a GPS
corrected by LiDAR data. A more reliable ground truth would be provided by e.g, a
GPS using RTK.

• The stereo camera system should be properly mounted and integrated on milliAmpere.
This allows for a calibration for finding the rigid-body transformation between the
stereo camera and the BODY frame of the vessel. This will improve the accuracy
of the system. When a proper calibration of the stereo camera and milliAmpere’s
BODY frame is performed, the resulting 3D coordinate frames should be imple-
mented using the ROS-library tf. This will make the information about the coordi-
nate frames available to all ROS components.

• The physical constraints of the cameras needs to be taken into consideration. The
operating temperature is above 0 degrees and they are not waterproof. The stereo
setup is also sensitive to changes in temperature, vibrations and wind, causing the
accuracy of the extrinsic stereo calibration to fluctuate over time.

• As already mentioned, more favourable disparity maps parameters exists for the dif-
ferent operating distances. Looking into dynamically set disparity maps depending
on the speed, or running multiple maps in parallel could improve the result of both
the detection techniques.

• The real-time capabilities of the system must be assessed. The running time of the
system is imperative for the reliability and usefulness of the output data. YOLO is
running on the GPU, using CUDA to reduce the running time. The CUDA toolkit
can be useful throughout the system, especially for the point cloud clustering and
stereo matching. For the overall system all the image processing will benefit of being
in the same package. Implementing the nodes as nodelets will minimize memory
usage, running multiple algorithms in the same process with zero-copy transport
between algorithms.

• Comparing different extrinsic stereo parameters in a marine environment would of
interest. The stereo camera parameters are set in the Spinnaker driver. As the sce-

118

9.2 Future Work

narios were recorded using bagfiles, a dynamic change of the parameters on the
captured data was not performed.

• Because of the constant bias, both the internal and external parameters of the stereo
camera should be re-calibrated. When performing the stereo calibration the data
should be normalized when performing linear triangulation. This will improve the
numerical estimates in DLT. When evaluating the parameters the main focus was
on depth. A further evaluation of the influencing factors of, and the accuracy of
reconstructed x- and y-coordinates should be performed.

• The accuracy of the stereo camera is dependent on the estimations of the extrin-
sic parameters, thus changes in the configurations can lead wrongly reconstructed
3D points. Marita et al. (2006) proposed an on-line calibration method for moni-
toring the stability of the relative extrinsic parameters. The method is suitable for
outdoor far range stereo 3D reconstruction applications. Accounting for external
factors influencing the physical system would also be beneficial for the stereo cam-
era mounted on milliAmpere.

• Widening the baseline and imposing a global method for stereo matching would in-
crease the accuracy of the system. If a global method is used, then running time must
be taken into consideration. Generally, global methods require more computational
power than local methods.

• The possibility of fusing the stereo camera with other sensors should be examined.
If data from different sensors are combined it will be possible to achieve less uncer-
tainty than for a pure stereo camera system.

119

Chapter 9. Conclusion and future work

120

Bibliography

Abdullah, Sukarnur Che, e.a., 2019. Stereo vision for visual object tracking and distance
measurement assessment. Journal of Mechanical Engineering 16, 121–134.

Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., Ouni, K., 2019. Car detection using
unmanned aerial vehicles: Comparison between faster R-CNN and YOLOv3, in: 2019
1st International Conference on Unmanned Vehicle Systems-Oman (UVS), pp. 1–6.

Biber, P., Straßer, W., 2003. The normal distributions transform: A new approach to laser
scan matching, in: Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003), pp. 2743–2748.

Christensen, H.I., Bowyer, K., Bunke, H., 1993. Active Robot Vision: camera heads,
model based navigation and reactive control. volume 6. World Scientific.

Curtin, D.P., 2011. Understanding the Baseline. URL: http://www.
shortcourses.com/stereo/stereo3-14.html.

Fooladgar, F., Samavi, S., Soroushmehr, S.M.R., Shirani, S., 2013. Geometrical analysis
of localization error in stereo vision systems. IEEE Sensors Journal 13, 4236 – 4246.

Fossen, T.I., 2011. Handbook of marine craft hydrodynamics and motion control. John
Wiley & Sons.

G., C., Stephens, M., 1988. A combined corner and edge detector. Alvey vision conference
15, 10–5244.

Golub, G.H., Van Loan, C.F., 2013. Matrix computations. volume 4th. JHU press.

Grini, S.V., 2019. Object Detection in Maritime Environments. Master’s thesis. NTNU.

Hartley, R., Zisserman, A., 2004. Multiple View Geometry in computer vision, 2nd edi-
tion. Cambridge University Press.

Hirschmüller, H., 2005. Accurate and efficient stereo processing by semi-global matching
and mutual information, in: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), pp. 807–814 vol. 2.

121

http://www.shortcourses.com/stereo/stereo3-14.html
http://www.shortcourses.com/stereo/stereo3-14.html

Hirschmüller, H., 2011. Semi-global matching-motivation, developments and applica-
tions. Photogrammetric Week 11 , 173–184.

Hirschmüller, H., Gehrig, S., 2009. Stereo matching in the presence of sub-pixel calibra-
tion errors, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition,
IEEE. pp. 437–444.

Huber, P.J., 1985. Projection pursuit. The annals of Statistics , 435–475.

Kidd, J.R., 2017. Performance evaluation of the Velodyne VLP-16 system for surface
feature surveying .

Konolige, K., 1998. Small vision systems: Hardware and implementation, in: Robotics
research. Springer, pp. 203–212.

Krenker, A., Bešter, J., Kos, A., 2011. Introduction to the artificial neural networks, in:
Suzuki, K. (Ed.), Artificial Neural Networks. IntechOpen, Rijeka. chapter 1.

Kukelova, Z., Martin, B., Pajdla, T., 2008. Polynomial eigenvalue solutions to the 5-PT
and 6-PT relative pose problems. BMVC 2, 138–156.

Li, L., Zhang, S., Wu, J., 2019. Efficient object detection framework and hardware archi-
tecture for remote sensing images. Remote Sensing 11, 2376.

Li, Y., Min, D., Do, M.N., Lu, J., 2016. Fast guided global interpolation for depth and
motion. European Conference on Computer Vision , 717–733.

Liu, Y., Aggarwal, J., 2005. Local and Global Stereo Methods. chapter 3.12. pp. 297–308.

Luoto, M., Marmion, M., Hjort, J., 2010. Assessing spatial uncertainty in predictive geo-
morphological mapping: A multi-modelling approach. Computers & Geosciences 36,
355–361.

Magnusson, M., 2009. The Three-Dimensional Normal-Distributions Transform — an
Efficient Representation for Registration, Surface Analysis, and Loop Detection. Ph.D.
thesis. Örebro University, School of Science and Technology.

Marita, T., Oniga, F., Nedevschi, S., Graf, T., Schmidt, R., 2006. Camera calibration
method for far range stereovision sensors used in vehicles. IEEE Intelligent Vehicles
Symposium , 356 – 363.

McCabe, K., 2016. How to Set Up a Stereo Machine Vision So-
lution. URL: https://www.qualitymag.com/articles/
93543-how-to-set-up-a-stereo-machine-vision-solution.

Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N., 2014. Fast global image smoothing
based on weighted least squares. IEEE Transactions on Image Processing 23, 5638–
5653.

Nguyen, A., Le, B., 2013. 3d point cloud segmentation: A survey, in: 2013 6th IEEE
conference on robotics, automation and mechatronics (RAM), IEEE. pp. 225–230.

122

https://www.qualitymag.com/articles/93543-how-to-set-up-a-stereo-machine-vision-solution
https://www.qualitymag.com/articles/93543-how-to-set-up-a-stereo-machine-vision-solution

Nguyen, P.H., Ahn, C.W., 2019. Stereo matching methods for imperfectly rectified stereo
images. Symmetry 11, 570.

Ødegård Olsen, T., 2020. Stereo vision using local methods for autonomous ferry. 5th
year specialization project at NTNU.

O’Shea, K., Nash, R., 2015. An introduction to convolutional neural net-
works. CoRR abs/1511.08458. URL: http://arxiv.org/abs/1511.08458,
arXiv:1511.08458.

Park, K., Kim, S., Sohn, K., 2018. High-precision depth estimation with the 3d lidar and
stereo fusion, in: 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2156–2163.

Pendleton, S., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y., Rus, D., Ang,
M., 2017. Perception, Planning, Control, and Coordination for Autonomous Ve-
hicles. Machines 5, 6. URL: http://www.mdpi.com/2075-1702/5/1/6,
doi:10.3390/machines5010006.

Praveen, S., 2019. Efficient depth estimation using sparse stereo-vision with other percep-
tion techniques, in: Advanced Image and Video Coding. IntechOpen.

Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.C., Ng,
A.Y., 2009. ROS: an open-source robot operating system, in: IEEE International Con-
ference on Robotics and Automation.

Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A., 2015. You only look once: Uni-
fied, real-time object detection. CoRR abs/1506.02640. URL: http://arxiv.org/
abs/1506.02640, arXiv:1506.02640.

Redmon, J., Farhadi, A., 2018. YOLOv3: An incremental improvement.
CoRR abs/1804.02767. URL: http://arxiv.org/abs/1804.02767,
arXiv:1804.02767.

robotics, O., . Spinnaker SDK driver - ROS wiki . http://wiki.ros.org/
spinnaker_sdk_camera_driver. Open Source Robotics Foundation.

Rusu, R.B., Cousins, S., 2011. 3D is here: Point Cloud Library (PCL), in: IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Shanghai, China. pp. 1–4.

Sasiadek, J.Z., Walker, M.J., 2019. Achievable stereo vision depth accuracy with changing
camera baseline. 24th International Conference on Methods and Models in Automation
and Robotics (MMAR), Miedzyzdroje, Poland , 152–157.

Schiller, I., Beder, C., Koch, R., 2012. Calibration of a PMD-camera using a planar
calibration pattern together with a multi-camera setup. ISPRS 37.

Shi, J., Tomasi, C., 1994. Good features to track. IEEE conference on computer vision
and pattern recognition 2, 593–600.

123

http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
http://www.mdpi.com/2075-1702/5/1/6
http://dx.doi.org/10.3390/machines5010006
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://wiki.ros.org/spinnaker_sdk_camera_driver
http://wiki.ros.org/spinnaker_sdk_camera_driver

Shin, B., Mou, X., Mou, W., 2018. Vision-based navigation of an unmanned surface
vehicle with object detection and tracking abilities. Machine Vision and Applications
29, 95–112.

Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U., 2008. On bench-
marking camera calibration and multi-view stereo for high resolution imagery. IEEE
Conference on Computer Vision and Pattern Recognition , 1 – 8.

Templeton, B., 2013. Cameras or Lasers? URL: https://www.templetons.com/
brad/robocars/cameras-lasers.html.

Thaher, R.H., Hussein, Z.K., 2014. Stereo vision distance estimation employing SAD with
Canny edge detector. International Journal of Computer Applications 107.

Theimann, L., 2020. Comparison of depth information from stereo camera and lidar. 5th
year specialization project at NTNU.

Tomasi, C., Kanade, T., 1991. Detection and tracking of point features. International
Journal of Computer Vision .

Torr, P.H.S., Zisserman, A., 2000. MLESAC: A new robust estimator with application to
estimating image geometry. Computer Vision and Image Understanding 78, 138–156.

Velodyne, 2019. Velodyne LiDAR Puck. Technical report.

Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q., 2019.
Pseudo-lidar from visual depth estimation: Bridging the gap in 3D object detection for
autonomous driving. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition URL: http://arxiv.org/abs/1812.07179.

Wang, Y., Lai, Z., Huang, G., Wang, B.H., van der Maaten, L., Campbell, M., Wein-
berger, K.Q., 2019. Anytime stereo image depth estimation on mobile devices, in: 2019
International Conference on Robotics and Automation (ICRA), pp. 5893–5900.

Wang, Y., Wang, X., Yin, L., 2019. Estimation of extrinsic parameters for dynamic binoc-
ular stereo vision using unknown-sized rectangle images. Review of Scientific Instru-
ments 90, 065108.

Warren, M., McKinnon, D., , Upcroft, B., 2013. Online calibration of stereo rigs for
long-term autonomy. IEEE International Conference on Robotics and Automation 37,
3692–3698.

Yu, S., Zhu, R., Yu, L., Ai, W., 2018. Effect of checkerboard on the accuracy of camera
calibration. Pacific Rim Conference on Multimedia , 619–629.

Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence 22, 1330 – 1334.

Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X., 2019. Object detection with deep learning: A
review. IEEE transactions on neural networks and learning systems 30, 3212–3232.

124

https://www.templetons.com/brad/robocars/cameras-lasers.html
https://www.templetons.com/brad/robocars/cameras-lasers.html
http://arxiv.org/abs/1812.07179

Appendix A
Reconstructed point clouds of
calibration scenes

This appendix contains plots of the reconstructed point clouds of each calibration scene.
The obtained stereo parameters are used in a semi-global matching algorithm to create a
disparity map and to reconstruct a point cloud of the calibration scene. The point clouds
are plotted together with the ground truth of the scene, the LiDAR point cloud. The stereo
point cloud is given in green and the LiDAR in purple.

125

(a) 10 meters front (b) 10 meters above (c) 20 meters front (d) 20 meters above

(e) 30 meters front (f) 30 meters above (g) 40 meters front (h) 40 meters above

(i) 40 meters front (j) 40 meters above (k) 50 meters front (l) 50 meters above

(m) 60 meters front (n) 60 meters above (o) 70 meters front (p) 70 meters above

Figure A.1: Stereo point cloud of calibration scenes plotted together with LiDAR point cloud

126

Appendix B
Reconstructed point clouds of test
scenes

This appendix contains plots of the stereo point clouds of each test scene. The point clouds
are plotted together with the ground truth of the scene, the LiDAR point cloud. The stereo
point cloud is given in green and the LiDAR in purple.

(a) 7.6 meter MATLAB calibration (b) 10 meter calibration (c) 20 meter calibration

(d) 30 meter calibration (e) 40 meter calibration (f) 50 meter calibration

127

(g) 60 meter calibration (h) 70 meter calibration (i) Average calibration

Figure B.1: Test scene at 30 meters

(a) 7.6 meter MATLAB calibration (b) 10 meter calibration (c) 20 meter calibration

(d) 30 meter calibration (e) 40 meter calibration (f) 50 meter calibration

(g) 60 meter calibration (h) 70 meter calibration (i) Average calibration

Figure B.2: Test scene at 40 meters

128

(a) 7.6 meter MATLAB calibration (b) 10 meter calibration (c) 20 meter calibration

(d) 30 meter calibration (e) 40 meter calibration (f) 50 meter calibration

(g) 60 meter calibration (h) 70 meter calibration (i) Average calibration

Figure B.3: Test scene at 50 meters

129

(a) 7.6 meter MATLAB calibration (b) 10 meter calibration (c) 20 meter calibration

(d) 30 meter calibration (e) 40 meter calibration (f) 50 meter calibration

(g) 60 meter calibration (h) 70 meter calibration (i) Average calibration

Figure B.4: Test scene at 70 meters

130

(a) 7.6 meter MATLAB calibration (b) 10 meter calibration (c) 20 meter calibration

(d) 30 meter calibration (e) 40 meter calibration (f) 50 meter calibration

(g) 60 meter calibration (h) 70 meter calibration (i) Average calibration

Figure B.5: Test scene at 90 meters

131

132

Appendix C
Github repository, Readme

133

 README.md

Stereo Vision for Autonomous ferry - code

The project is a part of TTK4900 - Engineering Cybernetics, Master's Thesis at Norwegian University of Science and Technology. "Stereo

Vision for Autonomous ferry" goes into detail of the calibration, the chosen stereo setup, and the implementation for testing of dynamic

scenes. The ownship has adequate data to sense, process, and understand its surroundings.

Contents

Getting Started

System overviw

Launch

Connect to Network MilliAmpere

Application and Scrips

Authors and License

Getting Started

Example of the stereo system tested. The baseline in use measures 1.8meters, and the cameras are angled 1 degree inwards. The stereo

system was tested using Blackfly S GigE with PoE, master software triggering, and GPIO pins for external triggering of the slave. The

Velodyne LiDAR Puck-16 serves as ground truth for the system.

Prerequisites

Set up a computer with GPU and Ubuntu 16.04. The repo is tested on a Dell Precision 7530 with NVIDIA Quadro P3200.

Set up a stereo system, and perform a stereo calibration of the cameras.

Install Spinnaker and verify that you can run your cameras with SpinViw (Windows operating system is preferred). Set up a stereo

system with either hardware or software triggering. Modify the yaml files in spinnaker-sdk-driver by replacing the cam-ids and master

cam serial number to match your camera's serial number. In the same yaml file, include the calibration parameters. (If using Matlab

for calibration, make sure to convert the numbers to OpenCV calibration definitions)

Optionally: Set up the LiDAR driver. An extrinsic calibration of the LiDAR and the stereo camera must be performed for the LiDAR to

serve as a basis for comparison.

Installing

README.md - Grip http://localhost:6419/

1 of 5 6/16/20, 11:33 PM

ROS Kinetic

CUDA 10.2 for runnning darknet ros (YOLOv3) on GPU.

Python. The scripts is tested with Python 2.7.12

i. Matplotlib and OpenCV

sudo apt install python-pip #Installs Python pip

python -mpip install -U pip

python -mpip install -U matplotlib #Plot the results by installing Matplotlib

python -mpip install -U opencv-python #Show animation by opencv

For the stereoTuner the gtk3 development files is needed for cmake: sudo apt-get install build-essential libgtk-3-dev

System overview

This shows an illustration of the overview of the stereo system and the ground truth. For a full overview run:

 rosrun rqt_graph rqt_graph

Launch

cd Master

catkin build

source devel/setup.bash

roslaunch launch clustering_cnn file:= "your bag file" #launch bagfile, stereo_image_proc, yolo and clustering_cnn

roslaunch launch clustering_ptcloud file:= "your bag file" #launch bagfile, stereo_image_proc, clustering_ptcloud

Run individual packages

Camera driver

roslaunch spinnaker_sdk_camera_driver acquisition.launch

Or Rosbag: rosbag play "filename" --clock

Stereo image proc

ROS_NAMESPACE=camera_array rosrun stereo_image_proc stereo_image_proc

README.md - Grip http://localhost:6419/

2 of 5 6/16/20, 11:33 PM

Display images

Rectified images and disparity map`

i. rosrun image_view stereo_view stereo:=/camera_array image:=image_rect_color

Raw stereo images 2. rosrun image_view stereo_view stereo:=/camera_array image:=image_raw

Left rectified image 3. rosrun image_view image_view image:=/camera_arr/left/image_rect_color

Clustering Point Cloud

roslaunch clustering pcl_obstacle_detector.launch #Need the bagfile to be run with the "--clock"

Tuning the parameters: rosrun rqt_reconfigure rqt_reconfigure

Visualize in rviz: rosrun rviz rviz -f velodyne The package filters and clusters the point cloud, publishing the point clouds, and

transforms the clusters to NED coordinates. The class makes use of PassThrough filter, Statistical Outlier Removal, Voxel Grid filter,

accumulates subsequent point clouds, and Euclidean clustering.

Darknet_ros (YOLOv3)

roslaunch darknet_ros yolo_v3.launch #subscribes on camera_array/left/image_rect_color

Clustering Convolutional Neural Network

rosrun clustering_cnn clustering_cnn

Navigation data

rosrun navigation_data *filename*

Connect to Network on MilliAmpere

If the code is to be run with the master core on the ferry Milliampere a local network needs to be setup. The best solution is to set up a

separate static network on the computer through usb3.

ifconfig #find your network

sudo nano /etc/network/interfaces #add/make the network static

nano /etc/hosts #add milliAmpere as host on machine, further do the same at milliAmpere

sudo ifdown "your network" && sudo ifup "your network" #restarting interface

ping milliAmpere #check if connection established

Now that you have created a static network, the roscore has to be exported. This tells your machine that the roscore is running on another

computer. Be sure to do this in every terminal window (can be an advantage to add in nano .bashrc)

export ROS_MASTER_URI=http://milliAmpere:11311

echo $ROS_MASTER_URI

rostopic echo /topic #test that connection is established

Application and Scripts

stereoTuner

Application for tuning the disparity map, implemented using the stereoBM object and WLS filter from openCV. The GUI is a modified

version of the repository stereo-tuner. Remember to rectify the images beforehand; you're welcome. It is a simple little GTK application

that can be used to tune parameters for the OpenCV Stereo Vision algorithms.

mkdir build

cd build

cmake ..

make

./main

README.md - Grip http://localhost:6419/

3 of 5 6/16/20, 11:33 PM

Label YOLO images

GUI for marking bounded boxes of objects in images for training Yolo v3.

Put your .jpg -images in the directory x64/Release/data/img .

Change the numer of classes (objects for detection) in file `x64/Release/data/obj.data

Put names of the objects, one for each line in the file `x64/Release/data/obj.names If the images are used for training a custom

dataset visit AlexBA for a more detailed explanation.

cmake .

make

./linux_mark.sh

Precision-recall curve for YOLOv3

Plots and calculates the precision-recall curve from ground truth images. It iterates through two for-loops, one with IoU-threshold and the

second with the YOLO-threshold. Make sure to input detection images from the network with threshold less than the ones in the for-loop in

main.py. The mAP script is a modified version of the code in the github repository mAp. It outputs a precision-recall curve for each

threshold and IoU-threshold in main.py

Create the ground truth files using Label YOLO images

i. Insert images into the folder input/ground-truth/images

README.md - Grip http://localhost:6419/

4 of 5 6/16/20, 11:33 PM

ii. Insert ground-truth files into ground-truth/

iii. Add class list to the file scripts/extra/class_list.txt

iv. Run the python script: python convert_gt_yolo.py to convert the txt-files to the correct format

Create the detection-results files by running darknet_ros (It is created code (commented out) for saving box-files and rectified images

in /src/darknet_ros/darknet_ros/src/YoloObjectDetector.cpp)

i. Copy the detection-results files into the folder input/detection-results/

Run the script: python main.py

i. Note: To run the script once, for a given IoU-threshold and YOLO-threshold,run the following command line. This wil process

mAP, detection result information etc in the folder /output. python precision-recall.py "IoU-threshold" "YOLO-threshold"

Note: be consistent with using rectified/not-rectified images.

python main.py

Feel free to edit the main file with your preferred values in the for-loops.

Plot and calculate ground truth depth and stereo depth

Matches handhold-GPS csv file with the GPS from MA by satellite time. Match the stereo ros-time and plots estimated depth and NED

coordinates in a beautiful graph.

Authors and License

Good-luck from two soon-to-be well educated grown-ups.

Trine Ødegård Olsen - trineoo

Lina Theimann - linact

This project is licensed under the MIT License - see the LICENSE.md file for details

README.md - Grip http://localhost:6419/

5 of 5 6/16/20, 11:33 PM

Appendix D
Labeling ground truth dataset for
YOLOv3 evaluation

To evaluate the accuracy of the weights in the network, a ground truth dataset was labeled.
The dataset is captured outside the port Brattøra and consists of 483 images. The images
are rectified with the given calibration parameters, and manually labeled with the graphical
user interface developed by AlexeyAB1. The GUI created for marking bounded boxes of
objects in images for neural network is shown in Figure D.2. The GUI output a textfile
for each image, containing the class of labeled objects with the corresponding bounding
box. The dataset contains images of one boat at different heading from the camera’s point
of view. All the images are taken 40- to 150-meters from the boat. An example of the
pictures in the dataset is displayed in Figure D.1. The pictures are easy to label and are
considered a relatively fair scene considering the training set. The dataset is expected to
yield satisfactory results, given the operating environment.

1https://github.com/AlexeyAB/Yolo_mark

139

https://github.com/AlexeyAB/Yolo_mark

Figure D.1: Images of the dataset

Figure D.2: GUI for labeling images

140

Appendix E
Result of different
YOLO-thresholds

With IoU-threshold of 0.2, different YOLO-threshold yields the following result. Used to
find the systems optimal threshold.

YOLO-
threshold

IoU >= 0.20
Area Precision Recall

0.03 0.2379 0.2379 1.0000
0.04 0.2379 0.2379 1.0000
0.05 0.2379 0.2379 1.0000
0.06 0.2564 0.2564 1.0000
0.07 0.2712 0.2712 1.0000
0.08 0.2880 0.2880 1.0000
0.09 0.3028 0.3028 1.0000
0.10 0.3205 0.3205 1.0000
0.11 0.3371 0.3371 1.0000
0.12 0.3526 0.3526 1.0000
0.13 0.3698 0.3698 1.0000
0.14 0.3861 0.3861 1.0000
0.15 0.4022 0.4022 1.0000
0.16 0.4178 0.4178 1.0000
0.17 0.4347 0.4347 1.0000
0.18 0.4476 0.4476 1.0000
0.19 0.4649 0.4649 1.0000
0.20 0.4792 0.4792 1.0000
0.21 0.4898 0.4908 0.9979

...
...

...
...

141

YOLO-
threshold

IoU >= 0.20
Area Precision Recall

0.22 0.5037 0.5047 0.9979
0.23 0.5172 0.5183 0.9979
0.24 0.5368 0.5379 0.9979
0.25 0.5503 0.5515 0.9979
0.26 0.5659 0.5671 0.9979
0.27 0.5747 0.5783 0.9938
0.28 0.5847 0.5909 0.9896
0.29 0.5940 0.6015 0.9876
0.30 0.6025 0.6140 0.9814
0.31 0.6087 0.6216 0.9793
0.32 0.6232 0.6391 0.9752
0.33 0.6318 0.6479 0.9752
0.34 0.6378 0.6582 0.9689
0.35 0.6450 0.6686 0.9648
0.36 0.6508 0.6789 0.9586
0.37 0.6519 0.6830 0.9545
0.38 0.6579 0.6923 0.9503
0.39 0.6603 0.6994 0.9441
0.40 0.6594 0.7093 0.9296
0.41 0.6664 0.7217 0.9234
0.42 0.6633 0.7265 0.9130
0.43 0.6610 0.7356 0.8986
0.44 0.6665 0.7470 0.8923
0.45 0.6631 0.7590 0.8737
0.46 0.6540 0.7648 0.8551
0.47 0.6478 0.7669 0.8447
0.48 0.6390 0.7697 0.8302
0.49 0.6379 0.7780 0.8199
0.50 0.6356 0.7851 0.8095
0.51 0.6394 0.7939 0.8054
0.52 0.6434 0.8071 0.7971
0.53 0.6402 0.8137 0.7867
0.54 0.6277 0.8172 0.7681
0.55 0.6266 0.8247 0.7598
0.56 0.6171 0.8326 0.7412
0.57 0.6097 0.8413 0.7246
0.58 0.6079 0.8536 0.7122
0.59 0.6064 0.8589 0.7060
0.60 0.5877 0.8575 0.6853
0.61 0.5852 0.8670 0.6749
0.62 0.5639 0.8674 0.6501

...
...

...
...

142

YOLO-
threshold

IoU >= 0.20
Area Precision Recall

0.63 0.5657 0.8785 0.6439
0.64 0.5489 0.8779 0.6253
0.65 0.5419 0.8813 0.6149
0.66 0.5223 0.8851 0.5901
0.67 0.5182 0.8971 0.5776
0.68 0.4973 0.8963 0.5549
0.69 0.4843 0.8997 0.5383
0.70 0.4692 0.9029 0.5197
0.71 0.4504 0.9026 0.4990
0.72 0.4271 0.9048 0.4720
0.73 0.4165 0.9061 0.4596
0.74 0.4001 0.9030 0.4431
0.75 0.3937 0.9276 0.4244
0.76 0.3772 6 0.9249 0.4079
0.77 0.3564 0.9254 0.3851
0.78 0.3373 0.9309 0.3623
0.79 0.3159 0.9419 0.3354
0.80 0.3033 0.9451 0.3209
0.81 0.2804 0.9470 0.2961
0.82 0.2533 0.9485 0.2671
0.83 0.2304 0.9512 0.2422
0.84 0.2137 0.9558 0.2236
0.85 0.1951 0.9519 0.2050
0.86 0.1825 0.9583 0.1905
0.87 0.1639 0.9540 0.1718
0.88 0.1514 0.9620 0.1573
0.89 0.1307 0.9565 0.1366
0.90 0.1201 0.9833 0.1222
0.91 0.1056 1.0000 0.1056
0.92 0.0828 1.0000 0.0828
0.93 0.0745 1.0000 0.0745
0.94 0.0621 1.0000 0.0621
0.95 0.0518 1.0000 0.0518
0.96 0.0455 1.0000 0.0455
0.97 0.0414 1.0000 0.0414
0.98 0.0373 1.0000 0.0373
0.99 0.0269 1.0000 0.0269

143

144

Appendix F
The Milliampere system

The system running on Milliampere can be comprised in the following graph.

145

Figure F.1: Graph of the ROS system on the ferry Milliampere
146

Appendix G
Ground truth accuracy plots

08:06:00 08:07:00 08:08:00 08:09:00 08:10:00

time- hours:minutes:seconds

63.4366

63.4368

63.437

63.4372

63.4374

63.4376

63.4378

63.438

63.4382

63.4384

63.4386

L
a
t

Latitude

21-May-2020

(a) Latitude scenario 1

08:06:00 08:07:00 08:08:00 08:09:00 08:10:00

time- hours:minutes:seconds

10.388

10.389

10.39

10.391

10.392

10.393

10.394

10.395

10.396

L
o
n
g

Longitude

21-May-2020

(b) Longitude scenario 1

08:06:00 08:07:00 08:08:00 08:09:00 08:10:00

time- hours:minutes:seconds

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

E
le

v

Elevation

21-May-2020

(c) Elevation scenario 1

08:13:30 08:14:00 08:14:30 08:15:00

time- hours:minutes:seconds

63.4393

63.4394

63.4395

63.4396

63.4397

63.4398

63.4399

63.44

63.4401

63.4402

L
a
t

Latitude

21-May-2020

(d) Latitude scenario 2

08:13:30 08:14:00 08:14:30 08:15:00

time- hours:minutes:seconds

10.3907

10.3908

10.3909

10.391

10.3911

10.3912

10.3913

10.3914

10.3915

10.3916

L
o
n
g

Longitude

21-May-2020

(e) Longitude scenario 2

08:13:30 08:14:00 08:14:30 08:15:00

time- hours:minutes:seconds

1.5

2

2.5

3

3.5

4

E
le

v

Elevation

21-May-2020

(f) Elevation scenario 2

147

08:20:00 08:21:00 08:22:00 08:23:00 08:24:00

time- hours:minutes:seconds

63.4385

63.4386

63.4387

63.4388

63.4389

63.439

63.4391

63.4392

L
a
t

Latitude

21-May-2020

(a) Latitude scenario 3

08:20:00 08:21:00 08:22:00 08:23:00 08:24:00

time- hours:minutes:seconds

10.39008

10.3901

10.39012

10.39014

10.39016

10.39018

10.3902

10.39022

10.39024

10.39026

10.39028

L
o
n
g

Longitude

21-May-2020

(b) Longitude scenario 3

08:20:00 08:21:00 08:22:00 08:23:00 08:24:00

time- hours:minutes:seconds

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

E
le

v

Elevation

21-May-2020

(c) Elevation scenario 3

08:31:00 08:31:30 08:32:00 08:32:30 08:33:00

time- hours:minutes:seconds

63.4375

63.438

63.4385

63.439

63.4395

63.44

L
a
t

Latitude

21-May-2020

(d) Latitude scenario 4

08:31:00 08:31:30 08:32:00 08:32:30 08:33:00

time- hours:minutes:seconds

10.39

10.3905

10.391

10.3915

10.392

10.3925

L
o
n
g

Longitude

21-May-2020

(e) Longitude scenario 4

08:31:00 08:31:30 08:32:00 08:32:30 08:33:00

time- hours:minutes:seconds

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

E
le

v

Elevation

21-May-2020

(f) Elevation scenario 4

08:35:30 08:36:00 08:36:30 08:37:00 08:37:30

time- hours:minutes:seconds

63.43915

63.4392

63.43925

63.4393

63.43935

63.4394

L
a
t

Latitude

21-May-2020

(g) Latitude scenario 5

08:35:30 08:36:00 08:36:30 08:37:00 08:37:30

time- hours:minutes:seconds

10.39259

10.3926

10.39261

10.39262

10.39263

10.39264

10.39265

10.39266

10.39267

10.39268

10.39269

L
o
n
g

Longitude

21-May-2020

(h) Longitude scenario 5

08:35:30 08:36:00 08:36:30 08:37:00 08:37:30

time- hours:minutes:seconds

2.5

3

3.5

4

4.5

E
le

v

Elevation

21-May-2020

(i) Elevation scenario 5

148

08:39:00 08:39:30 08:40:00 08:40:30

time- hours:minutes:seconds

63.43878

63.4388

63.43882

63.43884

63.43886

63.43888

63.4389

63.43892

63.43894

63.43896

63.43898

L
a
t

Latitude

21-May-2020

(j) Latitude scenario 6

08:39:00 08:39:30 08:40:00 08:40:30

time- hours:minutes:seconds

10.39257

10.39258

10.39259

10.3926

10.39261

10.39262

10.39263

L
o
n
g

Longitude

21-May-2020

(k) Longitude scenario 6

08:39:00 08:39:30 08:40:00 08:40:30

time- hours:minutes:seconds

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

E
le

v

Elevation

21-May-2020

(l) Elevation scenario 6

08:30:00 08:35:00 08:40:00 08:45:00 08:50:00

time- hours:minutes:seconds

63.4365

63.437

63.4375

63.438

63.4385

63.439

63.4395

63.44

L
a
t

Latitude

21-May-2020

(m) Longitude scenario 7

08:30:00 08:35:00 08:40:00 08:45:00 08:50:00

time- hours:minutes:seconds

10.39

10.391

10.392

10.393

10.394

10.395

10.396

10.397

10.398

10.399

L
o
n
g

Longitude

21-May-2020

(n) Latitude scenario 7

08:30:00 08:35:00 08:40:00 08:45:00 08:50:00

time- hours:minutes:seconds

2

3

4

5

6

7

8

9

10

E
le

v
Elevation

21-May-2020

(o) Elevation scenario 7

Figure G.2: GPS longitude, latitude and elevation plots

149

0 20 40 60 80 100 120 140 160
Time

0

20

40

60

80

100

120

140

De
pt
h

Scenario 2
depth from

GPS
LiDAR

(a) Scene 2

0 50 100 150 200
Time

0

20

40

60

80

100

120

140

De
pt
h

Scenario 3
depth from

GPS
LiDAR

(b) Scene 3

0 20 40 60 80 100 120
Time

0

20

40

60

80

100

120

140

De
pt
h

Scenario 4
depth from

GPS
LiDAR

(c) Scene 4

0 20 40 60 80 100
Time

0

20

40

60

80

100

120

140

De
pt
h

Scenario 5
depth from

GPS
LiDAR

(d) Scene 5

0 20 40 60 80 100 120
Time

0

20

40

60

80

100

120

140

De
pt
h

Scenario 6
depth from

GPS
LiDAR

(e) Scene 6

0 50 100 150 200 250 300 350
Time

0

20

40

60

80

100

120

140

De
pt
h

Scenario 7
depth from

GPS
LiDAR

(f) Scene 7

Figure G.3: Depth from LiDAR and GPS

150

Appendix H
Result Plots

H.1 CNN-clustering

151

0 20 40 60 80 100 120 140 160
Time

40

60

80

100

120

140

160

No
rth

Scenario 2

(a) North-time

0 20 40 60 80 100 120 140 160
Time

−460

−450

−440

−430

−420

−410

−400

−390

−380

−370

Ea
st

Scenario 2

(b) East-time

0 20 40 60 80 100 120 140 160
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 2

(c) North-time error

0 20 40 60 80 100 120 140 160
Time

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Ea

st
 e
rro

r
Scenario 2

(d) East-time error

0 20 40 60 80 100 120 140 160
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 2

(e) Depth-time error percentage

Figure H.1: Scenario 2

152

0 50 100 150 200
Time

−40

−30

−20

−10

0

10

20

No
rth

Scenario 3

(a) North-time

0 50 100 150 200
Time

−455

−450

−445

−440

−435

Ea
st

Scenario 3

(b) East-time

0 50 100 150 200
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 3

(c) North-time error

0 50 100 150 200
Time

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Ea
st
 e
rro

r
Scenario 3

(d) East-time error

0 50 100 150 200
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 3

(e) Depth-time error percentage

Figure H.2: Scenario 3

153

0 20 40 60 80 100 120
Time

−100

−50

0

50

No
rth

Scenario 4

(a) North-time

0 20 40 60 80 100 120
Time

−440

−420

−400

−380

−360

−340

Ea
st

Scenario 4

(b) East-time

0 20 40 60 80 100 120
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 4

(c) North-time error

0 20 40 60 80 100 120
Time

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Ea

st
 e
rro

r
Scenario 4

(d) East-time error

0 20 40 60 80 100 120
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 4

(e) Depth-time error percentage

Figure H.3: Scenario 4

154

0 20 40 60 80 100
Time

−20

0

20

40

60

80

No
rth

Scenario 5

(a) North-time

0 20 40 60 80 100
Time

−350

−340

−330

−320

−310

−300

Ea
st

Scenario 5

(b) East-time

0 20 40 60 80 100
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 5

(c) North-time error

0 20 40 60 80 100
Time

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Ea

st
 e
rro

r
Scenario 5

(d) East-time error

0 20 40 60 80 100
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 5

(e) Depth-time error percentage

Figure H.4: Scenario 5

155

0 10 20 30 40 50 60 70 80
Time

−40

−30

−20

−10

0

10

No
rth

Scenario 6

(a) North-time

0 10 20 30 40 50 60 70 80
Time

−350

−340

−330

−320

−310

−300

Ea
st

Scenario 6

(b) East-time

0 10 20 30 40 50 60 70 80
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 6

(c) North-time error

0 10 20 30 40 50 60 70 80
Time

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Ea

st
 e
rro

r
Scenario 6

(d) East-time error

0 10 20 30 40 50 60 70 80
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 6

(e) Depth-time error percentage

Figure H.5: Scenario 6

156

H.2 Ptcloud-clustering

0 20 40 60 80 100 120 140 160
Time

50

75

100

125

150

175

200

225

250

No
rth

Scenario 2

(a) North-time

0 20 40 60 80 100 120 140 160
Time

−430

−420

−410

−400

−390

−380

Ea
st

Scenario 2

(b) East-time

0 20 40 60 80 100 120 140 160
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 2

(c) North-time error

0 20 40 60 80 100 120 140 160
Time

−40

−30

−20

−10

0

10

20

30

Ea
st
 e
rro

r

Scenario 2

(d) East-time error

0 20 40 60 80 100 120 140 160
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 2

(e) Depth-time error percentage

Figure H.6: Scenario 2

157

0 50 100 150 200
Time

−40

−20

0

20

40

60

80

No
rth

Scenario 3

(a) North-time

0 50 100 150 200
Time

−500

−480

−460

−440

−420

Ea
st

Scenario 3

(b) East-time

0 50 100 150 200
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 3

(c) North-time error

0 50 100 150 200
Time

−40

−30

−20

−10

0

10

20

30
Ea

st
 e
rro

r
Scenario 2

(d) East-time error

0 50 100 150 200
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 3

(e) Depth-time error percentage

Figure H.7: Scenario 3

158

0 20 40 60 80 100 120
Time

−150

−100

−50

0

50

100

No
rth

Scenario 4

(a) North-time

0 20 40 60 80 100 120
Time

−450

−425

−400

−375

−350

−325

−300

−275

Ea
st

Scenario 4

(b) East-time

0 20 40 60 80 100 120
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 4

(c) North-time error

0 20 40 60 80 100 120
Time

−40

−30

−20

−10

0

10

20

30
Ea

st
 e
rro

r
Scenario 4

(d) East-time error

0 20 40 60 80 100 120
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 4

(e) Depth-time error percentage

Figure H.8: Scenario 4

159

0 20 40 60 80 100
Time

−20

0

20

40

60

80

No
rth

Scenario 5

(a) North-time

0 20 40 60 80 100
Time

−350

−340

−330

−320

−310

−300

Ea
st

Scenario 5

(b) East-time

0 20 40 60 80 100
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 5

(c) North-time error

0 20 40 60 80 100
Time

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Ea

st
 e
rro

r
Scenario 5

(d) East-time error

0 20 40 60 80 100
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 5

(e) Depth-time error percentage

Figure H.9: Scenario 5

160

0 10 20 30 40 50 60 70 80
Time

−40

−30

−20

−10

0

10

No
rth

Scenario 6

(a) North-time

0 10 20 30 40 50 60 70 80
Time

−350

−340

−330

−320

−310

−300

Ea
st

Scenario 6

(b) East-time

0 10 20 30 40 50 60 70 80
Time

−40

−30

−20

−10

0

10

20

30

No
rth

 e
rro

r

Scenario 6

(c) North-time error

0 10 20 30 40 50 60 70 80
Time

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
Ea

st
 e
rro

r
Scenario 6

(d) East-time error

0 10 20 30 40 50 60 70 80
Time

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

De
pt
h
er
ro
r [
%
]

Scenario 6

(e) Depth-time error percentage

Figure H.10: Scenario 6

161

Lina C. K. Theim
ann, Trine Ø

. O
lsen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Lina Charlotte Kristoffersen Theimann
Trine Ødegård Olsen

Stereo vision for autonomous ferry

Master’s thesis in Cybernetics and Robotics

Supervisor: Edmund Førland Brekke,

Co-supervisor: Annette Stahl, Øystein K. Helgesen.

June 2020

	Abstract
	Sammendrag
	Preface
	Table of Contents
	Abbreviations
	Nomenclature
	Introduction
	Background
	Problem description
	Report Outline

	I Stereo vision and calibration
	Stereo vision
	Monocular camera
	Pinhole model
	Camera parameters
	Blackfly S GigE

	Stereo setup
	The chosen stereo setup

	Epipolar geometry
	Correspondence problem
	Disparity map
	Semi-Global Matching

	Ground truth
	Light Detection and Ranging - LiDAR
	LiDAR - stereo camera calibration
	Normal-distributions transform

	The ground truth

	Stereo calibration
	Monocular camera calibration
	Zhang's method
	Intrinsic parameters

	Preliminary extrinsic stereo calibration
	Discussion

	Extrinsic stereo calibration method
	Geometric error
	Pixel correspondences
	Estimation of the relative extrinsic parameters
	Absolute extrinsic parameters

	Calibration results
	Resulting parameters
	Evaluation

	Test scenes
	Results
	Evaluation

	Discussion

	II Application in marine environment
	System overview
	The operating environment
	Processing pipeline
	Software
	Stereo driver
	3D reconstruction
	Point cloud clustering
	2D Object detection
	CNN clustering

	Communication with milliAmpere
	Common world frame

	Object detection
	Uncertainty in the stereo system
	Reprojection error
	Stereo setup

	The disparity map algorithm
	Sum of Absolute Difference
	Filtering
	Fast Global Image Smoothing Based on Weighted Least Squares
	Implementation
	Disparity Tuning

	2D Object Detection with YOLO
	YOLOv3
	Precision recall curve
	Using CNN for clustering

	Point Cloud Clustering
	Hierarchical clustering
	Implementation of Euclidean clustering

	Test results in marine environment
	Ground truth
	Results
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5
	Scenario 6
	Application inside harbour
	Comparing detection techniques

	Discussion
	Clustering techniques
	Disparity map
	Error of the estimated distances
	Reprojection error
	Uncertainty in the stereo system
	Limitations of the stereo system
	Overall performance

	Conclusion and future work
	Conclusion
	Future Work

	Bibliography
	Reconstructed point clouds of calibration scenes
	Reconstructed point clouds of test scenes
	Github repository, Readme
	Labeling ground truth dataset for YOLOv3 evaluation
	Result of different YOLO-thresholds
	The Milliampere system
	Ground truth accuracy plots
	Result Plots
	CNN-clustering
	Ptcloud-clustering

